
Communications in Information and Systems

Volume 19, Number 2, 193–217, 2019

A survey of estimation algebras in application
of nonlinear filtering problems

Wenhui Dong
∗
and Ji Shi

Ever since the technique of Kalman-Bucy filter was popularized,
due to its limitations that it needs a Gaussian assumption on the
initial data and it acts on linear systems, there has been an in-
tense interest in finding new classes of finite dimensional recursive
filters. In the late seventies of last century, the idea of using es-
timation algebra to construct finite-dimensional nonlinear filters
was first proposed by Brockett, Clark, and Mitter independently.
It has been proven to be an invaluable tool in the study of non-
linear filtering problems. Since then, Yau and his coworkers were
devoted to the researches of the classification of finite dimensional
estimation algebras (FDEAs) with maximal rank and clarified the
complete classification of it. Moreover, they shed some light on
the structure of the finite dimensional estimation algebras at most
dimension six. In addition, they also got some progress on the
classification of FDEAs with non-maximal rank. In this survey, we
shall briefly go through the development of the researches on the
nonlinear filtering problems, and put emphases on the results of
complete classification of FDEAs with maximal rank. And it is
also presented that how to use Lie algebra method to the non-
linear filtering problems by Wei-Norman approach. Further, the
recent results are given out about the structure of FDEAs with
non-maximal rank.

Keywords and phrases: Finite-dimensional filter, estimation algebras,
non-maximal rank, nonlinear filtering problems.

1. Introduction

The field of nonlinear filtering (NLF) problem stems from tracking and signal
processing problems. The underlying formulation is so general and ubiqui-
tous that it has wide applications to various complex dynamical systems
modeled by stochastic processes. The aim of filtering is to obtain good esti-
mates of the states in the stochastic dynamical system recursively in time,
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based on the arrival of noisy observations of the states. The states are also

called signals, which can represent all kinds of quantities in various applica-

tions. And the good estimates of the states are meant to be in some sense,

like in the least mean square error rule. In terms of the formulation of NLF,

there is no doubt that Bayesian theory is one of the main tools, which was

originally discovered by [8] in 1963. Bayesian theory is the most commonly

used method for the study of the dynamic systems. Besides the Bayesian

framework, the conditional density function of the states can also be ob-

tained by numerically solving the so-called Kusher’s or Duncan-Mortensen-

Zakai’s (DMZ) equation. It is shown in [32] that based on the observation

history Yt, the conditional density p(xt|Yt) of the states xt satisfies an Itô

stochastic differential equation (SDE), which is called Kusher’s equation.

By means of the change of measure, the unnormalized conditional density

π(xt|Yt) satisfies a linear Itô SDE, which is the so-called DMZ equation [25],

[40], [69].

Solving the DMZ equation which is satisfied by the unnormalized condi-

tional density of the system state has long been the research focus of general

NLF problems. In some sense, the NLF problems are said to be completely

solved, if one can solve the DMZ equation in real time and in a memoryless

way because all the statistical information can be extracted from the con-

ditional density function of the states. For the past several decades, as we

know, there are two approaches to solve the DMZ equation explicitly. The

first one is to take advantage of Lie algebraic method to solve DMZ equation,

which method will be elaborately introduced in the sequel of this section.

The second approach to solve DMZ equation is the direct method. In [59]

and [66], the direct method was newly introduced to study the linear filter-

ing and exact filtering systems with arbitrary initial condition. There are

many works about direct method for filtering problems, like as [60] and [67],

which systems are limited in time-invariant cases. Recently, the authors in

[20] extend the direct method so that it is applicable to time-varying cases.

This direct approach offers several advantages. It is easy and the deriva-

tion no longer needs controllability and observability. Thus, the algorithm is

universal for any linear filtering system. Furthermore, it eliminates the ne-

cessity of integrating n first-order linear partial differential equations, as was

the case in the Lie algebra method. Finally, the number of sufficient statis-

tics required to compute the conditional probability density of the state in

this direct method is n. In all these direct methods referred to as [59], [60],

[66], and [67], they need to assume that all the observation terms hi(x),

1 ≤ i ≤ m, are degree one polynomials.
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However, it is well known that the exact solution to the DMZ equation,
generally speaking, can not be written in a closed form. With the well-posed
theory of the DMZ equation in mind, many mathematicians make efforts to
seek an efficient algorithm to construct a “good” approximate solution to
the DMZ equation. Yau and Yau in [68] developed a novel algorithm to solve
the “pathwise-robust” DMZ equation, where the boundedness of the drift
term and observation term is replaced by some mild growth conditions on
f and g. Nevertheless, they still made the assumption that the drift term,
the observation term and the diffusion term are “time-invariant”. That is,
f , h and g in (2.1) are not explicitly time-dependent. In [33], Luo and Yau
generalized Yau-Yau’s algorithm to the most general settings of the NLF
problems, i.e., the “time-varying” case, where f , h and g could be explic-
itly time-dependent. Time-invariant system can only be seen as an ideal
model of practical applications. Therefore, it is more meaningful to solve
time-varying NLF problems. By extending the algorithm developed in [68]
to the most general settings of NLF, Luo and Yau in [34], [36] investigated
the Hermite spectral method to numerically solve the forward Kolmogorov
equation, which is closely related to the implementation of the algorithm de-
veloped in [33]. In [19], Chen, Luo and Yau by transforming the Kolmogorov
forward equation into a time-varying Schrodinger equation with respect to
the time-varying nonlinear systems.

