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An automatic particle picking method based on
Generative Adversarial Network
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Cryo-electron microscopy (cryo-EM) technology has greatly facili-
tated the development of biology and medicine. Particle picking is
a critical step in the processing of cryo-EM micrographs. However,
achieving fast particle picking remains a bottleneck because the
micrograph has a very low signal-to-noise ratio (below 0.1), large
image size (usually 4k × 4k), small particle sizes and large numbers
of particles. In this paper we propose a cGAN-based approach to
mark out particle regions. We propose a data synthesis method to
generate training samples thus there is no need to prepare particle
samples from original micrographs. This data synthesis method will
be very helpful when applying on different kinds of particle micro-
graphs. We use the mean squared loss to improve the cGAN effect.
In order to better demonstrate the performance of our method, we
tested on the public dataset EMPIAR. The results show that our
method can achieve fast and accurate automatic particle picking,
and the performance is better than other known methods.

1. Introduction

Cryo-electron microscopy (cryo-EM) technology along with single particle
analysis is the state-of-the-art in structural biology [1] for achieving near-
atomic resolution 3D reconstructions [3, 4, 2] with un-crystal biomolecule
samples. Achieving high-resolution structures requires a large number of
biomolecules (also called particles) projections taken from micrographs.

The main steps of cryo-EM micrograph processing can be roughly di-
vided into six steps, including CTF correction [5], particle picking, 2D clus-
tering and class averaging, initial structure calculation, 3D clustering, struc-
ture refinement and resolution determination [1]. Particle picking is a key
step to obtain plenty of orientations of the particles, which is critical for the
3D construction.

However, particle picking is a hard problem. In terms of the quality of
micrographs, to protect particles, low electron exposure is applied in ex-
periments which results in low signal-to-noise ratio (SNR). The SNR of
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a micrograph is lower than 0.1. Only noise information can be seen from

the histogram. From the perspective of electronic signal imaging, the high-

frequency signal reflects the details of the particle structure. In order to

recover high 3D resolution and sophisticated structure of biomolecules, low

defocus is applied to retain as much high frequency information as possible,

which causes the low frequency information to be lost more. The micro-

graphs acquired are with low contrast [1]. That means these micrographs

are less recognizable to the human eye. In terms of data volume, a micro-

graph is often with a high resolution of 4k × 4k which means there may

be hundreds of particles on a micrograph. More effective particle picking

methods are required to relieve the bottleneck of current methods.

Particle picking method has been widely studied in biology and computer

science. There are two main kinds of method: semi-automatic method and

fully automatic method.

Semi-automatic Particle Picking is based on template matching [6]. This

method needs to provide a small number of samples that have been selected

as templates. Those templates are manually picked from micrographs or

projections made from known 3D structures. For all candidate positions as

input, the output are regions with high cross correlation with templates.

Template matching based methods [9, 4, 7, 8] have been widely used in

most existing cryo-EM micrograph process software including EMAN [10],

RELION [11] and cryoSPARC [12]. These methods are often time consum-

ing.

Till now, fully automatic particle picking approach can be divided into

three categories.

The first kind of automatic particle picking enhances image informa-

tion, which makes it easier to distinguish the particle-like regions from non-

particle regions.

In the reference [13] a binary segmentation approach was proposed for

particle picking. Image enhancement and thresholding were applied to get a

binarized map. Then morphological segmentation methods are easy to apply

on these maps to get particle locations. The autocryopicker [14] is recently

proposed based on image enhancement, which contains a series of meth-

ods for image denoising, image enhancement, clustering, and morphology

operations.

These approaches use traditional image processing methods such as de-

noising and contrast enhancement followed by particle localization methods.

However, these methods can only be used on regular particle shapes such as

circulars and rectangles [14].
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The second kind of automatic particle picking regards particle picking as
a classification problem. The common approach is to train a classifier on a
labeled dataset, then sliding a window on the image to obtain a map where
each pixel value represents for whether it is a particle pixel.

