
Communications in Information and Systems

Volume 20, Number 2, 81–116, 2020

Shannon meets Turing: Non-computability and
non-approximability of the finite state channel

capacity

Holger Boche, Rafael F. Schaefer, and H. Vincent Poor

In honor of Prof. Thomas Kailath on the occasion of his 85th birthday

The capacity of finite state channels (FSCs) has been established as
the limit of a sequence of multi-letter expressions only and, despite
tremendous effort, a corresponding finite-letter characterization re-
mains unknown to date. This paper analyzes the capacity of FSCs
from a fundamental, algorithmic point of view by studying whether
or not the corresponding achievability and converse bounds on the
capacity can be computed algorithmically. For this purpose, the
concept of Turing machines is used which provide the fundamental
performance limits of digital computers. To this end, computable
continuous functions are studied and properties of computable se-
quences of such functions are identified. It is shown that the capac-
ity of FSCs is not Banach-Mazur computable which is the weakest
form of computability. This implies that there is no algorithm (or
Turing machine) that can compute the capacity of a given FSC. As
a consequence, it is then shown that either the achievability or con-
verse must yield a bound that is not Banach-Mazur computable.
This also means that there exist FSCs for which computable lower
and upper bounds can never be tight. To this end, it is further
shown that the capacity of FSCs is not approximable, which is
an even stricter requirement than non-computability. This implies
that it is impossible to find a finite-letter entropic characterization
of the capacity of general FSCs. All results hold even for finite in-
put and output alphabets and finite state set. Finally, connections
to the theory of effective analysis are discussed. Here, results are
only allowed to be proved in a constructive way, while existence
results, e.g., proved based on the axiom of choice, are forbidden.

1. Introduction

Finite state channels (FSCs) model discrete channels with memory where
the channel output depends not only on the current channel input but also

81

https://www.intlpress.com/site/pub/pages/journals/items/cis/_home/_main/index.php

82 Holger Boche et al.

on the underlying channel state. The channel state allows the channel out-
put to implicitly depend on previous channel inputs and outputs. FSCs are
of significant interest as they allow one to model certain types of chan-
nel variations arising in wireless communications including e.g. flat fading
and intersymbol interference [1]. FSCs are relatively simple channels and are
usually used for approximations of more complex, time-continuous channels.
The theory of time-continuous channels goes back to Kailath’s seminal work
[2]. Subsequently, communication over such time-continuous channels has
been studied, for example, in [3, 4, 5, 6]. But FSCs are also used in molecu-
lar communication [7]. In the latter context, the trapdoor channel has been
introduced as a simple two-state channel and is studied in [8, 9, 10, 11].
This channel is also known as “chemical channel” due to Cover. The inde-
composable finite state channel (IFSC) is introduced in [12]. Estimating the
capacity of flat fading IFSCs is considered in [13]. The compound capacity
of FSCs is studied in [14].

Determining the capacity of FSCs is extremely challenging. For exam-
ple, already for the trapdoor channel, the capacity is unknown. Only a lower
bound [10] and an upper bound given by the feedback capacity [11] are
known. Recently, a reinforcement learning approach has been presented in
[15] to compute the feedback capacity. For general FSCs, a finite-letter char-
acterization of the capacity in closed form is not known to date; only a
general formula based on the inf-information rate has been established in
[16]. In this paper, we are interested in the existence of “simple” capacity
expressions and whether or not such capacity expressions for FSCs are al-
gorithmically computable. These questions are related to each other. For
example, a simple capacity expression could be given by a single-letter for-
mula with entropic quantities. But it could also be a capacity function which
is computable in some sense. The requirement of certain performance func-
tions to be computable is usually implicitly assumed in information theory.
Particularly, capacity expressions with entropic quantities in dependence on
the communication parameters are usually assumed to be algorithmically
computable.

For the question of algorithmic computability, we use the concept of a
Turing machine [17, 18, 19], which is a mathematical model of an abstract
machine that manipulates symbols on a strip of tape according to certain
given rules. It can simulate any given algorithm and therewith provides a
simple but very powerful model of computation. Turing machines have no
limitations on computational complexity, unlimited computing capacity and
storage, and execute programs completely error-free. Accordingly they pro-
vide fundamental performance limits for today’s digital computers. Turing

Non-computability and non-approximability of the FSC capacity 83

machines account for all those problems and tasks that are algorithmically
solvable on a classical (i.e., non-quantum) machine. They are further equiv-
alent to the von Neumann-architecture without hardware limitations and
the theory of recursive functions, cf. [20, 21, 22, 23, 24].

Of particular interest in this work are computable continuous functions
[25] since such functions can be effectively approximated by computable
polynomial sequences which is a very strong requirement on the computabil-
ity. There are other forms of computability including Banach-Mazur com-
putability, which is the weakest from of computability. To this end, Section 2
introduces the computability framework and studies further properties and
insights of computable sequences of computable continuous functions and of
Banach-Mazur computable functions.

Subsequently, this paper studies FSCs which are properly introduced
in Section 3. The general question is addressed of whether or not a finite-
letter characterization of the capacity exists at all and whether or not the
capacity of FSCs is algorithmically computable. In Section 4 it is shown
and argued that either the achievability or converse (or both) must re-
sult in a non-computable lower or upper bound, respectively. This bound
is not even Banach-Mazur computable (and therewith also not Turing com-
putable) and, as a consequence, the capacity is not Banach-Mazur com-
putable as well. This also means that there exist FSCs for which computable
lower and upper bounds can never be tight. Furthermore, it is shown that
the capacity of FSCs is not even approximable by computable sequences
of computable functions, i.e., it is impossible to approximate the capacity
for certain tolerated approximation errors. Note that non-approximability is
strictly stronger than non-computability. All these results hold for |X | ≥ 2,
|Y| ≥ 2, and |S| ≥ 2 and, thus, we consider the general case without re-
strictions on the cardinalities of the alphabets. This provides a complete
picture, since for |S| = 1 the capacity becomes Turing computable and is
given by Shannon’s single-letter formula. A similar observation with respect
to the Turing computability of the capacity of FSCs has been made in [26],
where it has been shown that the capacity of FSCs is in general not Turing
computable if the input and state alphabets X and S satisfy |X | ≥ 10 and
|S| ≥ 62. This result has been used in [27] to show that for a certain class
of entropic formulas, the capacity of time invariant Markov channels cannot
be expressed by a finite multi-letter formula. Since this uses [26] as a “black
box input”, it further only holds for |X | ≥ 10 and |S| ≥ 62. Our proof relies
on completely different techniques than those in [26] and [27] which further
allows us to show that the capacity of FSCs cannot be characterized by a
finite-letter entropic expression for input, output, and state alphabets that

84 Holger Boche et al.

satisfy |X | ≥ 2, |Y| ≥ 2, and |S| ≥ 2. We emphasize that these results hold
even for all FSCs with finite input and output alphabets and finite state
sets. When the state set is allowed to be countably infinite, the capacity of
a computable channel need not be a computable real number anymore.1

2. Computability framework

Here, we introduce the computability framework based on Turing machines
which provides the needed background. Subsequently, we establish some
results on computable sequences which are needed afterwards.

2.1. Computable real numbers and functions

The concept of computability and computable real numbers was first intro-
duced by Turing in [17] and [18]. Computable numbers are real numbers that
are computable by Turing machines. Since the set of all Turing machines is
a countable set, the set of computable real numbers is countable as well. See
also the introductory textbook [19] for further details.

A sequence of rational numbers {rn}n∈N is called a computable sequence
if there exist recursive functions a, b, s : N → N with b(n) �= 0 for all n ∈ N

and

(1) rn = (−1)s(n)
a(n)

b(n)
, n ∈ N,

cf. [28, Def. 2.1 and 2.2] for a detailed treatment. A real number x is said
to be computable if there exists a computable sequence of rational numbers
{rn}n∈N such that

(2) |x− rn| < 2−n

for all n ∈ N. This means that the computable real number x is completely
characterized by the recursive functions a, b, s : N → N. It has the repre-
sentation (a, b, s) which we also write as x ∼ (a, b, s). It is clear that this
representation must not be unique and that there might be other recursive
functions a′, b′, s′ : N → N which characterize x, i.e., x ∼ (a′, b′, s′).

1Notation: N, Q, R, and Rc are the sets of non-negative integers, rational num-
bers, real numbers, and computable real numbers; P(X) and P(Y|X) denote the
sets of (conditional) probability distributions on Y (given X); H2(·) is the binary
entropy function.

Non-computability and non-approximability of the FSC capacity 85

We denote the set of computable real numbers by Rc. Based on this, we
define the set of computable probability distributions Pc(X) as the set of all
probability distributions PX ∈ P(X) such that PX(x) ∈ Rc for every x ∈ X .
The set of all computable conditional probability distributions Pc(Y|X) is
defined accordingly, i.e., for PY |X : X → P(Y) we have PY |X(·|x) ∈ Pc(Y)
for every x ∈ X . This is important since a Turing machine can only operate
on computable real numbers.

Definition 1. A function f : Rc → Rc is called Borel computable if there is
an algorithm (or Turing machine) that transforms each given representation
(a, b, s) of a computable real number x into a corresponding representation
for the computable real number f(x).

Remark 2. From a practical point of view, this can be seen as a minimal
requirement for the algorithmic computation of the capacity of a communi-
cation system. For this task, an algorithm is needed that takes the commu-
nication parameters as inputs to compute the capacity value with a certain
precision (e.g. the number of decimal points). In information theory, even
for simple problems and questions it cannot be expected that a performance
quantity can be exactly computed numerically. For example, for an alphabet
X of dimension |X | = 2, the entropy H2(p) of an arbitrary rational proba-
bility distribution p ∈ P(X) with p �= (12 ,

1
2) is a transcendental number.

