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In this article, multivariate fractional Brownian motions with pos-
sibly different Hurst indices in different coordinates are considered
and a Girsanov-type theorem for these processes is given. Two ap-
plications of this theorem to stochastic differential equations driven
by multivariate fractional Brownian motions are presented. The
first is an existence result for weak solutions to stochastic differ-
ential equations with a drift coefficient that can be written as a
sum of a regular and singular part and an autonomous diffusion
coefficient. The second application concerns a maximum likelihood
estimate of a drift parameter in stochastic differential equations
with additive multivariate fractional noise.
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1. Introduction

In the article, multivariate fractional Brownian motions (mfBms) and sto-

chastic differential equations (SDEs) driven by them are studied.

LetH = (H1, H2, . . . , Hn)
� ∈ (0, 1)n. Generally, a multivariate fractional

Brownian motion is an Rn-valued stochastic process BH whose k-th compo-

nent is a standard Hk-fractional Brownian motion. The family of such pro-

cesses provides a natural generalization of the family of standard Rn-valued

fractional Brownian motions (fBms) but it allows for higher flexibility as

far as the regularity and fractal properties of the processes are concerned.

This is of course relevant in applications. For example, the mfBm is used
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to describe the relationship between returns and volatility of the DAX in-
dex in [4, Section 3.1] or the structural properties of deformability, stacking
energy, propeller twist, and position preference sequences of the Escherichia
coli chromosome in [4, Section 3.2]. It has also been argued that it is an in-
teresting model for functional magnetic resonance imaging; see [2]. We refer
to the works [3] and [23] for various properties of mfBms, and to [11] and
the references therein for a more general context.

In the present paper, the particular case when the components of BH are
mutually independent is considered and the stochastic differential equations

(1) Xt = x0 +

∫ t

0
b(r,Xr) dr +

∫ t

0
σ(r) dBH, t ∈ [0, T ],

where b : [0, T ] × Rn → Rn and σ : [0, T ] → L (Rn) are Borel measurable
deterministic functions are studied.1

A main tool in our analysis is a Girsanov-type theorem for mfBms. This
result is a generalization of the known results in the univariate case (see, e.g.,
[9, Theorem 4.9], [32, Theorem 2], [10, Theorem 2.2], or [42, Theorem 1]) and
of the multivariate case with common Hurst index (see [40, Theorem 4.1])
to the multivariate case with possibly different Hurt indices.

Two applications of the Girsanov theorem to SDEs are subsequently
given. In the first, an existence result for a weak solution to the equation

(2) Xt = x0 +

∫ t

0
[b1(r,Xr) + b2(r,Xr)] dr +

∫ t

0
σ(r) dBH

r , t ∈ [0, T ],

is presented (see Proposition 12). Here, σ : [0, T ] → L (Rn) is a Borel mea-
surable function with invertible values such that its integral with respect
to BH has a continuous version and b1 and b2 are two Borel measurable
functions [0, T ] × Rn → Rn that correspond to the “regular” and “singu-
lar” part of the drift. More precisely, while the function b1 is assumed to
be locally Lipschiz and of at most linear growth in the space variable, it is
only assumed for the function b2 that the map [(t, x) �→ σ(t)−1b2(t, x)] is of
at most linear growth in those coordinates that corresponds to the singular
coordinates of BH, i.e. those with Hk ≤ 1/2; and is Hölder continuous in
both time and space in those components that correspond to the regular
components of BH, i.e. those with Hk > 1/2.

Existence of weak solutions to SDEs driven by fBms has been already
studied by many authors and we refer, for example, to [43] where the Wiener

1Throughout the article, the symbol L (Rn;Rm) denotes the space of m×n real
matrices identified with linear operators from R

n to R
m. If m = n, we write L (Rn).
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case H = 1/2 is studied; to [10], [24], [28], [32], and [33] where equation (1)

is studied in dimension one with σ ≡ 1; or to [7], [25], and [40] where the

particular case of (2) is treated. In fact, the article [40] is a main inspiration

for the first part of the present paper and it is shown that the arguments

from [40] can be used even in the case of a mfBm with different Hurst indices

in different coordinates provided that the singular Hurst indices differ from

the regular ones by at most one half.

The second application of the Girsanov theorem treated in this article

is estimation of a drift parameter for equation (1) with additive noise, i.e.

with σ ≡ 1. More precisely, the equation

(3) Xt = θ

∫ t

0
b(r,Xr) dr +BH

t , t ≥ 0,

is considered and a maximum likelihood estimate (MLE) of θ that is based

on a continuous observation of one trajectory of the solution is proposed and

sufficient conditions for its strong consistency and asymptotic normality in

the spirit of [36, section 2.4] are found.

Statistical inference for SDEs driven by the Wiener process is now a

classical subject and as such, it has been treated extensively; see, e.g., the

monographs [21], [26], and [27] and the references therein. On the other hand,

the literature concerning inference for fractional diffusions is much more

scarce. Even though a somewhat general treatment can be found in [36], only

specific problems are usually considered and among these, estimation of the

drift parameter θ in (3) seems to have received the most attention. From the

results directly related to our problem of drift parameter estimation from

a continuous observation of the trajectory, we refer, for example, to [9] and

[29] where a MLE of the drift parameter of an fBm is studied; to [5], [8], and

[19] where a MLE of the drift parameter of a fractional Ornstein-Uhlenbeck

process is treated; to [42] where a MLE of θ in the general equation (3) with

b(t, x) ≡ b(x) is considered (see also [22]); to [15], [16], and [41] where a

least-square estimate (LSE) of the drift parameter in a fractional Ornstein-

Uhlenbeck process is analysed; and to [17] where a LSE of θ in the general

equation (3) with b(t, x) ≡ b(x) is considered.

The paper is organized as follows. Section 2 contains some preliminaries

on (m)fBms and section 3 contains the Girsanov-type formula. SDEs are

treated in section 4 – the existence result for the weak solution to equa-

tion (2) is given in part 4.2 and the MLE of the parameter θ in equation (3)

is considered in part 4.3.
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2. Preliminaries

The definition of one-dimensional fractional Brownian motions is recalled
initially. Let H ∈ (0, 1) and T > 0. A stochastic process (BH

t )t∈[0,T ] defined
on some probability space (Ω,F ,P) is called an H-fractional Brownian mo-
tion if it is centered, Gaussian, and if it satisfies

EBH
s BH

t = RH(s, t) :=
1

2

(
s2H + t2H − |t− s|2H

)
for every (s, t) ∈ [0, T ]2. The covariance function RH can be described via a
certain Volterra-type kernel. If H = 1/2, define the kernel KH : [0, T ]2 → R

by

KH(t, r) := 1(0,t)(r).

