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Seismic imaging and optimal transport

Bjorn Engquist and Yunan Yang

Seismology has changed character since 50 years ago when the
full wavefield could be determined. Partial differential equations
(PDE) started to be used in the inverse process of finding proper-
ties of the interior of the earth. In this paper, we will review earlier
techniques focusing on Full Waveform Inversion (FWI), which is
a large-scale non-convex PDE constrained optimization problem.
The minimization of the objective function is usually coupled with
the adjoint state method, which also includes the solution to an
adjoint wave equation. The least-squares (L2) norm is the conven-
tional objective function measuring the difference between simu-
lated and measured data, but it often results in the minimization
trapped in local minima. One way to mitigate this is by select-
ing another misfit function with better convexity properties. Here
we propose using the quadratic Wasserstein metric (W2) as a new
misfit function in FWI. The optimal map defining W2 can be com-
puted by solving a Monge-Ampère equation. Theorems pointing to
the advantages of using optimal transport over L2 norm will be
discussed, and several large-scale computational examples will be
presented.

AMS 2000 subject classifications: 65K10, 65K10, 86A15, 86A22.

Keywords and phrases: Seismic imaging, full-waveform inversion, op-
timal transport, Monge-Ampère equation.

1. Introduction

Earth Science is an early scientific subject. The efforts started as early as AD
132 in China when Heng Zhang invented the first seismoscope in the world
(Figure 1a). The goal was to record that an earthquake had happened and
to try to determine the direction of the earthquake. Substantial progress
in seismology had to wait until about 150 years ago when seismological
instruments started to record travel time.

With increasing sophistication in devices measuring the vibrations of
seismic waves and in the availability of high-performance computing in-
creasingly advances mathematical techniques could be used to explore the

95

http://www.intlpress.com/CIS/


96 Bjorn Engquist and Yunan Yang

Figure 1: (a) The first Seismoscope designed in AD 132 and (b) Modern
seismic vibrator used in seismic survey.

interior of the earth. The development started with calculations by hand
based on geometrical optics and travel time measurement. It continued with

a variety of wave equations when the equipment allowed for measuring wave

fields and modern computers became available. As we will see below a wide
range of mathematical tools are used today in seismic imaging, including

partial differential equation (PDE) constrained optimization, advanced sig-
nal processing, optimal transport and the Monge-Ampère equation.

Since 19th-century modern seismographs were developed to record seis-
mic signals, which are vibrations in the earth. In 1798 Henry Cavendish

measured the density of the earth with less than 1% error compared with

the number we can measure nowadays. Nearly one hundred years later, Ger-
man physicist Emil Wiechert first discovered that the earth has a layered

structure and the theory was further completed as the crust-mantle-core

three-layer model in 1914 by one of his student Beno Gutenberg. In the
meantime, people studied the waves including body waves and surface waves

to better understand the earthquake. P-waves and S-waves were first clearly
identified for their separate arrivals by English geologist Richard Dixon Old-

ham in 1897. The Murchison earthquake in 1929 inspired the Danish female

seismologist and geophysicist Inge Lehmann to study the unexpected P-
waves recorded by the seismographs. Later on, she proposed that the core

of the earth has two parts: the solid inner core of iron and a liquid outer
core of nickel-iron alloy, which was soon acknowledged by peer geophysicists

worldwide.
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Figure 2: (a) An example of the seismic data measured from the receivers
and (b) Goal of inversion: geophysical properties as in the Sigsbee velocity
model [5].

We will see that measuring travel time plays a vital role in the devel-
opment of modern techniques for the inverse problem of finding geophysical
properties from measurements of seismic waves on the surface. The methods
are often related to travel time tomography. They are quite robust and cost-
efficient for achieving low-resolution information of the subsurface velocities.
The forward problem is based on ray theory or geometric optics [12, 128].

The development of man-made seismic sources and advanced recording
devices (Figure 1b) facilitate the research on the entire wavefields in time
and space (Figure 2a) rather than merely travel time. This setup results in
a more controlled setting and large amounts of data, which is needed for an
accurate inverse process of estimating geophysical properties, for example,
Figure 2b. The forward modeling is a wave equation with many man-made
sources and many receivers. The wave equation can vary from pure acoustic
waves to anisotropic viscoelasticity. Even if there are various techniques in
computational exploration seismology, there are two processes that currently
stand out: reverse time migration (RTM) [6, 144] and full waveform inversion
(FWI) [121, 124].

Migration techniques can be applied in both the time domain and the fre-
quency domain following the early breakthroughs by Claerbout on imaging
conditions [33, 34]. In reverse time migration (RTM), the computed forward
wavefield starting from the source is correlated in time with the computed
backward wavefield which is modeled with the measured data as the source
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term in the adjoint wave equation. The goal is to determine details of the
reflecting surfaces as, for example, faults and sedimentary layers based on
the measured data and a rough estimate of the geophysical properties. The
least-squares reverse time migration (LSRTM) [43] is a new migration tech-
nique designed to improve the image quality generated by RTM. Reflectivity
is regarded as a small perturbation in velocity, and the quantity is recovered
through a linear inverse problem.

FWI is a high-resolution seismic imaging technique which recently gets
great attention from both academia and industry [132]. The goal of FWI is
to find both the small-scale and large-scale components which describe the
geophysical properties using the entire content of seismic traces. A trace is
the time history measured at a receiver. In this paper, we will consider the
inverse problem of finding the wave velocity of an acoustic wave equation in
the interior of a domain from knowing the Cauchy boundary data together
with natural boundary conditions [36], which is implemented by minimizing
the difference between computed and measured data on the boundary. It is
thus a PDE-constrained optimization.

There are various kinds of numerical techniques that are used in seis-
mic inversion, but FWI is increasing in popularity even if it is still facing
three main computational challenges. First, the physics of seismic waves are
complex, and we need more accurate forward modeling in inversion going
from pure acoustic waves to anisotropic viscoelasticity [133]. Second, even
as PDE-constrained optimization, the problem is highly non-convex. FWI
requires more efficient and robust optimization methods to tackle the in-
trinsic nonlinearity. Third, the least-squares norm, classically used in FWI,
suffers from local minima trapping, the so-called cycle skipping issues, and
sensitivity to noise [114]. We will see that optimal transport based Wasser-
stein metric is capable of dealing with the last two limitations by including
both amplitudes mismatches and travel time differences [47, 48].

We will introduce the mathematical formulation of these techniques in
the following sections. The emphasis will be on FWI, but we will also sum-
marize the state of the art of other standard imaging steps. Finally, we will
relate FWI to RTM and LSRTM. These approaches all involve the interac-
tion of the forward and the time-reversed wavefields, which is well known as
the “imaging condition” in geophysics.

2. Seismic imaging

Seismic data contains interpretable information about subsurface properties.
Imaging predicts the spatial locations as well as specifies parameter values
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describing the earth properties that are useful in seismology. It is particularly
important for exploration seismology which mainly focuses on prospecting
for energy sources, such as oil, gas, coal. Seismic attributes contain both
travel time records and waveform information to create an image of the sub-
surface to enable geological interpretation, and to obtain an estimate of the
distribution of material properties in the underground. Usually, the problem
is formulated as an inverse problem incorporating both physics and mathe-
matics. Seismic inversion and migration are terms often used in this setting.

2.1. Seismic data

There are two types of seismic signals. Natural earthquakes propagate with
substantial ultra-low frequency wave energy and penetrate deeply through
the whole earth. Recorded by seismometers, the natural seismic waves are
used to study earth structures. The other type of data is generated by man-
made “earthquakes” to obtain an image of the sedimentary basins in the
interior of the earth close to the surface. A wavefield has to be produced
using suitable sources at appropriate locations, measured by receivers at
other locations after getting reflected back from within the earth, and stored
using recorders.

In this paper, we mainly discuss the second type of seismic events. The
raw seismic data is not ideal to interpret and to create an accurate image
of the subsurface. Recorded artifacts are related to the surface upon which
the survey was performed, the instruments of receiving and recording and
the noise generated by the procedure. We must remove or at least minimize
these artifacts. Seismic data processing aims to eliminate or reduce these
effects and to leave only the influences due to the structure of geology for
interpretation. Typical data processing steps include but are not limited
to deconvolution, demultiple, deghosting, frequency filtering, normal move-
out (NMO) correction, dip moveout (DMO) correction, common midpoint
(CMP) stack, vertical seismic profiling (VSP), etc. [108, 142].

In the recent two decades, the availability of the increased computer
power makes it possible to process each trace of the recorded common source
gathers separately, aiming for a better image. We will discuss several primary
imaging methods such as traveltime tomography, seismic migration, least
squares migration and full waveform inversion (FWI).