Ever since 1960, there are numerous research activities in NLF prob-
lems, after Kalman and Bucy first established the finite dimensional filters
for linear-filtering systems with Gaussian initial distributions [30], [31]. In
the later 1960s and early 1970s, the basic approach to NLF theory was via
the “innovations method” originally purposed by Kailath and subsequently
rigorously developed by Fujisaki, Kallianpur, and Kunita [26]. However, as
pointed out by Mitter, the weakness of this approach is that in general it
is not explicitly computable. In view of this weakness, in the late 1970s
and early 1980s, Brockett and Clark [3], Brockett [4], and Mitter [38] in-
dependently proposed the idea of using estimation algebras to construct
finite dimensional nonlinear filters, which become a basic approach to NLF
problems.

The basic motivation originated from the Wei-Norman approach [50]
which uses the Lie algebraic method to solve time varying linear differen-
tial equations. Brockett, Clark and Mitter’s idea of using Lie algebras for
solving NLF problems is to imitate the Wei-Norman approach to solve the
Duncan-Mortensen-Zakai (DMZ) equation, which the unnormalized condi-
tional probability of the state must satisfy. For more details about the Wei-
Norman approach and its connection with the NLF problem, we refer the
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readers to paper [22], [48] and the survey article by Marcus [37]. The most
important advantage of the Lie algebraic approach is that as long as the
estimation algebra is finite dimensional, not only can the finite dimensional
recursive filters can be constructed, but also the filter so constructed is
universal in the sense of [9]. Therefore, it is very meaningful to study the
estimation algebras method.

In 1981, Benés established exact finite-dimensional filters for certain dif-
fusions with nonlinear drift which is the first important breakthrough in
Lie algebra approach [6]. Later, Wong in [51] constructed some new FDEAs
and used the Wei-Norman approach to construct finite dimensional filters.
Another class of finite dimensional filters was found by Charalambous and
Elliott [10] in advantage of the gauge transformation method, where Benés
exact filtering systems were extended by inserting linear combinations of
dx(t) in the observations. There are also some results about new finite di-
mensional filters with respect to various background scattered in [2], [21],
[27], and [44]. However, many researchers have found that not all NLF prob-
lems allow finite dimensional filters, for instance, there exists no finite di-
mensional filters for the cubic sensor problem [28]. Actually, it is only a few
NLF problems that can allow FDF. Mitter in [39] discussed the existence
and the nonexistence of the FDF, and the sufficient condition for FDF in
discrete time partially observable systems was studied in [45].

Due to the practical importance of the estimation algebra method,
Brockett [5] proposed the problem of classifying all FDEAs at the 1983
International Congress of Mathematics in order to find new classes of finite
dimensional filters besides the Benés exact filtering. Since then, a lot of ef-
forts have been devoted to classifying FDEAs. Under quite severe conditions,
Wong [52] proved that all FDEAs of (2.1) are solvable and the observation
h(x) is a polynomial of degree one. Besides, he was able to describe the
structure of FDEAs under these conditions. In Wong [53], Wong introduced
a fundamental notion of the Wong’s Ω-matrix which plays an significant role
in subsequent researches. Since the 1990s, Yau and his coworkers begun to
study the algebraic structure of several general classes of estimation alge-
bras. In [59], [58], and [62] Yau proved that the number of sufficient statistics
in the Lie algebra method, which is required in the computation of condi-
tional probability density, is linear in n, where n is the dimension of the state
space. On the one hand, Yau [58] and his co-workers in a series of research
works [62], [48], [64], [14], [65], and [13] have completely classified all FDEAs
of maximal rank with arbitrary state space dimension [62] which included
both Kalman-Bucy and Benés filtering systems as special cases. In particu-
lar, they have proved that all the observations terms hi(x), 1 ≤ i ≤ m must
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be degree one polynomials. On the other hand, they were able to classify all
FDEAs with dimension at most six [11, 29, 57]. Due to the difficulty of the
problem, Brockett suggested to understand the low-dimensional estimation
algebras at first. Rasoulian and Yau in [57] have got the classification of
the estimation algebras with dimension at most four. And Chiou, Chiueh,
and Yau in [11] have classified the estimation algebras with dimension five.
Further, Yang, Yau, and Chiou were able to give a structure theorem for
FDEAs with dimension six [29].

When the rank of FDEA is not maximal, the problem is still open. Wu
and Yau [55] have classified FDEAs with state dimension 2. One of the key
steps that Yau and his coworkers were able to classify all finite dimensional
maximal rank estimation algebras is that they were able to show that Wong’s
Ω-matrix is a constant matrix. And Yau and Rasoulian in [43] gave some
construction of non-maximal rank FDEAs. In [46], Shi and Yau found that
there exists a linear structure of Wong matrix in state dimension 3 and rank
2. And Shi, Chen, Dong and Yau further considered a new classes of finite
dimensional filters with non-maximal rank of state dimension 3 and linear
rank of 1 in [47]. For higher state dimensions n ≥ 4, the problem remains to
be unsolved.