APPLE picker [15] used a support vector machine (SVM) [16] as the
classifier to obtain a binarized score map. The SVM is trained each time
when performing on a new particle dataset, which means that the parameter
adjustment of SVM is required to get good results on a new dataset. The
Apple picker takes 11 seconds to process each micrograph on GPU according
to their article, which is not fast enough. The implementation on the CPU
takes 3 hours to complete the processing of 84 micrographs.

Convolutional Neural Network (CNN) [17] based methods include Deep-
Picker [18], DeepEM [19] and [20]. These methods need a lot of particle sam-
ples for the network training. For different shaped particles, suitable particle
datasets are needed to train the network [21].

The third kind of automatic particle picking uses regression method,
which can directly obtain a score map from the input image and no need for
sliding window. crYOLO [22] utilizes the first generation YOLO [23] net-
work to detect particles. crYOLO performed particle picking very fast and
attained better results compared to the original YOLO model when work-
ing with small objects as particles in those test datasets. But its regression
and classification approach will cause high localization error [24]. A Deep
regression based method [21] introduced a fully convolutional regression net-
work (FCRN) to predict the probability map of particle centers and then
classify those candidates to pick particles. Only results on EMPIAR-10017
dataset are shown, and the time cost and ability on other datasets are not
mentioned.

Table 1: Comparison of method limits

Method shape limited speed particles for training

semi-automatic method yes slow needed
the first kind of automatic method yes slow no need
the second kind of automatic method no fast needed
the third kind of automatic method no fast needed

our method no fast no need

In this paper, we propose a particle picking method which is fast and does
not need real particle samples for training or as templates. Our work belongs
to the image enhancement solution in fully automatic category. We propose
a pipeline where a Conditional Generative Adversarial Network (cGAN) [25]
is used to mark out particle regions. The cGAN model generate marks on
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Figure 1: Overall workflow. The inputs are original micrographs with
“.mrc” suffix. The first step, “Pre-processing”, converts these files to “png”
format and uses histogram equalization for contrast enhancement. The sec-
ond step, “Mark out particle regions using the cGAN Model,” will add black
markers on these png-format images to indicate locations of particles. The
final step uses several algorithms to recover coordinates from these markers-
added images.

particle regions. The pixel value of particle regions will be decreased. The
image can be easily divided into particle regions and non-particle regions ac-
cording to pixel values. We are the first to introduce data synthetic method
thus particle samples are not required for training the network. The ad-
vantage of using the synthetic data method is that even if the pre-trained
model is not applicable on a new type of particle, it is convenient to give a
sample that is roughly equivalent in number and size to the new particle,
regardless of the particle shape. Our method learned from synthetic images
and achieves good experiment results on different raw micrograph datasets.

2. Method

Our pipeline contains three main steps: pre-processing, mark out particle
regions with cGAN model and particle localization. The overall workflow is
shown as Figure 1. We will introduce these steps in each section.
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Figure 2: One original image and the corresponding one after pre-
processing. The contrast of the input micrograph image will be significantly
improved after pre-processing.

2.1. Step 1: pre-processing

A standard cryo-EM image is stored in the Mixed Raster Content (MRC)
format. We converted cryo-EM images in the MRC format into PNG format
using EMAN2 [25]. And a contrast adjustment step was used before the
PNG format image input into the GAN.

In the contrast adjustment step we used histogram equalization method.
Histogram equalization is a method in image processing of contrast adjust-
ment using the image’s histogram. This method usually increases the global
contrast of images, especially when the data is represented by close contrast
values. Through this adjustment, the intensities can be better distributed
on the histogram. In our case, the contrast of the original micrograph is very
low, and the pixel values of particle and non-particle regions are close, mak-
ing these regions difficult to distinguish. Using the histogram equalization
method will help improve the contrast of these micrographs. In practice,
the intensity values of the micrographs are adjusted to new values in a con-
densed smaller range by using the adapthist function provided by opencv,
which can also be found in cv2 python library. Figure 2 shows one original
image and the corresponding image after pre-processing.