If H �= 1/2, define the kernel KH : [0, T ]2 → R by

KH(t, r) :=
cH

Γ
(
H + 1

2

)(t− r)H− 1

2

× 2F1

(
H − 1

2
,
1

2
−H,H +

1

2
, 1− t

r

)

for (t, r) ∈ [0, T ]2 such that 0 < r < t ≤ T and by KH(t, r) := 0 otherwise.
Here, the constant cH is given by

cH :=

√
πH(1− 2H)

Γ(2− 2H) cos(πH)
,

Γ is the Gamma function, and 2F1 is the Gauss hypergeometric function;
see, e.g., [39, Chapter 1]. It is well-known that the equality

RH(s, t) =

∫ s∧t

0
KH(s, r)KH(t, r) dr

is satisfied for every (s, t) ∈ [0, T ]2; see [9, Lemma 3.1]. This fact is a key
result in the theory of fractional Brownian motions and it is also crucial in
the present article.

2.1. Multivariate fractional Brownian motion

In what follows, a multivariate fractional Brownian motion is defined. To
this end, let n ∈ N and H = (Hi)

n
i=1 ∈ (0, 1)n. A (multivariate) H-fractional
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Brownian motion is an Rn-valued process BH = (BH1 , BH2 , . . . , BHn)� if

for every i ∈ {1, 2, . . . , n}, BHi is an Hi-fractional Brownian motion and if

BHi is independent of BHj whenever i, j ∈ {1, 2, . . . , n} are such that i �= j.

Clearly, it holds that

EBH

s (B
H

t )
� = RH(s, t)

for every (s, t) ∈ [0, T ]2 where RH : [0, T ]2 → L (Rn) is defined by

RH(s, t) := diag {RHi
(s, t)}ni=1.

Now, if we define the matrix-valued kernel KH : [0, T ]2 → L (Rn) by

KH(t, r) := diag {KHi
(t, r)}ni=1,

then we obtain that the equality

RH(s, t) =

∫ t∧s

0
KH(s, r)KH(t, r) dr

is satisfied for every (s, t) ∈ [0, T ]2.

2.2. Wiener integration

As well-known, unless H = 1/2, the H-fractional Brownian motion is not a

semimartingale; see, e.g., [9, p. 178]. Therefore, the standard (Itô’s) integra-

tion theory cannot be applied and an integration theory has to be devel-

oped. For our purposes, however, it suffices to consider only deterministic

integrands.

Let H ∈ (0, 1)n and let BH be a multivariate H-fractional Brownian

motion. Let m ∈ N and denote by E (0, T ;L (Rn;Rm)) the space of step

functions on the interval [0, T ] with values in the space L (Rn;Rm), i.e.

every f ∈ E (0, T ;L (Rn;Rm)) is of the form

(4) f =

N−1∑
i=0

Ai1[ti,ti+1)

for some N ∈ N, some partition {ti}Ni=0 of the interval [0, T ] such that 0 =

t0 < t1 < . . . < tN = T , and some set {Ai}mi=0 ⊂ L (Rn;Rm). (If m = n = 1,

we simply write E (0, T ).) For a step function f that is represented by (4),
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the Wiener integral with respect to the multivariate H-fractional Brownian

motion BH is defined by

(5) IT (f) :=

N−1∑
i=0

Ai(B
H

ti+1
−BH

ti ).

In what follows, this definition of the integral IT is extended from the space of

step functions to a larger space of admissible integrands. Define the integral

operator ∂K∗
H
: E (0, T ;L (Rn;Rm)) → L2(0, T ;L (Rn;Rm)) by

(∂K∗
H
f)(s) := f(s)KH(T, s) +

∫ T

s
[f(r)− f(s)](∂1KH)(r, s) dr

for f ∈ E (0, T ;L (Rn;Rm)) and s ∈ [0, T ]. Here, ∂1KH = diag {∂1KHi
}ni=1

where ∂1KHi
denotes the partial derivative of KHi

in the first variable. It

follows by using the fact that

(6) KH(t, r) = (∂K∗
H
)(1[0,t]Idn)(r)

holds for (t, r) ∈ [0, T ]2 that there is the isometry

(7) 〈IT (f), IT (g)〉L2(Ω;Rm) = 〈∂K∗
H
f, ∂K∗

H
g〉L2(0,T ;L (Rn;Rm))

for f, g ∈ E (0, T ;L (Rn;Rm)).

Remark 1. For H ∈ (0, 1), the operator ∂K∗
H : E (0, T ) → L2(0, T ) is

injective and it can be described by the fractional operators defined by (33)

and (34). In particular, it follows that for f ∈ E (0, T ), ∂K∗
Hf is given by

∂K∗
Hf = cHr

1

2
−HI

H− 1

2

T− rH− 1

2 f,

and for f ∈ (∂K∗
H)(E (0, T )), the inverse (∂K∗

H)−1f is given by

(∂K∗
H)−1f = c−1

H r
1

2
−HI

1

2
−H

T− rH− 1

2 f,

cf. [6, p. 30 and p.36] and [1, section 8].

By Remark 1, the operator ∂K∗
H
is injective so that

〈f, g〉DH(0,T ;L (Rn;Rm)) := 〈∂K∗
H
f, ∂K∗

H
g〉L2(0,T ;L (Rn;Rm)),
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f, g ∈ E (0, T ;L (Rn;Rm)), defines an inner product on E (0, T ;L (Rn;Rm))

(with ‖ · ‖DH(0,T ;L (Rn;Rm)) being the induced norm). We obtain from equal-

ity (7) that

(8) ‖IT (f)‖L2(Ω;Rm) = ‖f‖DH(0,T ;L (Rn;Rm))

holds for every f ∈ E (0, T ;L (Rn;Rm)) and therefore, the operator

IT : E (0, T ;L (Rn;Rm)) → L2(Ω;Rm)

defined by formula (5) is a linear isometry. As such, it admits a unique ex-

tension to a linear isometry, denoted again by IT , from the the completion

of E (0, T ;L (Rn;Rm)) with respect to the norm ‖ · ‖DH(0,T ;L (Rn;Rm)) (we

denote this completion by DH(0, T ;L (Rn;Rm))) to a closed linear subspace

of the space L2(Ω;Rm). For f ∈ DH(0, T ;L (Rn;Rm)), the Rm-valued ran-

dom variable IT (f) is called the Wiener integral of f with respect to the

process BH. Whenever convenient, the following notation will also be used:

∫ T

0
f(r) dBH

r := IT (f).

