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With the explosion of big data, Deep Learning has become the

main stream of the machine learning and AI research and develop-

ment. However, its back-propagation learning paradigm relies on

the traditional optimization of externally-supervised metrics, lim-

iting its option to improve the network design structurally. To rec-

tify this problem, we augment the BP-Learning with a structural

learning paradigm: XAI-Learning, abbreviated as X-Learning. In

order to come up with high-performing learning models with lower

structural complexity, X-Learning places its focus on local learn-

ing/ranking of individual neurons in hidden layers. It pioneers the

use of backward-broadcast so that the teacher values become di-

rectly and locally accessible to all hidden layers, making feasible the

so-called output-residual learning. This is conceptually dual to the

input-residual learning, advocated by ResNet. The local teacher

permits the computation of local optimization metrics (LOM) to

facilitate the ranking of hidden neurons. Such a ranking provides

a theoretical footing of our structural learning paradigm, based on

a notion of structural gradient. This ultimately leads to an evo-

lutionary X-Learning strategy to jointly learn the structure and

parameters of the learning models. The purpose is to reduce the

network complexity while preserving (if not outright improving)

its accuracy performance.

X-Learning can be applied to numerous applications, with either

classification or regression formulation. Moreover, it outperforms

prominent state-of-the-art approaches. To highlight its superior-

ity, we shall showcase three key comparisons: (a) for ImageNet

classification, X-Learning edges the 2018 LPIRC winner; (b) for

regression, X-Learning outperforms the 2018 PIRM winner in im-

age super-resolution; and (c) for finger-printing, our hierarchical

HSRN CNN outperforms SRGAN by 1.5 dB in PNSR. In addi-

tion, to demonstrate its broad spectrum of applications, we present

more examples in classification (e.g. ImageNet), in regression (e.g.

DIV2K), and in (classification/regression) mixed domain-driven

problems (e.g. Oxford Flower Dataset).
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1. Introduction

In the beginning, the prevailing AI inferencing approach was built upon
the rule-based expert systems, i.e. AI1.0. It relied on the collective domain-
knowledge from all the domain-experts. However, inadequacy of rule-based
inferencing systems was quickly and widely recognized. In the 80’s, re-
searchers in neural networks have shun away from expert systems and moved
wisely towards the data-driven machine learning paradigm. Neural networks
have undergone two stages of technological evolution:

• Multi-Layer Perceptron (MLP): On the neural network fronts,
the focus of mainstream research study has been placed on supervised-
learning networks. Most methods follow an external learning paradigm,
in which the whole neural network can be viewed as a black-box, char-
acterized by its internal structure/parameters. Traditionally, the goal
of machine learning is to probe into the black-box by means of some
(externally supervised) optimization metrics.
In the first generation, pioneering supervised learning networks include
the perceptron and multi-layer perceptron [30, 26, 23, 25], among many
others. The multi-layer perceptron (MLP) is traditionally trained by
the Back-Propagation (BP) learning algorithm. In fact, for NN1.0, BP
is exclusively adopted for the task of label engineering. The vital task
of feature engineering depends fully on the domain experts on, say,
speech, image etc. Namely, machine learning plays no role in the pro-
cess of feature extraction. This is to a good degree the reason why MLP
and NN1.0 failed to come up with major commercial breakthroughs.

• Deep Learning Networks: In the second generation, the net-
work structure is being evolved in to a relatively more complex Con-
volutional Neural Network (CNN), comprising of ConvNet layers and
MLP layers. Le Cun et al. [15] proposed to learn an end-to-end map-
ping throughout the CNN between input and desired response. Just
like MLP, the training of CNN is again based on the Back-Propagation
(BP) algorithm. It is worth stressing that CNN can effectively cope
with both the tasks of feature engineering (performed by ConvNet)
and label engineering (handled by the MLP). Such a configuration of
the total system is depicted in Figure 1. Note that CNN training pro-
cess is accomplished by back-propagating learning gradients from the
last layer back to the first input layer.
Since the headline event in 2016 that a top professional GO player
lost to the learning-based AlphaGo, Deep Learning has been broadly
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recognized as the state-of-the-arts machine learning technology and de
facto synonymous to AI2.0. It has successfully (and effortlessly) sub-
stituted many traditional approaches to many signal/speech/image
applications, and, moreover, catalyzed numerous new business adven-
tures. It has since successfully replaced many traditional information
processing tools, and, moreover, catalyzed numerous new business ad-
ventures. Nowadays, deep learning has rapidly gained a lot of attention
from the AI research community and has been tremendously successful
in AI industries.

Figure 1: A total system comprise of two sub-systems: feature engineering
and label engineering, respectively. The same configuration applies also to
domain-driven imaging systems, discussed in Section 8.2.

2. Input/output residual learning to allay curse-of-depth

BP has been the most prevailing algorithm for parameter learning in neural
networks. However, it involves propagating the error signal (the gradient)
across too many layers. Consequently, it suffers from the curse of depth
in deep learning which is gravely detrimental to the learning process. On
the other hand, a new research front, named Explainable AI (XAI), has
recently received a great deal of attention. It advocates exploring Explain-
ability by fully harnessing the rich information embedded in the (internal)
hidden neurons. XAI-Learning precipitates a local learning paradigm which
is the major theme of our discussion. Furthermore, local learning is concep-
tually coupled with a notion of residual learning which focuses the (future)
learning endeavour on what is being missed in the previous learning effort.
Two types of residual learning can be exploited:

• Input-Residual Learning.
• Output-Residual Learning.
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Figure 2: Three types of skips to help mitigate the curse of depth in deep
learning: (a) forward skips (b) backward broadcast (BB) (c) dual skips.

2.1. Forward skips and input residual learning

He et al. [7] “reformulate the layers as learning residual functions with ref-
erence to the layer inputs, instead of learning unreferenced functions.” This
leads to an (input) “residual learning framework to ease the training of
networks that are substantially deeper.” With reference to the addition op-
eration ⊕, shown in Figure 2(a), the input residual is defined as “input to
the next layer minus the highway-skipped input of the previous layer”. With
the forward skips making the input of the previous layer directly accessible
as a reference for the input of next layer, the residue is just the output of
the preceding layer. It leads to “local residual learning” paradigm because
the residual learning responsibility falls mainly on the preceding layer. In
fact, He et al. [7] showed that “these residual networks are easier to opti-
mize, and can gain accuracy from considerably increased depth.” Note that
the forward skips are required to be installed for both training and testing
phases.

