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Analytical modeling and deep learning approaches
to estimating RNA SHAPE reactivity from 3D

structure
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The selective 2’-hydroxyl acylation analyzed by primer extension

(SHAPE) chemical probing method provides information about

RNA structure and dynamics at single nucleotide resolution. To fa-

cilitate understanding of the relationship between nucleotide flex-

ibility, SHAPE reactivity, and RNA 3D structure, we developed

an analytical 3D Structure-SHAPE Relationship (3DSSR) method

and a predictive convolutional neural network (CNN) model that

predict the SHAPE reactivity from RNA 3D structures. Starting

from an RNA 3D structure, the analytical model combines key fac-

tors into a composite function to predict conformational flexibility

of each nucleotide and calculate the correlation between the pre-

diction and experimental SHAPE reactivity. Here, we apply the

3DSSR and the deep learning SHAPE model to SHAPE data-

assisted RNA 3D structure prediction. We show that the models

provide an effective sieve to exclude 3D structures that are incom-

patible with experimental SHAPE data. Additionally, we compare

the 3DSSR analytical model with the CNN deep learning model

that recognizes structural and physical/chemical patterns to pre-

dict SHAPE data from RNA 3D structure. Depending on the train-

ing data set, the analytical model outperforms the deep learning

approach for most test cases, indicating that insufficient data is

available to adequately train the CNN at this juncture. For other

test cases, the deep learning approach provides better predictions

than the analytical model, suggesting that the deep learning ap-

proach may become increasingly promising as more SHAPE data

becomes available.
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1. Introduction

Galvanized by recent progress in RNA chemical probing technology, re-

searchers developed efficient, data-driven experimental modeling approaches

that place effective constraints on RNA structure to complement established

template and physics-based methods [1, 2, 3, 4, 5]. Selective 2’-hydroxyl acy-

lation analyzed by primer extension (SHAPE) provides significant insights

into local nucleotide structure and dynamics in RNA [6, 7]. SHAPE reagents

are small ligands—such as 1-methyl-7-nitroisatoic anhydride (1M7) [8]—

that covalently bind to the 2’-hydroxyl group of a nucleotide (see Fig. 1) [9].

Previous studies [10, 11, 12] suggest that unconstrained nucleotides have a

greater ability to sample more conformations and to adopt SHAPE-reactive

postures, which causes them to have higher SHAPE reactivity. In contrast,

nucleotides that are constrained by base-pairing and stacking interactions

have a lower propensity to sample a variety of poses and are much less

reactive. By quantitatively measuring local nucleotide dynamics, SHAPE

is an effective tool for probing whether a nucleotide is constrained by in-

teractions with other nucleotides (in a helix or structured loop) or is lo-

cated in a flexible loop/junction, without many interactions. In secondary

structure modeling, use of SHAPE data substantially improves accuracy

and efficiency [13, 14, 15, 16, 17], where SHAPE reactivity is used to pro-

vide additional structural constraints for free-energy based predictions [18].

Moreover, when used as the basis for advanced experimental approaches,

such as differential SHAPE reactivity, mutate-and-map, and time-resolved

SHAPE chemistry, SHAPE probing provides helpful information for the in

vitro and in vivo determination of non-canonical tertiary interactions and

RNA kinetics [19, 20, 21, 22, 23, 24, 25].

Machine learning is a general method of data analysis that automates

analytical model building and is based on the idea that models can learn

from data, extract patterns, and make decisions with minimal human inter-

vention. Complex problems without clear underlying mathematical struc-

tures benefit from machine learning because manually constructed analyti-

cal models cannot easily capture all of the underlying mechanics. The ap-

peal of machine learning methods is the ability to derive predictive mod-

els without a need for strong assumptions about underlying mechanisms,

which are frequently unknown or insufficiently defined in computational bi-

ology. Machine learning has exhibited unprecedented performance in pro-

tein structure prediction [26, 27, 28, 29, 30, 31], protein-ligand binding

[32, 33, 34, 35], regulatory genomics, and cellular imaging [36, 37]. Deep
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Figure 1: The SHAPE reaction. The RNA nucleotide 2’-OH group attacks
the reactive carbon of 1M7, releases CO2, and forms a covalent bond (purple)
with the SHAPE reagent.

learning is a subset of machine learning based on artificial neural networks,
and “deep” refers to the presence of multiple hidden layers. The convolu-
tional neural network (CNN) is one of the deep learning network models
and has gained significant attention due to its success in computer visual
recognition.

