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The note is a complement to the paper [2] by the authors on the
generalized CIR equation. We provide here a stochastic analysis
proof of a crucial step of the proof in [2] which required there some
advanced results on infinitesimal generators of a class of Markov
processes.
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Solutions to the classical Cox, Ingersol, Ross (CIR) equation

dR(t) = (aR(t) + b)dt+ c
√

R(t)dW (t),(1)

where a, c ≥ 0 andW is a Wiener process, are nonnegative, paths continuous

processes which generate affine term structure of the mathematical finance,

see Cox, Ingersoll, Ross [7], Björk [5, p. 375, 380, 383], Filpović [8, p. 87],

Carmona, Tehranchi [6, p. 53]. This means that there exist smooth non-

negative deterministic functions A(s), B(s), s ≥ 0 such that the process R

has the following martingale property (MP): for each T > 0, the discounted

bond price process

P̂ (t, T ) = P (t, T )e−
∫ t

0
R(s)ds, t ∈ [0, T ],(2)

is a local martingale. The bond prices P (t, T ) are of the form:

P (t, T ) = e−A(T−t)−B(T−t)R(t), t ∈ [0, T ],(3)

and R is interpreted as the short rate process. If R is a solution of (1) then

the bond market with the bond prices (3) is arbitrage free.
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The paper [2] by the authors drops the requirement that the short rate
process has continuous paths leaving all the other properties valid. In [2] the
equations for short rate processes are assumed to be of the form

dR(t) = F (R(t))dt+G(R(t−))dZ(t), R(0) = x, t > 0,(4)

where Z stands for a Lévy process which is also a martingale.
Let us recall that the Laplace exponent J(z) of Z is defined, for z wher-

ever it is finite, by the identities:

E[e−zZ(t)] = etJ(z), t ≥ 0

and it admits the representation:

J(z) =
1

2
qz2 +

∫ +∞

−∞
(e−zy − 1 + zy)ν(dy),

see Proposition 5.3.4 in [3].
The measure ν(dy) is called a Lévy measure or a jump measure of Z

and q ≥ 0. In fact, J(z) is well defined for z satisfying∫
{|y|>1}

e−zyν(dy) < +∞,

see formula 5.2.8 in [3].
In particular, if Z = Zα is an α-stable martingale, α ∈ (1, 2], with

positive jumps, then

J(z) = cαz
α, z ≥ 0.

In the case α ∈ (1, 2) the Lévy measure of Zα has the form

ν(dy) =
1

y1+α
1(0,+∞)(y)dy,

and cα := Γ(2− α)/α(α− 1), where Γ stands for the Gamma function. For
α = 2 the jump measure disappears, Z2 is a standard Wiener process W
and c2 =

1
2q, q = E[W (1)]2.

The aim of [2] was to determine all equations (4) having nonnegative
solutions for each x ≥ 0 and satisfying (MP). The following two theorems
were established in [2]. Theorem 1 determines necessary conditions which the
coefficients and the noise process should satisfy if (MP) holds and Theorem 2
shows that they are also sufficient.
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Theorem 1. Assume that solutions to the equation (4) with functions F,G
which are continuous on [0,+∞) have the martingale property (MP) with
some functions A,B satisfying

A(0) = 0, B(0) = 0, A′(0) = 0, B′(0) = 1.

I) If G is differentiable on (0,+∞) and G(x̄) > 0, G′(x̄) �= 0 for some
x̄ > 0, then

a) Z = Zα is an α-stable martingale, for some α ∈ (1, 2], with positive
jumps,

b) F (x) = ax+ b with a ∈ R, b ≥ 0, x ≥ 0,

c) G(x) = c
1

αx
1

α , c > 0, x ≥ 0.

II) If G is a positive constant σ, then

d) Z has no Wiener part,

e) the martingale Z has positive jumps and
∫ +∞
0 yν(dy) < +∞,

f) F (x) = ax+ b, x ≥ 0, with a ∈ R, b ≥ σ
∫ +∞
0 yν(dy).

Theorem 2. I) For arbitrary α ∈ (1, 2] and a ∈ R, b ≥ 0, c > 0, the
equation

dR(t) = (aR(t) + b)dt+ c
1

αR(t−)
1

αdZα(t), R(0) = x ≥ 0,(5)

has a unique non-negative strong solution and satisfies, with some func-
tions A and B, the martingale property (MP). Moreover, the functions
A,B in (3) are such that B solves the equation

B′(v) = −ccα[B(v)]α + aB(v) + 1, v ≥ 0, B(0) = 0,(6)

and A is given by A′(v) = bB(v), v ≥ 0, A(0) = 0.
II) If G is a positive constant σ and Z is such that (d), (e), (f) in Theo-

rem 1 hold, then the equation

dR(t) = (aR(t) + b) + σdZ(t), R(0) = x ≥ 0, t > 0,

has the martingale property (MP) and its solutions are non-negative
processes. Moreover, A, B are given by

B′(v) =B(v)a+ 1, B(0) = 0,

(7)



212 Micha�l Barski and Jerzy Zabczyk

A′(v) =B(v)(b−σ

∫ +∞

0
yν(dy))+

∫ +∞

0
(1−e−σB(v)y)ν(dy), A(0) = 0.