Due to the derivation of the DMZ equation, the discovery of the in-
novation process, and the introduction of the Lie-algebraic and geometric
techniques, much of the Lie-algebraic approach to the filtering problem is
encapsulated into the concept of an estimation algebra. The surveys in the
field of NLF are numerous, there are also a verity of survey papers about
the estimation algebra theory in the NLF problems. There exists an excel-
lent survey paper by Marcus of the earlier results [37]. Later on, Wong and
Yau in chapter 2 of the book [7] presented some of the advances in esti-
mation algebra and its application to NLF problems, which is not meant
to a comprehensive account of all existing work concerning the estimation
algebra idea or other related work, like as the invariance group method or
Mallian calculus. Luo and Yau in [35] also have a survey paper which goes
through the existing three major global approaches for nonlinear filtering:
finite-dimensional nonlinear filtering, sequential Monte Carlo methods and
the Yau-Yau’s on-line and off-line solver of DMZ equation [68]. In this sur-
vey paper, we comprehensively described a more recent advances in the
classification of FDEAs with maximal rank and non-maximal rank.

The paper is organized as follows: some basic concepts about estima-
tion algebras are described in section 2. The classification of FDEAs with
maximal rank and non-maximal rank are given in section 3 and section 5,
respectively. We elaborate the structural results of FDEAs with dimension
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at most six in section 4. Furthermore, we use the structure results to derive

finite-dimensional filters for the robust-DMZ equation by the Wei-Norman

approach in section 6. And we finally arrive at conclusion in the last section.

2. Basic concepts and preliminary results

The filtering problem we consider is based on the following signal observation

model:

(2.1)

{
dx(t) = f(x(t))dt+ g(x(t))dv(t) x(0) = x0

dy(t) = h(x(t))dt+ dw(t) y(0) = 0,

where x, v, y, w are respectively Rn,Rp,Rm,Rm valued process, and v and w

are independent, standard Brownian motion. Moreover, assume f and h are

C∞ smooth, and g is an orthogonal matrix with assumption of p = n. x(t)

is referred to as the state of the system at time t and y(t) as the observation

at time t. Also, x0 is the initial state, and independent of v and w.

Let ρ(t, x) denote the conditional probability density of the state x(t)

given the observation {y(s) : 0 ≤ s ≤ t}. ρ(t, x) is the normalized version

of σ(t, x) which satisfies the well-known Duncan-Mortensen-Zakai (DMZ)

equation. Under the Stratonovich calculus, the DMZ equation can be written

as

(2.2)

⎧⎪⎨
⎪⎩

dσ(t, x) = L0σ(t, x)dt+

m∑
i=1

Liσ(t, x)dyi(t),

σ(0, x) = σ0,

where

L0 =
1

2

n∑
i=1

∂2

∂x2i
−

n∑
i=1

fi
∂

∂xi
−

n∑
i=1

∂fi
∂xi

− 1

2

m∑
i=1

h2i ,

for i = 1, . . . ,m, Li is the zero-order differential operator of multiplication

by hi. And σ0 is the probability density of the initial point x0.

If we define

(2.3) Di =
∂

∂xi
− fi, η =

n∑
i=1

∂fi
∂xi

+

n∑
i=1

f2
i +

m∑
i=1

h2i

then we have
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(2.4) L0 =
1

2

(
n∑

i=1

D2
i − η

)
,

which is in a more compact form.
The normalized conditional density ρ(t, x) is then given by

ρ(t, x) =
σ(t, x)∫
σ(t, x)

.

Therefore in the subsequent sections we aim to solve the DMZ equation
(2.2). We need the following preliminary definitions and properties.

Definition 2.1. If X and Y are differential operators, the Lie bracket of X
and Y , [X,Y ] is defined by [X,Y ]φ = X(Y φ)−Y (Xφ) for any C∞ function
φ.

Recall that a vector space F with the Lie bracket operation F ×F → F
denoted by (x, y) �→ [x, y] is called a Lie algebra if the following axioms are
satisfied:

(1) The Lie bracket operation is bilinear;
(2) [x, x] = 0 for all x ∈ F ;
(3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (x, y, z ∈ F).

Definition 2.2. Let U be the set of differential operators in the form

(2.5) A =
∑

|(i1,i2,...,in)|=l+1

ai1,i2,...,inD
i1
1 D

i2
2 ...D

in
n

where nonzero functions ai1,i2,...,in ∈ C∞(Rn) and IA is the finite index set of
A. Each element of the index set is an n-tuple (i1, i2, ..., in) of nonnegative
integers. The norm of an index i = (i1, i2, ..., in) is defined by |i| =

∑n
l=1 il.

The order of A is denoted by ordA = maxi=(i1,i2,...,in)∈IA |i|. If A = 0, ordA
is defined to be −∞. It is clear that for A, B ∈ U

ord (AB) = ord (BA) = ordA+ ordB,(2.6)

ord (A±B) ≤ max(ordA, ordB).(2.7)

U is a Lie algebra under the Lie bracket [·, ·] defined earlier. Two differential
operators A and B in U are equal if they have the identical index sets
IA = IB and ai1,i2,...,in = bi1,i2,...,in , ∀ai1,i2,...,in ∈ IA. Let Uk denote the
subspace of U consisting of the elements with order less than or equal to k.
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In particular, U0 = C∞(Rn). As usual,mod is used to denote the equivalence

class, i.e., if V is a subspace of U ,

A = B, modV ⇔ A−B ∈ V.

If A,B ∈ U , define

(2.8) AdAB = [A,B], AdlAB = [A,Adl−1
A B], l ≥ 1,

where Ad0A is the identity operator by standard convention.