Previously, we developed an analytical function to quantitatively pre-
dict the SHAPE profile from individual RNA 3D structures [38]. We showed
how our function can be applied to exclude SHAPE-incompatible structures.
To establish the relationship between SHAPE reactivity and nucleotide dy-
namics, we generated conformational ensembles with MD simulations to
measure the correlation between SHAPE reactivity and the conformational
propensity of each nucleotide. Then, by combining key factors that account
for physical properties implicated in the SHAPE mechanism—the nucleotide
interaction strength, SHAPE ligand accessibility, and base-pairing pattern—
we developed the analytical 3D Structure-SHAPE Relationship (3DSSR)
function, which characterizes the local nucleotide flexibility and predicts
SHAPE reactivity based on information about the nucleotide posture and
local energetics. To test the discriminating ability of our tool, we used the
3DSSR function to show how SHAPE-incompatible decoy structures may
be excluded based on the low correlation between their predicted SHAPE
profile and experimental SHAPE data.
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Table 1: RNA structures used for validation. The Protein Database ID
(PDBID), length of the RNA in nucleotides (nt), type of RNA, and organ-
ism of origin are displayed. The SHAPE profiles for these RNA molecules
are from the published experimental data [10, 16, 17, 41, 42]

PDBID Length (nt) Type of RNA Organism

2L8H 29 TAR RNA HIV-1
1AUD 30 U1A protein binding site RNA H. sapiens
2L1V 36 M-box riboswitch B. subtilis
2K95∗ 48 Telomerase pseudoknot H. sapiens
1Y26 71 Adenine riboswitch V. vulnificus
1VTQ 75 PreQ1 riboswitch aptamer B. subtilis
1EHZ 76 Aspartate tRNA Yeast
1P5O∗ 77 IRES Domain II Hepatitis C
2GDI 79 TPP riboswitch E. coli
3IWN 93 Cyclic-di-GMP riboswitch V. cholera
4KQY 117 SAM-I riboswitch B. subtilis
1C2X∗ 120 5S rRNA E. coli
3IVK∗ 128 Catalytic core of RNA polymerase ribozyme E. coli
1NBS 154 Specificity domain of Ribonuclease P RNA B. subtilis
3PDR 154 M-box riboswitch B. subtilis
1GID∗ 158 Group 1 Ribozyme Synthetic
3P49∗ 169 Glycine Riboswitch H. sapiens
3DIG 174 Lysine riboswitch T. maritima
4UE5∗ 299 SRP RNA C. lupus
3G78∗ 421 Group II intron O. iheyensis

∗ Denotes cases used to parameterize the CNN model, not the 3DSSR model.

Here, we revisit the 3DSSR model and develop a novel convolutional
neural network (CNN) model, which uses experimental structural data to
predict the SHAPE reactivity for any given nucleotide. First, we briefly
describe the formulation of the 3DSSR model on a molecule that was not
originally used to test or train either the 3DSSR or CNN model. Then, we
describe the methods used to obtain the CNN model. Finally, we compare
the ability of the two models to make useful predictions of SHAPE reactivity
on RNA molecules used in training and a molecule neither algorithm has
seen, emphasizing that analytical formulations often provide more insight
than pattern recognition methods when limited data is available.

2. Methods

2.1. Finding structures corresponding to SHAPE data

In order to find RNA structures that correspond to our SHAPE sequences,
we used the sequence searching interface equipped with NCBI’s BLAST
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Figure 2: The 2D, 3D, and SHAPE reactivity of RNA-Puzzle 8 (PDBID:
4L81). A) The 2D structure [44] shows the four-way junction (4WJ), base-
pairs, and long range interactions. B) The 3D structure shows the 4WJ
and an example of a base stacking interaction. C) The experimental and
predicted SHAPE profiles for the crystallized 4L81 structure show good
agreement (Pearson correlation = 0.57).

(Basic Local Alignment Search Tool) program [39] provided by RCSB pro-
tein databank [40] to align the sequences. In the 3DSSR (CNN20) model 12
(20) RNA structures with an average length of ∼92 (120) nucleotides that
have SHAPE reactivity data were used (see Table 1). For comparison, we
also parameterized the CNN model using the same 12 structures as 3DSSR
(CNN12). SHAPE reactivity data came from databases for sharing nucleic
acid chemical probing data, the RNA mapping database (RMDB) [41] and
the SNRNASM database [42]. To have comparable SHAPE reactivity val-
ues between different RNA structures, all of the negative values of SHAPE
reactivity data are set to zero, in accordance with previous work [43]. Fur-
thermore, the SHAPE profiles are scaled by the maximum reactivity value
of each respective RNA structure, which confines SHAPE reactivity data to
range from 0 to 1.
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2.2. Reviewing 3DSSR methods and conclusions

