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Rain streak removal (RSR) enables the restoration of images af-
fected by rain, facilitating outdoor vision-based tasks. However,
conventional wisdoms lead to image degradations when rain is
heavy, while learning-based techniques that learn mappings from
specific and synthetic datasets hardly generalize and adapt to real-
world scenes with unseen patterns. This paper presents a low-rank
appearance-preserving RSR algorithm (LA-RSR) for single images.
To fully consider the multi-type real-world rainy images, we for
the first time formulate a four-prior based optimization function
(FPOF) to ensure the performance of both RSR and preserving in-
trinsic properties (i.e., low-frequency structures and high-frequency
details). FPOF is effectively solved by a two-stage decomposition
strategy in an iterative way, in which we utilize low-rank matrix
recovery and unidirectional total variation (UTV) in the high-
frequency component of the rainy image to better separate the
rain streak layer and the detail layer. The detail layer is combined
with the low-frequency component to yield the final rain-free im-
age. Qualitative and quantitative results show that our approach
consistently outperforms the conventional RSR methods and is
comparable to the deep learning based methods, without requiring
training.

1. Introduction

Severe weather conditions (rain, fog, snow, etc.) unpredictably damage the
visual quality of images captured by outdoor vision systems [1–3], which
negatively impact on a broad range of vision applications such as monitor-
ing, tracking and navigation. Among them, rain streak remains the most
common reason for such kind of image degradations. Through the years,
many efforts have been put into the study of image rain streak removal
[4–7], which a lot of promising results are obtained for various vision-based
applications. However, it is still challenging to recover clean images without
streak remnants and/or image over-smoothing, from their real-world rainy
counterparts with complex backgrounds.
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Figure 1: Comparison of rain streak removal (RSR) methods on a real-world
rainy image. From (a) to (g): (a) The input, (b-g): the RSR results of (b)
DSC [8]; (c) GMM [9]; (d) UGSM [10]; (e) DetailNet [11]; (f) Hu [12]; and
(g) our LA-RSR. The marked regions of interest are enlarged to observe
the visual difference. Our LA-RSR consistently outperforms the traditional
methods and is comparable to the deep learning based methods.

The challenge of the ill-posed rain streak removal (RSR) problem is
how to completely eliminate rain streaks yet with a minimal disturbance of
the image’s intrinsic properties, such as the low-frequency structures and
the high-frequency details (textures). According to the presence of tem-
poral information, RSR algorithms can be divided into single-image based
approaches and video-based approaches. Early research mainly focuses on
video streak removal, and most of them emphasize rain streak detection by
analyzing the complex optical and physical characteristics of rain streaks
[1, 13, 14]. This detection-and-RSR operation can be much easier compared
with the single-image streak removal problem, thanks to the redundant in-
formation given by adjacent frames.

In this work, we focus on RSR from single images, which requires less
information for restoration but benefits a broader range of applications. The
performance of single-image RSR commonly relies on the hand-crafted image
priors. For example, Kang et al. [15] utilized dictionary-based sparse coding
to decompose the input image into high- and low-frequency components.
Li et al. [9] formulated an energy minimization model, in which the corre-
sponding patch-based priors of rain layer and background layer are learned
by Gaussian mixture models. In particular, Chen and Hsu [16] introduced
an RSR method based on the low-rank prior revealing that rain streaks in
disparate patches share similar patterns. The low-rank property captures
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the similarity of rain streak patches across different background contexts,
which is a simple and effective way to remove rain streaks. However, there
mainly exist two drawbacks of only enforcing the low-rank constraint: first,
not only rain streaks but also background textures have similarity in differ-
ent patches, leading to an overblurred result especially in texture regions;
second, similarity of rain streaks among image patches does not always exist
in every type of rainy images, such that a single low-rank prior fails to ensure
the rain removal quality in real-world scenarios. Either the streak remnant
results or the blurry results with missing details (as shown in Fig. 1) resulted
from existing prior-based [8–10] or network-based formulations [11], Hu [12]
leave room for possible improvement with better formulations. Therefore,
our method attempts to incorporate multiple priors of not only rain streaks
but also image intrinsic properties which tend to be overlooked by existing
algorithms. Multiple priors can deal with different types of real-world rainy
images, which shows a superior ability in both RSR and image intrinsic
property preservation.

