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It is well known in deterministic and stochastic control that an
optimal control can be obtained through a theory of sufficient con-
ditions, so-called Bellman or Dynamic Programming approach. In
Bellman’s approach, one constructs a control under sufficient con-
ditions and proves that this control is optimal by an argument
called verification theorem. This presentation aims at describing
the basic ideas of the verification theorem for mean field type con-
trol theory.
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1. Introduction

Mean Field Type Control Theory is an extension of stochastic control. As
well known in stochastic control (as well as in deterministic control), two
types of theory exist for obtaining an optimal control, a theory of neces-
sary conditions (Pontryagin approach) and a theory of sufficient conditions
(Bellman or Dynamic Programming approach). In the Pontryagin approach,
an optimal control if it exists needs to satisfy a necessary condition of opti-
mality. In Bellman’s approach, under some conditions (sufficient conditions)
one constructs a control, and, by an argument, called “verification theorem”,
one proves that this control is optimal. These basic ideas can be extended
to mean field type control theory. The objective of this brief presentation is
to describe the basic ideas of the verification theorem for mean field type
control theory. We do not present all the technical proofs. We also do it in
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a relatively simple framework, where the mean field type control aspect is
limited to the presence of the expected value of the final state in the payoff
functional. For more developments on Mean Field Theory, see [1, 2, 3, 4].

2. Mean field type control

The problem we want to solve is described as follows. Let (Ω,A, P ) be a
probability space, on which is constructed an n-dimensional standardWiener
process, denoted by w(t). We define next functions g(x, v) and σ(x, v) from
Rn×Rm to (respectively) Rn and L(Rn;Rn), which are sufficiently smooth.
They will be the drift and diffusion term of a diffusion process in the state
space Rn, depending on a control v. A control will be defined by a feedback
on the state v(x, s). This feedback is the unknown of the control problem,
we describe now. First, the state of the dynamic system denoted by x(t) is
the solution of the SDE (stochastic differential equation)

dx = g(x, v(x, s))ds+ σ(x, v(x, s))dw(s),(1)

x(0) = x0.

We are assuming here that, in the class of admissible controls v(x, s) we are
considering, we can solve this SDE and obtain a unique solution xv(.)(s),
which is a continuous process adapted to the filtration generated by the
Wiener process. To simplify notation, we write x(s) = xv(.)(s) and v(s) =
v(xv(.)(s), s).

The payoff to maximize is given by

(2) J(v(.)) =

∫ T

0
e−rs Ef(x(s), v(s))ds+ e−rT (Eh(x(T )) + F (Ex(T ))).

Because of the last term in the pay-off, this problem is not a classical stochas-
tic control problem. The objective is to extend Bellman equation (Dynamic
Programming) of stochastic control to this situation and to obtain a verifi-
cation theorem, for a specific feedback to be optimal.

3. Sufficient condition of optimality

3.1. Notation

Define a(x, v) =
1

2
σ(x, v)σ∗(x, v). We introduce the Lagrangian

(3) L(x, q,M, v) = f(x, v) + q.g(x, v) + tr(a(x, v)M),

where q ∈ Rn, M ∈ L(Rn;Rn). We suppose that there exists a measurable
function v̂(x, q,M), which attains the maximum in v of the Lagrangian. We
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then introduce the functions

H(x, q,M) = L(x, q,M, v̂(x, q,M)),

G(x, q,M) = g(x, v̂(x, q,M)),

P (x, q,M) = a(x, v̂(x, q,M)).

3.2. System of optimality

Let ρ∈ Rn. We solve, for ρ fixed, the PDE (partial differential equation)

− ∂

∂t
uρ + ruρ = H(x,Duρ, D

2uρ),(4)

uρ(x, T ) = h(x) + F (ρ) +DF (ρ).(x− ρ),

and we assume that we can solve this PDE for any fixed ρ. We supposethat
the solution, denoted uρ, uniquely defined, is C1, with second order deriva-
tive existing a.e., and growth conditions in x same as the highest growth
conditions for f(x, v) and h(x). For each component xi of x, we then con-
sider the linear second order PDE, whose solution is denoted by Ψρ,i(x, t)

− ∂

∂t
Ψρ,i = DΨρ,i.G(x,Duρ, D

2uρ) + tr
(
P (x,Duρ, D

2uρ)D
2Ψρ,i

)
,(5)

Ψρ,i(x, T ) = xi.

