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Filtering problem has been studied since the early 1960s when the
famous Kalman filter was proposed and there have been a variety
of filtering algorithms springing up since then. One useful filter-
ing method is the so called direct method for Yau filtering system
which was proposed in 1990s. In the early works about the direct
method, they all assume that the filtering system is time-invariant.
However, this limitation excludes the situation where the filter-
ing system also depends on the time, i.e., the filtering system is
time-varying, which can be very common in real applications. Re-
cently, Yau and his collaborators have extended the work to the
time-varying case and make it more applicable for practical filter-
ing problems. In this work, we shall briefly go through the direct
method for both the time-invariant and the time-varying Yau fil-
tering system.

1. Introduction

The aim of the filtering is to estimate the state of a stochastic dynamical
system with observations corrupted by the noises and it has various applica-
tions in many applied fields such as communication, aerospace applications,
and economics. About two centuries ago Gauss started the work about fil-
tering problems, and later Wiener and Kalman made groundbreaking work
in filtering theory. In 1960s, the most influential work in filtering theory are
published including the classical Kalman filter (KF) [17] and its continuous
counterpart Kalman-Bucy filter [18]. Both Kalman filter and Kalman-Bucy
filter are only applicable to linear systems and most systems are nonlinear
in real applications. Therefore there have been arising a lot of work ap-
plicable to the nonlinear filtering (NLF) problems, including the extended
Kalman filter (EKF) [16], ensemble Kalman filter (EnKF) [13], unscented
Kalman filter (UKF) [29, 33], particle filter (PF) [11, 14] and other methods
[23, 25, 32]. When the dynamic system is significantly nonlinear, it is known
that EKF always performs poorly and besides, it is very sensitive to ini-
tial value on account of the Taylor approximation. EnKF, which combines
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the data assimilation and ensemble generation problem, has lots of applica-

tions in numerical weather and ocean prediction applications [1, 2, 19]. PF

is also one of the most popular methods nowadays and has been extended

to different models, see [3, 4] and references therein. PF is applicable to

nonlinear, non-Gaussian state update and observation equations, and can

obtain asymptotically optimality as the number of particles goes to infinity.

However, it is hard to be implemented in real time owing to its essence of

Monte Carlo simulation.

All the filtering methods mentioned above only seek the approxima-

tion of conditional mean and variance, while another way to NLF prob-

lem is to derive the conditional probability of the state which is called the

global approach [22]. Obviously all the statistical information, besides con-

ditional mean and variance, can be acquainted by global approach. It is

known that the unnormalized probability density function of the state sat-

isfies the Duncan-Mortensen-Zakai (DMZ) equation [12, 27, 44]. However, it

is not easy to solve the DMZ equation directly. The difficulty is that DMZ

equation is a parabolic equation with coefficients containing observations.

In 2008, Yau and Yau made a breakthrough in this problem by reducing

the DMZ equation to forward Kolmogorov equation (FKE) which can be

solved off-line [43]. Following this work, Luo and Yau proposed an algorithm

[20, 21] to solve general NLF problems using DMZ equations in real-time

manner. “Real-time” means that the estimation of the states is made on the

spot instantaneously, while the observation data keep coming in. Thereafter

they also proposed other numerical method to solve FKE with time-varying

parameters equation [24]. We refer interested readers for the survey paper

[22].

Though it is not possible to solve explicitly the DMZ equation in most

situation, there are two methods have been found to the best of our knowl-

edge for the past quarter of a century. One is to use Lie algebraic method

proposed by Brockett [6] and Mitter [26], and Yau worked out the details

of this method in [34]. The basic idea is that solving the DMZ equation is

transformed into solving a series of ordinary differential equations (ODE),

FKE, and some first-order linear partial differential equations (PDE). How-

ever, the basis of the estimation algebra must be known in this method. Yau

and his co-workers [10, 31, 36, 41] have completely classified all finite dimen-

sional estimation algebras of maximal rank. In particular, they have proved

that for all finite dimensional filters, the observation terms hi(x), 1 ≤ i ≤ m

in (1), must be polynomials of degree one.



A survey of direct methods for Yau filtering systems 169

The direct method is the other approach to solve DMZ equation which

works well especially for the Yau filtering system, i.e., f(x, t) in (1) is of the

form f(x, t) = Lx+ l+∇φ(x) where L, l are constant matrices with proper

dimensions and φ(x) is a C∞ function. This method was introduced in [35]

and generalized in [15, 37, 38]. Comparing with the Lie algebra method,

direct method does not need to integrate several first-order linear PDEs.

Nevertheless in [15, 35, 37] and [38], they need to assume that the observation

terms hi(x), 1 ≤ i ≤ m in (1) are degree one polynomials. In [40], Yau and

Yau transformed the DMZ equation to time varying Schrödinger equation

in very general cases where observations terms are of linear growth. In [39],

Yau and Lai solved DMZ equation by solving a series of ODEs when the

initial distribution is Gaussian. Based on the work of Yau and Lai [39],

Shi and Yau [30] proposed a useful Gaussian approximation algorithm such

that each initial distribution can be decomposed into the sum of several

Gaussian distributions. Therefore based on each Gaussian approximation of

the initial condition, the Kolmogorov equation can be solved in terms of

ODEs.