Concurrently, RSR methods [17–19] exploiting deep neural networks
are making their debuts with impressive results, which undoubtedly exceed
many traditional optimization- and filter-based approaches in removing syn-
thetic rain streaks. However, these methods, with the help of powerful GPUs,
heavily depend on expensive training over massive datasets. Thus, they are
often impaired when the rainy images being processed deviate significantly
from the training ones. For example, when it comes to real-world rainy im-
ages, the lack of corresponding real clean images prevents deep learning
based methods from extending their superiority to real scenes.

We propose a low-rank appearance-preserving RSR algorithm (LA-RSR)
for single images. To adapt the LA-RSR to different types of real-world rainy
images to ensure the performance of both RSR and image intrinsic property
preservation, we enforce four different priors based on a two-stage decompo-
sition strategy. In the first stage, based on the observation that rain streaks
mainly exist in the high-frequency image component, we decompose the in-
put image I into a high-frequency part H and a low-frequency part L using
low-pass filtering techniques. As a result, we can focus on the decomposition
of rain-streak layer R and high-frequency background layer S in a much
smaller problem domain. Inspired by unidirectional total variation (UTV )
proposed to remove the stripe noise, we impose two sparse priors on both
the rain-streak layer R and the background layer S. To utilize the directional
property of rain streaks, the sparse priors are enforced on the variation along
the vertical direction of R and the variation along the horizontal direction
of S. In practice, we adopt a rotational strategy to accommodate skewed rain
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directions. Moreover, the low-rank prior [16] is also enforced on R, which
enhances the rain removal ability by characterizing rain streaks from a dif-
ferent point of view. Meanwhile, an L0 prior is imposed on the gradients
of L, which helps to avoid overblurring structures by enforcing sharp edges
in the output image. Combining the four priors, the final optimization model
is formulated and then solved by an iterative minimization strategy.

Our approach consistently outperforms the conventional RSR methods
in terms of RSR and image intrinsic property preservation (see Fig. 1(b–d)).
Meanwhile, our LA-RSR does not rely on training, which can generalize and
adapt to multi-type scenarios. Thus, it is very comparable to or even better
than the deep learning based ones (see Fig. 1(e–g)). The major contributions
of this work are three-fold:

(1) We for the first time propose a low-rank appearance-preserving rain
streak removal algorithm for single images. In detail, we introduce a
comprehensive optimization objective within a two-stage decomposi-
tion architecture to achieve RSR with the image’s intrinsic properties
preserved. An alternating iterative strategy is leveraged to efficiently
solve the resulting optimization problem.

(2) In our model, rain streaks are characterized by both directional spar-
sity and structural similarity, while another sparse prior is imposed on
the high-frequency background layer to protect background details.

(3) Our proposed LA-RSR approach has been validated on a large number
of real-world rainy images, with no prior knowledge of image patterns.
Meanwhile, a user study is further given by evaluating the RSR results
of all the compared methods.

2. Related work

Single image rain removal Early methods concerning image rain removal
are mainly video-based [14, 20–24]. These methods rely on the informa-
tion provided by successive frames, which is not always available in lots
of application scenarios. Accordingly, a number of deraining algorithms
[8, 9, 15, 25, 26] have proposed to simultaneously extract rain patterns and
preserve background details while requiring no temporal information from
dynamic video sequences. There are many methods that strive to design bet-
ter prior models based on sparse coding or low-rank representation [26–28].
For example, Zhu et al. [26] analyze the main direction and the similarity
of rain patterns by collecting rain streak dominated patches. They employ
the centralized sparse representation to remove rain patterns by enforcing
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three disparate priors on both the background layer and the rain streak

layer. Chen et al. [16] formulate the problem as a low-rank model and thus

get rid of rain detection and the dictionary learning process. In addition,

Kim et al. [25] integrate physical features into nonlocal mean filtering to

smooth out rain streaks. Nevertheless, all these methods suffer from degra-

dation of image details. To better maintain details in the original image,

Kang et al. [15] first decompose the image into a low frequency layer and

a high frequency layer. Since rain streaks mainly appear as high frequency

components, this decomposition step avoids unnecessary loss of detail infor-

mation in the image recovering process, but it can makes no contribution to

thoroughly removing rain streaks. From [29], studies on rain streak removal

via deep learning have emerged and draw much attention [11, 18, 19, 29].

