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Scoring functions for protein-RNA complex
structure prediction: advances, applications, and

future directions

Liming Qiu and Xiaoqin Zou
∗

Protein-RNA interaction is among the most essential of biological
events in living cells, being involved in protein synthesizing, RNA
processing and transport, DNA transcription, and regulation of
gene expression, and many other critical bio-molecular activities.
A thorough understanding of this interaction is of paramount im-
portance in fundamental study of a variety of vital cellular pro-
cesses and therapeutic application for remedy of a broad range of
diseases. Experimental high-resolution 3D structure determination
is the primary source of knowledge for protein-RNA complexes.
However, due to technical limitations, the existing techniques for
experimental structure determination couldn’t match the demand
from fast growing interest in academia and industry. This prob-
lem necessitates the alternative high-throughput computational
method for protein-RNA complex structure prediction. Similar to
the in silico methods used for protein-protein and protein-DNA
interactions, a reliable prediction of protein-RNA complex struc-
ture requires a scoring function with commensurate discriminatory
power. Derived from determined structures and purposed to pre-
dict the to-be-determined structures, the scoring function is not
only a predictive tool but also a gauge of our knowledge of protein-
RNA interaction. In this review, we present an overview of the sta-
tus of existing scoring functions and the scientific principle behind
their constructions as well as their strengths and limitations. Fi-
nally, we will discuss about future directions of the scoring function
development for protein-RNA structure prediction.
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1. Introduction

It has been of great interest to understand protein-RNA interactions at

the molecular level due to their widespread involvement in vital cellular

processes. Among these processes is the translation of a genetic code to

a protein, in which specific recognition of tRNA by aminoacyl-tRNA syn-

thetase is essential to correct gene expression. Despite the general similar-

ity of tRNAs in their three-dimensional (3D) structures, synthetase is able

to discriminate and aminoacylate their cognate tRNA based on a number

of identity elements [1, 2, 3]. More surprisingly, discrimination based on a

similar set of identity elements can involve completely different interaction

modes [1, 4, 5, 6]. Ribosome, the molecular machine for protein synthesis in

all living organisms, also highlights the significance of protein-RNA inter-

actions. Structural and functional characterization of ribosome has been of

long-standing scientific interest since its discovery in the mid-50s [7]. This

highly complex structure is composed of ribosomal proteins and rRNAs.

The interactions of ribosomal proteins and rRNAs are a key to the un-

derstanding of the working principle of ribosome. It had not been clear

whether the ribosomal proteins function as the scaffold to facilitate the cat-

alytic reaction by rRNAs, or vice versa, until the atomic structure of the

large ribosomal subunit was solved and thereby confirmed the former con-

jecture [8, 9]. Besides these two prominent examples, RNA also participates

in a broad range of important biological processes, such as RNA splicing

[10, 11], signal transduction [12, 13], and immune response [14], through

complex formation with partner proteins into ribonucleoprotein particles

(RNP). Anomalies in protein-RNA interactions are implicated in numerous

human diseases, including cancers, AIDS, and neurodegenerative disorders

[15]. Without doubt, advances in medical treatment of these diseases would

benefit from insightful knowledge on protein-RNA interactions.

Being one of the primary sources of knowledge on protein-RNA inter-

actions, detailed structural information of protein-RNA complexes is rela-

tively rare, considering the enormous amount of RNAs in a cell and their

potential binding proteins. As of November 1, 2014, there existed only 1746

protein-RNA crystal structures in the Protein Data Bank (PDB) [16]. The

number of high-resolution 3D structures of protein-RNA complexes increases

slowly, because it is time consuming and laborious to resolve macromolec-

ular structures by X-ray crystallography or NMR in general. In particular

for protein-RNA complexes, the highly flexible and complicated interac-

tion patterns of RNA further complicate the structure determination by
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these experimental measures. As an alternative tool, computational struc-
ture prediction has received substantial attention in recent years. A reliable
computational method can effectively bridge the gap between the scarcity of
resolved protein-RNA complex structures and the abundance of biological
processes bearing significant scientific interests. The value of the computa-
tional methods is even more accentuated in the cases where RNA-protein
interactions are intrinsically transient or exhibit a broad binding selectivity
[17, 18].