Note that Turing’s definition of computability conforms to the definition
of Borel computability above. In this paper, we will first consider the notion
of a computable continuous function, cf. for example [25, Def. A]. For this,
let Ic denote a computable interval, i.e., Ic = [a, b] with a, b ∈ Rc.

Definition 3 ([25]). Let Ic ⊂ Rc be a computable interval. A function
f : Ic → R is called computable continuous if

1. f is sequentially computable, i.e., f maps every computable sequence
{xn}n∈N of points xn ∈ Ic into a computable sequence {f(xn)}n∈N of
real numbers,

2. f is effectively uniformly continuous, i.e., there is a recursive function
d : N → N such that for all x, y ∈ Ic and all N ∈ N with

‖x− y‖ ≤ 1

d(N)

it holds that

|f(x)− f(y)| ≤ 1

2N
.

86 Holger Boche et al.

Computable continuous functions are functions that can be effectively

approximated by computable sequences of polynomials {Pn}n∈N. Here, ev-

ery polynomial Pn itself is computable, i.e., its order and coefficients can be

computed algorithmically, cf. [25]. Note that the coefficients of these poly-

nomials are usually rational numbers.

There are other forms of computability including Banach-Mazur com-

putability, which is the weakest form of computability. In particular, Borel

computability and computable continuous functions imply Banach-Mazur

computability, but not vice versa. For an overview of the logical relations

between different notions of computability we again refer to [24] and the

introductory textbook [19].

Definition 4. A function f : Rc → Rc is called Banach-Mazur computable if

f maps any given computable sequence {xn}n∈N of computable real numbers

into a computable sequence {f(xn)}n∈N of computable real numbers.

If we compare the different notions of computability, we immediate see

that any computable continuous function is also Banach-Mazur computable,

since Definition 4 is the same as the first condition in Definition 3. However,

there are infinitely many examples of Banach-Mazur computable functions

that are not computable continuous, cf. for example [24] for a detailed dis-

cussion. Such functions do not satisfy the second condition in Definition 3

and, accordingly, it is not possible to compute the local variations of these

functions.

We further need the concepts of a recursive set and a recursively enu-

merable set as defined e.g. in [28].

Definition 5. A set A ⊂ N is called recursive if there exists a computable

function f such that f(x) = 1 if x ∈ A and f(x) = 0 if x /∈ A.

Definition 6. A set A ⊂ N is recursively enumerable if there exists a re-

cursive function whose domain is exactly A.

We have the following properties; cf. for example [28]:

• A is recursive is equivalent to: A is recursively enumerable and Ac is

recursively enumerable.

• There exist recursively enumerable sets A ⊂ N that are not recur-

sive, i.e., Ac is not recursively enumerable. This means there are no

computable, i.e., recursive, functions f : N → Ac with [f(N)] = Ac.

Non-computability and non-approximability of the FSC capacity 87

2.2. Computable sequences of numbers and functions

In the following we establish some properties of computable sequences that
will be needed subsequently.

Theorem 7. Let {x(1)n }n∈N and {x(2)n }n∈N be two computable sequences of
computable real numbers with

x(1)n ≤ x
(1)
n+1 and x(2)n ≥ x

(2)
n+1, n ∈ N,

and

lim
n→∞

x(1)n = lim
n→∞

x(2)n =: x∗.

Then x∗ is a computable real number, i.e., x∗ ∈ Rc.

Proof. If {x(1)n }n∈N and {x(2)n }n∈N are computable sequences of rational num-
bers, then the result can be found in [25]. The proof can be extended to
computable real numbers as follows.

Since {x(1)n }n∈N is a computable sequence of computable real numbers,

there is a computable sequence {ϕ(1)
n }n∈N such that for all N ∈ N there

exists a computable double sequence {a(1)n,m}n,m∈N with

∣∣∣x(1)n − a(1)n,m

∣∣∣ < 1

2N
for all m ≥ ϕ(1)

n (N).

For mn = ϕ
(1)
n (n) we set a

(1)
n = a

(1)
n,mn so that {a(1)n }n∈N is a computable

sequence of rational numbers and we have

x(1)n > a(1)n − 1

2n
.

We set cn = max1≤i≤n[a
(1)
i − 1

2i] to obtain the sequence {cn}n∈N which is a
computable sequence of rational numbers with

cn ≤ cn+1, n ∈ N,

and

cn ≤ x(1)n ≤ x∗, n ∈ N.

Further, we have∣∣x∗ − cn
∣∣ = ∣∣x∗ − a(1)n + a(1)n − cn

∣∣

88 Holger Boche et al.

≤
∣∣x∗ − a(1)n

∣∣+ ∣∣a(1)n − cn
∣∣

=
∣∣x∗ − x(1)n + x(1)n − a(1)n

∣∣+ ∣∣a(1)n − cn
∣∣

≤
∣∣x∗ − x(1)n

∣∣+ ∣∣x(1)n − a(1)n

∣∣+ ∣∣a(1)n − cn
∣∣

≤
∣∣x∗ − x(1)n

∣∣+ 1

2n
+

1

2n

so that

lim
n→∞

∣∣x∗ − cn
∣∣ = 0,

i.e., the monotonically increasing computable sequence {cn}n∈N of rational

numbers converges to x∗.

In a similar way, based on the computable sequence {x(2)n }n∈N we can

construct a monotonically decreasing computable sequence {dn}n∈N of ra-

tional numbers with

lim
n→∞

∣∣x∗ − dn
∣∣ = 0.

Now, we can apply the corresponding result from [25] for computable se-

quences of rational numbers to conclude that x∗ must be a computable real

number, i.e., x∗ ∈ Rc.

This allows us to prove the following result.

Theorem 8. Let {xn}n∈N be a monotonically increasing computable se-

quence of computable real numbers and let x∗ be its limit. If x∗ ∈ Rc, then

there exists a recursive function ϕ : N → N such that for all N ∈ N we have

for all n ≥ ϕ(N) ∣∣x∗ − xn
∣∣ < 1

2N
.

Proof. For computable sequences of rational numbers, the result can be

found in [25]. The proof can be extended to computable real numbers as

follows.

We make use of the construction in the proof of Theorem 7 to prove the

desired result. Applying this construction to {xn}n∈N results in a monoton-

ically increasing computable sequence {cn}n∈N of rational numbers with

cn ≤ xn ≤ x∗, n ∈ N.

Since the result holds for monotonically increasing computable sequences of

rational numbers, there exists a recursive function ϕ : N → N such that for

Non-computability and non-approximability of the FSC capacity 89

all N ∈ N we have for all n ≥ ϕ(N)

0 ≤ x∗ − xn ≤ x∗ − cn <
1

2n

so that ∣∣x∗ − xn
∣∣ < 1

2N
for all n ≥ ϕ(N).

Thus, the computable sequence of computable real numbers converges effec-
tively to x∗ proving the desired result.

Remark 9. Note that it is possible to find a computable sequence {xn}n∈N
of rational numbers that converges to a computable real number x∗ ∈ Rc

(which can further be rational), i.e.,

lim
n→∞

∣∣x∗ − xn
∣∣ = 0,

but the convergence is not effective. According to the following Theorem 10,
this sequence is then not monotonically increasing or decreasing.

Next, we establish similar results for computable sequences of com-
putable continuous functions.

Theorem 10. Let F : [0, 1] → R be a computable continuous function
and {FN}N∈N be a computable sequence thereof with FN (x) ≤ FN+1(x),
x ∈ [0, 1], and

lim
N→∞

FN (x) = F (x).

Then there exists a recursive function ϕ : N → N such that for all M ∈ N

we have for all N ≥ ϕ(M)

∣∣F (x)− FN (x)
∣∣ < 1

2M
.

Proof. Let QN (x) = F (x) − FN (x), x ∈ [0, 1]. We have 0 ≤ QN+1(x) ≤
QN (x) and limN→∞QN (x) = 0, x ∈ [0, 1]. Let M ∈ N be arbitrary. There
exists an N0 = N0(M,x) with

QN (x) <
1

2M
for all N ≥ N0(M,x).

We define the set

SN,M =
{
x ∈ [0, 1] : QN (x) <

1

2M

}

90 Holger Boche et al.

and observe that SN,M ⊂ SN+1,M . Now, {SN,M} is a family of open sets
with [0, 1] ⊂

⋃∞
N=1 SN,M . Since [0, 1] is a compact set [29], there exists an

N0(M) with [0, 1] ⊂ SN0,M and therewith QN0
(x) < 1

2M for N0 and also all
N ≥ N0. Let

max
x∈[0,1]

QN (x) = CN .

Since QN is a computable continuous function, we always have CN ∈ Rc.
Further, since {QN}N∈N is a computable sequence of computable real num-
bers, the sequence {CN}N∈N is also a computable sequence of computable
real numbers. For all N ∈ N it holds that CN ≥ CN+1 and

lim
N→∞

CN = 0.

Accordingly, there exists a recursive function ϕ : N → N such that for all
M ∈ N we have for all N ≥ ϕ(M)

∣∣F (x)− FN (x)
∣∣ = ∣∣QN (x)

∣∣ < 1

2M

which proves the desired result.

Some remarks are in order:

1. The result extends to functions on compact spaces.
2. The result remains true for monotonically decreasing functions.
3. It is important that F is a computable continuous function. Already for

computable sequences of rational numbers with xn ≤ xn+1 that con-
verge to a x∗ /∈ Rc, we do not have effective convergence; see e.g. [30].

