COMMUNICATIONS IN INFORMATION AND SYSTEMS
Volume 22, Number 1, 103-129, 2022

Learning point cloud shapes with geometric and
topological structures

YUIE ZHU, ZHETONG DoNG, CHI ZHOU, AND HONGWEI LIN*

3D point cloud semantic analysis is challenging due to irregular
locations and ill-posed sparse representations. In this study, we
explore the intrinsic structures of point clouds, which assist convo-
lutional neural networks in classification and segmentation tasks.
The network is referred to as a geometric and topological struc-
tures based convolutional neural network (GTS-CNN). Firstly, the
method extracts meaningful geometric adjacency for each surface
point as well as the topological persistence information for the
whole point cloud. Then the GTS-CNN processes this information
with a multi-head mechanism. There are three branches within
the network executing graph neighborhood message passing, point
position-related inference, and persistence image feature embed-
ding, respectively. In this way, an expressive descriptor is obtained
with a combination of three kinds of features, leading to a ro-
bust and finely grained representation. Experiments on standard
benchmarks, such as ModelNet40 and ShapeNet, show that our
network achieves promising performance compared to state-of-the-
art methods.

1. Introduction

Recently, 3D point cloud semantic analysis has become popular in many
applications of computer vision and computer graphics [1], especially in au-
tonomous driving and robotic manipulation. While 2D images reveal the
appearance of an object’s surface that is touchable or untouchable, e.g.,
cup and sky, point clouds record the position and even the surface normal,
which is highly useful in scene analysis. With the wide use of 3D sensor de-
vices, including LiDAR scanners and Microsoft Kinect devices, point clouds
of physical objects and scenarios are within reach of hands. Because point
clouds provide depth information and filter the light effect, agents can focus
on just the geometric properties of objects, and do more in 3D space than
that with 2D images.

*Corresponding Author.

103

https://www.intlpress.com/site/pub/pages/journals/items/cis/_home/_main/index.php

104 Yijie Zhu et al.

)
Airplane
Bed

L
N

Airplane_body
Airplane_wing

—

Figure 1: Ilustration of our GTS-CNN. It has three branches: The first
branch (NN1) deals with the mesh neighborhoods, the second branch (NN2)
extracts relative position weighted features, and the third branch (NN3)
processes topological homology structures.

For image analysis tasks, past years have witnessed tremendous advances
thanks to deep learning technology, especially convolutional neural networks
(CNNs). CNNs make use of the local relationships of image patches to ex-
tract high-level features from the RGB values of image pixels. With the help
of special loss functions for certain tasks, CNNs learn compact representa-
tions for targets. Unlike images, point clouds have irregular layouts, limiting
the direct application of CNNs. Variants of CNNs have emerged to adapt
irregular data, including structured, unstructured and unordered formats.

In this study, we propose a neural network architecture mainly for point
cloud shape classification and segmentation tasks (see Figure 1 for details).
Our geometric and topological structure-based convolutional neural network
(GTS-CNN) consists of three branches, each of which is responsible for one
aspect of the point cloud. The first branch extracts features of the neighbor-
hood for each point. Most point cloud networks exploit local relationships
via k-nearest neighborhood (KNN) or e-ball, where ambient points connect
to the target point, so a graph is established. This way, an unstructured
representation is converted to a structured one. However, those methods
have not taken the intrinsic geometry into consideration so far. Roughly
speaking, a 3D point cloud of the object is a sparse representation of a 2D
manifold, which can be used as a prior in the neural network. Therefore in

Learning point cloud with geometric and topological structures 105

the first branch, we extract meaningful geometric adjacent relationships us-
ing surface reconstruction technology instead of KNN at first, and then use
a graph neural network module to process the graph signal. For the second
branch, a special transformation is proposed to encode spatial relationships
of points, which is a kind of absolute and relative transformation. For the
third branch, the topological structure of input data is considered explicitly.
Currently, the topological invariants of shapes is seldom exploited in geo-
metric deep learning despite being a significant characteristic. For instance,
the topology of a cup with a handle is totally different from that of a ball
because there is a handle loop in the cup. Such observations can assist in
distinguishing between these two objects. We utilize persistence diagram, a
commonly used topological summary in persistent homology [2], to capture
the topological features which describe topology of point clouds via multiple
scales. Once we have a suitable discrete representation, we can feed it into
the network branch to get a more compact feature for an object.

Furthermore, the whole network provides flexibility for designing. Many
neighborhood building methods and topological feature representation meth-
ods can be employed. Our contributions are summarized as follows:

e Bring persistence homology to point cloud networks. As far as we
know, our work is the first to focus on topological representation of
3D point clouds in a deep learning framework.

e Previous neighbor selection methods cannot effectively reflect the in-
trinsic geometry of point clouds, so a mesh reconstruction method is
employed in this study to exploit a more accurate local neighborhood.

e We propose a radial-position-aware multi-layer perceptron (MLP) layer,
and combine it with a graph subnetwork and a convolutional sub-
network using a multi-head mechanism. Experiments show that our
hybrid architecture achieves promising results on benchmarks.

2. Related work
2.1. Graph neural network

In geometric deep learning [3], data lying in a manifold with or without
connections are called geometric data. Traditional convolutional nerual net-
works cannot directly process such data. For example, an image is viewed
as a function in Euclidean space, sampled on a plane grid. Natural images
have the properties of stationarity, locality and compositionality that make
the convolution/pooling operator effective. However, for data that can be

106 Yijie Zhu et al.

modeled as a graph, such as social networks, biomolecular graphs, and sur-
face mesh, no such well-defined stationarity property exists. Geometric data
have no regular layout in feature space, but nevertheless we can define a
signal on graphs (e.g., on the vertices) and modify the convolutional layer.

Deep learning methods on graphs can be divided into two groups: those
based on spatial /patch methods and those based on spectral methods. Spa-
tial methods [1, 4-6] implement convolution directly on each node and its
neighbors. The feature of a node at an intermediate layer of a graph neural
network is collected from neighbors and itself in the previous layer. After
such a message passing stage, there may be a pooling module. It usually
performs graph coarsening or clustering to reduce the graph size. Recently,
graph attention networks [7] have been developed to compute importance
e;; of node j’s features to node 7 using a shared attentional mechanism.

For spectral methods [1, 8], the graph Fourier transformation is applied
to the graph signal and the convolution is performed in the spectral space.
One main drawback of those methods comes from the difficulty in gener-
alizing across graphs with different sizes. SyncSpecCNN [9] alleviates this
problem by aligning all Laplacians to common canonical space.