2.2. Traveltime tomography

Most discoveries related to the structure of the earth were based on the
assumption that seismic waves can be represented by rays, which is closely
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associated with geometric optics [107, 106, 145]. The primary advantages
are its applicability to complex, isotropic and anisotropic, laterally varying
layered media and its numerical efficiency in such computations. A critical
observation is the travel time information of seismic arrivals. We can under-
stand many arrival time observations with ray theory [26], which describes
how short-wavelength seismic energy propagates.

As a background illustration, we will derive the ray tracing expressions
in a 1D setting where the velocity only varies vertically [116]. Ray tracing in
general 3D structure is more complicated but follows similar principles. Con-
sidering a laterally homogeneous earth model where velocity v only depends
on depth, the ray parameter which is also called the horizontal slowness p,
can be expressed in the following equation by the Snell’s law:

(1) p = s(z) sin(θ) =
dT

dX
,

where s(z) (= 1
v(z)) is the slowness, θ is the incidence angle, T is the travel

time, X is the horizontal range. At the turning point depth zp, p = s(zp), a

constant for a given ray. The vertical slowness η =
√

s2 − p2.
When the velocity is a continuous function of depth, the surface to sur-

face travel time T (p) and the distance traveled X(p) have the following
expressions:

(2) T (p) = 2

∫ zp

0

s2(z)√
s2(z)− p2

dz = 2

∫ zp

0

s2(z)

η
dz,

and

(3) X(p) = 2p

∫ zp

0

dz√
s2(z)− p2

= 2p

∫ zp

0

dz

η
.

The expressions above are the forward problem in traveltime tomog-
raphy. The seismologists are interested in inverting model parameter s(z)
from observed traveltime T and traveled distance X. Using integral trans-
form pair, we can obtain

(4) z(s) = − 1

π

∫ s

s0

X(p)√
p2 − s2(z)

d(p) =
1

π

∫ X(s)

0
cosh−1(p/s)dX,

which gives us the 1D velocity model.
Equation (4) is one example of the 1D velocity inversion problem at a

given depth. There are limitations about traveltime tomography in general.
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First, the first arrivals are inherently nonunique. Second, the lateral velocity
variations are not considered in this setting. If we divide the earth model
into blocks, the 3D velocity inversion techniques can resolve some of the
lateral velocity perturbations by using the travel time in each block. The
problem can be formulated into a least-squares (L2) inversion by minimizing
the travel time residual between the predicted time and the observed time:
||tobs − tpred||22 [116, 146].

One limitation of ray theory is that it is applicable only to smooth
media with smooth interfaces, in which the characteristic dimensions of in-
homogeneities are considerably larger than the dominant wavelength of the
considered waves. The ray method can yield distorted results and will fail
at caustics or in general at so-called singular regions [28]. Moreover, much
more information is available from the observed seismograms than travel
times. To some extent, travel time tomography can be seen as phase-based
inversion, and next, we will introduce waveform-based methods where the
wave equation plays a significant role.

2.3. Reverse time migration

To overcome the difficulties of ray theory and further improve image reso-
lutions, reverse time migration (RTM), least-squares reverse time migration
(LSRTM) and full-waveform inversion (FWI) replace the semi-analytical so-
lutions to the wave equation by fully numerical solutions including the full
wavefield. Without loss of generality, we will explain all the methods in a
simple acoustic setting:

(5)

⎧⎨⎩ m(x)∂
2u(x,t)
∂t2 −�u(x, t) = s(x, t)

u(x, 0) = 0
∂u
∂t (x, 0) = 0

We assume the model m(x) = 1
c(x)2 where c(x) is the velocity, u(x, t) is the

wavefield, s(x, t) is the source. It is a linear PDE but a nonlinear operator
from model domain m(x) to data domain u(x, t).

Despite the fact that migration can be used to update velocity model [80,
110, 119], its chief purpose is to transform measured reflection data into
an image of reflecting interfaces in the subsurface. There are two principal
varieties of migration techniques: reverse time migration (RTM) which gives
a modest resolution of the reflectivity [6, 143] and least-squares reverse-
time migration (LSRTM) which typically yields a higher resolution of the
reflectivity [43, 44].
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Figure 3: RTM: (a) Synthetic forward wavefield ufwd, (b) True forward wave-
field and (c) Reflectors generated as the backward wavefield ubwd cross-
correlated with ufwd.

Reverse-time migration is a prestack two-way wave-equation migration

to illustrate complex structure, especially strong contrast geological inter-

faces such as environments involving salts. Conventional RTM uses an imag-

ing condition which is the zero time-lag cross-correlation between the source

and the receiver wavefields [33]:

(6) R(x) =
∑
shots

∫ T

0
u(x, t) · v(x, t)dt,

where u is the source wavefield in (5) and v is the receiver wavefield which

is the solution to the adjoint equation (7):

(7)

⎧⎨⎩ m(x)∂
2v(x,t)
∂t2 −�v(x, t) = d(x, t)δ(x− xr)

v(x, T ) = 0
vt(x, T ) = 0

Here T is the final recording time, d is the observed data from the receiver

xr and m is the assumed background velocity. The adjoint wave equation (7)

is always solved backward in time from T to 0. Therefore it is also referred

as backward propagation.

In classical RTM, the forward modeling typically does not contain reflec-

tion information. For example, it can be the paraxial approximation of the

wave equation, which does not allow for reflections [36], or a smooth velocity

model with unknown reflecting layers. As a summary, the conventional RTM

consists three steps as Figure 3 shows:

1. Forward modeling of a wave field with a good velocity model to get

ufwd;
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2. Backpropagation of the measured data through the same model to get
ubwd;

3. Cross-correlation the source wavefield ufwd and receiver wavefield ubwd

based on an imaging condition (e.g., Equation (6)) to detect the re-
flecting interfaces.

RTM uses the entire solution of the wave equations instead of sepa-

rating the downgoing or upgoing wavefields. Theoretically, RTM produces
a more accurate image than ray-based methods since it does not rely on
the asymptotic theory or migration using the one-way equation, which typ-

ically introduces modeling errors [113]. A good background velocity model
that contains accurate information about the low-wavenumber components
is also crucial for the quality of the image [55]. Recent advances in compu-
tation power make it possible to compute and store the solution of the wave

equation efficiently, which significantly aids RTM to generate high-quality
images [49].

2.4. Least-squares reverse time migration

Least-squares reverse time migration (LSRTM) is a new migration method

designed to improve the image quality generated by RTM. It is formulated
as a linear inverse problem based on the Born approximation which we will
describe briefly in this section. The wave equation (5) defines a nonlinear

operator F from model domain to data domain that maps m to u. The Born
approximation is a linearization of this map to the first order so that we can
denote it as L = δF

δm [64, 129].

One can derive the Born approximation as follows [46]. If we denote the
model m(x) as the sum of a background model and a small perturbation:

(8) m(x) = m0(x) + εm1(x),

the corresponding wavefield u also splits into two parts:

(9) u(x, t) = u0(x, t) + usc(x, t),

where u satisfies (5), and u0 solves the following equation:

(10)

⎧⎨⎩ m0(x)
∂2u0(x,t)

∂t2 −�u0(x, t) = s(x, t)
u0(x, 0) = 0
∂u0

∂t (x, 0) = 0
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Subtracting (10) from (5) and using (8), we derive an equation of usc
with zero initial conditions:

(11) m0
∂2usc(x, t)

∂t2
−�usc(x, t) = −εm1

∂2u(x, t)

∂t2
.

We can write usc using Green’s function G:

(12) usc(x, t) = −ε

∫ t

0

∫
Rn

G(x, y; t− s)m1(y)
∂2u

∂t2
(y, s)dyds.

As a result, the original wavefield u has an implicit relation:

(13) u = u0 − εGm1
∂2u

∂t2
=

[
I + εGm1

∂2

∂t2

]−1

u0

The last term can be expanded in terms of Born series,

u = u0 − ε

∫ t

0

∫
Rn

G(x, y; t− s)m1(y)
∂2u0
∂t2

(y, s)dyds+O(ε2)(14)

= u0 + εu1 +O(ε2)(15)

Therefore, we can approximate usc explicitly by εu1 as −εGm1
∂2u0

∂t2 ,
which is called the Born approximation. We also derive a linear map from
m1 to u1:

(16)

⎧⎨⎩ m0
∂2u1(x,t)

∂t2 −�u1(x, t) = −m1
∂2u0(x,t)

∂t2

u1(x, 0) = 0
∂u1

∂t (x, 0) = 0

Unlike (11), (16) is an explicit formulation with m0 as the background ve-
locity and u0 as the background wavefield which is the solution to (10).

