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A review of image denoising methods

Hua Wang, Linwei Fan, Qiang Guo, and Caiming Zhang

Image denoising is a fundamental and important task in the field of
digital image processing and computer vision. Image noise concate-
nation inevitably occurs during image acquisition and transmis-
sion, which leads to the degradation of image quality. The presence
of noise has some negative effects on various practical applications
such as object recognition, medical image analysis, and hyperspec-
tral remote sensing. A lot of research work has provided a solution
to this problem, and many methods have been developed in the
literature. This paper focuses on classifying some representative
works in the field of image denoising, and provides a brief review
with several promising directions for further investigation in the
future.

1. Introduction

Image denoising, as an essential step to improve image quality, has always

been a hot research topic. In today’s information age, images as an impor-

tant way of information transmission are closely related to people’s lives. All

applications of images can only meet the requirements of production and life

on the premise of high-quality images. In the process of image acquisition,

storage, and transmission, however, noise can be generated due to the inter-

ference of external factors, which leads to low-quality images. Therefore, the

research on image denoising is particularly important. The purpose of image

denoising is to remove or suppress noise from images concatenated by noise,

and restore the original images as accurately as possible, while retaining

fine details such as edges and textures. Since noise, edges and texture are to

high frequency components, it is difficult to distinguish them in the process

of denoising. From numerous types of noise prevailing in different kinds of

images, additive white Gaussian noise (AWGN), impulse noise (also known

as salt and pepper), quantization noise, Poisson noise and speckle noise are

the most frequently discussed noises in the literature [1]. AWGN primarily

occurs in analog circuits during image acquisition and transmission. The

prevalence of other types of noise such as quantization noise, impulse noise,
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speckle noise, and Poisson noise occur mainly due to faulty manufactur-
ing, bit errors, and inadequate photon counting during image acquisition.
In general, how to recover meaningful information from noisy images in the
process of noise reduction and obtain high quality images is a vital problem.
Although great progresses in image denoising have been made in the past
two decades [2, 3, 4, 5], the demand for high-performance image denoising
methods is still urgent in practical applications. The main reason is that,
from mathematical view, the nature of image denoising is an inverse problem
and the solution is not unique. Therefore, the key issue is how to model the
prior of images and derive the optimal solution under the prior constraints.
In the following sections, we will briefly introduce different image denoising
techniques.

1.1. Problem statement

Mathematically, the noisy image corrupted by AWGN can be modeled as
follows:

(1) y = x+ n,

where y denotes the observed noisy image, x is the unknown clean image,
and n represents the AWGN that is assumed to be independent and identi-
cally distributed with zero mean and standard deviation σn. It is the sim-
plest way to model a noisy image. There are other models for Poisson noise
and impulse noise. In CCD (charged coupled devices) cameras noise may
be present in the electron circuitry (thermal noise), due to inadequate pho-
ton count (photon noise) or it may be quantization noise. However, AWGN
is the most common encountered noise in real-time applications, hence the
AWGN model is the primary focus of this paper. In practical applications,
AWGN with the standard deviation σn (i.e., noise level) can be estimated by
various methods such as median absolute deviation (MAD) [6], block-based
estimation method [7], and PCA-based method [8]. The goal of the image
denoising procedure is to suppress the noise from natural images while min-
imizing the loss of features in the denoised images, and improving the visual
quality and the signal-to-noise ratio (SNR) of images. The major challenge
of image denoising is how to effectively distinguish noise and texture details
from an observed noisy image.

1.2. Noise suppression

In fact, achieving a clean image x from the Eq. (1) is an ill-posed problem,
which means that we cannot obtain a unique solution from the additive noise
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model. In the last two decades, researchers continuously thrive to develop

efficient denoising algorithms which aiming to recover a reasonable estimate

x̂ from the observed noisy image y, while preserving its fine features and

edges. There exist a lot of image denoising algorithms in the literature.

On the basis of the theories and techniques adopted by denoising algo-

rithms, they can broadly be classified into the following categories: spatial

domain filtering that depends on the local/non-local spatial correlation of

pixels, transform domain filtering that employs the energy compact of image

transforms, sparse representation based methods that are based on learned

representation dictionaries, low-rank based methods that adopt adaptive dic-

tionaries derived by the noisy image itself, and deep learning based methods

that use deep convolutional neural networks to learn a denoiser.

The rest of this paper is organized as follows: Section 2 introduces the

various spatial domain filtering methods. The transform domain filtering

methods and the well-known block-matching and 3D filtering (BM3D) are

discussed in Section 3. The sparse representation and dictionary learning

methods are followed in Section 4. Sections 5 and 6 further discuss several

low-rank based methods and deep learning-based methods. A summary and

some possible future research directions are reached in Section 7.

