A note on generalized CIR equations

Micha乇 Barski and Jerzy Zabczyk
Dedicated to Professor Tyron Duncan

Abstract

The note is a complement to the paper [2] by the authors on the generalized CIR equation. We provide here a stochastic analysis proof of a crucial step of the proof in [2] which required there some advanced results on infinitesimal generators of a class of Markov processes.

AMS 2000 SUbJect classifications: Primary 60H10, 60G51; secondary 91G30.
Keywords and phrases: Cox-Ingersoll-Ross model, bond market, short rate, positivity of stochastic equations.

Solutions to the classical Cox, Ingersol, Ross (CIR) equation

$$
\begin{equation*}
d R(t)=(a R(t)+b) d t+c \sqrt{R(t)} d W(t) \tag{1}
\end{equation*}
$$

where $a, c \geq 0$ and W is a Wiener process, are nonnegative, paths continuous processes which generate affine term structure of the mathematical finance, see Cox, Ingersoll, Ross [7], Björk [5, p. 375, 380, 383], Filpović [8, p. 87], Carmona, Tehranchi [6, p. 53]. This means that there exist smooth nonnegative deterministic functions $A(s), B(s), s \geq 0$ such that the process R has the following martingale property (MP): for each $T>0$, the discounted bond price process

$$
\begin{equation*}
\hat{P}(t, T)=P(t, T) e^{-\int_{0}^{t} R(s) d s}, \quad t \in[0, T] \tag{2}
\end{equation*}
$$

is a local martingale. The bond prices $P(t, T)$ are of the form:

$$
\begin{equation*}
P(t, T)=e^{-A(T-t)-B(T-t) R(t)}, \quad t \in[0, T] \tag{3}
\end{equation*}
$$

and R is interpreted as the short rate process. If R is a solution of (1) then the bond market with the bond prices (3) is arbitrage free.

The paper [2] by the authors drops the requirement that the short rate process has continuous paths leaving all the other properties valid. In [2] the equations for short rate processes are assumed to be of the form

$$
\begin{equation*}
d R(t)=F(R(t)) d t+G(R(t-)) d Z(t), \quad R(0)=x, \quad t>0 \tag{4}
\end{equation*}
$$

where Z stands for a Lévy process which is also a martingale.
Let us recall that the Laplace exponent $J(z)$ of Z is defined, for z wherever it is finite, by the identities:

$$
\mathbb{E}\left[e^{-z Z(t)}\right]=e^{t J(z)}, \quad t \geq 0
$$

and it admits the representation:

$$
J(z)=\frac{1}{2} q z^{2}+\int_{-\infty}^{+\infty}\left(e^{-z y}-1+z y\right) \nu(d y)
$$

see Proposition 5.3.4 in [3].
The measure $\nu(d y)$ is called a Lévy measure or a jump measure of Z and $q \geq 0$. In fact, $J(z)$ is well defined for z satisfying

$$
\int_{\{|y|>1\}} e^{-z y} \nu(d y)<+\infty
$$

see formula 5.2.8 in [3].
In particular, if $Z=Z^{\alpha}$ is an α-stable martingale, $\alpha \in(1,2]$, with positive jumps, then

$$
J(z)=c_{\alpha} z^{\alpha}, \quad z \geq 0
$$

In the case $\alpha \in(1,2)$ the Lévy measure of Z^{α} has the form

$$
\nu(d y)=\frac{1}{y^{1+\alpha}} \mathbf{1}_{(0,+\infty)}(y) d y
$$

and $c_{\alpha}:=\Gamma(2-\alpha) / \alpha(\alpha-1)$, where Γ stands for the Gamma function. For $\alpha=2$ the jump measure disappears, Z^{2} is a standard Wiener process W and $c_{2}=\frac{1}{2} q, q=\mathbb{E}[W(1)]^{2}$.

The aim of [2] was to determine all equations (4) having nonnegative solutions for each $x \geq 0$ and satisfying (MP). The following two theorems were established in [2]. Theorem 1 determines necessary conditions which the coefficients and the noise process should satisfy if (MP) holds and Theorem 2 shows that they are also sufficient.

