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We consider two-player zero-sum differential games (ZSDGs),
where the state process (dynamical system) depends on the ran-
dom initial condition and the state process’s distribution, and the
objective functional includes the state process’s distribution and
the random target variable. Unlike ZSDGs studied in the exist-
ing literature, the ZSDG of this paper introduces a new technical
challenge, since the corresponding (lower and upper) value func-
tions are defined on P2 (the set of probability measures with finite
second moments) or L2 (the set of random variables with finite sec-
ond moments), both of which are infinite-dimensional spaces. We
show that the (lower and upper) value functions on P2 and L2 are
equivalent (law invariant) and continuous, satisfying dynamic pro-
gramming principles. We use the notion of derivative of a function
of probability measures in P2 and its lifted version in L2 to show
that the (lower and upper) value functions are unique viscosity so-
lutions to the associated (lower and upper) Hamilton-Jacobi-Isaacs
equations, which are (infinite-dimensional) first-order PDEs on P2

and L2, where the uniqueness is obtained via the comparison prin-
ciple. Under the Isaacs condition, we show that the ZSDG has a
value.
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220 Tamer Başar and Jun Moon

1. Introduction

In this paper, we consider a class of nonlinear two-player zero-sum differen-

tial games (ZSDGs), where the state process (dynamical system) depends on

the random initial condition and the state process’s distribution (the law of

the state process), and the objective functional includes the state process’s

distribution and the random target variable. The main objectives of this

paper are to establish dynamic programming principles (DPPs) for lower

and upper value functions of the ZSDG, show that the value function is

the unique viscosity solution of the associated Hamilton-Jacobi-Isaacs (HJI)

equation, and prove that under the Isaacs condition, the ZSDG has a value.

(Deterministic and stochastic) ZSDGs and their applications have been

studied extensively in the literature; see [1, 2, 3, 4, 5] and the references

therein. Specifically, Rufus Isaacs [6] was the first who considered (determin-

istic) ZSDGs with applications to pursuit-evasion games. Elliott and Kalton

[7] introduced the concept of nonanticipative strategies for the players, which

was used in [8, 9] to obtain DPPs for lower and upper value functions of the

ZSDG, and show that the value functions are viscosity solutions to associ-

ated (lower and upper) HJI equations. The existence of the value of ZSDGs

and the existence of saddle-point solutions were studied in [7, 10, 11].

Later, the results of [8, 9] were extended to various other settings for

ZSDGs. We mention here a few references that are relevant to our paper.

The papers [12, 13] considered the class of games where the state and the

objective functional are described by coupled forward-backward stochastic

differential equations (SDEs). They used the so-called backward semigroup

associated with the backward SDE to obtain DPPs and the viscosity solution

property of the HJI equations. ZSDGs with unbounded controls were consid-

ered in [14]. The weak formulation of ZSDGs and the mean-field framework

of ZSDGs were studied in [15, 16, 17, 18], where in [15] path-dependent

HJI equations and their viscosity solutions were considered. Reference [18]

used the feedback approach to construct a suboptimal solution and prove

the existence of the value function. (Deterministic and stochastic) linear-

quadratic ZSDGs with Riccati equations were studied in [19, 20, 21, 22, 23]

and the references therein. Maximum principles for risk-sensitive ZSDGs

were established in [24], and for nonzero-sum DGs in [25].

There are numerous applications of ZSDGs. Pursuit-evasion games and

their applications to characterization of reachable sets for dynamical systems

were considered in [5, 4, 26, 27]. Optimal resource allocation, distributed

control problems and their applications can also be considered within the
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framework of ZSDGs [28, 5]. For particular applications of ZSDGs considered

in this paper, see the discussion in Examples 2.1–2.3 of Section 2.2.

We should note that for the (lower and upper) value functions of ZS-

DGs and the associated HJI equations studied in [2, 8, 9, 12, 13, 14, 15],

the state space is the standard finite-dimensional space. In our formulation,

however, the random initial condition and the law of the state process af-

fect the dynamical system, and the objective functional includes the state

process’s distribution as well as the random target variable. Hence, unlike

[2, 8, 9, 12, 13, 14, 15], in this paper the state arguments of the (lower and

upper) value functions and the associated HJI equations belong to P2 (the

set of probability measures with finite second moments) and L2 (the set of

random variables with finite second moments) that are infinite-dimensional

spaces. This inherent infinite-dimensional feature introduces a new techni-

cal challenge, which has not arisen in [2, 8, 9, 12, 13, 14, 15]. This is the

challenge we tackle in this paper.1

The first main objective of the paper is to show that the (lower and

upper) value functions defined on [t, T ] × P2 and [t, T ] × L2, where [t, T ]

is a fixed time horizon, are equivalent to each other. This leads to the law

invariant property between the value functions on [t, T ]×P2 and [t, T ]×L2,

which were not considered in the finite-dimensional case in [2, 8, 9, 12, 13, 14,

15]. The (lower and upper) value functions on [t, T ]×L2 are called the lifted

value functions. We also show that the (lower and upper) value functions on

[t, T ]×P2 and their lifted versions on [t, T ]×L2 are continuous. The proof

of the continuity utilizes properties of the 2-Wasserstein metric and the flow

(semigroup) property of the state distribution, which are not needed in the

finite-dimensional cases studied in [2, 8, 9, 12, 13, 14, 15, 29].

The second main objective of the paper is to establish lower and upper

dynamic programming principles (DPPs) for the (lower and upper) value

functions. This provide recursive relationships of the (lower and upper) value

functions. Due to the law invariant property, the (lower and upper) DPPs on

[t, T ]×P2 and the lifted (lower and upper) DPPs on [t, T ]×L2 are identical.

For the proof, we need to consider the interaction between admissible control

and nonanticipative strategies between the players.

1The ZSDG of this paper is closely related to mean-field type games studied in
[16, 17, 18] (see Example 2.1 in Section 2.2). However, [16, 17, 18] considered weak
and open-loop formulations, where the DPPs, the HJI equations, and the viscosity
solution property of the value functions naturally do not arise. The problem for-
mulation, the approach used, and the main results of this paper are different from
[16, 17, 18].
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The third main objective of the paper is to show that (lower and up-
per) value functions are viscosity solutions of the associated (lower and up-
per) Hamilton-Jacobi-Isaacs (HJI) equations, which are first-order partial
differential equations (PDEs) on [t, T ] × P2 and [t, T ] × L2. Hence, un-
like [2, 8, 9, 12, 13, 14, 15], the HJI equations of this paper are infinite-
dimensional. We use the notion of derivative of a function of probability
measures in P2 and its lifted version in L2 with the associated chain rule
introduced in [30, 31] to characterize the (lower and upper) HJI equations
and the viscosity solution property of the (lower and upper) value functions.
Furthermore, when the dynamics and running cost are independent of time,
by constructing the test function and using the law invariant property, we
prove the comparison principle of viscosity solutions, which leads to unique-
ness of the viscosity solution. In addition, under the Isaacs condition, the
lower and upper value functions coincide. This implies that the ZSDG has
a value, which is further characterized by the viscosity solution of the HJI
equation.

Finally, we provide numerical examples to illustrate the theoretical re-
sults of the paper. In particular, we observe that the value of ZSDGs consid-
ered in this paper is determined by the laws (distributions) of random initial
and target variables, whereas the value of classical deterministic ZSDGs is
obtained by explicit values of initial and target variables.

We note that different versions of the problem treated in this paper were
considered earlier in [32, 33]. However, in [32], the notion of nonanticipative
strategies with delay was used, which is hard to implement in practical situa-
tions. Moreover, the objective functional does not have the running cost, and
the state distribution and the random target variable were not considered
in [32]. The stochastic version of the problem of this paper was considered
in [33]. However, the comparison principle and therefore the uniqueness of
viscosity solutions were not shown. Hence, there is no guarantee that the
solution of the corresponding HJI equations characterizes the value function
in [33]. In summary, the problem formulation, the approach used, and the
main results of this paper are different from those of [32, 33].

The rest of the paper is organized as follows. Notations, including the
notion of derivative in P2 and its lifted version in L2, and the problem
formulation are provided in Section 2. The DPPs and the properties of
the (lower and upper) value functions are given in Section 3. The (lower
and upper) HJI equations and their viscosity solutions (including existence
and uniqueness) are given in Section 4. Numerical examples are provided
in Section 5. Several potential future research problems are discussed in
Section 6. Five appendices include proofs of the main results.
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2. Problem statement

In this section, we first describe the notation used in the paper, along with
some notions and properties. The precise problem formulation then follows.

2.1. Notation

The n-dimensional Euclidean space is denoted by Rn, and the transpose
of a vector x ∈ Rn by x�. The inner product of x, y ∈ Rn is denoted by
〈x, y〉 := x�y, and the Euclidean norm of x ∈ Rn by |x| := 〈x, x〉 1

2 .
Let C([0, T ] × Rn) be the set of all real-valued continuous functions de-

fined on [0, T ]×Rn. Let C1,1([0, T ]×Rn) be the set of real-valued functions
defined on [0, T ]×Rn such that for f ∈ C1,1([0, T ]×Rn), ∂tf(t, x) (the par-
tial derivative of f with respect to t) and ∂xf(t, x) (the partial derivatives of
f with respect to x) are continuous and bounded. Let A and B be Banach
spaces with the norms ‖ ·‖A and ‖ ·‖B, respectively. A function f : A → B is
Frechet differentiable at x ∈ A [34, page 172] if there exists a bounded linear

operator Dxf : A → B such that lim‖h‖A→0
‖f(x+h)−f(x)−Dxf(x)(h)‖B

‖h‖A
= 0.