Recently, Liang et al. [30] proposed a novel incremental random wired net-

work (IRWN), which can effectively model rain streaks during encoding and

remove multiple rain spots after decoding. These methods achieve efficiency

and effectiveness counting on a massive database of labeled images yet most

of the natural rainy scenes do not come with a clear ground truth. There-

fore, it is still a challenging problem to reach an appropriate balance between

sufficient rain streak removal and detail preservation.

Structure-preserving image smoothing The goal of structure-preserving im-

age smoothing is to maintain or sharpen the semantically important struc-

tures while smoothing out image details, which complies with our main

purpose in the first-stage decomposition. Literature under this topic is vast

[31–36]. [37] is a representative filtering-based method, which suppresses high

frequency signals via a spatial kernel while maintaining large-amplitude sig-

nal discontinuities via a range kernel. It is simple but effective in separating

low frequency components from low-magnitude high frequency noise or other

interference. Another perspective in solving the edge-preserving smoothing

problem is based on mathematical optimization. Rudin et al. [36] introduce

statistic property to constrain the objective function, which inspired a num-

ber of approaches dealing with detexturing [38], destriping [10], deraining

[10], etc. Farbman et al. [34] propose a popular mechanism based on the

weighted least squares framework. They attempt to preserve structures by

minimizing the distance between the input and the output images while

ensuring smoothness by penalizing the gradient amplitudes. A different reg-

ularizer is proposed by Xu et al. [35], who utilize the sparsity of significant

gradients as a regularization term and succeed in sharpening the main struc-

tures within a smooth background.
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Destriping of remote sensing images Stripe noise caused by inconsistent
responses of different detectors seriously affect the quality of remote sens-
ing images and it possesses strong directional and structural characteristics,
which is consistent with the rotated rain streaks. Many efforts have been put
into smoothing out stripe noise without degrading the original image struc-
tures [10, 39–43]. Among them, methods combining the directional charac-
teristic of stripe noise into the total variation optimization framework have
shown superiority compared the other approaches. The notion of unidirec-
tional total variation (UTV) was first proposed by Bouali et al. [10], which
minimizes the energy function regularized by the sparsity of gradients in the
noisy image along the vertical direction and in the structure image along the
horizonal direction. Recently, Chen et al. [39] explored more on the group
sparsity of stripe noise and further improved the performance of the original
UTV model.

3. Problem formulation

3.1. Motivation

The visual effects of rain streaks are quite complex [1], as rain contains
a group of randomly distributed raindrops falling at high velocities. It is a
challenging task to accurately detect rain streaks in a single image, especially
for real rainy images. For this problem, we propose a new model based
on multi-component decomposition and low-rank matrix recovery for single
image rain streak removal.

3.2. Rain streak removal

Dividing the image into multiple components makes it possible to repre-
sent the image scales in an efficient manner. Suppose that an input im-
age I ∈ [0, 1]p×q×3 of size p × q is composed of a high-frequency layer
H ∈ [0, 1]p×q×3 and a low-frequency layer L ∈ [0, 1]p×q×3. Mathematically,
it can be expressed as:

(1) I = H + L

where L mainly includes most of the information in the background image,
and H mainly contains both the detail and rain streaks information. On
this basis, only the high-frequency part H is subjected to a rain removing
operation. An image I is passed through a low-pass filter to obtain a low-
frequency component L, the implementation process will be described in
detail below.
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Figure 2: The results of ablation experiments with each constraint. (a) is
the original rainy image; (b) is our LA-RSR result; (c) is the ground truth;
(d) shows the result of processing only the high-frequency part; (e) shows
the result without the δ1 term; and (f) shows the result without both the δ1
and δ2 terms.