2.2. Step 2: mark out particle regions with cGAN model

In order to increase the speed of particle picking, we consider not judging
each candidate region in the micrograph, but marking out particle regions
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Figure 3: Network training and particle picking. In network training
step we use pure noise images as background. For each noise image, black
markers and random shapes are added sharing the same randomly generated
coordinates. And thus synthesis the input and ground truth images for the
network training. In particle picking phase, original micrograph is resized
and contrast adjusted and then is input into the trained generator, the
output image will by divided to a binarized image through a threshold. An
erosion operation will be applied on the binarized image to cut off regions
that are too close. Finally we obtain a coordinate file by written out class
centers in the erosional image.

using cGAN network. And it’s easy to restore particle coordinates directly.
We improved a cGAN network based on pix2pix [26] and introduced mean
squared loss to achieve our design goals. We devised a method of data syn-
thesis so that it did not rely on real particle images during the network
training phase.

2.2.1. cGAN model Our method is based on cGAN, which consists of
two parts: generator G and discriminator D. The generator attempts to
generate an image from random latent noise z and conditional information y.
The discriminator determines whether the input image is a real image or
a fake sample (generated by G). The two parts of the network compete
with each other. The generator attempts to confuse the discriminator. The
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discriminator learns to correctly judge the authenticity of the image. The
loss function is a minmax problem.

(1)
LcGAN (G,D) = E(x,y)[logD(x, y)]

+E(y,z)[log(1−D(y,G(z, y)))]

The generator and discriminator networks are based on pix2pix [26]
model.

The generator is based on u-net [27] structure, in which the encoding
network and the decoding network are both 9-layer convolutional networks
using the conv-batchnorm-relu approach. Additional connections are added
between the corresponding layers of each encoding network and decoding
network. That is, for the ith layer (1, 2, 3 . . . , 8), a connection to the (19−i)th

layer is additionally added. The output of the ith layer will not only be sent
to the next layer but also be concatenated with the input of the (19 − i)th

layer. For our particle picking task, this added connection can share position
information between the input and the output.

The discriminator is a CNN containing 5 layers. The input to the dis-
criminator is a set of images, including real markers-added images or the
generated images, the output of the network is a value to each image indi-
cating the probability that it is true or false.

As explained in [28] that the mean squared distance is better than the
cross entropy loss function in the image generation task. We design a loss
function in the form of a mean squared distance. For the generator, our
design goal is to make the score D(G(z)) and the score D(x) closer, where
D(G(z)) represents the score for the generated image, and D(x) is the score
for the real image. For the discriminator, our design goal is to make the score
of the actual image and the score of the generated image close to our preset
two values a, b. A tanh function is used in the output layer. This will map
the judgment given to each image to (−1, 1). When we use mean squared
loss as the loss function, the optimization direction for the negative sample
is to make it close to 0 instead of −1. The loss function defined by the mean
squared distance can be expressed as:

min
D

VMS(D) = E(x,y)[(D(x, y)− a)2]

+E(y,z)[(D(G(z, y))− b)2]
(2)

min
G

VMS(G) = E(x,y)[(D(x, y)−D(G(z, y)))2](3)

In addition, we introduce the L1 distance in the loss function of the gen-
erator. This method not only does not affect the main design goal of the
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discriminator, but also makes the image generated by Generator closer to

the real image y (not just the score). This L1 loss is also called data loss.

The L1 loss which is also called data loss has been found to be beneficial

when mixed with GAN loss function as mentioned in [26].

Previous approaches have found it beneficial to mix the GAN objective

with a more traditional loss, such as L2 distance. While L1 or L2 loss en-

courages the generator to produce a rough outline of the predicted object,

it often fails to capture any high frequency detail. This stems from the fact

that the L2 (or L1) loss often prefer a blurry solution, over highly accurate

textures. We also explore this option, using L1 distance rather than L2 as

L1 encourages less blurring.