2.2. Point cloud network

With the seminal work of PointNet [10] in 2016, the deep learning com-
munity began to pay attention to 3D point cloud classification and part
segmentation. Most works on 3D point cloud networks convert points to a
graph or clusters at the beginning. PointNet++ [11] finds that PointNet
lacks point-wise geometric context information, so it hierarchically samples
a part of the points and applies KNN or e-ball search to build local regions,
and then uses mini-PointNet to extract features. Both of them aggregate
the local/non-local context with max pooling, and no special convolution is
explored in the networks.

Klokov and Lempitsky [12] arrange a point cloud as a KD-tree, which
is invariant to permutation and translation, partially invariant to jitter, but
variant to rotations. Lei et al. [13] use octree to build a network with the
ability to account for more data in point neighbors than KD-tree, and then
employ bins of the quantized sphere to encode detailed local geometric infor-
mation of the points. However, it is still variant to rotations. Methods [14-17]
build KNN neighborhoods first, followed by spatial graph neural networks
to aggregate high-level features. Methods in [18-21] mine more local geo-
metric details in point clouds. For example, Shen et al. [18] model local
shape via kernel templates. Lan et al. [19] project the relative displacement

Learning point cloud with geometric and topological structures 107

to the coordinate system and weight neighbor features by angles. The works
in [22, 23] extend point clouds to 3D continuous space and estimate local
density in different ways. Specifically, Atzmon et al. [22] use weighted basis
functions to approximate the point cloud density and convolve with weighted
kernel functions in continuous form. On the contrary, Wu et al. [23] directly
estimate kernel density offline and use it to weight discrete convolutions.

Spectral methods also appear in point cloud analysis. Te et al. [24] use
a distance matrix to build the Laplacian, and then apply graph spectral
method. In [25, 26], the surface signal is projected onto a sphere and the
spherical spectral transformation equivariant to rotations is implemented
via convolution.

Some works apply a point cloud network to other applications, includ-
ing 3D point cloud denoising [27], adversarial samples generation [28], and
geodesic distance estimation [29]. Zhang et al. [30] detect point cloud saliency
via shifting some points toward the point cloud center. Their experiments
find that the radial positions of points affect the performance of point cloud
network. Inspired by this work, the second branch of our network actively
takes care of the radial position effect.

2.3. Persistent homology

Homology [31] is an algebraic tool to compute topological invariants that
represent independent holes in a topological space. The k-dimensional holes
of a topological space X are described by an algebraic element of the k-
th homology group H(X). Concretely, a 0-dimensional (1-dimensional, 2-
dimensional) homology class represents a connected component (a loop, a
trapped volume). Note that the inclusion between two topological spaces
X and Y induces a homomorphism between the corresponding k-th homol-
ogy groups Hy(X) and Hy(Y). Persistent homology [2] is a computational
tool that indicates the change of homology features as the scale parameter
increases. It has a compact expression called persistence diagram (PD), a
multiset of points in the Cartesian plane. For a fixed choice of homological
dimension k, each topological feature is represented by a point (z,y) € R?,
whose coordinates x and y are the scale parameters at which the feature first
appears and disappears, respectively. The life span y — z (y > z) is called
the persistence of the feature. Practically, features with high persistence are
taken as important features, but those with relatively low persistence are
typically regarded as noise. In the case of point clouds, PDs can be produced
using Vietoris-Rips filtration.

108 Yijie Zhu et al.

In order to get a stable vector representation of a PD, Adams et al. [32]
proposed using normalized symmetric Gaussian to convert a PD to a scalar
function over the plane, leading to persistence image (PI). Kusano et al. [33]
developed a kernel method for PDs. Recently, Dong et al. [34] proposed a
vectorizing representation of PD based on B-spline surface (PBSG), of which
the control grid is concatenated into a vector. In this study, PI and PBSG
are used to encode point clouds. To the best of our knowledge, this is the
first use of persistence homology in deep 3D point cloud analysis.

3. Methods

The tasks studied in this paper are to perform 3D point cloud classification
and part segmentation. We starts with a set of point clouds y = {X(™)}
with X(m) = {azgm)} andm=1,--- ,M,i=1,--- N, where mgm) € R3. For
the classification task, each X (™) needs to be classified to a specific object
class, while for the segmentation task, each point in X (™ are segmented to a
specific semantic part. We now explain the main modules of GTS-CNN. As
stated above, it consists of three branches, each of which processes one aspect
of input point clouds. Figure 2 illustrates the full network architectures.

3.1. Mesh neighborhood

The first branch is a pure spatial graph convolutional subnetwork. It is so
lightweight that it only contains a neighborhood constructor and multilayer
perceptrons. For a point cloud sampled from a 3D shape, methods used to
find the neighborhood for each point are well studied in computer graphics.
In most point cloud neural networks, the neighborhood is prescribed via
KNN or e-ball. A neighborhood should be both large enough so that the
points sufficiently describe the local geometry, and appropriately small so
that the local features are preserved. In general, e-ball query guarantees a
fixed scale of local region, which is more plausible in common space com-
pared to KNN. However, in the case of non-uniform sampling, e-ball query
would fail in low density regions. Assuming that data are scattered at a
low-dimensional manifold, Zhu et al. [35] regularized the loss of the neural
network with a complex constraint over the input and output features, but
the loss is hard to optimize. Since point cloud data is located on a 2D man-
ifold, it is natural to construct the neighborhood in a mesh reconstruction
view, rather than an underdetermined manifold regularization.