2. Spatial domain filtering

Ideally, filtering is supposed to be the primary solution to image noise re-

moval, that is, suppression of the unwanted variation in pixel intensity val-

ues. In fact, signal filtering is fundamental to basic image processing and

has long been used for smoothing, sharpening, and edge detection. Spatial

domain filtering is to remove the image noise by directly operating the pixels

in the neighborhood [12, 11, 13, 14, 15, 10, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Spatial domain filtering [25, 26, 27, 28] directly estimates each pixel (or

region) of the latent clean image with its neighboring or similar pixels (or

regions) of the noisy observation in some way. Contrastively, transform do-

main filtering methods [29, 30, 31] first project the noisy image into a set

of bases, then apply shrinkage rules to the transformed coefficients, and fi-

nally obtain the denoised image by the inverse transform. According to the

manner of selecting pixel candidates used in the filtering process, the spatial

filters can be divided into local filters and non-local filters. The underlying

principle of this kind of denoising algorithms is that noise is uncorrelated

amongst pixels, while the intensity of real signal pixels are correlated with

each other [32, 33].
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2.1. Local filters

A spatial filter is considered to be local if its filter support for denoising a
pixel is restricted by spatial distance [13, 14, 15, 10, 16, 17, 18, 19, 20, 23, 24].
It is different from the non-local filter that exploits the correlation between
the entire range of pixels in an image. The most popular local filters designed
for noise reduction are the mean filter and the median filter. The mean
filtering [17] calculates the central pixel by convolution and the average of
the pixels in the template. Since the mean value of Gaussian noise is 0,
and the gray value of the center point is similar to that of other pixels
in the template, so the averaging operation can reduce the noise. Usually,
this kind of denoising methods is suitable for suppressing Gaussian noise.
Unfortunately, the average value often smoothes out the high frequency
information of the image, so that the edges and textures of the denoised
image can be over-smoothed. Unlike the mean filtering, the median filtering
is to sort the pixels in the template and to replace the gray value of the
center point with the middle value of the sorted pixels, so as to remove the
image noise. This method is useful for removing salt and pepper noise, but
it is not for removing Gaussian noise. It is easy to lose edge information and
affect the visual effect of the image.

To overcome these limitations aforementioned, Gaussian filtering (GF)
[34] and Wiener filtering (WF) [19, 20] are further introduced, which do
not employ mean of neighboring pixels. GF is a typical linear filter, which
belongs to the category of local filters and has been used in image denoising
for a long time, while WF is a class of optimum linear filters which involve
linear estimation of a desired signal sequence from another related sequence.
Most local denoising filters have primarily been the improvements of Gaus-
sian filtering, which have been proposed to provide better edge preserving
ability [35].

2.2. Non-local filters

In [36], Buades et al. introduce a filter based on experimental methodology
to exploit similarity amongst pixels in a non-local manner, popularly known
as non-local mean (NLM) filter. This pioneering work clearly established
that the self-similarity amongst characteristics of an image in a non-local
manner is the biggest potential basis in the field of image denoising. NLM
filter exploits presence of similar features or patterns in the image.

Its basic idea is that building a pointwise estimation of the noisy image
where each pixel is obtained as a weighted average of pixels centered at
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regions that are similar to the region centered at the estimated pixel. For a
given pixel xi in an image x, its NLM-filtered new intensity value is denoted
byNLM(xi). Specifically, let xi and xj be the square patch centered at pixels
xi and xj , respectively. The weight of patch xj to patch xi, denoted as wi,j ,
is calculated by the Gaussian L2-distance between the patches centered at
the above central pixels, which can be formulated by

(2) wi,j =
1

ci
exp

(
− ‖xi − xj‖22

h

)
,

where ci is the normalization factor, and h is the filter parameter that con-
trols the decay rate of the exponential function. Different from local filtering
methods, NLM can make full use of the information provided by the given
image, which can lead to a robust estimation of the noisy image. Since
then, various improved versions of NLM have been proposed in the litera-
ture. Some works of these improvements take efforts to accelerate the NLM
denoising algorithm [37, 38, 39, 40, 41, 42], while others focus on how to
enhance the performance of the algorithm [43, 44].

3. Transform domain fitering

Image denoising methods have gradually developed from the initial spatial
domain filtering to the present transform domain filtering. Initially, trans-
form domain methods were developed from the Fourier transform, and then a
variety of transform domain methods have gradually emerged, such as cosine
transform, wavelet domain methods, multiscale geometric transforms, and
hybrid transforms used in BM3D [45]. Transform domain methods depend
upon the following observations: the frequency characteristics of image in-
formation and noise are significantly different in the transform domain, and
noise is easily distinguished from the image information.