Let (Ω,F ,P) be a complete probability space, and E be the expectation
operator with respect to P. We denote by Px the distribution (or law) of a
random variable x. Let Ex∼Px

be the expectation for which the underlying
distribution (or law) is Px. Let L2(Ω,R

n) be the set of Rn-valued random
vectors such that for x ∈ L2(Ω,R

n), E[|x|2] < ∞. L2(Ω,R
n) is a Hilbert

space, with inner product and norm denoted by E[〈x, y〉] and ‖x‖L2
:=

E[|x|2]1/2, respectively [34, 35].
Let P(Rn) be the set of probability measures on Rn, and Pp := Pp(R

n) ⊂
P(Rn) be the set of probability measures with finite p-th moment, p ≥ 1,
i.e., for any μ ∈ Pp(R

n) with p ≥ 1, we have (
∫
Rn |x|pdμ(x))1/p < ∞. We

note that x ∈ L2(Ω,R
n) if and only if μ = Px ∈ P2(R

n). For x ∈ L2(Ω,R
n)

with the associated law μ ∈ P2(R
n), we can write E[x] =

∫
Rn xdμ(x). The

p-Wasserstein metric is defined by (see [36, page 40] and [37, Chapter 6]):

Wp(μ1, μ2) :=
(

inf
π∈Π(μ1,μ2)

∫
Rn×Rn

|x− y|pdπ(x, y)
)1/p

,

where μ1, μ2 ∈ Pp, and Π(μ1, μ2) is the collection of all probability measures
on Rn×Rn with marginals μ1 and μ2, i.e. π(A×Rn) = μ1(A) and π(Rn×A) =
μ2(A) for any Borel sets A ⊂ Rn [36]. Note that W2 can equivalently be
written as [37, Chapter 6]

W2(μ1, μ2) = inf
{
‖x1 − x2‖L2

| x1, x2 ∈ L2(Ω,R
n)
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with Px1
= μ1 and Px2

= μ2

}
.

One can easily show that Wp is a metric; hence, Pp(R
n) endowed with Wp,

p ≥ 1, is a metric space. For μ ∈ P2(R
n), let Lμ

2 (R
n) be the set of square-

integrable functions with respect to μ.
We next provide the notion of derivative in P2, and its lifted derivative

in L2, which are introduced in [30, 31]. Let x ∈ L2(Ω,R
n), which implies

μ := Px ∈ P2(R
n). Let f : P2(R

n) → R. We introduce the lifted (extended)
version of f , F : L2(Ω,R

n) → R, that is, for x ∈ L2(Ω,R
n) (note that

Px ∈ P2(R
n)), F (x) = f(Px). While F is a function of the random variable,

f is a function of the distribution (law) of x. We say that f is differentiable at
Px ∈ P2(R

n), if its lifted version F is Frechet differentiable at x ∈ L2(Ω,R
n).

Let D̄xF (x) : L2(Ω,R
n) → R be the corresponding Frechet derivative. Then

D̄xF (x) is a bounded linear functional. Since L2(Ω,R
n) is a Hilbert space

and its dual space is L2(Ω,R
n), in view of Riesz representation theorem [35,

Theorem 3.4], for any y ∈ L2(Ω,R
n), there is a unique DxF (x) ∈ L2(Ω,R

n)
such that D̄xF (x)(y) = E[〈DxF (x), y〉]. This implies that the Frechet deriva-
tive can be viewed as an element of L2(Ω,R

n). In view of [30, Theorem 6.2],
DxF (x) does not depend on x, but depends on the law (distribution) of x.
Also, from [30, Theorem 6.5], there exists a function ∂μf(μ) : Rn → Rn

with ∂μu(μ) ∈ Lμ
2 (R

n) such that ∂μf(μ) ∈ Lμ
2 (R

n) is a derivative of f in
P2(R

n), which can be represented as DxF (x) = ∂μf(μ)(x). Finally, con-
sider the dynamical system ẋ(t) = f(x(t)) with x(0) = x0 ∈ L2(R

n). Let
μt := Px(t) ∈ P2(R

n) be the state distribution (or law) of the dynamical sys-
tem. Let v ∈ C1,1([0, T ]×P2(R

n)). From the notion of derivative in P2, the
chain rule in P2 is dv(t, μt) = ∂tv(t, μt)dt+

∫
Rn〈∂μv(t, μt)(x), f(x)〉dμt(x)dt.

Note that for the lifted chain rule in L2 with V ∈ C1,1([0, T ] × L2(Ω,R
n)),

we have dV (t, x(t)) = ∂tV (t, x(t))dt+ E[〈DxV (t, x(t)), f(x(t))〉]dt.

2.2. Problem formulation

Consider the dynamical system on [t, T ] with the initial time t ∈ [0, T ):

ẋ(s) :=
dx(s)

ds
= f(s, x(s),Pt,νx;u,v

s , u(s), v(s)),(1)

where x ∈ Rn is the state with the random initial condition x(t) = x0 ∈
L2(Ω,R

n) having the law νx := Px0
∈ P2(R

n), u ∈ U ⊂ Rm1 is the control of
Player 1, and v ∈ V ⊂ Rm2 is the control of Player 2. We assume that U and
V are compact. The set of admissible controls for Player 1, U [t, T ], is defined
such that for u ∈ U [t, T ], u : [t, T ] → U is a measurable function. The set
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of admissible controls for Player 2, V[t, T ], is defined in a similar way. Let
U := U [0, T ] and V := V[0, T ]. In (1), Pt,νx;u,v

s ∈ P2(R
n) denotes the law

(equivalently distribution) of the dynamical system at time s that is depen-
dent on the law of the initial condition νx (see Remark A.1 in Appendix A),
as well as u and v. We introduce the following assumption:

(H.1) f : [0, T ] × Rn × P(Rn) × U × V → Rn is bounded, where f is
continuous in (t, u, v) for each ν ∈ P(Rn), and satisfies the Lipschitz
condition: for t ∈ [0, T ], u ∈ U , v ∈ V , x1, x1 ∈ Rn and ν1, ν2 ∈ P(Rn)
and for K > 0, it holds that |f(t, x1, ν1, u, v) − f(t, x2, ν2, u, v)| ≤
K(|x1 − x2|+W1(ν1, ν2)).

Then, for x0 ∈ Rn, (1) admits a unique solution on [0, T ] [38, 39].
Let z ∈ L2(Ω,R

n) with the law νz := Pz ∈ P2(R
n), which is independent

of x0. Here, z is the target variable in the objective functional (see (2) and
Remark 2.1). Let y := (x0, z) ∈ L2(Ω,R

n)×L2(Ω,R
n) =: (L2(Ω,R

n))2 with
the law given by ν := (νx, νz) = Py ∈ P2(R

n) × P2(R
n) =: (P2(R

n))2. The
objective functional for the two-player ZSDG in this paper is then given by

J(t, νx, νz;u, v) =: J(t, ν;u, v)(2)

≡ J(t, x0, z;u, v) =: J(t, y;u, v)

= E(x0,z)∼ν

[∫ T

t
l(s, x(s),Pt,νx;u,v

s , u(s), v(s))ds+m(x(T ), z)
]
,

where J is cost to Player 1 (minimizer) and payoff to Player 2 (maximizer).
Note that the notation in the first line of (2) indicates that J is defined on
[0, T ] × (P2(R

n))2 × U × V, whereas the notation in the second line of (2)
stands for J as a functional on [0, T ]×(L2(Ω,R

n))2×U×V, and the two are
equivalent because of the correspondence between L2 and P2 discussed in
Section 2.1. Let J(u, v) := J(0, νx, νz;u, v) = J(0, x0, z;u, v). We introduce
the following assumption:

(H.2) l : [0, T ]×Rn×P(Rn)×U×V → R is bounded, where l is continuous
in (t, u, v) for each ν ∈ P(Rn) and satisfies the Lipschitz condition: for
t ∈ [0, T ], u ∈ U , v ∈ V , x1, x2 ∈ Rn and ν1, ν2 ∈ P(Rn) and for
K > 0, it holds that |l(t, x1, ν1, u, v)− l(t, x2, ν2, u, v)| ≤ K(|x1−x2|+
W1(ν1, ν2)). Also, m : Rn × Rn → R is bounded, which is Lipschitz
continuous in (x, z) with Lipschitz constant K > 0.

Remark 2.1. The random variable z included in the terminal cost m of
(2) is called the target variable, which captures the constraint of the state
process at the terminal time. Specifically, given z, m can be used such that
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the distance between the law of the state process and the target distribution
(the law of z) can be optimized via the control processes u and v.