Given a 3D point cloud of a shape, a triangular mesh can be recon-
structed. In this study, the mesh is built based on [36]. It greedily selects

Learning point cloud with geometric and topological structures 109

Surface MLP

®©
neighborhood 5 (32,128) %' maxpool Concatenation
e > —
: 2 ¥ Z
! z
e e :
: v v
ARPE MLP SGeoConv MLP SGeoConv MLP MLP
o G Qe F GYRY) F @56 8 (4512 D S (1024) § (512,256) 8
: : 5 & & - —
Z z z 0.2 Z Z. 0.3 Z Z maxpool X —
i MLP
iCompute PI @ CNN 2 2 © o
........... ¥ TN 3 —P— £ %
(256)
(a) Classification network
Surface - MLP o
neighborhood X 32,128y & maxpool oo
e » M 5 =
1 Z >< Z
! Z
fommm s R ity el '
i ; v v
MLP SGeoConv MLP SGeoConv MLP
< (64) =5 (32/128) g § (256) ﬁ (64/256) E (256,512) E maxpool &
X X X X X X X 9
= z 02 z =z~ zin 03 Zla Zi~ =
|

50x50
1x128
Nx64

Nx3

Nx128
Nx128
Nx256
Nx512 b
Nx128

MLP
CNN 512,C
> () (>'<) /2 : Subsample
MLP Z
(256,128)
T i : Upsample

(b) Segmentation network

Figure 2: Our GTS-CNN network architectures for classification (a) and
segmentation (b). ‘SGeoConv’ denotes the Spherical GeoConv operator. The
numbers of learnable parameters of the networks (a) and (b) are 1.8M and
1.4M, respectively.

local optimal triangles in the Delaunay triangulation of the input points in
an incremental way. With a control of the topology of the reconstruction,
this approach is robust to sparse point clouds and creates few ambiguities.
For a mesh vertex p, its 1-ring neighborhood contains the vertices adjacent
to it, its 2-ring neighborhood includes its 1-ring neighbors and the vertices
adjacent to its 1-ring neighbors, and so on. To get the K neighbors of a given
point p, we first identify its largest n-ring neighborhood with size not more
than K, and then expand the neighborhood by randomly adding points in
its (n+1)-ring neighborhood but not in its n-ring neighborhood, till reaching

110 Yijie Zhu et al.

the size K. The K neighbors so generated is called the mesh neighborhood
of the point p.

3.2. Absolute and relative transformations

The second branch of our GTS-CNN is concerned with absolute and relative
transformations of points. Denote an intermediate representation of points

at layer [by X](\l,)xc, where xgl) € R is the i-th row of X! as well as the
(0)

original position z; = z; ’. In general, a spatial method can be expressed as:

z z D
(1) 2 = (2, Ojeniiy do(a))7375')’%))

where O is the reduce operator (e.g., mean, sum), and 7y, ¢y are param-
eterized functions with learnable parameters 6. For each point i, a local
spherical coordinate system is constructed with its origin at point ¢. For all
neighbor points j of i, a relative transformation aggregates their features
into point 7. Meanwhile, an absolute transformation performs on point 7 in
the world coordinate system. Extending from GeoConv [19], the formula of
the convolution (referred to as Spherical GeoConv) in the second branch of
GTS-CNN on point ¢ at layer [is:

2D = a(i) + (i)

2) a(i) = M LPyqyq;) (fﬂgl))
r(i)= Y h(i,jr)
JEN(3)

where functions h(i, j,r) and r(i) are the same as in [19]. Compared to
GeoConv, the difference is the absolute transform module a(). Since exper-
iments in [30] indicate that radial distance for some points has a large impact
on the fundamental discriminant ability of the network, the module a(i) is
adapted to make use of radial position. While GeoConv treats each point
at different radial position equally, we divide radial space into several parts
R = {0,Ri, Ry, -+ ,Ry} and each part [Ry_1, Rx] owns an independent
MLP, so that for one point located at a certain shell part, the corresponding
MLP is used to extract features. The operator ball(i) identifies which shell
the point 7 lives in and is invariant to rotations. With Spherical GeoConv,
the point cloud networks may identify salient points effectively and become
more robust.

Learning point cloud with geometric and topological structures 111

Absolute and relative transformations are popular in graph and point
cloud neural networks, such as in [14, 20, 21]. For example, absolute and
relative position embedding (ARPE) is commonly used:

I+1 n (!
(3 r = mas (MLP(”, o) "))
Therefore, it is also included as the first layer of the second branch in this
study.

3.3. Learning from persistence image

The third branch of GTS-CNN cares about the topological structure of point
clouds. As introduced above, the PD of a given 3D point cloud is a set of 2D
points. There are various theoretically guaranteed methods to vectorize it.
In practice, a 2D convolutional neural network is powerful enough to learn
high-level features from 2D data, using PI as the input representation. In
the following, the procedure for producing PIs is introduced [32].

Specifically, define the linear map 7' : R? — R? such that T(z,y) =
(x,y — x). Let g represent the normalized symmetric Gaussian with mean
u = (ug, uy) = (z,y — x), which is defined as

1

_ 1wt w20
2mo?

(4) 9(z, y;u)

A PD in birth-death coordinates is denoted as P. The corresponding per-
sistence surface of P is given by

(5) pp(x,y): Z f(u)g(x,y;u),

ueT(P)

where f : R?2 — R is a nonnegative weighting function. f is critical to
ensure the stability of the transformation from a PD to a persistence surface.
Finally, the surface is reduced to a finite-size vector by discretizing it on a
relevant subdomain and integrating pp over each subdomain. A PI is a
collection of pixels I(pp), = | fp ppdxdy. As Figure 3 shows, two objects
with different topological features have different PIs. With such a topological
descriptor, one can distinguish objects with different topologies. Moreover,
PI lets us use the topological features in machine learning tasks, e.g., the
classification task using support vector machine (SVM). However, few deep
learning methods have taken topological descriptors as input so far.

112 Yijie Zhu et al.

0 10 20 30 40 0 10 20 30 40

Figure 3: An example of PI. left: Airplane, right: Cup.

In this study, an image convolutional neural network is used to deal
with PIs for classification. Different from Adams et al. [32], the weighting
function in Equation (5) is set to be sigmoid f(u) = 1/(1 + e~ *“*) with
translation and scale factors ¢ and s, where u, is the persistence length. P1I
can be viewed as a gray image that has a local relationship, and the sigmoid
weighting function indicates the point region that we care about. Points in a
PD that has short persistence are ignored as noise. Those having excessively
long persistence are regarded as trivial features. Therefore, the larger its
persistence is, the slower the corresponding weight increases.

3.4. Final architecture

The final neural network is a hybrid architecture, which is based on Geo-
CNN [19]. It explicitly combines geometric structure and topological struc-
ture. The first branch takes a point cloud and the mesh neighborhood as
input, followed by a simple graph neural network. The graph neural net-
work generates new feature at each vertex by aggregating the features at its
adjacent mesh vertices. The second branch is a modified point cloud neural
network, which is the main branch of the three. It implements comprehen-
sive absolute and relative transformations on point clouds. The third branch
actually is a 2D convolutional neural network. Without bells and whistles,
we design a small network (referred to as PI-Net) to extract the features
from PI of point clouds. The parameters of PI-Net are shown in Table 1.
The output features of the third branch will be added to the output of the
main branch (i.e., the second branch).