2.2. Backward broadcast (BB) and output residual learning

As a dual notion, from output perspective, residues may also be created
with respect the teachers as opposed to the input. This leads to an output
residual learning framework. With reference to Figure 2(b), the backward s
broadcast (BB) makes the teacher directly accessible to every hidden layer.
The highway-skipped output-teacher can be used as a local teacher to facili-
tate local learning. This induces a notion of output residues which is dual
to input-residues adopted in ResNet.
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Denote the teacher matrix by Y and the neuron data matrix by A. The
activation values in a hidden layer can be partitioned into two parts:

• The first part, denoted as Span(Y/A), represents teacher-relevant
information already spanned/covered by the current layer.

• The second part, denoted as Res(Y|A), represents the information
still impenetrable by the current layer and thus requires continued
learning via the subsequent layers. This is theoretically rooted in esti-
mation theory, with the same connotation as the innovation process [9].

This process will be collectively referred to as Output-Residual-Learning
because the leakage (i.e. residue) missed by the learning within the cur-
rent layer has to be passed over to subsequent layers for further learning.
With the backward broadcast (BB) making the teacher directly accessible
to all hidden layers, the continued learning in all the subsequent layers can
be focused on the output residue (= Res(Y|A)). Thus, the curse-of-depth
problems (e.g. the vanishing gradients) can be greatly mitigated.

It is vital to note that the backward broadcast (BB) is needed only for
the training phase. However, they will not be required in the testing phase.

3. Optimization formulations/metrics for classification and
regression

ML systems are usually based on optimization formulation; so it is impera-
tive to establish a suitable optimization metric (i.e. objective function).

3.1. Discriminant analysis for multivariate classification

Linear separability is commonly used as a guideline to define the discriminate
ratio. For the scalar single-variate case, the most prominent being Fisher
Discriminate Ratio (FDR). For classification, we propose a Discriminant
Information (DI), a multivariate variant of FDR to measure the input layer’s
or a hidden-layer’s discriminativeness. DI also proves to be vital for us to
derive a DiLOSS metric allowing us to identify uninformative channels whose
removal would be least detrimental to the performance.

3.1.1. Scatter matrices for scalar/matrix cases For classification
problems, the training dataset consists of a set of input/output pairs de-
noted as [X,Y ] = [x1, y1], [x2, y2], . . . , [xN , yN ] where a teacher value, yt,
is assigned to each training vector xt, for t = 1, · · · , N . Let L denote the
number of different classes with N� denoting the number of training vectors
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associated with the l-th class, l = 1, · · · , L, and teacher values are discrete
labels, i.e. yt ∈ class labels. Denote the “center-adjusted” scatter matrix
as S̄ ≡ X̄X̄T , which can be additively divided into two parts [5]:

S̄ = SB + SW(1)

where within-class/between-class scatter matrix SW /SB are:

SW =

L∑

�=1

N�∑

j=1

[x
(�)
j −−→μ �][(x

(�)
j −−→μ �]

T(2)

SB =

L∑

�=1

N� [
−→μ � −−→μ ][−→μ � −−→μ ]T ≡ ΔΔT(3)

where −→μ denotes the mass center, −→μ � denotes the cluster centroid of the
�th class (� = 1, · · · , L), and JW and Δ ∈ �M×L represents the between-
centroids matrix. In supervised learning, a feature’s relevance is commonly
represented by its SNR (Signal-to-Noise ratio) score, defined as the ratio of
signal (inter-class distinction) to noise (intra-class perturbation). This leads
to a notion named “Discriminant Matrix”:

DM = [S̄+ ρI]−1SB(4)

where ρ is the same as the ridge parameter used in the classic ridge regres-
sion, cf. Eq. (13).

3.1.2. Single-variate case: Fisher discriminant ratio (FDR) Let aj
denote the scalar activation value of one node/channel and

S̄ = J̄ =

N∑

j=1

(aj − μ)2(5)

where JB are special cases of SW and SB :

SW = JW =

L∑

�=1

N�∑

j=1

(a
(�)
j − μ�)

2, SB = JB =

L∑

�=1

N� (μ� − μ)2

Traditionally, for the scalar single-variate case, Fisher Discriminant Ratio
(FDR) is defined as FDR = JB

JW
. Note that J̄ = JB + JW , cf. Eq. (5). This
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Figure 3: This figure illustrates the usage of FDR, which represents the ratio
between signal to noise. (Signal is the between-class distance, and noise is
the within-class spread.) In this example, x(1) has higher FDR than x(2).

equality allows us to adopt an equivalent denotation that FDR = S̄−1SB =
JB

J̄
. Numerically, it is common to incorporate a ridge parameter ρ into the

denominator S̄, resulting in S̄+ ρI. In the single-variate case, this yields

FDR = (S̄+ ρI)−1SB =
JB

J̄ + ρ
(6)

As illustrated in Figure 3, the scalar FDR ratio provides a simple score to

assess how effective a feature is for the purpose of class separation.

3.1.3. Two multivariate variants of FDR For multivariate classifica-

tion, there are two variants of FDRs being proposed:

• Determinant FDR (DFDR): C.R. Rao [24] proposed a Deter-

minant FDR (DFDR) based on the determinant of the Discriminant

Matrix in Eq. (4):

DFDR = det
(
[S̄+ ρI]−1SB

)
(7)

• Trace FDR (TFDR): In relatively recent years, a Trace-FDR

(TFDR) based on the trace-norm of the Discriminant Matrix was pro-

posed [29, 13, 11]

TFDR = DI = tr
(
[S̄+ ρI]−1SB

)
(8)

It can be shown that TFDR is theoretically related to Shannon’s mutual

information [27, 13]. Thus, for notational convenience, TFDR can be simply

called Discriminant Information (DI).
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Comparison of Two Multivariate FDR: DFDR vs. TFDR: Both
DFDR and TFDR are transformation invariant, an imperative attribute for
qualifying to be an effective metric to evaluate the discriminativeness of a
layer. However, TFDR holds some additional merits over DFDR:

• Subspace Analysis: We note that removal of a neuron may actually
increases DFDR, rendering it unsuitable for assessing the dispensabil-
ity/usefulness of a neuron. For classification, the presence/absence of
inter-channel redundancy hinges upon a mathematical condition called
“Canonical Orthogonality” coin-phrased by C.R. Rao [24, 11]. Under
such a condition, TFDR holds a vital Sum-Of-The-Parts (SOTP) prop-
erty. Put simply, under the condition, the total TFDR score is equal
to the sum of individual TFDR scores. The SOTP property implies
that TFDR monotonically grows with the number of components. It
means that removal of any neuron will result in monotocous decrease in
TFDR. (Obviously, we would prefer to drop the neurons which would
induce less decrease.) This makes TFDR a useful criterion to evaluate
the dispensability of any individual neuron(s).