Previously, we used simulations to show that SHAPE data corresponds with
nucleotide flexibility, parameterize the 3DSSR model, and generate decoys
to illustrate how our model can be used to exclude SHAPE-incompatible
structures [38]. The ability of a nucleotide to react with SHAPE depends
on the propensity of a nucleotide to sample SHAPE-reactive postures and
the ability of the SHAPE ligand to access the reactive site. Capturing these
concepts, we proposed the 3DSSR function

(1) P (n) = BP (n) · SAS(n) + S0

|II(n)− 1.0|

to estimate the nucleotide stability and predict the SHAPE reactivity P (n)
for a nucleotide n. The base-pairing factor BP (n) accounts for the 2D struc-
ture, which is characterized by the base-pairing pattern: a nucleotide n in a
helix region is assigned BP (n) = 0.01 and a nucleotide in a loop or junction
region is assigned BP (n) = 1.0. A 2D structure can always be extracted from
a 3D structure (for example, using the RNApdbee 2.0 webserver [45]), and
helix nucleotides are normally SHAPE-inert. The SHAPE ligand accessible
2’-OH surface area SAS(n) describes the necessary requirement of a SHAPE
ligand to access the nucleotide for a reaction to occur. If a nucleotide 2’-OH
is buried inside the RNA structure, SHAPE reagents cannot react, which
reduces the SHAPE reactivity. The unbound SHAPE ligand has an effec-
tive radius between 2.0 and 2.5 Å, and our results indicate that the 3DSSR
function is not sensitive to different probe sizes within this range. The ac-
cessible surface of 2’-OH is calculated using VMD [46]. S0 is a constant,
accounting for the ability of a nucleotide to become accessible during ex-
perimental SHAPE probing. II(n) is the interaction intensity for nucleotide
n, which accounts for tertiary structure interactions. Through fitting, in-
formation from base-pairing and base-stacking interactions are combined to
calculate the II(n), a quasi-energy score for each nucleotide.

In the present study, we focus on a SHAPE data-assisted approach to
RNA 3D structure prediction. For a given RNA sequence, we can gener-
ate an ensemble of possible conformations using, for example, the IsRNA
coarse grained simulation model [48]. We then score each conformation by
the correlation (similarity) between the (3DSSR-predicted) SHAPE profile
of the conformation and the experimentally determined SHAPE data for
the RNA molecule. Although due to the low-resolution energy model, the
3DSSR model might not be able to identify the native, crystal structure
from SHAPE data alone, as shown below, the model can assist structure
prediction by successfully excluding SHAPE-incompatible structures.
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2.3. Applying the model to the SAM-I/IV riboswitch aptamer

For illustration, here we apply the 3DSSR model to the SAM-I/IV riboswitch
aptamer (PDBID: 4L81) that was used in round 8 of RNA-Puzzles [49] (see
Fig. 2), a community-wide, CASP-like blind test for RNA 3D structure
prediction. This structure has not been previously used to train or test the
3DSSR model, and the structures submitted in the RNA-Puzzle competition
by different labs give us objective decoys to show the ability of the 3DSSR
model to exclude structures that are incompatible with SHAPE.

First, we access the submitted structures and assessment results from
the RNA-Puzzles database (see Fig. 3A for a structure submitted to the
competition). Next, we extract the 2D structures from the submitted 3D
structures using the RNApdbee 2.0 webserver [45] (Fig. 3B). After that, we
use RNAview software to identify the base pair types from the 3D struc-
tures [50] (Fig. 3C). Additionally, we directly calculate the stacking interac-
tion information from the 3D structures: the angles and distances between
different RNA bases (Fig. 3D). Then, we calculate the solvent accessible
surface of each nucleotide 2’-OH in the 3D structures with VMD [46] (see
Fig. 3E for a visual representation). Finally, we use the 3DSSR function to
combine all of the structural information and predict the SHAPE reactiv-
ity for each nucleotide (Fig. 3F). To evaluate the SHAPE-compatibility,
we also calculate the Pearson correlation between the experimental and
3DSSR-predicted SHAPE profiles. Comparison of the 3DSSR-predicted and
experimental SHAPE profiles on the native, crystal structure can be seen in
Fig. 2C. Provided with candidate 3D structures and experimental SHAPE
data, we can exclude SHAPE-incompatible structures on the basis of their
3DSSR-predicted SHAPE profile.