We denote by Ψρ(x, t) the vector in Rn, whose components are Ψρ,i(x, t).
We then consider the fixed point equation

(6) ρ = Ψρ(x0, 0),

and we suppose that this fixed point equation has a unique solution. We
still denote it by ρ to save notation the unique solution of the fixed point
equation (6). We next define

(7) v̂ρ(x, t) = v̂(x,Duρ, D
2uρ),

which is the candidate for optimal feedback. We state the

Theorem 3.1. We assume all the steps described above, leading to the def-
inition of v̂ρ(x, t). Then the feedback v̂ρ(x, t) is optimal and the optimal cost
is

(8) J(v̂ρ(.)) = uρ(x0, 0) = sup
v(.)

J(v(.)).
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The result (8) will be a consequence of a more general result below,
Theorem 5.2 (verification theorem).

4. More general theory

4.1. General comments

The result (8) will be a particular case of a more general theory. We first
notice that, when F = 0, the problem becomes a standard stochastic control
problem. Then uρ(x, t) = u(x, t), solution of Bellman equation of stochastic
control

− ∂

∂t
u+ ru = H(x,Du,D2u),(9)

u(x, T ) = h(x),

and v̂ρ(x, t) = v̂(x, t), the classical optimal feedback of stochastic control.
Moreover

(10) u(x0, 0) = sup
v(.)

J(v(.)).

So, the system (5), (6) and the fixed point problem (7) are a generalization
of the standard Dynamic Programming argument.

4.2. Invariant embedding in stochastic control

A key element of Dynamic Programming is invariant embedding. One em-
beds the original control problem, in a family of control problems, indexed
by the initial conditions (x, t) instead of (x0, 0). We then have

(11) u(x, t) = sup
v(.)

Jxt(v(.)),

where

(12) Jxt(v(.)) =

∫ T

t
e−r(s−t) Ef(x(s), v(s))ds+ e−r(T−t) Eh(x(T )),

and the dynamic system x(s) evolves as follows

dx = g(x, v(x, s))ds+ σ(x, v(x, s))dw(s), s > t,(13)

x(t) = x.
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In standard stochastic control, the function u(x, t) is called the value
function. It is the solution of Bellman equation (9).

4.3. Invariant embedding in mean field type control

For mean field type control, the situation is more complicated. We do not
get invariant embedding by replacing (x0, 0) by (x, t). We need to consider a
pair (m, t), in which m is a probability measure on Rn. By writing (x0, 0) =
(δx0

, 0), (m, t) is a generalization of (x0, 0). We need to take the initial value
of the dynamic system (13) at time t to be random. We state the problem
as follows

dx = g(x, v(x, s))ds+ σ(x, v(x, s))dw(s), s > t,(14)

x(t) = ξ,

where ξ is a random variable in Rn, independent of the σ-algebra Wt =
σ(w(s)− w(t), ∀s > t), whose probability distribution is m. The pay-off is

Jm,t(v(.)) =

∫ T

t
e−r(s−t) Ef(x(s), v(s))ds

+ e−r(T−t) (Eh(x(T )) + F (Ex(T ))).(15)

The value function is then

(16) V (m, t) = sup
v(.)

Jm,t(v(.)).