• Derivative Analysis: TFDR has a simple formula for it first order
derivative with respect to each neuron activation function: DiLOSS,
cf. Section 4.2. Obviously, we would prefer to drop the neurons with
smaller DiLOSS. This makes the derivative of TFDR (named DiLOSS)
a useful score to rank-order the neurons within the same layer.

3.1.4. Reformulate classification into regression problems For the
regression case, the corresponding teacher values are continuous, and usually,
in the Real field (�). Therefore, both the input and teachers have real values
leading naturally to a real-valued External Optimization Metric (EOM). In
order to link the classification and regression formulations, it is necessary to
convert discrete teacher values into continuous teacher values.

Theorem 1 (Equivalence Between DI and RidgeLSE). Let X be the input
matrix formed from all input vectors and Y be the teacher matrix formed
from desired outputs prescribed by the teacher values. For both the balanced
and unbalanced scenarios (i.e. with unequal sizes), equivalence between DI
and Ridge LSE can be preserved by harnessing a weighted-one-hot-encoding,
where the teacher values will replaced by

√
Ni

−1
instead of “1” as in “one-

hot-encoding”. Let Y denote the weighted-one-hot-encoded teacher matrix
with center-adjustment, i.e. each row of Y has zero-mean. It can then be
verified that SB = XYTYXT . Consequently,

DM = [S̄+ ρI]−1[XYTYXT ](9)
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It follows that

DI = tr(DM) = tr
(
[S̄+ ρI]−1[XYTYXT ]

)
(10)

When the optimal solution is reached, we have

RidgeLSE = tr(YTY) − tr(YXT [XXT + ρI]−1XYT )(11)

Combining Eq. (10) and Eq. (11), we have

(12) RidgeLSE = C −DI

where C = tr(YYT ) = L− 1, L denoting the number of different classes.

In summary, assuming weighted-one-hot-encoded the teacher values,
minimizing RidgeLSE and maximizing DI are essentially equivalent [29, 12].

3.2. Multivariate regression analysis

The extension from classification to regression hinges upon the intimate rela-
tion between DI and RidgeLSE: while linear separability can be measured
by DI, the linear mappability can be likewise measured by RidgeLSE. Let
W denote the optimal mapping matrix that best matches X to Y, where X
denotes the data matrix and Y the center-adjusted teacher matrix. Mathe-
matically, W should be best solution to yield a minimum value of the ridge
loss function:

(13) E = −RidgeLSE = −‖(WTX−Y)‖2F − ρ‖W‖2F

where the subscript “F” denotes the Frobenius norm. This effectively con-
verts the classification problem into a regression formulation.

The study so far points to the fact that either DI or RidgeLSE may be
used interchangeably for optimization formulations. For this, we need to re-
define a Regression Matrix for regression in lieu of the previous Discriminant
Matrix meant for classification. Replacing SB in the Discriminant Matrix
(cf. Eq. (9)) by XYTYXT , we obtain the following Regression Matrix :

RM = [S̄+ ρI]−1[XYTYXT ](14)

To maintain notational consistency, we again denote DI = tr(RM) for the
regression case. By inspection, the equivalence between DM in Eq. (9) and
RM in Eq. (14) is evident. Consequently, we have

(15) RidgeLSE = C −DI

where C = tr(YYT ) is the sum of the squared-teacher-values.
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3.3. Equivalence between classification and regression

Conversely, it also means that the RidgeLSE may be used as the objective
function in both problems. The only caution is that the DI-based LOM score
(intended for the classification) should be replaced by an LSE-based LOM
score (for regression). This formally establishes the equivalence between the
DI and RidgeLSE metrics for both classification and regression analyses.
Therefore, we can treat the classification and regression problems in a similar
manner. This means that the same X-Learning strategy (cf. Section 5) will
be valid for both classification and regression applications, i.e. “kill two birds
with one stone”.

3.4. Subspace/component analysis for classification/regression

There will be no surprise by now that the very same subspace/component
analysis can be applied to both classification,and regression problems. Two
popular approaches are elaborated below:

• Discriminant Component Analysis (DCA). DCA has been
shown to provide an effective tool for subspace/component analysis
[13, 11]. DCA components can be derived from the principal eigen-
vectors of DM and RM, respectively for classification and regression
applications

• Ranking Neurons: Selection/Pruning of Components. An-
other component analysis involves finding the most informative or
the most dispensable neurons in the layer. We shall adopt the lat-
ter approach: By trimming some deleterious neurons (evaluated by a
DiLOSS metric), we can efficiently reduce learning models by a X-
pruning method discussed in Section 5.

4. Local optimization metrics (LOM): DI, DiLOSS & DNs

BP is based on optimization of EOM, externally supervised by the teacher
values at the output layer, often used to characterize the discrepancy of
the actual response observed at the output nodes from the desired response
prescribed by the teacher values. Thereafter, based on the first-order gra-
dient of the EOM, BP can be applied to find the EOM-optimized network
parameters. As such, we shall refer BP as an external learning paradigm.

While back-propagation has enjoyed great success in training parameters
in various deep learning networks, it is not amenable to network structure
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learning. So far, the task of designing optimal net structures is more or
less left to trial and error. In order to gain high performance, the resultant
networks tend to be unnecessarily bulky. This could in turn lead to costly
design, rendering it unattractive for mobile/edge applications.

4.1. DI-based structural gradients

An inherent problem with BP is the assumption that all neurons trained by
BP tend to be treated with equal importance, since they all work together
collectively to create a desirable response. Idealistically, we want to have ad-
equate network freedom but not to pay for unnecessary network complexity.
For this, we note three key points:

• not all BP-trained hidden nodes (of the same layer) are created equal
• we must have an analytic metric to rank the neurons
• the ranking should serve as an effective tool to pick neurons to
keep/drop.

To mitigate these concerns, backward broadcast (BB) let the teacher values
become accessible to all the hidden layers directly and locally, paving a way
to output-residual and local learning. The local teacher may now enable
a direct evaluation of LOM to facilitate ranking of the individual nodes.
Thereafter, X-learning can then remove low-score neurons (i.e DNs) and
structurally trim each layer.

LASSO-Type LOM for Structural Learning: It is known that reg-
ularization, e.g., LASSO- and Ridge- types, leads to better generalization.
For the LASSO type, we propose the following structural energy function
for both classification and regression, c.f. Eq. (12) and Eq. (15).