However, all these existing direct methods are for time-invariant systems

and they need to assume that g(t)Q̃(t)gT (t) in (1) is an identity matrix.

Recently, under some mild assumptions on the filtering system, we extend

the related results to time-varying situations and make it more practicable

in real applications [8, 9].

This survey paper is aim to present various direct methods studied in

the literature with the emphases on the [8, 9, 30, 38]. Furthermore, we dis-

cuss and compare three different methods from the model and assumptions.

The method in [38] reduces the DMZ equation into one Kolmogorov equa-

tion and several ODEs with respect to (w.r.t.) time-invariant Yau filtering

system with assumption that the observation is linear. The second one [30]

also considers the time-invariant system and only needs to assume that the

observation is of linear growth. Besides, [30] reduces the DMZ equation to

several ODEs by the use of Gaussian approximation. [8, 9] extends the work

for time-invariant system to time-varying system and provides the direct

computation of the solution to the DMZ equation.

This paper is organized as follows. In Section 2, we recall some basic con-

cepts and existing results with respect to the filtering problem. We present

the direct method for time-invariant Yau filtering system in Section 3 and

conclude the corresponding result for time-varying system in Section 4. Fi-

nally, in the last section we draw the conclusion.
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2. Basic concepts

2.1. Basic filtering problems

We consider the following continuous filtering problem:

(1)

{
dxt = f(xt, t)dt+ g(t)dvt

dyt = h(xt, t)dt+ dwt

where xt, f ∈ R
n×1, g is a n × r matrix, vt is a r-vector Brownian motion

process with E[dvtdv
T
t ] = Q̃(t)dt and Q̃(t) > 0, yt, h ∈ R

m×1 and wt is a

m-vector Brownian motion process with E[dwtdw
T
t ] = S(t)dt and S(t) > 0.

Here the xt is the state of the system at time t, f(xt, t) is the drift term,

Q̃(t), S(t) is the covariance of the noises and yt is the observation at time t

with y0 = 0.

In the continuous dynamic system (1), we now assume that G(t) �
g(t)Q̃(t)gT (t) is C∞ smooth, f(x, t) and h(x, t) are C∞ smooth in both

state and time. For the sake of clarity we first explain some notations here:

Aij denotes the ij-entry of an arbitrary matrix A, ai denotes the i-th element

of an arbitrary vector a, and AT denotes the transposition of A.

Let ρ(t, x) be density function of xt conditioned on the observation his-

tory Ft � {ys : 0 ≤ s ≤ t}, then it must satisfy the normalization condition,

i.e.,

(2)

∫
ρ(t, x)dx = 1.

Actually, if there is any function σ(t, x) satisfying

(3) ρ(t, x) ∝ σ(t, x) w.r.t. x,

then ρ(t, x) can be computed by normalization:

(4) ρ(t, x) =
σ(t, x)∫
σ(t, x)dx

.

In [12], it is known that the unnormalized density function σ(t, x) of xt
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conditioned on Ft satisfies the DMZ equation:

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dσ(t, x) =

⎡⎣1

2

n∑
i,j=1

Gij(t)
∂2σ

∂xi∂xj
(t, x)−

n∑
i=1

fi
∂σ

∂xi
(t, x)

−σ(t, x)

n∑
i=1

∂fi
∂xi

(t, x)

]
dt+ σ(t, x)hT (x, t)S−1(t)dyt

σ(0, x) =σ0(x),

where σ0(x) is the probability density of the initial sate x0. For each arrived

observation, making an invertible exponential transformation [28]:

(6) u(t, x) = exp
[
−hT (x, t)S−1(t)yt

]
σ(t, x),

then the DMZ equation is transformed into a deterministic PDE with sto-

chastic coefficients

(7)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, x) =

1

2

n∑
i,j=1

Gij(t)
∂2u

∂xi∂xj
(t, x)+

n∑
i=1

⎛⎝ n∑
j=1

Gij(t)
∂K̄

∂xj
− fi

⎞⎠ ∂u

∂xi
(t, x)

+

(
− ∂

∂t

(
hTS−1

)T
yt +

1

2

n∑
i,j=1

Gij(t)

[
∂2K̄

∂xi∂xj
+

∂K̄

∂xi

∂K̄

∂xj

]

−
n∑

i=1

fi
∂K̄

∂xi
(t, x)−

n∑
i=1

∂fi
∂xi

(t, x)− 1

2

(
hTS−1h

))
u(t, x),

u(0, x) = σ0(x),

in which

(8) K̄(x, t) = hT (x, t)S−1(t)yt.