4. A part of the proof is not effective as we required compactness which is
needed to show uniform convergence. This is subsequently used to show
the effective convergence of the computable continuous function F .

We can use Theorem 10 to show the following result.

Corollary 11. Let {FN}N∈N and {GN}N∈N be computable sequences of
computable continuous functions on [0, 1] with

FN (x) ≤ FN+1(x) ≤ GN+1(x) ≤ GN (x)

and

lim
N→∞

FN (x) = lim
N→∞

GN (x) =: Φ(x), x ∈ [0, 1].

Then Φ : [0, 1] → R is also a computable continuous function and {FN}N∈N
and {GN}N∈N converge effectively to Φ.

Non-computability and non-approximability of the FSC capacity 91

Proof. We set

QN (x) = GN (x)− FN (x), x ∈ [0, 1],

and {QN}N∈N is a computable sequence of computable continuous functions.
For x ∈ [0, 1] we have

QN (x) ≥ GN+1(x)− FN (x) ≥ GN+1(x)− FN+1(x) = QN+1(x)

and

lim
N→∞

QN (x) = 0, x ∈ [0, 1].

Now, from Theorem 10 it follows that the computable sequence {QN}N∈N
of computable continuous functions converges effectively to zero proving the
desired result.

We obtain a similar result for computable sequences of Banach-Mazur
computable functions.

Theorem 12. Let {FN}N∈N and {GN}N∈N be computable sequences of func-
tions FN : [0, 1] ∩ Rc → Rc and GN : [0, 1] ∩ Rc → Rc, N ∈ N, with

FN (x) ≤ FN+1(x), x ∈ [0, 1] ∩ Rc,

GN (x) ≥ GN+1(x), x ∈ [0, 1] ∩ Rc,

and

lim
N→∞

FN (x) = lim
N→∞

GN (x) =: Φ(x), x ∈ [0, 1] ∩ Rc.

Then Φ : [0, 1] ∩ Rc → R is also a Banach-Mazur computable function.

Proof. The function Φ : [0, 1]∩Rc → R is well defined. For x ∈ [0, 1]∩Rc, the
function value Φ(x) is the limit of the monotonically increasing computable
sequence {FN (x)}N∈N of computable real numbers as well as the limit of the
monotonically decreasing computable sequence {GN (x)}N∈N of computable
real numbers. Therefore, we have Φ(x) ∈ Rc.

We have to show that for every computable sequence {xn}n∈N of com-
putable real numbers, the sequence {Φ(xn)}n∈N is a computable sequence
of computable real numbers as well. Let yn = Φ(xn), n ∈ N. Similarly as in
the proofs of Theorems 7 and 8, there exist computable double sequences
{yn,N}n∈N,N∈N and {y

n,N
}n∈N,N∈N of rational numbers with

yn,N = GN (xn) and y
n,N

= FN (xn),

92 Holger Boche et al.

which satisfy the following properties: For every n ∈ N and N ∈ N it holds

that

yn,N ≥ yn,N+1 and y
n,N

≤ y
n,N+1

and further

lim
N→∞

yn,N = lim
N→∞

y
n,N

= yn.

As in the proof of Theorem 7, for n ∈ N let for M ∈ N, ϕn(M) be the

smallest natural number N such that

0 ≤ yn,N − y
n,N

<
1

2M
.

Then, ϕn is a recursive function and {ϕn}n∈N is a computable sequence of

recursive functions. From the s-m-n-Theorem [28] it follows that there exists

also a recursive function ϕ : N2 → N with

ϕ(n,M) = ϕn(M), (n,M) ∈ N2.

As in the proof of Theorem 8 this implies that for all n ∈ N the following

holds: For all M ∈ N we have for all N ≥ ϕ(n,M)

∣∣yn − y
n,N

∣∣ < 1

2M
,

i.e., {yn}n∈N is a computable sequence of computable real numbers which

completes the proof.

It is clear that this result also applies to computable sequences of Borel

computable functions. Also in this case, the function Φ must be Banach-

Mazur computable.

In the following, we will use these results and in particular Theorem 10,

Theorem 12, and Corollary 11 to study the computability of the capacity of

FSCs.

3. Finite state channels

In this section we introduce the concept of finite state channels which are

suitable to model discrete channels with memory [1, 8, 12].

Non-computability and non-approximability of the FSC capacity 93

3.1. Basic definitions

Let X , Y, and S be finite input, output, and state sets. An FSC is usually
specified by its underlying probability law

(3) p(yn, sn|xn, sn−1) ∈ P(Y × S|X × S)

where yn ∈ Y and sn ∈ S are the output and state of the channel at time
instant n whose joint probability depend on the input xn ∈ X at time instant
n and on the previous state sn−1 ∈ S at time instant n− 1.

We assume that the output Yn and state Sn are statistically independent
given xn and sn−1 so that (3) can be written as

(4) p(yn, sn|xn, sn−1) = p(yn|xn, sn−1)q(sn|xn, sn−1)

for p(yn|xn, sn−1) ∈ P := P(Y|X×S) and q(sn|xn, sn−1) ∈ Q := P(S|X×S).
The corresponding sets of computable conditional probabilities are denoted
by Pc := Pc(Y|X × S) and Qc := Pc(S|X × S), respectively.
Remark 13. Not that the assumption of independence of Yn and Sn and
its consequence on the probability law as shown in (4) will result in no loss
of generality. In the end, we will show that already the special class (4) of
FSCs is not Turing computable so that this must be the case for the general
class (3) as well.

In general, pn(yn|xn) for block length n is undefined for an FSC and we
have to consider the general pn(yn, sn|xn, s0) which is the probability of the
output sequence yn and a final state sn at time instant n given an input
sequence xn and an initial state s0. This can be calculated inductively from

pn(yn, sn|xn, s0) =
∑

sn−1∈S
p(yn, sn|xn, sn−1)p

n−1(yn−1, sn−1|xn−1, s0),(5)

cf. [1]. Further, by summing over the final state we obtain

(6) pn(yn|xn, s0) =
∑
sn∈S

pn(yn, sn|xn, s0).

Definition 14. An (n,M)-code for an FSC consists of an encoder f : M×
S → X n that maps the message m ∈ M = {1, ...,M} and the initial state
s0 ∈ S into the codeword xn ∈ X n, and a decoder ϕ : Yn × S → M that
estimates the transmitted message m̂ ∈ M based on the received output
yn ∈ Yn and the initial state s0 ∈ S.

94 Holger Boche et al.

For the initial state s0 ∈ S the average probability of error of such a
code based on (6) is

ē(s0) =
1

|M|
∑
m∈M

∑
yn:ϕ(yn,s0) �=m

p(yn|f(m, s0), s0).

Definition 15. A rate R > 0 is an achievable rate for an FSC if for all
τ > 0 there exists an n(τ) ∈ N and a sequence of (n,M)-codes such that
for all n ≥ n(τ) we have 1

n logM > R − τ and ē(s0) ≤ λn for s0 ∈ S with
λn → 0 as n → ∞. The capacity C of an FSC is given by the supremum of
all achievable rates R.

The capacity C of an FSC is a function of the communication parameters
p ∈ P and q ∈ Q, cf. (4), as well as the initial state s0 ∈ S. Accordingly, we
write C = C({p, q, s0}).

3.2. General capacity formulas

We will study the computability of the capacity function C in dependence
on the communication parameters {p, q, s0}. These will be the inputs to the
corresponding Turing machine. For this purpose, we need a corresponding
expression for C({p, q, s0}) as for example the general formula provided by
Verdú and Han in [16]. For the FSC as defined above, the capacity can be
expressed in a multi-letter form as

(7) C({p, q, s0}) = lim
n→∞

sup
Xn

1

n
I(Xn;Y n|s0)

according to the underlying probability law (5)–(6). This has been shown
to be valid for information stable channels [31], but does not hold in full
generality. Moreover, this expression cannot be computed immediately as
it is the limit of a sequence of optimization problems. Furthermore, it is
not even clear if C({p, q, s0}) is a computable real number for computable
p and q. Another formula for the capacity based on the inf-information rate
has been established in [16]

(8) C({p, q, s0}) = sup
X

I(X;Y)

where I(X;Y) is the inf-information rate as defined in [32]. In general, this
expression cannot be evaluated easily.

For the special class of so-called indecomposable channels, there exists
a simple capacity expression for C({p, q, s0}). This is discussed next.

Non-computability and non-approximability of the FSC capacity 95

3.3. Indecomposable channels

The class of IFSCs goes back to [12] and refers to those FSCs for which the

effect of the initial state vanishes with time. For the precise definition of

this, we follow [1, Sec. 4] and set qn(sn|xn, s0) =
∑

yn∈Yn pn(yn, sn|xn, s0).

Definition 16. An FSC is called indecomposable if for every ε > 0 there

exists an n0 ∈ N such that for all n ≥ n0 we have
∣∣qn(sn|xn, s0) −

qn(sn|xn, s′0)
∣∣ ≤ ε for all sn ∈ S, xn ∈ X n, s0 ∈ S, and s′0 ∈ S.

For the capacity of IFSCs, we need the functions

Cn({p, q}) =
1

n
max
Xn

min
s0

I(Xn;Y n|s0)(9a)

Cn({p, q}) =
1

n
max
Xn

max
s0

I(Xn;Y n|s0).(9b)

Remark 17. Note that for fixed n ∈ N and computable parameters

{p, q, s0} ∈ Pc × Qc × S, the functions Cn and Cn in (9) are computable

functions, i.e., we have Cn : Pc ×Qc ×S → Rc and Cn : Pc ×Qc ×S → Rc.

