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The reaction rate constant is critical in modeling combustion and
biochemistry reaction network. In this work, a machine learning
approach using multi-layered neural network (NN) models is ap-
plied to training and predicting rate constants of combustions reac-
tions. Two kinds of hydrogen abstraction reactions are considered:
Hydrogen + Alkanes (HR) and Oxygen + Alkanes (OR). Each re-
action is described by five parameters: three of which distinguish
the structure of the reactant alkane, one is the serial number of the
carbon atom for the broken C-H bond and the last one is the tem-
perature. Two NN models are trained separately by fitting the rate
constants of eight HR or eleven OR reactions. The small deviations
indicate that the rate constants can be well represented by the NN
models. To test the predictive ability, one model is constructed for
each reaction by fitting the rates constants of the rest n-1 reactions
(n = 8 for HR reactions and n = 11 for OR reactions). The devi-
ations are 25.3%-2396.3% for the HR reactions and 15.0%-659.4%
for the OR reactions. Most of the prediction results are better than
those from the transition state theory. Overall, the machine learn-
ing approach is an efficient method to predict chemical reaction
rate constants.
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1. Introduction

The reaction rate constant is a fundamental quantity of chemical reaction

and plays an important role in modeling combustion and biochemistry re-

action network. The accurate determination of thermal rate constants for

chemical reactions is one of the major objectives of experimental and the-

oretical chemistry [1]. Experimentally, the thermal rate constant can be

measured by discharge flow, flash photolysis, shock tube, laser induced flu-

orescence and other techniques [2, 3]. Theoretically, the reaction rate con-

stants could be calculated using the transition state theory (TST) [4, 5] or

chemical dynamics methods, such as quasi-classical trajectory method [6],

multi-configuration time-dependent Hartree method [7], ring polymer molec-

ular dynamics method [8] and time-dependent wave-packet method [9]. The

chemical dynamics calculation demands a pre-build potential energy sur-

face and the costs of computations are relatively high. Nowadays, most of

the measured or computed rate constants are available on the website of

National Institute of Standards and Technology (NIST, https://www.nist.

gov/).

Recently, machine learning is becoming a powerful tool in the field of

theoretical and computational chemistry. Zare and co-workers developed a

model called the Deep Reaction Optimizer to guide the interactive decision-

making procedure in optimizing reactions by combining state-of-the-art deep

reinforcement learning with the domain knowledge of chemistry [10]. Coley

et al. used a machine learning method to predict organic reaction outcomes

[11]. Lately, machine learning was applied to predicting the reaction rate con-

stants. Zhong et al. combined Deep Neural Network with Molecular Finger-

prints to develop models to predict ·OH radical rate constants of 593 organic

contaminants [12]. Bowman and co-workers reported a machine learning ap-

proach to train and predict bimolecular thermal rate constants over a wide

range of temperatures [1].

The chemical reactions usually have the same mechanism if their reac-

tants are of similar structures. Therefore, we attempt to predict the rate

constants of alkanes with oxygen/hydrogen by using neural network (NN)

models with the same descriptors. This work is organized as follows. Section

2 introduces the descriptor and the machine learning approach employed.

In the third section, the results and discussions are presented. Finally, we

make a conclusion in Section 4.

https://www.nist.gov/
https://www.nist.gov/
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2. Methods

2.1. Descriptors

In this work, two kinds of hydrogen abstract reactions are studied, which
are listed below:

CnH2n+2 +H→CnH2n+1 +H2(R1)

CnH2n+2 +O→CnH2n+1 +OH(R2)

To characterize these reactions, five parameters are used: three of them
are the topological indices for the molecular structure of the reactant Alkane,
one is the serial number of the carbon atom for the broken C-H bond and
the last one is the temperature.

The three topological indices (denoted as ND1/ND2/ND3) are calculated
as follows [13]:

2.1.1. Distance matrix A bidimensional (n× n) distance matrix is de-
fined by (n is the number of non-hydrogen atoms in the molecule):

Dm=
(
dij

)
m

=

⎧⎪⎪⎨
⎪⎪⎩

m, the number of C-C bond(s) between
C

j
and C

i
atom = m

0, the number of C-C bond(s) between
C

j
and C

i
atom �= m

2.1.2. Branching degree The properties of isomers vary with the branch-
ing degree, which can be calculated by:

gi =
(∑

k
)0.5

(1)

The gi means the branching degree of the i -th carbon atom,
∑

k represents
the sum of the number of the single bonds between the i -th atom and other
non-Hydrogen atoms.