Despite the paucity in the structural data, studies on statistical charac-
terization of the available protein-RNA complex structures have uncovered
consistent features. Overrepresentation of a group of residues was identified
in several investigations [19, 20, 22, 23, 24], indicating the dominant role of
electrostatics in protein-RNA interactions. Hydrogen-bonds were found to be
important for specific interactions at the protein-RNA interface [19, 20, 25].
Base-dependent glove-like binding pockets in proteins enabling hydrogen-
bonding, van der Waals and non-polar interactions were shown to be funda-
mental to the specific recognition of nucleotide bases [26]. Local geometry
at protein-RNA interfaces was reported to be conserved over known struc-
tures [27]. That is, the joint distribution of the location and orientation of
contacting residues with respect to their interface nucleotide bases peaks in
a restricted region. Knowledges from these characterization studies lay the
groundwork for protein-RNA structure prediction.

One of the key bottlenecks for protein-RNA structure prediction is a re-
liable scoring function. The purpose of a scoring function is to ascertain the
likelihood of a model structure(or a pose) being the native structure. In the
paradigm of computational structure prediction, first, a set of model struc-
tures is generated by a conformation search algorithm. Then, the scoring
function is applied to identify the native-like structure as the structure with
the lowest energy score. The performance of a scoring function is evaluated
from its discriminatory power in differentiating the native structure from
the decoys. As expected, no scoring function can achieve the ideal perfor-
mance due to our limited knowledge on protein-RNA interactions. In fact,
existing scoring functions are constructed based on various assumptions us-
ing different approaches, and have respective advantages and disadvantages.
In this review, we will give an overview of the scoring functions that have
been used for protein-RNA structure prediction. For the purpose of clarity,
we categorize scoring functions into groups according to their commonal-
ity in methodology, and discuss one or more representatives for each group
in detail about their strengths and limitations. We also present the bench-
marks for training and assessing the scoring functions, and the applications
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of protein-RNA structure prediction. Finally, we discuss about future direc-
tions for the scoring function development in this area.

2. Propensity-based scoring functions

The outcome of several structural characterization studies [19, 20, 22, 23, 24]
indicated a higher frequency for a subset of residues and bases than ran-
dom occurring at protein-RNA interfaces and motivated the development
of propensity-based scoring functions. Propensity is a measure of the ten-
dency of certain chemical structures to occur at the interface in the context
of protein-RNA interactions. In general, the propensity for an amino acid
residue or nucleotide base of type k is defined as a ratio of the frequencies:

(1) Pk =
N I

k/
∑

k N
I
k

NA
k /

∑
k N

A
k

where N I
k is the number of residues/bases of type k involved in the interface,

and
∑

k N
I
k is the total number of interface residues/bases. Likewise, NA

k is
the total number of residues/bases of type k, and

∑
k N

A
k is the total number

of residues/bases. It is worth pointing out that the definition of interfacial
residues/bases is research group specific; it could be based on a universal
distance range such as between 1 and 5 Å [20], or a set of interaction-type
and atom-group dependent distance criteria [23]. Despite the difference, a
number of studies [19, 20, 28, 23] on the propensities of protein residues
and nucleotide bases found that positively charged residues, Arg and Lys,
have the highest propensity at the protein-RNA interface. In contrast, the
results regarding the propensities of aromatic residues and nucleotide bases
do not converge, probably due to the paucity of high-resolution protein-RNA
complex structures and the differences in the methods for analysis.