It is convenient to denote the nonlinear forward map (5) as F : m �→ u.
A Taylor expansion of u = F(m) in the sense of calculus of variation, gives
us:

(17) u = u0 + ε
δF
δm

[m0]m1 +
ε2

2
<

δ2F
δm2

[m0]m1,m1 > + . . .

The functional derivative δF
δm : m1 �→ u1 is the linear operator (16), which we

hereafter denote as L. The convergence of the Born series and the accuracy
of the Born approximation can be proved mathematically [95, 96].
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We assume there is an accurate background velocity model m0. The
Born modeling operator maps the reflectivity mr to the scatted wavefield
dr = F(m)−F(m0):

(18) Lmr = dr

Although L is linear, there is no guarantee that it is invertible [35]. Instead
of computing L−1, we seek the reflectivity model by minimizing the least-
squares error between observed data dr and predicted scattering wavefield:

(19) J(mr) = ||Lmr − dr||22

The normal least-squares solution to (19) is mr = (LTL)−1LTdr where L
T is

the adjoint operator, but it is numerically expensive and unstable to invert
the term LTL directly. Instead, the problem is solved in an iterative manner
using optimization methods such as conjugate gradient descent (CG).

Another interesting way of approximating (LTL)−1 is to consider the
problem as finding a non-stationary matching filter [56, 61]. Similar to RTM,
we can get an image by doing one step of migration:

(20) m1 = LTdr.

One step of de-migration (Born modeling) based on m1 generates data d1

(21) d1 = Lm1.

Finally, the re-migration step provides another image m2

(22) m2 = LTd1.

Combining (20) to (22), the inverse Hessian operator (LTL)−1 behaves like
a matching filter between m1 and m2 which we are able to produce from
the observed data. It is also the filter between mr and m1 as (23) and (24)
show below:

m1 = (LTL)−1m2(23)

mr = (LTL)−1m1(24)

Therefore, LSRTM can be seen as a process which first derives a filter
to match the re-migration m2 to the initial migration m1 and then applies
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the filter back to the initial migrated image to give an estimate of the re-
flectivity. Seeking the reflectivity is equivalent to finding the best filter K
by minimizing the misfit J(K) in the image or model domain:

(25) J(K) = ||m1 −Km2||22.

The final reflectivity image mr ≈ Km1. It is a single-iteration method which
greatly reduces the computational cost of the iterative methods like CG.

A potentially better way of implementing the filter-based idea is to
transform the image into curvelet domain [25] to improve the stability and
structural consistency in the matching [134]. The formulation of obtaining
the Hessian filter in curvelet domain is to minimize a misfit function J(s)
where

(26) J(s) = ||C(m1)− sC(m2)||22 + ε||s||22,

where C is the curvelet domain transform operator, s is the matching fil-
ter and ε is the Tikhonov regularization parameter. The final reflectivity
image mr ≈ C−1(|s|C(m1)), where C−1 is the inverse curvelet transform
operator.

In general, least-squares reverse time migration (LSRTM) is still facing
challenges. First of all, the image quality highly depends on the accuracy
of the background velocity model m0. Even a small error can make the two
wavefields meet at a wrong location, which generates a blurred image or an
incorrect reflectivity [83]. Another drawback is its high computational cost
compared with other traditional migration techniques. In practice, LSRTM
fits not only the data but also the noise in the data. Consequently, it boosts
the high-frequency noise in the image during the iterative inversion [42, 147].

2.5. Inversion

The process of imaging through modeling the velocity structure is a form of
inversion of seismic data [125], but in this paper, we regard inversion as a
process of recovering the quantitative features of the geographical structure,
that is, finding m(x) in (5). Inversion is often used to build a velocity model
iteratively until the synthetic data matches the actual recording [94].

Wave equation traveltime tomography [84] and the ray-based tomog-
raphy in the earlier section are phase-like inversion methods [113]. Least-
squares inversion is known as linearized waveform inversion [75, 122]. The
migration method introduced earlier, LSRTM, can also be seen as a linear
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Figure 4: The framework of FWI as a PDE-constrained optimization.

inverse problem. The background model m0 is not updated after each itera-
tion in least-squares inversion. Similar to the goal of migration, the model to
be updated iteratively is the reflectivity distribution instead of the velocity
model. One can interpret the process as a series of reverse time migrations,
where the data residual is backpropagated into the model instead of the
recorded data itself (Figure 3c).

If the background model m0 is the parameter we invert for, the problem
turns into a nonlinear waveform inversion, which is also called full-waveform
inversion (FWI). Both the low-wavenumber and high-wavenumber compo-
nents are updated simultaneously in FWI so that the final image has high
resolution and high accuracy [133]. FWI is the primary focus of the paper.
In the following sections, we will further discuss the topic and especially the
merit of using optimal transport based ideas to tackle the current limita-
tions.

3. Full waveform inversion

FWI is a nonlinear inverse technique that utilizes the entire wavefield in-
formation to estimate the earth properties. The notion of FWI was first
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brought up three decades ago [74, 124] and has been actively studied as the

computing power increases. As we will see, the mathematical formulation of

FWI is PDE constrained optimization. Even inversion for subsurface elas-

tic parameters using FWI has become increasingly popular in exploration

applications [17, 93, 133]. Currently, FWI can achieve stunning clarity and

resolution. Both academia and industry have been actively working on the

innovative algorithms and software of FWI. However, this technique is still

facing three main challenges.

First, the physics of seismic waves are complex, and we need more ac-

curate forward modeling in inversion going from pure acoustic waves to

anisotropic viscoelasticity. Recent developments focus on this multiparame-

ter and multi-mode modeling. FWI strategies for simultaneous and hierarchi-

cal velocity and attenuation inversion have been investigated recently [105],

but there is a dilemma. The more realistic with more parameters the models

of the earth become, the more ill-posed and even non-unique will the inverse

problem be.

Second, it is well known that the accuracy of FWI deteriorates from the

lack of low frequencies, data noise, and poor starting model. The limitation

is mainly due to the ill-posedness of the inverse problem which we treat

as a PDE-constrained optimization. FWI is typically performed using local

optimization methods in which the subsurface model is described by using

a large number of unknowns, and the number of model parameters is deter-

mined a priori [123]. These methods typically only use the local gradient of

the objective function. As a result, the inversion process is easily trapped in

the local minima. Markov chain Monte Carlo (MCMC) based methods [109],

particle swarm optimization [29], and many other global optimization meth-

ods [115] can avoid the pitfall theoretically, but they are not cost-efficient

to handle practical large-scale inversion currently.

Third, it is relatively inexpensive to update the model through local

optimization methods in FWI, but the convergence of the algorithm highly

depends on the choice of a starting model. The research directions can be

grouped into two main ideas to tackle this problem. One idea is to replace

the conventional least-squares norm with other objective functions in opti-

mization for a wider basin of attraction [48]. The other idea is to expand the

dimensionality of the unknown model by adding non-physical coefficients.

The additional coefficients may convexify the problem and fit the data bet-

ter [13, 62].

The essential elements of FWI framework (Figure 4) includes forward

modeling and the adjoint-state method for gradient calculation.
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3.1. Forward modeling

Wave-propagation modeling is the most significant step in seismic imaging.
The earth is complex with various heterogeneity on many scales, and the
real physics is far more complicated than the simple acoustic setting of
this paper, but the industry standard is still the acoustic model in time or
frequency domain. The current research of FWI covers multiple parameters
inversion of seismic waveforms including anisotropic parameters, density,
and attenuation factors [138] including viscoelastic modeling which is related
to fractional Laplacian wave equations [111]. It should be noted that the
more parameters in a model, the less well-posed is the inverse problem.

If we exclude the attenuation parameter, the general elastic wave equa-
tion is a realistic model. Based on the equation of conservation of momentum
(Newton’s law of dynamics) and Hooke’s law for stress and strain tensors,
we have the following elastic wave equation:

ρ
∂2ui
∂t2

= fi +
∂σij
∂xj

,(27)

∂σij
∂t

= cijkl
∂εij
∂t

+
∂σ̃ij
∂t

,(28)

where ρ is the density, u is the displacement vector, σ is the nine-component
stress tensor (i, j = 1, 2, 3), σ̃ is the internal stress, f is the outer body force,

ε is the nine-component strain tensor which satisfies εij =
1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
and

cijkl is the stiffness tensor containing twenty-one independent components.
One can classify the current numerical methods of complex wave prop-

agation into three categories: direct methods, integral wave equation meth-
ods and asymptotic methods [65]. Direct methods include finite-difference
method (FDM) [91], pseudospectral method [53], finite element method
(FEM) [86], spectral element method (SEM) [71], discontinuous Galerkin
method (DG) [67], etc. Integral wave equation methods include both bound-
ary element method (BEM) [14] and the indirect boundary element meth-
ods (IBEM) [101] with a fast multipole method (FMM) [52] for efficiency.
Asymptotic methods include geometrical optics, Gaussian beams [27] and
frozen Gaussian beams [81].