The sequences {Cn}∞n=1 and {Cn}∞n=1 for {p, q, s0} ∈ P×Q×S converge

and we have

C({p, q}) = lim
n→∞

Cn({p, q})(10a)

C({p, q}) = lim
n→∞

Cn({p, q})(10b)

which are also called lower capacity and upper capacity, respectively. If the

FSC is indecomposable, lower and upper capacities coincide and are equal

to the capacity, i.e., C({p, q}) = C({p, q}) = C({p, q, s0}).

3.4. Main problem formulation

For fixed alphabets X , Y, and S, the capacity C of an FSC is a function of

the underlying system parameters {p, q, s0}. The previous discussion leads

to the following questions of interest:

Question 1: Is the capacity C({p, q, s0}) for fixed initial state s0 ∈ S
a computable continuous function on P and Q?

96 Holger Boche et al.

Here, we allow arbitrary p ∈ P and q ∈ Q as inputs for the capacity

function C. From Corollary 11 we alrady see that this question is naturally

connected to the question whether or not it is possible to find computable

continuous lower and upper bounds on the capacity. Lower bounds originate

from actual coding schemes and general achievability results, while the upper

bounds are established via converse arguments.

From a practical point of view, such lower and upper bounds should be

computable to enable a numerical evaluation on digital computers. There-

fore, it is reasonable to study the capacity C as a function on computable

inputs p ∈ Pc and q ∈ Qc. This leads to following question:

Question 2: Is the capacity C({p, q, s0}) for fixed initial state s0 ∈ S
a Borel computable function (and therewith Turing computable)?

While Borel computability is a strong notion of computability, Banach-

Mazur computability is considered to be the weakest form of computabil-

ity and it is of interest to pose a similar question for this notion as fol-

lows:

Question 3: Is the capacity C({p, q, s0}) for fixed initial state s0 ∈ S
a Banach-Mazur computable function?

As for the first question, the lower and upper bounds on the capacity in

Questions 2 and 3 should be algorithmically computable.

Question 4: Is the capacity C({p, q, s0}) for fixed initial state s0 ∈ S
approximately Turing computable?

Remark 18. In the following, we will provide negative answers to Ques-

tions 1–3. As the capacity is shown to be non-computable, Question 4

about whether or not the capacity is at least approximately computable

becomes particularly relevant. To make sure that this question is not triv-

ial, the tolerated approximation error should not be too large. Also for

Question 4 we will provide a negative answer for certain approximation

errors.

Non-computability and non-approximability of the FSC capacity 97

4. Computability analysis of the FSC capacity

In this section, we show that the capacity function C is not Banach-Mazur
computable and therewith also not Borel and Turing computable. Subse-
quently, we discuss the case when the capacity of an FSC becomes a com-
putable real number.

4.1. Non-Banach-Mazur computability

In general, the capacity of an FSC is given by (8) and for every n ∈ N, the
inf-information rate expression supX I(X;Y) is indeed Turing computable
(we omit the details due to space constraints). However, in the end the
capacity in (8) is given by the limit for n → ∞ and the convergence of this
limit need not be effective and uniform on {p, q, s0} ∈ Pc ×Qc × S, i.e., for
a given ε ∈ Q, e.g., ε∗ = 1

μ with μ ∈ N, we cannot algorithmically compute

when |fn(p, q, s0)− C({p, q, s0})| < ε is satisfied.

Theorem 19. For all |X | ≥ 2, |Y| ≥ 2, and |S| ≥ 2, the capacity function
C({p, q, s0}) : Pc ×Qc ×S → R of the FSC with parameters {p, q, s0} is not
Banach-Mazur computable.

Proof. We first prove the result for |X | = |Y| = |S| = 2 and subsequently
outline how it extends to the general case.

If the finite state channel {p, q, s0}, s0 ∈ S = {0, 1}, is indecomposable,
then the effect of the initial state vanishes and we have

C({p, q, 0}) = C({p, q, 1}) = C({p, q}) = C({p, q})

and further

C({p, q}) = min
s0∈{0,1}

C({p, q, s0}) ≤ max
s0∈{0,1}

C({p, q, s0}) = C({p, q}).

Next we consider the channel

(11) p(yn|xn, 0) =
(
1 0
0 1

)
, p(yn|xn, 1) =

(
1−ε ε
ε 1−ε

)

for some 0 < ε < 1/2, i.e., for state sn−1 = 0 the channel is noiseless, while
for sn−1 = 1 it is noisy. Further, we consider the state distribution

(12) q̂(sn|xn, 0) =
(
1
0

)
, q̂(sn|xn, 1) =

(
0
1

)

98 Holger Boche et al.

to be independent of xn ∈ X so that for sn ∈ S and sn−1 ∈ S arbitrary we
have

(13) q̂(sn|xn, sn−1) = q̂(sn|sn−1).

Note that p and q̂ as defined above are computable, i.e., we have p ∈ Pc :=
Pc(Y|X × S) and q̂ ∈ Qc := Pc(S|X × S). In what follows, we consider the
finite state channel {p, q̂, s0}, s0 ∈ {0, 1}, as defined above.

We observe that {p, q̂, 0} is given by a simple discrete memoryless chan-
nel (DMC) p(y|x, 0), x ∈ X , y ∈ Y, since the state is always sn = 0 due to
the definition of q̂, cf. (12). Accordingly, the capacity is C({p, q̂, 0}) = 1 in
this case, since the alphabets are binary and the channel is noiseless.

We further observe that {p, q̂, 1} corresponds to the DMC p(y|x, 1), x ∈
X , y ∈ Y, i.e., it is a binary symmetric channel (BSC). The optimal input
distribution is known to be the uniform distribution and the capacity in this
case is then C({p, q̂, 1}) = CBSC(ε) = 1−H2(ε) < 1.

Next, we show that both functions C({p, q, 0}) and C({p, q, 1}) cannot
be simultaneously Banach-Mazur computable. For this purpose, we take an
arbitrary recursively enumerable, but not recursive, set A ⊂ N. Let TA be
a Turing machine that stops if and only if for input n we have n ∈ A.
Otherwise, TA runs forever. Such a Turing machine can easily be found as
argued next: Let ϕA : N → N be a recursive function that lists all elements
of the set A and for which ϕA : N → A is a unique function.

Let n ∈ N be arbitrary. The Turing machine TA with input n is defined
as follows: We start with l = 1 and compute ϕA(1). If n = ϕA(1), then
the Turing machine stops. In the other case, the Turing machine computes
ϕA(2). Similarly, if n = ϕA(2), then the Turing machine stops and otherwise,
it continues computing the next element. It is clear that this Turing machine
stops if and only if n ∈ A.

Assume that both functions C({p, q, 0}) and C({p, q, 1}) are Banach-
Mazur computable. For λ ∈ [0, 12] ∩ Rc we consider

qλ(sn|xn, 0) =
(
1− λ
λ

)
and qλ(sn|xn, 1) =

(
λ

1− λ

)
.

Of course, for λ ∈ [0, 12] ∩ Rc, qλ(sn|xn, 0) and qλ(sn|xn, 1) are computable
probability distributions. Let

q0(sn|xn, 0) = q̂(sn|xn, 0), sn ∈ S, xn ∈ X ,

q0(sn|xn, 1) = q̂(sn|xn, 1), sn ∈ S, xn ∈ X .

Non-computability and non-approximability of the FSC capacity 99

We have

C({p, q0, 1})− C({p, q0, 0}) = 1− (1−H2(ε)) = H2(ε) > 0.

For 0 < λ ≤ 1
2 the FSC {p, qλ, s0} s0 ∈ S is indecomposable and therewith

we have

C({p, qλ, 0}) = C({p, qλ, 1}).
Now, for every n ∈ N and m ∈ N let

λn,m =

{
1
2l TA stops for input n after l ≤ m steps
1
2m TA does not stop for input n after m steps.

Then the sequence {λn,m}n,m∈N is a computable double sequence of rational
numbers. For arbitrary n ∈ N and arbitrary m,m1 ∈ N, m ≥ m1, it holds
that

(14)
∣∣λn,m − λn,m1

∣∣ = ∣∣λn,m1
− λn,m

∣∣ = λn,m1
− λn,m <

1

2m1

since if the Turing machine TA has stopped for input n for l ≤ m1, then
λn,m1

= λn,m and (14) is trivially satisfied. If the Turing machine TA has not
stopped for input n after m1 iterations, then λn,m1

= λn,m = 1
2m1

− λn,m <
1

2m1
, since λn,m > 0 for all n ∈ N, so that (14) is satisfied as well. Accordingly,

we observe that {λn,m}m∈N is a sequence that converges effectively and there
exists one λ∗

n ∈ Rc with

lim
m→∞

∣∣λ∗
n − λn,m

∣∣ = 0.

Furthermore, since {λn,m}n,m∈N is a computable double sequence, the se-
quence {λ∗

n}n∈N is a computable sequence of computable real numbers. It
further holds that λ∗

n ≥ 0 with equality if and only if the Turing machine
TA does not stop for input n.

Since C({p, q, 0}) and C({p, q, 1}) are assumed to be Banach-Mazur com-
putable functions, the difference Φ({p, q}) = C({p, q, 1}) − C({p, q, 0}) is a
Banach-Mazur computable function as well. Then, the sequence {μn}n∈N
with

μn = Φ({p, qλ∗
n
}), n ∈ N,

is a computable sequence of computable real numbers. With this, we find a
computable double sequence {νn,m}n,m∈N of rational numbers with

∣∣μn − νn,m
∣∣ < 1

2m
.