With a different definition for propensity, Fernández-Recio and colleagues
[29] investigated residue and base propensities on a larger set of resolved
protein-RNA complex. The authors put more emphasis on the surface resi-
dues or bases by defining the propensity as

(2) Pk =
N I
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k

NS
k /
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where N I
k and

∑
k N

I
k have the same definitions given in equation (1). NS

k
and

∑
k N

S
k are the number of residues/bases of type k and total number of

residues/bases on the surface, respectively. The results confirmed the high-
est propensity for Arg and Lys at the interface. The results also showed a
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high propensity for His, which had not been reported in previous studies.
Hydrophobic residues were found to be the least favored at the interface.
Aromatic residues, with a low propensity from statistics, were found to be
important in pairing with unpaired RNA bases. On the other hand, no sta-
tistically significant difference in propensity was found among RNA bases.
Moreover, protein-RNA interaction, similar to that of protein-DNA inter-
action, was mainly through electrostatic forces other than the hydrophobic
and desolvation effects that dominate protein-protein binding.

Meanwhile, a set of propensity-based statistical potentials was developed
by the same group [30], in which a pairwise residue-nucleotide interface
propensity is defined as follows:

(3) P I
pq =

N I
pq/

∑
pq N

I
pq

NS
p /

∑
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S
p ×NS

q /
∑
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where N I
pq is the number of pairs between amino acid type p and nucleotide

base type q at the interface,
∑

pq N
I
pq is the total number of residue-base

pairs at the interface. NS
p and NS

q are the number of residues of type p and

number of bases of type q on the surface, respectively.
∑

pN
S
p and

∑
q N

S
q

are the total number of residues and total number of bases on the surface,
respectively. The pairing of a residue and a base is based on a cutoff distance
between nearest atoms. From the inverse Boltzmann formula, a free-energy-
like statistical potential is calculated as

(4) ΔGstat
pq = −RT ln(P I

pq)

In equation (4) ΔGstat
pa represents the energy for the pair formed by a residue

of type p and a base of type q at the interface in accordance with the
propensity data, R is the gas constant, and T is the absolute temperature.
The sum of the energies for all pairs of residues and bases at the interface,
as evaluated by equation (5), amounts to the score for a given protein-RNA
complex structure:

(5) ΔGstat =
∑
pq

ΔGstat
pq

The dependence of this energy scoring function on the distance is considered
only through the cutoff distance for the assessment of residue-base pairs in
contact. As a result, the contact-based scoring function has the disadvantage
of being insensitive to model structures (e.g., with identical contact pairs),



6 Liming Qiu and Xiaoqin Zou

but in the meanwhile has the advantage of being tolerant to minor confor-
mational change. In respect of differential propensities for residues and bases
in different secondary structures at the interface [19, 20, 28, 31], Li et al.
incorporated secondary-structure information into their scoring function, by
a modified definition of propensity for residue base pairs which separate the
same residue-base pairs of different secondary structures into statistically
independent terms [32].

Two medium-resolution propensity-based scoring functions, termed
DARS-RNP and QUASI-RNP, in conjunction with a reduced representa-
tion of the protein and the RNA were introduced by Tuszynska and Bujnicki
[33]. In this reduced representation, amino residues are represented by one
to three united atoms [33, 34, 35], and for RNA two united atoms are used
for the backbone and one/two atoms for pyrimidines/purines. The reduced
representation is more amenable to the above two propensity-based scoring
functions which take into account scoring dependencies on distances, angles,
and interaction sites. The two scoring functions share a common mathemat-
ical form:

(6) E = Ed + Ea + Es + Ep

where E is the total score, Ed, Ea, Es and Ep are the distance-dependent en-
ergy, angle-dependent energy, site-dependent energy, and steric clash penalty
term, respectively, and they are equally weighted. Among these energy terms,
Ed, Ea, and Es are both calculated by the same formula:

(7) ε(i, j, d) = −RT ln
Nobs(i, j, d)

Nexp(i, j, d)

