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A global Hartman-Grobman theorem

Xiaochang Wang and Jiexin Dai

We showed that for any bounded neighborhood of a hyperbolic
equilibrium point x0, there is a transformation which is locally
homeomorphism, such that the system is changed into a linear
system in this neighborhood.

If the eigenvalues of Df(x0) are all located in the left-half com-
plex plane, then there is a homeomorphism on the whole region
of attraction such that the nonlinear system on the region of at-
traction is changed into a linear system under such a coordinate
change.
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1. Introduction

Reducing a nonlinear system

(1) ẋ = f(x)

to a simpler form by choosing correct coordinates has always been a research
direction. Since linear systems are simplest and well studied, it is always a
desire to change it to a linear one. Poincaré in his dissertation showed that
if f is analytic at the equilibrium point x0, and the eigenvalues of Df(x0)
are nonresonant, then there is a formal power series of change of variable to
change (1) to a linear system [7, 1]. Hartman and Grobman showed that if f
is continuously differentiable, then there is a neighborhood of a hyperbolic
equilibrium point and a homeomorphism on this neighborhood, such that
the system in this neighborhood is changed to a linear system under such a
homeomorphism [2, 3, 4, 6].

In this paper, we extend the Hartman-Grobman theorem to any bounded
neighborhood of a hyperbolic equilibrium point, and show that for any
bounded neighborhood of a hyperbolic equilibrium point x0, there is a trans-
formation which is a local homeomorphism, such that the system is changed
into a linear system in this neighborhood. Of course, such a transformation
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can not be a homeomorphism on this neighborhood because one could en-

large the neighborhood to include another equilibrium point. However we

are able to show that in the cases that either all the eigenvalues of Df(x0)

are located in the left-half complex plane, or in the right-half complex plane,

there is a homeomorphism such that the system on the region of attraction

(or on the region of repulsion if the eigenvalues are located in the right-half

complex plane) is changed to a linear system.

2. Hartman-Grobman theorem on any bounded region

By applying a translation, we can always assume 0 is the hyperbolic equi-

librium point of (1).

Theorem 2.1. Let E be an open set of Rn containing the origin, f : E → R
n

be a C1 function on E, 0 be a hyperbolic equilibrium point of the system (1)

(i.e. none of the eigenvalues of DF (0) is on the imaginary axis), and N
M

=

{x : ‖x‖ < M} be the neighborhood of the origin of radius M . For any

M, ε > 0 such that N
M+ε

⊂ E, there exists a transformation y = H(x),

H(0) = 0 and H is a homeomorphism in a neighborhood of 0, such that the

system (1) is changed into the linear system

ẏ = Ay, A = Df(0)

in N
M
.

Proof. Without lose of generality by applying a linear change of coordinates,

assume A = Df(0) has the form of

A =

[
P 0
0 N

]

where the eigenvalues of P are located in the right complex plane, and the

eigenvalues of N are located in the left complex plane. Write

f(x) =

[
P 0
0 N

]
x+

[
W1(x)
W2(x)

]

where

[
W1(x)
W2(x)

]
= f(x) −Df(0)x has the properties that Wi(0) = 0 and

DWi(0) = 0, i = 1, 2.
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For any M, ε > 0 such that N
M+ε

⊂ E, let α(x) be a C∞ function such

that

(2) α(x) =

{
1, ‖x‖ ≤ M
0, ‖x‖ ≥ M + ε

and Ŵi(x) = Wi(α(x)x), i = 1, 2.

Then Wi(x) = Ŵi(x), i = 1, 2, for all x with ‖x‖ < M . Let φt(x) be the flow

of the vector field f(x), i.e. x(t) = φt(x0) is the solution of the initial value

problem

ẋ = f(x), x(0) = x0.

Define

(3) H(x) = x+

⎡
⎣

∫∞
0 e−PsŴ1(φs(x)) ds

−
∫ 0
−∞ e−NsŴ2(φs(x)) ds

⎤
⎦ .

Since Ŵi are continuous on N
M+ε

, Ŵi(φs(x)) is bounded for all s. So the

integrals in the definition of H converge, and H is well defined.

Since Ŵi(0) = Wi(0) = 0 and DŴi(0) = DWi(0) = 0, we have DH(0) =

I, and by the inverse function theorem, H is a local homeomorphism in a

neighborhood of 0.