We next state the notion of nonanticipative strategies for Player 1 and
Player 2; see also [2, 8, 9, 12, 21].

Definition 2.1. A strategy for Player 1 is a mapping α : V → U . A strategy
for Player 1 is nonanticipative if for any s ∈ [t, T ], and v1, v2 ∈ V, v1(s̄) =
v2(s̄) for s̄ ∈ [t, s] implies that α(v1)(s̄) = α(v2)(s̄) for s̄ ∈ [t, s], this being
true for each t ∈ [0, T ]. The set of nonanticipative strategies for Player 1 on
[t, T ] is denoted by A[t, T ]. Let A := A[0, T ]. A strategy for Player 2 is a
measurable mapping β : U → V. A nonanticipative strategy for Player 2 is
defined in a similar way as Player 1’s. The set of nonanticipative strategies
for Player 2 on [t, T ] is denoted by B[t, T ]. Let B := B[0, T ].

Using Definition 2.1, for t ∈ [0, T ] and ν = (νx, νz) ∈ (P2(R
n))2, the

lower value function for (2) is defined by L : [0, T ]× (P2(R
n))2 → R with

L(t, νx, νz) = L(t, ν) := inf
α∈A[t,T ]

sup
v∈V[t,T ]

J(t, ν;α(v), v),(3)

and the upper value function is defined by M : [0, T ]× (P2(R
n))2 → R with

M(t, νx, νz) = M(t, ν) := sup
β∈B[t,T ]

inf
u∈U [t,T ]

J(t, ν;u, β(u)).(4)

Note that L(T, ν) = M(T, ν) =
∫
Rn×Rn m(x, z)dν(x, z). Unlike the deter-

ministic case, (3) and (4) are parametrized by the initial time, the initial
distribution (law) of (1), and the target distribution in (2).

For t ∈ [0, T ] and y = (x, z) ∈ (L2(Ω,R
n))2, define the lifted lower value

function, L : [0, T ]× (L2(Ω,R
n))2 → R with

L(t, x, z) = L(t, y) := inf
α∈A[t,T ]

sup
v∈V[t,T ]

J(t, y;α(v), v),(5)

and the lifted upper value function, M : [0, T ]× (L2(Ω,R
n))2 → R with

M(t, x, z) = M(t, y) := sup
β∈B[t,T ]

inf
u∈U [t,T ]

J(t, y;u, β(u)).(6)

Note that L(T, y) = M(T, y) = Ey∼ν [m(x, z)]. As mentioned in Section 2.1,
the lifted value functions depend on only the law of y = (x, z).2

2The value functions and their lifted versions are defined based on the nota-
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Remark 2.2. Unlike ZSDGs in [2, 8, 9, 12, 13, 14, 15], the lower and

upper value functions in (3)–(6) are defined on infinite-dimensional spaces

P2 and L2.

Before concluding this section, we provide a few examples of ZSDGs that

fit into the framework laid out above.

Example 2.1. The state dynamics in (1) can be regarded as a McKean-

Vlasov dynamics, where the evolution of the state process depends on its

distribution. This is closely related to mean-field games and mean-field

type control, which have been studied extensively in the literature, par-

ticularly, for reducing variation of random effects on the controlled pro-

cess and macroscopic analysis of large-scale interacting multi-agent systems

[40, 31, 41, 42, 30, 43, 44, 45, 38, 46, 17, 18, 47]. For example, we may take

f(t, x(t),E[x(t)], u(t), v(t)), l(t, x(t),E[x(t)], u(t), v(t)) andm(x(T ),E[x(T )])

to optimize the objective functional under the mean-field effect. Notice that

if l ≡ 0 and J(u, v) = E[x2(T )]− (E[x(T )])2, then what we have is a class of

mean-variance optimization problems.

Example 2.2. In statistical learning theory and its applications, we often

need to optimize the worst-case empirical criterion (or risk) [48]. Specifically,

assume that (xi0, z
i), i = 1, . . . , N , is an i.i.d. random pair sampled according

to ν = (νx, νz) ∈ (P2(R
n))2. Consider

JN (u, v) =
1

N

N∑
i=1

[∫ T

0
l(t, x(i)(t), u(t), v(t))dt+m(x(i)(T ), z(i))

]

ẋ(i)(t) = f(t, x(i)(t), u, v), x(i)(0) = x
(i)
0 , i = 1, . . . , N.

Note that we have limN→∞
1
N

∑N
i=1 x

i(t) = E[xi(t)] almost surely in view of

the law of large numbers, which, together with (H.1) and (H.2) implies that

limN→∞ JN (u, v) = J(u, v). Hence, from the minimization point of view,

the class of ZSDGs of this paper can be viewed as worst-case empirical

optimization when the sample size N is arbitrarily large.

tion in (2). Note that the value functions and their corresponding lifted versions
are deterministic and identical, where the detailed proof of the latter is given in
Lemma 3.1. As stated in Section 2.1 and [30, 31], the motivation for introducing
the lifted value functions on L2 is to utilize the notion of derivative in L2, which
allows us to characterize the explicit derivative of the (inverse-lifted) value function
on P2. Note that L2 is a Hilbert space, but P2 with the Wasserstein metric is not.
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Example 2.3. Consider the two adversarial vehicles model:

J(u, v) = E(x0,z)∼ν

[
|x(T )− z|

]
ẋ(t) :=

⎡
⎣ẋ1(t)ẋ2(t)
ẋ3(t)

⎤
⎦ =

⎡
⎣−va + vb cosx3(t) + v(t)x2(t)

vb sinx3(t)− v(t)x1(t)
u(t)− v(t)

⎤
⎦ ,

where x(0) = x0 is the random initial condition, z is the random target

variable, va, vb > 0 are constants of the two vehicles and u, v are velocities of

the two vehicles [26]. When specialized to this setting, the class of ZSDGs in

this paper can be seen as a pursuit-evasion game of two vehicles with random

initial and target pair. Its deterministic version with different settings and

applications to characterization of reachable sets were studied in [4, 5, 26,

27], and the references therein.

3. Dynamic programming principles

In this section, we obtain the dynamic programming principles (DPPs) for

the lower and upper value functions.

We first provide some properties of the value functions. The following

lemma shows that the value functions are law invariant. The proof can be

found in Appendix A.

Lemma 3.1. Suppose that (H.1) and (H.2) hold. Then we have L(t, ν) =

L(t, y) and M(t, ν) = M(t, y) for any y = (x, z) ∈ (L2(Ω,R
n))2 with the law

of y being ν = (νx, νz) ∈ (P2(R
n))2, i.e., ν := Py = P(x,z) ∈ (P2(R

n))2.

The next lemma shows the continuity of the value functions. The proof

is provided in Appendix A.

Lemma 3.2. Suppose that (H.1) and (H.2) hold. Then the lifted value

functions in (5) and (6) are continuous in (t, y) ∈ [0, T ] × (L2(Ω,R
n))2.

Furthermore, the value functions in (3) and (4) are continuous in (t, ν) ∈
[0, T ]× (P2(R

n))2.

We now obtain in the following theorem the DPPs, whose proof is given

in Appendix B.

Theorem 3.1. Suppose that (H.1) and (H.2) hold. Then for any y =

(x, z) ∈ (L2(Ω,R
n))2 with ν := (νx, νz) = Py ∈ (P2(R

n))2 and t, t+τ ∈ [0, T ]

with t < t + τ , the lifted lower and upper value functions in (5) and (6),
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respectively, satisfy the following DPPs:

L(t, x, z) = inf
α∈A[t,t+τ ]

sup
v∈V[t,t+τ ]

E(x,z)∼ν

[∫ t+τ

t
l(s, xt,x,νx;α(v),v

s ,(7)

P
t,νx;α(v),v
s , α(v)(s), v(s))ds+ L(t+ τ, x

t,x,νx;α(v),v
t+τ , z)

]
M(t, x, z) = sup

β∈B[t,t+τ ]
inf

u∈U [t,t+τ ]
E(x,z)∼ν

[∫ t+τ

t
l(s, xt,x,νx;u,β(u)

s ,(8)

P
t,νx;u,β(u)
s , u(s), β(u)(s))ds+M(t+ τ, x

t,x,νx;u,β(u)
t+τ , z)

]
.

Equivalently, for any y = (x, z) ∈ (L2(Ω,R
n))2 with the law ν := (νx, νz) =

Py ∈ (P2(R
n))2 and t, t+ τ ∈ [0, T ] with t < t+ τ , the lower and upper value

functions in (3) and (4), respectively, satisfy the following DPPs:

L(t, νx, νz)(9)

= inf
α∈A[t,t+τ ]

sup
v∈V[t,t+τ ]

{∫ t+τ

t

∫
Rn

l(s, xt,x,νx;α(v),v
s ,Pt,νx;α(v),v

s ,

α(v)(s), v(s))dPt,νx;α(v),v
s (x)ds+ L(t+ τ,P

t,νx;α(v),v
t+τ , νz)

}
M(t, νx, νz)(10)

= sup
β∈B[t,t+τ ]

inf
u∈U [t,t+τ ]

{∫ t+τ

t

∫
Rn

l(s, xt,x,νx;u,β(u)
s ,Pt,νx;u,β(u)

s ,

u(s), β(u)(s))dPt,νx;u,β(u)
s (x)ds+M(t+ τ,P

t,νx;u,β(u)
t+τ , νz)

}
.