We shall call (7) “pathwise-robust” DMZ equation in this paper. In gen-

eral, the exact solution to (7) does not have a closed form. Assuming the

observations arrive at discrete instants, then we can construct the approx-

imation as in [21, 43] and get the robust DMZ equation (9) in each time

interval.
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Let us denote the observation time sequence as Pk = {0 = τ0 < τ1 <

· · · < τN = T}. Let uk be the solution of the robust DMZ equation with

yt = yτk−1
on the time interval τk−1 ≤ t ≤ τk, k = 1, 2, · · · , N ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uk
∂t

(t, x)

=
1

2

n∑
i,j=1

Gij(t)
∂2uk
∂xi∂xj

(t, x) +

n∑
i=1

(
n∑

j=1

Gij(t)
∂K̃

∂xj
− fi

)
∂uk
∂xi

(t, x)

+

(
− ∂

∂t

(
hTS−1

)T
yτk−1

+
1

2

n∑
i,j=1

Gij(t)

[
∂2K

∂xi∂xj
+

∂K̃

∂xi

∂K̃

∂xj

]

−
n∑

i=1

fi
∂K̃

∂xi
(t, x)−

n∑
i=1

∂fi
∂xi

(t, x) −1

2

(
hTS−1h

))
uk(t, x),

u1(0, x) = σ0(x),

uk(τk−1, x) = uk−1(τk−1, x), k = 2, 3, · · ·N,

(9)

with

(10) K̃(x, t) = hT (x, t)S−1(t)yτk−1
.

Define the norm of Pk by |Pk| = sup1≤k≤N (τk − τk−1). By [42], we know

that in both point-wise sense and L2 sense,

(11) u(τ, x) = lim
|Pk|→0

uk(τ, x).

Therefore, uk(t, x) is a good approximation of u(t, x) in the interval [τk−1, τk].

Then we only need to seek the solution of DMZ equation (9).

In [21], Luo and Yau proposed an on- and off-line algorithm solving

the NLF problems in real time and it has been verified numerically as an

efficient tool in very low dimension. The key step is that the heavy compu-

tation of solving PDE can be moved to off-line using the following proposi-

tion.

Proposition 1 ([43]). For each τk−1 ≤ t ≤ τk, k = 1, 2, · · · , N , uk(t, x)

satisfies (9) if and only if
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(12) ũk(t, x) = exp
[
hT (x, t)S−1(t)yτk−1

]
uk(t, x),

satisfies the Kolmogorov forward equation

(13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ũk
∂t

(t, x) =
1

2

n∑
i,j=1

Gij(t)
∂2ũk
∂xi∂xj

(t, x)−
n∑

i=1

fi
∂ũk
∂xi

(t, x)

−
(

n∑
i=1

∂fi
∂xi

(t, x) +
1

2
hTS−1h

)
ũk(t, x),

ũ1(0, x) =σ0(x),

ũk(τk−1, x) = exp
[
hT (x, τk−1)S

−1(τk−1)(yτk−1
− yτk−2

)
]

· ũk−1(τk−1, x), k = 2, 3, · · ·N.

Usually, the filtering system can be divided into two categories includ-

ing time-invariant system and time-varying system, and (1) is the gen-

eral form of the time-varying system. When f(xt, t), h(xt, t) are only func-

tions w.r.t. x, and g(t), Q̃(t), S are constants in (1), we call (1) the time-

invariant filtering system. More importantly, G(t) = I in the time-invariant

case, while G(t) is a time-varying matrix in the time-varying case. There-

fore, the Kolmogorov forward equation (13) can be much more compli-

cated in the time-varying case. In the following two sections, we shall show

how to get the explicit solution of the DMZ equation w.r.t. different sys-

tems.

3. Time-invariant filtering system

The time-invariant form of (1) is as follows:

(14)

{
dxt = f(xt)dt+ gdvt

dyt = h(xt)dt+ dwt

where g is assumed to be an orthogonal matrix, covariance Q̃, S of the noises

are identity matrices.

In terms of this time-invariant filtering system (14), the robust DMZ

equation (7) is reduced to
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(15)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, x) =

1

2

n∑
i=1

∂2u

∂x2i
(t, x) +

n∑
i=1

(
∂K̃

∂xi
− fi

)
∂u

∂xi
(t, x)

+

⎛⎝1

2

n∑
i=1

⎡⎣∂2K̃

∂x2i
+

(
∂K̃

∂xi

)2
⎤⎦−

n∑
i=1

fi
∂K̃

∂xi
(t, x)

−
n∑

i=1

∂fi
∂xi

(t, x)− 1

2

(
hTh

))
u(t, x),

u(0, x) =σ0(x).

Now we need the following conditions before we present the work in
[30, 38].

C1)
∂fj
∂xi

− ∂fi
∂xj

= cij , where cij are constants for 1 ≤ i, j ≤ n. This is the

so-called Yau filtering system in [7]. This condition has been proved
to be equivalent to [38]

(16) fi(x) = li(x) +
∂φ

∂xi
(x),

for 1 ≤ i ≤ n, where li(x) =
∑n

j=1 dijxj + di and φ is a C∞ function;
C2)

∑m
i=1 hi(x) =

∑n
i,j=1 qijxj + qi;

C ′
2)

∑m
i=1 h

2
i (x) =

∑n
i,j=1 qijxixj +

∑n
i=1 qixi + q0;

C3) η(x) =
∑n

i,j=1 ηijxixj +
∑n

i=1 ηixi + η0, where η(x) is defined as fol-
lows:

(17) η(x) =

n∑
i=1

f2
i (x) +

n∑
i=1

∂fi
∂xi

(x) +

m∑
i=1

h2i (x);

where dij , di, qij = qji, qi, q0, ηij , ηi, η0, 1 ≤ i, j ≤ n are constants.