3.2. Measure of mismatch

In seismic inversion, the misfit function, i.e. the objective function in the
optimization process, is defined as a functional on the data domain. Common
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misfit functions include cross-correlation traveltime measurements [84, 87],
amplitude variations [41] and waveform differences [124]. In both time [121]
and frequency domain [102, 103], the least-squares norm has been the most
widely used misfit function. For example, in time domain conventional FWI
defines a least-squares waveform misfit as

(29) d(f, g) = J(m) =
1

2

∑
r

∫
|f(xr, t;m)− g(xr, t)|2 dt,

where xr are receiver locations, g is observed data, and f is simulated data
which solves (5) with model parameter m. The time integral is carried out
numerically as a sum. This formulation can also be extended to the case
with multiple sources.

Real seismic data usually contains noise. As a result, denoising becomes
an important step in seismic data processing. The L2 norm is well known to
be sensitive to noise [18]. Other norms have been proposed to mitigate this
problem. For example, the L1 norm [37, 121], the Huber criterion [57, 59]
and the hybrid L1/L2 criterion [19] all demonstrated improved robustness
to noise compared with conventional L2 norm.

All the misfit functions above are point-by-point based objective func-
tions which means they only accumulate the differences in amplitude at each
fixed time grid point. There are global misfit functions that compare the sim-
ulated and measured signals not just pointwise. The Wasserstein metric is
one such metric which we will discuss later. It is very robust with respect to
noise

The oscillatory and periodic nature of waveforms lead to another main
challenge in FWI: the cycle-skipping issue when implementing FWI as a local
inversion scheme. If the true data and the initial synthetic data are more
than half wavelength (> λ

2 ) away from each other, the first gradient can go
in the wrong direction regarding the phase mismatch, but can nonetheless
reduce the data misfit in the fastest manner [11]. Mathematically, it is related
to the highly nonconvex and highly nonlinear nature of the inverse problem
and results in finding only a local minima. Figure 5a displays two signals,
each of which contains two Ricker wavelets and f is simply a shift of g.
The L2 norm between f and g is plotted in Figure 5b as a function of
the shift s. We observe many local minima and maxima in this simple two-
event setting which again demonstrated the difficulty of the, so called, cycle-
skipping issues [139].

The lower frequency components have a wider basin of attraction with
the least-squares norm being the misfit function. Several hierarchical meth-
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Figure 5: (a) A signal consisting two Ricker wavelets (blue) and its shift
(red) (b) L2 norm of the difference between f and f(t− s) in terms of shift
s (c) W2 norm between f and f(t− s) in terms of shift s.

ods that invert from low frequencies to higher frequencies have been pro-
posed in the literature to mitigate the cycle-skipping of the inverse prob-
lem [20, 69, 103, 117, 137]. Several other methods instead compare the in-
tegrated waveforms [63, 79] (Figure 6) and the waveform envelops [15, 82].
They share a similar idea with the hierarchical methods of taking advantage
of the lower frequency components in the data.

A recently introduced class of misfit functions is based on optimal trans-
port [30, 47, 48, 88, 89, 139, 140, 141]. As a useful tool from the theory
of optimal transport, the Wasserstein metric computes the minimal cost
of rearranging one distribution into another. The optimal transport based
methods compare the observed and simulated data globally and thus include
phase information. We will discuss these measures in sections 4 and 5.

Other misfit functions with the idea of non-local comparison proposed
in the literature include filter based misfit functions [136, 148] as well as
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Figure 6: The shaded areas represent the mismatch each misfit function
considers. (a) L2:

∫
(f − g)2dt. (b) Integral wavefields method:

∫
(
∫
f −∫

g)2dt [140].

inversion using, so called, dynamic time warping [85] and the registration
map [3]. The differential semblance optimization [120] exploits both phase
and amplitude information of the reflections. Tomographic full waveform
inversion [13] has some global convergence characteristics of wave-equation
migration velocity analysis. In the filter based methods [136, 148], a filter
is designed to minimize the L2 difference between filtered simulated data
and the observed data. The misfit is then a measure of how much the filter
deviates from the identity. As we will see in the optimal transport based
technique, this is done in one step where the optimal map directly determines
the mapping of the simulated data. The optimal transport map is general
and does not need to have the form of a convolution filter as in the filter
based methods.

3.3. Adjoint-state method

Large-scale realistic 3D inversion is possible today. The advances in nu-
merical methods and computational power allow for solving the 3D wave
equations and compute the Fréchet derivative with respect to model param-
eters, which are needed in the optimization. In the adjoint-state method, one
only needs to solve two wave equations numerically, the forward propagation
and the backward adjoint wavefield propagation. Different misfit functions
typically only affect the source term in the adjoint wave equation [100, 123].

Let us consider the misfit function J(m) for computing the difference
between predicted data f and observed data g where m is the model pa-
rameter, F (m) is the forward modeling operator, u(x, t) is the wavefield and
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s(x, t) is the source. The predicted data f is the partial Cauchy boundary
data of u which can be written as f = Ru where R is a restriction operator
only at the receiver locations. The wave equation (5) can be denoted as

(30) F (m)u = s.

Taking first derivative regarding model m on both sides gives us:

(31)
∂F

∂m
u+ F

∂u

∂m
= 0.

Therefore,

(32)
∂f

∂m
= −RF−1 ∂F

∂m
u.

By the chain rule, the gradient of misfit function J with respect to m is

(33)
∂J

∂m
=

(
∂f

∂m

)T ∂J

∂f

We can derive the following equation by plugging (32) into (33):

(34)
∂J

∂m
= −uT

(
∂F

∂m

)T

F−TRT ∂J

∂f

Equation (34) is the adjoint-state method. The term F−TRT ∂J
∂f denotes

the backward wavefield v generated by the adjoint wave equation whose
source is the data residual RT ∂J

∂f . The gradient is similar to the usual imaging

condition (6):

(35)
∂J

∂m
= −

∫ T

0

∂2u(x, t)

∂t2
v(x, t)dt,

where v is the solution to the adjoint wave equation:

(36)

⎧⎨⎩
m∂2v(x,t)

∂t2 −�v(x, t) = RT ∂J
∂f

v(x, T ) = 0
vt(x, T ) = 0

Therefore F T can be seen as the backward modeling operator which is similar
to the adjoint wave equation (7) but with a different source term.
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There are many other equivalent ways to formulate the adjoint-state
method. One can refer to [46, 100] for more details.

In FWI, our aim is to find the model parameter m∗ that minimizes
the objective function, i.e. m∗ = argmin J(m). For this PDE-constrained
optimization, one can use the Fréchet derivative in a gradient-based iterative
scheme to update the model m, such as steepest descent, conjugate gradient
descent (CG), L-BFGS, Gauss-Newton method, etc. One can also derive
the second-order adjoint equation for the Hessian matrix and use the full
Newton’s method in each iteration, but it is not practical regarding memory
and current computing power. It is one of the current research interests to
analyze and approximate the Hessian matrix in optimization [132].

4. Optimal transport for FWI

Optimal transport has become a well-developed topic in mathematics since
it was first brought up by Monge [92] in 1781. Due to its ability to incorpo-
rate both intensity and spatial information, optimal transport based metrics
for modeling and signal processing have recently been adopted in a variety of
applications including image retrieval, cancer detection, and machine learn-
ing [70]. In computer science, the metric is often called the “Earth Mover’s
Distance” (EMD).

The idea of using optimal transport for seismic inversion was first pro-
posed in [47]. The Wasserstein metric is a concept based on optimal trans-
portation [131]. Here, we transform our datasets of seismic signals into den-
sity functions of two probability distributions. Next, we find the optimal map
between these two datasets and compute the corresponding transport cost
as the misfit function in FWI. In this paper, we will focus on the quadratic
cost function. The corresponding misfit is the quadratic Wasserstein metric
(W2). As Figure 5c shows, the convexity of W2 is much better than the L2

norm when comparing oscillatory seismic data with respect to shift.
Following the idea that changes in velocity cause a shift or “transport” in

the arrival time, [48] demonstrated the advantageous mathematical proper-
ties of the quadratic Wasserstein metric (W2) and provided rigorous proofs
that laid a solid theoretical foundation for this new misfit function. We
can apply W2 as misfit function in two different ways: trace-by-trace com-
parison which is related to 1D optimal transport in the time dimension,
and the entire dataset comparison in multiple dimensions. We will see that
solving the Monge-Ampère equation in each iteration of FWI is a useful
technique [141] for calculating the Wasserstein distance. An analysis of the
1D optimal transport approach and the conventional misfit functions such
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as L2 norm and integral L2 norm illustrated the intrinsic advantages of this
transport idea [140].