Remark 2. The above described procedure is a generalization of the case

when the integrator is a scalar H-fractional Brownian motion and we refer,

for example, to the works [1], [9], [34], or to the monograph [6] and the many

references therein. It is well-known that the abstract completion procedure

of the space of step functions with respect to the norm induced by the

operator ∂K∗
H can and will in general produce admissible integrands that

are not functions. More specifically, if H ∈ (0, 1/2], then DH(0, T ) contains

only functions, and there is, for example, the continuous embedding

C δ([0, T ]) ↪→ DH(0, T )

for any δ ∈ (1/2 − H, 1). If H ∈ (1/2, 1), then the space DH(0, T ) contains

distributions; however, there is the continuous embedding

L
1

H (0, T ) ↪→ DH(0, T )

which provides a convenient space of functions to which one can restrict the

domain of IT ; see, e.g., [31, section 2.1].
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3. Girsanov theorem

In this subsection, a Girsanov-type theorem for the multivariate fractional
Brownian motion is given. We begin with some preliminaries on an integral
operator associated with the kernel KH and a Volterra-type representation
of the multivariate fractional Brownian motion.

The first preparatory result is that a certain integral operator can be
associated with the kernel KH . Define for H ∈ (0, 1) and f ∈ L2(0, T ) the
operator KH by

(KHf)(t) :=

∫ t

0
KH(t, r)f(r) dr, t ∈ [0, T ].

Remark 3. The operator KH can be described as follows. It holds that
the operator KH is an isomorphism from the space L2(0, T ) to the space

I
H+ 1

2

0+ (L2(0, T )) and for f ∈ L2(0, T ) we have that

KHf =

⎧⎪⎪⎨
⎪⎪⎩
cHI2H0+ r

1

2
−HI

1

2
−H

0+ rH− 1

2 f, H ∈ (0, 1/2),

cHI10+f, H = 1/2,

cHI10+r
H− 1

2 I
H− 1

2

0+ r
1

2
−Hf, H ∈ (1/2, 1);

by [38, Theorem 10.4]. (The formula in the singular case H ∈ (0, 1/2) is
obtained by noting that by [9, formula (4)], the equality

2F1

(
1

2
−H,H − 1

2
, H +

1

2
; z

)
= 2F1

(
H − 1

2
,
1

2
−H,H +

1

2
; z

)

holds for any H ∈ (0, 1), H �= 1/2, and z ∈ C such that |arg (1 − z)| < π.)

See also [9, Theorem 2.1]. The inverse K−1
H is given for f ∈ I

H+ 1

2

0+ (L2(0, T ))
by

K−1
H f =

⎧⎪⎪⎨
⎪⎪⎩
c−1
H r

1

2
−HI

H− 1

2

0+ rH− 1

2 I−2H
0+ f, H ∈ (0, 1/2),

c−1
H I−1

0+f, H = 1/2,

c−1
H rH− 1

2 I
1

2
−H

0+ r
1

2
−HI−1

0+f, H ∈ (1/2, 1);

see [10, formulas (5),(6), and (9),(10)]. Note also that if the function f is
absolutely continuous, then is it proved in [32, p. 108] that for H ∈ (0, 1/2),
K−1

H
f can also be computed as

K−1
H f = c−1

H rH− 1

2 I
1

2
−H

0+ r
1

2
−HI−1

0+f.
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The multivariate extension of the operator KH is defined for H ∈ (0, 1)n

and f ∈ L2(0, T ;Rn) by

(9) KHf := diag {KHi
}ni=1f.

In order to describe the operator we set for H ∈ (0, 1)n and f ∈ L2(0, T ;Rn)

I
H+ 1

2

0+ f := diag {IHi+
1

2

0+ }ni=1f,

and it follows by Remark 3 that the operator KH defined by (9) is an iso-

morphism from the space L2(0, T ;Rn) onto the space I
H+ 1

2

0+ (L2(0, T ;Rn)).

Moreover, its inverse is given for f ∈ I
H+ 1

2

0+ (L2(0, T ;Rn)) by

K−1
H

f = diag {K−1
Hi

}ni=1f.

As a second preparatory result, let us mention that there is a one-to-

one correspondence between an Rn-valued Wiener process and a multivariate

fractional Brownian motion. To be more precise, letH ∈ (0, 1)n and note that

if (Wt)t∈[0,T ] is an Rn-valued Wiener process, then the process (BH

t )t∈[0,T ]

defined by

BH

t :=

∫ t

0
KH(t, r) dWr, t ∈ [0, T ],

is a multivariate H-fractional Brownian motion (recall equality (6)). On the

other hand, if BH is a multivariate H-fractional Brownian motion, then it

follows that the process (Wt)t∈[0,T ] defined by

(10) Wt :=

∫ t

0
(∂K∗

H
)−1(1[0,t]Idn)(r) dB

H

r , t ∈ [0, T ],

is an Rn-valued Wiener process. Moreover, in both cases, their augmented

generated filtrations coincide; cf., e.g., [9, Corollary 3.1, Remark 3.2, and

Theorem 4.8], [12, Theorem 1], [32, formulas (5) and (6)], [10, formulas (3)

and (4)], and [40, formula (2.4) and the remark following Definition 2.1].

The Girsanov-type theorem for multivariate fractional Brownian motion

can now be formulated. It is an adaptation of the Girsanov-type theorem for

scalar fractional Brownian motions (see, e.g., [9, Theorem 4.9], [32, Theorem

2], [10, Theorem 2.2], or [42, Theorem 1]) to the multivariate case with

different Hurst indices (cf. [40, Theorem 4.1]).
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Proposition 4. Let H ∈ (0, 1)n. Let (BH

t )t∈[0,T ] be a multivariate frac-
tional Brownian motion defined on some probability space (Ω,F ,P) and let
(Wt)t∈[0,T ] be the Wiener process defined by formula (10). Let (ut)t∈[0,T ] be

an (FBH

t )-adapted Rn-valued stochastic process such that

u· ∈ L1(0, T ;Rn) and

∫ ·

0
ur dr ∈ I

H+ 1

2

0+

(
L2(0, T ;Rn)

)
are satisfied P-almost surely. Define the process (vt)t∈[0,T ] by

vt := K−1
H

(∫ ·

0
ur dr

)
(t), t ∈ [0, T ],

and the random variable ET by

ET := exp

{∫ T

0
v�r dWr −

1

2

∫ T

0
‖vr‖2Rn dr

}
.