Learning point cloud with geometric and topological structures 113

Table 1: Network structure in the third branch. Each layer is followed by
batch normalization and ReLLU

Layer | Type Parameters

1 cony size: 4 x4 x1x4
stride: 2, pad: 0

9 cony size: 3 x 3 x 4 x 16
stride: 2, pad: 0

3 cony size: 3 X 3 X 16 x 64
stride: 2, pad: 0

A cony size: 3 X 3 x 64 x 128
stride: 2, pad: 0

5 linear size: 512 x 256

4. Numerical experiments

All experiments in this study are implemented using Pytorch on an Nvidia
RTX 2080Ti. The loss function of networks is a cross entropy function with
weight decay regularization. It is trained by Adam optimizer. The weight
decay factor is set to 107° and the learning rate is initialized to 0.001, which
drops with a rate of 0.6 every 10 epochs. The mini-batch size is set to 32
during training. The parameters of the network are initialized using the
He initialization method [37]. Each Spherical GeoConv has two parts with
R = {0,0.5,1.0}. The translation and scale factors ¢t and s are 0.5 and 10,
respectively. The mesh neighborhood size K is set to 16 in the first branch
and 32 in ARPE. In addition, our code is released and publicly available at
https://github.com/ZJUCAGD/GTS-CNN.

4.1. Datasets

Two public datasets are used to evaluate point cloud networks. One is Mod-
elNet40 [38], which contains 12,311 object meshes in 40 categories. In the
dataset, 9,843 models are used for training and 2,468 models for testing. The
other is the ShapeNet part dataset [39], used for shape segmentation tasks.
It contains 16,881 shapes with 16 categories. Shapes are labeled into 50 parts
in total. Each category is composed of two to six specific parts. Models of
these two datasets are represented by vertices and faces. For each model,
thousands of points are sampled from the mesh for the following numerical
experiments.

https://github.com/ZJUCAGD/GTS-CNN

114 Yijie Zhu et al.

Table 2: ModelNet40 shape classification results: The methods are sorted by
time

Method input #points acc. (%) #params(M)/acc
PointNet [10] XyZ 1k 89.2 1.6/88.4
PointNet++ [11] XYz 1k 90.7 1.7/90.4
ECC [5] Xyz 1k 87.4 -
Kd-Net [12] Xyz 32k 918 3.6/81.0
DGCNN [14] xXyz 1k 92.2 1.8/91.7
SO-Net [16] Xyz 2k 90.9 1.7/90.5
KCNet [18] Xyz 1k 91.0 0.9/88.8
PCNN [22] xXyz 1k 92.3 8.2/90.8
PointCNN [17] Xyz 1k 92.5 0.9/88.0
U-CNN [13] Xyz 10k 92,0 0.8/85.8
PAT [20] xXyz 10k 91.7 -
RS-CNN(no voting) [21] XyZ 1k 92.9 1.3/90.9
Ours Xyz 1k 92.2 1.8/92.2
PointNet++ [11] Xyz, NOr 5k 91.9 -
SO-Net [16] Xyz, nor 5k 93.4 -
PointConv [23] XyZ, NOr 1k 92.5 20/89.8
Geo-CNN [19] Xyz, nor 1k 93.4 4.1/90.3

4.2. Point cloud classification

The same as in PointNet++, to obtain 3D point clouds, 1024 points are
uniformly sampled from each object in ModelNet40 and normalized into
a unit ball centered at the origin. Therefore, all objects are in a similar
spatial scale. During training, each point in a point cloud is jittered by a
Gaussian random vector with zero mean and 0.01 standard deviation. The
mesh neighborhood and PI are computed offline in advance for saving train-
ing time. Because of heterogeneous structures, the whole network, shown in
Figure 2(a), is separated into two parts (the first two branches and the third
branch) to train 100 epochs and 50 epochs respectively, and then they are
combined to fine-tune through 60 epochs.

Table 2 summaries previous methods and our method for a quantita-
tive comparison. The majority of methods classify point clouds based on
input point positions; in addition, some of them may incorporate normal
vector information or sample more points to achieve state-of-the-art scores.
We notice that some methods, e.g., RS-CNN, adopt sufficient augmenta-
tion/learning techniques, like voting, to make the performance satisfactory,
which is important in reality tasks. However, the abuse of these delicate
strategies makes things confusing. Since the effectiveness of the methods

Learning point cloud with geometric and topological structures 115

50
904
—~ . 40
= 80 1SS
] 3 30
270 » 3
3 3]
< 3}
< 60 —&— Ours < 20
=—&— PointNet++ 3
PointNet
50 10
1024 512 256 12864 1024 512 256 12864
Number of Points Number of Points
(a) Full Net (b) PI-Net branch

Figure 4: Robustness to subsampling of point clouds.

listed above should be verified under the same experimental background,
we re-implement the neural networks that are available at authors’ web-
sites using Pytorch and set all configurations (including optimizer, number
of input points 1024, random seed, etc.) the same as ours. All networks are
trained from scratch and the results are listed in column “#params(M)/acc”
in Table 2. The column shows the number of parameters of networks and
records the overall accuracy. The accuracies of methods drop more or less
with unified training and prediction strategies. Among them, our GTS-CNN
achieves comparable performance (92.2%).

In some cases, the number of points is less than 1024, so it is necessary
to evaluate the robustness to subsampling of point clouds. Figure 4(a) shows
the result that the networks are not very sensitive to uniformly subsampling.
When the number of points drops to 64, our classification network still
achieves high accuracy above 80%, but the compared networks PointNet
and PointNet++ achieve accuracies lower than 70%.

4.3. Point cloud segmentation

Following the experiment setup in PointNet, 2048 points are uniformly sam-
pled from each object in the ShapeNet part segmentation dataset. The data
preprocessing is the same as that in the point cloud classification (Sec-
tion 4.2). In the point cloud segmentation task, point intersection-over-union
(IoU) is computed at test stage. Per-class and per-instance mean IoUs are
reported as evaluation criteria.

Our segmentation architecture is shown in Figure 2(b). It is similar to
the classification network, but contains a subsample module and an upsam-
ple module, which are implemented with furthest point sampling and nearest

116 Yijie Zhu et al.

WL
P

e A e

Figure 5: Visualization of prediction results on ShapeNet test dataset. Best
viewed in color.

neighborhood interpolation. Table 3 summarizes the quantitative results on
the ShapeNet test dataset. Compared with previous methods, our network
achieves better performance with point positions as input. The network ob-
tains class mIoU of 82.8% and instance mIoU of 85.2%. Figure 5 depicts
several segmentation results visually for 16 categories.