4.1. Wasserstein metric

Let X and Y be two metric spaces with nonnegative Borel measures μ and
ν respectively. Assume X and Y have equal total measure:

(37)

∫
X
dμ =

∫
Y
dν

Without loss of generality, we will hereafter assume the total measure to be
one, i.e., μ and ν are probability measures.

Definition 1 (Mass-preserving map). A transport map T : X → Y is mass-
preserving if for any measurable set B ∈ Y ,

(38) μ(T−1(B)) = ν(B)

If this condition is satisfied, ν is said to be the push-forward of μ by T , and
we write ν = T#μ

In another word, given two nonnegative densities f = dμ and g = dν,
we are interested in the mass-preserving map T such that f = g ◦ T . The
transport cost function c(x, y) maps pairs (x, y) ∈ X × Y to R ∪ {+∞},
which denotes the cost of transporting one unit mass from location x to
y. The most common choices of c(x, y) include |x − y| and |x − y|2, which
denote the Euclidean norms for vectors x and y hereafter. Once we find a
mass-preserving map T , the cost corresponding to T is

I(T, f, g, c) =

∫
X

c(x, T (x))f(x) dx.

While there are many maps T that can perform the relocation, we are
interested in finding the optimal map that minimizes the total cost

I(f, g, c) = inf
T∈M

∫
X

c(x, T (x))f(x) dx,

where M is the set of all maps that rearrange f into g.
Thus we have informally defined the optimal transport problem, the

optimal map as well as the optimal cost, which is also called the Wasserstein
distance:
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Definition 2 (The Wasserstein distance). We denote by Pp(X) the set of

probability measures with finite moments of order p. For all p ∈ [1,∞),

(39) Wp(μ, ν) =

(
inf

Tμ,ν∈M

∫
Rn

|x− Tμ,ν(x)|p dμ(x)
) 1

p

, μ, ν ∈ Pp(X).

M is the set of all maps that rearrange the distribution μ into ν.

4.2. 1D problem

In [141], we proposed two ways of using W2 in FWI were proposed. One can

either compute the misfit globally by solving a 2D or 3D optimal transport

problem or compare data trace-by-trace with the 1D explicit formula, see

Theorem 1 below. For the 1D approach, the corresponding misfit function

in FWI becomes

(40) J1(m) =

R∑
r=1

W 2
2 (f(xr, t;m), g(xr, t)),

where R is the total number of time history traces, g is the observed data,

f is the simulated data, xr are the receiver locations, and m is the model

parameter. Mathematically it is W2 metric in the time domain and L2 norm

in the spatial domain.

For f and g in one dimension, it is possible to exactly solve the opti-

mal transportation problem [131] in terms of the cumulative distribution

functions

(41) F (x) =

∫ x

−∞
f(t) dt, G(y) =

∫ y

−∞
g(t) dt.

In fact, the optimal map is just the unique monotone rearrangement of

the density f into g. In order to compute the Wasserstein metric (Wp), we

need the cumulative distribution functions F and G and their inverses F−1

and G−1 as the following theorem states:

Theorem 1 (Optimal transportation on R). Let 0 < f, g < ∞ be two

probability density functions, each supported on a connected subset of R.

Then the optimal map from f to g is T = G−1 ◦ F .
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From the theorem above, we derive another formulation for the 1D
quadratic Wasserstein metric:

(42)

W 2
2 (f, g) =

∫ 1

0
|F−1 −G−1|2dy

=

∫
X
|x−G−1(F (x))|2f(x)dx.

The corresponding Fréchet derive which is also the adjoint source term
in the backward propagation is:

∂W 2
2 (f, g)

∂f
=

(∫ T0

t
−2(s−G−1(F (s))

dG−1(y)

dy

∣∣∣∣
y=F (s)

f(s)ds

)
dt

+ |t−G−1(F (t))|2dt.
(43)

This adjoint source term in the discrete 1D setting can be computed as[
U diag

(
−2f(t)dt

g(G−1 ◦ F (t))

)]
(t−G−1 ◦ F (t))dt+ |t−G−1 ◦ F (t)|2dt,(44)

where U is the upper triangular matrix whose non-zero components are 1.

4.3. Monge-Ampère equation

This fully nonlinear partial differential equation plays an important role in
computing the Wasserstein metric.

4.3.1. Introduction In the previous section, we introduced the 1D op-
timal transport technique of comparing seismic data trace by trace and
the explicit solution formula. Another option is a general optimal transport
problem in all dimensions. In the global case we compare the full datasets
and consider the whole synthetic data f and observed data g as objects with
the general quadratic Wasserstein metric (W2):

(45) J2(m) = W 2
2 (f(xr, t;m), g(xr, t)).

The simple exact formula for 1D optimal transportation does not ex-
tend to optimal transportation in higher dimensions. Nevertheless, it can
be computed by relying on two important properties of the optimal map-
ping T (x): conservation of mass and cyclical monotonicity. From the defini-
tion of the problem, T (x) maps f into g. If T is a sufficiently smooth map
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and det(∇T (x)) �= 0, the change of variables formula formally leads to the
requirement

(46) f(x) = g(T (x)) det(∇T (x)).

The optimal map takes on additional structure in the special case of the
cost function (i.e., c(x, y) = |x− y|2): it is cyclically monotone [16, 68].

Definition 3 (Cyclical monotonicity). We say that T : X → Y is cyclically
monotone if for any m ∈ N

+, xi ∈ X, 1 ≤ i ≤ m,

(47)

m∑
i=1

|xi − T (xi)|2 ≤
m∑
i=1

|xi − T (xi−1)|2

or equivalently

(48)

m∑
i=1

〈T (xi), xi − xi−1〉 ≥ 0

where x0 ≡ xm.

Additionally, a cyclically monotone mapping is formally equivalent to the
gradient of a convex function [16, 68]. Making the substitution T (x) = ∇u(x)
into the constraint (46) leads to the Monge-Ampère equation

(49) det(D2u(x)) =
f(x)

g(∇u(x))
, u is convex.

In order to compute the misfit between distributions f and g, we first com-
pute the optimal map T (x) = ∇u(x) via the solution of this Monge-Ampère
equation coupled to the non-homogeneous Neumann boundary condition

(50) ∇u(x) · ν = x · ν, x ∈ ∂X.

The squared Wasserstein metric is then given by

(51) W 2
2 (f, g) =

∫
X
f(x) |x−∇u(x)|2 dx.

For the general Monge-Ampère equation, the uniqueness of the optimal
map is not guaranteed. One need to discuss it in the context of a particular
cost function and certain hypothesis. For example, the cyclical monotonicity



Seismic imaging and optimal transport 119

is the key element in the proof of the following Brenier’s theorem [16, 45]

which gives an elegant result about the uniqueness of optimal transport map

for the quadratic cost |x− y|2:

Theorem 2 (Brenier’s theorem). Let μ and ν be two compactly supported

probability measures on R
n. If μ is absolutely continuous with respect to the

Lebesgue measure, then

1. There is a unique optimal map T for the cost function c(x, y) = |x−y|2.
2. There is a convex function u : Rn → R such that the optimal map T

is given by T (x) = ∇u(x) for μ-a.e. x.

Furthermore, if μ(dx) = f(x)dx, ν(dy) = g(y)dy, then T is differential

μ-a.e. and

(52) det(∇T (x)) =
f(x)

g(T (x))
.