4.4. Reformulation of the mean field type control problem

We have written Jm,t(v(.)) instead of Jξ,t(v(.)) because the right hand side
of (15) depends on the initial condition ξ only through its probability dis-
tribution m. This is a very important property of diffusion processes. To
simplify a little, but it is not at all necessary, we assume that the prob-
ability distribution m on Rn has a density with respect to the Lebesgue
measure on Rn, which we call m(x) to save notation. Then the probability
distribution of the random variable x(s) solution of the SDE (14) has also
a density with respect to the Lebesgue measure on Rn, which we denote by
m(x, s), solution of the Fokker-Planck equation

∂m

∂s
−

n∑
ij=1

∂2

∂xi∂xj
(aij(x, v(x, s))m) + div (g(x, v(x, s))m) = 0, s > t,(17)

m(x, t) = m(x).
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To emphasize the dependence with respect to the feedback control v(.)

and the initial conditions m, t, we shall write, when useful m
v(.)
mt (x, s), or

mv(.)(x, s). The right hand side of (15) becomes

Jm,t(v(.)) =

∫ T

t
e−r(s−t)

∫
Rn

f(x, v(x, s))m
v(.)
mt (x, s)dxds

+ e−r(T−t)

(∫
Rn

h(x)m
v(.)
mt (x, T )dx+ F (

∫
Rn

xm
v(.)
mt (x, T )dx)

)
.(18)

The interesting aspect of the writing (17), (18) is that the stochastic

control problem (14), (15) has been transformed into a deterministic problem

for a dynamic system, whose state at time s is the density m(x, s), whose

evolution is governed by a PDE, the Fokker-Planck equation (17). It is then

clear that the pay-off functional (18) depends on the random variable ξ only

through the initial density m. The value function is still defined by (16) with

this new interpretation.

5. Bellman equation for the mean field type control problem

5.1. Prelimininaries

We introduce for each component xi of x the function Ψ
v(.)
i (x, s) solution of

−∂Ψ
v(.)
i

∂s
= DΨ

v(.)
i .g(x, v(x, s)) + tr(av(.)(x, s)D2Ψ

v(.)
i ),(19)

Ψ
v(.)
i (x, T ) = xi.

We call Ψv(.)(x, s) the vector of components Ψ
v(.)
i (x, s). We next define

(20) ρ
v(.)
mt =

∫
Rn

Ψv(.)(x, t)m(x)dx.

We state the

Lemma 5.1. We have the formula

(21)

∫
Rn

xmv(.)(x, T )dx = ρ
v(.)
mt .
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Proof. The statement (21) follows from the property

d

ds

∫
Rn

mv(.)(x, s)Ψv(.)(x, s)dx = 0,

which is a consequence of the two PDEs (17) and (19).

5.2. Formula for Jm,t(v(.))

We next introduce the linear PDE, whose solution is denoted by u
v(.)
mt (x, s)

−∂u
v(.)
mt

∂s
+ ru

v(.)
mt −Du

v(.)
mt .g(x, v(x, s))− tr(a(x, v(x, s))D2u

v(.)
mt )

= f(x, v(x, s)),(22)

u
v(.)
mt (x, T ) = h(x) + F (ρ

v(.)
mt ) +DF (ρ

v(.)
mt ).(x− ρ

v(.)
mt ).

We state

Proposition 5.1. We have the formula

(23) Jm,t(v(.)) =

∫
Rn

u
v(.)
mt (x, t)m(x)dx.

Proof. We compute

d

ds
[e−r(s−t)

∫
Rn

u
v(.)
mt (x, s)m

v(.)
mt (x.s)dx],

and comparing the PDEs (17) and (22) we obtain, like in Lemma 5.1

d

ds
[e−r(s−t)

∫
Rn

u
v(.)
mt (x, s)m

v(.)
mt (x.s)dx]

= −e−r(s−t)

∫
Rn

m
v(.)
mt (x.s)f(x, v(x, s))dx.(24)

Also, from (21) we state, thanks to Lemma 5.1∫
Rn

u
v(.)
mt (x, T )m

v(.)
mt (x.T )dx =

∫
Rn

h(x)m
v(.)
mt (x.T )dx+ F (ρ

v(.)
mt )