Definition 2.3. (Chiou-Yau [13], Chen-Yau [17]). The estimation algebra

E of a filtering problem (2.1) is defined to be the Lie algebra generated by

{L0, L1, · · · , Lm}. E is said to be the estimation algebra with maximal rank

if, for any 1 ≤ i ≤ n, there exists a constant ci such that xi + ci ∈ E. If in

addition, E is of maximal rank, then E is a real vector space of dimension

2n+ 2 with basis given by 1, x1, · · · , xn, D1, · · · , Dn and L0.

In real applications, we are interested in considering robust state es-

timator from observed sample paths with some properties of robustness.

Since the problem of designing filters with some nice continuity or robust-

ness properties in important, Davis in [24] pointed out that by using the

transformation

(2.9) ξ(t, x) = exp
(
−

m∑
i=1

hi(x)yi(t)
)
σ(t, x),

one can obtain a robust form of DMZ equation,

(2.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
ξ(t, x) = L0ξ(t, x) +

m∑
i=1

yi(t)[L0, Li]ξ(t, x)

+
1

2

m∑
i=1

m∑
j=1

yi(t)yj(t)[[L0, Li], Lj ]ξ(t, x),

ξ(0, x) = σ0.

As we can know that the (2.10), called as robust DMZ equation, is also

a time-varying partial differential equation. One can define an estimation

algebra for the robust version to be the Lie algebra generated by {L0, [L0, Li],

[[L0, Li], Lj ], i, j = 1, 2, · · · ,m}.
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Definition 2.4. Let L(E) ⊂ E be the vector space consisting of all the ho-

mogeneous degree one polynomials in E. Then the linear rank of estimation

algebra E is defined by r := dimL(E). So estimation algebra of maximal

rank is in fact linear rank n estimation algebra.

Definition 2.5. The Wong matrix first introduced in [53] is a certain skew-

symmetric matrix Ω = (ωij), where

ωij =
∂fj
∂xi

− ∂fi
∂xj

, ∀1 ≤ i, j ≤ n.

Obviously ωij = −ωji.

As we will notice in the following sections, Ω matrix plays a crucial role

in the structure of an estimation algebra.

Let Q be the space of quadratic forms in n variables, i.e., real vector

space spanned by xixj , with 1 ≤ i, j ≤ n. Let X = (x1, · · · , xn)�, for

any quadratic form p ∈ Q, there exists a symmetric matrix B such that

p(x) = X�BX. The rank of the quadratic form of p is denoted by rk(p) and

is defined to be the rank of matrix B.

Definition 2.6. (Chen-Yau [17]). A fundamental quadratic form of the

estimation algebra E is an element p0 ∈ E
⋂

Q with the greatest positive

rank, i.e., rk(p0) ≥ rk(p) for any p ∈ E
⋂

Q. The quadratic rank of the

estimation algebra E is defined to be rk(p0).

Theorem 2.7. (Wu-Yau [55], Yau-Hu [62]). Let E be a finite dimensional

estimation algebra, and Di is defined as in (2.3). If l ≥ 0 and

A =
∑

|(i1,i2,...,in)|=l+1

ai1,i2,...,inD
i1
1 D

i2
2 ...D

in
n ,mod Ul

is in E, then ai1,i2,...,in are polynomials.

Lemma 2.8. (Wu-Yau [55]). Let g, h ∈ C∞(Rn) and let i1, ..., in, j1, ..., jn
be nonnegative integers with

∑n
l=1 il = r,

∑n
l=1 jl = s, and r + s ≥ 2. Let

δij be the Kronecker symbol, then

[gDi1
1 ...D

in
n , hDj1

1 ...Djn
n ]

=

n∑
l=1

(ilg
∂h

∂xl
− jlh

∂g

∂xl
)Di1+j1−δ1l

1 ...Din+jn−δnl

n , mod Ur+s−2.
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Theorem 2.9. (Yau [64]). Let F (x1, · · · , xn) be a C∞-function in Rn. Sup-
pose that there exists a path c : R −→ Rn and δ > 0 such that
limt−→∞ ||c(t)|| = ∞ and limt−→∞ supBδ(c(t))F = −∞, where Bδ(c(t)) =
x ∈ Rn : ||x− c(t)|| < δ}. Then there are no C∞-functions f1, f2, · · · , fn on
Rn satisfying

(2.11)

n∑
i=1

∂fi
∂xi

+

n∑
i=1

f2
i = F.

Theorem 2.10. (Yau [64]). Let F (x1, · · · , xn) be a polynomial on Rn. Sup-
pose that there exists a polynomial path c : R −→ Rn such that
limt−→∞ ||c(t)|| = ∞ and limt−→∞ F (c(t)) = −∞. Then there are no C∞-
functions f1, · · · , fn on Rn satisfying (2.9).

Theorem 2.11. (Ocone [42]). Let E be a finite dimensional estimation
algebra. If a function φ is in E, then φ is a polynomial of degree less than
or equal to 2.

3. Classification of finite dimensional estimation algebras
with maximal rank

The concept of estimation algebras has proven to be an invaluable tool in the
study of NLF problems. In 1983, Brockett proposed classifying all FDEAs.
Before many researchers begin to tackle this problem, Mitter conjectured
that the observation terms hi(x) are affine polynomials.