The sensitivity of the model to structures with high RMSD and lower
Interaction Network Fidelity (INF; a quantity to measure the similarity in
interaction pattern) [47] can be seen in Fig. 5, where we apply the 3DSSR
model on all of the submitted structures for RNA-Puzzle 8 to show the
ability of the 3DSSR function to exclude SHAPE-incompatible structures.
Contributing to the objectivity of the test, the submitted 3D structures and
assessment results (values of RMSD and INF for each structure) for RNA-
Puzzle 8 were all taken from the RNA-Puzzles database. The results suggest
that many of the 43 submitted structures could be discarded because they
are incompatible with SHAPE. For example, the native crystal structure
is ranked in the top ten, and we could comfortably discard the bottom 20
structures, which all have a correlation < 0.45. Only one structure ranked
in the bottom 20 by the 3DSSR model has RMSD (INF) < (>) 11.2 (0.80),
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Figure 3: 3DSSR workflow on an RNA-Puzzle 8 decoy. A) A candidate 3D
structure decoy is processed by RNApdbee 2.0 [45], RNAview [50], in-house
software, and VMD [46] to B) produce a 2D structure, C) identify base
pair types, D) extract stacking angle/distance information, and E) calculate
the solvent accessible surface of the 2’-OH, respectively. The information
extracted from the structure is input into the 3DSSR function to produce
F) the predicted SHAPE profile for each nucleotide.

and no structure in the bottom 20 has favorable assessment values for both
RMSD and INF. As can be seen in Fig. 5A, the combination of assessment
results indicate that a cutoff of 0.45 is quite conservative. We could discard
the bottom 65 percent of structures (the bottom 28), which would keep
all of the structures with favorable assessment results for both RMSD and
INF. For RNA-Puzzle 8, discarding more than the bottom 70 percent would
cause us to discard the native structure. However, the quality of the SHAPE
data, the size of the RNA, and the quality of candidate structures all affect
the number of structures that may be comfortably excluded on the basis
of SHAPE data using 3DSSR. These factors should be known so that a
reasonable sieving scheme can be found.
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2.4. Using a CNN to predict SHAPE reactivity from structure

2.4.1. Describing the nucleotide environment In agreement with
SHAPE experiments, our CNN method probes RNA structure at single nu-
cleotide resolution. For each nucleotide, the surrounding environment refers
to neighboring atoms within a cubic volume of space around the nucleotide.
Since we define the space surrounding a nucleotide as the space confined in
a cube, the environment captured by this cube is not rotationally invariant.
To remove the effects caused by the different choices of the cube orientation,
we set a local Cartesian coordinate system for every given nucleotide. The
coordinate system of a nucleotide is determined by the C1′, C4′, and O4′

atoms. Specifically, the origin of the local coordinate system is located at
the atom O4′, and the local x, y, and z axes are defined as follows. First,
we denote the rC1′ , rC4′ , and rO4′ as the coordinates of the selected atoms,
C1′, C4′, and O4′. Second, we calculate three vectors vx, vy, and vz with
respect to the local origin as

(2)

vx = rC4′ − rO4′

vy = rC1′ − rO4′

vz = vx × vy

where vx represents the vector from atom O4′ to atom C4′, vy represents
the vector from atom O4′ to atom C1′ and vz is just the cross product of
vx and vy. Then, the x, y, and z axes are set according to the following
Eq. (3),

(3)

x =
vx

‖vx‖
z =

vz

‖vz‖
y = z× x

The surrounding environment of each nucleotide is captured through a
cube centered and oriented according to the local coordinate system. As
shown in Fig. 4, the length of the cube is 24 Å and the atoms contained in
the cube will be used to generate the image for CNN model.

2.4.2. Input: defining the 3D image as input into the CNN As we
described in the previous section, a 24 Å × 24 Å × 24 Å cube is used to
provide the surrounding environment of each nucleotide. The corresponding
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Figure 4: Extracting the 3D image of an RNA nucleotide. The magenta color
depicts the nucleotide under assessment and the surrounding environment
is confined within the cube with length 24 Å. The surrounding atoms are
drawn in cyan, and the cube boundaries are drawn with yellow solid lines.

image associated with this nucleotide is contained within this cube. As a
normal 2D digital image has three color channels (RGB) with each channel
represented by a 2D pixel matrix, the 3D image that we used to capture the
surrounding environment is also composed of multiple channels. However,
our 3D images do not simply use RGB color channels: the channels we
selected represent certain physical or chemical features. In our CNN model,
we defined 5 channels, which are fully described in Table 2.