=

∫
Rn

h(x)m
v(.)
mt (x.T )dx+F (

∫
Rn

xm
v(.)
mt (x, T ))dx.(25)

Integrating (24) for s between t and T , and comparing with (18) we
obtain immediately (23). This completes the proof of the Proposition.
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5.3. System

We consider for ρ given, like in (4), (5), the PDEs

− ∂

∂s
uρ + ruρ = H(x,Duρ, D

2uρ),(26)

uρ(x, T ) = h(x) + F (ρ) +DF (ρ).(x− ρ),

and

− ∂

∂s
Ψρ,i = DΨρ,i.G(x,Duρ, D

2uρ) + tr
(
P (x,Duρ, D

2uρ)D
2Ψρ,i

)
,(27)

Ψρ,i(x, T ) = xi.

We define ρmt by the fixed point equation

(28) ρmt =

∫
Rn

Ψρmt
(x, t)m(x)dx,

and we assume that we can solve (26), (27) and the fixed point equation
(28). We set

(29) umt(x, s) = uρmt
(x, s), Ψmt(x, s) = Ψρmt

(x, s).

We next define the feedback control

(30) v̂mt(x, s) = v̂(x,Dumt(x, s), D
2umt(x, s)).

From (19), (20), (22) it is clear that

(31) umt(x, s) = u
v̂mt(.)
mt (x, s),

and thus, from (23), we can assert that

(32) Jm,t(v̂mt(.)) =

∫
Rn

umt(x, t)m(x)dx.

We define

(33) V (m, t) =

∫
Rn

umt(x, t)m(x)dx.

We have used intentionally the notation V (m, t) for the right hand side,
which has been used in (16) to define the value function. We want to prove
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that the right hand side is indeed the value function and that v̂mt(.) is the

optimal feedback. However, for the time being, V (m, t) denotes only the

right hand side of (33).

5.4. First order condition

We want to prove the following first-order condition.

Proposition 5.2. For any feedback v(x, s) such that v̂mt(x, s) + εv(x, s) is

admissible, we have

(34)
Jm,t(v̂mt(.) + εv(.))− Jm,t(v̂mt(.))

ε
→ 0, as ε → 0.

Proof. From formula (23), it is sufficient to check that

(35) lim
ε→0

∫
Rn u

v̂mt(.)+εv(.)
mt (x, t)m(x)dx−

∫
Rn u

v̂mt(.)
mt (x, t)m(x)dx

ε
= 0.

We denote

ũε(x, s) =
u
v̂mt(.)+εv(.)
mt (x, s)− u

v̂mt(.)
mt (x, s)

ε
,

Ψ̃ε(x, s) =
Ψ

v̂mt(.)+εv(.)
mt (x, s)−Ψ

v̂mt(.)
mt (x, s)

ε
,

ρ̃ε =
ρ
v̂mt(.)+εv(.)
mt − ρ

v̂mt(.)
mt

ε
.

After some technical steps, we can see that ũε(x, s) → ũ(x, s), Ψ̃ε(x, s) →
Ψ̃(x, s), ρ̃ε → ρ̃ with the relations (writing v̂ for v̂mt(x, s))

−∂ũ

∂s
+ rũ−Dũ.g(x, v̂)− tr(a(x, v̂)D2ũ)

= Lv(x,Dumt, D
2umt, v̂)v(x.s),(36)

ũ(x, T ) = D2F (ρmt)ρ̃(x− ρmt),

where Lv(x, q,M, v) denotes the gradient in the argument v of the La-

grangian L(x, q,M, v). Also
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−∂Ψ̃

∂s
−DΨ̃.g(x, v̂)− tr(a(x, v̂)D2Ψ̃)

=
(
DΨmt.gv(x, v̂) + tr(av(x, v̂)D

2Ψmt)
)
v(x, s),

Ψ̃(x, T ) = 0,

ρ̃ =

∫
Rn

Ψ̃(x, t)m(x)dx.