Yau [64] has begun to study a filtering system such that all entries of
Ω are constants. He was able to classify all FDEAs with maximal rank
and proved Mitter conjecture for such a filtering system. The program of
classifying FDEAs of maximal rank was begun in 1990 by S. S.-T. Yau.
There are four crucial steps [61].

• Step1. In 1990, Yau first observed that Wong’s Ω-matrix plays an
important role. As the first crucial step, he classifies all FDEAs of
maximal rank if Wong’s matrix has entries in constant coefficients.
His results announced in CDC 1990 [56] and published in 1994 [64]. In
1991 Chiou and Yau [63] formally introduced the concept of FDEA of
maximal rank and gave classification when the state space dimension
n is at most 2. Their results were published in 1994 [13].

• Step2. The second crucial step was due to Chen and Yau in 1996 [14].
They developed quadratic structure theory in FDEAs of maximal rank
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and laid down all the ingredients which are needed to give classifica-
tion of FDEAs of maximal rank. In particular, they proved that all the
entries of Wong’s matrix are degree one polynomials. They also intro-
duced the notion of quadratic rank k. In this way the Wong’s matrix
is divided into 3 parts: (i) (ωij), 1 ≤ i, j ≤ k, (ii) (ωij), k+1 ≤ i, j ≤ n
and (iii) (ωij), 1 ≤ i ≤ k, k + 1 ≤ j ≤ n, or k + 1 ≤ i ≤ n, 1 ≤ j ≤ k.
In [14], Chen and Yau proved among many other things that part (i)
(ωij), 1 ≤ i, j ≤ k is a matrix with constant coefficients.

• Step3. In their 1997 paper [16], Chen, Yau and Leung proved the weak
Hessian matrix non-decomposition theorem for n ≤ 4. As a result, the
part (ii) of the Wong’s matrix, (ωij), k+1 ≤ i, j ≤ n is a matrix with
constant coefficients. In their paper [54], Wu, Yau and Hu proved the
weak Hessian matrix non-decomposition theorem for general n. Thus
part (ii) of the Wong’s matrix is a matrix with constant coefficients
for arbitrary n. Later on, Yau, Wu and Wong in [65] established the
strong Hessian matrix non-decomposition theorem which implies the
weak Hessian matrix non-decomposition theorem as a special case.

• Step4. In 2005, Yau and Hu in [62] using the full power of the quad-
ratic structure theory developed by Chen and Yau [14] to prove that
part (iii) of the Wong’s matrix (ωij), 1 ≤ i ≤ k, k+1 ≤ j ≤ n and the
matrix (ωij), k + 1 ≤ i ≤ n, 1 ≤ j ≤ k are with constant coefficients.

Some parts of results are listed below.

Theorem 3.1. (Yau [64]). Let E be a finite dimensional estimation algebra

of (2.1) satisfying
∂fj
∂xi

− ∂fi
∂xj

= cij, where cij are constants for all 1 ≤ i, j ≤
n.

(i) If η is a polynomial of degree at most two, then E is finite dimensional
and has a basis consisting of E0 = L0, differential operators E1, · · · , Ep (for
some p) of the form

n∑
j=1

αijDj + βi, 1 ≤ i ≤ p,

where αij’s are constants and βi’s are affine in x, and zero degree differential
operators Ep+1, · · · , Eq (for some q > p) where Ei’s are affine in x for
p+ 1 ≤ i ≤ q. Moreover the quadratic part of η −

∑m
i=1 h

2
i is positive semi-

definite.
(ii) Conversely, if E is finite dimensional, then h1, · · · , hm are affine

in x, i.e., the observation matrix is a constant matrix. Furthermore if the
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observation matrix has rank n (in particular m ≥ n), then η is a polynomial
of degree at most two.

If the dimension of state space is two or three, then Chiou and Yau [13]
and Chen, Leung, and Yau [15] have shown, respectively, that all entries of
Ω are constants as long as the estimation algebra of maximal rank and finite
dimension.

In [14], Chen and Yau have shown that Ω matrix is an affine matrix
that every entry in Ω is an affine polynomial if the estimation algebra is
of maximal rank and finite dimensional, which is a fundamental step in
classifying FDEAs of maximal rank. Chen and Yau further have proven that
the Mitter conjecture for finite-dimensional estimation algebra of maximal
rank with arbitrary state space dimension in [17]. In the process of proving

this, they also showed that the Ω =
(∂fj
∂xi

− ∂fi
∂xj

)
matrix, where f denotes

the drift term, has special linear structure which generalizes their previous
results in [14].

Theorem 3.2. (Chen-Yau [17]). Let E be a finite-dimensional estimation
algebra of maximal rank. Let k be the quadratic rank of E. Then

(i) the observation terms hi(x), 1 ≤ i ≤ m, are affine polynomials.
(ii) for 1 ≤ i ≤ k or 1 ≤ j ≤ k, ωij are constant; for k + 1 ≤ i, j ≤ n,

ωij are degree-one polynomials in xk+1, · · · , xn.
(iii) η =

∑n
i=1

∂fi
∂xi

+
∑n

i=1 f
2
i +

∑m
i=1 h

2
i is a homogeneous polynomial

of degree four. Moreover, η4 (homogeneous polynomial of degree-four part of
η) depends only on xk+1, · · · , xn variables.

If E is a FDEA, Ocone’s theorem says that hi, 1 ≤ i ≤ m, are poly-
nomials of degree at most two. Mitter conjecture asserts that hi has to be
affine (i.e., degree-one polynomial). In [17], Chen and Yau also proved that
the Mitter conjecture for FDEAs of maximal rank with arbitrary state space
dimension.