Table 2: Feature channels used for 3D images

Feature Description
Hydrophobic Aliphatic or aromatic carbon atoms
Aromatic Aromatic carbon atoms
Positive ionizable Gasteiger positive charge
Negative ionizable Gasteiger negative charge
Excluded volume All atom types

Since we extract our 3D image from a cube, each channel of the 3D
image is represented by a 3D matrix, and each position in this 3D matrix
has a voxel (3D pixel) value. We set the length of our 3D image equal to
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the cube with an image resolution of 1 Å, so each voxel has a dimension
of 1 Å × 1 Å × 1 Å. A step function fills the voxels of each channel. For
example, the voxels of the excluded volume channel that are occupied by
RNA atoms are filled with 1, and the rest are filled with 0, according to
their Van der Waals radius. A similar procedure was used to generate other
channels.

2.4.3. Describing the CNN architecture Our CNN model takes the
multi-channel images as input, and outputs a predicted SHAPE reactiv-
ity for each image. The network is a basic ResNet [51] architecture with
only slight modifications and has 10 convolutional layers. The detailed ar-
chitecture is shown in Table 3. The first layer accepts the 3D image in a
convolutional layer and has 64 7× 7× 7 filters with a stride of 2. The next
layer has 4 residual blocks, with each block containing two convolutional
layers. Downsampling is directly performed in the first convolutional layer
and by the beginning convolutional layers of blocks 2-4. Finally, the network
ends with a global average pooling layer and a 512-way fully-connected layer
with a sigmoid activation function. Except the first layer, all of the convolu-
tional layers use 3 × 3 × 3 sized filters. Batch normalization [52] was applied
right after each convolutional layer and before ‘Rectified Linear Unit’ [53]
activation, following [52]. In our network, two hidden layers inserted resid-
ual shortcut connections for every block. The shortcut takes an identical
input from the previous block and maps this identity shortcut right be-
fore the activation of the second hidden layer within the block; the block
is same as the original ResNet block [51]. We initialize the weights as in
[51, 54] and train all residual nets from scratch. The only preprocessing
we used is the subtraction of a mean value from each image. This mean
value is calculated by averaging all the voxels of all images in the training
set.

For the network optimizer, we used Adam [55] with default parameters
for momentum scheduling (β1 = 0.99, β2 = 0.999) provided by PyTorch [56],
and a mini-batch size of 128 was used for training. The learning rate started
from 0.01 and was divided by 10 when the training accuracy plateaued,
and the models were trained for up to 100 epochs. For our loss function,
we calculated the mean square error (MSE) loss between predicted SHAPE
reactivities and experimental SHAPE reactivities as

(4) Loss =

N∑

n=1

(Pn −Gn)
2/N
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Table 3: Details of CNN Architectures. Each building block is shown with
two convolutional layers. Downsampling is performed in every convolutional
layer with a stride of 2

Layer name Output size Filter size Filter num

first layer conv1 12× 12× 12 7× 7× 7 64, stride 2
block1 conv2 12× 12× 12 3× 3× 3 64, stride 1
block1 conv3 12× 12× 12 3× 3× 3 64, stride 1
block2 conv4 6× 6× 6 3× 3× 3 128, stride 2
block2 conv5 6× 6× 6 3× 3× 3 128, stride 1
block3 conv6 3× 3× 3 3× 3× 3 256, stride 2
block3 conv7 3× 3× 3 3× 3× 3 256, stride 1
block4 conv8 2× 2× 2 3× 3× 3 512, stride 2
block4 conv9 2× 2× 2 3× 3× 3 512, stride 1
last layer fc 1× 1× 1 average pool, 512-d fc, sigmoid

where N is the number of images and Pn(Gn) is the predicted(experimental)
SHAPE reactivity for image n.

2.4.4. Output: predicting SHAPE reactivity with a CNN For any
given 3D image that describes the surrounding environment of the consid-
ered nucleotide, our CNN model will output a real number characterizing
the predicted SHAPE reactivity. This output value is confined within range
from 0 to 1.