2.1.3. Equilibrium electronegativity The strength of the bond is
closely related to the electronegativity of the bonding atoms. The electroneg-
ativity of the atoms varies with their chemical environment. The equilibrium
electronegativity of the i -th atom in the molecule is defined by:

χi =
(χiA+

∑
χG)

(1 +
∑

l)
(2)
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Figure 1: Hydrogen-suppressed graph of 2,2-Dimethylpropane.

where

χG =

{
1

n1l

n1l∑
l=1

[
1

n2l

n2l∑
l=1

(
1

nil

nil∑
l=1

χil

)]}
(3)

and χiA is the Pauling electronegativity,
∑

χG is the sum of equilibrium elec-

tronegativity of atoms connected to the i -th atom,
∑

l is the total number

of radicals connected with i -th atom.

2.1.4. Augmented distance matrix The augmented distance matrix

Qm is obtained by combining the vectors {gi}, {(χi)
0.5} and the matrix

Qm(m=1,2,3). The vectors {gi} and {(χi)
0.5} are placed in the first and

second columns, respectively. For example, the augmented distance matrices

Q1, Q2 and Q3 of 2,2-Dimethylpropane, as shown in Figure 1, are

Q1=

⎡
⎢⎢⎢⎢⎣
1 1.5168 0 1 0 0 0
2 1.5297 1 0 1 1 1
1 1.5168 0 1 0 0 0
1 1.5168 0 1 0 0 0
1 1.5168 0 1 0 0 0

⎤
⎥⎥⎥⎥⎦

Q2=

⎡
⎢⎢⎢⎢⎣
1 1.5168 0 0 2 2 2
2 1.5297 0 0 0 0 0
1 1.5168 2 0 0 2 2
1 1.5168 2 0 2 0 2
1 1.5168 2 0 2 2 0

⎤
⎥⎥⎥⎥⎦

Q3=

⎡
⎢⎢⎢⎢⎣
1 1.5168 0 0 0 0 0
2 1.5297 0 0 0 0 0
1 1.5168 0 0 0 0 0
1 1.5168 0 0 0 0 0
1 1.5168 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
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Table 1: The ND indices of all alkanes collected

Alkane ND1 ND2 ND3

CH4 2.2701 2.2701 2.2701
C2H6 7.5747 6.5747 6.5747
C3H8 12.8170 13.5618 10.8170

n-C4H10 17.6688 19.1027 20.3096
n-C5H12 22.2959 25.8268 26.9664
n-C6H14 26.8086 31.6892 32.7079
iso-C4H10 17.9683 28.0449 14.9683
iso-C5H12 22.5862 31.5720 31.9442
neo-C5H12 23.0683 50.8790 19.0683

2.1.5. ND indices The topological indices are calculated by:

M1 = Q1 ×Q1
T

M2 = Q2 ×Q2
T

M3 = Q3 ×Q3
T

ND1 = λmax 1

ND2 = λmax 2

ND3 = λmax 3

(4)

in which λmax 1, λmax 2 and λmax 3 are the maximum eigenvalues of M1, M2

and M3, respectively. The ND1/ND2/ND3 indices of 2,2-Dimethylpropane
are 23.0683/50.8790/19.0683. All alkanes involving no more than twelve C
atoms can be uniquely determined in a three-dimensional space by the three
indices [13].

The products are distinguished by a rule similar to the IUPAC rules
[14], where the carbon atoms in the principal and side chains are ordered
serially. In this work, the product is coded according to the carbon atom of
the broken C-H bond. The parameters ND1/ND2/ND3 for the reactants are
listed in Table 1.

2.2. Neural network models

The NN models are trained under the framework of PyTorch [15] by fitting
rate constants. The NN models consist of 1 input layer with aforementioned
five parameters, 3 hidden layers with 100 neurons in each layer and 1 output
layer. The Mean Square Error (MSE) Loss function and Adam optimizer are
used during the process of model training. The learning rate is 1E-4 and the
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Figure 2: The schematic diagram of the neural network. wj,i: the connection
weight between the i -th neuron of the input layer and the j -th neuron of
the first hidden layer; bj : the bias of j -th neuron of the first hidden layer; f :
the activation function.

batch size is 1. Here, the root mean square (RMS) error is used to evaluate

the performance of the developed models. Figure 2 shows the schematic

diagram of the neural network (taking two hidden layers of neurons as an

example).

3. Results and discussion

In this work, the rate constants of the eight HR reactions and eleven OR

reactions, as listed in Table 2, are firstly collected from the NIST Chem-

ical Kinetics Database. However, the rate constants available in the NIST

database are very limited due to the difficulty of experimental measurements.

