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The note is a complement to the paper [2] by the authors on the
generalized CIR equation. We provide here a stochastic analysis
proof of a crucial step of the proof in [2] which required there some
advanced results on infinitesimal generators of a class of Markov
processes.
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Solutions to the classical Cox, Ingersol, Ross (CIR) equation

(1) dR(t) = (aR(t) + b)dt + e /R(E)AW (t),

where a,c > 0 and W is a Wiener process, are nonnegative, paths continuous
processes which generate affine term structure of the mathematical finance,
see Cox, Ingersoll, Ross [7], Bjork [5, p. 375, 380, 383], Filpovi¢ [8, p. 87],
Carmona, Tehranchi [6, p. 53]. This means that there exist smooth non-
negative deterministic functions A(s), B(s),s > 0 such that the process R
has the following martingale property (MP): for each 7" > 0, the discounted
bond price process

(2) P(t,T) = P(t,T)e o B9)s 4 ¢ (0,77,
is a local martingale. The bond prices P(t,T') are of the form:
(3) P(t,T) = e~ AT=O=BIT=OR®) =4 < [0, 77,

and R is interpreted as the short rate process. If R is a solution of (1) then
the bond market with the bond prices (3) is arbitrage free.
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The paper [2] by the authors drops the requirement that the short rate
process has continuous paths leaving all the other properties valid. In [2] the
equations for short rate processes are assumed to be of the form

(4)  dR(t) = F(R({))dt + G(R(t—))dZ(t), R(O0) ==z, t>0,

where Z stands for a Lévy process which is also a martingale.
Let us recall that the Laplace exponent J(z) of Z is defined, for z wher-
ever it is finite, by the identities:

E[esz(t)] — etJ(z)7 t>0

and it admits the representation:

1 oo
) =0+ [ e Lty

see Proposition 5.3.4 in [3].
The measure v(dy) is called a Lévy measure or a jump measure of Z
and ¢ > 0. In fact, J(z) is well defined for z satisfying

[ et <o
{lyl>1}

see formula 5.2.8 in [3].
In particular, if Z = Z¢ is an a-stable martingale, a € (1,2], with
positive jumps, then
J(z) = cqz®, 2z2>0.

In the case a € (1,2) the Lévy measure of Z¢ has the form

1
v(dy) = W1(0,+oo) (y)dy,

and ¢, :=I'(2 — a)/a(a — 1), where T" stands for the Gamma function. For
a = 2 the jump measure disappears, Z2 is a standard Wiener process W
and ¢ = 3¢, ¢ = E[W(1)]%.

The aim of [2] was to determine all equations (4) having nonnegative
solutions for each z > 0 and satisfying (MP). The following two theorems
were established in [2]. Theorem 1 determines necessary conditions which the
coefficients and the noise process should satisfy if (MP) holds and Theorem 2
shows that they are also sufficient.
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Theorem 1. Assume that solutions to the equation (4) with functions F,G
which are continuous on [0,400) have the martingale property (MP) with
some functions A, B satisfying

A(0)=0, B(0)=0, A(0)=0, B(0)=1.

I) If G is differentiable on (0,400) and G(z) > 0, G'(Z) # 0 for some

1I)

x>0, then

a) Z = Z% is an a-stable martingale, for some « € (1,2], with positive
Jumps,

b) F(z) =ax+bwitha e R, b>0, x>0,

c) G(x) = cozw,c>0,z>0.

If G is a positive constant o, then

d) Z has no Wiener part,

e) the martingale Z has positive jumps and f0+°° yv(dy) < +o0,
f) F(x)=ax+b, ©>0, witha€eR, b> af0+°° yv(dy).

Theorem 2. ) For arbitrary o € (1,2] and a € R;b > 0, ¢ > 0, the

1)

equation
(5)  dR(t) = (aR(t) + b)dt + c= R(t—)=dZ(t), R(0) =z >0,

has a unique non-negative strong solution and satisfies, with some func-
tions A and B, the martingale property (MP). Moreover, the functions
A, B in (3) are such that B solves the equation

(6)  B'(v) = —ccoB)]*+aB(v)+1, v>0, B(0)=0,
and A is given by A'(v) = bB(v),v > 0, A(0) = 0.