For any solution x(t) of the differential equation ẋ = f(x),

H(x(t)) = x(t) +

⎡
⎣

∫∞
0 e−PsŴ1(φs(x(t))) ds

−
∫ 0
−∞ e−NsŴ2(φs(x(t))) ds

⎤
⎦

= x(t) +

⎡
⎣

∫∞
0 e−PsŴ1(x(t+ s)) ds

−
∫ 0
−∞ e−NsŴ2(x(t+ s)) ds

⎤
⎦

= x(t) +

⎡
⎣

∫∞
t e−P (τ−t)Ŵ1(x(τ)) dτ

−
∫ t
−∞ e−N(τ−t)Ŵ2(x(τ)) dτ

⎤
⎦ .

So under the transformation y = H(x)

ẏ =
d

dt
H(x(t))
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= ẋ−
[
Ŵ1(x(t))

Ŵ2(x(t))

]
+

[
P 0
0 N

]⎡⎣
∫∞
t e−P (τ−t)Ŵ1(x(τ)) dτ

−
∫ t
−∞ e−N(τ−t)Ŵ2(x(τ)) dτ

⎤
⎦

= Ax+

[
W1(x)
W2(x)

]
−
[
Ŵ1(x)

Ŵ2(x)

]
+A

⎡
⎣

∫∞
0 e−PsŴ1(φs(x)) dτ

−
∫ 0
−∞ e−NsŴ2(φs(x)) dτ

⎤
⎦

= Ay

for all x ∈ N
M
.

Theorem 2.1 improves the classical Hartman-Grobman Theorem. Unlike

the classical Hartman-Grobman Theorem in which the transformation is

defined on a small neighborhood of the equilibrium point, the transformation

y = H(x) given by Theorem 2.1 is defined on arbitrarily large bounded

region. At first glance, the result seems too good to be true. However it

should be pointed out that the transformation y = H(x) is not necessary

a homeomorphism on N
M
. Clearly H maps all the equilibrium points of

ẋ = f(x) in N
M

to 0, because for any equilibrium x0 ∈ N
M

H(x0) = x0 +

⎡
⎣

∫∞
0 e−Psŵ1(φs(x0)) ds

−
∫ 0
−∞ e−Nsŵ2(φs(x0)) ds

⎤
⎦

= x0 +

⎡
⎣

∫∞
0 e−Ps ds w1(x0)

−
∫ 0
−∞ e−Ns ds w2(x0)

⎤
⎦

= x0 +

[
P−1w1(x0)
N−1w2(x0)

]
= A−1f(x0) = 0

Theorem 2.1 is an existence type result, the proof is not constructive

because it is generally impossible to find an analytic solution of a nonlinear

system. Nevertheless, we give some examples of nonlinear systems with an-

alytic solutions to demonstrate the transformations. Note that in the proof,

the Ŵ1, Ŵ2 are introduced in order to guarantee the convergence of the in-

tegrals. If the integrals converge for either s → ∞ or s → −∞, then we do

not need replace W1,W2 with Ŵ1, Ŵ2
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Example 2.2. Consider the system

˙⎡
⎣ x1

x2
x3

⎤
⎦ =

⎡
⎣ x1 + x22

−x2 + x23
−x3

⎤
⎦ .

The flow of the vector field is given by

φt(x) =

⎡
⎢⎣ etα(x)− e−2t

3 β(x) + e−3t

2 (x23x2 + x43)− e−4t

5 x43
e−t(x2 + x23)− e−2tx23

e−tx3

⎤
⎥⎦ ,

where

α(x) = x1 +
x32
3

+
x23x2
6

+
x43
30

, β(x) = x22 + 2x23x2 + x43.

We have

W1(x) = x22, W2(x) =

[
x23
0

]
,

and

W1(φs(x)) = (e−s(x2 + x23)− e−2sx23)
2, W2(φs(x)) =

[
(x3e

−s)2

0

]
.

Since both∫ ∞

0
e−sW1(φs(x)) ds =

∫ ∞

0
e−s(e−s(x2 + x23)− e−2sx23)

2 ds

=
1

3
x22 +

1

6
x2x

2
3 +

1

30
x43

and ∫ ∞

0

[
es 0
0 es

]
W2(φs(x)) ds =

[ ∫∞
0 es(x3e

−s)2 ds
0

]
=

[
x23
0

]

converge,

H(x) =

⎡
⎣ x1

x2
x3

⎤
⎦+

⎡
⎢⎢⎣

∫∞
0 e−sW1(φs(x)) ds

∫ ∞

0

[
es 0
0 es

]
W2(φs(x)) ds

⎤
⎥⎥⎦
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=

⎡
⎣ x1 +

1
3x

2
2 +

1
6x2x

2
3 +

1
30x

4
3

x2 + x23
x3

⎤
⎦ ,

and the transformation is given by

y1 = x1 +
1

3
x22 +

1

6
x2x

2
3 +

1

30
x43,

y2 = x2 + x23,

y3 = x3.