2.4.5. Implementation and cross-validating Based on the SHAPE
data for 20 RNAs (totally 2455 nucleotides) collected by different exper-
imental labs, we have 2455 SHAPE data along with the corresponding
high-resolution atomic coordinates for all the nucleotides and their perti-
nent physical and chemical parameters. All the data together serve as the
input for the CNN. To test and validate the deep learning approach, we
used the leave-one-out cross-validation method to validate the performance
of our model. Each time, our model was trained on 19 RNA cases with cor-
responding SHAPE reactivity data and tested on 1 RNA case. This process
was carried out 20 times, leaving out each RNA in turn. The overall perfor-
mance is evaluated by averaging the Pearson correlation coefficients of the 20
test cases over the leave-one-out process. We also carried out this procedure
for the 12 cases used to parameterize the 3DSSR function. The results of the
cross-validation process are summarized in Table 4. The Pearson correlation
coefficient was used to measure the similarity between the predicted SHAPE
profile and the experimentally derived SHAPE profile. For each training and
validation set in the cross-validation, we chose the model that has the best
performance on the validation set to avoid overfitting.
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Figure 5: Sieving SHAPE-incompatible structures from RNA-Puzzle 8 sub-
missions. A) The 3D representation shows the trend of the assessment results
(RMSD and INF) with the correlation between 3DSSR-predicted SHAPE
profiles and experimental SHAPE (3DSSR Correlation). Warmer colors indi-
cate higher correlation, higher INF, and lower RMSD. The INF and RMSD
values were taken from the RNA-Puzzles database. 2D plots of the B) INF
and C) RMSD with respect to the 3DSSR and CNN20 correlations are also
shown, along with their respective Spearman rank coefficients (SR).

2.5. Comparing 3DSSR to CNN models

As can be seen in Table 4, the 3DSSR model generally outperforms the
CNN model, regardless of whether 20 or 12 structures are used to train the
CNN. In contrast, the CNN model performs substantially better on 3PDR,
which may indicate that information in the structure of 3PDR leading to its



312 Travis Hurst et al.

Table 4: Pearson correlations between the experimental SHAPE data and the
prediction algorithms: 3DSSR and the cross-validated CNN model trained
on 11(19) cases and tested on the one left out, denoted as CNN12 (CNN20)

PDB Length (nt) 3DSSR CNN20 CNN12
2L8H 29 0.96 0.85 0.87
1AUD 30 0.92 0.90 0.71
2L1V 36 0.83 0.81 0.79
1Y26 71 0.88 0.52 0.66
1VTQ 75 0.71 0.71 0.80
1EHZ 76 0.80 0.77 0.78
2GDI 79 0.89 0.81 0.66
3IWN 93 0.74 0.33 0.38
4KQY 117 0.75 0.58 0.64
1NBS 154 0.61 0.48 0.34
3PDR 154 0.61 0.81 0.83
3DIG 174 0.70 0.64 0.68
Average 92 0.78 0.68 0.68

SHAPE reactivity profile is contained in the other cases. Because 3PDR has
high performance in the CNN model in spite of its length, we may expect
improvements in other cases once the amount of training data is increased.
The relatively poor performance in other cases may indicate that factors
that contribute to SHAPE reactivity in those RNA are not adequately rep-
resented by the structures provided in the training set. In addition, the
small fluctuations captured in the 3DSSR model by using solvated, near-
native representations to fit the unknown parameters may help boost its
performance over the CNN.

However, the correlation alone does not show us the discerning ability of
the 3DSSR and CNN models on decoy structures. For that, we turn to the re-
sults on RNA-Puzzle 8, where the Spearman rank correlation coefficient (SR)
can tell us how well the models perform on ranking the structures in compar-
ison to objective assessments (RMSD and INF). For INF(RMSD), the SR
values were 0.57(−0.35) and −0.01(−0.13) for 3DSSR and CNN20, respec-
tively, which shows that 3DSSR markedly outperforms the CNN20 model
on both ranking assessments and can be used to exclude more SHAPE-
incompatible structures (see Fig. 5BC).

3. Conclusion

Efficient chemical probing methods, like SHAPE, provide a wealth of infor-
mation about RNA structure and dynamics. By formulating an analytical
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expression that captures the key factors determining SHAPE reactivity, we

can predict SHAPE reactivity from individual RNA structures. After com-

puting predictive SHAPE profiles for a set of candidate RNA 3D structures,

we can sieve the structures based on the correlation between the predicted

and experimental reactivities, and SHAPE-incompatible structures can be

excluded. This general method of combining efficient experimental data with

computational sieving may be transferred to other efficient probing meth-

ods, enabling more confident computational determination of RNA tertiary

structure at lower cost.

Machine learning techniques are incapable of creating new concepts and

require the training data to be a good representative of the test data. To

put it simply, a dog classification model trained with only dog images can

not be used to classify cats; the model cannot be generalized to predict

information it has never seen during training. Because we only have 20

RNA structures with SHAPE reactivity profiles in our data set, there is a

good chance that nucleotides in a test RNA are not well represented by the

other 19 structures, which results in worse performance. Additionally, using

features that are important for determining SHAPE reactivity of a given

nucleotide can greatly facilitate the learning process. However, finding the

right combination of image channel features is not easy since the underlying

mechanism that governs SHAPE reactivity is still unclear.

