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¶

We present an approach to design non-uniform rational B-spline

(NURBS) curves with fullness control and name the resulting

curves as FC-NURBS curves. Given a point sequence and associ-

ated fullness parameters, firstly we construct a rational quadratic

Bézier curve based on each adjacent three points and the fullness

parameter of the middle point. Then using de Casteljau algorithm

we divide each rational Bézier curve into two halves. Finally, all

these halves are used to construct a Cm continuous FC-NURBS

curve by combining rational polynomial blending functions. Each

segment of FC-NURBS curves is a rational polynomial curve, and

thus FC-NURBS curves can be converted to NURBS curves ex-

actly. Each end segment of FC-NURBS curve is defined by neigh-

boring three points in the point sequence and the fullness parame-

ter of the middle point, and each non-end segment is ruled by adja-

cent four points in the point sequence and the fullness parameters

of the two interior points. The fullness parameters, determining

the proximity between the curve and corresponding points, effec-

tively improve the local shape control ability of FC-NURBS curves.

Some numerical examples are further offered to demonstrate the

efficiency of our approach.
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1. Introduction

Shape design of free-form parametric curves and surfaces plays a fundamen-
tal role in CAGD and related fields [1, 2]. To acquire the easiness and flex-
ibility of shape editing, curves and surfaces constructed by control points
associated with various kinds of basis functions have been widely investi-
gated.

In this paper we provide fullness control non-uniform rational B-spline
curves (FC-NURBS curves), which are defined by control points associated
with blending functions. The control points are obtained by de Casteljau
algorithm from rational quadratic Bézier curves with fullness parameters.
Our approach concentrates on the local control ability and accurate con-
version into NURBS curves. Under this background, the comparison with
NURBS curves and P-curves are made from the influence regions caused by
the change of fullness parameters and control points.

NURBS curves and surfaces are the most popular approaches because
of their universality, nice properties and incorporation in international stan-
dards such as STEP [3]. Nevertheless, the support region of NURBS basis
functions is related to their degree and so high degree NURBS curves are
not very local. On the other hand, the effect of the weights of NURBS curves
is not clear.

P-curves, proposed by Kovács and Várady [4], are defined by control
polygon associated with new basis functions inspired by the mean value
generalized barycentric coordinates. The fullness parameter globally adjusts
the proximity between the curve and its control polygon. In 2018, the same
authors [5] use square roots of polynomials and shape parameters to create
new types of curves and surfaces representation called P-Bézier curves and
P-Bspline curves. The shape parameter is beneficial to globally modify the
curve and relevant control polygon which helps adjust the sensitivity for the
control points.

Inspired by the concept of fullness control and for purpose of designing
curves being compatible with NURBS curves, we offer a new representation
called FC-NURBS curves. The interdependent curve properties of designed
curves are described by the fullness parameters. When the fullness param-
eter becomes larger, the curve runs close to the control polygon and the
corresponding control points have stronger effect on the curves. Compared
with NURBS curves and P-curves, less influence regions are affected no
matter the change of fullness parameters or control points. In addition, the
proposed curves provide more interesting properties, including positive ba-
sis functions with partition of unity, maintaining Cm end constraints and
precisely shifting to NURBS curves.
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The rest of this paper is organized as follows. In Section 2 we briefly in-
troduce the related work and Section 3 proposes the construction procedure
and definition of our fullness control curves. Then in Section 4 we prove the
Cm continuous property and analyse the shape properties of FC-NURBS
curves. Some numerical examples are furnished to illustrate the advantages
of our approach in Section 5. At last, we make conclusions in Section 6.

2. Related work

In the last few decades, many researchers have shown great interests in the
representation of parametric curves and surfaces, and lots of publications
have been published based on different kinds of basis functions and alterna-
tives to better control the shape. In this paper we will intensively introduce
the classical literatures in the late seventies and eighties and those in recent
publications.

Bézier curves are defined by the famous Bernstein polynomials with C∞

continuity for the whole curve segment [1, 2]. In order to locally adjust the
shape of the curve, B-spline curves have been generalized [6–8]. Afterwards,
NURBS curves are developed not only to inherit the geometric properties of
B-spline curves, but also to precisely represent the conic curves [1, 9]. When
we decrease the value of one weight of a degree k NURBS curve, the shape
will be dragged out of the location of the corresponding control point and
k+1 curve segments of NURBS curves will be affected. Consequently, if the
degree of the NURBS curve goes higher and higher, the influence regions of
whole NURBS curves will become much larger.

In addition to aboved approaches directed at recommending additional
fullness parameters for local modification, there are a number of papers
introducing different kinds of basis functions to obtain extra freedom for
shape design. Zhang [10] presents the trigonometric variants of the Bern-
stein polynomials. Combining with shape parameters, Han [11] and Han [12]
develop quadratic and cubic trigonometric polynomial curves respectively.
Zhu et al. [13] combines a fairly complex degree elevation algorithm to gen-
erate CB-spline curves. Brilleaud and Mazure [14] mix hyperbolic space with
trigonometric space to define the basis functions for shape design. Chen [15]
presents quasi-Bézier curves with several fullness parameters. Goldman and
Simeonov [16] utilizes quantum calculus to modify Bernstein polynomials.