3.2.1. Approximate estimation of the rain streak direction In nat-
ural images, the rain streaks are generally roughly present in the same direc-
tion from the top to the bottom. As can be seen from Figure 2(a), a single
rainy image usually contains similar patterns of rain streaks in different lo-
cal patches. Therefore, we need to approximately estimate the direction of
the area containing the rain streaks. First of all, we use the local gradi-
ent distribution for a given rainy image I to determine the rain-dominated
areas. Then we use a Canny edge detector to find edges in each of the rain-
dominated area and employ the Hough transform to detect the longest line.
The direction of the longest line of the local patch is determined as the
direction of the rain streaks.

3.2.2. High-frequency rain streak removal Rain images usually con-
tain similar rain streaks in different local patchs, here we assume that the
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rain streaks are linearly related. At this time we decompose the high fre-
quency component H into the rain streak layer R and the background
layer S. Based on this consideration, we introduce a low-rank approximation.
Our direct employment of a simple low-rank model significantly reduces the
rain streaks.

(L,R) =argmin
L,R

(‖I −H − L‖2F + δ1‖P (R)‖∗),

s.t. H = S +R
(2)

where ‖.‖∗ refers to the sum of the singular values of the matrix. δ1 is the
scalar parameter that controls the nuclear norm constraint term. P (.) is the
patch map. As mentioned in [16], the patch map function using overlapping
patches may bring additive bias to the objective costs. However, such bias
could be neglected by proper normalization in the algorithm. During the
above-mentioned rain removal process, although the rain streaks are largely
removed, the details would be lost to some extent.

Similar to the stripe noise, rain streaks are generally distributed through-
out the image, and both of them contain direction information and detail
information. Chen [39] suggested that the stripe image is decomposed into
two components: image component and stripe component. In this case, the
stripe component is parallel to the Y axis and the TV constraints are im-
posed on the image component. The role of the TV term in image restoration
and denoising is to maintain the smoothness of the image and eliminates the
artifacts of image restoration. In most circumstances the direction of the rain
streaks is not parallel to the Y axis. Therefore, we rotate the direction of
the rain streaks by θ angle to make it perpendicular to the X axis. Hence,
the characteristics of the rain streaks after rotation are similar to the stripe
noise, which motivates us to use the unidirectional total variation model
to solve the RSR problem. This method has a wide range of applications
in digital imaging, and preserves sharp edges to restore clean images. The
formula is as follows:

(L, S,R) =arg min
L,S,R

(‖I −H − L‖2F + δ1‖P (R)‖∗

+ δ2‖ΔX(S)‖1 + δ3‖ΔY (S)‖1
+ δ4‖ΔY (R)‖1), s.t. H = S +R

(3)

where ‖I−H−L‖2F is the data-fidelity term, which denotes that the sum of
high-frequency component H and low-frequency component L is close to the
rainy image I. δ2 and δ3 are the regularization parameters. S ∈ [0, 1]p×q×3
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and R ∈ [0, 1]p×q×3 denote a rain-free background and a rain-streak layer
respectively. With the evaluated rain streak direction, ΔX(.) and ΔY (.)
represent the rotation operations on the X-axis and the Y-axis, respectively.

3.3. Appearance structure optimization

Since the rain streaks exist mostly on the high-frequency component, we
merely need to obtain the appearance structure information about the low-
frequency component. Xu et al. [35] found that the L0 norm can extract the
main structural information and eliminate the inconspicuous details. Accord-
ingly, we enforce the structural detail (texture) decomposition constraint in
the low-frequency component, and it is an effective tool for distinguishing
structural elements:

(4) L̃ = argmin
L̃

∑

i

(‖L̃i − Li‖2F + δ5‖C(L̃)‖0)

where ‖.‖0 is the sparsity measure by counting the number of nonzero com-
ponents, C(L̃) counts pixel p whose magnitude |δxLi|+ |δyLi| is not zero. δ5
term is a weight parameter that controls the structural texture term. The
larger the value, the more seriously the structural information is smoothed.
Thus L̃ is the final appearance structure information.