We are here considering the connection between the Monge-Ampère

equation and optimal transport where the transport map is geometric in

nature. The Monge-Ampère equation is of course also known for many

other connections to geometry and mathematical physics. Let us mention

a few examples. It arises naturally in many problems such as affine geome-

try [32], Riemannian geometry [1], isometric embedding [60], reflector shape

design [135], etc. In the last century, treatments about this equation mostly

came from the geometric problems above [21, 31, 72, 90, 126]. If we consider

the following general Monge-Ampère equation:

(53) det(D2u(x)) = f(x, u,Du),

when f = K(x)(1 + |Du|2)(n+2)/2, the equation becomes the prescribed

Gaussian curvature equation [45]. In affine geometry, an affine sphere in the

graph satisfies the Monge-Ampère equation (53). The affine maximal sur-

face satisfies a fourth-order equation which is related to the general Monge-

Ampère equation:

(54)

n∑
i,j=i

U ij∂xi
∂xj

[
det(D2u)

]−n+1

n+2 = 0,

where U ij is the cofactor matrix of D2u [127].
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4.3.2. Weak solutions Although the Monge-Ampère equation is a
second-order PDE, there is no guarantee that the classical C2 solution always
exists. For the generalized Monge-Ampère equation (53) with homogeneous
Dirichlet boundary condition u = 0 on ∂Ω, it is well-known that there exists
a classical convex solution u ∈ C2(Ω)∪C(Ω), when f is strictly positive and
sufficiently smooth [22, 23, 24]. When the assumptions no longer hold, we
solve for two types of weak solutions instead: the Aleksandrov solution and
the viscosity solution. One can refer to [58] for more details and proofs of
the following definitions and theorems.

Let Ω be the open subset of Rd and u : Ω → R. We denote P(Rd) as the
set of all subsets of Rd.

Definition 4. The normal mapping of u, or the subdifferential of u, is the
set-valued mapping ∂u : Ω → P(Rd) defined by

(55) ∂u(x0) = {p : u(x) ≥ u(x0) + p · (x− x0), for all x ∈ Ω}

Given V ∈ Ω, ∂u(V ) = ∪x∈V ∂u(x).

Theorem 3 (Monge-Ampère measure). If Ω is open and u ∈ C(Ω), then
the class

S = {V ⊂ Ω : ∂u(V )is Lebesgue measurable}

is a Borel σ-algebra. The set function Mu : S → R defined by

(56) Mu(V ) = |∂u(V )|

is a measure, finite on compact sets, called the Monge-Ampère measure as-
sociated with the function u.

This is a measure generated by the Monge-Ampère operator, which nat-
urally defines the notion of the Aleksandrov solution.

Definition 5 (Aleksandrov solution). Let ν be a Borel measure defined on
Ω which is an open and convex subset of Rn. The convex function u is a
weak solution, in the sense of Aleksandrov, to the Monge-Ampère equation

(57) detD2u = ν in Ω

if the associated Monge-Ampère measure Mu defined in (56) is equal to ν.

Next we state one existence and uniqueness result for the Aleksandrov
solution [2].
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Theorem 4 (Existence and uniqueness of the Aleksandrov solution). Con-
sider the following Dirichlet problem of the Monge-Ampère equation

detD2u = ν in Ω(58)

u = g on ∂Ω,

on a convex bounded domain Ω ∈ R
d with boundary ∂Ω. Assume that ν is

a finite Borel measure and g ∈ C(∂Ω) which can be extended to a convex
function g̃ ∈ C(Ω̄). Then the Monge-Ampère equation (58) has a unique
convex Aleksandrov solution in C(Ω).

Aleksandrov’s generalized solution corresponds to the curvature measure
in the theory of convex bodies [127]. A finite difference scheme for computing
Aleksandrov measure induced by D2u in 2D was conducted in [98] with the
solution u comes as a byproduct [50].

Another notion of weak solution is the viscosity solution which occurs
naturally if f is continuous in (53).

Definition 6 (Viscosity solution). Let u ∈ C(Ω) be a convex function and
f ∈ C(Ω), f ≥ 0. The function u is a viscosity subsolution (supersolution)
of (53) in Ω if whenever convex function φ ∈ C2(Ω) and x0 ∈ Ω are such
that (u − φ)(x) ≤ (≥)(u − φ)(x0) for all x in the neighborhood of x0, then
we must have

det(D2φ(x0)) ≤ (≥)f(x0).

The function u is a viscosity solution if it is both a viscosity subsolution and
supersolution.

We can relate these two notions of weak solution in the following propo-
sition:

Proposition 5. If u is a Aleksandrov (generalized) solution of (53) with f
continuous, then u is also a viscosity solution.

4.4. Numerical optimal transport in higher dimensions

In this section, we will summarize some of the current numerical methods for
solving the optimal transport problems in higher dimensions. These methods
are based on the equivalent or relaxed formulations of the original Monge’s
problem. In the end, we will introduce a monotone finite difference Monge-
Ampère solver which is proved to converge to the viscosity solution to (49) [4,
51].
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4.4.1. General methods Optimal transport is a well-studied subject in

mathematics while the computation techniques are comparatively underde-

veloped. We will focus on analysis based methods. There are combinatorial

techniques that typically are computationally costly in higher dimensions,

for example, the Hungarian algorithm [73].

The definition (39) is the original static formulation of the optimal trans-

port problem with a quadratic cost. It is an infinite dimensional optimization

problem if we search for T directly. The non-symmetric nature of Monge’s

problem also generated difficulty because the map is unnecessarily bijec-

tive [76].

In the 40’s, Kantorovich relaxed the constraints and formulated the dual

problem [66]. Instead of searching for a map T , the transference plan γ is

considered, which is also a measure supported by the product space X × Y .

The Kantorovich problem is the following:

(59) inf
γ

{∫
X×Y

c(x, y)dγ | γ ≥ 0 and γ ∈ Π(μ, ν)

}
,

where Π(μ, ν) = {γ ∈ P(X × Y ) | (PX)
γ = μ, (PY )
γ = ν}. Here (PX) and

(PY ) denote the two projections, and (PX)
γ and (PY )
γ are two measures

obtained by pushing forward γ with these two projections.

Consider ϕ ∈ L1(μ) and ψ ∈ L1(ν), the Kantorovich dual problem is

formulated as the following [131]:

(60) sup
ϕ,ψ

(∫
X
ϕ dμ+

∫
Y
ψ dν

)
,

subject to ϕ(x) + ψ(y) ≤ c(x, y), for any (x, y) ∈ X × Y .

The dual formulation is a linear optimization problem which is solv-

able by linear programming [40, 97, 112]. Kantorovich obtained the 1975

Nobel prize in economics for his contributions to resource allocation prob-

lems where he interpreted the dual problem as an economic equilibrium.

Recently Cuturi introduced the entropy regularized optimal transport prob-

lem which enforces the desirable properties for optimal transference plan

and convexifies the problem. There have been extremely efficient computa-

tional algorithms [38] which allow various applications in image processing,

neuroscience, machine learning, etc. [9, 39, 54, 118].

In the 90’s, Benamou and Brenier derived an equivalent dynamic formu-

lation [7] which has been one of the main tools for numerical computation.
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The Benamou-Brenier formula identifies the squared quadratic Wasserstein

metric between μ and ν by

(61) W 2
2 (μ, ν) = inf

∫ 1

0

∫
|v(t, x)|2ρ(t, x)dxdt,

where the infimum is taken among all the solutions of the continuity equa-

tion:

∂ρ

∂t
+∇(vρ) = 0,(62)

subject to ρ(0, x) = f, ρ(1, x) = g,

In fact the infimum is taken among all Borel fields v(t, x) that transports μ to

ν continuously in time, satisfying the zero flux condition on the boundary.

Many fast solvers based on this dynamic formulation has been proposed

in literature [8, 77, 99]. They are used particularly in image registration,

warping, texture mixing, etc.

4.4.2. The finite difference Monge-Ampère solver As we have seen

for the quadratic Wasserstein distance, the optimal map can be computed via

the solution of a Monge-Ampère partial differential equation [10]. This ap-

proach has the advantage of drawing on the well-developed field of numerical

partial differential equations (PDEs). We solve the Monge-Ampère equation

numerically for the viscosity solution using an almost-monotone finite differ-

ence method relying on the following reformulation of the Monge-Ampère

operator, which automatically enforces the convexity constraint [51]. The

scientific reason for using monotone type schemes follows from the following

theorem by Barles and Souganidis [4]:

Theorem 6 (Convergence of Approximation Schemes [4]). Any consistent,

stable, monotone approximation scheme to the solution of fully nonlinear

second-order elliptic or parabolic PDE converges uniformly on compact sub-

sets to the unique viscosity solution of the limiting equation, provided this

equation satisfies a comparison principle.

The numerical scheme of [10] uses the theory of [4] to construct a con-

vergent discretization of the Monge-Ampère equation (49) as stated in The-

orem 7. A variational characterization of the determinant on the left hand

side which also involves the negative part of the eigenvalues was proposed
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as the following equation:

det(D2u) =

(63)

min
{v1,v2}∈V

{max{uv1,v1
, 0}max{uv2,v2

, 0}+min{uv1,v1
, 0}+min{uv2,v2

, 0}}

where V is the set of all orthonormal bases for R2.
Equation (63) can be discretized by computing the minimum over finitely

many directions {ν1, ν2}, which may require the use of a wide stencil. In the
low-order version of the scheme, the minimum in (63) is approximated using
only two possible values. The first uses directions aligning with the grid axes.