We can verify

ẏ1 = ẋ1 +
2

3
x2ẋ2 +

1

6
(2x2x3ẋ3 + ẋ2x

2
3) +

2

15
x33ẋ3

= x1 + x22 +
2

3
x2(−x2 + x23) +

1

6
(2x2x3(−x3)

+(−x2 + x23)x
2
3) +

2

15
x33(−x3)

= x1 +
1

3
x22 +

1

6
x2x

2
3 +

1

30
x43 = y3

ẏ2 = ẋ2 + 2x3ẋ3 = −x2 + x23 + 2x3(−x3)

= −x2 − x23 = −y2

ẏ3 = ẋ3 = −x3 = −y3

and the system becomes linear.

Example 2.3. Consider the system

ẋ1 = x1
ẋ2 = −x2 + x1x

2
3

ẋ3 = −x3.

The flow of the system is given by

φt(x) =

⎡
⎣ etx1

e−t(x2 + x1x
2
3t)

e−tx3

⎤
⎦ .

We have

W1(x) = 0, W2(x) =

[
x1x

2
3

0

]
,
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and

W2(φs(x)) =

[
(esx1)(e

−sx3)
2

0

]
=

[
e−sx1x

2
3

0

]

Both integrals

∫ ∞

0

[
es 0
0 es

]
W2(φs(x)) ds =

[ ∫∞
0 x1x

2
3 ds

0

]

−
∫ 0

−∞

[
es 0
0 es

]
W2(φs(x)) ds =

[
−
∫ 0
−∞ x1x

2
3 ds

0

]

diverge, so we need to modify the W2.

Instead of using a C∞ α(x) to construct Ŵ , here we use a simpler but

discontinuous modification of W (x). For any M > 0, define

Ŵ2(x) =

⎧⎨
⎩

W2(x), if ‖W2(x)‖ ≤ M

0, otherwise.

Then Ŵ2(φs(x)) =

[
v1(s, x)

0

]
where

v1(s, x) =

{
x1x

2
3e

−s, if |x1x23|e−s ≤ M
0, if |x1x23|e−s > M ,

=

{
x1x

2
3e

−s, if s ≥ − ln M
|x1x2

3|
0, if s < − ln M

|x1x2
3|

and

H(x) =

⎡
⎣ x1

x2
x3

⎤
⎦+

⎡
⎣ 0

−
∫ 0

−∞

[
es 0
0 es

]
Ŵ2(φs(x)) ds

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2 − x1x
2
3

∫ 0

− ln M

|x1x2
3
|

ds

x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2 − x1x
2
3ln

M

|x1x23|

x3

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Note that H(x) is continuous everywhere. H(x) is certainly continuous

at the place where |x1x23| 	= 0, and since

lim
u→0

u ln
M

|u| = 0

H(x) is also continuous at the place where |x1x23| = 0, and H(x) approaches

to the identity map when |x1x23| → 0. On the other hand, the subspaces

defined by |x1x23| = 0, i.e. either x1 = 0 or x3 = 0, are all invariant subspaces

of the system, and on these subspaces, the system is linear.

On the region defined by 0 < |x1x23|, we have

d

dt
x1x

2
3 = ẋ1x

2
3 + 2x1x3ẋ3 = −x1x

2
3

and

x1x
2
3

d

dt
ln

M

|x1x23|
=

⎧⎪⎨
⎪⎩

− x1x2
3

|x1x2
3|

d
dtx1x

2
3 x1x

2
3 > 0

x1x2
3

|x1x2
3|

d
dtx1x

2
3 x1x

2
3 < 0

⎫⎪⎬
⎪⎭ = − d

dt
x1x

2
3 = x1x

2
3.