ES = DIlocal − λ|a|0(16)

Model reduction via removal of low-DI nodes: For simplicity, let us
momentarily assume that we remove one neuron at a time, resulting in the
following before/after contrast:

ES = DI − λ‖â‖0 and E′
S = DI ′ − λ‖â′‖0(17)

with ‖â‖0 = N and ‖â′‖0 = N−1 where N denotes the number of (nonzero)
neurons in the layer.
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Now further assume that what differentiate â′ from from â is the re-
moval of its ith neuron. Because DI monotonically decreases with removal
of neuron(s), then ΔDIi = DI ′ −DI ≤ 0. In other words,

ΔES = λ− |ΔDI|i(18)

which means that ES will increase upon removal of the ith neuron only if
|ΔDI|i < λ. This increase energy function allows a notion of greatest-ascent
structural gradient, which can be combined with the conventional parameter
gradient c.f. Figure 4(a). This leads to an evolutionary X-Learning strategy
to jointly learn the structure and parameters of the network. As depicted in
Figure 4, the structural gradient can facilitate effective structure learning.

Figure 4: Two types of gradients: (a) parameter gradients and (b) structural
gradient (via rank-ordering the neurons).

A greedy structural gradient method calls for an optimal structural prun-
ing strategy. There are two intuitively sound schemes to achieve a maximal
increase in ES in each iteration:

• remove only neuron(s) with the least individual loss in |ΔDI| to max-
imize ΔES .

• remove more neuron(s) as long as it increases ES , i.e. when |ΔDI| < λ.

However, these two schemes contradict each other:

• To enforce the first scheme, we need to set the threshold λ lower so
that only (very few of) least-loss neurons get removed in each iteration.
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• To enforce the second scheme, in contrast, we need to set λ higher so

that more neurons may qualify the condition that |ΔDI| < λ.

Thus the threshold λ is usually empirically (not analytically) determined.

4.2. DiLOSS for rank-ordering neurons

In order to expedite the computation of ΔDI, let us introduce a differen-

tiation-friendly vector ã, which is the same as â, the only difference being

that its ith element is scaled by a real value αi: ãi = αiai. It can be verified

that

• when αi = 1, ã = â

• when αi = 0, ã = â′ (now ‖ã‖0 = N − 1).

Since Δαi = −1, we have

|ΔDI|i ≈ |Δαi|
∂DI

∂αi
=

∂DI

∂αi

Recall that DiLOSS is defined as the differentiated DI for both classifi-

cation and regression analyses:1

DiLOSSi ≡ ∂DI

∂αi
(19)

which has a closed-form formula shown below (detail omitted):

• DiLOSS for Classification:

DiLOSSi = 2ρ
(
[S̄+ ρI]−1SB [S̄+ ρI]−1

)
ii

(20)

where the subscript (·)ii denotes the (i, i)th entry in a matrix. Further

denoting G ≡ [S̄+ ρI]−1Δ, cf. Eq. (3), we have

DiLOSSi ≡ 2ρ
(
GGT

)
ii
= 2ρ‖Gi‖2(21)

where the subscript (·)i denotes its ith row vector.

1Since there is no cross-referencing between different layers, we shall drop the
index (l−1) or (l). Moreover, the computation of DiLOSS involves a batch method,
so we can drop the superscript (·)(n) as well.
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• DiLOSS for Regression Analysis:

DiLOSSi = 2ρ
(
[S̄+ ρI]−1XYTYXT [S̄+ ρI]−1

)
ii

(22)

Now, denoting G ≡ [S̄ + ρI]−1XYT for regression analysis, we again
have DiLOSSi = 2ρ

(
GGT

)
ii
= 2ρ‖Gi‖2.

4.3. Deleterious neurons (DNs)

The Deleterious Nodes (DNs) can now be formally defined as neurons with

DiLOSSi < λ(23)

Consequently, removal of any deleterious neuron(s) will result in a net in-
crease in ES . Per our previous discussion, in order to have an optimal struc-
tural pruning strategy, the optimal threshold λ needs to be empirically and
independently specified for each layer.

5. Evolutionary X-learning paradigm

A multi-layer linear basis function (LBF) network is characterized by the
following equations:

uj(l) =

Ml−1∑

i=0

wji(l)ai(l − 1)

aj(l) = f(uj(l)) 1 ≤ j ≤ Ml and 1 ≤ l ≤ L,

where the input units are represented by xi ≡ ai(0), the output units by
yi ≡ ai(L), and where L is the number of layers and f(·) is conventionally a
sigmoidal function or, more recently, a ReLU activation function.

5.1. Consistency between EOM and LOM

Note that we have two optimization metrics: Eexternal for the external BP
learning and Elocal for the local learning. For external optimization, we min-
imize an external optimization metric (EOM) associated with the activation
function of the output layer. It is similar to Eq. (13), except that the input
data matrix (X) is replaced by the output data matrix: Aoutput:

(24) Eexternal = −RidgeLSEexternal = −‖(WTAoutput −Y)‖2F − ρ‖W‖2F
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Likewise, we need to specify the local optimization metric (LOM) based on
the internal teacher labels so as to facilitate an effective ranking of neurons
in each hidden layer. To derive LOM, we replace the input data matrix (X)
by the activation matrix A associated with a hidden layer (X → Alocal) in
Eq. (13), resulting in

(25) Elocal = −RidgeLSElocal = −‖(WTAlocal −Y)‖2F − ρ‖W‖2F

A high degree of consistency between EOM and LOM would best foster our
iterative learning, where both the external and local objective functions need
to be optimized. The equivalence relationship between EOM and LOM plays
a vital role for reaching a consistent convergence. (It is dangerous when a
stagecoach is pulled by two horses running towards different directions.)

5.2. PS-iterative learning: mixed BP-learning and X-pruning

In order to “kill two birds with one stone”, we adopt the following objective
functions:

• Classification: For best linear separability, the LOM and EOM are
defined as:

Eexternal = DIoutput(= DIexternal) and Elocal = DIlayer

• Regression: For best linear mappability, we define EOM and LOM
as:

Eexternal = −RidgeLSEoutput and Elocal = −RidgeLSElayer

As discussed before, both EOM = Eexternal and LOM = Elocal can
be jointly optimized in a mutually consistent fashion. Now we are ready
to propose an (EM-style) Evolutionary and Iterative X-Learning, aiming at
jointly optimizing EOM (in the parameter space) and LOM (in the structural
space):

• Parameter BP-Learning: For parameter learning, we shall just
rely on the traditional (externally-supervised) BP Learning based on
optimization of the pre-specified EOM objective function.

• Structural X-Pruning: Locally-supervised learning based on LOM,
which in turns leads to DiLOSS and designated DNs to be pruned from
the network.
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Evolutionary PS-iteration: In X-Learning, the network will be iter-

atively updated in two design-spaces: BP on the parameter space and X-

Pruning on the net space. The iterations between parameter and structural

spaces is pictorially illustrated by Figure 5.

Figure 5: Pictorially illustration of Evolutionary PS-iteration.