100 Holger Boche et al.

For every n, we can consider the following Turing machine T∗: For input n,
we set m = 1 and check if

νn,1 >
1

2

is satisfied. If this is true, the Turing machine stops. Otherwise, we set m = 2
and check if

νn,2 >
1

4

is satisfied. If this is true, the Turing machine stops. Otherwise, it continues
as described. Next, we show that this Turing machine T∗ stops for input n
if and only if μn > 0.

“⇐” If μn > 0, then there exists an m0 with

1

2m0
<

μn

2

so that

μn = μn − νn,m0
+ νn,m0

≤
∣∣μn − νn,m0

∣∣+ νn,m0

<
1

2m0
+ νn,m0

<
μn

2
+ νn,m0

,

i.e., the Turing machine T∗ stops for input n within m0 steps.
“⇒” It holds νn,m̂ > 1

2m̂ for a certain m̂. Then,

1

2m̂
< νn,m̂ = νn,m̂ − μn + μn

≤
∣∣νn,m̂ − μn

∣∣+ μn <
1

2m̂
+ μn

so that μn > 0 is true.
Next, for input n ∈ N, we define the Turing machine TS as follows:

We run both previous Turing machines TA and T∗ in parallel for input n,
where each Turing machine operates step by step as discussed above. We
have already shown that TA stops for input n if and only if n ∈ A. Further,
we have shown that T∗ stops for input n if and only if μn > 0. This is true if
and only if the Turing machine TA does not stop for input n, i.e., whenever
n ∈ Ac. As a consequence, one of these Turing machines must always stop
for an input n. We set

TS(n) =

{{
n ∈ A

}
if TA stops for input n{

n ∈ Ac
}

if T∗ stops for input n.

Non-computability and non-approximability of the FSC capacity 101

With this, we have shown thatA is a recursive set. But this is a contradiction
so that the assumption that both functions C({p, q, 0}) and C({p, q, 1}) are
Banach-Mazur computable is wrong. This completes the proof.

For |X | ≥ 2, |Y| ≥ 2, and |S| ≥ 2 arbitrary, we take the sequences
of parameters {p, q̂} and {p, qk} as above and extend them as follows: We
set p(y|xn, sn−1) = 0 for y ∈ Y\{0, 1}, xn ∈ X , sn−1 ∈ S and also for
xn ∈ X\{0, 1}, sn−1 ∈ S\{0, 1} to preserve the above constructed behavior.
We do the same for q̂ and qk. We observe that we still have p ∈ Pc and
q̂, qk ∈ Qc. With this and the previous arguments we can conclude on the
same result.

Remark 20. This result and implications thereof can further be strength-
ened for countably infinite state sets. In particular, for computable com-
pound channels with countably infinite state sets, the capacity need not be
a computable real number in general, cf. also [33].

Remark 21. The techniques used to prove Theorem 19 can be extended
to various channel models and operational (communication) tasks in in-
formation theory. For example, the problem of secret key generation with
rate-limited public discussion has been studied in [34] and the problem of
identification with feedback in [35].

Remark 22. The proof of Theorem 19 provides additional deeper insights.
This has been developed in detail in [35] for the identification with feedback
capacity. By modifying the proof above, one is able to show the follow-
ing: It is possible to connect the algorithmic computation of the capacity
to hard problems in pure mathematics such as Goldbach’s Conjecture and
the Riemann Hypothesis. To this end, it is possible to find an oracle Tur-
ing machine with the following properties: Given finitely many values of
the capacity function of the given computable channel, the oracle Turing
machine that gets the capacity value of certain computable FSCs as oracle
can immediately prove or disprove Goldbach’s Conjecture and the Riemann
Hypothesis.

Remark 23. It is not clear if similar results hold for the capacity of time-
continuous channels as in [2]. Accordingly, it is not clear if the technique
presented above is applicable in this case at all. A more detailed discussion
on this is given in Section 6.

In the construction of the proof of Theorem 19 above, we assume the
special case in which the current state sn does not depend on the current
input xn but only on the previous state sn−1. This is the special class of finite

102 Holger Boche et al.

fading channels (FFCs) that naturally applies to wireless communications
where the fading state of the channel is independent of the transmitted
signal. We immediately obtain the following corollary.

Corollary 24. For all |X | ≥ 2, |Y| ≥ 2, and |S| ≥ 2, the capacity function
C({p, q, s0}) : Pc×Qc×S → R of the FFC with parameters {p, q, s0} is not
Banach-Mazur computable.

We see that, in general, the capacity of an FSC is not Banach-Mazur and
therewith also not Turing computable. However, for special cases of FSCs
the capacity becomes Turing computable as e.g. the zero-error capacity [9]
or the feedback capacity [11] of the trapdoor channel; but in general, there is
no algorithm that can compute the capacity as a function of the parameters
{p, q, s0}.
Remark 25. Banach-Mazur computability requires the function to operate
on computable reals, cf. Definition 4. In Theorem 19 we have shown that
C({·, ·, s0}) is not Banach-Mazur computable, but this does not imply that
the function C({·, ·, s0}) itself is not a mapping from computable probability
distributions to computable reals, i.e.,

(15) C({·, ·, s0}) : Pc ×Qc → Rc for all s0 ∈ S.

The problem in showing this, is the following: Although the capacity expres-
sion (8) is a multi-letter formula that converges, the speed of convergence
does not need to be effective, i.e., it may not be representable by an effec-
tively computable function. And indeed, it is not clear whether or not the
convergence of (8) is effective.

Next, we study the existence of computable tight lower and upper bounds
on the capacity function. First, we study such bounds that are computable
continuous functions on the parameters {p, q}. As lower and upper bounds
should be numerically evaluable, this is a very reasonable requirement, cf.
also Remark 2.

Theorem 26. For |X | ≥ 2, |Y| ≥ 2, and |S| ≥ 2 arbitrary but fixed, there
exists an s0 ∈ S such that the following holds: There exist no computable
sequences {FN}N∈N and {GN}N∈N of computable continuous functions with

1. FN : P ×Q → R and GN : P ×Q → R, N ∈ N,
2. FN (p, q) ≤ C({p, q, s0}), p ∈ P, q ∈ Q, N ∈ N, and

limN→∞ FN (p, q) = C({p, q, s0}) for all p ∈ P, q ∈ Q,
3. C({p, q, s0}) ≤ GN (p, q), p ∈ P, q ∈ Q, N ∈ N, and

limN→∞GN (p, q) = C({p, q, s0}) for all p ∈ P, q ∈ Q.

Non-computability and non-approximability of the FSC capacity 103

Proof. The result follows immediately from Corollary 11. If such sequences
{FN}N∈N and {GN}N∈N would exist, then C would be a computable con-
tinuous function which is a contradiction, since C is for a certain s0 ∈ S not
Banach-Mazur computable.

This result shows that an approximation of C by computable continu-
ous functions is not possible. From this, we can immediately conclude the
following.

Corollary 27. For all computable sequences {FN}N∈N and {GN}N∈N of
computable continuous functions for which there exists an s0 ∈ S such that
for N ∈ N it holds that

FN (p, q) ≤ C({p, q, s0})

for all p ∈ P and q ∈ Q, and for N ∈ N it holds that

C({p, q, s0}) ≤ GN (p, q)

for all p ∈ P and q ∈ Q, there must exist a (p∗, q∗) ∈ P ×Q such that

0 < max
{
lim sup
N→∞

∣∣C({p∗, q∗, s0})− FN (p∗, q∗)
∣∣,

lim sup
N→∞

∣∣C({p∗, q∗, s0})−GN (p∗, q∗)
∣∣}.(16)

Proof. These statements follow immediately from Theorem 26, since if (16)
would be zero for all (p, q) ∈ P × Q, then this would imply that C is a
computable function.

As a consequence from this result we can conclude that for the capacity of
general FSCs, there is either no computable achievability or no computable
converse (or both are non-computable).

The functions {FN} can be interpreted as lower bounds for achiev-
able rates and the capacity respectively. Of course, such bounds should be
effectively computable so that they can be numerically evaluated. These
bounds should improve with increasing N ∈ N, i.e., FN (p, q) ≤ FN+1(p, q),
(p, q) ∈ P ×Q, and further should be asymptotically tight, i.e., for N → ∞
the sequence {FN}N∈N should converge pointwise to C({p, q, s0}).

Accordingly, the functions {GN} can be seen as upper bounds on the
achievable rates and the capacity respectively. Similarly, it is required
that these bounds are effectively computable and further C({p, q, s0}) ≤

104 Holger Boche et al.

GN+1(p, q) ≤ GN (p, q), (p, q) ∈ P ×Q, i.e., the bounds should improve with
increasing N ∈ N.

However, Corollary 27 shows that we cannot find such functions {FN}
and {GN}. Accordingly, it is impossible that both achievability and converse
are effectively computable at the same time. As a consequence, one of these
must be non-computable so that we cannot find an entropic characterization
for the capacity. This also means that there exist computable FSCs for which
computable lower and upper bounds can never simultaneously be tight.

Remark 28. Finally, we note that the results of Theorem 26 and Corol-
lary 27 remain true if the requirement of {FN}N∈N and {GN}N∈N being
computable sequences of computable continuous functions is weakened to
computable sequences of Banach-Mazur computable sequences.

Note that Corollary 27 further provides a negative answer to Question 4.
In particular, the proof of Theorem 26 yields lower bounds for the error, for
which the capacity cannot be approximated. Note that the statement of
non-approximability is strictly stronger than the statement of non-Turing-
computability. Indeed, with the results in [36] it is possible to show that
there are channels whose capacities are not Turing computable but are ap-
proximable for any given approximation error.