Therefore for y(t) = H(x(t)),

ẏ =

⎡
⎢⎢⎢⎢⎣

ẋ1

ẋ2 − d
dt(x1x

2
3) ln

M
|x1x2

3| − x1x
2
3
d
dt ln

M
|x1x2

3|

ẋ3

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

x1

−x2 + x1x
2
3 + x1x

2
3 ln

M
|x1x2

3| − x1x
2
3

−x3

⎤
⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎣

x1

−
(
x2 − x1x

2
3 ln

M
|x1x2

3|

)

−x3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎣ y1

−y2
−y3

⎤
⎦

3. Global Hartman-Grobman theorem

In this section, we consider the special case that all the eigenvalues of Df(0)
are located in the left-half complex plane. In such cases, we can give a
homeomorphism on the region of attraction of the origin which changes the
nonlinear system to a linear system inside the whole region of a traction.

By reverse the time, the same is also true if the eigenvalues of Df(0) are
located in the right-half complex plane and region of attraction is replaced
by the region of repulsion.

Theorem 3.1 was basically appeared in our conference paper [8] in 1999
(Theorem 2.1 and Theorem 2.5) phrased differently. The result was also
proved independently by Y. Lan and I. Mezic̀ in [5]. Here we fill in all the
details in the proofs of [8].

Theorem 3.1. Under the condition of Theorem 2.1, either if all the eigen-
values of Df(0) are located in the left-half complex plane or right-half com-
plex plane, then there is transformation y = H(x), H(0) = 0, H is homeo-
morphism from the region of attraction/repulsion of the origin of (1) to R

n,
and the system (1) is changed into the linear system

ẏ = Ay, A = Df(0)

on the region of attraction/repulsion of 0 under y = H(x).

Proof. By reversing the time, we only need to consider the case when all the
eigenvalues of of Df(0) are located in the left-half complex plane.

Let

W (x) = f(x)−Df(0)x

then f(x) = Ax+W (x).
Consider the partial differential equations

Ah(x)−W (x) = Dh(x)(Ax+W (x))(4)
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h(0) = 0, Dh(0) = 0.

For a solution h(x) of (4), if we define H(x) = x+h(x), then H(x) is a local
homeomorphism in a neighborhood of 0 by the inverse function theorem.
Under the transformation y(t) = H(x(t)),

ẏ = ẋ+Dh(x(t))ẋ = Ax+W (x) +Dh(x)(Ax+W (x))

= Ax+W (x) +Ah(x)−W (x) = Ay

and the system becomes a linear system.
The characteristic equations of (4) is

ẋ = Ax+W (x)(5)

ż = Az −W (x)(6)

The invariant manifold z = h(x) of the system whose tangent space at 0 is
the x-space gives us the solution of (4). Note that (5) is the original system
and (6) is a linear system driven by the solution of (5).

As in (3), if we define

ĥ(x) = −
∫ 0

−∞
e−AsŴ (φs(x)) ds

where φs(x) is flow of (5) and Ŵ (x) = W (α(x)x) with the α(x) in (2), then
for any solution x(t) of (5),

ĥ(x(t)) = −
∫ 0

−∞
e−AsŴ (φs(x(t))) ds

= −
∫ 0

−∞
e−AsŴ (x(t+ s))) ds

= −
∫ t

−∞
e−A(τ−t)Ŵ (x(τ))) dτ

and for z(t) = ĥ(x(t))

ż = −Ŵ (x)−A

∫ t

−∞
e−A(τ−t)Ŵ (x(τ))) dτ = Az − Ŵ (x).

So

z(t) = ĥ(x(t))

is a solution of (6) if x(t) ∈ N
M
.



A global Hartman-Grobman theorem 49

For any solution x(t) of (5) with the initial value x(0) in the region of

attraction, there exists a t0 > 0 such that x(t) ∈ N
M

for all t ≥ t0, which

means that z(t) = ĥ(x(t)) is a solution of (6) for all t ≥ t0.

For a solution of x(t) of (5),

(7) z(t) = e(t−ρ)Aĥ(x(ρ))−
∫ t

ρ
e(t−σ)AW (x(σ)) dσ

is a solution of (6) for all t 	= ρ, and if ρ > t0, z(t) = ĥ(x(t)) in a neigh-

borhood of ρ because they all satisfy (6) with the same initial condition at

t = ρ.