If EET = 1, then the process (B̃H

t )t∈[0,T ] defined by

B̃H

t := BH

t −
∫ t

0
ur dr, t ∈ [0, T ],

is a multivariate H-fractional Brownian motion under the probability mea-
sure P̃ that is defined by

dP̃

dP
:= ET .

Proof. First note that by the standard Girsanov theorem (see, e.g., [18,
Theorem 3.5.1]), it follows that the process (W̃t)t∈[0,T ] defined by

W̃t := Wt −
∫ t

0
vr dr, t ∈ [0, T ],

is an (FBH

t )-Wiener process under the probability measure P̃. Moreover, we
have that

B̃H

t = BH

t −
∫ t

0
ur dr

=

∫ t

0
KH(t, r) dWr −

∫ t

0
KH(t, r)vr dr
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=

∫ t

0
KH(t, r) dW̃r

for every t ∈ [0, T ], P̃-almost surely which proves the claim.

4. Stochastic differential equations

Let b : [0, T ] × Rn → Rn be a Borel measurable function that satisfies the
following two conditions:

(I) There exists a finite positive constant Kb such that for every t ∈ [0, T ]
and every x ∈ Rn it holds that

‖b(t, x)‖Rn ≤ Kb(1 + ‖x‖Rn).

(II) For every N ∈ N there exists a finite positive constant KN such that
for every t ∈ [0, T ] and every x, y ∈ Rn that satisfy ‖x‖Rn +‖y‖Rn ≤ N
it holds that

‖b(t, x)− b(t, y)‖Rn ≤ KN‖x− y‖Rn .

Assume further that (Zt)t∈[0,T ] is an Rn-valued process with continuous sam-
ple paths sample paths defined on some probability space (Ω,F ,P) and that
x0 ∈ Rn. It follows by standard Picard iteration scheme that there exists an
Rn-valued continuous stochastic process (Xt)t∈[0,T ], unique in the sense of
indistinguishability, that satisfies the random differential equation

(11) Xt = x0 +

∫ t

0
b(r,Xr) dr + Zt

for every t ∈ [0, T ] P-almost surely. Additionally, it can be shown exactly as
in [40, Theorem 3.6] that if there exists a ν ∈ (0, 1) such that the stochastic
process Z has γ-Hölder continuous sample paths for every γ ∈ (0, ν), then
the process (Xt)t∈[0,T ] has a version with γ-Hölder continuous sample paths
for every γ ∈ (0, ν); and, moreover, for every γ ∈ (0, ν), the inequality2

(12) ‖X‖C γ([0,T ];Rn) � 1 + ‖Z‖C γ([0,T ];Rn)

holds P-almost surely with a constant that depends on T , x0, Kb, and γ.

2If there exists a constant C such that A ≤ CB and the value of this constant
is not important, we simply write A � B throughout the article.
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4.1. Strong solutions

Let us fix H ∈ (0, 1)n and a multivariate H-fractional Brownian motion
BH defined on some probability space (Ω,F ,P) for this subsection. Let
b : [0, T ] × Rn → Rn and σ : [0, T ] → L (Rn) be Borel measurable func-
tions and let x0 ∈ Rn. Assume that σ ∈ DH(0, T ;L (Rn)). In this section,
we find sufficient conditions for the existence of an (FBH

t )-adapted process
(Xt)t∈[0,T ] defined on (Ω,F ,P) with continuous sample paths that satisfies
the equation

(13) Xt = x0 +

∫ t

0
b(r,Xr) dr +

∫ t

0
σ(r) dBH

r

for every t ∈ [0, T ] P-almost surely. If such a process exists, we say that
problem (13) admits a strong solution. We aim to use the facts described at
the beginning of section 4 with the process Z being defined by

(14) Zt :=

∫ t

0
σ(u) dBH

u , t ∈ [0, T ].

Therefore, we first need to find conditions under which the integral process
has a version with continuous sample paths. Let us fix the following notation:

Notation In what follows, we will write f ∈ SH+ with H ∈ (0, 1) if there
exists δ > 0 such that f ∈ SH+δ where

SH+δ :=

{
C

1

2
−H+δ([0, T ];Rn), H ∈ (0, 1/2),

L
1

H
+δ(0, T ;Rn), H ∈ [1/2, 1),

Similarly, we will write f ∈ SH+ for H = (H1, H2, . . . , Hn)
� ∈ (0, 1)n if there

exists δ = (δ1, δ2, . . . , δn)
� ∈ (0,∞)n such that f ∈×n

i=1 S
Hi+δi .

Proposition 5. If σ ∈ SH+, then the integral process (Zt)t∈[0,T ] defined by
formula (14) has a version with continuous sample paths.

Proof. Write σ = (σ·1, σ·2, . . . , σ·n) and let 0 ≤ s < t ≤ T be fixed. Since
the coordinates of BH are independent fractional Brownian motions and the
columns of σ are deterministic functions, the integrals

∫ t
s σ· k(r) dB

Hk
r and∫ t

s σ· l(r) dB
Hl
r are uncorrelated Rn-valued random variables whenever k �= l.

Using this property and the isometry (8), the equality

‖Zt − Zs‖2L2(Ω;Rn) =

n∑
k=1

E

∥∥∥∥
∫ t

s
σ·k(r) dB

Hk
r

∥∥∥∥
2

Rn

=

n∑
k=1

‖σ· k‖2DHk (s,t;Rn)



Applications of the Girsanov theorem for multivariate fBm 281

is easily obtained. Now, for k ∈ {1, 2, . . . , n}, we have by the definition of
the norm ‖ · ‖DHk (s,t;Rn) that

‖σ·,k‖2DHk (s,t;Rn) = ‖∂K∗
Hk

σ· k‖2L2(s,t;Rn).