4. HJI equations and viscosity solutions

In this section, we address the issue of the lower and upper value functions

being unique viscosity solutions of the associated Hamilton-Jacobi-Isaacs

(HJI) equations, which are first-order partial differential equations defined

on infinite-dimensional spaces, particularly P2 and L2.

The lower HJI equation on [0, T ]× (P2(R
n))2 is given by

{
∂tL(t, νx, νz) +H−(t, ν, ∂νx

L(t, νx, νz)) = 0

L(T, νx, νz) =
∫
Rn×Rn m(x, z)dν(x, z)

,(11)
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and the upper HJI equation on [0, T ]× (P2(R
n))2 is as follows:

{
∂tM(t, νx, νz) +H+(t, ν, ∂νx

M(t, νx, νz)) = 0

M(T, νx, νz) =
∫
Rn×Rn m(x, z)dν(x, z)

,(12)

where H−, H+ : [0, T ]× (P2(R
n))2 × Lνx

2 (Rn) → R are the Hamiltonians:

H−(t, ν, p) := sup
v∈V

inf
u∈U

{∫
Rn

[〈p, f(t, x, νx, u, v)〉+ l(t, x, νx, u, v)]dνx(x)
}(13)

H+(t, ν, p) := inf
u∈U

sup
v∈V

{∫
Rn

[〈p, f(t, x, νx, u, v)〉+ l(t, x, νx, u, v)]dνx(x)
}
.

Viscosity solutions to (11) and (12) are defined as follows; see also [49,

12, 2, 9, 8, 13, 29] and the references therein:

Definition 4.1. (i) A real-valued function L ∈ C([0, T ] × (P2(R
n))2) is

said to be a viscosity subsolution (resp. supersolution) of the lower HJI

equation in (11) if L(T, ν) ≤
∫
Rn×Rn m(x, z)dν(x, z) (resp. L(T, ν) ≥∫

Rn×Rn m(x, z)dν(x, z)) for ν ∈ (P(Rn))2, and if further for all test

functions φ ∈ C1,1([0, T ] × (P2(R
n))2) and (t, ν) ∈ [0, T ) × (P2(R

n))2,

the following inequality holds at the local maximum (resp. local mini-

mum) point (t, ν) of L− φ:

∂tφ(t, ν) +H−(t, ν, ∂νx
φ(t, ν)) ≥ 0

(resp. ∂tφ(t, ν) +H−(t, ν, ∂νx
φ(t, ν)) ≤ 0).

(ii) A real-valued function L ∈ C([0, T ]×(P2(R
n))2) is said to be a viscosity

solution of (11) if it is both a viscosity subsolution and a viscosity

supersolution. The viscosity subsolution, supersolution, and solution

of the HJI equation in (12) are defined in similar ways.

The following theorem, whose proof is given in Appendix C, now estab-

lishes the viscosity solution property of the value functions in (3) and (4).

Theorem 4.1. Suppose that (H.1) and (H.2) hold. Then, the lower value

function L is a viscosity solution to the lower HJI equation (11). The upper

value function M is a viscosity solution to the upper HJI equation (12).

With the lifted value functions, the lifted lower and upper HJI equations
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are given by {
∂tL(t, x, z) +H−(t, y,DxL(t, x, z)) = 0

L(T, x, z) = E[m(x, z)]
(14)

{
∂tM(t, x, z) +H+(t, y,DxM(t, x, z)) = 0

M(T, x, z) = E[m(x, z)]
,(15)

where H−,H+ : [0, T ]×(L2(Ω,R
n))2×L2(Ω,R

n) → R are the (lifted) Hamil-
tonians defined by

H
−(t, y, p) := sup

v∈V
inf
u∈U

E
[
〈p, f(t, x, νx, u, v)〉+ l(t, x, νx, u, v)

]
(16)

H
+(t, y, p) := inf

u∈U
sup
v∈V

E
[
〈p, f(t, x, νx, u, v)〉+ l(t, x, νx, u, v)

]
.

See Section 2.1 for the notion of derivative in L2 and its relationship with

the derivative in P2. As stated in Section 2.2, from the definition of the value
functions (5) and (6), the lifted HJI equations (14) and (15) are dependent

on the law of (x, z).

Remark 4.1. (i) From Remark 2.2, the HJI equations in (11), (12), (14)

and (15) are defined on infinite-dimensional spaces.

(ii) The definition of the viscosity solution for the lifted HJI equations in
(14) and (15) (the solution belongs to C([0, T ]× (L2(Ω,R

n))2)) is iden-

tical with Definition 4.1, except that we need to use the test function
φ ∈ C1,1([0, T ]× (L2(Ω,R

n))2) and (14)–(16) instead of (11)–(13).

We have the following result, whose proof is similar to that of Theo-
rem 4.1.

Proposition 4.1. Suppose that (H.1) and (H.2) hold. Then, the (lifted)
lower value function L is a viscosity solution to the (lifted) lower HJI equa-

tion in (14). The (lifted) upper value function M is a viscosity solution to
the (lifted) upper HJI equation in (15).

Next, we state the comparison results of the viscosity solutions in The-

orem 4.1 and Proposition 4.1, with the proofs relegated to Appendix D. We
need the following assumption:

(H.3) f and l are independent of t.

Theorem 4.2. Assume that (H.1)–(H.3) hold. Then:
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(i) Suppose that L1 (resp. M1) and L2 (resp. M2) are bounded and Lip-
schitz continuous viscosity subsolution and viscosity supersolution of
(11) (resp. (12)), respectively. Then, the following result holds:{

L1(t, ν) ≤ L2(t, ν), ∀(t, ν) ∈ [0, T ]× (P2(R
n))2

M1(t, ν) ≤ M2(t, ν), ∀(t, ν) ∈ [0, T ]× (P2(R
n))2

.(17)

(ii) Suppose that L1 (resp. M1) and L2 (resp. M2) are bounded and Lip-
schitz continuous viscosity subsolution and viscosity supersolution of
(14) (resp. (15)), respectively. Then, the following result holds:{

L1(t, y) ≤ L2(t, y), ∀(t, y) ∈ [0, T ]× (L2(Ω,R
n))2

M1(t, y) ≤ M2(t, y), ∀(t, y) ∈ [0, T ]× (L2(Ω,R
n))2

.(18)

Based on Theorem 4.2, we have the following uniqueness result. The
proof is given in Appendix E.

Corollary 4.1. Suppose that (H.1) and (H.2) hold, and that the (lower
and upper) value functions are bounded. Then, the lower (resp. upper) value
function in (3) (resp. (4)) is the unique viscosity solution to the lower (resp.
upper) HJI equation in (11) (resp. (12)). Also, the lifted lower (resp. upper)
value function in (5) (resp. (6)) is the unique viscosity solution to the lifted
lower (resp. upper) HJI equation in (14) (resp. (15)).

Remark 4.2. In view of Corollary 4.1, by solving the lower (resp. upper)
HJI equation in (11) or (14) (resp. (12) or (15)), we can characterize the
lower (resp. upper) value function of the ZSDG of this paper.

To proceed further, we now introduce the Isaacs conditions :{
H−(t, ν, p) = H+(t, ν, p)

H−(t, y, p) = H+(t, y, p)
.(19)

Note that due to the law invariant property, the conditions in (19) are equiv-
alent. Then under the Isaacs condition, we have the following result, whose
proof can be found in Appendix E.

Corollary 4.2. Suppose that (H.1)–(H.3) and (19) hold. Assume that the
(lower and upper) value functions are bounded. Then, the ZSDG has a value,
i.e., L(t, ν) = L(t, y) = M(t, y) = M(t, ν) for (t, ν) ∈ [0, T ]× (P2(R

n))2 and
(t, y) ∈ [0, T ] × (L2(Ω,R

n))2. Moreover, the value function is the unique
viscosity solution to the HJI equation with H := H− = H+ in (11) and
(12), and H := H− = H+ in (14) and (15).



Zero-sum differential games on the Wasserstein space 233

Remark 4.3. Corollary 4.2 implies that the viscosity solution to the HJI
equation characterizes the value of the ZSDG formulated in Section 2.2.

5. Numerical examples

This section provides two numerical examples. For the HJI equations in Sec-
tion 4, assume that T = 1, f(t, x, νx, u, v) =

1
1+x2 +

∫
R
sin(x)dνx(x)+u−0.1v,

l(t, x, νx, u, v) = sin(x) +
∫
R
xdνx(x) + u− v and m(x, z) = sin(x)− z. Also,

U = [0, 1], V = [0, 1], and x and z are independent Gaussian random vari-
ables with mean zero and variance one (equivalently, νx and νz are Gaussian
measures). Note that the target variable z is included in the terminal cost
m. The ZSDG formulated in this section can be regarded as a class of mean-
field type control (Example 2.1) and pursuit-evasion games (Example 2.3).
Due to the random initial and target variables, and the dependence of f and
l on νx, the problem cannot be solved using the existing theory for ZSDGs.