3.1. Reducing the DMZ equation to Kolmogorov equation and
ODEs

In the work of [38], Yau and his collaborator proposed the direct method
to solve the DMZ equation (15) by reducing it to the Kolmogorov equation
and ODEs which is stated in the following theorem.

Theorem 1 (DMZ equation → Kolmogorov equation + ODEs, Theorem
3.3 in [38]). Consider the nonlinear system (14) with conditions C1), C2)
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and C3). Then the solution u(t, x) for the DMZ equation (15) is reduced to
the solution ũ(t, x) for the following Kolmogorov equation:

(18)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂ũ

∂t
(t, x) =

1

2
Δũ(t, x)−

n∑
i=1

fi(x)
∂ũ

∂xi
(t, x)

+
1

2

(
n∑

i=1

f2
i (x)−

n∑
i=1

∂fi
∂xi

(x)− η(x)

)
ũ(t, x)

ũ(0, x) =σ0(x)

where

(19) ũ(t, x) = exp

[
c(t) +

n∑
i=1

ai(t)xi + φ(x)− φ(x+ b(t))

]
· u(t, x+ b(t))

and ai(t), bi(t) and c(t) satisfy ODEs:

(20)

⎧⎪⎪⎨⎪⎪⎩
b′i(t)− ai(t)−

n∑
j=1

dijbj(t) +

m∑
j=1

cjiyj(t) = 0

bi(0) = 0,

1 ≤ i ≤ n.

(21)

⎧⎪⎪⎨⎪⎪⎩
a′i(t)−

1

2

n∑
j=1

(ηij + ηji)bj(t) +

n∑
j=1

djib
′
j(t) = 0

ai(0) = 0,

1 ≤ i ≤ n.

(22)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c′(t) =− 1

2

n∑
i=1

(b′i(t))
2 +

n∑
i=1

ai(t)b
′
i(t)−

n∑
i=1

di(t)b
′
i(t)

+
1

2

n∑
i,j=1

ηijbi(t)bj(t) +
1

2

n∑
i=1

ηibi(t)

c(0) =0.

3.2. Reducing the DMZ equation to ODEs

However, [38] only considers the system with condition C2), i.e., the obser-
vation must be linear. Recently, [30] considers a less constrained condition
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C ′
2) and can reduce the computation of the DMZ equation to the solutions of

the ODEs. Similarly, the FKE (13) for time-invariant system (14) is reduced
to:

∂ũk
∂t

(t, x) =
1

2
Δũk(t, x)−

n∑
i=1

fi(x)
∂ũk
∂xi

(t, x)

−
(

n∑
i=1

∂fi
∂xi

(x) +
1

2

m∑
i=1

h2i

)
ũk(t, x)

(23)

with

(24) uk(t, x) = exp (−
m∑
i=1

yi(τk−1)hi(x))ũk(t, x).

Based on (23), [30] first transforms the Kolmogorov equation (23) of ũk(t, x)
into another Kolmogorov equation of ûk(t, x) in Theorem 2, and then reduces
the computation of the Kolmogorov equation into ODEs with arbitrary ini-
tial conditions using Gaussian approximation in Algorithm 1.

Theorem 2 (Corollary 1 in [30]). Consider the nonlinear system (14) with
conditions C1), C ′

2) and C3). Then for each k, τk−1 ≤ t ≤ τk, the solu-
tion ũk(t, x) for (23) is reduced to the solution ûk(t, x) for the following
Kolmogorov equation

∂ûk
∂t

(t, x) =
1

2
Δûk(t, x)−

n∑
i=1

li(x)
∂ûk
∂xi

(t, x)

+
1

2

(
n∑

i=1

l2i (x)−
n∑

i=1

∂li
∂xi

(x)− η(x)

)
ûk(t, x)

(25)

with
(26)

ûk(τk−1, x) =

⎧⎪⎪⎨⎪⎪⎩
e−φ(x)σ0(x), k = 1,

exp

(
m∑
j=1

(yj(τk−1)− yj(τk−2))hj(x)

)
·ûk−1(τk−1, x), k ≥ 2

where

(27) ũk(t, x) = eφ(x)ûk(t, x).
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Suppose ûk(τk−1, x) is well approximated by a sum of finite number

of Gaussian distributions, it follows that a well approximated solution of

(25) is obtained by linear combination of solutions of (25) with Gaus-

sian initial condition since (25) is a linear PDE. The following theorem

give the solution of (25) with Gaussian initial distribution in terms of

ODEs.