Theorem 1. Assume that solutions to the equation (4) with functions F, G which are continuous on $[0,+\infty)$ have the martingale property (MP) with some functions A, B satisfying

$$
A(0)=0, \quad B(0)=0, \quad A^{\prime}(0)=0, \quad B^{\prime}(0)=1 .
$$

I) If G is differentiable on $(0,+\infty)$ and $G(\bar{x})>0, G^{\prime}(\bar{x}) \neq 0$ for some $\bar{x}>0$, then
a) $Z=Z^{\alpha}$ is an α-stable martingale, for some $\alpha \in(1,2]$, with positive jumps,
b) $F(x)=a x+b$ with $a \in \mathbb{R}, b \geq 0, x \geq 0$,
c) $G(x)=c^{\frac{1}{\alpha}} x^{\frac{1}{\alpha}}, c>0, x \geq 0$.
II) If G is a positive constant σ, then
d) Z has no Wiener part,
e) the martingale Z has positive jumps and $\int_{0}^{+\infty} y \nu(d y)<+\infty$,
f) $F(x)=a x+b, \quad x \geq 0$, with $a \in \mathbb{R}, b \geq \sigma \int_{0}^{+\infty} y \nu(d y)$.

Theorem 2. I) For arbitrary $\alpha \in(1,2]$ and $a \in \mathbb{R}, b \geq 0, c>0$, the equation

$$
\begin{equation*}
d R(t)=(a R(t)+b) d t+c^{\frac{1}{\alpha}} R(t-)^{\frac{1}{\alpha}} d Z^{\alpha}(t), \quad R(0)=x \geq 0 \tag{5}
\end{equation*}
$$

has a unique non-negative strong solution and satisfies, with some functions A and B, the martingale property (MP). Moreover, the functions A, B in (3) are such that B solves the equation

$$
\begin{equation*}
B^{\prime}(v)=-c c_{\alpha}[B(v)]^{\alpha}+a B(v)+1, \quad v \geq 0, \quad B(0)=0 \tag{6}
\end{equation*}
$$

and A is given by $A^{\prime}(v)=b B(v), v \geq 0, A(0)=0$.
II) If G is a positive constant σ and Z is such that $(d),(e),(f)$ in Theorem 1 hold, then the equation

$$
d R(t)=(a R(t)+b)+\sigma d Z(t), \quad R(0)=x \geq 0, t>0
$$

has the martingale property (MP) and its solutions are non-negative processes. Moreover, A, B are given by

$$
\begin{equation*}
B^{\prime}(v)=B(v) a+1, B(0)=0 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
A^{\prime}(v)=B(v)\left(b-\sigma \int_{0}^{+\infty} y \nu(d y)\right)+\int_{0}^{+\infty}\left(1-e^{-\sigma B(v) y}\right) \nu(d y), A(0)=0 \tag{8}
\end{equation*}
$$

Open problem A generalization of the above theorems to equations

$$
\begin{equation*}
d R(t)=F(R(t)) d t+\sum_{j=1}^{d} G_{j}(R(t-)) d Z_{j}(t), \quad R(0)=x, \quad t>0 \tag{9}
\end{equation*}
$$

with a d-dimensional Lévy martingale $\left(Z_{j}\right)$, is an open problem. For some partial results see [3].

The proofs were given in [2]. However, the proof of the final crucial step 4 of the Theorem 1 was based on a result due to Filipovic [9] on Markovian infinitesimal generators, whereas the steps 1,2 and 3 , were based on stochastic analysis arguments only.

It is our aim here to give a direct, stochastic analysis proof of the step 4 without referring to the general theory of Markov processes. Our proof is a consequence of the following Theorem 3 on nonnegative solutions to (4). We think that the theorem and its proof are of independent interest and might be useful for a multidimensional extension. They were announced and established in our earlier arxiv-preprint [1].

Theorem 3. Consider a stochastic equation

$$
\begin{equation*}
d R(t)=F(R(t)) d t+G(R(t-)) d Z^{\alpha}(t) \tag{10}
\end{equation*}
$$

where G is a Lipschitz function, F continuous on $[0,+\infty)$ and Z^{α} is an α stable martingale with index $\alpha \in(1,2)$. If solutions of (10) are nonnegative then necessarily $G(0)=0$.