3.1. Classical transform filtering

In contrast to the denoising methods in the spatial domain, transform do-
main methods exploit the property of sparsity, which means that the signal
can be represented by fewer number of non-zero transform coefficients or
an image could be represented as a linear expansion of a few high valued
coefficients. This property has made them an extremely applicable digital
signal processing tool both in 1-D and 2-D domain. The representation at-
tributes like localization, isotropy, multi-resolution and the orientation of
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basis functions at a variety of directions are the major properties of image

transform methods. There are a large number of variations available in this

category such as fast Fourier transform, discrete cosine transform, wavelet

transform, and curvelet transform.

The most commonly used transform in denoising is the wavelet trans-

form [46], where the input data is decomposed into its scale-space represen-

tation. It has been proved that the use of wavelets successfully removes noise

while preserving the image fine details, regardless of its frequency content

[47, 48, 49, 50, 51, 52]. Since the wavelet transform has many good charac-

teristics, such as sparsity, multi-scale representation, and low computational

complexity, it is still active in image denoising nowadays [53]. However, the

wavelet transform adopts the fixed basis functions, e.g, Haar wavelets and

Daubechies wavelts. Therefore, the performance of wavelet-based denoising

methods largely depends on the selection of wavelet bases. If it is not selected

properly, the image shown in wavelet domain cannot be well represented,

resulting in poor denoising performance.

3.2. Hybrid transform filtering

As an effective and powerful extension of NLM approach, BM3D that em-

ploys non-local self-similarity of the image and the hybrid transforms is the

current state-of-the-art method for image denoising, which was proposed

by Dabov et al. [45]. BM3D is a two-stage nonlocally collaborative filtering

method in the hybrid transform domain. In this method, similar patches are

stacked into 3D groups by block matching, and the 3D groups are trans-

formed into wavelet and cosine transform domain. Then the hard threshold-

ing or Wiener filtering with coefficients is employed in the transform domain.

Finally, all estimated patches after an inverse transform of coefficients are ag-

gregated to reconstruct the whole denoised image. However, when the noise

increases gradually, the denoising performance of BM3D decreases greatly

and artifacts are introduced especially in flat areas.

In order to improve the denoising performance, many improved varia-

tions of BM3D have been developed [54, 55]. For example, Maggioni et al.

[55] recently proposed a BM4D denoising method, which providing the ex-

tension of BM3D to volumetric data. It utilizes cubes of voxels, which are

stacked into a 4-D group. The 4-D transform applied to the group simulta-

neously exploits the local correlation and the nonlocal correlation of voxels.

Thus, the spectrum of the group is highly sparse, leading to very effective

separation of signal and noise by using some coefficient shrinkage techniques.
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4. Sparse representation based denoising

The redundant and sparse representations have been the basic dynamic foun-

dation for researchers in image denoising. The goal of sparse representation

is to learn a set of basis functions that can adaptively represent images

and inherit the energy compact property of the wavelet transform. To this

end, various dictionary learning methods for sparse representation have been

designed [56]. As analyzed in [57], image denoising based on sparse repre-

sentation can be formulated as the following minimization problem,

(3) x̂ = argmin
x

1

2
‖y − x‖22 + λR(x),

where ‖y − x‖22 denotes the data fidelity term that indicates the difference

between the original image and the noisy image, R(x) denotes the regulariza-

tion term, and λ > 0 is the regularization parameter. Sparse representation

assumes that a patch xi can be sparsely represented by a linear combination

of atoms in a redundant dictionary D, i.e., xi = Dαi, where αi is the sparse

codes.

As a dictionary learning method, the sparse representation model can not

only be learned from a representative data set, but also even from the noisy

image itself. The K-SVD algorithm [58, 59] is one of the most popular and

powerful numerical methods for tackling the underlying energy minimization

problem. The basic idea behind K-SVD denoising is to learn the dictionary

D from noisy image y by solving the following joint optimization problem

(4) arg min
x,D,α

λ‖y − x‖22 +
∑
i

‖Rix−Dαi‖22 +
∑
i

μi‖αi‖1,

where Ri is the matrix extracting patch xi from image x at location i, and αi

are sparse representation coefficients. Eq. (4) can be solved by iterative opti-

mization. More specifically, each iteration comprises of employing orthogonal

matching pursuit (OMP) to estimate the coefficients for each patch (an ini-

tial dictionary is used for computing sparse approximations of all patches)