Combining with the above two formulas, we can obtain the general for-
mula of our algorithm:

(L, S,R) =arg min
L,S,R

(‖I −H − L‖2F + δ1‖P (R)‖∗

+ δ2‖ΔX(S)‖1 + δ3‖ΔY (S)‖1
+ δ4‖ΔY (R)‖1 +

∑

i

‖L̃i − Li‖2F

+ δ5‖C(L̃)‖0), s.t. H = S +R

(5)

where δ1 is used to suppress the rain streak, and δ2, δ3, δ4 are to separate
the background layer and the rain streak layer in the high-frequency part, in
order to obtain a desirable background layer. δ5 applied to the low-frequency
part is used to preserve the appearance structure information on the image.

Since the proposed model (5) is not differentiable, thus we make variable
substitutions and solve the following equivalent problem:

(L, S,R) =arg min
L,S,R

(‖I −H − L‖22 + μ/2‖H − S −R‖22

+ < p,H − S −R > +δ1‖P (R)‖∗ + δ2‖ΔX(S)‖1
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+ δ3‖ΔY (S)‖1 + δ4‖ΔY (R)‖1(6)

+
∑

i

‖L̃i − Li‖2F + δ5‖C(L̃)‖0)

where μ is regularization parameter, and p represent Lagrange multiplier.

To demonstrate the effect of each constraint, we perform an ablation

experiment, and its results are shown in Figure 2. We can observe from

Figure 2(d), that the function of the appearance structure optimization is

to preserve the structure information of the image. It can be seen from

Figure 2(e) that a small amount of rain streaks are left in the image. And

the rain streaks in Figure 2(f) are effectively suppressed, but the details are

seriously lost. Figure 2(b) is our LA-RSR result, thus it provides the overall

algorithm with all the terms is most effective.

4. Optimization algorithm

In this section, we give a detailed description of solving the optimization

problem, i.e., Equation (6), by an iterative update strategy.

4.1. Low-rank matrix recovery

H can be obtained by fixing L, R, and S. Note that there is a challenge if we

solve it directly by the alternating minimization. To alleviate this problem,

we use Z instead of P (R):

(7) Z = argmin
Z

(‖P (R)− Z‖22 + δ1‖Z‖∗)

Obviously this is a problem with a kernel norm solution. We adopt the

singular value thresholding algorithm (SVTA) [44] to yield the Z.

4.2. Rain streak layer and background layer decomposition

By simplifying the irrelevant regular terms, the following formulas can be

obtained:

(S,R) =argmin
S,R

(μ/2‖H − S −R‖22+ < p,H − S −R >

+ δ1‖P (R)‖∗ + δ2‖ΔX(S)‖1 + δ3‖ΔY (S)‖1
+ δ4‖ΔY (R)‖1)

(8)
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Figure 3: As the number of iterations increases, the changes of the resid-
ual images are illustrated. (b)–(f) represent the residual images obtained
after each iteration. As can be seen from the magnified areas, the detail
information in the residual images are gradually reduced.

For the rain streak layer and the background layer:

S =argmin
S

(μ/2‖H − S −R‖22+ < p,H − S −R >

+ δ2‖ΔX(S)‖1 + δ3‖ΔY (S)‖1
(9)

R =argmin
R

(μ/2‖H − S −R‖22+ < p,H − S −R >

+ δ1‖P (R)‖∗ + δ4‖ΔY (R)‖1)
(10)

It is an L1 norm minimization problem, that can be effectively solved by the
method developed in [10].

H =argmin
H

(‖I −H − L‖22+ < p,H − S −R >

+ μ/2‖H − S −R‖22)
(11)

This is a simple L2-norm problem which has the following closed-form solu-
tion. Then, we can get H by keeping Z, L, S and R fixed.