The ε in equation (7) is either Ed, Ea, or Es. In the case of Ed and Ea,
Nobs(i, j, d) is the number of contacts between united atoms of type i and
type j lodged in distance and angle bin d, respectively; with the implicit un-
derstanding that atom i and atom j belong to different components forming
a complex. It is important to note that for Ea, the angle-dependent energy,
the angle for type i and j necessarily and implicitly involve a common united
atom type to form an angle, but for simplicity in presenting the theory, the
vertex atom is suppressed. For the case of Es, the parameter d represents
one of the three types of edge of RNA bases that is able to form hydrogen
bonds with another base, i.e., the Watson-Crick edge, the Hoogsteen edge,
and the sugar edge [21]. The last energy term Ep is the penalty for steric
clashes between united atoms, which disfavors pairs of united atoms closer to
each other than a cutoff distance. The decoupling of the distance- and angle-
dependent energy terms in equation (6) is employed because sampling for a
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joint distribution of the distances and angles would be difficult since sam-
ples for certain bins would be exceedingly rare. This scarce data problem
is common in building knowledge-based scoring functions especially when
structural information is limited. The general remedy is to adjust the bin
size and/or decouple binning in a parametric space into binnings in lower
parametric spaces. There is no standard bin size, and the specific choice of
bin size is justified by testing. For the DARS-RNP and QUASI-RNP, the
bin size is 1 Å for the distance-dependent energy and 20 degrees for the
angle-dependent energy. While the calculation of Nobs(i, j, d) from a train-
ing set is straightforward, the calculation of Nexp(i, j, d), the expected value
for atoms of type i and type j in bin d for the reference state, is complicated.
The DARS-RNP and QUASI-RNP scoring functions employ different ways
to calculate Nexp(i, j, d). For QUASI-RNP, Nexp(i, j, d) = Xi ∗Xj ∗Nobs(d),
where Xi and Xj are the mole fractions of atom type i and type j in the
training set, respectively. Nobs(d) is the number of contacts in bin d irrespec-
tive of atom types. For DARS-RNP, Nexp(i, j, d) is the normalized number
of contacts for atom types i and j in bin d, calculated from a set of 1000
decoys generated for each complex in the training set by the GRAMM [36].
The energy terms Es and Ep, identical in both scoring functions, take care of
the probability of residues interacting with edges of nucleotides, and steric
clashes, respectively. Based on the results for two bound docking set [33], the
DARS-RNP showed a slightly better performance than QUASI-RNP. The
finding is not unexpected, because for DARS-RNP the statistics of amino
acid and nucleotide contacts were counted from a much larger training set.

The employment of reduced representation makes medium-resolution
scoring functions less susceptible to conformational changes; as a result,
the scoring functions are expected to have more discriminatory power in sit-
uations where complex formation induces minor conformation changes in its
components. Meanwhile, as compared to the Fernández scoring functions,
these scoring functions have a better spatial resolution and a better treat-
ment of the reference state, hence a higher accuracy in differentiating near-
native structure from decoys. Xiao and co-workers also developed a coarse-
grained distance-dependent scoring function DECK-RP [37] that takes into
account the secondary structures of protein and RNA. For DECK-RP, amino
acids are classified into 7 types of interaction centers based on the dipoles
and volumes of side chains, but the 4 nucleotide types are unchanged. The
secondary structures of protein and RNA are also considered. Following the
DSSP [38] notations, only three classes of secondary structures are included
for proteins, which are denoted as X (for I, G and S), Y (for E, B, T and
random coils), and Z (for H). For RNA, only paired and unpaired bases
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are counted. The DECK-RP virtually integrates the features of Li et al ’s
scoring function and DARS-RNP.