and updating the dictionary using singular value decomposition for one col-

umn at a time. Each patch can be estimated from a series of patches from the

dictionary. K-SVD simulated the era of denoising with learned dictionaries,

which restores image information using a more adaptive model. However,

this method still needs improvement in case of large patches due to its high

computational burden and limited size of the dictionary [59].
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The learned simultaneous sparse coding (LSSC) is quite similar to K-
SVD where similar patches are denoised using the same sparse decomposi-
tion. This method exploits self-similarity criteria of images in a non-local
manner [60]. In case of K-SVD, slight change in the input can lead to a
significant change in dictionary atoms, which is undesirable. The motiva-
tion of LSSC is to address this limitation of K-SVD. Specifically, LSSC was
proposed as an improvisation to K-SVD by exploiting similar patches in a
non-local manner. This method certainly speeds up the process of search-
ing atoms in an unstructured dictionary. It has been found that LSSC can
provide the state-of-the-art denoising performance, but it has a high com-
putational complexity. Although LSSC has achieved satisfactory denoising
results by employing clustering in sparse decompositions, its performance
largely depends upon an initial dictionary that has to be trained offline
with high quality images. Unlike it, the convolutional sparse representation
(CSR) denoising method can achieve much higher performance than LSSC
along with lower complexity [29].

In addition, the nonlocal centralized sparse representation (NCSR)
model [61] naturally integrates nonlocal self-similarity (NSS) into the sparse
representation framework. It is one of the most concerned image denoising
method at present. As mentioned in [61], NCSR is very effective in recon-
structing both smooth and the textured regions. Despite of successful com-
bination of the above two techniques, the iterative dictionary learning and
the nonlocal estimate of unknown sparse coefficients make this algorithm
computationally expensive, which largely limits its applicability in many
practical applications.

5. Low-rank denoising

Different from sparse representation, the low-rank based denoising model is
to format the similar patches as a matrix with each column being a stretched
patch vector, and exploit the low-rank prior of this patch matrix to suppress
image noise [62, 63]. Low-rank denoising methods first appeared in field of
matrix completion, and has made great progress under the drive of Candès
and Ma [64]. In recent years, the low-rank model can achieve a good denois-
ing performance so the researches of low-rank denoising methods have been
gradually thorough.

Many existing low-rank methods formulate image denoising as a gen-
eral low-rank matrix approximation (LRMA) problem [65], which aims to
recover the underlying low-rank matrix from its degraded observation. The
existing LRMA methods can be generally divided into two categories: the
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low-rank matrix factorization (LRMF) based methods [66, 67, 68, 69, 70, 71,
72, 25, 75, 73, 74] and the rank minimization based methods [65, 76, 77, 78].
The LRMF based methods aims to factorize a given matrix into two smaller
ones, ensuring that their product approximates the given matrix under cer-
tain fidelity loss functions. In fact, LRMF is basically a non-convex opti-
mization problem. The rank minimization based methods are to reconstruct
the underlying data matrix by imposing an additional rank constraint on
the estimated matrix. As the rank minimization problem is computation-
ally NP-hard due to the noncontinuous and nonconvex nature of the rank
function, it is usually relaxed to convex or nonconvex regularizes [79].

The commonly used convex relaxation of the rank function is the nuclear
norm minimization (NNM) [78]. Due to its convex property, the NNM prob-
lem can be easily solved with theoretical guarantees [78, 80] in a closed-form
solution by singular-value thresholding [78]. Although NNM has been widely
used for low-rank matrix approximation, it treats all singular values equally,
which indicates that large singular values are more penalized heavily than
small ones. This is unreasonable because different singular values may have
different importance. Hence, singular values should be handled differently. In
practical applications, the underlying matrix data may be corrupted with-
out incoherence. In such cases, NNM-based methods often fail to achieve a
good solution, and the results may deviate seriously from the ground truth.

In contrast, the weighted nuclear norm minimization (WNNM) [65, 76]
is a common nonconvex relaxation of the rank function, which is to overcome
the same penalization of different singular values. Essentially, WNNM is an
extension of NNM and has a global closed-form solution when the weights are
in a non-descending order. Given a weight vector w, the weighted nuclear
norm proximal problem consists of finding an approximation x of y that
minimizes the following cost function:

(5) x̂ = argmin
x

‖y − x‖2F + ‖x‖w,∗,

where ‖x‖w,∗ =
∑

‖wiσi(x)‖1 is the weighted nuclear norm of x, σi denote
the singular values of x. Here wi is the weight assigned on singular value
σi(x). It is also shown in [65] that if the weights satisfy 0 ≤ w1 ≤ · · · ≤ wn,
then the problem (7) has a unique global minimum and can be obtain by
the singular value decomposition of y, i.e.,