PS-iteration: Each iteration in X-Learning contains two phases: the phase

for parameter updating is called P-phase while the structural learning is

named S-phase.

• P-phase: Parameter Updating Phase. Upon the structural prun-

ing of any DNs, we shall retrain the remaining network by the external

BP learning to recover some loss in the training accuracy. Via a BP

chain-rule, we have

Δw
(n)
ji (l) = −η

∂E

∂w
(n)
ji (l)

= η δ
(n)
j (l)f ′(u(n)j (l))a

(n)
i (l − 1)

where the error signal δ
(n)
j (l) ≡ − ∂E

∂a
(n)
j (l)

.

The BP parameter updating rule is:

w
(n+1)
ji (l) = w

(n)
ji (l) + Δw

(n)
ji (l), ∀ layers, l = 1, · · · , L(26)

• S-phase: Structural Pruning Phase. In each iteration, upon the

completion of the parameter updating phase, we shall further remove

those neurons designated as DNs (cf. Eq. (23)), i.e. DiLOSSi < λ.

The pruning process will be performed on all the hidden−layers, each

layer with its own threshold λ, where λ will be empirically determined.
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Subsequently, these DNs will be pruned from the network before the

external BP learning is applied to retrain the entire network again.

(Once the DNs are trimmed, they will be dropped permanently.)

The procedure in X-Learning is summarized in the following pseudo-

code:

The iterative training method imitates an evolutionary pruning process, imi-

tating evolutionary change from the huge anhanguera to its tiny counterpart:

bird. Note that the evolution process invokes not only size reduction but also
functional readjustment (manifested by the net parameters).2

In short, the PS-iteration represents X-Learning Paradigm, for joint

training of structure and parameters of the network. It embraces a versatile

application domains covering both classification and regression problems.

Our experiments have demonstrated that X-Learning can outperform many

prominent state-of-the-arts approaches.

5.3. Avoid entrapment of local optima and mitigate overfitting

problems

The X-Learning paradigm boasts two noteworthy merits:

• Avoid Entrapment of Local Optima: A major difficulty often
encountered by the parameter gradient method (e.g. as in BP learning)

is due to the entrapment of the unwanted local minimum. Although a

large step size may escape local minima, the chancel is that it may ac-

tually harm (instead of help) the optimization process, according to the
conventional wisdom. We now show how the X-learning (which involves

2Each time we gradually remove a small fraction of low-ranking nodes at one
time. The subnet is then updated by backpropagation, before the next round of
elimination. This has an important implication that the structural ranking will be
constantly and adaptively re-adjusted.
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Figure 6: (a) The larger ball represents the the move via structural gradient
while the smaller ball represents the move via parameter gradient. (b) It
shows that there is significant difference/gap (in prediction performance)
between the baseline full model and X-pruned model. Moreover, the gap
rapidly grows with increasing variance on the additive Gaussian noises.

a mixed learning combining BP-Learning and X-pruning) may numeri-

cally offers a viable path to escape from such entrapment: A structural

move means resetting the magnitude of all DN-linked weights (i.e.

w′
ij → 0). This represents a big move compared with a conventional

parameter updating. For the latter, the amount of weight updating

(i.e. wij → wij + Δwij) is usually infinitesimal. This phenomena can

be further illustrated by Figure 6(a).

Note that there are two different sizes of balls: the larger ball symbol-

izes a daring move via structural gradient, while the smaller ball rep-

resents the tiny move via parameter gradient in the structural space.

The larger ball corresponds to a “giant leap” in the parameter space.

• Mitigate Overfitting via Removals of DNs: The following

demonstrates that there exists plenty of weak neurons in the origi-

nal model, which do more harm than good. These weak neurons are

vulnerable to noise attack, making it detrimental to the prediction per-

formance. As evidenced by our experiment on the MINIST Dataset,

cf. Figure 6(b), low-DI DNs become noticeably vulnerable when we

increase the power of additive noise on the input. (Note that the per-

formance gap grows rapidly with the increasing power of the additive

noise.)
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6. Experimental results of X-learning for classification

We shall present our experimental results obtained by applying X-learning

to some popular classification tasks/datasets. The focus of this section will

be placed on MobileNet and ResNet models. For other CNN models, see [14]

for more discussion on applications of X-Learning.

Structure-wise, we adopt a dual-skip connection (forward skip and back-

ward broadcast) which allows us to take a full advantage of both input and

output residual learning. Consequently, local teachers are now directly ac-

cessible to all the hidden layers so that each layer’s DI-score (Eq. (8)) can

be locally computed. Subsequently, pursuant to Eq. (21), DiLOSS for every

neurons become readily computable as well. Based on DiLOSS, we can iden-

tify DNs to be pruned in the S-phase in the PS-Iterative algorithm. To show

its broad appeal to classification applications, we cover numerous popular

datasets, including MINIST, CIFAR10, CIFAR100, and ImageNet.

6.1. X-pruned classifiers for ImageNet dataset

We aim at two separate design purposes: one for low-power and the other

for high-performance. As such, we shall respectively apply X-Learning to

MobileNet and ResNet.

6.1.1. Low-power models: X-learning on MobileNet As shown in

Table 1, X-learning can reduce MobileNetV1&V2 to yield faster latency,

and smaller hardware, making it amenable to edge devices. More specifically,

at 30ms/image real-time speed (required by LPIRC 2019), X-MobileNetV1

delivers 68.2% top-1 accuracy on ImageNet, a 3% improvement compared

with 65.2% reported by the winner of 2018 LPIRC (MobileNet).

Table 1: Comparison with winner of 2018 LPRIC on ImageNet

Model Top-1 Acc. FLOPs Param.

MobileNetV2 71.80% 300M 3.47M
WM (Sandler et al., 2018) 69.80% 210M 2.61M

X-MobileNetV2 70.80% 210M 2.33M
LPIRC 2018 65.20% 186M –

ThiNet (Luo et al., 2017) 65.44% 170M 2.57M
DCP (Zhuang et al., 2018) 65.91& 170M 2.57M

X-MobileNetV1 68.20% 170M 1.90M
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6.1.2. High-performance models: X-learning on ResNet Our X-
ResNet50 achieves 75.66% top-1 accuracy, a 0.5% gain over the baseline,
while accelerating the inference speed by 2x. This result outperforms the
current state-of-the-art method (Molchanov et al., 2019) by around 1% in
accuracy with similar speeds, as shown in Table 2. Note that in Table 2, we
provide results of three X-ResNet50 under different FLOPs reduction ratios.

Table 2: Comparison with other methods in pruning ResNet50 on ImageNet

Model Top-1 Acc. FLOPs Param.