Before proving Theorem 3 we sketch the proof of the step 4 using Theorem 3. Let us recall that $\bar{I}=(\bar{a}, \bar{b})$ denoted in the paper [2] the maximal interval containing \bar{x} such that $G(x)>0$ for $x \in \bar{I}$. The aim of the step 4 was to show that $\bar{I}=(0,+\infty)$ and that

$$
\begin{equation*}
G(x)=c^{\frac{1}{\alpha}} x^{\frac{1}{\alpha}}, \quad c>0, \quad x \in[0,+\infty) \tag{11}
\end{equation*}
$$

Proof of the step 4. From the steps 1, 2 and 3 of the proof of Theorem 1 we know that Z is an α-stable martingale, $\alpha \in(1,2]$, with Laplace exponent $J(z)=c_{\alpha} z^{\alpha}, z \in[0,+\infty)$ and that

$$
\alpha c_{\alpha} G^{\alpha-1}(x) G^{\prime}(x) B^{\alpha}(v)=B(v) a+1-B^{\prime}(v), \quad x \in \bar{I}, \quad v \geq 0
$$

where a is a constant. We can find $\tilde{v}>0$ such that $B(\tilde{v}) \neq 0$. Then

$$
\begin{equation*}
\alpha c_{\alpha} G^{\alpha-1}(x) G^{\prime}(x)=M, \quad x \in \bar{I} \tag{12}
\end{equation*}
$$

with $M:=\left(B(\tilde{v}) a+1-B^{\prime}(\tilde{v})\right) / B^{\alpha}(\tilde{v})$. Now we show that $\bar{I}=(0,+\infty)$. Assume that $\bar{a}>0$. Since, by definition, $\lim _{x \downarrow \bar{a}} G(x)=0$, we see from (12) that $\lim _{x \downarrow \bar{a}} G^{\prime}(x)= \pm \infty$, which contradicts the differentiability of G on $(0,+\infty)$. Similarly one can exclude the case $\bar{b}<+\infty$. Solving (12) we obtain

$$
G(x)=\left(G(\bar{x})-\frac{M}{c_{\alpha}} \bar{x}+\frac{M}{c_{\alpha}} x\right)^{\frac{1}{\alpha}}:=\left(m_{1}+m_{2} x\right)^{\frac{1}{\alpha}}, \quad x \in(0,+\infty)
$$

with $m_{1} \geq 0, m_{2}>0$. If $m_{1}>0$ then G is Lipschitz at zero and by Theorem 3, $G(0)=0$ which is a contradiction. Hence (11) follows with $c:=m_{2}$.

Proof of Theorem 3. In the proof we use the classical maximal inequality

$$
\begin{equation*}
\mathbb{P}\left(\sup _{s \in[0, t]}|X(s)| \geq r\right) \leq \frac{3}{r} \mathbb{E}|X(t)|, \quad t>0 \tag{13}
\end{equation*}
$$

where X is a càdlàg submartingale, see Proposition 7.12 in [11] and the following auxiliary lemma:

Lemma 1. Let us assume that $g(s), s \geq 0$ is a predictable process satisfying

$$
\mathbb{E} \int_{0}^{t}|g(s)|^{p} d s<+\infty, \quad t \geq 0
$$

with $2 \geq p>\alpha>1$. Then

$$
\begin{equation*}
\mathbb{E}\left|\int_{0}^{t} g(s) d Z_{0}^{\alpha}(s)\right|^{p} \leq \frac{c_{p}}{p-\alpha} \mathbb{E} \int_{0}^{t}|g(s)|^{p} d s, \quad t \geq 0 \tag{14}
\end{equation*}
$$

with some $c_{p}>0$.
Here Z_{0}^{α} is a modified α-stable martingale Z_{0}^{α} with the Lévy measure

$$
\nu(d y)=\mathbf{1}_{(0,1)}(y) \frac{1}{y^{1+\alpha}} d y
$$

Its jumps are thus bounded by 1 and it is identical with the process Z^{α} on the interval $\left[0, \tau_{1}\right)$, where τ_{1} is the first jump of Z^{α} exceeding 1 .