3. Atomic-level statistical scoring functions

Scoring functions at the atomic level provide higher discriminatory power
than scoring functions at the residue level, when low-RMSD, near-native
models exist among other decoys, benefitting from a higher spatial resolu-
tion of the embedded energy function. A knowledge-based scoring function
at the atomic level originally constructed for protein-DNA interaction [39]
was adapted by Varani and co-workers [40] for the purpose of protein-RNA
complex structure prediction [40]. Recently, two other pairwise, distance-
dependent knowledge-based scoring functions also at the atomic level, dRNA
[47] and ITScore-PR [41], were developed with careful handling of the refer-
ence state problem. Since the introduction of statistical potentials [72, 73, 42]
more than three decades ago, the issue of the reference state has been cen-
tral to the construction of pairwise, distance-dependent statistical potentials
[75, 76]. For macromolecules like proteins and RNAs, the connectivity be-
tween residues or bases and finite atomic volumes forbid a trivial simplifica-
tion of the joint distribution over pairwise distances without loss of statis-
tical rigorousness. However, because of the strong inter-correlation between
pairwise distances, the exact functional form of the joint distribution re-
mains a puzzle. Without an explicit justification, it is assumed distributions
for individual pairs over distance are independent, giving rise to statistical
potentials with a tractable mathematical form. Nevertheless, it has been
demonstrated that the incorrect pairwise decomposition can be effectively
patched by a suitable definition of the reference state [45, 46, 80] to discern
native binding modes from nonnative modes.

The scoring function dRNA developed by Zhou et al. [47] employed the
distance-scaled, finite ideal-gas reference (DFIRE) technique for the con-
struction of reference state. First used in protein-folding prediction [48],
DFIRE essentially applies a weight function of rα (with α < 2) to the atom-
pair density over separation r such that this weighted density is equal to
the atom-pair density for ideal-gas. When adapted for protein-RNA inter-
action [47], a volume-fraction factor is needed to account for the fact that
protein and RNA atoms with residue/base-specific types do not mix with
each other.

In contrast, the scoring function of ITScore-PR developed by Huang and
Zou [41] circumvents the reference state problem by using an iterative ap-
proach. This approach considers the entire energy landscape (embedded in
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nonnative structures) rather than only the global minimum of energy (cor-
responding to the native structures). Specifically, ITScore-PR is defined as
the sum of statistical potentials uij(r) over all atom pairs of (i, j); the struc-
ture with the lowest score is the predicted binding mode. The separations r
between atom i and atom j are divided into bins of a size of 0.2 Å. The po-
tential uij(r) reflecting the effective total interactions including electrostatic
contribution is determined via an iterative formula:

u
(n+1)
ij (r) = u

(n)
ij (r) + Δu

(n)
ij (r)(8)

Δu
(n)
ij (r) =

1

2
kBT [g

(n)
ij (r)− gobsij (r)](9)

Here n denotes the iteration step, g
(n)
ij (r) and gobsij (r) stand for the radial dis-

tribution functions calculated according to u
(n)
ij (r) and calculated from the

native crystal structures in the training set, respectively. g
(n)
ij (r) is calculated

by

(10) g
(n)
ij (r) =

1

K

K∑
k=1

L∑
l=0

P l
kg

kl
ij (r)

where the radial distribution function gklij (r) for atom pair (i, j) observed
in the l-th binding mode of the k-th complex is weighted by the score-
dependent Boltzmann probability P l

k that is obtained using the potentials

u
(n)
ij (r), and K is the total number of complexes in the training set used to

produce g
(n)
ij (r). The L binding modes for each complex can be generated

by Monte Carlo or docking programs. In a similar way,

(11) gobsij (r) =
1

K

K∑
k=1

gk∗ij (r)

is the average of gk∗ij (r), the radial distribution function determined from
the k-th complex in the training set, over all of the K complexes. The
iteration continues through equation (8)–(11) until all native structures in
the training set can be discriminated from decoys. ITScore-PR has been
systematically tested and showed a consistently better performance than
other scoring functions, particularly for rigid docking [41].

The validity of knowledge-based pairwise distance-dependent scoring
function is conditioned on the extracted structural features, in this case the
pairwise distance, sampled from the native structures obeying Boltzmann
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distribution at temperature T , which is restricted by the scarcity of solved
protein-RNA complex structures. The published ITScore-PR was derived
from a set of 110 nonredundant protein-RNA complexes, but can be easily
improved upon the availability of a larger training set. ITScore-PR can also
be extended to include modified RNA bases in a straightforward manner.