It has been generally recognized that the prediction accuracy of neural net-

work models is guaranteed by enough data. Hence, more rate constants are

obtained by the three-parameter Arrhenius equation,

k(T ) = ATne−E/RT(5)

in which the parameters A, n, and E are determined by fitting the experi-

mental rate constants. T is the temperature and R is the molar gas constant.

Finally, a total of 2186 values are used for the eight Alkane + Hydrogen re-

actions at the temperatures ranging from 230 K to 2500 K and 3339 values

are used for the eleven Alkane + Oxygen reactions in the temperature range

from 250 K to 2500 K. Since the rate constant k ranges from 10−18 to 10−19,

logk(T ) is used in the calculations.
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Table 2: List of reaction channels considered in this work

Reaction type Reaction
number

Reaction channel Reference

Alkane + H

HR1 CH4 + H → H2 + CH3 [16]
HR2 C2H6 + H → H2 + C2H5 [17]
HR3 C3H8 + H → H2 + n-C3H7 [18]
HR4 C3H8 + H → H2 + iso-C3H7 [18]
HR5 n-C4H10 + H → H2 + sec-C4H9 [19]
HR6 iso-C4H10 + H → H2 + iso-C4H9 [20]
HR7 iso-C4H10 + H → H2 + tert-C4H9 [20]
HR8 neo-C5H12 + H → H2 + (CH3)3CCH2 [21]

Alkane + O

OR1 CH4 + O → CH3 + OH [17]
OR2 C2H6 + O → C2H5 + OH [17]
OR3 C3H8 + O → n-C3H7 + OH [18]
OR4 C3H8 + O → iso-C3H7 + OH [18]
OR5 n-C4H10 + O → n-C4H9 + OH [22]
OR6 n-C4H10 + O → sec-C4H9 + OH [22]
OR7 iso-C4H10 + O → iso-C4H9 + OH [20]
OR8 iso-C4H10 + O → tert-C4H9 + OH [20]
OR9 n-C5H12 + O → 1-C5H11 + OH [22]
OR10 n-C5H12 + O → CH3CH2CH2CHCH3 + OH [22]
OR11 neo-C5H12 + O → (CH3)3CCH2 + OH [23]

3.1. Models training and validation

The data is randomly divided into two parts: a training set (80%) and a

validation set (20%). The RMS value is defined as [1]:

RMSi = ((
1

jmax
)(

n∑
j=1

log10(
kfit
kexp

)2i )

1

2

(6)

where kexp is the sampled rate constants, kfit is the corresponding fitted or
predicted rate constants, i refers to one of the reactions listed in Table 2,
and n is the number of sampled rate constants for the i -th reaction in the
training set or the validation set. The average deviation δi is calculated by:

δi = 10RMSi-1(7)

Four kinds of models are constructed, for which 1, 2, 3 and 4 hidden
layers (labeled as L1, L2, L3 and L4 model) are included with 100 neurons
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Table 3: The RMSs and deviations of the validation set for different models.
n in Ln denotes the number of hidden layers included in the model

Model type
HR OR

RMS Deviation Time RMS Deviation Time
L1 0.3157 106.9% 1 0.1528 42.2% 1
L2 0.0729 18.3% 1.4 0.0656 16.3% 1.4
L3 0.0343 8.2% 2 0.0231 5.5% 2
L4 0.0276 6.6% 2.4 0.0505 12.3% 2.4

in each hidden layer. The RMSs and deviations of these models are shown
in Table 3. The deviations of the L1 and L2 models are large while the
deviations of the L3 and L4 models are relatively small. However, as the
number of the hidden layer increases, the training becomes difficult. To
balance the computational accuracy and efficiency, the L3 model is employed
hereafter. Therefore, two NN models with the same architecture as the L3
model are constructed separately for the Hydrogen + Alkane (HR) and
Oxygen + Alkane (OR) reactions.

For HR reactions, the RMS values for the training set and validation set
are 0.0375 and 0.0343, respectively. The corresponding average deviations
are 9.0% and 8.2%. For OR reactions, the RMS values for the training set
and validation set are 0.0359 and 0.0231, respectively. The corresponding
deviations are 8.6% and 5.5%. Since the number of sampled data points for
OR reactions is larger than that of HR reactions, the RMS for OR reactions
is smaller. Overall, the small values of RMSs for the two kinds of reactions
indicate that the NN models used in this work could represent effectively
their rate constants.