In order to better separate the background layer and rain-streak layer of
the high-frequency component, we restore the background structure residual
information, which often exists on the rain-streak layer.

Thus we introduce a refinement step to further retrieve these background
structure residues from the rain-streak layer. Based on this idea, we use
the guided image smoothing framework [34], Hu [12], with the background
layer as guidance to further clean the rain streak output R. Specifically, we
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attempt to obtain the background structure residues S̃ by optimizing the
following objective function:

(12) S̃ = argmin
S̃

∑

i

∑

j=N4(i)

Θ(i,j)(S)(S̃i − S̃j)
2

where i is the pixel index. N4(i) represents the four neighbors for pixel i.
Θ(i,j) measures how similar two pixels i and j are at the guidance image S.
The term encourages the smoothness under the guidance of S. We use the
fast guided image smoothing techniques Hu [12] to solve Equation (9). The
final rain streak layer can be computed as:

(13) R = max(R− S̃; 0)

Figure 3 is the result of RSR, which shows the background structure
residue recovery. As can be seen, this step can more successfully recover the
background residues and make the rain streaks clearer.

4.3. Optimization of the low-frequency component

By incorporating both the fidelity terms and simplifying the formula (6), we
can get:

L =argmin
L

(‖I −H − L‖2F +
∑

i

‖L̃i − Li‖2F)(14)

L̃ = argmin
L̃

∑

i

(‖L̃i − Li‖2F + δ4‖C(L̃)‖0)(15)

where Equation (15) is an L0 norm problem, so we use [35] to solve it.
A rain-free image consists of a high-frequency part and a low-frequency

part. Consequently, the final rainless image can be obtained by superposition
of the rain-free high-frequency component and the appearance low-frequency
component. After the iteration, the low-frequency component is added to the
high-frequency background layer, which forms the final rain-free image:

(16) F = S + L

where F ∈ [0, 1]p×q×3 is of size p× q.
During this process, we use an iterative update strategy to solve it.

Furthermore, the detail information of the source image is greatly preserved,
while the rain streaks are effectively suppressed. This property of the method
is very conducive to enhancing the visual effects of deraining results.
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Figure 4: The RSR results when the number of iterations k is set to 1, 3
and 5 in our algorithm. The first row shows the low-frequency (background)
layers, the second row shows the rain streak layers, and the third row shows
the final RSR results.

5. Experimental verification

Our LA-RSR has been tested in both synthetic and real-world rainy images.
In order to better verify the correctness and advantages of the proposed al-
gorithm, we compare it with three model-based algorithms and two methods
based on the deep neural networks. The details of these five algorithms are
listed as follows.

1) The discriminative sparse coding approach [8] (denoted as DSC)
2) GMM-based layer prior [9] (denoted as GMM)
3) Directional global sparse model [10] (denoted as UGSM)
4) Deep detail network [11] (denoted as DetailNet)
5) Depth-attentional features [12] (denoted as Hu)

For DSC, GMM, USGM and DetailNet, we use the codes provided by
the authors with their default parameter settings. And for Hu’s method,
the comparison images shown are from the provided dataset. Similar to the
most rain-removal algorithms, ours also has some fixed parameters in the
experiment, shown in Algorithm 1. Empirically, δ1 ranges within [0.1, 1.5].
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Algorithm 1 The optimization framework of LA-RSR
Require: Rainy image I

Ensure: Background layer S and low-frequency L

Initialization:
H = L = Z = 0, μ = 106,maxμ = 1015, ρ = 1.1, δ1 = 1.3, δ2 = 0.08, δ3 = 1,
δ4 = 0.95, δ5 = 1, and maximum number of iterations k
while not converged and within K iterations do

update matrices R,S,H,L:
(1) Update S and R respectively via Equation (9) and (13);
(2) Update H by solving Equation (11);
(3) Update L via Equation (14);
(4) Update μ, μ = min(ρ ∗ μ,maxμ).