4. Chemical context profile based scoring function

A novel scoring function based on a weighted chemical context profile (CCP)
was introduced by Parisien et al. [49]. This scoring function also uses a
reduced representation for the protein and RNA. For the protein, the Cβ

carbon atom is chosen to be the interaction center for each residue. For
the RNA, a heavy atom in the major groove (M), minor groove (m), and
phosphate group (P) is selected, respectively, as interaction centers for each
type of nucleotide (i.e., A, T, U, and G). In total, there are 20 × 12 = 240
possible interaction pairs between the protein and the RNA. A universal,
distance-dependent interaction strength is assigned to each interaction pair:

(12) f(r) =
1

max(3.5Å, r − ê)

where r is the distance between the interaction centers, and ê is the average
distance between Cβ and its partner interaction center. The CCP is defined
as a 240-dimensional vector:

(13)
−−−→
CCP =

(
Ala∑
Cβ

A∑
M

f(r),

Ala∑
Cβ

A∑
m

f(r),

Ala∑
Cβ

A∑
P

f(r), · · · ,
V al∑
Cβ

T∑
P

f(r)

)

Each component of CCP corresponds to the summation of the interaction
strengths for all the interaction pairs of the same kind. For example, the
first component is for Ala and the major groove center. The CCP vector
essentially captures the chemical context at the protein-RNA interface. The
definition of an angle made by two vectors in the real space is generalized
to the CCP space to define the chemical context discrepancy (CCD), whose

defining relation in terms of two arbitrary vectors
−−−→
CCP1 and

−−−→
CCP2 is

(14) cos(CCD) =

(−−−→
CCP1 ·

−−−→
CCP2

)
(∣∣∣−−−→CCP1

∣∣∣× ∣∣∣−−−→CCP2

∣∣∣) .
In analogous to RMSD, CCD is indicative of similarity between two complex
structures in the context of the interfacial chemical context, with a small
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value of CCD implying high similarity. The CCP-based scoring function is
designed to identify native-like structures with low CCD value with respect
to the native structure. The CCP-based score S is evaluated as

(15) S = Ecoulomb +
−−−→ωCCP · −−−→CCP,

where Ecoulomb is the generic electrostatic energy term, and −−−→ωCCP is a dual
vector of the space that enables the weighted sum of CCP components.
Only a subset of the components of the dual vector −−−→ωCCP is different from
zero; hence, not all components of a CCP vector contribute to the score.
A machine-learning approach [49, 50] is used to extract the CCP compo-
nents having the most significant contributions to the discriminatory power,
and at the same time, to parameterize the components of −−−→ωCCP accordingly.
It should be pointed out that −−−→ωCCP and the contributing components of
the CCP vector depend on the training set. If a new training set is used,
a new training cycle is required. The discriminatory power of the scoring
function was fully illustrated by a 100% accuracy in predicting six tRNA
binding proteins that are not included in the training set [49]. Addition-
ally, the CCP-based scoring function exhibits an interesting feature that
only few, even one, resolved protein-RNA structures are sufficient to pro-
duce a scoring function that is able to discriminate native-like structures
for other protein-RNA complexes sharing the same structural motifs. Using
an ensemble of complex structures with disparate structural motifs actu-
ally compromise the performance of the resulting scoring function. On the
contrary, scoring functions using statistical potential as described in the
previous sections rely on a large set of known complex structures to achieve
their discriminatory power for diverse complexes. The CCP-based scoring
function is very useful in screening proteins that bind to a specific RNA in
which similar structural motifs are involved. Moreover, the fact that only a
small subset of components of the CCP vector are used for scoring implies
that specific interactions dominate protein-RNA interactions, in consistent
with previous structural characterization studies.