4.2. Capacity being a computable real number

Next, we further study the behavior of the capacity function (15) in more
detail and address the question of whether the capacity value itself is a
computable real number, cf. also Remark 25. The following Theorem 29
provides a result for a large class of computable FSCs.

Theorem 29. For every computable FSC {p, q, s0}, s0 ∈ S, that satisfies
C({p, q}) = C({p, q}), we have C({p, q, s0}) ∈ Rc for all s0 ∈ S, i.e., the
capacity is a computable real number.

Proof. We make use of the following properties. Let p ∈ P and q ∈ Q be
arbitrary. Then

C({p, q}) = inf
n∈N

(
Cn({p, q}) +

log |S|
n

)
,

C({p, q}) = sup
n∈N

(
Cn({p, q})−

log |S|
n

)
,

see [1, Theorem 4.6.1].

Non-computability and non-approximability of the FSC capacity 105

For every n ∈ N and {p, q} ∈ Pc ×Qc, Cn({p, q}) is a computable num-
ber. Accordingly, {Cn({p, q})}∞n=1 is a computable sequence of computable
reals. We define

(17) C(M ; {p, q}) := min
1≤n≤2M

(
Cn({p, q}) +

log |S|
n

)
.

We see that C(M ; {p, q}) is a computable real forM ∈ N and the correspond-
ing sequence {C(M ; {p, q})}∞n=1 is a computable sequence of computable re-
als. We have C(M ; {p, q}) ≥ C(M + 1; {p, q}) for M ∈ N, i.e., the sequence
is monotonically decreasing and it holds limM→∞C(M ; {p, q}) = C({p, q}).
We further set

(18) C(M ; {p, q}) := max
1≤n≤2M

(
Cn({p, q})−

log |S|
n

)

and similarly obtain C(M + 1; {p, q}) ≥ C(M ; {p, q}) for M ∈ N. It holds
limM→∞C(M ; {p, q}) = C({p, q}). By assumption we further have for all
s0 ∈ S, C({p, q}) = C({p, q, s0}) = C({p, q}).

Next, we consider the function

gM ({p, q}) := C(M ; {p, q})− C(M ; {p, q}).

Due to the monotonicity of both sequences, we have 0 ≤ gM+1({p, q}) ≤
gM ({p, q}) and limM→∞ gM ({p, q}) = 0.

Let n ∈ N be arbitrary. Now we can compute the n + 2-nd bit of the
dyadic representation of gM ({p, q}). Due to the channels, we obviously have
gM ({p, q}) ≤ 1. Let M0 = M0(n) the smallest natural number such that the
first n+ 2 bits of the dyadic representation of gM0

({p, q}) are zero. Then it
holds for all M ≥ M0 that the n + 2-nd bit of the dyadic representation of
gM ({p, q}) is zero as well due to the monotonic convergence. But this implies
that gM0

({p, q}) =
∑∞

k=n+3 ak
1
2k , ak ∈ {0, 1} and therewith gM0

({p, q}) ≤∑∞
k=n+3

1
2k = 1

2n+3

∑∞
k=0

1
2k = 1

2n+2 . With this we obtain

0 ≤ C(M0; {p, q})− C(M0; {p, q}) <
1

2n+2
.

For M ≥ M0 we have C(M ; {p, q}) ≤ C(M0; {p, q}) and C(M ; {p, q}) ≥
C(M0; {p, q}). Thus, for M ≥ M0 we obtain

0 ≤ C(M ; {p, q})− C(M ; {p, q})
≤ C(M0; {p, q})− C(M ; {p, q})

106 Holger Boche et al.

≤ C(M0; {p, q})− C(M0; {p, q})

<
1

2n+2
.

Due to C({p, q, s0}) = C({p, q}) = limM→∞C(M ; {p, q}) for all s0 ∈ S, we
further have

0 ≤ C(M ; {p, q})− C({p, q, s0}) <
1

2n+2
.

The function M0 = M0(n) is effectively computable, since it is sufficient to

run our algorithm until an+2(gM0
({p, q})) = 0 is satisfied which completes

the proof.

Remark 30. For every computable FSC {p, q, s0}, s0 ∈ S, that satisfies

C({p, q}) = C({p, q}), we have C({p, q, s0}) ∈ Rc for all s0 ∈ S, i.e., the
capacity is a computable real number. This means that there exists an al-

gorithm for the inputs p, q that computes the desired approximation of the

number C({p, q, s0}). In general, this algorithm does not depend recursively

on the input {p, q}. Theorem 19 actually shows that this dependency must

be non-recursive in general, since C({p, q, s0}) is not even Banach-Mazur

computable in {p, q, s0}.

Remark 31. If there exist {p̂, q̂} ∈ Pc × Qc and s0 ∈ S such that

C({p̂, q̂, s0}) /∈ Rc, then this is the strongest form of non-computability, since

then the value C({p̂, q̂, s0}) is not algorithmically computable although the

parameters {p̂, q̂} ∈ Pc × Qc are computable real numbers. In [33, 37] it

has been shown that there exist computable compound and averaged chan-

nels, where the state set is countably infinite, for which this phenomenon

appears, i.e., there are computable compound and averaged channels such

that their capacities are not computable real numbers. This implies that for

certain fixed computable compound or averaged channels, there exists no

algorithm for the computation of the capacity. In [33] it has been further

shown that such channels can be constructed based on binary symmetric

channels. In addition to that, it has been shown that the achievability part,

i.e., the coding part, cannot be constructive, i.e., there is no algorithm that

can construct the corresponding encoder and decoder. This is particularly

interesting to observe given the recent progress in polar codes that can

construct algorithmically capacity-achieving encoder and decoder for fixed

computable binary symmetric channels. The result in [33] on the other hand

shows that this is no longer possible in general for compound and averaged

channels.

Non-computability and non-approximability of the FSC capacity 107

Some further comments are in order:

• There are several definitions of computable functions which are not

equivalent in general.

• The notion of Banach-Mazur computability is the weakest notion of

computability.

• From a practical point of view, it is not clear if it makes sense to further

weaken the requirements of Banach-Mazur computable functions.

• It is common sense that a computable function should map com-

putable numbers from its domain to computable numbers within its

value range.

To this end, it is interesting to observe that computable compound

and averaged channels need not necessarily satisfy this basic requirement,

cf. [33], where computable channels are constructed whose capacities are

non-computable real numbers.

5. FSC capacity as an optimization problem

Let us go back one more time to Theorem 19 and its proof, where we analyzed

the capacity function C({p, q, s0}) : Pc ×Qc × S → R. We have shown that

the capacity function C({p, q, s0}) is discontinuous for certain s0 ∈ S and

computable p ∈ Pc and q ∈ Qc.

Theorem 32. For all |X | ≥ 2, |Y| ≥ 2, and |S| ≥ 2, the capacity function

C : P ×Q× S → R is discontinuous.

Proof. We consider the channels p(yn|xn, 0), p(yn|xn, 1), q̂(yn|xn, 0), and

q̂(yn|xn, 1) as in (11) and (12).

Next, we consider {p, qk, s0} for k ≥ 1 with

(19) qk(sn|xn, 0)=
(
1− 1

k+1
1

k+1

)
, qk(sn|xn, 1)=

(1
k+1

1− 1
k+1

)
.

We observe that the FSC {p, qk, s0}, s0 ∈ S, k ≥ 1, as defined above is

indecomposable. Further, qk is obviously computable, i.e., qk ∈ Qc, and

further independent of xn ∈ X .

Next, we need a concept of distance. For p(1), p(2) ∈ Pc and q(1), q(2) ∈ Qc

we define the distance between the FSCs {p(1), q(1), s0} and {p(2), q(2), s0}

108 Holger Boche et al.

as

d({p(1), q(1), s0}, {p(2), q(2), s0})
= max

x∈X

∑
y∈Y

∣∣p(1)(y|x, s0)− p(2)(y|x, s0)
∣∣

+max
x∈X

∑
s∈S

∣∣q(1)(s|x, s0)− q(2)(s|x, s0)
∣∣.

(20)

For FSCs as defined in (11)–(19), we have for any s0 ∈ S,
d({p, q̂, s0}, {p, qk, s0}) = 2

k+1 .

Next, let us assume that C({p, q, s0}), s0 ∈ {0, 1}, is Banach-Mazur
computable on Pc × Qc. Then this would require that both capacities for
s0 = 0 and s0 = 1 are continuous functions on Pc × Qc. In particular, we
must have limk→∞C({p, qk, 0}) = C({p, q, 0}) and limk→∞C({p, qk, 1}) =
C({p, q, 1}).

Since for all k ∈ N the FSC {p, qk, s0}, s0 ∈ S, is indecomposable, we
have C({p, qk, 0}) = C({p, qk, 1}) and further obtain

1 = C({p, q, 0}) = lim
k→∞

C({p, qk, 0}) = lim
k→∞

C({p, qk, 1})

= C({p, q, 1}) = CBSC(ε) = 1−H2(ε) < 1

which is a contradiction. Accordingly, at least one of the functions
C({p, q, 0}) or C({p, q, 1}) must be discontinuous proving the desired re-
sult.

This allows us to obtain the following result.

Theorem 33. Let |X | ≥ 2, |Y| ≥ 2, and |S| ≥ 2 be arbitrary. Then there
is no natural number n0 ∈ N such that the capacity C({p, q, s0}) can be
expressed as

(21) C({p, q, s0}) = max
u∈U

F (u, p, q, s0)

with U ⊂ Rn0 a compact set and F : U × P × Q × S → R a continuous
function.

Sketch of Proof. The result can be shown similarly as in [38]. The crucial
observation is the following: To be able to express the capacity C({p, q, s0})
as in (21), the capacity necessarily needs to be a continuous function which
cannot be the case by Corollary 32.