4.4. Ablation study

Deep neural networks have many uncertain aspects and confusing behaviors
that influence experimental performance. In this section, we will investigate
persistence homology used in the network, compare neighborhood selection
methods possibly employed in the first branch, and study radial space parti-
tion in SGeoConv. Finally, we will validate the effectiveness of the multi-head
design.

Influence of persistent homology. There are some ways to use persis-
tence homology to classify shape point clouds. Firstly, we can choose differ-
ent vector representations of the PD. As stated above, PI and PBSG [34]
have properties that are stable to shape deformation. Secondly, hyperparam-
eters of vector representation, including vector/image size, weight function,
etc., are crucial for capturing topological features with long persistence, and
are insensitive to points packed closely together. Experiments indicate that
a sigmoid function is a good choice for the weight function. Thirdly, classi-
fiers are important for classification tasks. Recent topological data analysis

Table 3: Point cloud segmentation quantitative results on ShapeNet test dataset. ‘nor’ stands for normal vector
information

method Kd-Net PointNet SCN PCNN KCNet DGCNN Ours PointNet+4 SyncSpecCNN SO-Net
[12] [10] [40] [22] [18] [14] [11] [9] [16]
Input 4k 2k 1k 2k 2k 2k 2k 2k nor mesh 1k nor
Class 77.4 80.4 81.8 818 82.2 82.3 82.8 | 81.9 82.0 80.8
mloU
Tnstance |- ¢ o 83.7 84.6 851 84.7 85.1 85.2 | 85.1 84.7 84.6
mloU
airplane 80.1 83.4 83.8 824 828 84.2 83.4 | 824 81.6 81.9
bag 74.6 78.7 80.8 80.1 815 83.7 82.3 | 79.0 81.7 83.5
cap 74.3 82.5 835 855 864 84.4 86.8 | 87.7 81.9 84.8
car 70.3 74.9 793 79.5 776 77.1 782 | 77.3 75.2 78.1
chair 88.6 89.6 90.5 90.8 90.3 90.9 90.8 | 90.8 90.2 90.8
earphone | 73.5 73.0 69.8 732 768 78.5 80.2 | 71.8 74.9 72.2
guitar 90.2 91.5 91.7 91.3 910 91.5 91.5 | 91.0 93.0 90.1
knife 87.2 85.9 86.5 86.0 87.2 87.3 86.7 | 85.9 86.1 83.6
lamp 81.0 80.8 82.9 85.0 845 82.9 84.1 | 83.7 84.7 82.3
laptop 94.9 95.3 96.0 957 955 96.0 95.4 | 95.3 95.6 95.2
motorbike | 57.4 65.2 69.2 73.2 69.2 67.8 71.6 | 71.6 66.7 69.3
mug 86.7 93.0 93.8 948 944 93.3 94.9 | 94.1 92.7 94.2
pistol 78.1 81.2 825 833 816 82.6 83.9 | 81.3 81.6 80.0
rocket 51.8 57.9 62.9 51.0 60.1 59.7 59.1 | 58.7 60.6 51.6
skateboard | 69.9 72.8 744 750 752 75.5 743 | 76.4 82.9 72.1
table 80.3 80.6 80.8 818 813 82.0 81.9 | 82.6 82.1 82.6

SOINJOTLIYS [BIIG0[0d0) PUR ILI}PW0dS M Pnofd jutod Suruiear|

LT1T

118 Yijie Zhu et al.

Table 4: Testing accuracy for different persistence diagram configurations.
“NN” stands for the simple neural network PI-Net

Method size classifier acc. (%)
10 x 10 SVM 28.1
PBSG 10 x 10 NN 33.3
20 x 20 NN 35.5
10 x 10 NN 38.5
PI 20 x 20 NN 42.5
50 x 50 NN 46.0
100 x 100 NN 43.2

uses machine learning methods to prove the validity itself, but ignores pro-
moting the learning methods. Although deep neural networks are designed
for end-to-end learning and PD is just an intermedia feature representation
of raw data, it is novel to revisit classification with a combination of both.
Table 4 shows the results when we only use topological features to classify
shapes in ModelNet40. It suggests that a simple neural network is better
than the classic classifier SVM. Too large of the image size, such as a PI
with 100 x 100 pixels, is not the best for the task, because a PD contains
finite discrete points so that most areas of a large image become meaningless.

Another key point is that PD is robust to rigid transformation and slight
perturbation, so that a PI-based CNN can works well with moderate shape
deformation. To verify this point, a small 2D point cloud dataset is con-
structed. The dataset samples points from cups with various shapes and
orientations in the planar space. It consists of 100 rectangular cups with
handle, 100 rectangular cups without handle, 100 elliptical cups with han-
dle, and 100 elliptical cups without handle. The whole dataset is uniformly
divided into training and testing splits, keeping the ratio of the number of
objects at 7:3. The task of PI-based CNN is to identify whether an input
point cloud has a handle or not. As Figure 6 shows, when the handle of
a cup shrinks, the persistence of the highlighted point in the PD becomes
small but the feature point does not disappear. Different shapes of the main
cup bodies scarcely influence PDs. To the end, experiments on such a toy
dataset suggest a lightweight CNN (e.g., PI-Net) makes satisfactory pre-
dictions with an accuracy up to 88.3%. There are theorems ensuring the
stability of PD [41] and the stability of PI [32].

The computation of the topological features in the third branch is not
only invariant to rotations and translations w.r.t. input point clouds, but
also robust to subsampling of point clouds. Figure 4(b) shows that the ac-
curacy of the PI-Net branch linearly decays as the point cloud becomes

Learning point cloud with geometric and topological structures 119

0s 802] 802
g g
s]
00 2 2
o1 201
05 g 2 .
0 N cibde N e
105 o 0 005 01 0 005 o
- birth birth
10 03 03
Cc
05
8oz 8oz
00 s s
]]
] K]
Bor o 8o,
a . s .
ey i,
10 PYENT P N— ol sapliifln. . |
-05 10 0 0.05 01 0 0.05 0.1 0 20 40

birth birth

Figure 6: Illustration of persistence image behavior under shape deformation.
First, the 4 different point clouds at left are transformed into PDs, shown in
the middle subplots. Then they are transformed into PIs, shown at right. The
probabilities of the existence of a handle for (a—d) predicted by a lightweight
CNN are 99.9%, 12.1%, 99.9% and 3.1%, respectively.

sparse, putting such deterioration in a smooth and predictable direction. In
a word, persistence homology does help neural networks to be robust against
common transformations applied to point cloud in an effective way.