5. Benchmarks for assessment of scoring functions

Performance of various scoring functions can be compared on a docking
benchmark. For this purpose, several benchmarks have been constructed
and used. The benchmark assembled by Perez-Cano et al. [51] contains a
total of 106 test cases that cover all major protein-RNA functional classes.
Among these test cases, 71 cases have both bound and unbound protein and
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RNA structures that were experimentally determined, for some cases RNA
structures that bound to nonhomologous proteins are treated as the un-
bound structures. If there are no unbound structures, unbound structures
were modeled based on homologous templates. Huang and Zou [52] also
constructed a benchmark composed of 72 protein-RNA complex structures
that covers diverse types of interactions and demonstrates various degrees
of conformational change between apo- and holo-structures. Based on the
extent of conformational change of unbound structures upon binding, the
72 structures can be divided into 49 easy, 16 medium and 7 difficult targets.
Also, Xiao et al. [37] merged parts of the Perez-Cano and Huang and Zou
sets into an extended benchmark that is referred to as RPDOCK set here.
The performance of several scoring functions representative of propensity-
based and iterative statistical potential principles are summarized in Table
1 in terms of rate of success in identifying the native structure as the top 1
model and in including the native structures in the top 10 models [52]. No
benchmarking for the CCP-based scoring function has been found. Overall,
ITScore-PR has the consistently best performance across the three bench-
mark sets. It is important to emphasize the dependence of performance of a
scoring function on the generated decoys and the result assessment method,
as illustrated by results on the RPDOCK set. Since the RPDOCK set is a
mix of the other two benchmark sets, the performance of a scoring function
on RPDOCK set is expected to be close to that of Huang and Zou or Perez-
Cano set. However, there was a substantial discrepancy between the two,
for example, the success rate of top 1 model for ITScore-PR was 48% on
the RPDOCK set versus 24% on the Huang and Zou set. This unexpected
difference is caused by the different docking algorithms used in generating
decoys, i.e., ZDOCK 2.1 for Huang and Zou set as opposed to RPDOCK
for the RPDOCK set, as well as a different criterion for success assessment
between the RPDOCK and the Huang and Zou sets.

6. Discussion

We have described and discussed three kinds of scoring functions designed
for protein-RNA structure prediction. Each of these scoring functions holds a
unique aspect with respect to each other. They have different spatial resolu-
tion and are constructed with different methods. Nonetheless they share one
common feature which is the absence of underpinning physical arguments.
For the case of propensity based scoring functions, despite the resemblance
in mathematical form, the relation between the score and free energy in
statistical mechanics has not been formally established. For the case of the
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Table 1: Success rates of scoring functions on different benchmark test sets

Huang and Zou Perez-Cano RPDOCK
success rate (%) success rate (%) success rate (%)

scoring function

top 1 top 10 top 1 top 10 top 1 top 10
ITScore-PR 24 46 22.2 ∼ 40 25.6 (48) 46.5 (62)
dRNA 24 44 13.9 ∼ 40 – –
DARS-RNP 16 38 15.3 26.4 13.6 (38) 36.4 (54)
QUASI-RNP 14 32 11.1 22.2 – –
DECK-RP – – – – 22.7 (32) 45.5 (52)
Li – – – – 15.9 (10) 27.3 (32)

The RPDOCK benchmark is a combination of the Huang and Zou as well as Perez-
Cano sets. The number in parentheses corresponds to the Huang and Zou set.

iterative statistical scoring function, although the concept of radial distri-
bution function that was used in construction of the scoring function is
closely related to theory for liquid, justification for its application to pro-
tein and RNA was not discussed explicitly. Actually an analystic treatment
of the connectivity issue of atoms is still intractable. Moreover, the CCP-
based scoring function is entirely based on a machine-learning approach.
The validity of these scoring functions comes from their usefulness in ap-
plications. Ideally a scoring function calculates the free energy of the target
complex structure, accounting for both enthalpy and entropy of the inter-
action. However, entropy as a measurement of the disorder of a system, can
not be determined from the system’s mechanical variables. Perhaps molec-
ular dynamics (MD) simulation is a potential theoretical solution. Indeed,
several MD simulation studies [65, 66, 67, 68] were devoted to investiga-
tion of protein RNA interactions. In theory, with a long enough MD sim-
ulation trajectory, the problem of free energy can be transformed into a
counting problem. As a matter of fact, numerous computational techniques
have been proposed to shorten the time it takes for a free energy calcu-
lation to converge. However, employing MD simulation for macromolecule
structure prediction in general is still not feasible. In a typical docking pro-
gram, the scoring function needs to evaluate tens of thousands of decoys in
a short period of time. This exceeds the capability of MD simulations at
present.