From the definition of v̂mt(x, s) the right hand side of (36) vanishes. There-
fore

d

ds
e−r(s−t)

∫
Rn

ũ(x, s)mv̂(.)(x.s)dx = 0.

Moreover, from (21),∫
Rn

ũ(x, T )mv̂(.)(x.T )dx = D2F (ρmt)ρ̃(

∫
Rn

xmv̂(.)(x.T )dx− ρmt) = 0

therefore
∫
Rn ũ(x, t)m(x)dx = 0, which is the assertion (35) and thus also

(34).

5.5. Derivatives of V (m, t)

We want to get a PDE for V (m, t). This requires to define the derivative
∂V

∂m
, where the argument m is a probability measure. This is more complex

than in the case of the usual gradient in Rn because the space of probabil-
ity measures is infinite dimensional. Several concepts are possible. To keep
things as simple as possible, we shall take the case of densities m ≡ m(x)
which are in the space L2(Rn). If Φ(m) is a functional on Rn, its Gâteaux

derivative is also an element of L2(Rn), denoted
dΦ(m)

dm
(x), such that

Φ(m+ εm′)− Φ(m)

ε
→

∫
Rn

dΦ(m)

dm
(x)m′(x)dx(37)

as ε → 0, ∀m′ ∈ L2(Rn).

We start with the

Proposition 5.3. V(m,t) has a Gâteaux derivative in m given by

(38)
∂V (m, t)

∂m
(x) = umt(x, t).
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Proof. We recall that

(39) V (m, t) =

∫
Rn

umt(ξ, t)m(ξ)dξ

is a composed functional of m. To prove (38) we have to prove that

(40)

∫
Rn

∂

∂m
(umt(ξ, t))(x)m(ξ)dξ = 0.

We set

(41) Umt(ξ, x, t) =
∂

∂m
(umt(ξ, t))(x).

We recall that umt(ξ, t) satisfies, see (26)

− ∂

∂s
umt + rumt = H(ξ,Dumt, D

2umt),(42)

umt(ξ, T ) = h(ξ) + F (ρmt) +DF (ρmt).(ξ − ρmt).

Differentiating the equation (42) in m and using the envelope theorem

we obtain

− ∂

∂s
Umt(ξ, x, s) + rUmt(ξ, x, s)−DξUmt(ξ, x, s).g(ξ, v̂mt(ξ, s))

−tr(a(ξ, v̂mt(ξ, s))D
2
ξUmt(ξ, x, s)) = 0,(43)

Umt(ξ, x, T ) = D2F (ρmt)
∂ρmt(x)

∂m
(ξ − ρmt).

Using (43) together with (17), we obtain

(44)
d

ds
e−r(s−t)

∫
Rn

Umt(ξ, x, s)m
v̂mt(.)(ξ, s)dξ = 0,

and we have also ∫
Rn

Umt(ξ, x, T )m
v̂mt(.)(ξ, T )dξ

= D2F (ρmt)
∂ρmt(x)

∂m
(

∫
Rn

ξmv̂mt(.)(ξ, T )− ρmt) = 0.(45)
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Integrating (44) for s between t and T and using (45), we obtain

(46)

∫
Rn

Umt(ξ, x, t)m(ξ)dξ = 0,

which is (40) and thus completes the proof of (38).

We turn now to the derivative in t of V (m, t) denoted
∂V

∂t
(m, t). We

have the

Proposition 5.4. The derivative in time is given

(47)
∂V

∂t
(m, t) =

∫
Rn

∂umt

∂s
(x, t)m(x)dx.

Proof. We denote by u′mt(x, s) the derivative in t of umt(x, s). To prove (47)
amounts to proving that

(48)

∫
Rn

u′mt(x, t)m(x)dx = 0.