Note that (H.1)–(H.3) hold. Since the corresponding Hamiltonian is sep-
arable in u and v, the Isaacs condition in (19) holds. Hence, from Corol-
lary 4.2, the ZSDG has a value that can be characterized by solving the
following HJI partial differential equation (PDE) in (14) and (15)3:{

∂tG(t, x, z) + E
[
DxG(t, x, z) 1

1+x2 +DxG(t, x, z)
∫
R
sin(x)dνx(x)

]
= 0

G(1, x, z) = E[sin(x)− z] = 0
.

Moreover, from (11) and (12), the HJI PDE above is equivalent to4

⎧⎪⎨
⎪⎩
∂tG(t, νx, νz) +

∫
R
∂νx

G(t, νx, νz)(x)
1

1+x2 ζ(x)dx

+
∫
R
∂νx

G(t, νx, νz)(x)
∫
R
sin(x)dνx(x)ζ(x)dx = 0

G(1, νx, νz) =
∫
R
sin(x)ζ(x)dx−

∫
R
zζ(z)dz = 0

,

where ζ is the Gaussian probability density function. Here, we have utilized
the fact that for any mean zero and variance one Gaussian random variable
x with the law νx = Px, E[sin(x)] =

∫
R
sin(x)dνx(x) =

∫
R
sin(x)ζ(x)dx = 0

and E[x] =
∫
R
xdνx(x) =

∫
R
xζ(x)dx = 0. We can easily see that G(t, x, z) =

G(t, νx, νz) = 0 is the unique solution to the above PDE, which is the value
of the ZSDG. This shows that the value of the ZSDG of this example is

3It is the lifted HJI equations in (14) and (15) when H := H− = H+. From the
definitions of H− and H+, the PDE is obtained after carrying out the maximization
with respect to v and the minimization with respect to u.

4It is the HJI equations in (11) and (12) when H := H− = H+.
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Figure 1: The value of the ZSDG for the second example when z = 0.

zero, which is determined by the laws (distributions) of random initial and
target variables. Note that, in this example, the game value is independent
of explicit values of the initial and target variables.

For the second example, with the same f , l andm as in the first example,
assume now that νx and νz are Dirac measures. Then, the associated ZSDG
is reduced to the classical deterministic ZSDGs studied in [2, 8, 1], where
the state argument of the value function is in Rn. The HJI equation then
becomes{

∂tG(t, x, z) +DxG(t, x, z)( 1
1+x2 + sin(x)) + sin(x) + x = 0

G(1, x, z) = sin(x)− z
.

Its solution is depicted in Fig. 1 when z = 0, which is defined on [0, 1] ×
[−2, 2]. In this example, we have used the finite-difference method to ap-
proximate the viscosity solution [50].

As seen from the two examples above and the results in the previous
sections, the values of the class of ZSDGs considered in this paper depend
on the laws (distributions) of random initial and target variables, whereas
the values of the classical deterministic ZSDGs are determined by explicit
values of initial and target variables.

6. Concluding remarks

We have studied, in this paper, a class of two-player zero-sum differential
games, where the dynamical system depends on the random initial condi-
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tion and the distribution of the state process, and the objective functional
includes the latter as well as a random target variable. The (lower and up-
per) value functions are defined on two infinite-dimensional spaces, P2 and
L2, which satisfy the dynamic programming principles. By using the no-
tion of derivative in P2 and its lifted version in L2, the (lower and upper)
value functions are shown to be unique (continuous) viscosity solutions to
associated (lower and upper) HJI equations, which are first-order PDEs on
infinite-dimensional spaces. Under the Isaacs condition, the lower and upper
value functions are identical, which implies that the ZSDG has a value.

One possible future research topic would be to study the stochastic
framework of ZSDGs in this paper as an extension of [33], in which there
is an additive Brownian noise in (1) and the corresponding diffusion term
depends on the state, the law of the state process, and the control variables.
This requires the notion of the second-order derivative in P2 and its lifted
version in L2 to obtain DPPs, second-order HJI equations, and their vis-
cosity solutions. Another direction would be the risk-sensitive ZSDGs. The
problem of characterization of reachable sets, which can be viewed as an
application of ZSDGs in this paper (see Example 2.3), would also be an
interesting avenue to pursue. In this case, the major challenge would be to
solve the HJI equation numerically in the infinite-dimensional space. Finally,
the extension of the rational expectations models considered in [51] to the
continuous-time framework is an interesting problem to study.

Appendix A. Proof of Lemmas 3.1 and 3.2

Remark A.1. (i) For (1), let x(t) = x be the initial condition of (1) at
the initial time t ∈ [0, T ). Assume that x is distributed according to
νx ∈ P2(R

n). The law of the state process is denoted by P
t,νx;u,v
s for

s ∈ [t, T ]. Then, we can easily show that Pt,νx;u,v
s ∈ P2(R

n) satisfies

P
t,νx;u,v
s = P

r,Pt,νx;u,v
r ;u,v

s , 0 ≤ t ≤ r ≤ s ≤ T,(A.1)

for any νx ∈ P2(R
n), u ∈ U and v ∈ V. That is, the law of the state

process (A.1) satisfies the semigroup or flow property.
(ii) We use the notation xt,x,νx;u,v

s = x(s), s ∈ [t, T ], with xt,x,νx;u,v
t =

x(t) = x to emphasize the initial condition and the initial time.

Proof of Lemma 3.1. We prove (i) only, since the proof of (ii) is similar to
that of (i). Consider the two initial pairs of random vectors y = (x, z), ȳ =
(x̄, z̄) ∈ (L2(Ω,R

n))2 having the same law (distribution), i.e., ν = P(x,z) =
P(x̄,z̄) ∈ (P2(R

n))2. Since the objective functional in (2) does not depend on
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the random variables, but depends on the law of the initial random pair, we
have J(t, y;u, v) = J(t, ȳ;u, v) = J(t, ν;u, v) for u ∈ U [t, T ] and v ∈ V[t, T ].
This, together with the fact that α ∈ A[t, T ] and v ∈ V[t, T ] are not de-
pendent on the law of the initial random pair, implies that J(t, y;α(v), v) =
J(t, ȳ;α(v), v) = J(t, ν;α(v), v) for α ∈ A[t, T ] and v ∈ V[t, T ]. Then, from
the definitions in (3) and (5), we have the desired result.

Proof of Lemma 3.2. We prove here the continuity of only the lower value
functions (L and L), since the proof for the upper value functions (M and
M) follows along similar lines. In the proof below, a constant c ≥ 0 can
vary from line to line, which depends on the Lipschitz constant ((H.1) and
(H.2)).

Let y = (x, z) ∈ (L2(Ω,R
n))2 be the initial and target pair having the

distribution (law) ν = (νx, νz) = P(x,z) ∈ (P2(R
n))2. We apply a similar

argument to the notation yi = (xi, zi) and νi = (νxi
, νzi) for i = 1, 2. Let

t ∈ [0, T ], with t1, t2 ∈ [t, T ]. Then by using (H.1), Gronwall’s lemma, and
the fact that P2(R

n) ⊂ P1(R
n) and W1(νx1

, νx2
) ≤ W2(νx1

, νx2
) [37, Chapter

6], we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E
[
sups∈[t,T ] |xt,x,νx;u,v

s |
]
≤ c(1 + E[|x|])

E
[
sups∈[t,T ] |x

t,x1,νx1 ;u,v
s − x

t,x2,νx2 ;u,v
s |

]
≤ cE[|x1 − x2|],

E
[
|xt,x,νx;u,v

t1 − xt,x,νx;u,v
t2 |

]
≤ c|t1 − t2|,

E
[
sups∈[t,T ] |x

t,x1,νx1 ;u,v
s − x

t,x2,νx2 ;u,v
s |

]
≤ cW2(νx1

, νx2
)

.(A.2)

In view of the definition of the Wasserstein metric, Hölder inequality,
and the definition of the norm ‖·‖L2

, the preceding estimates in (A.2) imply
that

W2(P
t,νx;u,v
s , νx)(A.3)

= inf
{
E
[
|xt,x,νx;u,v

s − xt,x,νx;u,v
t |2

]1/2 |
x1, x2 ∈ L2(Ω,R

n) with Px = νx and Px = νx
}
≤ c|t− s|,

where the inequality follows from (A.2). Moreover, we have

W2(P
t,νx1 ;u,v
s ,P

t,νx2 ;u,v
s )(A.4)

≤ c inf
{
E[|x1 − x2|2]1/2 |
x1, x2 ∈ L2(Ω,R

n) with Px1
= νx1

and Px2
= νx2

}
= cW2(νx1

, νx2
),
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where the inequality follows from (A.2), the definition of the 2-Wasserstein
metric, and Hölder’s inequality. Then, using (A.1), (A.4) and (A.3), together
with the distance property of W2, we have

W2(P
t1,νx1 ;u,v
s ,P

t2,νx2 ;u,v
s ) = W2(P

t1,νx1 ;u,v
s ,P

t1,P
t2,νx2 ;u,v

t1
;u,v

s )(A.5)

≤ cW2(νx1
,P

t2,νx2 ;u,v
t1 )

≤ cW2(νx1
, νx2

) + cW2(νx2
,P

t2,νx2 ;u,v
t1 ) ≤ cW2(νx1

, νx2
) + c|t1 − t2|.