Theorem 3 (Kolmogorov equation → ODEs, Theorem 3.2 in [39]). Con-

sider the following Kolmogorov equation with Gaussian initial condition

(28)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂ûk
∂t

(t, x) =
1

2
Δûk −

n∑
i=1

li(x)
∂ûk
∂xi

(t, x)

+
1

2

(
n∑

i=1

l2i (x)−
n∑

i=1

∂li
∂xi

(x)− η(x)

)
ûk(t, x),

ûk(τk−1, x) = ex
TA(τk−1)x+BT (τk−1)x+C(τk−1),

where A(τk−1) = (Aij(τk−1)) is a n × n symmetric matrix, BT (τk−1) =

(B1(τk−1), · · · , Bn(τk−1)), x
T = (x1, · · ·xn) are row vectors and C(τk−1) is

a scalar.

Let

q(x) =
1

2

(
n∑

i=1

l2i (x)−
n∑

i=1

∂li
∂xi

(x)− η(x)

)
= xTQx+ pTx+ r

(29)

where li(x) =
∑n

j=1 dijxj + di, Q = (qij) is a n × n symmetric matrix,

pT = (p1, · · · , pn) is a row vector and r is a scalar.

Then the solution of (28) is of the following form

(30) ûk(t, x) = ex
TA(t)x+B(t)Tx+C(t)

where A(t) = (Aij(t)) is a n × n symmetric matrix valued function of t,

BT (t) = (B1(t), · · · , Bn(t) is a row vector valued function of t, and C(t) is

a scalar function of t. Moreover, A(t), B(t) and C(t) satisfy the following
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system of nonlinear ODEs:

dA(t)

dt
= 2A2(t)− [A(t)D(t) +DTA(t)] +Q(t),

dBT (t)

dt
= 2BT (t)A(t)−BT (t)D(t)− 2dT (t)A(t) + pT (t),

dC(t)

dt
= trA(t) +

1

2
BTB(t)− dT (t)B(t) + r(t),

(31)

where D = (dij) is a n× n matrix and dT = (d1, · · · , dn) is a 1× n vector.

Given a probability density ϕ(x) and the threshold E, [30] proposed a nu-

merical algorithm to get a Gaussian approximation ϕ̃(x) =
∑Ñ

i=1 αiN (μi, σi)

which satisfies max
x

|ϕ(x) − ϕ̃(x)| ≤ E, and Ñ , αi, μi, σi are determined by

probability density ϕ(x) and the threshold E. This Gaussian approximation
method is summarized in Algorithm 1.

Algorithm 1 Gaussian approximation

1: Let a(x) = ϕ(x) and the threshold E = α ∗maxϕ(x), where α is a given small
parameter.

2: Fitting the peaks of a(x) which are larger than E with gaussian distributions.
Suppose the sum of gaussian distributions in this step is g(x).

3: Let a1(x) = a(x)−g(x). If a1(x) has no peaks whose values larger than E, then
go to step 4. Otherwise, let a(x) = a1(x) and go to step 2.

4: Let a2(x) = −a1(x). If a2(x) has no peaks which are larger than E, then done.
Otherwise, let a(x) = a2(x) and go to step 2.

Using the Gaussian approximation procedure in Algorithm 1, ûk(τk−1, x)
in (28) can be decomposed into a finite number of Gaussian distributions,
and the Kolmogorov equation (25) with Gaussian initial condition is solved
in terms of ODEs by Theorem 3. In summary, the algorithm to compute
ũk(t, x) is listed in Algorithm 2 [30].

4. Time-varying Yau filtering system

Now we discuss the general time-varying filtering system (1) and further-
more, we consider the time-varying Yau filtering system, i.e.:

(32) f(x, t) = L(t)x+ l(t) +∇xφ(t, x),

where L(t) = (lij(t)), 1 ≤ i, j ≤ n, lT (t) = (l1(t), · · · ln(t)) and φ(t, x) is a
C∞ function w.r.t. x on R

n.
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Algorithm 2 Compute ũk(t, x)

1: Choose the total computing time T , Δt and the parameter α in Algorithm 1.
Let N = T

Δt , and partition the time interval [0, T ] by {0 = τ0 < τ1 < τ2 < ... <
τN = T}.

2: for k = 1 : N do
3: Using Algorithm 1, suppose ûk(τk−1, x) is decomposed into∑N(k)

i=1 ck,iG(μk,i, σk,i).
4: For each Gaussian distribution G(μk,i, σk,i), suppose the solution of (28) with

initial condition G(μk,i, σk,i) is ûk,i(τk, x). Solving (31), we obtain ûk,i(τk, x).

Then ûk(τk, x) =
∑N(k)

i=1 ck,iûk,i(τk, x).
5: From (27), we have ũk(τk, x) = e−φ(x)ûk(τk, x).
6: By (26), we obtain ûk+1(τk, x).
7: end for

Both the limited direct method [8] and general direct method [9] are
devoted to solve the time-varying Yau filtering system. And the main dif-
ference is that the limited direct method relies on the strong assumption 2
w.r.t. the system while the general direct method only needs the basic as-
sumptions w.r.t. the system. We shall introduce these two methods in the
following two subsections and both of them follows Proposition 1, i.e., they
seek to solve (13).

4.1. Limited direct method for time-varying Yau filtering system

Proposition 2 (Proposition 2 in [8]). Suppose ũk(t, x) is the solution to
(13) in the interval [τk−1, τk], k = 1, 2, · · ·N and f(x, t) is of the form (32).
Let

(33) ũk(t, x) = eφ(t,x)ṽk(t, x),

then we have the following equation for ṽk(t, x).