(8)

Open problem A generalization of the above theorems to equations

dR(t) = F (R(t))dt+

d∑
j=1

Gj(R(t−))dZj(t), R(0) = x, t > 0,(9)

with a d-dimensional Lévy martingale (Zj), is an open problem. For some
partial results see [3].

The proofs were given in [2]. However, the proof of the final crucial step
4 of the Theorem 1 was based on a result due to Filipović [9] on Marko-
vian infinitesimal generators, whereas the steps 1, 2 and 3, were based on
stochastic analysis arguments only.

It is our aim here to give a direct, stochastic analysis proof of the step 4
without referring to the general theory of Markov processes. Our proof is
a consequence of the following Theorem 3 on nonnegative solutions to (4).
We think that the theorem and its proof are of independent interest and
might be useful for a multidimensional extension. They were announced
and established in our earlier arxiv-preprint [1].

Theorem 3. Consider a stochastic equation

dR(t) = F (R(t))dt+G(R(t−))dZα(t),(10)

where G is a Lipschitz function, F continuous on [0,+∞) and Zα is an α-
stable martingale with index α ∈ (1, 2). If solutions of (10) are nonnegative
then necessarily G(0) = 0.

Before proving Theorem 3 we sketch the proof of the step 4 using The-
orem 3. Let us recall that Ī = (ā, b̄) denoted in the paper [2] the maximal
interval containing x̄ such that G(x) > 0 for x ∈ Ī. The aim of the step 4
was to show that Ī = (0,+∞) and that

G(x) = c
1

αx
1

α , c > 0, x ∈ [0,+∞).(11)

Proof of the step 4. From the steps 1, 2 and 3 of the proof of Theorem 1 we
know that Z is an α-stable martingale, α ∈ (1, 2], with Laplace exponent
J(z) = cαz

α, z ∈ [0,+∞) and that

αcαG
α−1(x)G′(x)Bα(v) = B(v)a+ 1−B′(v), x ∈ Ī , v ≥ 0,
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where a is a constant. We can find ṽ > 0 such that B(ṽ) �= 0. Then

αcαG
α−1(x)G′(x) = M, x ∈ Ī ,(12)

with M := (B(ṽ)a + 1 − B′(ṽ))/Bα(ṽ). Now we show that Ī = (0,+∞).
Assume that ā > 0. Since, by definition, limx↓āG(x) = 0, we see from (12)
that limx↓āG′(x) = ±∞, which contradicts the differentiability of G on
(0,+∞). Similarly one can exclude the case b̄ < +∞. Solving (12) we obtain

G(x) =
(
G(x̄)− M

cα
x̄+

M

cα
x
) 1

α

:= (m1 +m2x)
1

α , x ∈ (0,+∞),

with m1 ≥ 0,m2 > 0. If m1 > 0 then G is Lipschitz at zero and by
Theorem 3, G(0) = 0 which is a contradiction. Hence (11) follows with
c := m2.

Proof of Theorem 3. In the proof we use the classical maximal inequality

P( sup
s∈[0,t]

| X(s) |≥ r) ≤ 3

r
E | X(t) |, t > 0,(13)

where X is a càdlàg submartingale, see Proposition 7.12 in [11] and the
following auxiliary lemma:

Lemma 1. Let us assume that g(s), s ≥ 0 is a predictable process satisfying

E

∫ t

0
| g(s) |p ds < +∞, t ≥ 0,

with 2 ≥ p > α > 1. Then

E |
∫ t

0
g(s)dZα

0 (s) |p≤
cp

p− α
E

∫ t

0
| g(s) |p ds, t ≥ 0,(14)

with some cp > 0.

Here Zα
0 is a modified α-stable martingale Zα

0 with the Lévy measure

ν(dy) = 1(0,1)(y)
1

y1+α
dy.

Its jumps are thus bounded by 1 and it is identical with the process Zα on
the interval [0, τ1), where τ1 is the first jump of Zα exceeding 1.
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Proof of Lemma 1. Since the quadratic variation of the integral
∫
g(s)dZα

0 (s)

equals [ ∫
g(s)dZα

0 (s)
]
(t) =

∫ t

0

∫ 1

0
g2(s)y2π0(ds, dy)

where π0 stands for the jump measure of Zα
0 , by the Burkholder-Davis-

Gundy inequality we obtain, for some cp > 0,

E |
∫ t

0
g(s)dZα

0 (s) |p ≤ cpE
[ ∫

g(s)dZα
0 (s)

] p

2

(t)

= cpE
(∫ t

0

∫ 1

0
g2(s)y2π0(ds, dy)

) p

2

,

and further, since p/2 ≤ 1,

E |
∫ t

0
g(s)dZα

0 (s) |p ≤ cpE

∫ t

0

∫ 1

0
| g(s) |p ypds 1

y1+α
dz

≤ cpE

∫ t

0
| g(s) |p ds ·

∫ 1

0

yp

y1+α
dy

≤ cpE

∫ t

0
| g(s) |p ds ·

∫ 1

0

yp

y1+α−p
dy

≤ cp
p− α

E

∫ t

0
| g(s) |p ds.