Furthermore, with the estimates in (A.2), and (H.1) and (H.2), for any
t ∈ [0, T ], t1, t2 ∈ [t, T ], and y, y1, y2 ∈ (L2(Ω,R

n))2, we have for u ∈ U [t, T ]
and v ∈ V[t, T ],

|J(t1, y;u, v)− J(t2, y;u, v)| ≤ c|t1 − t2|(A.6)

|J(t, y1;u, v)− J(t, y2;u, v)|(A.7)

≤ c‖x1 − x2‖L2
+ c‖z1 − z2‖L2

+ cW2(νx1
, νx2

).

The convergence in L2(Ω,R
n) implies convergence in P2(R

n) with re-
spect to W2, i.e., ‖xn − x‖L2

→ 0 as n → ∞ implies W2(νn, ν) → 0 as
n → ∞ [37, Theorem 6.9]. Also, | suph(x) − sup g(x)| ≤ sup |h(x) − g(x)|
and | inf h(x) − inf g(x)| ≤ sup |h(x) − g(x)|. Then, from (A.6) and (A.7),
and the definition of L, we can easily see that L is continuous in (t, y) ∈
[0, T ]× (L2(Ω,R

n))2.
For the continuity of L, we consider the following equivalent form of the

objective functional in terms of ν ∈ (P2(R
n))2:

J(t, ν;u, v) =

∫ T

t

∫
Rn

l(s, xt,x,νx;u,v
s ,Pt,νx;u,v

s , u(s), v(s))dPt,νx;u,v
s (x)ds

+

∫
Rn×Rn

m(xt,x,νx;u,v
T , z) d

(
P
t,νx;u,v
T , νz

)
(x, z).

Then, with (H.1), (H.2), (A.2) and (A.5), we apply the definition of the
Wasserstein metric and [32, Lemma 3] to show that

|J(t, ν1;u, v)− J(t, ν2;u, v)| ≤ c(W2(νx1
, νx2

) +W2(νz1 , νz2)).(A.8)

Note that (A.6) and (A.8) imply that J is continuous in (t, ν) ∈ [0, T ] ×
(P2(R

n))2 for any u ∈ U [t, T ] and v ∈ V[t, T ]. Then, by following the proof
for the continuity of L, we can show that L is continuous in (t, ν) ∈ [0, T ]×
(P2(R

n))2. This completes the proof.
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Appendix B. Proof of Theorem 3.1

We prove (9) only, since the proofs for (7), (8) and (10) are similar to that
for (9). Let t, t+ τ ∈ [0, T ] with t < t+ τ . For any ν ∈ (P2(R

n))2, let

L̄(t, νx, νz) := inf
α∈A[t,t+τ ]

sup
v∈V[t,t+τ ]

{∫ t+τ

t

∫
Rn

l(s, xt,x,νx;α(v),v
s ,Pt,νx;α(v),v

s ,

α(v)(s), v(s))dPt,νx;α(v),v
s (x)ds+ L(t+ τ,P

t,νx;α(v),v
t+τ , νz)

}
.

We need to show that L(t, νx, νz) = L̄(t, νx, νz).

For any ε > 0, there exists α′ ∈ A[t, t+ τ ] such that

L̄(t, νx, νz)(B.1)

≥ sup
v∈V[t,t+τ ]

{∫ t+τ

t

∫
Rn

l(s, xt,x,νx;α′(v),v
s ,Pt,νx;α′(v),v

s ,

α′(v)(s), v(s))dPt,νx;α′(v),v
s (x)ds+ L(t+ τ,P

t,νx;α′(v),v
t+τ , νz)

}
− ε.

Similarly, in view of the definition of the value function, for any ε > 0, there
exists α′′ ∈ A[t+ τ, T ] such that for any x ∈ Rn with νx ∈ P2(R

n),

L(t+ τ,P
t,νx;α′(v),v
t+τ , νz) + ε(B.2)

≥ sup
v∈V[t+τ,T ]

{∫ T

t+τ

∫
Rn

l(s, xt+τ,x,νx;α′′(v),v
s ,Pt+τ,νx;α′′(v),v

s ,

α′′(v)(s), v(s))dPt+τ,νx;α′′(v),v
s (x)ds

+

∫
Rn×Rn

m(x
t+τ,x,νx;α′′(v),v
T , z) d

(
P
t+τ,νx;α′′(v),v
T , νz

)
(x, z)

}

Define α ∈ A[t, T ] such that for v ∈ V[t, T ], α(v)(s) = α′(v)(s) on s ∈
[t, t + τ) and α(v)(s) = α′′(v)(s) on s ∈ [t + τ, T ]. Then, from (A.1), (B.1)
and (B.2), we can show that

L̄(t, νx, νz) + 2ε

≥
∫ T

t

∫
Rn

l(s, xt,x,νx;α(v),v
s ,Pt,νx;α(v),v

s , α(v)(s), v(s))dPt,νx;α(v),v
s (x)ds

+

∫
Rn×Rn

m(x
t,x,νx;α(v),v
T , z) d

(
P
t,νx;α(v),v
T , νz

)
(x, z),



Zero-sum differential games on the Wasserstein space 239

which implies

L(t, ν) ≤ L̄(t, ν) + 2ε.(B.3)

On the other hand, for any ε > 0 and v ∈ V[t, T ], there exists α′ ∈ A[t, T ]
such that

L(t, νx, νz) + ε

(B.4)

≥ sup
v∈V[t,T ]

{∫ T

t

∫
Rn

l(s, xt,x,νx;α′(v),v
s ,Pt,νx;α′(v),v

s , α′(v)(s), v(s))dPt,νx;α′(v),v
s (z)ds

}

+

∫
Rn×Rn

m(x
t,x,νx;α′(v),v
T , z) d

(
P
t,νx;α′(v),v
T , νz

)
(x, z),

and by restricting α′ to [t, t+ τ ], we have

L̄(t, νx, νz)(B.5)

≤ sup
v∈V[t,t+τ ]

{
L(t+ τ,P

t,νx;α(v),v
t+τ , νz) +

∫ t+τ

t

∫
Rn

l(s, xt,x,νx;α′(v),v
s ,

P
t,νx;α′(v),v
s , α′(v)(s), v(s))dPt,νx;α′(v),v

s (x)ds
}
.

The inequality in (B.5) implies that for each ε > 0, there exists v′ ∈ V[t, t+τ ]
such that

L̄(t, νx, νz) ≤ L(t+ τ,P
t,νx;α′(v′),v′

t+τ , νz) +

∫ t+τ

t

∫
Rn

l(s, xt,x,νx;α′(v′),v′

s ,(B.6)

P
t,νx;α′(v′),v′

s , α′(v′)(s), v′(s))dPt,νx;α′(v′),v′

s (x)ds+ ε.

Similarly, for any ε > 0, there exists v′′ ∈ V[t + τ, T ] such that, for any
x ∈ Rn with νx ∈ P2(R

n),

L(t+ τ,P
t,νx;α′(v′),v′

t+τ , νz)(B.7)

≤
∫
Rn×Rn

m(x
t+τ,x,νx;α′(v′′),v′′

T , z) d
(
P
t+τ,νx;α′(v′′),v′′

T , νz

)
(x, z)

+

∫ T

t+τ

∫
Rn

l(s, xt+τ,x,νx;α′(v′′),v′′

s ,Pt+τ,νx;α′(v′′),v′′

s ,

α′(v′′)(s), v′′(s))dPt+τ,νx;α′(v′′),v′′

s (x)ds + ε.
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We define v̄ ∈ V[t, T ] such that v̄(s) = v′(s) on s ∈ [t, t+τ) and v̄(s) = v′′(s)
on s ∈ [t + τ, T ]. Consider α′ ∈ A[t, T ] with v̄, i.e., α′(v̄)(s) = α′(v′)(s) on
s ∈ [t, t + τ) and α′(v̄)(s) = α′(v′′)(s) on s ∈ [t + τ, T ]. Then, from (A.1),
(B.6) and (B.7),

L̄(t, νx, νz) ≤
∫
Rn×Rn

m(x
t,x,νx;α′(v̄),v̄
T , z) d

(
P
t,νx;α′(v̄),v̄
T , νz

)
(x, z)

+

∫ T

t

∫
Rn

l(s, xt,x,νx;α′(v̄),v̄
s ,Pt,νx;α′(v̄),v̄

s ,

α′(v̄)(s), v̄(s))dPt,νx;α′(v̄),v̄
s (x)ds+ 2ε.

This, together with (B.4), implies that

L̄(t, ν) ≤ L(t, ν) + 3ε.(B.8)

Since ε was arbitrary, in view of (B.3) and (B.8), L(t, ν) = L̄(t, ν); hence,
we have the desired result.