We proceed as in Proposition 5.3. We can differentiate (42) in t and obtain

− ∂

∂s
u′mt(x, s) + ru′mt(x, s)−Du′mt(x, s).g(ξ, v̂mt(ξ, s))

−tr(a(ξ, v̂mt(ξ, s))D
2u′mt(x, s)) = 0,(49)

u′mt(x, T )) = D2F (ρmt)
∂ρmt

∂t
(x− ρmt),

and (48) follows like in Proposition 5.3.

5.6. Bellman equation

We can now write the Bellman equation satisfied by V (m, t). We want to
prove the

Theorem 5.1. The functional V (m, t) satisfies the equation

−∂V (m, t)

∂t
+ rV (m, t)

=

∫
rn

H(x,D
∂V (m, t)

∂m
(x), D2∂V (m, t)

∂m
(x))m(x)dx,(50)

V (m,T ) =

∫
Rn

h(x)m(x)dx+ F (

∫
Rn

xm(x)dx).
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Proof. We recall (42), written at s = t. We obtain, by multiplying by m and
integration

−
∫
Rn

∂

∂s
umt(x, t)m(x)dx+ r

∫
Rn

umt(x, t)m(x)dx

=

∫
Rn

H(x,Dumt(x, t), D
2umt(x, t))m(x)dx.

But, using (47), (39), (38) we can interpret this equation, as equation (50).
On the other hand, we have, from (28),

ρmT =

∫
Rn

xm(x)dx;

hence

V (m,T ) =

∫
Rn

umT (x, T )m(x)dx =

∫
Rn

h(x)m(x)dx+ F (ρmT ),

and thus the final condition (50) is also satisfied. This completes the proof.

5.7. Verification theorem

We now claim

Theorem 5.2. The functional V (m, t) defined by (33) is the value function
(16) and v̂mt(x, s) is the optimal feedback.

Proof. Let v(x, s) be an admissible feedback and let m
v(.)
mt (x, s) be the solu-

tion of (17), which we denote also, to save notation mv(.)(x, s), or mv(.)(s)
for the function x → mv(.)(x, s). We can compute

d

ds
(V (mv(.)(s), s)e−r(s−t)) = (

∂

∂s
V (mv(.)(s), s)− rV (mv(.)(s), s))e−r(s−t))

+e−r(s−t)

∫
Rn

∂V

∂m
(mv(.)(s), s)(x)⎛

⎝ n∑
ij=1

∂2

∂xi∂xj
(aij(x, v(x, s))m

v(.)(x, s))− div (g(x, v(x, s))mv(.)(x, s))

⎞
⎠ dx.

After integration by part in the last integral, we get
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d

ds
(V (mv(.)(s), s)e−r(s−t)) = (

∂

∂s
V (mv(.)(s), s)− rV (mv(.)(s), s))e−r(s−t))

+e−r(s−t)

∫
Rn

(
tr(a(x, v(x, s))D2 ∂V

∂m
(mv(.)(s), s)(x))

+ D
∂V

∂m
(mv(.)(s), s)(x).g(x, v(x, s))

)
mv(.)(x, s)dx,

and from Bellman equation applied at the arguments mv(.)(s) and s, we
obtain immediately

(51)
d

ds
(V (mv(.)(s), s)e−r(s−t)) ≤ −e−r(s−t)

∫
Rn

f(x, v(x, s))mv(.)(x, s)dx.

Integrating between t and T , and using the final condition (50) we get im-
mediately

V (m, t) ≥
∫ T

t
e−r(s−t)

∫
Rn

f(x, v(x, s))m
v(.)
mt (x, s)dxds

+ e−r(T−t)

(∫
Rn

h(x)m
v(.)
mt (x, T )dx+ F (

∫
Rn

xm
v(.)
mt (x, T )dx)

)
= Jmt(v(.)),

and, since this inequality holds for any v(.), we get also

(52) V (m, t) ≥ sup
v(.)

Jmt(v(.)).

So V (m, t) is larger than the value function. On the other hand, from (32),
(33), V (m, t) = Jmt(v̂mt(.)). Therefore, V (m, t) is equal to the value function
and v̂mt(.) is optimal. This concludes the proof.
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