Comparison of neighbor selection methods. We compare three neigh-
bor selection methods (KNN, manifold learning and mesh neighborhood)
that can be employed in the network. The baseline network is the first two
branches of a GTS-CNN classification network with KNN method for neigh-
borhood construction, and the other two neighbor selection methods are used
in the same network in replacement of KNN for comparison. As the manifold
learning neighbor selection method, the neighborhood selection algorithm in
adaptive manifold learning [42] is employed to build the neighborhood. It
starts with the KNN neighborhood for each data point, then prunes noisy
neighbors step by step using a geometric criterion, and expands the neigh-
borhood set by adding back some pruned points. Moreover, in the mesh
neighborhood method, the neighborhood is induced from a mesh as intro-
duced in Section 3.1. Figure 7(a) presents the experimental results of the
three methods. Evidently, the KNN method achieves the lowest scores com-
pared to the other two methods. The mesh neighborhood method is better
than the adaptive manifold learning method. The latter does not take global
surface situation into consideration and is a subset of KNN after all, while
the mesh neighborhood method maintains the topological quality of the
shape.

Radial space partition for absolute transformation in SGeoConv.
In world space, absolute transformation aims to get global features of points.

120 Yijie Zhu et al.

94.5 83
94.4 _
91.2 —~ <
S SN 82.5 %
= P 043 2
2] =
£ 5., E
§ g 942 o 2
< < <=
©)
904 —=— Mesh neighborhood I 9410 g o
| =—4A— Manifold learning +C1CC IoU
‘ KNN ass mlo! B
90 : 94 81.5
16 32 1 2 3
Number of neighbors Number of parts
(a) Neighborhood (b) SGeoConv

Figure 7: Testing performance for different neighborhood construction meth-
ods (a), and different number of radial parts in SGeoConv (b).

Table 5: Ablation study of GTS-CNN on ModelNet40. Model A is Geo-
CNN [20] with 2 GeoConv

Model | mesh neighborhood Spherical Geoconv PI | acc. (%)
A 89.8
B v 90.6
C v v 91.4
D v v v 92.2

We study how many shell parts the unit sphere should be split into. Fig-
ure 7(b) shows the result that when the sphere is split into two parts, the net-
work achieves higher performance (both accuracy and mIoU) on ShapeNet
part segmentation compared to 1 part (no split) and 3 parts.

Contributions of three branches. We train the classification network
on ModelNet40 with different configurations of the three branches. Results
are presented in Table 5. Model A is the baseline, and Model D is the
final network we use, which achieves the highest score on the dataset. See
Appendix A for more experimental results.

5. Conclusion

In this paper, we have presented GTS-CNN, a hybrid deep learning architec-
ture for inferring semantic information within point clouds. The contribu-
tion is that we use the geometric prior of a given point cloud and persistent
homology to improve the performance of point cloud networks. With the

Learning point cloud with geometric and topological structures 121

geometric prior, it is possible to fit the local points with a smooth surface
or graph mesh, thus aiding the network in training and protecting it from
unrelated points. For topological information, it is difficult to dig out topo-
logical features within a point cloud, and some methods have been tried in
previous work, such as multiscale neighborhoods. Persistent homology is an
advanced tool for describing the topological structure of objects. Most neural
networks are able to learn features by themselves; however, the existence of
persistence homology makes things more understandable and controllable.
Consequently, the proposed networks equipped with geometric and topolog-
ical structures achieve high performance on two tasks. Experimental and
theoretical analysis shows the effectiveness of the method. However, there
are still some problems unsolved. The computation burden is unavoidable in
neighborhood construction and PI generation. GPU-accelerated algorithms
are one solution. Another avenue for future work is the study of the philos-
ophy of usage for geometric and topological structures in different 3D tasks,
because there are so many choices to select and combine together.

Appendix A

This appendix shows the details of our study. The topological representa-
tions are discussed from theoretical and experimental views in Section A.1.
The training loss of the final networks is showed in Section A.2. And a pro-
cedure of constructing a 2D point cloud dataset is introduced in Section A.3.

A.1. More studies on the topological representation

Stability of PI-Net

Lemma 1. Let f,g: X — R be tame Lipschitz functions on a metric space
whose triangulation grows polynomially with a constant exponent j. Then
there are constants C and k > j no smaller than one such that the degree
q Wasserstein distance between persistence diagrams PD(f) and PD(g) is

W,(PD(f),PD(g)) < C-||f — g™, for every g > k.

Lemma 1 states that a persistence diagram of a tame Lipschitz func-
tion that is extended from a 3D point cloud is stable with regard to local
deformation of the point cloud. See [41, 43] for details.

Lemma 2. The persistence image I(pp) with Gaussian distributions is sta-
ble with respect to the 1-Wasserstein distance between diagrams P, P’. More

122 Yijie Zhu et al.

precisely,

I1(om) = Toplls < (VAT A+ LW o),

where [is a weighting function.

Lemma 2 describes that PI is stable when it is transformed from PD
with a sigmoid function f. See [32] for details.

Proposition 3. The PI-Net in the third branch of GTS-CNN is stable with
respect to local deformations of point clouds.

Here, we make a brief explanation. Given a point cloud X, a second
point cloud X’ is generated from X via local deformations or noisy point
addition. There are some well-defined Lipschitz functions g, ¢’ extended from
X, X’ such that W{(PD(g), PD(¢')) < C?-|lg — ¢'|%". Thus the distance
between Pls of two point clouds ||[I(X) — I(X')||2 is controlled by |lg —
9’ |loo, indicating only local deformations between two images. Assuming a
simple image convolutional neural network owns deformation stability as
in [3, 44, 45], the feature representation output from PI-Net is stable with
local deformations of input image, so that PI-Net is stable with respect to
local deformations of point clouds.

A.1.1. Aggregation for topological features To investigate how to
combine the output topological features of the PI-Net and the features of
the second branch, we tested several symmetric functions, where Mazx, Sum
and Mean are element-wise functions. Table 6 suggests that Mean function is
the most effective aggregation operation for testing accuracy on ModelNet40
dataset.