If Hk ∈ (0, 1/2), it follows by the exact same arguments as in the proof of

[40, Proposition 3.1] that

‖∂K∗
Hk

σ· k‖2L2(s,t;Rn) � ‖σ· k‖2
C

1
2
−Hk+δk ([0,T ];Rn)

(t− s)2Hk .

On the other hand, ifHk ∈ [1/2, 1), we have by the Hardy-Littlewood-Sobolev

inequality (see, e.g., [38, Theorem 3.5]) and the Hölder inequality that

‖∂K∗σ· k‖2L2(s,t;Rn) �
(∫ t

s
‖σ· k(r)‖

1

Hk

Rn dr

)2Hk

≤ ‖σ· k‖2
L

1
H

+δk (0,T ;Rn)
(t− s)

2δkH2
k

1+δkHk .

The proof is concluded by a standard argument based on the the fact that
higher-order moments of Gaussian random variables can be estimated by

the second moment [30, Corollary 2.8.14] and the Kolmogorov-Chentsov
continuity criterion [18, Theorem 2.2.8].

Remark 6. It follows from the proof of Proposition 5 that there exists a
ν > 0 such that the integral process (Zt)t∈[0,T ] admits a version with γ-

Hölder continuous sample paths for every γ ∈ (0, ν). In particular, if we
denote

Gk :=

{
Hk, Hk ∈ (0, 1/2),
δkH2

k

1+δkHk
, Hk ∈ [1/2, 1),

for k ∈ {1, 2, . . . , n}, then the claim holds with

ν := min
k∈{1,2,...,n}

Gk

that we call, in the sequel, the Hölder bound for Z for simplicity.

Remark 7. Proposition 5 holds with obvious modifications for δk = ∞.
For example, if σ is such that σ· k ∈ L∞(0, T ;Rn) for every k such that

Hk ∈ [1/2, 1), then ν = mink Hk. Thus, [40, Proposition 3.2] is recovered as
a particular case of Proposition 5.
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Remark 8. For λ ∈ (0, 1], consider the space

C̃ λ([0, T ];Rn) :=

{
f ∈ C λ([0, T ];Rd)

∣∣∣∣∀ε > 0 ∃δ > 0

∀s, t ∈ (0, T ), 0 < |t− s| < δ =⇒ |f(t)− f(s)|
|t− s|λ < ε

}

equipped with the norm ‖ · ‖C λ([0,T ];Rn). It follows that C̃ λ([0, T ];Rn) is
separable (see [20, Theorem 1.4.11]) and there are the inclusions

C κ2([0, T ];Rn) ⊂ C̃ κ1([0, T ];Rn) ⊂ C κ1([0, T ];Rn)

whenever 0 < κ1 < κ2 ≤ 1 (see [20, Exercise 1.2.10 (ii)]). Therefore, if the
assumptions of Proposition 5 are satisfied, the integral process (Zt)t∈[0,T ]

can be viewed as a C̃ γ([0, T ];Rn)-valued Gaussian random variable for any
γ ∈ (0, ν) where ν is the Hölder bound for Z. As a consequence, it follows
by Fernique’s theorem (see [13, Théorème d’ integrabilité]) that for every
γ ∈ (0, ν),

E exp{K‖Z‖2C γ([0,T ];Rn)} < ∞
is satisfied with some positive constant K. This fact will be used in the proof
of Proposition 10.

Combining Proposition 5 with the existence and uniqueness result for
equation (11) discussed at the beginning of section 4 allows to obtain a
strong solution to the stochastic differential equation (13).

Proposition 9. Assume that b satisfies conditions (I) and (II) and that σ
belongs to the space SH+. Then there exists a unique strong solution to (13).
Moreover, the solution has γ-Hölder continuous sample paths for every γ ∈
(0, ν) where ν is the Hölder bound for the integral process Z defined by (14).

4.2. Weak solutions

Let H ∈ (0, 1)n be fixed in this subsection. Let also b1, b2 : [0, T ]×Rn → Rn

and σ : [0, T ] → L (Rn) be Borel measurable functions and x0 ∈ Rn. Assume
that σ ∈ DH(0, T ;L (Rn)). In what follows, we find sufficient conditions for
the existence of a probability space (Ω,F ,P), a multivariate H-fractional
Brownian motion BH, and an (FBH

t )-adapted process (Xt)t∈[0,T ] with con-
tinuous sample paths that satisfy the equation

(15) Xt = x0 +

∫ t

0
[b1(r,Xr) + b2(r,Xr)] dr +

∫ t

0
σ(r) dBH

r
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for every t ∈ [0, T ] P-almost surely. If this is the case, we say that prob-
lem (15) admits a weak solution. The main tool will be the Girsanov-type
theorem from Proposition 4 and initially, its application is given.

Proposition 10. Let (BH

t )t∈[0,T ] be a multivariate H-fractional Brownian
motion defined on some probability space (Ω,F ,P). Assume that the func-
tion b1 satisfies conditions (I) and (II). Assume also that the function σ
belongs to the space SH+ and that for every t ∈ [0, T ], the matrix σ(t) is
invertible. Let ν > 0 be the Hölder bound for the integral process Z that is
defined by (14) and assume additionally that the functions b2 and σ satisfy
the following condition:

(III) If, for k ∈ {1, 2, . . . , n}, the parameter Hk belongs to (0, 1/2], then
there exists a constant Kk > 0 such that for every t ∈ [0, T ] and every
x ∈ Rn it holds that

|[σ(t)−1b2(t, x)]k| ≤ Kk(1 + ‖x‖Rn);

and if Hk belongs to (1/2, 1), then Hk < ν+1/2 and there exist constants
αk ∈ (Hk − 1/2, 1], βk ∈ (2Hk−1

2ν , 1], and Kk > 0 such that for every
s, t ∈ [0, T ] and every x, y ∈ Rn it holds that

|[σ(t)−1b2(t, x)]k − [σ(s)−1b2(s, y)]k| ≤
≤ Kk(|t− s|αk + ‖x− y‖βk

Rn).

Here, [z]k denotes the k-th component of z ∈ Rn.

Denote by (Xt)t∈[0,T ] the strong solution3 to the equation

Xt = x0 +

∫ t

0
b1(r,Xr) dr +

∫ t

0
σ(r) dBH

r , t ∈ [0, T ].