If G is a positive constant o and Z is such that (d), (e), (f) in Theo-
rem 1 hold, then the equation

dR(t) = (aR(t) +b) + 0dZ(t), R(O0)=z >0, t >0,

has the martingale property (MP) and its solutions are non-negative
processes. Moreover, A, B are given by

(7)
B'(v) =B(v)a+1, B(0) =0,
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(8)
+oo +oo
A'(0) =B(0)(b-0 /0 yo(dy)) + /0 (1—e=7BOW)(dy), A(D) = 0.

Open problem A generalization of the above theorems to equations
d

(9)  dR(t) = F(R(t)dt+ Y _ G;(R(t-))dZ;(t), R(0)==z, t>0,
j=1

with a d-dimensional Lévy martingale (Z;), is an open problem. For some
partial results see [3].

The proofs were given in [2]. However, the proof of the final crucial step
4 of the Theorem 1 was based on a result due to Filipovi¢ [9] on Marko-
vian infinitesimal generators, whereas the steps 1, 2 and 3, were based on
stochastic analysis arguments only.

It is our aim here to give a direct, stochastic analysis proof of the step 4
without referring to the general theory of Markov processes. Our proof is
a consequence of the following Theorem 3 on nonnegative solutions to (4).
We think that the theorem and its proof are of independent interest and
might be useful for a multidimensional extension. They were announced
and established in our earlier arxiv-preprint [1].

Theorem 3. Consider a stochastic equation
(10) dR(t) = F(R(t))dt + G(R(t—))dZ*(t),

where G is a Lipschitz function, F continuous on [0,400) and Z* is an a-
stable martingale with index « € (1,2). If solutions of (10) are nonnegative
then necessarily G(0) = 0.

Before proving Theorem 3 we sketch the proof of the step 4 using The-
orem 3. Let us recall that I = (@,b) denoted in the paper [2] the maximal
interval containing # such that G(z) > 0 for € I. The aim of the step 4
was to show that I = (0, +o00) and that

1

(11) G(z)=cex=, ¢>0, x€][0,+o0).

Proof of the step 4. From the steps 1, 2 and 3 of the proof of Theorem 1 we
know that Z is an a-stable martingale, a € (1,2], with Laplace exponent
J(z) = cqz%, z € [0,400) and that

oG 2)G (2)B*(v) = B(v)a+1—B'(v), ze€l, v>0,
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where a is a constant. We can find ¢ > 0 such that B(¢) # 0. Then

(12) ac, GO (2)G () = M, zcl,

with M := (B(?)a + 1 — B'(9))/B*(%). Now we show that I = (0, +0c0).
Assume that a > 0. Since, by definition, lim,; G(x) = 0, we see from (12)
that lim, |z G'(x) = £oo, which contradicts the differentiability of G' on
(0, +00). Similarly one can exclude the case b < +00. Solving (12) we obtain

Gla) = (0@ - Lo+ L)

= (ml + mg(]})i, S (07 —|—OO),
Ca Ca

with m; > 0,mg > 0. If m; > 0 then G is Lipschitz at zero and by
Theorem 3, G(0) = 0 which is a contradiction. Hence (11) follows with
c = ms. ]

Proof of Theorem 3. In the proof we use the classical maximal inequality

(13) P(sup | X(s) [>7) < SB[ X(t) |, t>0,
s€[0,1] r

where X is a cadlag submartingale, see Proposition 7.12 in [11] and the
following auxiliary lemma:

Lemma 1. Let us assume that g(s),s > 0 is a predictable process satisfying
t
E/ | g(s) |P ds < o0, t>0,
0
with 2> p>a > 1. Then

(14) Ey/ $)dZ8 (s) [P< pnz/yg Pds, t>0,

with some ¢, > 0.

Here Z§ is a modified a-stable martingale Z§ with the Lévy measure

1
v(dy) = 1(0,1)(y)ﬁdy.