(6) x̂ = USw(Σ)V
T ,

where Sw(Σ) = max(Σ − diag(w), 0) is a shrinkage operator of singular
values, Σ is a diagonal matrix formed by the singular values, U and V are
the right and left singular vector matrix of y, respectively.
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In the denoising application of WNNM, the large singular values are

shrunk less while the small ones are shrunk more to keep the faithful in-
formation of the underlying data. Compared with NNM, WNNM achieves

better denoising performance in terms of both qualitative and quantitative

evaluations. However, these low-rank denoising methods do not involve geo-

metric modeling of local images, which resulting in unsatisfactory restoration
of sharp edges and detailed structures.

6. Deep learning-based denoising

Although most of the aforementioned denoising methods have achieved rea-

sonably good performance in image denoising, they suffer from the follow-

ing drawbacks [81]: (1) optimization methods for the test phase, (2) manual
setting of parameters, and (3) a certain model for single denoising task.

Recently, owing to the flexible architectures, deep learning techniques have

strong abilities to effectively overcome the drawbacks of these methods. Deep

learning-based methods can adaptively learn image representation models
from large training data, and then use the learned parametric models for im-

age denoising. Such denoising methods can achieve very impressive results

and high computational efficiency.

The recently developed deep learning methods are based on the classical

deep convolutional neural network (DCNN) [82]. The general model of deep

learning based denoising methods can be modeled by

min
Θ

Loss(x̂, x), s.t. x̂ = F(y, σ; Θ)

where F(·) is a DCNN with a parameter set Θ, and Loss(·) is the loss
function to measure the similarity between denoised image x̂ and noise-

free image x. Deep learning model for image denoising has been recently

attracting considerable attention due to its favorable denoising performance.

In [83], Zhang et al. proposed a residual learning strategy of CNN for

training acceleration, and proposed feed-forward denoising convolutional

neural networks (DnCNN). DnCNN aims to learn a mapping function x̂ =

F(y; Θσ) between the input noisy observation y and the desired output x̂.
The model parameters Θσ are trained for noisy images corrupted by AWGN

with a fixed noise level σ. Subsequently, to remove spatially variant noise by

a single network, they presented a fast and flexible denoising CNN with a
tunable noise level map [84]. To handle non-white, spatially dependent and

anisotropic noise, Benou et al. [85] introduced a spatiotemporal denoising
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framework using deep neural networks. Yang et al. [86] presented a gener-
ative adversarial network (GAN) with Wasserstein distance and perceptual
loss for image denoising. In [87], GAN is used to learn noise distribution and
to produce the paired training data, which results in an effective method for
blind denoising. Furthermore, Ran et al. [88] proposed a residual encoder
decoder Wasserstein GAN for 3D image denoising. In addition, feature at-
tention mechanism has been proven to be a way to improve the denoising
performance [89]. The architecture of DCNN is very important issue for deep
learning-based image denoising, which can be addressed by automatically
searching effective network architectures [90]. However, these data-driven
denoising methods require a large amount of training data, and often show
significant performance degradation when there are discrepancies between
the training data and the test data. But large training data are not always
available in practice.

7. Summary

In this paper, an earnest effort has been made to classify and explain various
image denoising methods. It can be seen that it is highly important to keep
developing new techniques to remove noise in images. The basic idea of im-
age denoising is to eliminate noise pixels while preserving edges. Extensive
efforts by a large number of researchers have generated a structural literature
which exhibit substantial progressive growth attained by a series of sequen-
tial incremental improvements. Although it is nearly impossible to cover all
of them, we have covered each domain of image denoising with several repre-
sentative methods for each category. These methods have been divided into
five categories: spatial filtering, transform domain methods, sparse repre-
sentation based methods, low-rank based methods, and deep learning-based
methods. Figure 1 illustrates the relationship between different denoising
methods. In general, the performance of denoising methods shown in this
figure is increasing from left to right. We can conclude from the above ap-
proaches for image denoising that the usage of DCNN is to provide better
results than the traditional filtering and model-based methods used before.

Most denoising methods tend to leave residual noise and cannot sustain
their performance at higher noise levels. While image denoising for AWGN
removal has been well-studied, little work has been done on real image de-
noising. Also, using deep learning techniques to learn features requires the
ground truth. However, the obtained real noisy images do not have the
ground truth. These challenges are very urgent to for future scholars. With
this review, we hope to provide a better understanding of the work that has
been done and help researchers looking to work in this field.
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Figure 1: Relationship between different denoising methods.
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