3.2. The prediction of rate constants

In this subsection, the predictive ability of the NN models is explored. The
architecture of the NN models is the same as the L3 model. However, only
(n-1) reactions are involved in the training and the rest one is used for
prediction. For each reaction, ten NN models are trained using the data of
the other reactions and the model with the smallest RMS is used in the
following discussions.

Houston et al. [1] suggested that the predictive ability can be divided into
three levels: “accurate” means a deviation smaller than 100%; “reasonable”
refers to a deviation of about 300% since the averaged deviation calculated
by the TST is approximately 300%; and “inaccurate” denotes a deviation
larger than 500%. The RMSs and deviations for HR reactions are listed in
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Table 4: The RMSs and deviations of predicted rate constants for Alkanes
+ Hydrogen

Reaction number RMS Deviation
HR1 0.9772 848.8%
HR2 0.157 43.6%
HR3 0.4789 201.2%
HR4 0.0979 25.3%
HR5 0.5492 254.1%
HR6 0.5867 286.1%
HR7 0.7451 456.1%
HR8 1.3973 2396.3%

Table 4. The predictions are accurate for HR2 and HR4 as their deviations
are less than 50%, reasonable for HR3, HR5, HR6 and HR7, and inaccurate
for HR1 and HR8. The deviations for HR1 and HR8 are 848.8% and 2396.3%,
respectively. The poor performance of the NN models for HR1 and HR8 is
possibly caused by the inability of the descriptors. The topological indices
(ND1/ND2/ND3) for the two reactions differ remarkably from the others
and the characters of the reactants are not included in the training data.
The three ND indices are the same for HR1 while they are significantly
different from each other for HR8 (see Table 1). It is thus desirable to develop
efficacious descriptors in the future.

Table 5 shows the RMSs and deviations for OR reactions. Clearly, the
predictions for OR reactions are better than those of HR reactions. As shown
in Table 5, the predictions are accurate for the four reactions OR6/8/9/10
and reasonable for the five reactions OR3/4/5/7/11. The deviations for OR1

Table 5: The RMSs and deviations of predicted rate constants for Alkanes
+ Oxygen

Reaction number RMS Deviation
OR1 0.8805 659.4%
OR2 0.7821 505.5%
OR3 0.4369 173.5%
OR4 0.3062 102.4%
OR5 0.3556 126.8%
OR6 0.0942 24.2%
OR7 0.3301 113.9%
OR8 0.1291 34.6%
OR9 0.0922 23.7%
OR10 0.0608 15.0%
OR11 0.4093 156.7%
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Table 6: The averaged RMSs and deviations of OR1/OR3

Reaction number RMS Deviation RMS (AVG) Deviation (AVG)

OR1 0.8805 659.4% 0.7111 414.1%
OR3 0.4369 173.5% 0.1218 32.4%

and OR2 are larger than 500% and the predictions are thought to be inac-
curate. These results indicate that machine learning is an efficient tool to
predict rate constants of chemical reactions that are difficult to be obtained
by experimental measurements or theoretical calculations.

The so-called ensemble approach is widely employed to minimize random
errors, in which the accuracy of predictions is improved by multi-model av-
eraging. Here we choose the OR1 and OR3 reactions as examples to test the
multi-model averaging approach (Table 6). Ten NN models are constructed
for each of the OR1 and OR3 reactions and three of them with the smallest
RMSs are averaged for predictions. For the OR1 reaction, the non-averaged
RMS is 0.8805 while the average value is 0.7111. The corresponding devia-
tions are 659.4% and 414.1%. For the OR3 reaction, the non-averaged RMS
is 0.4369 while the average value is 0.1218. The corresponding deviations
are 173.5% and 32.4%, respectively. The multi-model averaging approach is
also tested for the other reactions and the predictions are improved as well.

4. Conclusions

This work presents a machine learning approach to train and predict the
rate constants of two kinds of fundamental chemical reactions: Alkane +
Hydrogen (HR) and Alkane + Oxygen (OR). The rate constants collected
in the NIST database (eight HR reactions and eleven OR reactions) and
from the fitted three-parameter Arrhenius equation are used in the machine
learning. The NN models contain 3 hidden layers with 100 neurons in each
layer, which are trained separately for the HR and OR reactions. The input
layer includes 5 parameters. The small deviations between the fitted rate
constants and the experimental data indicate that the NN model is suitable
for describing the rate constants of these reactions.

To test the accuracy of predictions, the NN model is first trained by the
rate constants of (n-1) reactions for either HR or OR reactions and then
applied to predict the rate constants of the rest one. The deviations are
smaller than 300% for most of the reactions, which are close to those from
transition state theory. Furthermore, the deviation could be visibly reduced
by the multi-model averaging approach.
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