(4) Ldata = E(y,z)||y −G(z, y)||

We define a, b as 1, 0. Finally, the objective function of our network can be

expressed as:

min
D

VMS(D) = E(x,y)[(D(x, y)− 1)2]

+E(y,z)[(D(G(z, y))2]
(5)

min
G

VMS(G) = ω1 ∗ E(x,y)[(D(x, y)−D(G(z, y)))2]

+ω2 ∗ Ldata(G)
(6)

2.2.2. Training We designed an automatic method to generate training

sets. The train set contains 100 synthetic input images with a size of 512∗512
and 100 synthetic truth images with the same size. Each synthetic input im-

age has a corresponding synthetic truth image. The synthetic truth image is

a synthetic input image with black markers added for each particle position.

The specific method is as follows:

We select areas that do not contain particles from some micrographs and

resize these areas as background.

These background images are used for both synthetic input images and

synthetic truth images. Coordinates are then randomly generated within the

background image size. Images containing particles and images with added

markers will share the same coordinates as particle centers. Markers with

specific sizes are black squares whose pixel values are zero. These random

patterns are generated by random walk algorithm (Algorithm 1).

In our experiments, the size and the number of random shapes are ran-

dom values within a certain range. The product of the size and number of
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Algorithm 1: random walk algorithm

Input: max step: n
Output: random shape: img
Initialization
Identify initial coordinates (x,y) to be (0,0), pix[ ] to be
zeros(n,2),neighbour[ ] to be [-1 -1;-1 0;-1 1;0 -1;0 1;1 -1;1 0;1 1]
/* the array pix[ ] is used to save all walk steps, the coordinates of each
step will be recorded
the array neighbour represents for all possible movement with one step */
for i = 1; i <= n; i = i+ 1 do

rand num ← rand(1,8) /* r is a random integer from 1 to 8*/
x ← x + neighbour(rand num,1)
y ← y + neighbour(rand num,1)
pix[ ]← (x,y) /* append the coordinates of this step*/

end
pix[:,1] ← pix[:,1] - min (pix[:,1]) + 1
pix[:,2] ← pix[:,2] - min (pix[:,2]) + 1
/* Make image index values start from (1,1) */
maxy ← max(pix[:,1])
maxx ← max(pix[:,2])
img ← new image (maxx.maxy)
/* Create a new image according to the max coordinates, the value of each
pixel is 0 by default*/
for each item ∈ pix[ ] do

/* item is a turple of (x,y)*/
img(item) ← 255

end

generated random graphics is not larger than the image size. In order to

ensure the random graphics do not overlap, graphics that are too close to

other existing random graphics centers will not be generated.

When generating an image containing particles, the noise image will

minus one random shape at each coordinate. This method simulates the case

where the intensity value of the particle region is lower than in other regions.

The generation method (Algorithm 2) refers to the theoretical results of [4,

29]. When generating an image with added markers, markers and noise image

will perform a logical operation “and” at the same coordinate. Pixel values

of these marker added regions are zero. All random values are generated in

a specific range in the experiment, and we found that it is very effective to

select a suitable random range for the test data.
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Algorithm 2: data synthesis algorithm

Input: random shape images: R I[ ], noise image: N I
Output: synthetic image: S I
Initialization, S I ← N I /* do not change original noise image*/
Identify shape diameter, shape num to be a random value,
/* shape num * shape diameter * shape diameter should be smaller than
the image size*/
image size to be the size of N I
for i = 1; i <= shape num; i = i+ 1 do

rand coord ← random tuple within image size
rand shape ← random item in R I,
resized as[ shape diameter,shape diameter]
rand fade value ← random float value between 0 and 1
if not overlapped then

S I ← S I - rand shape * rand fade
end

end

Figure 4: Results of one input image. Markers are added on particle
regions according to the input image. And the shape of those dark regions
are close to square. This is caused by the training process.

2.2.3. Using GAN on cryo-em images Images after pre-processing

will be input into the generator part of GAN model, the output are images

with markers added on particle-like regions based on input images. For the

design of generator is input − gen(input), particle regions will be darker

on the image (as shown in Figure 4). So we can get gen(input) part using
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Figure 5: The histogram of input image and output image. The hor-
izontal axis represents the pixel value, and the vertical axis represents the
number of pixels. (a) is the histogram of an input image. The particle regions
and the noise regions are difficult to distinguish. (b) is the histogram of the
output image. Particle regions and noise regions are easy to distinguish. The
pixel values of the particle regions are mainly concentrated between 0 and
20. A large number of particle pixel values are 0.

operation input− output. Thus we get particle regions. Figure 5 shows how
the histogram changed after markers are added on input image.