Theorem 3.3. (Chen-Yau [17]). If E is a finite-dimensional estimation
algebra of maximal rank, then hi, 1 ≤ i ≤ m, are degree-one polynomials.

The classification of the FDEAs with maximal rank has been completed
in [58], [62]. The following theorem can describe the complete classification
of FDEAs with maximal rank.

Theorem 3.4. (Yau-Hu [62]). Suppose that the state space of the filtering
model (2.1) is of dimension n. If E is the finite-dimensional estimation
algebra with maximal rank, then f = ∇φ+(α1, · · · , αn), where φ is a smooth
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function and αi, 1 ≤ i ≤ n are affine functions and E is a real vector space
of dimension 2n+ 2 with basis given by 1, x1, · · · , xn, D1, · · · , Dn and L0.

There are some stories about the complete classification of FDEAs. Fol-
lowing the program of Stephen Yau, Tang gave a proof of the classification
of FDEA of maximal rank with arbitrary state-space dimension, i.e., Theo-
rem 1.1 in [49]. Unfortunately, the proof of the Theorem 1.1 there was not
clear. First, in Lemma 3.5 of Tang’s paper, only the lower right corner of
the Ω-matrix, i.e., ωij , k + 1 ≤ i, j ≤ n were proved to be constants. This
result had already been proven in Theorem 2.4 in Yau’s paper [65] which
appeared one year earlier. In fact, Yau’s Hessian non-decomposition theorem
is a much stronger result and has independent interest other than nonlinear
filtering. Second, the proof of Theorem 1.1 of Tang’s paper was wrong. In
his paper, Lemma 3.4 combined with the Main Theorem in Chen and Yau’s
paper [17] gave the proof of Theorem 1.1 of Tang’s paper. Nevertheless, the
proof of the Main Theorem in Chen and Yau’s paper [17] which states that
ωij , 1 ≤ i ≤ k or 1 ≤ j ≤ n is constant was known to be wrong. Yau and
Hu later gave a correct proof of ωij , 1 ≤ i ≤ k or 1 ≤ j ≤ n is constant
in [62]. Finally the classification of FDEAs of maximal rank with arbitrary
state-space dimension was completed after the publication of Yau and Hu’s
paper [62].

On the one hand, Nie’s paper [41] is a weaker form of the main result in
Yau’s paper [65]. On the other hand, Nie’s paper curiously coincided with
Yau’s paper [54] that circulated in China during 1997. In fact, Yau did send
this paper to the academician Professor Chao-Hao Gu at Fudan University
at that time. The academician Professor Jiaxing Hong knew about this fact.
The second author of the paper was invited by the academicians Professor
Lo Yang and Professor Lei Guo to give eight hour lectures on nonlinear fil-
tering theory in October 1997 at Morningside Institute of Academia Sinica
(now the name is Morningside Center of Mathematics, Chinese Academy of
Sciences) at Beijing. The result of [54] was presented during these lecture se-
ries. Although the paper [54] was written early, where the weak form Hessian
matrix non-decomposition theorem was proven, actually, it was published
later, on account that the strong Hessian matrix non-decomposition theo-
rem in [65] was discovered within two months after the success of the proof
of weak Hessian matrix non-decomposition theorem in [54].

4. Structure of finite estimation algebra with dimension at
most six

The problem of classification of FDEAs was formally proposed by Brockett
in his lecture as International Congress of Mathematicians in 1983. However,
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due to the difficulty of the problem, in the early 1990s, Brockett suggested
that one should understand the low-dimensional estimation algebras first. A
decade later, Yau and Rosoulian in [57] have classified all four-dimensional
estimation algebras for arbitrary state space dimension. Wu and Yau in
[55] have discussed that FDEAs can arise when the underlying stochastic
system (2.1) have state dimension 2 are completely classified. It has been
shown that an estimation algebra with state dimension 2 have only 1, 2, 4, 5
or 6 dimensions.

Theorem 4.1. (Yau-Rosoulian [57]). Suppose the state space of the filtering
system (2.1) is of dimension one. Then, the observation function, h(x), is
linear and the linear span of ∇h1, · · · ,∇hm is 1-D. Assume h1(x) = x1.
Then, the 4-D estimation algebra has a basis given by 1, x,D = (∂/∂x)−f(x)

and L0 =
1

2
(D2−η). Moreover, [L0, x] = D, [D,x] = 1, [L0, D] =

1

2
(∂η/∂x),

where η = αx2 + 2βx+ γ. Here, α, β, γ are constants.

In particular, f has to satisfy the equation f
′
+f2 = (α−1)x2+2βx+γ,

where α− 1 ≥ 0 and
√
α− 1 ≥ (β2/α− 1)− γ.

Theorem 4.2. (Yau-Rosoulian [57]). Suppose the state space of the filtering
system (2.1) is a dimension greater than one. Then, the observation func-
tion, h(x), is linear and the linear span of ∇h1, · · · ,∇hm is 1-D. Assume
h1(x) = x1. Then, the 4-D estimation algebra has a basis given by 1, x1, D1 =

(∂/∂x1)−f1(x1, · · · , xn) and L0 =
1

2
(
∑n

i=1D
2
i −η). Moreover, ω12 = ω13 =

· · · = ω1n = 0, [L0, x1] = D1, [D1, x1] = 1, [L0, D1] =
1

2
(∂η/∂x1) = αx1 + β,

where α, β are constants. Also, η = αx21 + 2βx1 + q(x2, · · · , xn), where
q(x2, · · · , xn) is in C∞(Rn−1).