Its jumps are thus bounded by 1 and it is identical with the process Z¢ on
the interval [0,71), where 71 is the first jump of Z% exceeding 1.
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Proof of Lemma 1. Since the quadratic variation of the integral [ g(s)dZ§(s)

equals
[/(dzo // s)y>mo(ds, dy)

where 7y stands for the jump measure of Z§, by the Burkholder-Davis-
Gundy inequality we obtain, for some ¢, > 0,

Bl [ o)iz3o) P < k] [ a1z

([ [ entnatas,an)’
and further, since p/2 <1,

1
E|/ s)dZG (s) |P < ¢E // s) [Py pdsy adz
1 yp
SCE/ g(s pds-/ dy
2 [ [
t 1 yp
p . 7
<o [ Lo s [ L

t
< E/ | g(s) P ds.
p—a Jo O

Now we continue the proof of Theorem 3. We adopt the proof of Milian
[12] for the Wiener noise, which goes back to Gihman, Skorohod [10]. Let
us consider (10) with 2 = 0. Then we can write R in the form

R(t) = /0 F(R(s))ds —|—/0 (G(R(s—)) — G(0))dZ“(s) + G(0)Z*(t), t> 0.

Dividing by ta yields

t

Lray=21 / F(R(s))ds + — [ (Gr(-) - G0z

ta ta ta
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for t > 0. Since

1 1
liminf—Z%(t) = —oo, limsup—Z°(t) = +o0,
t—=0 ¢o t—0 tao

see [4], Theorem 5 in Section VIII, the last term in (15) becomes negative
for some sequence t,, | 0 providing that G(0) # 0. Since

1 t
— | F(R(s))ds — 0,
ta t—0

the assertion is true if we show that

L [ (Grs—) - G0))dz*(s) — 0.
ta Jo t—0

Let us denote g(s) := G(R(s—)) — G(0). In the neighborhood of zero we can
replace Z® by Z§'. Then, by (13), for the submartingale | [3 g(u)dZg (u) |7,
with 2 > p > a > 1, we have

< sup ]/ w)dZ§ (u)| > 5) =P ( sup ] g(uw)dZ§ (u) P > (gti)P>
0<s<t ta 0<s<t

(16)

w)dZg (u

It follows from (14) that

3¢

17 — [ E|g(u) P du.
a7) P s [ Bl

w)dZ8 (u) [P<

Since G is Lipschitz, so
(18)  Elg(u) ['=E [ G(R(u—)) = G(R(0)) P< K- E | R(u—) [?,
with some constant K > 0. By (16), (17) and (18) we obtain thus
(19)
3K !
(Sup |/ w)dZ8 (u |>s)§1—cp/E|R(u—)|pdu.
0<s<t to (eto)P(p — ) Jo



216 Michat Barski and Jerzy Zabczyk

Therefore, for a sequence {ax} we obtain

S

H(k) :=P( sup O g(u)dzg<u>>ak>

2-k<g<2-k+1 S

1 2 k+1 1
< P 1 “ | dZO | > ag
2- k<s<2 k1 (27 kﬂ): s
<P sup o« ———— / dZ > ag
<0<5<2—k+1 2 k+1 o ‘ 0 ’
<P sup 1\ w)dZ§ (u ]> , k=0,1,...,
0<s<2a-r+1 (27k+H1)G 2a

and, consequently, by (19),
(20)
K
H(k) < R
( ay (27k+1)i)
2a

Now we estimate the integral fot E | R(u—) [P du for t > 0. We can assume
that F' and G are bounded because we investigate the behaviour of R before
it leaves a neighborhood of zero. Then

rR<t>|ps2p-1<\/ PR dsrw/ s-DIZ ) 1)

and, consequently,

2 k+1
; /' E|R(u—) P du, k=0,1,....
(p—a)’o

t
E| B(t) P<2 et + B [ | G(R(s-) P ds) <,
0
with some constants ¢, ¢. Hence
t t t G
(21) / E | R(u—) |Pdu:/ E | R(u) ypdugé/ ds:§t2, t>0.
0 0 0

By (20) and (21) we obtain finally

3Kcp 5(27k+1)2

H(k) < (5_2(2_]“_1)&)17@ o) 2
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_ 3Kcepe2et 1

Do ap(2*k+1)2*§, k=0,1,....
k

Taking ay = % and § := 2 — p/a > 0 we obtain that

“+oo

Z H;. < 400,
k=0

and, by the Borel-Cantelli lemma,

L [ atris-) - conazgs) o
as required. O
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