2.3. Step 3: particle localization

Images we get from step 2 will be convert into a binarized image using a
threshold (by default 0.1). Pixel values of marker regions are converted to
1, and the rest are converted to 0.
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Algorithm 3: particle localization algorithm

Input: ori image: I, output image from cGAN: O
Output: particle locations: coords[]
Initialization
Identify the threshold1 used in binarization to be 0.1, the convolution
kernel used in erosion operation to be a square slem with size of 5 x 5, the
average area AA to be 0, the threshold2 used in particle localization to be 0.5
IO ← I −O
for each pixel value r ∈ IO do

if r is lower than 255*threshold then
r ← 0

else
r ← 255

end

end
EB ← IO � kernel
/* � operator represents for erosion operation on image IO using kernel
kernel */
L ← skimage.measure.label(EB)
R ← skimage.measure.regionprops(L)
Total num←R.length
for each r ∈ R do

AA ← AA+r.area/Total num
end
for each r ∈ R do

if r.area between [(1-threshold)*AA,(1+threshold)*AA] then
coords[ ] ← r.centor / *append this region center position into
coords[ ]*/

end

end

A morphology erosion operation is performed on the binarized image.

This operation will remove tiny regions on the image and separate regions

as much as possible. Regions too small are often noise or experimental pol-

lution. If particles are too close, their markers are likely to be connected

together, so it is necessary to separate regions. After that, we use an algo-

rithm in python ‘skimage’ library to label connected regions. All connected

regions are assigned the same integer value on the image. We used a two-step

algorithm to calculate particle positions on this labeled image. The first step

aims to determine the average area of all connected regions, the second step

we output all possible region center coordinates whose area are within the
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Figure 6: Particle localization results. (a) The Particle regions image is
the result of subtracting the output image by the cGAN model from the
input image. Black regions in this image represents for non-particle regions.
(b) The binarized image is the result of threshold binarization. White re-
gions represent for particle regions in the image. (c) This image is obtained
after morphology erosion operation on (b). (d) We use RELION software to
show out particle picking results. Particles are highlighted with green circles
according to the input coordinate file.

neighborhood of the average area. These steps are shown in Algorithm 3.
Figure 6 shows the image obtained after each step of processing.

3. Results

We tested our particle picking method on several datasets in EMPIAR (the
Electron Microscopy Public Image Archive) [30]. Note that EMPIAR is a
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public resource for raw electron microscopy images. Raw micrographs are
provided while coordinates are usually not provided. We show particle pick-
ing results of T20S proteasome dataset directly on images. For statistical
results, we use a β-Galactosidase dataset where coordinates are provided in
the dataset.

3.1. Implementation

We trained our network on a nvidia-1080ti 11G GPU and we implemented
the process from inputting micrographs to outputting coordinates files with
a 16GB 2.2GHz Intel Core i7 CPU.

3.2. Evaluation criteria

We mainly evaluate our methods from the perspectives of Precision, Recall,
F1-score and time cost. The formula of calculating Precision, Recall and
F1-score are as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1-score =
Precision ∗Recall

Precision+Recall
(9)

When measuring whether results are consistent with the true position, we
believe that it is accurate at this position as long as it is within 1/4 of the
diameter from the true center position. This judgment condition is derived
from the experience provided by the biologist in actual use, that is, as long
as the center position deviation is within 1/4 diameter, it will not affect the
operation behind.