(64) MA1[u] = max {Dx1x1
u, δ}max {Dx2x2

u, δ}
+min {Dx1x1

u, δ}+min {Dx2x2
u, δ} − f/g (Dx1

u,Dx2
u)− u0.

Here dx is the resolution of the grid, δ > KΔx/2 is a small parameter that
bounds second derivatives away from zero, u0 is the solution value at a fixed
point in the domain, and K is the Lipschitz constant in the y-variable of
f(x)/g(y).

For the second value, we rotate the axes to align with the corner points
in the stencil, which leads to

MA2[u] = max {Dvvu, δ}max {Dv⊥v⊥u, δ}+min {Dvvu, δ}(65)

+ min {Dv⊥v⊥u, δ}

− f/g

(
1√
2
(Dvu+Dv⊥u),

1√
2
(Dvu−Dv⊥u)

)
− u0.

Then the monotone approximation of the Monge-Ampère equation is

(66) MM [u] ≡ −min{MA1[u],MA2[u]} = 0.

We also define a second-order approximation, obtained from a standard
centred difference discretisation,
(67)
MN [u] ≡ −

(
(Dx1x1

u)(Dx2x2
u)− (Dx1x2

u2)
)
+ f/g (Dx1

u,Dx2
u) + u0 = 0.

These are combined into an almost-monotone approximation of the form

(68) MF [u] ≡ MM [u] + εS

(
MN [u]−MM [u]

ε

)
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where ε is a small parameter and the filter S is given by

(69) S(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x |x| ≤ 1

0 |x| ≥ 2

−x+ 2 1 ≤ x ≤ 2

−x− 2 −2 ≤ x ≤ −1.

The Neumann boundary condition is implemented using standard one-
sided differences. As described in [48, 51], the (formal) Jacobian ∇MF [u] of
the scheme can be obtained exactly. It is known to be sparse and diagonally
dominant.

Theorem 7 (Convergence to Viscosity Solution [51, Theorem 4.4]). Let
the Monge-Ampère equation (49) have a unique viscosity solution and let
g > 0 be Lipschitz continuous on R

d. Then the solutions of the scheme (68)
converge to the viscosity solution of (49) with a formal discretization error
of O(Lh2) where L is the Lipschitz constant of g and h is the resolution of
the grid.

Once the discrete solution uh is computed, the squared Wasserstein met-
ric is approximated via

(70) W 2
2 (f, g) ≈

n∑
j=1

(xj −Dxj
uh)

Tdiag(f)(xj −Dxj
uh)dt,

where n is the dimension of the data f and g. Then the gradient of the
discrete squared Wasserstein metric can be expressed as

∂W 2
2 (f, g)

∂f
=

n∑
j=1

[
−2∇M−1

F [uf ]
TDT

xj
diag(f)

]
(xj −Dxj

uf )dt

+

n∑
j=1

|xj −Dxj
uf |2dt,

(71)

This term is the discretized version of the Fréchet derivative of the misfit
function (45) with respect to the synthetic data f , i.e., the adjoint source
∂J
∂f in the adjoint wave equation (36).

5. Application of optimal transport to seismic inversion

In this section, we first review the good properties of the W2 norm for the
application of full-waveform inversion. We will also explain some details of
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the implementations and show numerical results of using optimal transport
based metrics as the misfit function in FWI.

5.1. W2 properties

As we demonstrated in [48], the squared Wasserstein metric has several
properties that make it attractive as a choice for misfit function. One highly
desirable feature is its convexity with respect to several parameterizations
that occur naturally in seismic waveform inversion [141]. For example, vari-
ations in the wave velocity lead to simulated f that are derived from shifts,

(72) f(x; s) = g(x+ sη), η ∈ R
n,

or dilations,

(73) f(x;A) = g(Ax), AT = A, A > 0,

applied to the observation g. Variations in the strength of a reflecting surface
or the focusing of seismic waves can also lead to local rescalings of the form

(74) f(x;β) =

{
βg(x), x ∈ E

g(x), x ∈ R
n\E.

Theorem 8 (Convexity of squared Wasserstein metric [48]). The squared
Wasserstein metric W 2

2 (f(m), g) is convex with respect to the model param-
eters m corresponding to a shift s in (72), the eigenvalues of a dilation
matrix A in (73), or the local rescaling parameter β in (74).

Another important property of optimal transport is the insensitivity to
noise. All seismic data contains either natural or experimental equipment
noise. For example, the ocean waves lead to extremely low-frequency data
in the marine acquisition. Wind and cable motions also generate random
noise.

Theorem 9 (Insensitivity to noise [48]). Let fns be f with a piecewise con-
stant additive noise of mean zero uniform distribution. The squared Wasser-
stein metric W 2

2 (f, fns) is of O( 1
N ) where N is the number of pieces of the

additive noise in fns.

The L2 norm is known to be sensitive to noise since the misfit between
clean and noisy data is calculated as the sum of squared noise amplitude at
each sampling point.
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5.2. Data normalization

In optimal transport theory, there are two main requirements for signals f
and g: positivity and mass balance. Since these are not expected for seis-
mic signals, some data pre-processing is needed before we can implement
Wasserstein-based FWI. In [47, 48], the signals were separated into positive
and negative parts f+ = max{f, 0}, f− = max{−f, 0} and scaled by the
total mass 〈f〉 =

∫
X f(x) dx. Inversion was accomplished using the modified

misfit function

(75) W 2
2

(
f+

〈f+〉 ,
g+

〈g+〉

)
+W 2

2

(
f−

〈f−〉 ,
g−

〈g−〉

)
.

While this approach preserves the desirable theoretical properties of con-
vexity to shifts and noise insensitivity, it is not easy to combine with the
adjoint-state method and more realistic examples. We require the scaling
function to be differentiable so that it is easy to apply the chain rule when
calculating the Fréchet derivative for FWI backpropagation and also better
suited for the Monge-Ampère and the wave equation solvers.

There are other ways to rescale the datasets so that they become positive.
For example, we can square the data as f̃ = f2 or extract the envelope of the
data. These methods preserve the convexity concerning simple shifts, but we
have lost the uniqueness: f2 = g2 does not imply f = g. As a result, more
local minima are present since the fact that the misfit J(f2, g2) is decreasing
does not necessarily indicate that f is approaching g, not to mention the
non-unique issue of the inverse problem itself.

Typically, we first scale the data f to be positive as f̃ and then normalize
to ensure mass balance as f̃/ < f̃ >. We now introduce three normaliza-
tion methods that are robust in realistic large-scale inversions: the linear
scaling [141] (Figure 7a)

(76) f̃ = f + c1, c1 ≥ max{−f,−g},

the exponential scaling [104] (Figure 7b)

(77) f̃ = exp(c2f), c2 > 0,

and the sign-sensitive scaling (Figure 7c)

(78) f̃ =

{
f + 1

c3
, f ≥ 0

1
c3
exp(c3f), f < 0

, c3 > 0.
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Figure 7: (a) The linear, (b) the exponential and (c) the sign-sensitive scaling
of a Ricker wavelet (Blue).

If c2 in (77) and c3 in (78) are large enough, these two scaling methods

keep the convexity of W2 norm regarding simple shifts as shown in Figure 5c.

From Taylor expansion, we can see that the scalings are very close to the

linear scaling when c2 is small. One has to be careful with the exponential

scaling (77) since it can easily become extremely large, but the sign-sensitive

scaling (78) will not.

5.3. FWI with Kantorovich-Rubinstein norm

When the cost function c(x, y) is the L1 norm |x− y|, i.e. p = 1 in (39) with

f ≥ 0, g ≥ 0, and
∫
f =

∫
g, the corresponding alternative W1 distance has

the following equivalent dual formulation:

(79) W1(f, g) = max
ϕ∈Lip1

∫
X
ϕ(x)(f(x)− g(x))dx,

where Lip1 is the space of Lipschitz continuous functions with Lipschitz

constant 1. However, seismic data f and g are oscillatory containing both

positive and negative parts. If
∫
f �=

∫
g, the value of (79) is always +∞. Re-

cently, [88, 89] introduced the following Kantorovich-Rubinstein (KR) norm

in FWI which is a relaxation of the original W1 distance by constraining the

dual space:

(80) KR(f, g) = max
ϕ∈BLip1

∫
X
ϕ(x)(f(x)− g(x))dx

Here BLip1 is the space of bounded Lipschitz continuous functions with

Lipschitz constant 1. One advantage of using KR norm in FWI is that there
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Figure 8: (a) True velocity and (b) initial velocity for full Marmousi model.

is no need to normalize the data to be positive and mass balanced. However,

KR norm has no direct connection with optimal transport once we no longer

require f and g to be probability measures [130]. When f and g are far apart

which is very common when the initial velocity is rough, the maximum in

(80) is achieved by “moving” f+ to f− and g+ to g−. The notion of transport

is void in this case and convexity is lost.