Proof of Lemma 1. Since the quadratic variation of the integral $\int g(s) d Z_{0}^{\alpha}(s)$ equals

$$
\left[\int g(s) d Z_{0}^{\alpha}(s)\right](t)=\int_{0}^{t} \int_{0}^{1} g^{2}(s) y^{2} \pi_{0}(d s, d y)
$$

where π_{0} stands for the jump measure of Z_{0}^{α}, by the Burkholder-DavisGundy inequality we obtain, for some $c_{p}>0$,

$$
\begin{aligned}
\mathbb{E}\left|\int_{0}^{t} g(s) d Z_{0}^{\alpha}(s)\right|^{p} & \leq c_{p} \mathbb{E}\left[\int g(s) d Z_{0}^{\alpha}(s)\right]^{\frac{p}{2}}(t) \\
& =c_{p} \mathbb{E}\left(\int_{0}^{t} \int_{0}^{1} g^{2}(s) y^{2} \pi_{0}(d s, d y)\right)^{\frac{p}{2}}
\end{aligned}
$$

and further, since $p / 2 \leq 1$,

$$
\begin{aligned}
\mathbb{E}\left|\int_{0}^{t} g(s) d Z_{0}^{\alpha}(s)\right|^{p} & \leq c_{p} \mathbb{E} \int_{0}^{t} \int_{0}^{1}|g(s)|^{p} y^{p} d s \frac{1}{y^{1+\alpha}} d z \\
& \leq c_{p} \mathbb{E} \int_{0}^{t}|g(s)|^{p} d s \cdot \int_{0}^{1} \frac{y^{p}}{y^{1+\alpha}} d y \\
& \leq c_{p} \mathbb{E} \int_{0}^{t}|g(s)|^{p} d s \cdot \int_{0}^{1} \frac{y^{p}}{y^{1+\alpha-p}} d y \\
& \leq \frac{c_{p}}{p-\alpha} \mathbb{E} \int_{0}^{t}|g(s)|^{p} d s
\end{aligned}
$$

Now we continue the proof of Theorem 3. We adopt the proof of Milian [12] for the Wiener noise, which goes back to Gihman, Skorohod [10]. Let us consider (10) with $x=0$. Then we can write R in the form
$R(t)=\int_{0}^{t} F(R(s)) d s+\int_{0}^{t}(G(R(s-))-G(0)) d Z^{\alpha}(s)+G(0) Z^{\alpha}(t), \quad t>0$.
Dividing by $t^{\frac{1}{\alpha}}$ yields

$$
\begin{align*}
\frac{1}{t^{\frac{1}{\alpha}}} R(t)= & \frac{1}{t^{\frac{1}{\alpha}}} \int_{0}^{t} F(R(s)) d s+\frac{1}{t^{\frac{1}{\alpha}}} \int_{0}^{t}(G(R(s-))-G(0)) d Z^{\alpha}(s) \\
& +\frac{1}{t^{\frac{1}{\alpha}}} G(0) Z^{\alpha}(t) \tag{15}
\end{align*}
$$

for $t>0$. Since

$$
\liminf _{t \rightarrow 0} \frac{1}{t^{\frac{1}{\alpha}}} Z^{\alpha}(t)=-\infty, \quad \limsup _{t \rightarrow 0} \frac{1}{t^{\frac{1}{\alpha}}} Z^{\alpha}(t)=+\infty
$$

see [4], Theorem 5 in Section VIII, the last term in (15) becomes negative for some sequence $t_{n} \downarrow 0$ providing that $G(0) \neq 0$. Since

$$
\frac{1}{t^{\frac{1}{\alpha}}} \int_{0}^{t} F(R(s)) d s \underset{t \rightarrow 0}{\longrightarrow} 0
$$

the assertion is true if we show that

$$
\frac{1}{t^{\frac{1}{\alpha}}} \int_{0}^{t}(G(R(s-))-G(0)) d Z^{\alpha}(s) \underset{t \rightarrow 0}{\longrightarrow} 0
$$