3.3. Experiments

3.3.1. Particle picking evaluation on the β-Galactosidase dataset
The β-Galactosidase dataset is publicly available which can be found in EM-
PIAR as EMPIAR-10017 [31]. This dataset contains 84 micrographs (.mrc
files) and particle coordinates (.star files). The resolution of these images
is 4096 × 4096, and the outermost 100-pixel area does not contain any in-
formation. We remove meaningless areas while processing. We evaluate and
compare the performance of our method to other automatic particle picking
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Table 2: Comparison of particle picking results for different losses
on the β-Galactosidase dataset. Results are better when using mean
squared loss

Model Precision Recall F1
APPLEPicker [13] 0.73 0.37 0.49
FCRN [21] 0.79 0.71 0.75
Faster-RCNN [20] 0.70 0.78 0.74
This paper:
GAN + Crossentropyloss 0.73 0.60 0.66
GAN + meansquaredloss 0.81 0.63 0.71

methods. We use synthetic data to train our cGAN model. Totally 42495
particles are picked using semi-automatic method RELION [11] software.
In contrast, our method picked 32557 particles. We compared with several
automated methods. The DeepPicker [18] method did not obtain meaning-
ful results when apply on the β-Galactosidase dataset using the default pre-
trained model. This problem was also mentioned in [21]. The autocryopicker
method was not suitable for this data because this method was designed to
detect and pick regular particle shapes [14].

When comparing with APPLEPicker [15], FCRN [21] and Faster-RCNN
[20] method, our method reached the highest precision and the F1 score was
close to the best results in [21].

3.3.2. Robustness comparison of particle picking on the T20S pro-
teasome dataset We compare results of DeepPicker [18] and our method
when picking on the T20S proteasome dataset. The T20S proteasome dataset
is publicly available which can be found in EMPIAR as EMPIAR-10188 [32].
The resolution of these images is 3710 × 3838. For this dataset do not pro-
vide reference coordinates and lack of comparison, we show several results
of them.

We find that our model trained with synthetic data can also achieve
better results directly on T20S proteasome dataset. The DeepPicker method
did not obtain good results using default pre-trained model again. We show
some representative results in Figure 7. Our method obtained good results
using the same model trained on synthetic data.

4. Discussion

Looking at the results of output images, we found differences in image re-
sults. The best image can achieve a precision of 0.91 with a recall of 0.70.
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Figure 7: Several results of particle picking on the T20S proteasome
dataset. (a) Three different input micrographs are shown. (b) We use RE-
LION software to show out particle picking results. Particles are highlighted
with green circles according to the input coordinate file. (c) These images
are displyed in RELION software using coordinate produced by DeepPicker
method. Our method achieved good results when using pre-trained model.
However the DeepPicker method did not.
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Figure 8: Good particle picking results on EMPIAR-10017 dataset
(with a precision of 0.91 and a recall of 0.70). (a) is original image and
(b) is particles circled according to our output coordinates. (c) represents
for results provided by dataset. Coordinates given by dataset are regarded
as ground truth. Particles are highlighted with green circles according to the
input coordinate file.

However, some images have an precision of only 0.22. These images are

shown in Figure 8 and Figure 9. Besides, we found that coordinates provided

by dataset are highly overlapped, but in our post processing we remove all

candidates that are too close to each other. These reasons lead to a relatively

low average result. Furthermore, our method picked out some regions that

are possible protein particles, but not mentioned in the original dataset.

This results in lower precision, however some of those regions may be real

particles. That is to say, our method may find some new regions which are

not regarded as particles before.

Our method may have some potential drawbacks since our cGAN model

marked out all regions with lower pixel values. There may exist non-particle

regions with low pixel value. If some non-particle regions are close to particle

regions, which may also be marked out. Additionally, our method only marks

out particle-like regions, and could be disturbed by a more fuzzy data.

5. Conclusion

Our method trained a cGAN model with synthetic images as training set

and successfully mark out particle regions on real micrographs. We achieved

the state of the art at fully automatic particle picking method. Our method

showed robust results on different datasets.
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Figure 9: Bad particle picking results on EMPIAR-10017 dataset
(with a precision of 0.22 and a recall of 0.76). Comparing (b) with
(c), we find that many regions appear to contain particles. However, these
regions are not shown in coordinates given by the dataset. Particles are
highlighted with green circles according to the input coordinate file.
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