Although the mechanism that governs SHAPE reactivity is not fully

understood, our general understanding is enough to formulate a relatively

simple analytical function—the 3DSSR model—to predict reactivity based

on the sensitivity of SHAPE to local nucleotide dynamics and the acces-

sibility of SHAPE-reactive nucleotides. Because there is not enough data

to apply a trained, pattern recognizing CNN to new structures, our manu-

ally constructed, analytical 3DSSR function is better at ranking structures

on the basis of experimental SHAPE data. Although machine learning and

advanced data-processing methods are leading to rapid advances on many

problems with ample data and unclear underlying mathematical structure,

physics-based models can perform better in systems where limited data is

available and underlying mechanisms are known well enough to mathemat-

ically express the mechanics, even if the mechanisms are incompletely un-

derstood. As more data becomes available, we expect performance of the

CNN model to improve. In the meantime, we recommend using expressions

of the underlying mechanics to predict SHAPE reactivity for guiding RNA

structure prediction.



314 Travis Hurst et al.

References

[1] C. Cheng, W. Kladwang, J. Yesselman and R. Das, RNA structure
interference through chemical mapping after accidental or intentional
mutations. Proc. Natl. Acad. Sci. USA, 114(37), 9876–9881, 2017.

[2] S. Yang, M. Parisien, F. Major and B. Roux, RNA structure deter-
mination using SAXS data. J. Phys. Chem. B, 114(31):10039–10048,
2010.

[3] M. Parisien and F. Major, Determining RNA three-dimensional struc-
tures using low-resolution data. J. Struct. Biol., 179(3):252–260, 2012.

[4] F. Ding, C. A. Lavender, K. M. Weeks and N. V. Dokholyan, Three-
dimensional RNA structure refinement by hydroxyl radical probing. Nat.
Methods, 9(6):603–608, 2012.

[5] Z. Xia, D. R. Bell, Y. Shi and P. Ren, RNA 3D structure prediction by
using a coarse-grained model and experimental data. J. Phys. Chem. B,
117(11):3135–3144, 2013.

[6] E. J. Merino, K. A. Wilkinson, J. L. Coughlan and K. M. Weeks, RNA
structure analysis at single nucleotide resolution by selective 2′-hydroxyl
acylation and primer extension. J. Am. Chem. Soc., 127(12):4223–4231,
2005.

[7] K. A. Wilkinson, E. J. Merino and K. M. Weeks, Selective 2′-
hydroxyl acylation analyzed by primer extension (SHAPE): quantitative
RNA structure analysis at single nucleotide resolution. Nat. Protoc.,
1(3):1610–1616, 2006.

[8] S. A. Mortimer and K. M. Weeks, A fast-acting reagent for accurate
analysis of RNA secondary and tertiary structure by SHAPE chemistry.
J. Am. Chem. Soc., 129(14):4144–4145, 2007.

[9] B. Lee, R. Flynn, A. Kadina, J. Guo, E. Kool and H. Chang, Compari-
son of SHAPE reagents for mapping RNA structures inside living cells.
RNA, 23(2):169–174, 2017.

[10] C. M. Gherghe, Z. Shajani, K. A. Wilkinson, G. Varani and K. M.
Weeks, Strong correlation between SHAPE chemistry and the gen-
eralized NMR order parameter (S2) in RNA. J. Am. Chem. Soc.,
130(37):12244–12245, 2008.

[11] K. M. Weeks, Advances in RNA structure analysis by chemical probing.
Curr. Opin. Struct. Biol., 20(3):295–304, 2010.



Predicting SHAPE reactivity 315

[12] J. L. McGinnis, J. A. Dunkle, J. H. Cate and K. M. Weeks, The mech-
anisms of RNA SHAPE chemistry. J. Am. Chem. Soc., 134(15):6617–
6624, 2012.

[13] K. E. Deigan, T. W. Li, D. H. Mathews and K. M. Weeks, Accurate
SHAPE-directed RNA structure determination. Proc. Natl. Acad. Sci.
USA, 106(1):97–102, 2009.

[14] J. T. Low and K. M. Weeks, SHAPE-directed RNA secondary structure
prediction. Methods, 52(2):150–158, 2010.

[15] W. Kladwang, C. C. VanLang, P. Cordero and R. Das, Understanding
the errors of SHAPE-directed RNA structure modeling. Biochemistry,
50(37):8049–8056, 2011.

[16] C. E. Hajdin, S. Bellaousov, W. Huggins, C. W. Leonard, D. H. Math-
ews and K. M. Weeks, Accurate SHAPE-directed RNA secondary struc-
ture modeling, including pseudoknots. Proc. Natl. Acad. Sci. USA,
110(14):5498–5503, 2013.