Appendix C. Proof of Theorem 4.1

In view of Lemma 3.2, L ∈ C([0, T ]×P2(R
n)). We now prove that the value

function L in (3) is a viscosity supersolution of (11). From the definition of
the value function and (9) in Theorem 3.1, we have φ(T, ν) = L(T, ν).

From the definition of the viscosity supersolution (Definition 4.1(i)), for
any φ ∈ C1,1([0, T ] × P2(R

n)), L(t, ν) − φ(t, ν) ≤ L(t′, ν ′) − φ(t′, ν ′) for all
(t′, ν ′) with |t − t′| + W2(ν, ν

′) ≤ δ with some δ > 0. Let t′ = t + τ and
ν ′ = (ν ′x, νz), satisfying |τ | + W2(νx, ν

′
x) ≤ δ. Moreover, without loss of

generality, we may assume L(t, ν) = φ(t, ν).
Then, in view of the DPP of (9) in Theorem 3.1,

φ(t, νx, νz) = L(t, νx, νz)

= inf
α∈A[t,t+τ ]

sup
v∈V[t,t+τ ]

{∫ t+τ

t

∫
Rn

l(s, xt,x,νx;α(v),v
s ,Pt,νx;α(v),v

s ,

α(v)(s), v(s))dPt,νx;α(v),v
s (x)ds+ L(t+ τ,P

t,νx;α(v),v
t+τ , νz)

}
,

and

inf
α∈A[t,t+τ ]

sup
v∈V[t,t+τ ]

{∫ t+τ

t

∫
Rn

l(s, xt,x,νx;α(v),v
s ,Pt,νx;α(v),v

s , α(v)(s),(C.1)
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v(s))dPt,νx;α(v),v
s (x)ds+ φ(t+ τ,P

t,νx;α(v),v
t+τ , νz)

}
− φ(t, νx, νz) ≤ 0.

For α ∈ A[t, T ] and v ∈ V[t, T ], infu∈U [t,T ] J(t, ν;u, v) ≤
supv∈V[t,T ] J(t, ν;α(v), v), which implies that

sup
v∈V[t,T ]

inf
u∈U [t,T ]

J(t, ν;u, v) ≤ inf
α∈A[t,T ]

sup
v∈V[t,T ]

J(t, ν;α(v), v) = L(t, ν).

Hence, with (C.1), we have

sup
v∈V[t,t+τ ]

inf
u∈U [t,t+τ ]

{∫ t+τ

t

∫
Rn

l(s, xt,x,νx;u,v
s ,Pt,νx;u,v

s , u(s),

v(s))dPt,νx;u,v
s (x)ds+ φ(t+ τ,Pt,νx;u,v

t+τ , νz)
}
− φ(t, νx, νz) ≤ 0.

For each ε > 0 and small τ with |τ | ≤ δ, there exists u′ ∈ U [t, t+ τ ] such
that for v ∈ V[t, t+ τ ],

∫ t+τ

t

∫
Rn

l(s, xt,x,νx;u′,v
s ,Pt,νx;u′,v

s , u′(s), v(s))dPt,νx;u′,v
s (x)ds

+ φ(t+ τ,Pt,νx;u′,v
t+τ , νz)− φ(t, νx, νz) ≤ ετ.

We multiply the above expression by 1
τ , and let τ ↓ 0 and ε ↓ 0. Then, with

the chain rule in P2 in Section 2.1,

∂tφ(t, νx, νz) + sup
v∈V

inf
u∈U

{∫
Rn

[〈∂νx
φ(t, νx, νz)(x), f(t, x, νx, u, v)〉(C.2)

+ l(t, x, νx, u, v)]dνx(x)
}
≤ 0,

which, together with (13), shows that L is a viscosity supersolution to (11).
We now prove, by contradiction, that L is a viscosity subsolution of (11).

From the definition of the viscosity subsolution (Definition 4.1(i)), for any
φ ∈ C1,1([0, T ]×P2(R

n)), L(t, ν)−φ(t, ν) ≥ L(t′, ν ′)−φ(t′, ν ′) for all (t′, ν ′)
with |t− t′|+W2(ν, ν

′) ≤ δ with some δ > 0. Let t′ = t+ τ , and ν ′ = (ν ′x, νz)
satisfying |τ |+W2(νx, ν

′
x) ≤ δ. Moreover, without loss of generality, we may

assume L(t, ν) = φ(t, ν).
Let us assume that L is not a viscosity subsolution of (11). Then, there

exists a constant θ > 0 such that

∂tφ(t, νx, νz) +H−(t, ν, ∂νx
φ(t, νx, νz)) ≤ −θ < 0.
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Define H̄(t, ν, p, u, v) :=
∫
Rn [〈p, f(t, x, νx, u, v)〉+l(t, x, νx, u, v)]dνx(x). From

(13), note that H−(t, ν, p) = supv∈V infu∈U H̄(t, ν, p, u, v). Since f and l are
(uniformly) continuous on [0, T ]× U × V , so is H̄, which implies that there
is a measurable function η : V → U , and τ0 ∈ [0, T − t], such that for v ∈ V
and |s− t| ≤ τ0,

∂tφ(s, νx, νz) + H̄(s, ν, ∂νx
φ(t, νx, νz), η(v), v) ≤ −θ/2.

On the other hand, the DPP in (9) of Theorem 3.1 and the definition of
the viscosity subsolution imply that

inf
α∈A[t,t+τ ]

sup
v∈V[t,t+τ ]

{∫ t+τ

t

∫
Rn

l(s, xt,x,νx;α(v),v
s ,Pt,νx;α(v),v

s , α(v)(s),

v(s))dPt,νx;α(v),v
s (x)ds+ φ(t+ τ,P

t,νx;α(v),v
t+τ , νz)

}
− φ(t, νx, νz) ≥ 0,

and by defining α′(v(s)) := η(v) for s ∈ [t, t+ τ ], we have α′(v) ∈ A[t, t+ τ ]
and

sup
v∈V[t,t+τ ]

{∫ t+τ

t

∫
Rn

l(s, xt,x,νx;α′(v),v
s ,Pt,νx;α′(v),v

s , α′(v)(s),

v(s))dPt,νx;α′(v),v
s (x)ds+ φ(t+ τ,P

t,νx;α′(v),v
t+τ , νz)

}
− φ(t, νx, νz) ≥ 0.

Then, for each ε > 0, there exists v′ ∈ V[t, t+ τ ] such that∫ t+τ

t

∫
Rn

l(s, xt,x,νx;α′(v),v′

s ,Pt,νx;α′(v),v′

s , α′(v′)(s), v′(s))dPt,νx;α′(v′),v′

s (x)ds

+ φ(t+ τ,P
t,νx;α′(v′),v′

t+τ , νz)− φ(t, νx, νz) ≥ −ετ.

Multiplying the above expression by 1
τ , and letting τ ↓ 0, together with the

chain rule in P2 in Section 2.1, yield

−ε ≤ ∂tφ(t, νx, νz) + H̄(t, ν, ∂νx
φ(t, νx, νz), η(v

′), v′) ≤ −θ/2,

and by letting ε ↓ 0, we must have θ ≤ 0, which leads to a contradiction.
This implies that

∂tφ(t, νx, νz) +H−(t, ν, ∂νx
φ(t, νx, νz)) ≥ 0.(C.3)

Hence, (C.2) and (C.3) taken together show that L is a viscosity solution
to (11). The proof of M being a viscosity solution to (12) is similar. This
completes the proof.
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Appendix D. Proof of Theorem 4.2

In the proof of Theorem 4.2, we need the following lemma, which follows
from (H.1)–(H.3).

Lemma D.1. Assume that (H.1)–(H.3) hold. Then, the following result
holds: there is a constant c, dependent on the Lipschitz constant, such that
for any y = (x, z), y1 = (x1, z1), y2 = (x2, z2) ∈ (L2(Ω,R

n))2 and p, p1, p2 ∈
L2(Ω,R

n), we have |H−(y1, p) − H−(y2, p)| ≤ c(1 + ‖p‖L2
)‖x1 − x2‖L2

and
|H−(y, p1)−H−(y, p2)| ≤ c‖p1 − p2‖L2

.

The proof of Theorem 4.2 now proceeds as follows.

Proof of Theorem 4.2. We first prove L1(t, y) ≤ L2(t, y) for (t, y) ∈ [0, T ]×
(L2(Ω,R

n))2. Note that both L1 and L2 are bounded by some constant c.
In the proof below, a constant c can vary from line to line, depending on
the bounds of L1 and L2, and the Lipschitz constant in (H.1) and (H.2).