(34)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ṽk
∂t

(t, x) =
1

2

n∑
i,j=1

Gij(t)
∂2ṽk

∂xi∂xj
(t, x)− (Lx+ l)T∇ṽk(t, x)

− 1

2
q(t, x)ṽk(t, x),

ṽ1(0, x) =σ0(x)e
−φ(0,x),

ṽk(τk−1, x) = exp
[
hT (x, τk−1)S

−1(τk−1)(yτk−1
− yτk−2

)
]

· ṽk−1(τk−1, x), k = 2, 3, · · ·N,
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where

(35)

q(t, x) =

n∑
i,j=1

Gij(t)
∂2φ

∂xi∂xj
(t, x) +∇xφ

T (t, x)G(t)∇xφ(t, x)

+ 2(Lx+ l)T∇xφ(t, x)

+

n∑
p,l=1

S−1
pl (t)hp(x, t)hl(x, t) + 2tr(L).

Assumption 1. G(t) is a positive definite matrix.

Since G(t) is positive definite, then we can find a positive definite matrix

F (t) > 0 such that

(36) G(t) = F (t)F T (t)

according to Cholesky decomposition.

Assumption 2. L(t) in (32) can be expressed as follows:

(37) L(t) = G(t)Ω(t) +
dF (t)

dt
F−1(t)

where Ω(t) ∈ R
n×n is an arbitrary symmetric matrix.

Theorem 4 (Kolmogorov equation → Schrödinger equation, Theorem 1 in

[8]). Under Assumption 1-2, suppose ṽk(t, x) is a solution of (34) and let

(38) ṽk(t, x) = ex
TD(t)xvk(t, z),

where

(39)

z = B(t)x+ b(t),

B(t) = F−1(t),

b(t) =

∫ t

0
B(s)l(s)ds,

and

(40) D(t) =
1

2
Ω(t).



A survey of direct methods for Yau filtering systems 181

Then vk(t, z) is the solution of the following equation:

(41)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂vk
∂t

(t, z) =
1

2
Δvk(t, z)−

1

2
q̃ (t, F (t)z − F (t)b(t)) vk(t, z)

v1(0, x) =σ0(F (0)x) exp
[
−φ (0, F (0)x)− (F (0)x)T D(0) (F (0)x)

]
vk(τk−1, x) = exp

[
hT (F (τk−1)x− F (τk−1)b(τk−1), τk−1)S

−1(τk−1)

· (yτk−1
− yτk−2

)
]
vk−1(τk−1, x), k = 2, 3, · · ·N

where

(42)

q̃(t, x) =q(t, x) + 2xT
dD(t)

dt
x− tr

(
G(t)(D(t) +DT (t))

)
− xT

(
D(t) +DT (t)

)
G(t)

(
D(t) +DT (t)

)
x

+ 2(L(t)x+ l)T
(
D(t) +DT (t)

)
x.

If q(t, x) in (41) is quadratic in x, then it is called Schrödinger equation.

Though it feels very restrictive, it includes Kalman-Bucy [18] and Beneš [5]

filtering.

Assumption 3. q̃(t, x) defined in (35) is quadratic w.r.t. x.

Notice that observation term hi(x, t) can be nonlinear which extends the

Kalman-Bucy filtering system. Since q(t, x) is quadratic, hi(x, t), 1 ≤ i ≤ m,

are of linear growth w.r.t. the state x, i.e., h2i (x, t) ≤ M(t)(1+ |x|2) for some

M(t) from (35).

Since q̃(t, x) is quadratic in x by (42) under Assumption 3. Thus we can

assume that

(43) q̃(t, x) = xTQ(t)x+ pT (t)x+ r(t).

Theorem 5 (Theorem 3 in [8]). Under Assumption 1-3, the solution vk(t, z)

in τk−1 ≤ t ≤ τk of (41) is given by

(44) vk(t, x) =

∫
Rn

K(t, x, y)vk(τk−1, y)dy,
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where

(45)

K(t, x, y) = (2π(t− τk−1))
−n/2

· exp
{
− |x− y|2
2(t− τk−1)

+ xT Ã(t− τk−1)x

+ xT B̃(t− τk−1)y + yT C̃(t− τk−1)y

+D̃T (t− τk−1)x+ ẼT (t− τk−1)y + s(t− τk−1)
}
,

with Ã(t− τk−1) =
∞∑
ν=1

Ãν(t− τk−1)
ν , B̃(t− τk−1) =

∞∑
ν=1

B̃ν(t− τk−1)
ν , C̃(t−

τk−1) =
∞∑
ν=1

C̃ν(t − τk−1)
ν , D̃(t − τk−1) =

∞∑
ν=1

D̃ν(t − τk−1)
ν , Ẽ(t − τk−1) =

∞∑
ν=1

Ẽν(t − τk−1)
ν , s(t − τk−1) =

∞∑
ν=1

sν(t − τk−1)
ν , b(t − τk−1) =

∞∑
ν=0

bν(t −

τk−1)
ν , F (t−τk−1) =

∞∑
ν=0

Fν(t−τk−1)
ν , Q(t−τk−1) =

∞∑
ν=0

Qν(t−τk−1)
ν , p(t−

τk−1) =
∞∑
ν=0

pν(t− τk−1)
ν , r(t− τk−1) =

∞∑
ν=0

rν(t− τk−1)
ν , where

Ãν+1 =
2

ν + 3

ν∑
i=0

ÃiÃν−i −
1

2(ν + 3)