Non-computability and non-approximability of the FSC capacity 109

Remark 34. Theorem 33 further immediately implies that the capacity
C cannot be expressed by a finite multi-letter formula. As a consequence,
if C can be described by entropic quantities, then this must be done via
a corresponding sequence. Accordingly, the characterization via a limit of
multi-letter expressions cannot be simplified and there is no closed form
solution possible in general for the capacity of FSCs.

6. Discussion and open problems

In this paper, we have studied the capacity of FSCs and we have shown
that the capacity function C({p, q, s0}) is not Banach-Mazur computable.
As a consequence, the capacity does not depend recursively on the system
parameters {p, q, s0} and it is impossible to algorithmically compute the ca-
pacity C({p, q, s0}). We have further shown that we cannot find tight lower
and upper bounds on the capacity that are simultaneously computable con-
tinuous functions or Borel computable functions, respectively. This means
that either the achievability or the converse (or both) must result in non-
computable lower or upper bounds. It is not known which of them is actually
non-computable for the FSC and, accordingly, the implications on the infor-
mation theoretic approaches of the achievability and converse are unknown.
Furthermore, the capacity is also shown to be non-approximable, i.e., it is
impossible to approximate the capacity by computable sequences of com-
putable functions for certain approximation errors.

For certain applications however, algorithmically computing the capacity
of an FSC might be more than is actually needed. For example for resource
allocation, it is often sufficient to know whether or not the current channel
supports a certain quality-of-service (QoS) requirement λ. Accordingly, the
following question is of interest:

Question 5: Is there an algorithm (or Turing machine) that takes the
FSC {p, q, s0} and the QoS requirement λ > 0 as inputs and outputs
“yes” if C({p, q, s0}) > λ and outputs “no” if C({p, q, s0}) < λ?

This is a decision problem where the Turing machine decides whether
or not an FSC supports a certain QoS requirement. Note that this Turing
machine necessarily needs to stop for all possible inputs. However, it is not
clear if this problem is decidable and that such a Turing machine actually
exists. In such a case, one may be inclined to weaken the question as follows:

110 Holger Boche et al.

Question 6: Is there an algorithm (or Turing machine) that takes
the FSC {p, q, s0} and the QoS requirement λ > 0 as inputs and stops
if C({p, q, s0}) > λ?

This modified question asks whether or not it is semidecidable. Here, the

Turing machine must only stop and output the correct answer if the FSC

supports the QoS requirement, i.e., C({p, q, s0}) > λ. In the other case, it

does not stop and runs forever. It is clear that one can pose this question

also in the opposite way by requiring the Turing machine to stop only if

C({p, q, s0}) < λ.

There are several communication scenarios and channels whose capac-

ity functions are not Turing computable, but their corresponding decision

problems are semidecidable, cf. [39]. It is of interest to study such questions

also for FSCs.

We want to conclude by coming back one more time to Kailath’s work

in information theory and the characterization of time-variant channels. In

this case, the corresponding characterizations of capacities according to our

results remain unknown. But as already mentioned in the introduction, there

are further connections to the effective analysis and constructive mathemat-

ics. Here, the aim is to solve certain mathematical questions effectively, i.e.,

with the help of algorithms.

Recently, impressive progress has been made in the theory of time-

variant channels. For a detailed discussion we refer to [40]. For example,

progress in the design of test signals for channel identification [41, 42], ex-

tension to the multiple-input multiple-output (MIMO) case [43, 44], stochas-

tic channels [45, 46], channels with unknown carrier [43, 47], constraints on

the channel estimation [48], and others. These results address many of the

problems discussed in [2] and provide solutions based on classical analysis.

In these works, methods such as distribution theory have been used that

are not effective in general. This means that only the existence of certain

strategies has been shown without the provision of effective algorithms or

proofs. Note that this does not immediately exclude the possibility of a

constructive characterization. But we want to note that in [49] computable

absolutely integrable band-limited signals have been constructed, which are

then also computable signals in L2(R), for which the bandwidth B(f) is

not a computable real number. It is not clear if this yields the impossi-

bility of effective characterizations of the results in the above mentioned

works.

Non-computability and non-approximability of the FSC capacity 111

Acknowledgment

Holger Boche would like to thank Volker Pohl for insightful discussions on

time-continuous channels. He would like to further thank Robert Schober

for interesting and fruitful discussions on the application of FSCs and time-

continuous channels in molecular communication.

This work of H. Boche was supported in part by the German Federal

Ministry of Education and Research (BMBF) within the national initiative

for “Molecular Communication (MAMOKO)” under Grant 16KIS0914 and

in part by the German Research Foundation (DFG) within the Gottfried

Wilhelm Leibniz Prize under Grant BO 1734/20-1 and within Germany’s

Excellence Strategy – EXC-2111 – 390814868. This work of R. F. Schaefer

was supported in part by the BMBF within the national initiative for “Post

Shannon Communication (NewCom)” under Grant 16KIS1004 and in part

by the DFG under Grant SCHA 1944/6-1. This work of H. V. Poor was

supported by the U.S. National Science Foundation under Grants CCF-

0939370, CCF-1513915, and CCF-1908308.

This paper was presented in part at the IEEE Information Theory Work-

shop (ITW), Visby, Sweden, Aug. 2019 [50] and in part at the National Re-

search Meeting on Molecular Communications at the Friedrich-Alexander-

Universität Erlangen-Nürnberg, Germany, Dec. 2018.

References

[1] R. G. Gallager, Information Theory and Reliable Communication. New

York, NY, USA: John Wiley & Sons, Inc., 1968.

[2] T. Kailath, “Sampling models for linear time-variant filters,” Mas-

sachusetts Institute of Technology, Research Laboratory of Electronics,

Tech. Rep. 352, May 1959.

[3] T. Kailath, “Correlation detection of signals perturbed by a random

channel,” IRE Trans. Inf. Theory, vol. 6, no. 3, pp. 361–366, Jun. 1960.

MR0119378

[4] T. Kailath, “Communication via randomly varying channels,” The-

sis, Massachusetts Institute of Technology, 1961. [Online]. Available:

http://hdl.handle.net/1721.1/11319

[5] T. Kailath, “Measurements on time-variant communication channels,”

IRE Trans. Inf. Theory, vol. 8, no. 5, pp. 229–236, Sep. 1962.

http://www.ams.org/mathscinet-getitem?mr=0119378
http://hdl.handle.net/1721.1/11319

112 Holger Boche et al.

[6] T. Kailath, “Time-variant communication channels,” IEEE Trans. Inf.

Theory, vol. 9, no. 4, pp. 233–237, Oct. 1963.

[7] T. Nakano, A. W. Eckford, and T. Haraguchi, Molecular Communica-

tion. Cambridge, UK: Cambridge University Press, 2013.

[8] D. Blackwell, “Information theory,” inModern Mathematics for the En-

gineer: Second Series, E. F. Beckenbach and M. R. Hestenes, Eds. New

York: McGraw-Hill Book Company, 1961, pp. 183–193. MR0129161

[9] R. Ahlswede and A. H. Kaspi, “Optimal coding strategies for cer-

tain permuting channels,” IEEE Trans. Inf. Theory, vol. IT-33, no. 3,

pp. 310–314, May 1987. MR0885398

[10] K. Kobayashi and H. Morita, “An input/output recursion for the

trapdoor channel,” in Proc. IEEE Int. Symp. Inf. Theory, Lausanne,

Switzerland, Jun. 2002, p. 423.

[11] H. Permuter, P. Cuff, B. Van Roy, and T. Weissman, “Capacity of the

trapdoor channel with feedback,” IEEE Trans. Inf. Theory, vol. 54,

no. 7, pp. 3150–3165, Jul. 2008. MR2450817

[12] D. Blackwell, L. Breiman, and A. J. Thomasian, “Proof of Shannon’s

transmission theorem for finite-state indecomposable channels,” Ann.

Math. Statist., vol. 29, no. 4, pp. 1209–1220, 1958. MR0118570

[13] A. J. Goldsmith and P. P. Varaiya, “Capacity, mutual information,

and coding for finite-state Markov channels,” IEEE Trans. Inf. Theory,

vol. 42, no. 3, pp. 868–886, May 1996.

[14] A. Lapidoth and I. E. Telatar, “The compound channel capacity of a

class of finite-state channels,” IEEE Trans. Inf. Theory, vol. 44, no. 3,

pp. 973–983, May 1998. MR1616663

[15] Z. Aharoni, O. Sabag, and H. H. Permuter, “Computing the feedback

capacity of finite state channels using reinforcement learning,” in Proc.

IEEE Int. Symp. Inf. Theory, Paris, France, Jul. 2019, pp. 837–841.

[16] S. Verdú and T. S. Han, “A general formula for channel capacity,” IEEE

Trans. Inf. Theory, vol. 40, no. 4, pp. 1147–1157, Jul. 1994.

[17] A. M. Turing, “On computable numbers, with an application to the

Entscheidungsproblem,” Proc. London Math. Soc., vol. 2, no. 42,

pp. 230–265, 1936. MR1577030

[18] A. M. Turing, “On computable numbers, with an application to the

http://www.ams.org/mathscinet-getitem?mr=0129161
http://www.ams.org/mathscinet-getitem?mr=0885398
http://www.ams.org/mathscinet-getitem?mr=2450817
http://www.ams.org/mathscinet-getitem?mr=0118570
http://www.ams.org/mathscinet-getitem?mr=1616663
http://www.ams.org/mathscinet-getitem?mr=1577030

Non-computability and non-approximability of the FSC capacity 113

Entscheidungsproblem. A correction,” Proc. London Math. Soc., vol. 2,
no. 43, pp. 544–546, 1937. MR1575661

[19] K. Weihrauch, Computable Analysis – An Introduction. Berlin, Heidel-
berg: Springer-Verlag, 2000. MR1795407

[20] K. Gödel, “Die Vollständigkeit der Axiome des logischen Funktio-
nenkalküls,” Monatshefte für Mathematik, vol. 37, no. 1, pp. 349–360,
1930. MR1549799

[21] K. Gödel, “On undecidable propositions of formal mathematical sys-
tems,” Notes by Stephen C. Kleene and Barkely Rosser on Lectures at
the Institute for Advanced Study, Princeton, NJ, 1934.