Then the process (B̃H

t )t∈[0,T ] given by

B̃H

t := BH

t −
∫ t

0
σ(r)−1b2(r,Xr) dr, t ∈ [0, T ],

is a multivariate H-fractional Brownian motion under the probability mea-
sure P̃ that is defined by

(16)
dP̃

dP
:= ET := exp

{∫ T

0
v�r dWr −

1

2

∫ T

0
‖vr‖2Rn dr

}
3The existence and uniqueness of such solution is ensured by Proposition 9.
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where (vt)t∈[0,T ] is the stochastic process given by

vt := K−1
H

(∫ ·

0
σ(r)−1b2(r,Xr) dr

)
(t), t ∈ [0, T ].

Proof. Let (ut)t∈[0,T ] be defined by ut := σ(t)−1b2(t,Xt) for t ∈ [0, T ]. In

order to show that

u· ∈ L1(0, T ;Rn) and

∫ ·

0
ur dr ∈ I

H+ 1

2

0+

(
L2(0, T ;Rn)

)

hold P-almost surely, it will be proved in the first step that v ∈ L2(0, T ;Rn)

P-almost surely. In the second step it will be shown that there exists Δ > 0

and a partition 0 = t0 < t1 < . . . < tN(Δ) = T of the interval [0, T ] whose

mesh size is smaller than Δ and it holds that

E exp

{∫ ti+1

ti

‖vr‖2Rn dr

}
< ∞

for every i ∈ {0, 1, . . . , N(Δ)−1}. This is because this last condition implies

by [14, Lemma 7.1.3] that

E

[
exp

{∫ ti+1

ti

v�r dWr −
1

2

∫ ti+1

ti

‖vr‖2Rn dr

}∣∣∣∣FBH

ti

]
= 1

holds P-almost surely for every i ∈ {0, 1, . . . , N(Δ)−1} and using the above

equality iteratively yields EET = 1. Thus, the assumptions of Proposition 4

will be verified and the claim of the proposition will follow.

Step 1. Let 0 ≤ s < t ≤ T . We have by Remark 3 that

∫ t

s
‖vu‖2Rn du =

n∑
k=1

∫ t

s

∣∣∣∣K−1
Hk

(∫ ·

0
[σ(r)−1b2(r,Xr)]k dr

)
(u)

∣∣∣∣
2

du

=

n∑
k=1

∫ t

s

∣∣∣uHk− 1

2 I
1

2
−Hk

0+

(
r

1

2
−Hk [σ(r)−1b2(r,Xr)]k

)
(u)

∣∣∣2 du

where Iα0+ is the fractional operator defined by formulas (31) and (32). Now,

set

(17) Ik(s, t) :=

∫ t

s

∣∣∣uHk− 1

2 I
1

2
−Hk

0+

(
r

1

2
−Hk [σ(r)−1b2(r,Xr)]k

)
(u)

∣∣∣2 du
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for k ∈ {1, 2, . . . , n}. If Hk ∈ (0, 1/2], we obtain that for every γ ∈ (0, ν), the
inequality

(18) Ik(s, t) ≤ C
(1)
k (1 + ‖Z‖2C γ([0,T ];Rn))(t− s)

holds with some finite positive constant C
(1)
k that depends on H, T , αk,

βk, γ, Kb, Kk, and x0 by using assumption (III) and estimate (12) as in the
proof of [40, Theorem 4.2, formula (4.8)]. On the other hand, if Hk ∈ (1/2, 1),
then for every γ ∈ (2Hk−1

2βk
, ν), the estimate

Ik(s, t) ≤ C
(2)
k (1 + ‖Z‖2βk

C γ([0,T ];Rn))(t− s)2(1−Hk)

holds with some finite positive constant C
(2)
k that depends on H, T , αk, βk,

γ, Kb, Kk, x0, and σ−1b2 by using assumption (III) and estimate (12) as in
the proof of [40, Theorem 4.3]. Set βk := 1 for any k such that Hk ∈ (0, 1/2]
and denote

H0 := max
k:Hk∈(1/2,1)

Hk and ν0 := max
k:Hk∈(1/2,1)

2Hk − 1

2βk
.

We see from inequalities (17) and (18) that for every γ ∈ (ν0, ν) the estimate

∫ t

s
‖vu‖2Rn du ≤ C0

(
1 +

n∑
k=1

‖Z‖2βk

C γ([0,T ];Rd)

)
(t− s)2(1−H0).

holds with some finite positive constant C0. It follows from this estimate
that v ∈ L2(0, T ;Rn) P-almost surely by choosing s = 0 and t = T .

Step 2. Let γ ∈ (ν0, ν) and let K0 be the constant for which

(19) E exp{K0‖Z‖2C γ([0,T ];Rn)} < ∞

(cf. Remark 6). Let also Δ > 0 be such that (1 + n)C0Δ
2(1−H0) < K0 and

let 0 = t0 < t1 < . . . < tN(Δ) = T be a partition of the interval [0, T ] whose
mesh size is smaller than Δ. For i ∈ {0, 1, . . . , N(Δ)− 1}, we have that

E exp

{∫ ti+1

ti

‖vu‖2Rn du

}
≤

≤ E exp

{
C0

(
1 +

n∑
k=1

‖Z‖2βk

C γ([0,T ];Rn)

)
(ti+1 − ti)

2(1−H0)

}
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= E exp

{(
1 +

n∑
k=1

‖Z‖2βk

C γ([0,T ];Rn)

)
K0

1 + n

}
1[‖Z‖Cγ ([0,T ];Rn)≤1]

+ E exp

{(
1 +

n∑
k=1

‖Z‖2βk

C γ([0,T ];Rn)

)
K0

1 + n

}
1[‖Z‖Cγ ([0,T ];Rn)>1]

≤ eK0P(‖Z‖C γ([0,T ];Rn) ≤ 1)

+ E exp
{
K0‖Z‖2C γ([0,T ];Rn)

}
1[‖Z‖Cγ ([0,T ];Rn)>1]

which is finite by (19). Thus, the claim is proved.

Remark 11. Assume that H contains at least one element larger than 1/2

and one element smaller than 1/2 and let σ ∈ SH+ be such that σ· k ∈
L∞(0, T ;Rn) whenever k is such that Hk ∈ (1/2, 1) as in Remark 7. Then

it follows that ν = mink:Hk∈(0,1/2]Hk. On the other hand, condition (III)

in Proposition 10 says that ν has to be greater than maxk:Hk∈(1/2,1)Hk− 1/2.