In particular, f1, · · · , fn have to satisfy the equation
∑n

i=1

∂fi
∂xi

+∑n
i=1 f

2
i = (α− 1)x21 + 2βx1 + q(x2, · · · , xn), where α ≥ 1.

Hopefully, the results given in [11, 29] shed some light on the non-
maximal rank FDEAs. The authors in [11] gave a structure theorem for
estimation algebras of dimension five, and by using this structure theorem,
they have found a new class of FDEAs. Corresponding to this, in [29], Yang
and Yau also gave a structure theorem for estimation algebras with dimen-
sion six. We just go through some parts of results about the Mitter conjecture
for the low-dimensional estimation algebras in nonlinear filtering below.

Lemma 4.3. (Chiou-Chiueh-Yau [12]). For any 1 ≤ l ≤ n, if φi, i =
1, · · · , l, are polynomials in x1, · · · , xl with coefficients in C∞ functions of
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xl+1, · · · , xn satisfying

(4.1)
∂φj

∂xi
+

∂φi

∂xj
= 0, for all 1 ≤ i, j ≤ l,

then each φi is necessary of the form

(4.2) φi =
∑

1≤j≤l

cji (xl+1, · · · , xn)xj + di(xl+1, · · · , xn),

where cji (xl+1, · · · , xn) and di(xl+1, · · · , xn) are C∞ functions and cji = −cij.

Lemma 4.4. (Chiou-Chiueh-Yau [12]). If dimE = 5, then E cannot con-

tain two linear independent degree one polynomials. Furthermore, E cannot

contain any degree two polynomial.

Theorem 4.5. (Chiou-Chiueh-Yau [12]). Let E be a finite dimensional es-

timation algebra associate to the filtering model (2.1) with arbitrary state

space dimension. Then an function in E is a polynomial of degree at most

one if dimE ≤ 5.

5. Classification of estimation algebras with non-maximal
rank

Although the classification of FDEAs of maximal rank was completed by Yau

and his coworkers Chen, Chiou, Hu, Wong and Wu, the finite dimensional

filter can also be constructed from the FDEAs with non-maximal rank, see

[43]. However, due to the difficulty of the problem, the classification of the

non-maximal rank is still wide open, except some partial results, including

those for low-dimensional estimation algebra with arbitrary states’ dimen-

sion [57], [11], [29]; the classification with state dimension 2 and arbitrary

dimensional estimation algebra [55]. In [46], Shi and Yau considered FDEAs

with state dimension three and rank equal to 2.

Theorem 5.1. (Chiou-Chiueh-Yau [11]). Suppose that the state space of the

filtering model (2.1) is of dimension at least two. Then the five-dimensional

estimation algebra is isomorphic to a Lie algebra generated by L0 and an

observation function h = x1 with a basis given by 1, x1, D1 = (∂/∂x1) −
f1(x1, · · · , xn), Y1 = [L0, D1] =

∑n
i=1 ωi1Di+

1

2
(∂η/∂x1), L0 =

1

2
(
∑n

i=1D
2
i −

η). Moreover, the following holds:
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(1) ω1i = 0 for some i = 2, · · · , n and each ω1i is of the form

(5.1) ω1i =

n∑
i=2

eikxk + ei, for 2 ≤ i ≤ n,

where eij = −eji, for 2 ≤ i, j ≤ n, eij and ei are constants.
(2) η is of the form

(5.2) η =

⎛
⎝ n∑

j=2

ω2
1j + C1

⎞
⎠x21 + β(x2, · · · , xn)x1 + φ(x2, · · · , xn),

where C1 ≥ 1 is a constant and β(x2, · · · , xn) and φ(x2, · · · , xn) are C∞

functions.
(3) There exists a constant C2 such that

(5.3)

n∑
j=1

ω1jωji +
1

2

∂2η

∂xi∂x1
= C2ω1i, for2 ≤ i ≤ n,

(4) There exists constants C0 and C3 such that

(5.4) − 1

2

n∑
i,j=1

∂ω1j

∂xi
ωji+

1

2

n∑
j=1

ω1j
∂η

∂xj
= C0x1 +

C2

2

∂η

∂x1
+ C3.

In particular, f1, · · · , fn have to satisfy the following equation:
(5.5)

∂fi
∂xi

+

n∑
j=1

f2
j =

⎛
⎝ n∑

j=2

ω2
1j + C1 − 1

⎞
⎠x21 + β(x2, · · · , xn)x1 + φ(x2, · · · , xn).

The following result in [46] considered by Shi and Yau, is the most recent
result about FDEAs with non-maximal rank.

Theorem 5.2. (Shi-Yau [46]). Let E be the finite dimensional estimation
algebra of (2.1) with state dimension 3 and rank 2. Then the Ω-matrix has
linear structure, i.e., all the entries in the Ω-matrix are degree one polyno-
mials.