By a possible abuse of notation, we reverse the time by defining ti :=
T − t′i, where t′i ∈ [0, T ], i = 1, 2. Then Li(0, y) = E[m(x, z)], i = 1, 2. With
the time reverse notation and Remark 4.1(ii) (see [52, Chapter 10]), for the
lifted HJI equations, the inequality in Definition 4.1 has to be modified by{

∂tφ(t, y)−H−(t, y,Dxφ(t, x, z)) ≤ 0 (subsolution)

∂tφ(t, y)−H−(t, y,Dxφ(t, x, z)) ≥ 0 (supersolution)
.(D.1)

For (ε, σ, α) ∈ (0, 1), define

Φ(t1, y1, t2, y2) := L1(t1, y1)− L2(t2, y2)

− 1

2ε
((t1 − t2)

2 + ‖y1 − y2‖2L2
)− α

2
(‖y1‖2L2

+ ‖y2‖2L2
)− σt1,

where y1, y2 ∈ (L2(Ω,R
n))2. We can see that Φ is continuous on X =

([0, T ] × (L2(Ω,R
n))2)2, where X is a Hilbert space and its dual space X∗

is X∗ = X [34, 35]. For ζt1 , ζt2 ∈ [0, T ] and ζy1
, ζy2

∈ (L2(Ω,R
n))2, i.e.,

(ζt1 , ζy1
, ζt2 , ζy2

) ∈ X∗, let us define the linearly perturbed map of Φ:

Φ′(t1, y1, t2, y2) :=Φ(t1, y1, t2, y2)− ζt1t1 − ζt2t2

− E[〈ζy1
, y1〉]− E[〈ζy2

, y2〉].

Then in view of Stegall’s theorem [53, 54] and Riesz representation theorem
[35], there exist (ζt1 , ζy1

, ζt2 , ζy2
) ∈ X∗ such that |ζti | ≤ δ, ‖ζyi

‖L2
≤ δ, i =
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1, 2, with δ ∈ (0, 1), and Φ′ has a maximum at a point (t̄1, ȳ1, t̄2, ȳ2) ∈ X.5

This implies that

Φ′(t̄1, ȳ1, t̄2, ȳ2) ≥ Φ′(0, 0, 0, 0) = Φ(0, 0, 0, 0),

which, together with Cauchy-Schwarz inequality and the fact that a + b ≤√
2(a2 + b2)1/2 for a, b ≥ 0, leads to (note that L1 and L2 are bounded)

α(‖ȳ1‖2L2
+ ‖ȳ2‖2L2

) +
1

ε
((t̄1 − t̄2)

2 + ‖ȳ1 − ȳ2‖2L2
)

≤ c(1 + δ(‖ȳ1‖2L2
+ ‖ȳ2‖2L2

)1/2).

We apply the quadratic analysis to the above inequality. Then,

(‖ȳ1‖2L2
+ ‖ȳ2‖2L2

)1/2 ≤ c
( δ

α
+

1

α1/2

)
(D.2)

((t̄1 − t̄2)
2 + ‖ȳ1 − ȳ2‖2L2

)1/2 ≤ cε1/2 + cε1/2δ1/2
( δ

α
+

1

α1/2

)1/2
.(D.3)

We show that either t̄1 = 0 or t̄2 = 0 by contradiction. Assume that
t̄i > 0 for i = 1, 2. By defining

φ1(t1, y1) :=L2(t̄1, ȳ2) +
1

2ε
((t1 − t̄2)

2 + ‖y1 − ȳ2‖2L2
)

+
α

2
(‖y1‖2L2

+ ‖ȳ2‖2L2
) + σt1

+ ζt1t1 + ζt2 t̄2 + E[〈ζy1
, y1〉] + E[〈ζy2

, ȳ2〉],

we have Φ′(t1, y1, t̄2, ȳ2) = L1(t1, y1)− φ1(t1, y1), which admits a maximum
at (t̄1, ȳ1). Note that L1 is the viscosity subsolution and H− is independent
of t (see (H.3)). This, together with (D.1), implies

1

ε
(t̄1 − t̄2) + σ + ζt1 −H

−(ȳ1,
1

ε
(ȳ1 − ȳ2) + αȳ1 + ζy1

) ≤ 0.(D.4)

The inequality is reversed due to the time reverse notation. Similarly, we
have Φ′(t̄1, ȳ1, t2, y2) = φ2(t2, y2)− L2(t2, y2), where

φ2(t2, y2) :=L1(t̄1, ȳ1)−
1

2ε
((t̄1 − t2)

2 + ‖ȳ1 − y2‖2)

5In fact, −Φ is continuous, coercive, and −Φ : X → [0,∞]; hence, in view of
[54], −Φ′ admits a minimum, i.e., Φ′ admits a maximum.
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− α

2
(‖ȳ1‖2L2

+ ‖y2‖2L2
)− σt̄1

− ζt1 t̄1 − ζt2t2 − E[〈ζy1
, ȳ1〉]− E[〈ζy2

, y2〉],

which admits a maximum at (t̄2, ȳ2), i.e., L2(t2, y2) − φ2(t2, y2) admits a
minimum at (t̄2, ȳ2). Then, from (D.1), we have

1

ε
(t̄1 − t̄2)− ζt2 −H

−(ȳ2,
1

ε
(ȳ1 − ȳ2)− αȳ2 − ζy2

) ≥ 0.(D.5)

(D.4) and (D.5) imply that

σ + ζt1 + ζt2 −H
−(ȳ1,

1

ε
(ȳ1 − ȳ2) + αȳ1 + ζy1

)

+H
−(ȳ2,

1

ε
(ȳ1 − ȳ2)− αȳ2 − ζy2

) ≤ 0.

From (H.1)–(H.3), (D.2), (D.3), and Lemma D.1,

σ ≤ 2δ +
∣∣∣H−(ȳ1,

1

ε
(ȳ1 − ȳ2) + αȳ1 + ζy1

)−H
−(ȳ1,

1

ε
(ȳ1 − ȳ2)− αȳ2 − ζy2

)
∣∣∣

+
∣∣∣H−(ȳ1,

1

ε
(ȳ1 − ȳ2)− αȳ2 − ζy2

)−H
−(ȳ2,

1

ε
(ȳ1 − ȳ2)− αȳ2 − ζy2

)
∣∣∣

≤ 2δ + cα
( δ

α
+

1

α1/2

)2
+ cδ2 + cε+ cεδ

( δ

α
+

1

α1/2

)
+ cδε1/2.

First, let δ ↓ 0, and then α ↓ 0 and ε ↓ 0. Then, we can easily get a
contradiction, since σ > 0. This shows that we can select small positive δ,
α and ε such that either t̄1 = 0 or t̄2 = 0.

Let us assume that t̄1 = 0. Then, the maximum property of Φ′ and its
definition yield

Φ′(t, y, t, y) ≤ Φ(0, ȳ1, t̄2, ȳ2)− ζt2 t̄2 − E[〈ζy1
, ȳ1〉]− E[〈ζy2

, ȳ2〉],

which implies

Φ(t, y, t, y) ≤Φ(0, ȳ1, t̄2, ȳ2)− ζt2 t̄2 − E[〈ζy1
, ȳ1〉]− E[〈ζy2

, ȳ2〉](D.6)

+ (ζt1 + ζt2)t+ E[〈ζy1
+ ζy2

, y〉].

Since t̄1 = 0 and L1(0, y) = L2(0, y), we have

Φ(0, ȳ1, t̄2, ȳ2) ≤ cε1/2 + cε1/2δ1/2
( δ

α
+

1

α1/2

)1/2
,(D.7)
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where the inequality follows from the Lipschitz property and (D.3). On the
other hand, in view of (D.2) and Cauchy-Schwarz inequality,

|ζt2 t̄2 + E[〈ζy1
, ȳ1〉] + E[〈ζy2

, ȳ2〉]| ≤ cδ + cδ
( δ

α
+

1

α1/2

)
(D.8)

|(ζt1 + ζt2)t+ E[〈ζy1
+ ζy2

, y〉]| ≤ cδ.(D.9)

By first letting ε ↓ 0, and then δ ↓ 0 and α ↓ 0 in (D.7)–(D.9), from (D.6)
and the definition of Φ, we have

L1(t, y)− L2(t, y) ≤ 0,

which leads to the desired result in (18). Then, L1(t, ν) ≤ L2(t, ν) for (t, ν) ∈
[0, T ]× (P2(R

n))2 in (17) follows from Lemma 3.1. The proofs for M1 ≤ M2

in (18) and M1 ≤ M2 in (17) are similar. This completes the proof.

Appendix E. Proof of Corollaries 4.1 and 4.2

Proof of Corollary 4.1. Suppose that L1 and L2 are value functions that
are viscosity solutions to (14). In view of (18) in Theorem 4.2, Lemma 3.2,
and the definition of the viscosity solution, we have L1 ≤ L2 and L2 ≤ L1,
which implies that L := L1 = L2. By Proposition 4.1, L is the corresponding
lifted lower value function. The proof of the remaining part is similar. This
completes the proof.

Proof of Corollary 4.2. Set H := H− = H+ in (11) and (12), and H :=
H− = H+ in (14) and (15). Then, (11) and (12) become identical HJI equa-
tions, and so do (14) and (15). From Lemmas 3.1 and 3.2, Proposition 4.1
and Theorem 4.1, together with the uniqueness result in Corollary 4.1, we
have L(t, ν) = L(t, y) = M(t, y) = M(t, ν) for (t, ν) ∈ [0, T ] × (P2(R

n))2

and (t, y) ∈ [0, T ]× (L2(Ω,R
n))2, which is the value of the ZSDG and is the

unique solution to the HJI equation. This completes the proof.
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