end while

Figure 5: The test on real rainy images with complex structures. (a) shows
the original rainy images, (b)–(g) represent the results of the comparison
methods, which are DSC [8], GMM [9], UGSM [10], DetailNet [11], Hu [12],
and our LA-RSR respectively. One part of each image has been magnified
to clearly observe the differences of various deraining results.
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The iteration number K is set to be 5. The parameters in the comparison
methods are consistent with those described in the literature. Figure 4 shows
the rain-streak layers and the background layers which are from the results
of the first iteration, the third iteration and the fifth iteration, respectively.
As can be seen from Figure 4, when the iteration number is set to 1, there
are some shortcomings of image detail loss, leading to image blurring. The
results produced by the second and last columns indicate that the final
performance is better as the number of iterations increases.

For the synthetic data, experiments have shown that both traditional
rain removal methods and deep learning-based rain removal methods have
greatly improved the evaluation indicators and visual effects. It introduces
briefly the visual effects of composite images for different contrast methods.
However, because of lacking the ground truths of real rainy images, we simply
visually evaluate the performance of deraining images. In [7], Wang et al.
present a new dataset including rainy images and their corresponding ground
truths. Therefore, we test the performance of our algorithm on this dataset,
which is described in detail below.

5.1. Test on real rainy images

In order to prove the validity of the algorithm, we test the real images with
different methods, as shown in Figure 5. The first row is a building with
dense rain streaks (Building for short), which destroys the quality of the
image. The third row shows the part of the roof (Roof for short). The fifth
row is a rainy image of a Child (Child for short). The second and fourth
rows, and the sixth row are their corresponding enlarged areas. In this case,
Figure 5(b)–Figure 5(g) are results from DSC, GMM, UGSM, DetailNet,
Hu and our LA-RSR.

Building shows an example of light rain removal. Here, our goal is to
remove the dense rain streaks in the entire scene, including buildings, trees,
cars, pedestrians, etc. For removing the dense rain streaks, the overall effect
of the contrast methods is not ideal. It can be seen that there are still a small
amount of residual rain streaks in DSC. In GMM, UGSM and DetailNet,
although the rain streaks are well-removed, many details are lost and the
image quality is slightly degraded. The rainy image of Roof is characterized
in dense rain streaks on the top of the roof and thicker rain drops under the
tiles. The comparison experiments demonstrate that some methods have a
good effect on the dense rain streaks on the roof but ignore the rain streaks
under the tile. Our method balances the two parts and achieves promising
results.
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Child depicts a little boy standing in the heavy rain. Through the en-
larged area of the test results, it can be clearly seen that the DSC method
has a poor removal effect, and a lot of rain information remains in the image.
For GMM and DetailNet, although the overall effect of rain streak removal
been improved, the rain streaks around the little boy in the image still exist.
The UGSM method retains relatively complete background information, but
fails to clean residual rain streaksand the image background obtained from
Hu’s method is overblurred and a lot of information is lost.

Experimental results in Figure 5 verify that our proposed algorithm can
effectively remove the rain streaks on the real rainy images while maximizing
the information of the background images. In comparison, deep learning
based approaches suffer from background detail degradation, and single prior
based methods have a limited ability in dense rain removal. In contrast, our
algorithm is more versatile, since it not only removes rain streaks, but also
retains a lot of background details.

At the same time, a user study (Figure 8) is further given by evaluating
the deraining results of all the compared methods. We borrow used Google
API to test the real rain image and our derained image method, as well
as two comparison methods [11], Hu [12], and the results are illustrated
in Figure 8(h). As we can see, in Figure 8(a) and Figure 8(b), the ability
to identify objects in derained images generated from Hu and DetailNet is
greatly reduced.

To make comparison possible, we evaluate our model on a new real rainy
dataset [7], as shown in Figure 6. Our proposed method achieves state-of-
the-art results on this dataset compared to other approaches. Moreover,
we enlarge the areas of interest to see the comparison results more clearly.
As can be seen from Figures 6(b)–(g), DSC, GMM, UGSM, and DetailNet
all cannot effectively remove the rain streaks, while the rain streaks are
effectively removed by Hu, which however suffers from poor visual quality
and smoothing of detailed information.