Therefore, Proposition 10 can be applied if (besides the remaining condi-

tions) the condition

min
k:Hk∈(0,1/2]

Hk > max
k:Hk∈(1/2,1)

Hk −
1

2

is satisfied. Roughly speaking, this means that Proposition 10 can be applied

if the singular values of Hurst indexes contained in H do not differ from the

regular values by more than 1⁄2.

Proposition 12. Assume that the function b1 satisfies conditions (I) and

(II). Assume also that the function σ belongs to the space SH+ and that

for every t ∈ [0, T ], the matrix σ(t) is invertible. Assume finally, that the

functions b2 and σ satisfy condition (III). Then problem (15) admits a weak

solution.

Proof. Let (BH

t )t∈[0,T ] be a multivariate H-fractional Brownian motion that

is defined on some probability space (Ω,F ,P). By Proposition 9, there exists

an (FBH

t )-adapted process (Xt)t∈[0,T ] with continuous sample paths that

satisfies the equation

(20) Xt = x0 +

∫ t

0
b1(r,Xr) dr +

∫ t

0
σ(r) dBH

r

for every t ∈ [0, T ] P-almost surely. On the other hand, by Proposition 10,
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the process (B̃H

t )t∈[0,T ] defined by

B̃H

t := BH

t −
∫ t

0
σ(r)−1b2(r,Xr) dr

is a multivariate H-fractional Brownian motion under the probability mea-
sure P̃ that is given by formula (16). Moreover, by a standard approximation
argument, it can be shown that for every f ∈ SH+, the equation

(21)

∫ t

0
f(r) dBH

r =

∫ t

0
f(r) dB̃H

r +

∫ t

0
f(r)σ(r)−1b2(r,Xr) dr

is satisfied for every t ∈ [0, T ] P̃-almost surely (cf. [40, Proposition 5.1]). It
follows from equations (20) and (21) that

Xt = x0 +

∫ t

0
b1(r,Xr) dr +

∫ t

0
σ(r) dB̃H

r +

∫ t

0
b2(r,Xr) dr

holds for every t ∈ [0, T ] P̃-almost surely. Consequently, it is seen that the
triplet ((Ω,F , P̃), B̃H, X) is a weak solution to problem (15).

4.3. Estimation of the drift

In this section, a maximum likelihood estimate (MLE) of a drift parameter
in a stochastic differential equation with additive multivariate fractional
Brownian motion is found by means of the Girsanov-type theorem.

Let H ∈ (0, 1)n and let (BH

t )t≥0 be a multivariate H-fractional Brownian
motion on some probability space (Ω,F ,P). Let b : [0,∞)× Rn → Rn be a
Borel measurable function that satisfies the condition

(IV) For every T > 0 there exists a finite positive constant CT such that
for every s, t ∈ [0, T ] and x, y ∈ Rn it holds that

‖b(t, x)− b(s, y)‖Rn ≤ CT ‖x− y‖Rn .

Consider the equation

(22) Xt = θ

∫ t

0
b(r,Xr) dr +BH

t , t ≥ 0,

where θ ∈ R is an unknown parameter. Clearly, conditions (I) and (II)
are satisfied and therefore for every T > 0, there exists a unique strong
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solution (Xθ,T
t )t∈[0,T ] to equation (22) on the interval [0, T ] by Proposition 9.

By uniqueness of the solution, Xθ,T
t = Xθ,S

t for every t ∈ [0, S] P-almost
surely whenever S ∈ (0, T ). Therefore, if we define the process (Xθ

t )t≥0

by Xθ
t := Xθ,N+1

t for t ∈ [N,N + 1), N ∈ N, we obtain that Xθ is the
unique solution to (22) on the interval [0,∞). The aim is to find a MLE of
the parameter θ based on a continuous observation of a trajectory of the
solution.

Let T > 0 and set P0 := P. Notice first that the process (X0
t )t∈[0,T ] is

a H-fractional Brownian motion BH on (Ω,F ,P0). On the other hand, if
θ �= 0, define the stochastic process (vt)t∈[0,T ] by

vt := K−1
H

(∫ .

0
[−θb(r,Xθ

r )] dr

)
(t), t ∈ [0, T ].

Since the assumptions of Proposition 10 are satisfied, the stochastic process
(B̃H

t )t∈[0,T ] defined by

B̃H

t := BH

t + θ

∫ t

0
b(t,Xθ

r ) dr, t ∈ [0, T ],

is a H-fractional Brownian motion under the probability measure Pθ that is
given by formula

dPθ

dP0
:= ET := exp

{∫ T

0
v�r dWr −

1

2

∫ T

0
‖vr‖2Rn dr

}

where (Wt)t∈[0,T ] is the Wiener process constructed from BH by formula (10).

Moreover, it follows from equation (22) that Xθ
t = B̃H

t holds for every
t ∈ [0, T ] P0-almost surely and therefore, the solution (Xθ

t )t∈[0,T ] is a H-
fractional Brownian motion on the probability space (Ω,F ,Pθ).

Proposition 13. The MLE of parameter θ in equation (22) based on a
continuous observation of a trajectory of its solution X on [0, T ] is given by

(23) θ̂T = −
∫ T
0 Q�

r dWr∫ T
0 ‖Qr‖2Rn dr

where (Qt)t∈[0,T ] is given by

Qt = K−1
H

(∫ .

0
b(r,Xr)dr

)
(t), t ∈ [0, T ],
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and where (Wt)t∈[0,T ] is the Wiener process constructed from the H-fractional

Brownian motion (BH

t )t∈[0,T ] by formula (10).