ResNet50 (baseline) 75.15% 4.09B 25.60M
X-ResNet50 76.34% 2.63B 17.00M

SSS (Huang et al., 2018) 71.82% 2.33B 15.60M
ThiNet (Luo et al., 2017) 71.04% 2.44B 16.94M
GDP (Lin et al., 2018) 72.61% 2.24B –
SFP (He et al., 2018) 74.61% 2.42B –

X-ResNet50 76.10% 2.31B 16.72M
Taylor (Molchanov et al., 2019) 74.60% 2.00B –

X-ResNet50 75.60% 2.00B 15.60M

6.2. X-learning on MNIST, CIFAR10, and CIFAR100 datasets

There are many other popular datasets, we shall highlight our results on
MNIST, CIFAR10 and CIFAR100 datasets. Compared with the baseline
models, X-Learning can simultaneously compress the structure and raise
the accuracy. More significantly, X-Learning outperforms many of existing
pruning methods, as elaborated in below.

• MINIST Dataset We conduct experiments on MNIST [16] dataset
consisting of 60,000 training samples and 10,000 testing samples in 10
classes. On Lenet-5, we achieve 20x in speedup and 100x in storage
reduction, compared to 10x reduction from Han et al. [6].

• CIFAR-10 Dataset CIFAR-10 [10] dataset consisting of 50,000 train-
ing samples and 10,000 testing samples in 10 classes. As shown in Ta-
ble 3, X-Learning is effective on more compact and advanced ResNet56
using CIFAR10 datasets. More precisely, X-Learning yields an ac-
curacy improvement of 0.8% (93.04% to 93.84%). In addition, X-
ResNet56 offers 3x speedup compared with the baseline (ResNet56).

• CIFAR-100 Dataset CIFAR-100 [10] dataset consisting of 50,000
training samples and 10,000 testing samples in 100 classes. On Mo-
bileNet, a reduction of around 2.5x in speedup is observed while im-
proving accuracy by from 73.68% to 75.61%. On ResNet164, we achieve
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Table 3: Comparisons of pruning ResNet56 using CIFAR10

Model Top-1 Acc. FLOPs Params.

ResNet56 (baseline) 93.04% 250M 0.85M
L1-norm (Li et al., 2017) 93.06% 181M 0.73M

CP (He et al., 2017) 91.90% 125M –
DCP (Zhuang et al., 2018) 93.49% 125M 0.43M

X-ResNet56 93.84% 83.8M 0.31M

77.70% accuracy, which is 1% higher than the baseline model at 185M
FLOPs and 0.62M parameters (equivalent to 2.72x FLOPs reduction
and 2.74x storage size compression). Moreover, our X-ResNet164 out-
performs Network Slimming method [19] by 1% accuracy and 25% less
FLOPs.

6.2.1. Bootstrapping Note that X-Learning and a recently proposed
method DCP [32] are both based on discriminant analysis. Since they are
complementary, it is natural to further improve performance by bootstrap-
ping each other. We can further reduce both storage (from 0.31M to 0.28M)
and FLOP (from 83.8M to 75.8M) of ResNet56.

6.3. Soft X-pruning

For X-Quantization, we invent a closed-form quantization matrix (Q), to
optimally control the quantization level of channels: higher-precision (more-
bits) for more informative channels. By cascading X-Pruning and X-Quan-
tization, we can reduce the size of ResNet-110 by 20x (3x reduction by
X-Pruning and 7x reduction by X-Quantization) without any loss of classi-
fication accuracy on CIFAR10.

Moreover, we propose a codebook quantization method, by it self (with-
out X-Pruning), it can compress compress the ResNet18 model by 20x on
the ImageNet dataset, and achieves 67.5% accuracy. It represents a win-win
performance over ABC-Net (64% accuracy with 15x reduction [18]) as well
as LR-Net (63.5% accuracy with 15x reduction [28]).

7. Regression scenarios: X-learning for SR imaging systems

The objective of a typical imaging problem is that, given an (low-quality)
input image (poor quality in resolution and/or color rendition, etc.), find
a (nonlinear) mapping to transform the input image into a desired output
image, e.g. one restoring/resembling the GT and/or one enhancing the image
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visualization. Our main focus will be placed on the application of fidelity-
based SR imaging systems, which tackles the problem of recovering a high-
resolution image from a single low resolution image.

To learn the prior, recent state-of-the-art methods mostly adopt the
example-based strategy, most of them learn mapping functions from external
low- and high-resolution exemplar pairs. This approach is closely related to
recent example-based methods based on deep convolutional neural networks
(CNN). In fact, Dong et al. [4] pointed that the sparse-coding based SR
methods [2] can be viewed as a deep convolutional neural network. The
deep learning method can be formulated for generic image super-resolution,
where the teacher will be set as the desired high-resolution images. There is
evidence showing the same techniques can be naturally carried over to other
types of applications with their own training samples, such as enhancing
dim-light images to brighter image, where the teacher will be set as the
desired brighter images.

X-learning can be effectively applied to most regression applications.
Moreover, most restoration and enhancement problems can be formulated
as regression-type applications. As a specific example, the generic imag-
ing systems are naturally amenable to regression analysis as they involve
continuous-valued input and teachers (i.e. ground truth) in image fields.

7.1. X-learning approach to low-power SR imaging systems

Image super-resolution and image enhancement have numerous practical
applications. In this problem, the original images are low-quality images,
and the objective is to restore the low-quality images to a high-fidelity ones.
Both the external and local teachers will simply be the ground-truth high-
quality images.

Training/Testing Datasets: The XSR-ResNet was applied to super-
resolution image enhancement with DIV2K as the training dataset. The
learned SR-imaging models are then applied to several test datasets, includ-
ing Set5, Set14, BSD100, and Urban100.

Improvement Over the Baseline (SRGAN): Our baseline model is
SRGAN, a predominant CNN-based model for SR imaging systems. Because
the original ResNet is bulky and X-reduction-friendly, X-pruning is ideal for
model reduction. A key challenge, however, lies in that SRGAN employs
the Subpixel layers to up-scale the LR images to the final HR output. This
scheme is by itself not amenable to X-Learning. To circumvent this problem,
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we need to replace the subpixel layers by the nearest-neighbor interpola-
tion (NNI) with learnable convolution filters for up-scaling. Thereafter, it
becomes feasible that these upsampling layers also undergo PS-iterations,
with both BP-learning and X-learning. This results in a very impressive re-
duction, with a saving factors of 16x in model size and 14x in FLOPs, while
suffering from a negligible performance loss of −0.2 db.

Figure 7: We show SR-imaging on one of the BSD100 images under 4 × 4
bibubic down-sampling setting. The results of SR-RESNET, FEQE, and
XSR-RESNET are displayed. (Note the ground truth and ours do not show
the artifact appearing in the third rightmost white stripe in FEQE.)