A.2. Training of networks

To see how networks evolve at the training stage, we measured loss curves,
shown in Figure 8, where loss value was recorded every 8 batches with mini-
batch size 32. For the classification task, the network was trained via three
sub-processes, which gained a higher test accuracy compared to direct train-
ing according to our experimental observation. For the segmentation task,
the network was trained directly and was not necessary to fine-tune later.
Both loss curves converged at the end, indicating the effectiveness of network
models.

Learning point cloud with geometric and topological structures 123

Table 6: Different aggregation operations for combining output features of
second branch (i.e., geometric feature x) and the third branch (i.e., topo-
logical feature y)

Aggregation operation | acc. (%)
Max (maz(x,y)) 91.3
Sum (x+y) 91.9
Mean (¥3¥) 92.2
Concat ([x,y]) 91.3

Joint train

(a) Loss of the classification network

TV\\

WU,M
Ay

W"W‘MWMNW AH\W/\", P w\, A 'ﬂ‘/\f’%

(b) Loss of the segmentation network

Figure 8: Visualization of loss evolution at the training stage for the classi-
fication network (a) and the segmentation network (b): The training stage
of (a) was separated into three sub-processes while the training stage of (b)
only contained a joint training process.

A.3. Construction of toy dataset

In Section 4.4, a toy dataset was constructed to assist in our study. In this
part, we describe the procedure of construction in detail.

124 Yijie Zhu et al.

pr sy
"”sz"?;

P g %
Honan #

: :
FEIN;

Figure 9: Visualization of cups in the toy dataset.

e Main body. Because both rectangle and ellipse could be determined by
two parameters (e.g., major axis and minor axis), two numbers were
randomly sampled from corresponding ranges ([0.8,2.8] and [0.2,1.0]
for ellipse, [0.4,3.4] and [0.2,1.5] for rectangle) to generate a rectan-
gle/ellipse. Then 950 points were randomly sampled inside the rectan-
gle/ellipse.

e Handle. A handle was a semi-circle arc, of which radius was in the
range [0.1,0.3]. Then 50 points were randomly sampled from the arc
followed by small perturbation.

e Finally, a point cloud of a 2D cup was generated after rotating points
from both the main body and the handle by a random angle. Figure 9
presents several samples.

Acknowledgments

This work is supported by the National Natural Science Foundation of China
under Grant nos. 61872316, 61932018, and the National Key R&D Plan of
China under Grant no. 2020YFB1708900.

References

[1] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spec-
tral networks and locally connected networks on graphs. arXiv preprint
arXw:1312.6203, 2013.

[2] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topolog-
ical persistence and simplification. Discrete and Computational Geom-
etry, 28:511-533, 2002. MR 1949898

https://arxiv.org/abs/1312.6203
http://www.ams.org/mathscinet-getitem?mr=1949898

3]

[4]

[10]

Learning point cloud with geometric and topological structures 125

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and
Pierre Vandergheynst. Geometric deep learning: going beyond Eu-
clidean data. IEEE Signal Processing Magazine, 34(4):18-42, 2017.

Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Van-
dergheynst. Geodesic convolutional neural networks on riemannian
manifolds. In Proceedings of the IEEE International Conference on
Computer Vision Workshops, pages 37-45, 2015.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned
filters in convolutional neural networks on graphs. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
3693-3702, 2017.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola,
Jan Svoboda, and Michael M. Bronstein. Geometric deep learning on
graphs and manifolds using mixture model CNNs. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
5115-5124, 2017.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks.
International Conference on Learning Representations, 2018.

Michagl Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convo-
lutional neural networks on graphs with fast localized spectral filtering.
In Advances in Neural Information Processing Systems, pages 3844—
3852, 2016.

Li Yi, Hao Su, Xingwen Guo, and Leonidas J. Guibas. SyncSpecCNN:
Synchronized spectral CNN for 3D shape segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2282-2290, 2017.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet:
Deep learning on point sets for 3D classification and segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 652—-660, 2017.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Point-
Net++: Deep hierarchical feature learning on point sets in a metric

space. In Advances in Neural Information Processing Systems, pages
5099-5108, 2017.

Roman Klokov and Victor Lempitsky. Escape from cells: Deep kd-
networks for the recognition of 3D point cloud models. In Proceedings

126

[13]

[14]

[16]

[17]

[18]

[21]

[22]

Yijie Zhu et al.

of the IEEE International Conference on Computer Vision, pages 863—
872, 2017.

Huan Lei, Naveed Akhtar, and Ajmal Mian. Octree guided CNN with
spherical kernels for 3D point clouds. arXiv preprint arXiv:1903.00343,
2019.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bron-
stein, and Justin M. Solomon. Dynamic graph CNN for learning on
point clouds. arXiv preprint arXiw:1801.07829, 2018.

Francis Engelmann, Theodora Kontogianni, Jonas Schult, and Bastian
Leibe. Know what your neighbors do: 3D semantic segmentation of

point clouds. In Proceedings of the European Conference on Computer
Vision (ECCYV), 2018.

Jiaxin Li, Ben M. Chen, and Gim Hee Lee. So-Net: Self-organizing
network for point cloud analysis. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 9397-9406, 2018.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan
Chen. PointCNN: Convolution on X-transformed points. In Advances
in Neural Information Processing Systems, pages 820-830, 2018.

Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Mining point
cloud local structures by kernel correlation and graph pooling. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4548-4557, 2018.

Shiyi Lan, Ruichi Yu, Gang Yu, and Larry S. Davis. Modeling local
geometric structure of 3D point clouds using Geo-CNN. arXiv preprint
arXiv:1811.07782, 2018.

Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li, Jinxian Liu,
Mengdie Zhou, and Qi Tian. Modeling point clouds with self-attention
and gumbel subset sampling. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3323-3332, 2019.

Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-
shape convolutional neural network for point cloud analysis. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 8895-8904, 2019.

Matan Atzmon, Haggai Maron, and Yaron Lipman. Point convolutional

neural networks by extension operators. ACM Transactions on Graph-
ics (TOG), 37(4):71, 2018.

https://arxiv.org/abs/1903.00343
https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1811.07782

23]

[24]

[27]

31]

32]

Learning point cloud with geometric and topological structures 127

Wenxuan Wu, Zhongang Qi, and Li Fuxin. PointConv: Deep convolu-
tional networks on 3D point clouds. arXiv preprint arXiv:1811.072406,
2018.

Gusi Te, Wei Hu, Amin Zheng, and Zongming Guo. RG-CNN: Regular-
ized graph CNN for point cloud segmentation. In 2018 ACM Multimedia
Conference on Multimedia Conference, pages 746-754. ACM, 2018.