ν∑
j=0

j∑
i=0

F T
i Qj−iFν−j ,(46)

B̃ν+1 =
2

ν + 2

ν+1∑
i=0

ÃiB̃ν−i,

C̃ν+1 =
1

2(ν + 1)

ν+1∑
i=−1

B̃T
i B̃ν−i,

D̃ν+1 =
2

ν + 2

ν+1∑
i=0

ÃiD̃ν−i −
1

2(ν + 2)

ν∑
i=0

F T
i pν−i

− 1

2(ν + 2)

ν∑
j=0

j∑
i=0

i∑
l=0

F T
l Qi−lFj−ibν−j ,

Ẽν+1 =
2

ν + 1

ν+1∑
i=−1

B̃iD̃ν−i,
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sν+1 =
1

2(ν + 1)

ν+1∑
i=−1

D̃T
i D̃ν−i +

1

ν + 1
tr(Ãν)

− 1

2(ν + 1)

⎡⎣ ν∑
i=0

i∑
j=0

j∑
m=0

m∑
l=0

bTl F
T
m−lQj−mFi−jbν−i

−
ν∑

j=0

j∑
i=0

pTi Fj−ibν−j + rν

⎤⎦ ,

with

(47)

Ã−1 = C̃−1 = −1

2
I, B̃−1 = I,

D̃−1 = Ẽ−1 = s−1 = 0,

Ã0 = B̃0 = C̃0 = D̃0 = Ẽ0 = s0 = 0.

To implement the proposed direct method numerically, we need to trun-
cate the higher order, which means that we only need to compute Ãν , B̃ν , C̃ν ,

D̃ν , Ẽν , sν , 0 ≤ ν < M by (46) where M is the assumed order. The numer-
ical procedure of direct method for nonlinear filtering problem (1) is listed

in TABLE 3 [8].

Algorithm 3 Limited direct method for time-varying (1)

1: Initialization: give T0, T,Δ, σ0(x),M ≥ 0
2: Calculate N = (T − T0)/Δ
3: Calculate F (t), B(t), b(t), D(t) by (36), (37), (39), (40)
4: Calculate Q(t), p(t), r(t) by (35), (42), (43)
5: Calculate Ãν , B̃ν , C̃ν , D̃ν , Ẽν , sν , 0 ≤ ν < M by (46)
6: for k = 1 : N do
7: Calculate vk(tk−1, x), vk(tk, x) by (41), (44)
8: Calculate ṽk(tk, x), ũk(tk, x) by (38), (33)
9: Calculate uk(tk, x), σ(tk, x) by (12), (6)
10: Calculate x̂tk

11: Assign k := k + 1
12: end for

4.2. General direct method for time-varying Yau filtering system

The aim of the general direct method is to solve (13) without Assumption 2.
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Proposition 3 ([9]). Under the Assumption 1, and let ũk(t, x) be the solu-

tion of (13) in [τk−1, τk], k = 1, 2, · · ·N , f(x, t) satisfies (32). Let

(48) ũk(t, x) = eφ̄(t,x)ψ̃k(t, x),

where φ̄(t, x) satisfies ∇xφ̄(t, x) = G−1(t)∇xφ(t, x), then ψ̃k(t, x) satisfies

the following equation:

(49)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ψ̃k

∂t
(t, x) =

1

2

n∑
i,j=1

Gij(t)
∂2ψ̃k

∂xi∂xj
(t, x)

− (Lx+ l)T∇ψ̃k(t, x)−
1

2
q̄(t, x)ψ̃k(t, x),

ψ̃1(0, x) = σ0(x)e
−φ̄(0,x),

ψ̃k(τk−1, x) = exp
[
hT (x, τk−1)S

−1(τk−1)(yτk−1
− yτk−2

)
]

· ψ̃k−1(τk−1, x), k = 2, 3, · · ·N,

where

(50)

q̄(t, x) =−
n∑

i,j=1

Gij(t)
∂2φ̄

∂xi∂xj
(t, x) +∇xφ̄

T (t, x)G(t)∇xφ̄(t, x)

+ 2(Lx+ l)T∇xφ̄(t, x) + 2

n∑
i=1

∂2φ(t, x)

∂2x2i
+ 2

∂φ̄(t, x)

∂t

+

n∑
p,l=1

S−1
pl (t)hp(x, t)hl(x, t) + 2tr(L).