Improvement Over Winner of PIRM Challenge (FEQEnet): In
addition, our X-SRResNet outperforms the FEQEnet, the winner of 2018
PIRM Challenge. More precisely, X-SRResNet delivers an advantage of
shorter latency by more than two folds while holds a .3 db gain in PSNR over
the FEQEnet, as shown in Table 4. Visual results of SR-RESNET, FEQE,
and XSR-RESNET (ours) are displayed in Figure 7.

7.2. X-learning for high-performance SR-imageing systems

We also make a comparison between the X-Pruning based network compres-
sion and a network binarization method for the SR system [20], where the
weights of the original CNN are converted to [−1,+1] to save model size
and computation complexity. For baseline CNN, we use LapSRN and SR-
ResNet. Table 5 summarizes the PSNR/SSIM quantitative performance of
our X-Pruning models versus binarized models, where we can observe that
X-Pruning outperform SR binarization by a large margin.
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Table 4: Comparison with Winner of PIRM Challenge (FEQEnet). We re-
port values of peak signal-to-noise ratio (PSNR) / structural similarity index
measure (SSIM) for each method on four image SR benchmarks

Dataset SRCNN VDSR FEQE-P Ours
Set5 30.47/0.8610 31.53/0.8840 31.53/0.8824 31.84/0.889
Set14 27.57/0.7528 28.42/0.7830 28.21/0.7714 28.38/0.775
BSD100 26.89/0.7108 27.29/0.7262 27.32/0.7273 27.40/0.730
Urban100 24.51/0.7232 25.18/0.7534 25.32/0.7583 25.51/0.765

Model #Params. FLOPs GPU Latency
SRCNN 69K 128B 0.04 s
VDSR 668K 1231B 0.16 s
FEQE-P 96K 11B 0.01 s
Ours 92.6K 9.6B 0.004 s

Table 5: Comparison of X-Learning with SR-binarization method. We report
values of peak signal-to-noise ratio (PSNR) / structural similarity index
measure (SSIM) for each method on four image SR benchmarks
Dataset Scale Bicubic LapSRN LapSRN

Binary
X-LapSRN SRResNet SRResNet

Binary
X-SRResNet

Set5
2 33.66/0.930 37.25/0.957 – 37.35/0.959 37.90/0.959 35.66/0.946 38.04/0.961
4 28.42/0.810 31.33/0.881 30.21/0.857 31.60/0.887 32.05/0.891 30.34/0.864 32.20/0.894

Set14
2 30.24/0.869 32.96/0.910 – 33.20/0.916 33.44/0.915 31.56/0.897 33.62/0.918
4 26.00/0.703 28.06/0.768 27.13/0.751 28.19/0.774 28.49/0.780 27.16/0.756 28.62/0.781

BSD100
2 29.56/0.843 31.58/0.892 – 31.73/0.894 32.12/0.899 – 32.20/0.900
4 25.96/0.668 27.22/0.724 – 27.33/0.730 27.58/0.735 – 27.60/0.737

Urban100
2 26.88/0.840 30.25/0.907 – 30.34/0.910 31.80/0.925 28.76/0.882 32.10/0.928
4 23.14/0.657 25.02/0.747 24.31/0.720 25.26/0.761 25.90/0.782 24.48/0.728 26.05/0.784

Moreover, in Table 6, we report in details the network complexity and

actual inference acceleration of our X-Pruning model, compared with the

network binarization method. In summary, X-Pruning achieves higher re-

duction factor of model size, FLOPs, and latency.

Table 6: Comparison of X-Learning with SR-binarization method in terms
of network complexity

Model Scale Weight #Params. FLOPs Model Size CPU/GPU Latency

SRResNet 2 float32 1.375M 6.369B 5.499 MB 7.29 s/137 ms

SRResNet Binary 2 {−1,+1} 1.377M b-ops 0.928 MB –

X-SRResNet 2 float32 0.154M 0.743B 0.631 MB 1.99 s/117 ms

SRResNet 4 float32 1.522M 9.185B 6.089 MB 1.65 s/38 ms

SRResNet Binary 4 {−1,+1} 1.524M b-ops 1.518 MB –

X-SRResNet 4 float32 0.301M 3.548B 1.222 MB 0.68 s/30 ms

LapSRN 4 float32 0.870M 8.549B 3.509 MB 2.66 s/98 ms

LapSRN Binary 4 {−1,+1} 0.512M b-ops 1.494 MB –

X-LapSRN 4 float32 0.121M 0.981B 0.517 MB 0.85 s/74 ms
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7.3. Hierarchical CNN for high-performance SR-imageing
systems

7.3.1. Network architecture Inspired by the observation that the effec-
tive receptive field increases whenever the feature goes through a convolution
operation, we propose a hierarchical aggregation to achieve multiple equiv-
alent receptive fields and enrich the feature scales in the final output. In
the prior design of MSRN [17], one block consisting of two by-pass with 3x3
convolution kernel and 5x5 convolution kernel, respectively. Outputs from
two by-pass are concatenated and sent into 1x1 convolution for feature fu-
sion. In contrast, the novelty in our model hinges upon wider windows due
to our hierarchical multi-stage design (refered to as HSRN), as depicted in
Figure 8. For example, by cascading 3x3 windows twice we obtain effec-
tively a 9x9 window. Moreover, by cascading 3x3 windows thrice we obtain
a 27x27 window. It is intuitive that the widened windows can lead to greater
flexibility and, ultimately, higher performance.

Figure 8: Hierarchical Network proposed for SR-imaging systems.

7.3.2. Performances on SR benchmarks We use the 2K-resolution
dataset DIV2K [1] (800 training images and 100 validation images) to train
our network. For testing, we evaluate our models on four standard bench-
marks: Set5 [3], Set14 [31], BSD100 [21], and Urban100 [8]. LR images by
generated by down-sampling the corresponding HR images using the bicubic
kernel function.



344 S. Y. Kung and Zejiang Hou

Evaluation metrics: For quantitative evaluation, we calculate PSNR and
SSIM between the reconstructed image and the ground-truth on Y-channel
of the YCbCr color space. Figure 9 shows a visual comparison of results via
different SR-imaging systems.

Figure 9: Hierarchical SR Imaging for Urban100 Image092.

7.3.3. Performances on finger-print dataset Figure 10 shows a vi-
sual comparison on fingerprint image super-resolution. Also, quantitative
comparison is provided in Table 7, where our method outperforms SRGAN,
which represents the state-of-the-art on the FVC2000 dataset, by 1.5 dB in
PNSR.