Taco S. Cohen, Mario Geiger, Jonas Kohler, and Max Welling. Spherical
CNNSs. arXiv preprint arXiv:1801.10130, 2018.

Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and
Kostas Daniilidis. Learning SO(3) equivariant representations with
spherical CNNs. In Proceedings of the Furopean Conference on Com-
puter Vision (ECCV), pages 52—68, 2018.

Chaojing Duan, Siheng Chen, and Jelena Kovacevic. 3D point cloud
denoising via deep neural network based local surface estimation.
In ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 8553-8557. IEEE, 2019.

Chong Xiang, Charles R. Qi, and Bo Li. Generating 3D adversarial
point clouds. In Proceedings of the IEEE Conference on Computer Vi-
ston and Pattern Recognition, pages 9136-9144, 2019.

Tong He, Haibin Huang, Li Yi, Yugian Zhou, Chihao Wu, Jue Wang,
and Stefano Soatto. GeoNet: Deep geodesic networks for point cloud
analysis. arXiv preprint arXiv:1901.00680, 2019.

Tianhang Zheng, Changyou Chen, Kui Ren, et al. Learning
saliency maps for adversarial point-cloud generation. arXiv preprint
arXw:1812.01687, 2018.

Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
MR1867354

Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris
Peterson, Patrick Shipman, Sofya Chepushtanova, Eric Hanson, Fran-
cis Motta, and Lori Ziegelmeier. Persistence images: A stable vector
representation of persistent homology. The Journal of Machine Learn-
ing Research, 18(1):218-252, 2017. MR3625712

Genki Kusano, Kenji Fukumizu, and Yasuaki Hiraoka. Kernel method
for persistence diagrams via kernel embedding and weight factor.
The Journal of Machine Learning Research, 18(1):6947-6987, 2017.
MR3827077

https://arxiv.org/abs/1811.07246
https://arxiv.org/abs/1801.10130
https://arxiv.org/abs/1901.00680
https://arxiv.org/abs/1812.01687
http://www.ams.org/mathscinet-getitem?mr=1867354
http://www.ams.org/mathscinet-getitem?mr=3625712
http://www.ams.org/mathscinet-getitem?mr=3827077

128

[34]

[41]

[42]

Yijie Zhu et al.

Zhetong Dong, Hongwei Lin, and Chi Zhou. Persistence B-spline grids:
Stable vector representation of persistence diagrams based on data fit-
ting. arXiv preprint arXiv:1909.08417, 2019.

Wei Zhu, Qiang Qiu, Jiaji Huang, Robert Calderbank, Guillermo
Sapiro, and Ingrid Daubechies. Ldmnet: Low dimensional manifold reg-
ularized neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2743-2751, 2018.

David Cohen-Steiner and Frank Da. A greedy Delaunay-based surface
reconstruction algorithm. The Visual Computer, 20(1):4-16, 2004.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on ImageNet
classification. In CVPR, 2015.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang,
Xiaoou Tang, and Jianxiong Xiao. 3D ShapeNets: A deep representa-
tion for volumetric shapes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1912-1920, 2015.

Li Yi, Vladimir G. Kim, Duygu Ceylan, I. Shen, Mengyan Yan, Hao Su,
Cewu Lu, Qixing Huang, Alla Sheffer, Leonidas Guibas, et al. A scalable
active framework for region annotation in 3D shape collections. ACM
Transactions on Graphics (TOG), 35(6):210, 2016.

Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. Attentional
ShapeContextNet for point cloud recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
46064615, 2018.

David Cohensteiner, Herbert Edelsbrunner, and John Harer. Stabil-
ity of persistence diagrams. Discrete and Computational Geometry,
37(1):103-120, 2007. MR2279866

Zhenyue Zhang, Jing Wang, and Hongyuan Zha. Adaptive manifold
learning. IEEE Transactions on Pattern Analysis € Machine Intelli-
gence, (2):253-265, 2012.

David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy
Mileyko. Lipschitz functions have Lp-stable persistence. Foundations
of Computational Mathematics, 10(2):127-139, 2010. MR2594441

Avraham Ruderman, Neil C. Rabinowitz, Ari S. Morcos, and Daniel
Zoran. Pooling is neither necessary nor sufficient for appropriate defor-
mation stability in CNNs. arXiv preprint arXiv:1804.04438, 2018.

https://arxiv.org/abs/1909.08417
http://www.ams.org/mathscinet-getitem?mr=2279866
http://www.ams.org/mathscinet-getitem?mr=2594441
https://arxiv.org/abs/1804.04438

Learning point cloud with geometric and topological structures 129

[45] Alberto Bietti and Julien Mairal. Group invariance, stability to defor-
mations, and complexity of deep convolutional representations. Journal
of Machine Learning Research, 20(25):1-49, 2019. MR3911432

Y1JIE ZHU

STATE KEY LAB. oF CAD&CG
ZHEJIANG UNIVERSITY

HaNGzHOU, 310058

CHINA

E-mail address: 31301029980z ju.edu.cn

ZHETONG DoNG

SCHOOL OF MATHEMATICAL SCIENCES
ZHEJIANG UNIVERSITY

HaNnGzHOU, 310027

CHINA

E-mail address: ztdong@zju.edu.cn

CHI ZHOU

SCHOOL OF MATHEMATICAL SCIENCES
ZHEJIANG UNIVERSITY

HaANGzHOU, 310027

CHINA

E-mail address: elonzhou@zju.edu.cn

HoNGwWEI LIN

STATE KEY LAB. oFr CAD&CG
SCHOOL OF MATHEMATICAL SCIENCES
ZHEJIANG UNIVERSITY

HaNGzHOU, 310027

CHINA

E-mail address: hwlin@zju.edu.cn

RECEIVED JULy 15, 2020

http://www.ams.org/mathscinet-getitem?mr=3911432
mailto:3130102998@zju.edu.cn
mailto:ztdong@zju.edu.cn
mailto:elonzhou@zju.edu.cn
mailto:hwlin@zju.edu.cn

	Introduction
	Related work
	Graph neural network
	Point cloud network
	Persistent homology

	Methods
	Mesh neighborhood
	Absolute and relative transformations
	Learning from persistence image
	Final architecture

	Numerical experiments
	Datasets
	Point cloud classification
	Point cloud segmentation
	Ablation study

	Conclusion
	Appendix A
	More studies on the topological representation
	Aggregation for topological features

	Training of networks
	Construction of toy dataset

	Acknowledgments
	References