Theorem 6 ([9]). Under the Assumption 1, and ψ̃k(t, x) is the solution of

(49), let

(51) ψ̃k(t, x) = ψk(t, z),

where

(52)
z = B(t)x,

B(t) = F−1(t).
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Then ψk(t, z) is the solution of the following equation:

(53)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ψk

∂t
(t, z) =

1

2
Δψk(t, z)−

1

2
q̄ (t, F (t)z)ψk(t, z)

−
[(

dB

dt
B−1 +BLB−1

)
z +Bl

]T
∇ψk(t, z),

ψ1(0, z) = σ0(F (0)z) exp
(
−φ̄(0, F (0)z)

)
,

ψk(τk−1, z) = exp
[
hT (F (τk−1)z, τk−1)S

−1(τk−1)

· (yτk−1
− yτk−2

)
]
ψk−1(τk−1, z),

k = 2, 3, · · ·N.

Define

(54) ˜̄q(t, z) := q̄(t, F (t)z),

and rewrite (53) as

(55)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ψk

∂t
(t, x) =

1

2
Δψk(t, x)−

1

2
˜̄q(t, x)ψk(t, x)

−
[(

dB

dt
B−1 +BLB−1

)
x+Bl

]T
∇ψk(t, x)

ψ1(0, x) = σ0(F (0)x) exp
(
−φ̄(0, F (0)x)

)
ψk(τk−1, x) = exp

[
hT (F (τk−1)x, τk−1)S

−1(τk−1)

· (yτk−1
− yτk−2

)
]
ψk−1(τk−1, x),

k = 2, 3, · · ·N.

Assumption 4. ˜̄q(t, x) in (54) is quadratic w.r.t. x.

It follows naturally ˜̄q(t, x) can be rewritten as

(56) − 1

2
˜̄q(t, x) = xTQ(t)x+ pT (t)x+ r(t),

where Q(t) is a n× n symmetric matrix, p(t) is a n× 1 vector and r(t) is a

scalar.

Theorem 7. Under Assumption 1 and Assumption 4, we consider the fol-
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lowing equation:

(57)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ψk

∂t
(t, x) =

1

2
Δψk(t, x)−

1

2
˜̄q(t, x)ψk(t, x)

−
[(

dB

dt
B−1 +BLB−1

)
x+Bl

]T
∇ψk(t, x)

ψk(τk−1, x) = exp
{
xTA(τk−1)x+ bT (τk−1)x+ c(τk−1)

}
,

where A(τk−1) is a n × n symmetric matrix, b(τk−1) is a n × 1 column
vector, xT = (x1, x2, . . . , xn) is a row vector and c(τk−1) is a scalar. Then
the solution of (57) is of the following form:

(58) ψk(t, x) = exp
{
xTA(t)x+ bT (t)x+ c(t)

}
,

where A(t) is a n× n matrix function w.r.t. t which is symmetric, b(t) is a
n × 1 column vector function w.r.t. t and c(t) is a scalar function w.r.t. t,
and they satisfy the following ODEs:

(59)

dA(t)

dt
= 2A2(t)− 2A(t)D(t) +Q(t),

dbT (t)

dt
= 2bT (t)A(t)− bT (t)D(t)− 2dT (t)A(t) + pT (t),

dc(t)

dt
= trA(t) +

1

2
bT b(t)− dT (t)b(t) + r(t),

where

(60) D(t) =
dB

dt
B−1 +BLB−1, d(t) = B(t)l(t).

Comparing Theorem 5 and Theorem 7, it is known that we eliminate
Assumption 2 and only keep that basic assumptions, i.e., Assumption 1 and
Assumption 3 (or 4).

Theorem 7 requires that the initial value ψk(τk−1, x) at every τk−1 must
be gaussian. According to the gaussian approximation algorithm in Algo-
rithm 1, non-gaussian function can be approximated by the sum of several
gaussian functions and we can use Theorem 7 for every gaussian function.
The general direct method is summarized in Algorithm 4.

5. Conclusion

In this survey, we first give the general framework of the global method and
then introduce four kinds of direct methods. The key ingredient for direct
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Algorithm 4 General direct method for time-varying (1)

1: Initialization: give T,Δt, σ0(x) and the parameter α in Algorithm 1. Let N =
T
Δt , and {0 = τ0 < τ1 < τ2 < ... < τN = T}.

2: for k = 1 : N do
3: Using Algorithm 1 to get the Gaussian approximation ψk(τk−1, x) ≈∑N(k)

i=1 αk,iN (μk,i, σk,i).
4: For each Gaussian distribution N (μk,i, σk,i), suppose the solution of (57)

with initial condition N (μk,i, σk,i) is ψk,i(τk, x). Solving (59), we obtain

ψk,i(τk, x). Then ψk(τk, x) =
∑N(k)

i=1 αk,iûk,i(τk, x).
5: Calculate ψk+1(τk, x) by ψk(τk, x) and (55).
6: Calculate ψ̃k(tk, x), ũk(tk, x) by (38), (33).
7: Calculate uk(tk, x), σ(tk, x) by (12), (6).
8: Calculate ρ(tk, x) by (4).
9: Calculate the conditional expectation of the state xtk .
10: end for

method is how to solve the DMZ equation and these direct methods solve
the DMZ equation by different transformations and approximations. In the
work of general direct method, we extend the classic direct method to the
most general time-varying systems.
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