[17] C. W. Leonard, C. E. Hajdin, F. Karabiber, D. H. Mathews, O. V. Fa-
vorov, N. V. Dokholyan and K. M. Weeks, Principles for understanding
the accuracy of SHAPE-directed RNA structure modeling. Biochemistry,
52(4):588–595, 2013.

[18] D. H. Turner and D. H. Mathews, NNDB: the nearest neighbor parame-
ter database for predicting stability of nucleic acid secondary structure.
Nucleic Acids Res., 38(suppl 1):D280–D282, 2010.

[19] S. A. Mortimer and K. M. Weeks, Time-resolved RNA SHAPE chem-
istry: quantitative RNA structure analysis in one-second snapshots and
at single-nucleotide resolution. Nat. Protoc., 4(10):1413–1421, 2009.

[20] W. Kladwang, C. C. VanLang, P. Cordero and R. Das, A two-
dimensional mutate-and-map strategy for non-coding RNA structure.
Nat. Chem., 3(12):954–962, 2011.

[21] K. A. Steen, G. M. Rice and K. M. Weeks, Fingerprinting noncanonical
and tertiary RNA structures by differential SHAPE reactivity. J. Am.
Chem. Soc., 134(32):13160–13163, 2012.

[22] M. Smola, T. Christy, K. Inoue, C. Nicholson, M. Friedersdorf, J. Keene,
D. Lee, J. Calabrese and K. M. Weeks, SHAPE reveals transcript-
wide interactions, complex structural domains, and protein interactions
across the Xist lncRNA in living cells. Proc. Natl. Acad. Sci. USA,
113(37):10322–10327, 2016.



316 Travis Hurst et al.

[23] K. Watters, A. Yu, E. Strobel, A. Settle and J. Lucks, Characterizing

RNA structures in vitro and in vivo with selective 2’-hydroxyl acyla-

tion analyzed by primer extension sequencing (SHAPE-Seq). Methods,

103:34–48, 2016.

[24] R. Diaz-Toledano, G. Lozano and E. Martinez-Salas, In-cell SHAPE un-

covers dynamic interactions between the untranslated regions of the foot-

and-mouth disease virus RNA. Nucleic Acids Res., 45(3):1416–1432,

2017.

[25] M. Zubradt, P. Gupta, S. Persad, A. Lambowitz, J. Weissman and

S. Rouskin, DMS-MaPseq for genome-wide or targeted RNA structure

probing in vivo. Nat. Meth., 14(1):75–82, 2017.

[26] R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. F.G. Green, C. Qin,

A. Zidek, A. Nelson, A. Bridgland, H. Penedones, S. Petersen, K. Si-

monyan, S. Crossan, D. T. Jones, D. Silver, K. Kavukcuoglu, D. Hass-

abis and A. W. Senior, De novo structure prediction with deep-learning

based scoring. Annu. Rev. Biochem., 77:363–382, 2018.

[27] M. Spencer, J. Eickholt and J. Cheng, A deep learning network approach

to ab initio protein secondary structure prediction. IEEE/ACM Trans.

Comput. Biol. Bioinform., 12(1):103–112, 2015.

[28] R. Heffernan, K. Paliwal, J. Lyons, A. Dehzangi, A. Sharma, J. Wang,

A. Sattar, Y. Yang and Y. Zhou, Improving prediction of secondary

structure, local backbone angles, and solvent accessible surface area of

proteins by iterative deep learning. Sci. Rep., 5:11476, 2015.

[29] S. Wang, J. Peng, J. Ma and J. Xu, Protein secondary structure pre-

diction using deep convolutional neural fields. Sci. Rep., 6:18962, 2016.

[30] J. Zhou and O. G. Troyanskaya, Deep supervised and convolutional gen-

erative stochastic network for protein secondary structure prediction.

arXiv preprint arXiv:1403.1347, 2014.

[31] S. Wang, S. Sun, Z. Li, R. Zhang and J. Xu, Accurate de novo prediction

of protein contact map by ultra-deep learning model. PLoS Comput.

Biol., 13(1):e1005324, 2017.

[32] H. Li, K. S. Leung, M. H. Wong and P. J. Ballester, Improving AutoDock

Vina using random forest: the growing accuracy of binding affinity pre-

diction by the effective exploitation of larger data sets. Mol. Inform.,

34(2-3):115–126, 2015.



Predicting SHAPE reactivity 317

[33] Z. Cang and G. W. Wei, TopologyNet: Topology based deep convolutional

and multi-task neural networks for biomolecular property predictions.

PLoS Comput. Biol., 13(7):e1005690, 2017.
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