Furthermore, we use peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) to evaluate the quality of target images in Table 1. The
largest values are highlighted in bold. It can be seen that our method pro-
duces the highest values for all of the tested real-world rainy images.

5.2. Test on synthetic rainy images

Our method is also run on synthetic images. We only show an example
for subjective assessment, due to the limited pages. The enlarged area of
Figure 7 provides a clearer view to compare the performance of both rain
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Figure 6: The test on the real rainy images with complex details. (a) shows
the original rainy images, (b)–(g) illustrate the results of the comparison
methods, (b) is DSC [8], (c) is GMM [9], (d) is UGSM [10], (e) is DetailNet
[11], (f) is Hu [12], (g) is our LA-RSR, respectively; and (h) is the ground
truth. One part of each image has been magnified to clearly observe the
differences of various deraining results.

removal and detail preservation. Therefore, compared with the traditional
algorithms, our method is superior to other algorithms in terms of qualita-
tive visual effects. Our result is similar to the ones produced by the deep
learning methods. However, our method does not require any training data
(as opposed to a learning-based approach).

5.3. Failure case

Although our method has a good performance for the majority of cases,
there are still instances that are more challenging to predict (see Figure 9).
Sometimes, the original rain streak map contains not only rain streaks, but
also raindrops. When the image is mixed with raindrops, our algorithm
treats the raindrops as background information, which would be preserved
in the derained image. It is also a common problem for other deraining
methods.
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Figure 7: Results on synthetic rainy images. (a) and (h) represent the original
rainy image and the ground-truth image, (b)–(g) represent the results of the
comparison methods, which are DSC [8], GMM [9], UGSM [10], DetailNet
[11], Hu [12], respectively, and (g) is our LA-RSR. The area of interest is
partially enlarged in the box.

Figure 8: The rain removal effect tested on Google Vision API. The first col-
umn, the second column and the third column show the results of DetailNet,
Hu and ours, respectively. (d) is the result of recognition object generated
by the real rain image. (h) represents the average confidence in identifying
rainwater from the real-world rainy image of DetailNet [11], Hu [12] and our
LA-RSR.

6. Conclusion

In this paper, we have proposed an image rain streak removal algorithm
based on multi-component decomposition and low rank matrix recovery.
According to the characteristic that the rain streaks mostly exist in the
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Table 1: Quantitative results of Figure 6

Top: Environment

Index DSC GMM USCG DetailNet Hu Ours

PSNR 28.8176 36.1899 35.3611 35.7234 36.2380 37.2120

SSIM 0.7775 0.9347 0.9089 0.9345 0.9269 0.9411

Middle: Leaf

Index DSC GMM USCG DetailNet Hu Ours

PSNR 30.6845 31.9663 32.2162 33.7337 32.5473 34.7213

SSIM 0.8386 0.9069 0.9115 0.9275 0.9273 0.9302

Bottom: Tree

Index DSC GMM USCG DetailNet Hu Ours

PSNR 29.8570 29.7738 29.5014 30.3190 28.8473 30.8354

SSIM 0.9010 0.9059 0.9139 0.9144 0.8579 0.9186

Figure 9: Raindrops are commonly preserved when removing rain streaks.

high-frequency component of the image, we first decompose the original
rainy image into the high-frequency component and the low-frequency com-
ponent. For the high-frequency component, we apply the low-rank matrix
approximation to remove the rain streaks. To be more effectively, we adopt
the unidirectional total variation to remove the rain streaks and restore more
background details. By this means, the detail information of the background
layer in the high-frequency component is extracted. At the same time, L0

norm is used in the low-frequency component to retain more base layer ap-
pearance information. Finally, the final rain-free image is reconstructed by
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combining low-frequency base layer and high-frequency background layer in-
formation. It shows better performance than the previous traditional meth-
ods and deep learning based methods on real rainy images. The proposed
method is practically useful, since it does not require any training data (as
opposed to the learning-based methods), as obtaining a large number of
real-world rainy/non-rainy image pairs are difficult.
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