(7) can be rewritten as

z(t) = −e(t−ρ)A

∫ 0

−∞
e−AsŴ (φs(x(ρ))) ds−

∫ t

ρ
e(t−σ)AW (x(σ)) dσ

= −
∫ 0

−∞
e−(ρ+s−t)AŴ (φs(x(ρ))) ds−

∫ t

ρ
e(t−σ)AW (x(σ)) dσ

= −
∫ ρ−t

−∞
e−τAŴ (φτ+t−ρ(x(ρ))) dτ +

∫ ρ−t

0
e−τAW (φτ (x(t))) dτ

= −
∫ ρ−t

−∞
e−τAŴ (φτ (x(t))) dτ +

∫ ρ−t

0
e−τAW (φτ (x(t))) dτ

= −
∫ 0

−∞
e−τAŴ (φτ (x(t))) dτ

+

∫ ρ−t

0
e−τA

(
W (φτ (x(t)))− Ŵ (φτ (x(t)))

)
dτ

Let ρ → ∞

z(t) = −
∫ 0

−∞
e−τAŴ (φτ (x(t))) dτ(8)

+

∫ ∞

0
e−τA

(
W (φτ (x(t)))− Ŵ (φτ (x(t)))

)
dτ

Note that both integrals in (8) converge if x(t) is a solution of (5) with

initial condition x(0) in the region of attraction. The first integral con-

verges because that Ŵ (φτ (x(t))) is bounded for all τ ∈ (−∞, 0]. The sec-

ond integral converges because when τ is large enough, φτ (x(t)) ∈ N
M

and

W (φτ (x(t)))− Ŵ (φτ (x(t))) = 0.
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If we define

h(x) = −
∫ 0

−∞
e−τAŴ (φτ (x)) dτ +

∫ ∞

0
e−τA

(
W (φτ (x))− Ŵ (φτ (x))

)
dτ,

(9)

then z(t) in (8) has the form that z(t) = h(x(t)), i.e. h(x) defined in (9)
is an invariant manifold of (5, 6). Also since φτ (0) ≡ 0 for any τ , W (0) =
Ŵ (0) = 0 and DW (0) = DŴ (0) = 0,

h(0) = 0, Dh(0) = 0.

So y = x+h(x) := H(x) satisfy ẏ = Ay for any x in the region of attraction
of the origin of (1).

Let U be a neighborhood of the origin such that H is a homeomorphism
on U , then for any ŷ ∈ R

n, since the linear system ẏ = Ay is asymptotically
stable, there is t0 > 0 such that y(t0) ∈ H(U) for the solution y(t) with
initial condition y(0) = ŷ. Let x(t) be the solution of (1) such that x(t0) =
H−1(y(t0)). Then x̂ = x(0) is the unique point such that H(x̂) = ŷ by the
uniqueness of the initial value problem. So H is one-to-one and onto. The
continuities of H and H−1 follow the continuity of the flows with respect to
the initial points. Let φ̂t(y) be the flow of (̇y) = Ay. For any x in the region
of attraction, we can choose t large enough such that φt(x) ∈ U . Then

H(x) = φ̂−t(H(φt(x))).

So H(x) is continuous on the region of attraction. Conversely for any y, we
can choose t large enough such that φ̂t(y) ∈ H(U). Then

H−1(y) = φ−t(H
−1(φ̂t(y))).

So H−1(y) is continuous at any y.

Remark 3.2. The expression (9) can be simplified under two cases. If

∫ 0

−∞
e−τAW (φτ (x)) dτ

converges, then we can take M = ∞, so Ŵ ≡ W and

(10) h(x) = −
∫ 0

−∞
e−τAW (φτ (x)) dτ.
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On the other hand, if ∫ ∞

0
e−τAW (φτ (x)) dτ

converges, then we can take M = ε = 0, so Ŵ ≡ 0 and

(11) h(x) =

∫ ∞

0
e−τAW (φτ (x)) dτ.

Example 3.3. Consider the system

ẋ = − sinx.

Clearly the region of attraction of 0 is (−π, π). We have

(12) dt =
−1

sinx
dx.

The flow φ = φt(x) of the system satisfies

(13)
sinφt(x)

1− cosφt(x)
=

sin(x)

1− cos(x)
et = cot

(x
2

)
et.

For this system, A = −1 and W (x) = x − sin(x). Applying the change of
variable

t = ln

(
tan

(x
2

) sinφ

1− cosφ

)
on (11), we have (see (12) and (13))

dt =
−1

sinφ
dφ, et = tan

(x
2

) sinφ

1− cosφ
, φ0(x) = x, φ∞(x) = 0

and (11) becomes

h(x) =

∫ ∞

0
eτ (φτ (x)− sinφτ (x)) dτ = tan

(x
2

)∫ x

0

φ− sin(φ)

1− cos(φ)
dφ.

We can see that

y = H(x) = x+ tan
(x
2

)∫ x

0

φ− sin(φ)

1− cos(φ)
dφ

maps the region of attraction (−π, π) of 0 onto R.
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