6. Explicit construction of nonlinear filters for NLF problem

The objective of constructing a robust finite-dimensional filter to system
(2.1) is equivalent to finding a smooth manifold,M, and complete C∞ vector
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fields, μi, on M and C∞ functions, ν, on M×R×Rn and wi’s on Rm, such
that ξ(t, x) can be represented in the form:

(6.1)

⎧⎪⎪⎨
⎪⎪⎩

dz(t)

dt
=

k∑
i=1

μi(z(t))wi(y(t)), z(0) ∈ M

ξ(t, x) = ν(z(t), t, x).

Yau in [64] has constructed a class of finite-dimensional filter for NLF
problem by utilization of estimation algebra techniques. It is referred as
Yau filter in [18], which includes the Kalman-Bucy filter and Beneš filter as
special cases. Yau also gave a necessary and sufficient condition to guarantee
the estimation algebra to be finite-dimensional. In this section, we will use
the structural results of previous sections to derive finite-dimensional filters
by Wei-Norman approach.

Definition 6.1. (Wei-Norman [50], Yau [64]). Suppose X is a differential
operator, ρ0 is the domain of X, r is the continuous function, and R(t) =∫ t
0 r(s)ds. We denote by eR(t)Xρ0 the solution at time T of the following
equation

(6.2)
dρ(t, x)

dt
= r(t)Xρ(t, x), ρ(0, x) = ρ0(x)

if it is well defined.

For 1 ≤ i ≤ n, etDiρ0(x) can be expressed in the form:

(6.3) etDiρ0(x) = ρ0(x1, · · · , xi + t, · · · , xn)e−
∫ t

0
fi(x1,··· ,xi+t−s,··· ,xn)ds.

In particular, the following theorem from [64] shows how to construct finite-
dimensional filters from FDEAs with maximal rank.

Theorem 6.2. (Yau [64]). Let E be an estimation algebra of (2.1) satisfying
∂fj
∂xi

− ∂fi
∂xj

= cij, where the cij’s are constants for all 1 ≤ i, j ≤ n. Suppose

that E is a finite dimensional estimation algebra of maximal rank. Then E

has a basis of the form 1, x1, · · · , xn, D1, · · · , Dn and L0, and
∑n

i=1

∂fi
∂xi

+∑n
i=1 f

2
i +

∑m
k=1 h

2
k is a degree two polynomial

∑n
i,j=1 aijxixj+

∑n
i=1 bixi+d,

where Di and L0 are defines in (2.3) and (2.4). The robust DMZ equation
(2.10) has a solution for all t ≥ 0 of the form

u(t, x) = eT (t)ern(t)xn · · · er1(t)x1esn(t)Dn · · · es1(t)D1etL0σ0,
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where T (t), r1(t), · · · , rn(t), s1(t), · · · , sn(t) satisfy the following ODEs:

dsi
dt

(t) = ri(t) +

n∑
j=1

sj(t)cji +

m∑
k=1

hkiyk(t), 1 ≤ i ≤ n;

drj
dt

(t) =
1

2

n∑
i=1

si(t)(aij + aji), 1 ≤ j ≤ n;

dT

dt
=

1

2

n∑
i=1

r2i (t)−
1

2

n∑
i=1

s2i (t)

⎛
⎝ n∑

j=1

c2ij − aij

⎞
⎠+

n∑
i=1

ri(t)−
n∑

j=2

j∑
i=1

sj(t)cij

+
∑

1≤i<k≤n

si(t)sk(t)

⎡
⎣ n∑
j=1

cijcjk +
1

2
(aik + aki)

⎤
⎦+

1

2

n∑
i=1

si(t)bi

+
1

2

m∑
i,j=1

yi(t)yj(t)

n∑
k=1

hikhjk −
n∑

i,j=1

si(t)rj(t)cij ,

where hk(x) =
∑n

j=1 hkjxj + ek, 1 ≤ k ≤ m, hkj and ek are constants. In

particular, a universal finite-dimensional filter exists.

The characterization of the condition
∂fj
∂xi

− ∂fi
∂xj

= cij , where cij are

constants for all 1 ≤ i, j ≤ n, is also given in [64].

Theorem 6.3. (Yau [64]).
∂fj
∂xi

− ∂fi
∂xj

= cij, where cij are constants for all

1 ≤ i, j ≤ n, if and only if

(f1, · · · , fn) = (l1, · · · , ln) +
(

∂ψ

∂x1
, · · · , ∂ψ

∂xn

)
,

where l1, · · · , ln are polynomials of degree one and ψ is a C∞ function.

7. Conclusion

In this survey, we can know that the Lie algebraic method provides an impor-

tant research direction for NLF theory. By interpreting the DMZ equation

or its robust form as a partial differential equation with time varying param-

eters, one derives an approach to filtering based on Lie algebra as well as the

theory of linear differential operators. The research and construction of the
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finite-dimensional filter are turned into the study of the structure of the es-
timation algebra. In return, the theory of estimation algebra provides a sys-
tematic tool to deal with questions concerning the finite-dimensional filters.
It has led to a number of new results corresponding to finite-dimensional fil-
ters and to a deeper understanding of the structure of NLF in general. More
importantly, the finite-dimensionality of the estimation algebra guarantees
the explicit construction of the finite-dimensional recursive filter. In terms
of the significant application of the Lie algebra method to a variety of NLF
problems, it is urge to figure out the structure of the FDEAs. Therefore, in
this survey, we go through the results of complete classification of FDEAs
and how to use Lie algebra method to the NLF problems by Wei-Norman
approach, and further give out the recent results on the structure of the
FDEAs with non-maximal rank.
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