Propensity-based and iterative statistical scoring functions can be classi-
fied together as a single group of statistical potential based scoring function.
These score functions evaluate the score for protein-RNA interaction as a
weighted sum of the pairwise statistical potentials. For those scoring func-
tions described in this review, a uniform weight was applied. However, the
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success of the CCP-based scoring function in using a small subset of inter-

component interactions for prediction suggests that specificity is achieved by

only a few critical interactions. Therefore, the choice of uniform weight may

not be optimum. On the other hand, the CCP-based scoring function has a

strong dependence on its training set in the sense that while a scoring func-

tion has remarkable discriminatory power for complex sharing a common

chemical context for interaction, it may not be as powerful for other com-

plexes. The need for reparameterization of weights in a case dependent fash-

ion raise a speculation that nonlinear many-body interaction among atoms

or residues has a significant contribution to molecular specificity. The results

of structural characterization of protein-RNA complex structures, such as

binding pocket for bases [26] and hydrogen-bond network [19, 20, 25], al-

ready hint at the many-body effect. Without a theoretical framework, it is

difficult to incorporate the potential nonlinear effect into existing scoring

functions. Yet, we can use these knowledge from structural characterization

as constraints to filter out inconsistent decoys before the application of scor-

ing functions. It is reasonable to expect a native-like structure would satisfy

these structural characteristics provided they are correct.

A major challenge for interaction prediction in general is conformational

change of components upon binding. Flexible docking with the ability to

handle conformational change is still an open question. For molecules like

protein and RNA, the possible number of conformations increases exponen-

tially with the length of their primary sequence. Conformation enumeration

by brute force is out of scope of consideration. The FFT-based algorithm [36]

is highly efficient only for rigid-body docking. The issue of conformational

change can be partly compensated for by the characteristic low spatial sen-

sitivity of some of the scoring functions. The introduced scoring functions

span a narrow range of spatial resolution. Being the one with lowest resolu-

tion, the residue level propensity-based scoring function by Fernández-Recio

et al. [29] has tolerance for minor conformational changes because its dis-

tance dependence is effected by a maximum intermolecular atom-to-atom

cutoff distance, typical of 4 Å, used as the pairing criterion. On the other

end of the range is the iterative statistical scoring function by Zou et al.

[41], the distance dependence of the function is at atomic level. The high

spatial resolution gives the function outstanding discriminatory power if a

low RMSD native-like structure is present. Studies [69, 70, 71] have shown

that although binding induced conformational change is common for RNP,

major conformational changes are rare events. Therefore, before the advent

of a ultimate solution to conformational change issue, we may rely on scoring
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functions with lower than atomic resolution to tackle problems with minor
conformational changes.

The significance of a computational structure prediction method in bi-
ological studies resides in its ability to generate trustworthy 3D structures
and to motivate interpretations of experimental results from a structural
perspective. Tao et al. [49] demonstrated the usefulness of their prototypi-
cal CCP-based scoring function in identifying RNA binding proteins for a
tRNA molecule. This finding as the first step in resolving a biological net-
work of protein RNA interaction demonstrates the potential of the scoring
function. Although the accuracy of existing scoring functions is always less
than 100%, and there is no error estimation for the predicted structure, scor-
ing function can still be valuable in experimental result interpretation. In
fact, besides the high-resolution structure information from crystallography
and NMR, there exist a large amount of low-resolution structural data from
electron microscopy and other experimental methods. With the help of a
scoring function, ambiguities in these low-resolution data can be resolved.
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