[22] S. C. Kleene, Introduction to Metamathematics. Van Nostrand, New
York: Wolters-Noordhoffv, 1952.

[23] M. Minsky, “Recursive unsolvability of Post’s problem of ‘tag’ and
other topics in theory of Turing machines,” Ann. Math., vol. 74, no. 3,
pp. 437–455, 1961. MR0140405

[24] J. Avigad and V. Brattka, “Computability and analysis: The legacy of
Alan Turing,” in Turing’s Legacy: Developments from Turing’s Ideas
in Logic, R. Downey, Ed. Cambridge, UK: Cambridge University Press,
2014. MR3497656

[25] M. B. Pour-El and J. I. Richards, Computability in Analysis and
Physics. Cambridge: Cambridge University Press, 2017.

[26] D. Elkouss and D. Pérez-Garćıa, “Memory effects can make the trans-
mission capability of a communication channel uncomputable,” Nature
Communications, vol. 9, no. 1, p. 1149, Mar. 2018.

[27] M. Agarwal, “Non-existence of certain kind of finite-letter mutual infor-
mation characterization for a class of time-invariant Markoff channels,”
2018, available online at arXiv:1804.05977.

[28] R. I. Soare, Recursively Enumerable Sets and Degrees. Berlin, Heidel-
berg: Springer-Verlag, 1987. MR0882921

[29] W. Rudin, Real and Complex Analysis, 3rd ed. McGraw-Hill Higher
Education, 1987. MR0924157

[30] E. Specker, “Nicht konstruktiv beweisbare Sätze der Analysis,” Journal
of Symbolic Logic, vol. 14, no. 3, pp. 145–158, Sep. 1949. MR0031447

[31] R. L. Dobrushin, “General formulation of Shannon’s main theorem in

http://www.ams.org/mathscinet-getitem?mr=1575661
http://www.ams.org/mathscinet-getitem?mr=1795407
http://www.ams.org/mathscinet-getitem?mr=1549799
http://www.ams.org/mathscinet-getitem?mr=0140405
http://www.ams.org/mathscinet-getitem?mr=3497656
https://arxiv.org/abs/arXiv:1804.05977
http://www.ams.org/mathscinet-getitem?mr=0882921
http://www.ams.org/mathscinet-getitem?mr=0924157
http://www.ams.org/mathscinet-getitem?mr=0031447

114 Holger Boche et al.

information theory,” Amer. Math. Soc. Trans., vol. 33, pp. 323–438,
1963.

[32] T. S. Han and S. Verdú, “Approximation theory of output statis-
tics,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 752–772, May 1993.
MR1237714

[33] H. Boche, R. F. Schaefer, and H. V. Poor, “Communication under chan-
nel uncertainty: An algorithmic perspective and effective construction,”
IEEE Trans. Signal Process., vol. 68, pp. 6224–6239, 2020.

[34] H. Boche, R. F. Schaefer, S. Baur, and H. V. Poor, “On the algorith-
mic computability of the secret key and authentication capacity under
channel, storage, and privacy leakage constraints,” IEEE Trans. Signal
Process., vol. 67, no. 17, pp. 4636–4648, Sep. 2019. MR3999784

[35] H. Boche, R. F. Schaefer, and H. V. Poor, “Identification capacity
of channels with feedback: Discontinuity behavior, super-activation,
and Turing computability,” IEEE Trans. Inf. Theory, vol. 66, no. 10,
pp. 6184–6199, Oct. 2020.

[36] H. Boche, R. F. Schaefer, and H. V. Poor, “Coding for non-iid sources
and channels: Entropic approximations and a question of Ahlswede,”
in Proc. IEEE Inf. Theory Workshop, Visby, Sweden, Aug. 2019, pp.
1–5.

[37] H. Boche, R. F. Schaefer, and H. V. Poor, “Robust transmission over
channels with channel uncertainty: An algorithmic perspective,” in
Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process., Barcelona,
Spain, May 2020, pp. 5230–5234.

[38] H. Boche, R. F. Schaefer, and H. V. Poor, “Identification capacity of
correlation-assisted discrete memoryless channels: Analytical proper-
ties and representations,” in Proc. IEEE Int. Symp. Inf. Theory, Paris,
France, Jul. 2019, pp. 470–474.

[39] H. Boche, R. F. Schaefer, and H. V. Poor, “Resource allocation for
secure communication systems: Algorithmic solvability,” in Proc. 11th
IEEE Int. Workshop Inf. Forensics Security, Delft, The Netherlands,
Dec. 2019, pp. 1–6.

[40] D. Walnut, G. E. Pfander, and T. Kailath, “Cornerstones of sampling
of operator theory,” in Excursions in Harmonic Analysis, Volume 4:
The February Fourier Talks at the Norbert Wiener Center, R. Balan,
M. Begué, J. J. Benedetto, W. Czaja, and K. A. Okoudjou, Eds. Cham:
Birkhäuser, 2015, pp. 291–332. MR3381038

http://www.ams.org/mathscinet-getitem?mr=1237714
http://www.ams.org/mathscinet-getitem?mr=3999784
http://www.ams.org/mathscinet-getitem?mr=3381038

Non-computability and non-approximability of the FSC capacity 115

[41] J. Lawrence, G. E. Pfander, and D. Walnut, “Linear independence of
gabor systems in finite dimensional vector spaces,” J Fourier Anal.
Appl., vol. 11, no. 6, pp. 715–726, Dec. 2005. MR2190681

[42] G. E. Pfander and D. Walnut, “Measurement of time-variant linear
channels,” IEEE Trans. Inf. Theory, vol. 52, no. 11, pp. 4808–4820,
Nov. 2006. MR2300357

[43] G. E. Pfander and D. Walnut, “Sampling and reconstruction of opera-
tors,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 435–458, Jan. 2016.
MR3447991

[44] D. G. Lee, G. E. Pfander, and V. Pohl, “Sampling and reconstruction of
multiple-input multiple-output channels,” IEEE Trans. Signal Process.,
vol. 67, no. 4, pp. 961–976, Feb. 2019. MR3920641

[45] G. E. Pfander and P. Zheltov, “Identification of stochastic operators,”
Appl. Comput. Harmon. Anal., vol. 36, no. 2, pp. 256–279, Mar. 2014.
MR3153656

[46] G. E. Pfander and P. Zheltov, “Sampling of stochastic operators,” IEEE
Trans. Inf. Theory, vol. 60, no. 4, pp. 2359–2372, Apr. 2014. MR3181530

[47] R. Heckel and H. Bölcskei, “Identification of sparse linear operators,”
IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 7985–8000, Dec. 2013.
MR3142277

[48] D. G. Lee, G. E. Pfander, V. Pohl, and W. Zhou, “Identification of
channels with single and multiple inputs and outputs under linear
constraints,” Linear Algebra Appl., vol. 581, pp. 435–470, Nov. 2019.
MR3987985

[49] H. Boche and U. J. Mönich, “Effective approximation of bandlimited
signals and their samples,” in Proc. IEEE Int. Conf. Acoustics, Speech,
Signal Process., Barcelona, Spain, May 2020, pp. 5590–5594.

[50] H. Boche, R. F. Schaefer, and H. V. Poor, “On the structure of the
capacity formula for general finite state channels with applications,” in
Proc. IEEE Inf. Theory Workshop, Visby, Sweden, Aug. 2019, pp. 1–5.

http://www.ams.org/mathscinet-getitem?mr=2190681
http://www.ams.org/mathscinet-getitem?mr=2300357
http://www.ams.org/mathscinet-getitem?mr=3447991
http://www.ams.org/mathscinet-getitem?mr=3920641
http://www.ams.org/mathscinet-getitem?mr=3153656
http://www.ams.org/mathscinet-getitem?mr=3181530
http://www.ams.org/mathscinet-getitem?mr=3142277
http://www.ams.org/mathscinet-getitem?mr=3987985

116 Holger Boche et al.

Holger Boche

Institute of Theoretical Information Technology

Technische Universität München

Munich

Germany

Munich Center for Quantum Science and Technology (MCQST)

Munich

Germany

E-mail address: boche@tum.de

Rafael F. Schaefer

Information Theory and Applications Chair

Technische Universität Berlin

Berlin

Germany

E-mail address: rafael.schaefer@tu-berlin.de

H. Vincent Poor

Department of Electrical Engineering

Princeton University

Princeton, NJ 08544

USA

E-mail address: poor@princeton.edu

Received February 9, 2020

mailto:boche@tum.de
mailto:rafael.schaefer@tu-berlin.de
mailto:poor@princeton.edu

	Introduction
	Computability framework
	Computable real numbers and functions
	Computable sequences of numbers and functions

	Finite state channels
	Basic definitions
	General capacity formulas
	Indecomposable channels
	Main problem formulation

	Computability analysis of the FSC capacity
	Non-Banach-Mazur computability
	Capacity being a computable real number

	FSC capacity as an optimization problem
	Discussion and open problems
	Acknowledgment
	References