Table 7: Comparison of HSRN (ours) and SRGAN on fingerprint SR

Dataset Scale SRGAN Ours Multi-scale

FVC2000
2 42.93/0.980 42.96/0.981
4 34.98/0.916 36.51/0.934

7.4. Other imaging systems

Based on the DIV2K dataset, we apply the proposed HSRN to other image
restoration results. For denoising application, refer to Table 8. For deblocking
application, refer to Table 9.

8. From XAI-learning to domain-driven learning models

This section points to some future research fronts: (1) X-Learning could
be instrumental/amenable to the development of Logical Deep Learning
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Figure 10: The LR image is shown on the top-left corner. Visual comparison
of differnet results on fingerprint enhancement:(a) SRResNet, (b) HSRN
(ours), (c)Ground-truth.

Table 8: Performance of HSRN on denoising application/datasets

Dataset Noise σ BM3D TNRD RED DnCNN MemNet IRCNN FFDNet RNAN HMSDAN

Kodak24
30 30.89 28.83 29.71 31.39 29.67 31.24 31.39 31.86 33.35

50 28.63 27.17 27.62 29.16 27.65 28.93 29.10 29.58 30.96

BSD68
30 29.73 27.64 28.46 30.40 28.39 30.22 30.31 30.63 32.16

50 27.38 25.96 26.35 28.01 26.33 27.86 27.96 28.27 29.72

Urban100
30 30.36 27.40 29.02 30.28 28.93 30.28 30.53 31.50 33.29

50 27.94 25.52 26.40 28.16 26.53 27.69 28.05 29.08 30.58

which include DARPA’s XAI-Learning as a most promising special case.

(2) Domain-driven systems featuring double-CNN learning: one CNN for

feature engineering and another for label engineering.

8.1. XAI-learning and logical deep learning

X-Learning appears to be naturally amenable to DARPA’s XAI initiative on

End User Explainability, where the main focus is placed on “explanations of

higher-level decisions that would be relevant to the end user and the missions

he/she needs to manage”

It is vital to have end-user-adaptive label(s) so that a learning model

may be re-purposed to active learning environments. In X-Learning, LOM

can facilitate quantitative analysis on the explainability of hidden nodes.

The LOM-selected channels may rapidly retrieve information of grave con-
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Table 9: Performance of HSRN on deblocking application/datasets

Dataset q JPEG ARCNN TNRD DnCNN MemNet IACNN RNAN HMSDAN

LIVE1
10 27.77/0.7905 28.98/0.8217 29.15/0.8111 29.19/0.8123 29.45/0.8193 29.34/0.8199 29.63/0.8239 29.90
20 30.07/0.8683 31.29/0.8871 31.46/0.8769 31.59/0.8802 31.83/0.8846 31.73/0.8848 32.03/0.8877 32.30
30 31.41/0.9000 32.69/0.9166 32.84/0.9059 32.98/0.9090 – 33.19/0.9132 33.45/34.47 33.71

Classic5
10 27.82/0.7800 29.04/0.8111 29.28/0.7992 29.40/0.8026 29.69/0.8107 29.43/0.8070 29.96/0.8178 30.92
20 30.12/0.8541 31.16/0.8694 31.47/0.8576 31.63/0.8610 31.90/0.8658 31.64/0.8628 32.11/0.8693 33.16
30 31.48/0.8844 32.52/0.8967 32.78/0.8837 32.91/0.8861 – 32.93/0.8874 33.38/0.8924 34.48
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cern/threat to the end-user, e.g. an imminent drone attack, cf. Figure 11. In

this case, X-Learning allows us to rapidly identify the most relevant neurons

to form quick decision/response in the run-time.

Figure 11: Deleterious versus intelligent neurons for the end-user’s ABC-
query: Airplane, Bird, or Car?

Example: Multiple-Granularity Labeling Boosts CIFAR-100 Per-

formance: The layered-structure of deep learning network is meant to

gradually map the input space to the output space (layer by layer). To fa-

cilitate such gradual conversion, we adopt a layer-dependent designation of

Local Labels (LLs): gradually from coarse-granularity LL to fine-granularity

LL, cf. Figure 12(a). In our experimental study on CIFAR-100, which has

naturally two types of labels, we have found that the adoption LL-based

teachers can further boost the final prediction performance. More exactly,

we have observed an improvement of around 1% over the basic X-learning

results, Figure 12(b).

Figure 12: Multiple-granularity labeling may boost prediction performance.
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8.2. Domain-driven learning example: image-based classification
systems

With reference to a Domain-Driven imaging for mammogram detection,
sketched in Figure 1, we have conducted a domain-driven experiment on
a popular domain-specific Oxford-Flowers dataset [22]. More specifically, we
adopt a slimmer version of SRResNet (e.g., 10 layers) for super resolution
part, to reduce the computation overhead. For the classification part, we
adopt the most commonly used deep CNN, e.g., VGG and ResNet. For
training, we adopt two scenarios:

• Scenario 1: two sets of supervising teachers are used: one for su-
per resolution, and one for classification. This also explains why the
domain-driven imaging system can be called as doubly-driven systems

• Scenario 2: an end-to-end training of both SR parts and classification
parts by the classification teacher labels only

As shown in Table 10, our domain-driven imaging systems in both scenarios
achieve better accuracy than the low-resolution baseline. More importantly,
we can see that the end-to-end training (i.e. scenario 2) achieves the best
classification results. This suggest that domain-specific classification labels
can better guide the training of SR to produce useful high-resolution images
to achieve better accuracy.

Table 10: Domain-driven SR classification on Oxford-Flowers dataset

Dataset Model Input Acc.

Flowers
VGG 50x50 67.82%
Scenario-1 (VGG) 227x227 68.03%
Scenario-2 (VGG) 227x227 69.17%

Note that Table 10 compares the performances between single-CNN and
double-CNN: double-CNN has more parameters and FLOPs than the single
CNN. It makes sense to conduct comparative study based on equal hardware
ground. To allay this concern, we have done experiments under the same
FLOPs requirement between single-CNN and double-CNN on CIFAR100.
As shown in Table 11, our method outperforms the ResNet-1001 by 1.2% of
accuracy under the same FLOPs condition (i.e. 1.2B)

For future extension, some additional domain-driven systems are: (1) SR
imaging tool (feature enhancement for low-resolution images), (2) Denois-
ing tool (feature enhancement for noisy images), (3) Light-Enhancing tool
(feature enhancement for night shots).
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Table 11: Domain-driven SR classification on CIFAR100 dataset

Dataset Model Input Acc. #Params. #FLOPs

ClFAR100
ResNet-1001 (He et at. 2016b)

32x32
77.29% 10.2M 1.2B

LR

Domain-driven ResNet-164
64x64

78.49% 2.1M 1.2B
SR
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