Let us denote $g(s):=G(R(s-))-G(0)$. In the neighborhood of zero we can replace Z^{α} by Z_{0}^{α}. Then, by (13), for the submartingale $\left|\int_{0}^{s} g(u) d Z_{0}^{\alpha}(u)\right|^{p}$, with $2>p>\alpha>1$, we have
$\mathbb{P}\left(\sup _{0 \leq s \leq t} \frac{1}{t^{\frac{1}{\alpha}}}\left|\int_{0}^{s} g(u) d Z_{0}^{\alpha}(u)\right|>\varepsilon\right)=\mathbb{P}\left(\sup _{0 \leq s \leq t}\left|\int_{0}^{s} g(u) d Z_{0}^{\alpha}(u)\right|^{p}>\left(\varepsilon t^{\frac{1}{\alpha}}\right)^{p}\right)$

$$
\begin{equation*}
\leq \frac{3}{\left(\varepsilon t^{\frac{1}{\alpha}}\right)^{p}} \mathbb{E}\left|\int_{0}^{t} g(u) d Z_{0}^{\alpha}(u)\right|^{p} \tag{16}
\end{equation*}
$$

It follows from (14) that

$$
\begin{equation*}
\frac{3}{\left(\varepsilon t^{\frac{1}{\alpha}}\right)^{p}} \mathbb{E}\left|\int_{0}^{t} g(u) d Z_{0}^{\alpha}(u)\right|^{p} \leq \frac{3 c_{p}}{\left(\varepsilon t^{\frac{1}{\alpha}}\right)^{p}(p-\alpha)} \int_{0}^{t} \mathbb{E}|g(u)|^{p} d u \tag{17}
\end{equation*}
$$

Since G is Lipschitz, so

$$
\begin{equation*}
\mathbb{E}|g(u)|^{p}=\mathbb{E}|G(R(u-))-G(R(0))|^{p} \leq K \cdot \mathbb{E}|R(u-)|^{p}, \tag{18}
\end{equation*}
$$

with some constant $K>0$. By (16), (17) and (18) we obtain thus

$$
\begin{equation*}
\mathbb{P}\left(\sup _{0 \leq s \leq t} \frac{1}{t^{\frac{1}{\alpha}}}\left|\int_{0}^{s} g(u) d Z_{0}^{\alpha}(u)\right|>\varepsilon\right) \leq \frac{3 K c_{p}}{\left(\varepsilon t^{\frac{1}{\alpha}}\right)^{p}(p-\alpha)} \int_{0}^{t} \mathbb{E}|R(u-)|^{p} d u \tag{19}
\end{equation*}
$$

Therefore, for a sequence $\left\{a_{k}\right\}$ we obtain

$$
\begin{aligned}
H(k):= & \mathbb{P}\left(\sup _{2^{-k} \leq s \leq 2^{-k+1}} \frac{1}{s^{\frac{1}{\alpha}}}\left|\int_{0}^{s} g(u) d Z_{0}^{\alpha}(u)\right|>a_{k}\right) \\
& \leq \mathbb{P}\left(\sup _{2^{-k} \leq s \leq 2^{-k+1}} \frac{1}{\left(2^{-k+1}\right)^{\frac{1}{\alpha}}}\left(\frac{2^{-k+1}}{s}\right)^{\frac{1}{\alpha}}\left|\int_{0}^{s} g(u) d Z_{0}^{\alpha}(u)\right|>a_{k}\right) \\
& \leq \mathbb{P}\left(\sup _{0 \leq s \leq 2^{-k+1}} 2^{\frac{1}{\alpha}} \frac{1}{\left(2^{-k+1}\right)^{\frac{1}{\alpha}}}\left|\int_{0}^{s} g(u) d Z_{0}^{\alpha}(u)\right|>a_{k}\right) \\
& \leq \mathbb{P}\left(\sup _{0 \leq s \leq 2^{-k+1}} \frac{1}{\left(2^{-k+1}\right)^{\frac{1}{\alpha}}}\left|\int_{0}^{s} g(u) d Z_{0}^{\alpha}(u)\right|>\frac{a_{k}}{2^{\frac{1}{\alpha}}}\right), \quad k=0,1, \ldots,
\end{aligned}
$$

and, consequently, by (19),

$$
\begin{equation*}
H(k) \leq \frac{3 K c_{p}}{\left(\frac{a_{k}}{2^{\frac{1}{\alpha}}}\left(2^{-k+1}\right)^{\frac{1}{\alpha}}\right)^{p}(p-\alpha)} \int_{0}^{2^{-k+1}} \mathbb{E}|R(u-)|^{p} d u, \quad k=0,1, \ldots \tag{20}
\end{equation*}
$$