Now we continue the proof of Theorem 3. We adopt the proof of Milian

[12] for the Wiener noise, which goes back to Gihman, Skorohod [10]. Let

us consider (10) with x = 0. Then we can write R in the form

R(t) =

∫ t

0
F (R(s))ds+

∫ t

0
(G(R(s−))−G(0))dZα(s) +G(0)Zα(t), t > 0.

Dividing by t
1

α yields

1

t
1

α

R(t) =
1

t
1

α

∫ t

0
F (R(s))ds+

1

t
1

α

∫ t

0
(G(R(s−))−G(0))dZα(s)

+
1

t
1

α

G(0)Zα(t),(15)
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for t > 0. Since

lim inf
t→0

1

t
1

α

Zα(t) = −∞, lim sup
t→0

1

t
1

α

Zα(t) = +∞,

see [4], Theorem 5 in Section VIII, the last term in (15) becomes negative

for some sequence tn ↓ 0 providing that G(0) �= 0. Since

1

t
1

α

∫ t

0
F (R(s))ds −→

t→0
0,

the assertion is true if we show that

1

t
1

α

∫ t

0
(G(R(s−))−G(0))dZα(s) −→

t→0
0.

Let us denote g(s) := G(R(s−))−G(0). In the neighborhood of zero we can

replace Zα by Zα
0 . Then, by (13), for the submartingale |

∫ s
0 g(u)dZα

0 (u) |p,
with 2 > p > α > 1, we have

P

(
sup
0≤s≤t

1

t
1

α

|
∫ s

0
g(u)dZα

0 (u)| > ε

)
= P

(
sup
0≤s≤t

|
∫ s

0
g(u)dZα

0 (u)|p > (εt
1

α )p
)

≤ 3

(εt
1

α )p
E|

∫ t

0
g(u)dZα

0 (u)|p.(16)

It follows from (14) that

3

(εt
1

α )p
E |

∫ t

0
g(u)dZα

0 (u) |p≤
3cp

(εt
1

α )p(p− α)

∫ t

0
E | g(u) |p du.(17)

Since G is Lipschitz, so

E | g(u) |p= E | G(R(u−))−G(R(0)) |p≤ K · E | R(u−) |p,(18)

with some constant K > 0. By (16), (17) and (18) we obtain thus

P

(
sup
0≤s≤t

1

t
1

α

|
∫ s

0
g(u)dZα

0 (u) |> ε

)
≤ 3Kcp

(εt
1

α )p(p− α)

∫ t

0
E | R(u−) |p du.

(19)
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Therefore, for a sequence {ak} we obtain

H(k) :=P

(
sup

2−k≤s≤2−k+1

1

s
1

α

|
∫ s

0
g(u)dZα

0 (u) |> ak

)

≤ P

(
sup

2−k≤s≤2−k+1

1

(2−k+1)
1

α

(2−k+1

s

) 1

α |
∫ s

0
g(u)dZα

0 (u) |> ak

)

≤ P

(
sup

0≤s≤2−k+1

2
1

α
1

(2−k+1)
1

α

|
∫ s

0
g(u)dZα

0 (u) |> ak

)

≤ P

(
sup

0≤s≤2−k+1

1

(2−k+1)
1

α

|
∫ s

0
g(u)dZα

0 (u) |>
ak

2
1

α

)
, k = 0, 1, . . . ,

and, consequently, by (19),

H(k) ≤ 3Kcp(
ak

2
1
α
(2−k+1)

1

α

)p
(p− α)

∫ 2−k+1

0
E | R(u−) |p du, k = 0, 1, . . . .

(20)

Now we estimate the integral
∫ t
0 E | R(u−) |p du for t > 0. We can assume

that F and G are bounded because we investigate the behaviour of R before
it leaves a neighborhood of zero. Then

| R(t) |p≤ 2p−1

(
|
∫ t

0
F (R(s))ds |p + |

∫ t

0
G(R(s−))dZα

0 (s) |p
)
,

and, consequently,

E | R(t) |p≤ 2p−1(ctp + E

∫ t

0
| G(R(s−)) |p ds) ≤ c̃t,

with some constants c, c̃. Hence∫ t

0
E | R(u−) |p du =

∫ t

0
E | R(u) |p du ≤ c̃

∫ t

0
ds =

c̃

2
t2, t > 0.(21)

By (20) and (21) we obtain finally

H(k) ≤ 3Kcp(
ak

2
1
α
(2−k+1)

1

α

)p
(p− α)

c̃

2
(2−k+1)2
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=
3Kcpc̃2

p

α
−1

p− α
· 1

apk
(2−k+1)2−

p

α , k = 0, 1, . . . .

Taking ak = 1
k and δ := 2− p/α > 0 we obtain that

+∞∑
k=0

Hk < +∞,

and, by the Borel-Cantelli lemma,

1

t
1

α

∫ t

0
G(R(s−)−G(0))dZα

0 (s) −→
t→0

0,

as required.
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