5.4. Numerical results of global W2

In the next two subsections, we provide numerical results for two approaches

to using W2 with linear normalization (76): trace-by-trace comparison and

using the entire 2D datasets as objects. Here a trace is the time history

measured at one receiver while the entire dataset consists of the time history

of all the receivers. These are compared with results produced by using the

standard least-squares norm L2 to measure the misfit. More examples can

be found in [141].

First, we use a scaled Marmousi model to compare the inversion between

global W2 and the conventional L2 misfit function. Figure 8a is the P-wave

velocity of the true Marmousi model, but in this experiment, we use a scaled

model which is 1 km in depth and 3 km in width. The inversion starts from

an initial model that is the true velocity smoothed by a Gaussian filter with

a deviation of 40, which is highly smoothed and far from the true model

(a scaled version of Figure 8b). We place 11 evenly spaced sources on top at

50 m depth and 307 receivers on top at the same depth with a 10 m fixed

acquisition. The discretization of the forward wave equation is 10 m in the
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Figure 9: Inversion results of (a) L2 and (b) global W2 for the scaled Mar-
mousi model.

x and z directions and 10 ms in time. The source is a Ricker wavelet which

is the second derivative of the Gaussian function with a peak frequency of

15 Hz, and a bandpass filter is applied to remove the frequency components

from 0 to 2 Hz.

We use L-BFGS, a quasi-Newton method as the optimization algorithm

[78]. Inversions are terminated after 200 iterations. Figure 9a shows the

inversion result using the traditional L2 least-squares method after 200 L-

BFGS iterations. The inversion result of global W2 (Figure 9b) avoids the

problem of local minima suffered by the conventional L2 metric, whose re-

sult demonstrates spurious high-frequency artifacts due to a point-by-point

comparison of amplitude.

We solve the Monge-Ampère equation numerically in each iteration of

the inversion. The drawback to the PDE approach is that data must be

sufficiently regular for solutions to be well-defined and for the numerical

approximation to be accurate. To remain robust on realistic examples, we

use filters that effectively smooth the seismic data, which can lead to a

loss of high-frequency information. For illustration in this paper, we per-

form computations using a Monge-Ampère solver for synthetic examples.

Even in 2D, some limitations are apparent. This is expected to become

even more of a problem in higher-dimensions and motivates our introduc-

tion of a trace-by-trace technique that relies on the exact 1D solution. The

trace-by-trace technique is currently more promising for practical appli-

cations, as is evidenced in our computational examples in the next sec-

tion.



Seismic imaging and optimal transport 131

Figure 10: Inversion results of (a) L2 and (b) trace-by-trace W2 for the true
Marmousi model.

5.5. Numerical results of trace-by-trace W2

Recall that for the 1D trace-by-trace approach, the misfit function in FWI
is

(81) J1(m) =

R∑
r=1

W 2
2 (f(xr, t;m), g(xr, t)),

where R is the total number of traces, g is observed data, f is simulated
data, xr are receiver locations, and m is the model parameter. The adjoint
source term for each single trace is
(82)

∂W 2
2 (f, g)

∂f
=

(∫ T0

t

−2(s−G−1 ◦ F (s))

g(G−1 ◦ F (s))
f(s)ds+ |t−G−1(F (t))|2

)
dt.

The next experiment is to invert the full Marmousi model by conven-
tional L2 and trace-by-trace W2 misfit. Figure 8a is the P-wave velocity of
the true Marmousi model, which is 3 km in depth and 9 km in width. The
inversion starts from an initial model that is the true velocity smoothed by
a Gaussian filter with a deviation of 40 (Figure 8b). The rest of the settings
are the same as the previous section. Inversions are terminated after 300
L-BFGS iterations. Figure 10a shows the inversion result using the tradi-
tional L2 least-squares method and Figure 10b shows the final result using
trace-by-trace W2 misfit function. Again, the result of L2 metric has spuri-
ous high-frequency artifacts while W2 correctly inverts most details in the
true model. The convergence curves in Figure 11 show that W2 reduces the
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Figure 11: The convergence curves for trace-by-trace W2 and L2 based in-
version of the full Marmousi model.

Figure 12: (a) Noisy and clean data and (b) inversion result with the noisy
data.

relative misfit to 0.1 in 20 iterations while L2 converges slowly to a local

minimum.

5.6. Insensitivity to noise

One of the good properties of the quadratic Wasserstein metric is the in-

sensitivity to noise [48]. We repeat the previous experiment with a noisy

reference by adding a uniform random iid noise to the data from the true

velocity (Figure 12a). The signal-to-noise ratio (SNR) is −3.47 dB. In opti-

mal transport, the effect of noise is essentially negligible due to the strong

cancellation between the nearby positive and negative noise.
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All the settings remain the same as in the previous numerical experiment
except the observed data. After 96 iterations, the optimization converges to
a velocity presented in Figure 12b. Although the result has lower resolution
than Figure 10b, it still recovers most features of Marmousi model correctly.
Even when the noise is much larger than the signal, the quadratic Wasser-
stein metric still converges reasonably well.
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tudes. Geophysical Journal International, 150(2):440–466, Aug 2002.

[42] Wei Dai, Hao Deng, Kun Jiao, and Denes Vigh. Least-squares reverse-

time migration: An example of subsalt imaging. In SEG Technical

Program Expanded Abstracts 2017, pages 4427–4431. Society of Ex-

ploration Geophysicists, Aug 2017.

[43] Wei Dai, Paul Fowler, and Gerard T. Schuster. Multi-source least-

squares reverse time migration. Geophysical Prospecting, 60(4):681–

695, Jul 2012.

[44] Wei Dai and Gerard T. Schuster. Plane-wave least-squares reverse-

time migration. Geophysics, 78(4):S165–S177, Jul 2013.

[45] Guido De Philippis and Alessio Figalli. The Monge-Ampère equation

and its link to optimal transportation. Oct 2013.

http://www.ams.org/mathscinet-getitem?mr=3466197


Seismic imaging and optimal transport 137

[46] Laurent Demanet. Waves and imaging class notes - 18.325. 2016.

[47] B. Engquist and B. D. Froese. Application of the Wasserstein metric to
seismic signals. Communications in Mathematical Sciences, 12(5):979–
988, 2014. MR3187785

[48] Bjorn Engquist, Brittany D. Froese, and Yunan Yang. Optimal trans-
port for seismic full waveform inversion. Communications in Mathe-
matical Sciences, 14(8):2309–2330, 2016. MR3576276

[49] John Etgen, Samuel H. Gray, and Yu Zhang. An overview of depth
imaging in exploration geophysics. Geophysics, 74(6):WCA5–WCA17,
Nov 2009.

[50] Xiaobing Feng and Michael Neilan. Analysis of Galerkin methods
for the fully nonlinear Monge-Ampère equation. Journal of Scientific
Computing, 47(3):303–327, 2011. MR2793586

[51] B. D. Froese. A numerical method for the elliptic Monge-Ampère
equation with transport boundary conditions. SIAM J. Sci. Comput.,
34(3):A1432–A1459, 2012. MR2970259

[52] Hiroyuki Fujiwara. The fast multipole method for solving integral
equations of three-dimensional topography and basin problems. Geo-
physical Journal International, 140(1):198–210, 2000.

[53] Takashi Furumura, B. L. N. Kennett, and Hiroshi Takenaka. Parallel 3-
D pseudospectral simulation of seismic wave propagation. Geophysics,
63(1):279–288, 1998.

[54] Alexandre Gramfort, Gabriel Peyré, and Marco Cuturi. Fast optimal
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[114] Gji Seismology, Ebru Bozdă, Jeannot Trampert, and Jeroen Tromp.

Misfit functions for full waveform inversion based on instantaneous

phase and envelope measurements. Geophys. J. Int., 185:845–870,

2011.

[115] Mrinal K. Sen and Paul L. Stoffa. Inverse Theory, Global Optimiza-

tion, pages 625–632. Springer, Dordrecht, 2011.

[116] Peter M. Shearer. Introduction to Seismology. Cambridge University

Press, 2009.

[117] Laurent Sirgue and R. Gerhard Pratt. Efficient waveform inversion and

imaging: A strategy for selecting temporal frequencies. Geophysics,

69(1):231–248, 2004.

[118] Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi,
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