Proof. By Proposition 10, we have that

Pθ(X
θ ∈ A) =

∫
{ω∈Ω:Xθ(ω)∈A}

ET (ω) dP0(ω), A ∈ B(C ([0, T ];Rn)),

so that the MLE can be found by maximizing the function

F (θ) := log
dPθ

dP0
= −θ

∫ T

0
Q�

r dWr −
θ2

2

∫ T

0
‖Qr‖2Rn dr.(24)

Remark 14. As noted before, the solution Xθ to equation (22) is a H-
fractional Brownian motion on (Ω,F ,Pθ). Moreover, it follows by the proof
of Proposition 4 that the process (W̃t)t∈[0,T ] defined by

(25) W̃t := Wt + θ

∫ t

0
Qs ds, t ∈ [0, T ],

is a Wiener process on (Ω,F ,Pθ) such that

Xt =

∫ t

0
KH(t, r) dW̃r

and

W̃t =

∫ t

0
(∂K∗

H
)−1(1[0,t]Idn)(r) dX

θ
r

hold for every t ∈ [0, T ] Pθ-almost surely (and also P-almost surely since
the measures P and Pθ are equivalent). Note that this last expression can be
computed from the observed trajectory X. Now, it follows from formula (25)
that

(26)

∫ T

0
Q�

r dWr =

∫ T

0
Q�

r dW̃r − θ

∫ T

0
‖Qr‖2Rn dr

holds Pθ-almost surely (P-almost surely) and therefore, we have that the
function F given by formula (24) satisfies

F (θ) = −θ

∫ T

0
Q�

r dWr +
θ2

2

∫ T

0
‖Qr‖2Rn dr



290 Monika Camfrlová and Petr Čoupek

Pθ-almost surely (P-almost surely). Maximizing the last expression over θ
yields the following alternative form of the MLE θ̂t:

(27) θ̂T =

∫ T
0 Q�

r dW̃r∫ T
0 ‖Qr‖2Rn dr

.

This proves that the MLE can be computed from the observed trajectory.

In what follows, we give sufficient conditions for strong consistency and
asymptotic normality of the MLE θ̂T in the spirit of [36, section 2.4].

Proposition 15. If the convergence

(28)

∫ T

0
‖Qr‖2Rn dr

P−a.s.−→
T→∞

∞,

is satisfied, then the MLE θ̂T given by (23) is a strongly consistent estimate
of the parameter θ in equation (22), i.e. there is the following convergence:

θ̂T
P−a.s.−→
T→∞

θ.

Proof. By substituting equality (26) in equality (27), we obtain that

(29) θ̂T − θ =

∫ T
0 Q�

r dWr∫ T
0 ‖Qr‖2Rn dr

holds P-almost surely. The claim of the proposition follows by the strong
law of large numbers for martingales; see, e.g., [37, Exercise V.1.6].

Remark 16. In the case n = 1 and b(t, x) ≡ b(x), a sufficient condition
for the validity of the convergence (28) is given in [42, Theorem 2] for H ∈
(0, 1/2) and in [42, Theorem 3] for H ∈ (1/2, 1). Moreover, it is shown in
[42, Proposition 3] and in [19, Proposition 2.2] (see also [42, Section 5])
that the convergence (28) is satisfied for the particular case of the fractional
Ornstein-Uhlenbeck process (b(t, x) ≡ x) for H ∈ (0, 1/2) and H ∈ [1/2, 1),
respectively.

Proposition 17. If there exists a finite positive constant C for which the
convergence

(30)
1

T

∫ T

0
‖Qr‖2Rn dr

P−a.s.−→
T→∞

1

C2
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is satisfied, then the MLE θ̂T given by (23) is an asymptotically normal
estimate of the parameter θ in equation (22), i.e. there is the following con-
vergence in law:

√
T (θ̂T − θ)

D−→
T→∞

Z

where Z ∼ N(0, C2).

Proof. It follows from formula (29) that

√
T (θ̂T − θ) =

1√
T

∫ T
0 Q�

r dWr

1
T

∫ T
0 ‖Qr‖2Rn dr

holds P-almost surely. The claim of the proposition follows by the central
limit theorem for martingales; see, e.g., [35, Theorem 1.49].

Remark 18. In the case of one-dimensional fractional Ornstein-Uhlenbeck
process (n = 1 and b(t, x) = x), asymptotic normality of the MLE θ̂T is
proved in [8, Theorem 2] where a condition analogous to condition (30) is
shown to be valid. See also [5] where a different method is used.

Appendix A. Fractional integrals and derivatives

The notions of fractional integrals and derivatives are recalled here. For
α > 0 and f ∈ L1(0, T ), the left-sided Riemann-Liouville fractional integral
of order α on (0, T ), Iα0+, is defined by

(31) (Iα0+f)(t) :=
1

Γ(α)

∫ t

0
f(r)(t− r)α−1 dr

for almost every t ∈ [0, T ]. This notion extends the usual iterated integrals
of f . The operator Iα0+ is extended to allow for α = 0 by setting I00+ to be
the identity operator. Moreover, for p > 1, α ∈ (0, 1), and f ∈ Iα0+ (Lp(0, T ))
(which is the image of Lp(0, T ) by Iα0+), the inverse operation I−α

0+ can be
defined and satisfies

(32) (I−α
0+ f)(t) =

1

Γ(1 + α)

(
f(t)tα − α

∫ t

0
[f(t)− f(r)](t− r)α−1 dr

)

for almost every t ∈ [0, T ] (the convergence of the integrals at the singularity
is understood in the Lp-sense). The operator I−α

0+ is usually called the left-
sided Riemann-Liouville fractional derivative. The operator Iα0+ is extended
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to α = −1 by setting I−1
0+ to be the first derivative in the Lp sense. We refer

to Iα0+ with α ≥ −1 as the (left-sided) fractional operator of order α for
simplicity.

Similarly, for α > 0 and f ∈ L1(0, T ), the right-sided Riemann-Liouville
fractional integral of order α on (0, T ), IαT−, is defined by

(33) (IαT−f)(t) :=
1

Γ(α)

∫ T

t
(r − t)α−1f(r) dr

for almost every t ∈ [0, T ], the operator I0T− is defined as the identity op-
erator. Moreover, for p > 1, α ∈ (0, 1), and f ∈ IαT−(L

p(0, T )), the inverse

operation I−α
T− can be defined and satisfies

(I−α
T−f)(t) =

1

Γ(1 + α)

(
f(t)(T − t)α − α

∫ T

t
[f(t)− f(r)](r − t)α−1 dr

)
.

(34)

The operator I−α
T− is usually called the right-sided Riemann-Liouville frac-

tional derivative. As before, the operator IαT− is extended to α = −1 by

setting I−1
T− to be the first derivative in the Lp sense. We refer to IαT− with

α ≥ −1 as the (right-sided) fractional operator of order α for simplicity.
For a thorough discussion of fractional integrals, derivatives, and their

properties, we refer to the monograph [38] and the references therein.
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