Now we estimate the integral $\int_{0}^{t} \mathbb{E}|R(u-)|^{p} d u$ for $t>0$. We can assume that F and G are bounded because we investigate the behaviour of R before it leaves a neighborhood of zero. Then

$$
|R(t)|^{p} \leq 2^{p-1}\left(\left|\int_{0}^{t} F(R(s)) d s\right|^{p}+\left|\int_{0}^{t} G(R(s-)) d Z_{0}^{\alpha}(s)\right|^{p}\right)
$$

and, consequently,

$$
\mathbb{E}|R(t)|^{p} \leq 2^{p-1}\left(c t^{p}+\mathbb{E} \int_{0}^{t}|G(R(s-))|^{p} d s\right) \leq \tilde{c} t,
$$

with some constants c, \tilde{c}. Hence
(21) $\quad \int_{0}^{t} \mathbb{E}|R(u-)|^{p} d u=\int_{0}^{t} \mathbb{E}|R(u)|^{p} d u \leq \tilde{c} \int_{0}^{t} d s=\frac{\tilde{c}}{2} t^{2}, \quad t>0$.

By (20) and (21) we obtain finally

$$
H(k) \leq \frac{3 K c_{p}}{\left(\frac{a_{k}}{2^{\frac{1}{\alpha}}}\left(2^{-k+1}\right)^{\frac{1}{\alpha}}\right)^{p}(p-\alpha)} \frac{\tilde{c}}{2}\left(2^{-k+1}\right)^{2}
$$

$$
=\frac{3 K c_{p} \tilde{c} 2^{\frac{p}{\alpha}-1}}{p-\alpha} \cdot \frac{1}{a_{k}^{p}}\left(2^{-k+1}\right)^{2-\frac{p}{\alpha}}, \quad k=0,1, \ldots
$$

Taking $a_{k}=\frac{1}{k}$ and $\delta:=2-p / \alpha>0$ we obtain that

$$
\sum_{k=0}^{+\infty} H_{k}<+\infty
$$

and, by the Borel-Cantelli lemma,

$$
\frac{1}{t^{\frac{1}{\alpha}}} \int_{0}^{t} G(R(s-)-G(0)) d Z_{0}^{\alpha}(s) \underset{t \rightarrow 0}{\longrightarrow} 0
$$

as required.

References

[1] M. Barski and J. Zabczyk, On generalized CIR equations, (2019), preprint, arXiv:1902.08976. MR4065191
[2] M. Barski and J. Zabczyk, On CIR equations with general factors, (2020), SIAM Journal on Financial Mathematics, 11, 1, 131-147. MR4065191
[3] M. Barski and J. Zabczyk, Mathematics of the Bond Market, (2020), Cambridge University Press.
[4] J. Bertoin, Lévy Processes, (1996), Cambridge University Press. MR1406564
[5] T. Björk, Arbitrage Theory in Continuous Time, (2009), Oxford University Press.
[6] R. A. Carmona and M. R. Tehranchi, Interest Rate Models: an Infinite Dimensional Stochastic Analysis Perspective, (2006), Springer. MR2235463
[7] J. Cox, J. Ingersoll and S. Ross, A theory of the term structure of interest rates, (1985), Econometrica, 53, 385-408. MR0785475
[8] D. Filpović, Term-Structure Models: A Graduate Course, (2009), Springer-Verlag. MR2553163
[9] D. Filipović, A general characterization of one factor affine term structure models, (2001), Finance and Stochastics, 5, 3, 389-412. MR1850789
[10] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, (1972), Springer. MR0346904
[11] O. Kallenberg, Foundations of Modern Probability, (2001), 2-nd ed. Springer-Verlag. MR1876169
[12] A. Millian, Nagumo's type theorems for stochastic equations, (1994), PhD, Institute of Mathematics, Polish Academy of Sciences, (in Polish).

Micha乇 Barski
Faculty of Mathematics Informatics and Mechanics
University of Warsaw
Poland
E-mail address: m.barski@mimuw.edu.pl
Jerzy Zabczyk
Institute of Mathematics
Polish Academy of Sciences
Warsaw
Poland
E-mail address: zabczyk@impan.pl
Received May 15, 2020