In 2017, Kovács and Várady [4] define P-curves which are proximity
curves. This kind of curves have positive basis functions with partition of
unity, internal C∞ continuity and G1 endpoint constraints. Moreover, when
the fullness parameter is modified, the proximity between the curve and
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the control polygon would globally change. Afterwards, Kovács and Várady
[5] further propose some other new proximity curves called P-Bézier curves
and P-Bspline curves. The basis functions of those curves are calculated by
a much simple algebra contributing to generating normal formulations like
Bézier and B-spline curves and the designed curves guarantee Cm end con-
straints. An interesting operation guarantees that the control point insertion
preserves the curve and control polygon as well.

In this paper, we will introduce a different proximity scheme called FC-
NURBS curves whose control points are constructed from rational quadratic
Bézier curves with de Casteljau algorithm. The constructed FC-NURBS
curves are compatible with NURBS curves, Cm end constraints and locally
adjust the distance between the curve and the control polygon with the full-
ness parameters. When one fullness parameter is altered, only two relevant
curve segments are affected which is less than influenced regions of NURBS
curves and P-curves.

3. Construction of FC-NURBS curves

Let the point sequence and fullness parameters be {P0,P1, · · · ,Pn} and
{w1, w2, · · · , wn−1} (wi > 1, i = 1, 2, ..., n − 1), respectively. Firstly we
construct n − 1 rational quadratic Bézier curves Si(t) (i = 1, 2, · · · , n − 1)
as follows (see Fig. 1(a)).

Si(t) =
(1− t)2Pi−1 + 2(1− t)twiPi + t2Pi+1

(1− t)2 + 2(1− t)twi + t2
, t ∈ [0, 1].(1)

From

Pi − Si

(
1

2

)
=

1

1 + wi

(
Pi −

Pi−1 +Pi+1

2

)
,

we find that the distance from Pi to Si(
1
2) can be adjusted by the fullness

parameter wi: the bigger the wi, the smaller the distance between Pi and
Si(

1
2), and vice versa.
Secondly, using de Casteljau algorithm we split each curve Si(t) at Si

(
1
2

)
into two rational quadratic Bézier curves Si,1(t),Si,2(t), i = 1, 2, · · · , n− 1,
(see Fig. 1(b))

Si,1(t) =
(1− t)2Qi,0 + 2(1− t)twiQi,1 + t2wiQi,2

(1− t)2 + 2(1− t)twi + t2wi
, t ∈ [0, 1],(2)

Si,2(t) =
(1− t)2wiRi,0 + 2(1− t)twiRi,1 + t2Ri,2

(1− t)2wi + 2(1− t)twi + t2
, t ∈ [0, 1],(3)
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Figure 1: (a): the generation of points Qi+1,0,Qi+1,1,Qi+1,2 and
Ri,0,Ri,1,Ri,2; (b): the construction of two rational quadratic curves
Si+1,1(t),Si,2(t) and the curve segments Ci(t), i = 1, 2, · · · , n− 2.

where

wi =
1 + wi

2
;

Qi,0 = Pi−1, Qi,1 =
wiPi +Pi−1

1 + wi
, Qi,2 =

Pi−1 + 2wiPi +Pi+1

2 + 2wi
;

Ri,0 =
Pi−1 + 2wiPi +Pi+1

2 + 2wi
, Ri,1 =

wiPi +Pi+1

1 + wi
, Ri,2 = Pi+1.

Now, each edge of {PiPi+1}n−2
i=1 corresponds to two rational quadratic

curves Si+1,1(t) and Si,2(t), while edges P0P1,Pn−1Pn correspond to ratio-
nal quadratic curves, S1,1(t),Sn−1,2(t), respectively.

Thirdly, combining blending functions

Fi,m(t) =
tm+1

(1− t)m+1 + tm+1
,(4)

Gi,m(t) = 1− Fi,m(t) =
(1− t)m+1

(1− t)m+1 + tm+1
,(5)

with Si+1,1(t),Si,2(t) we define curve segments as (see Fig. 1(b))

Ci(t) = Fi,m(t)Si+1,1(t) +Gi,m(t)Si,2(t),

t ∈ [0, 1], i = 1, 2, · · · , n− 2.(6)

The first and last curve segments C0(t) and Cn−1(t) are defined by (see
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Figure 2: Flow chart of our scheme.

Fig. 1(b))

C0(t) = S1,1(t), Cn−1(t) = Sn−1,2(t), t ∈ [0, 1].(7)

Finally, we get a sequence of curve segments {Ci(t)}n−1
i=0 and we will

prove that they are Cm continuous at their joints. Each segment Ci(t) is a
rational polynomial curve and accordingly the resulting whole curve C(t) =
{Ci(t)}n−1

i=0 can be transformed into a NURBS curve. Furthermore, Ci(t)
can be modulated by fullness parameters, so we denominate the resulting
curve C(t) = {Ci(t)}n−1

i=0 as FC-NURBS curve.
Following Fig. 2 further depicts the process of our construction scheme.

Remark 1. If the parameter wi is too small, the distance between the
control point Pi and the devised curve is very far and then the shape of the
curve is very poor. Therefore, all the fullness parameters are set in advance
satisfying wi > 1 (i = 1, 2, · · · , n− 1).

4. Properties of FC-NURBS curves

In this section we will prove the continuous properties of FC-NURBS curves
and analyze their shape characters.
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4.1. Continuity

This subsection will demonstrate that the designed curve is Cm continuous
at t = 0 in each curve segment Ci(t) or t = 1 in curve segment Ci−1(t) (i =
1, 2, · · · , n − 1). In order to prove the property, we firstly present a lemma
about the blending functions.

Lemma 2. For the blending functions Fi,m(t), Gi,m(t), we have

Fi,m(0) = 0, Gi,m(0) = 1,

dkFi,m(0+)

dtk
=

dkGi,m(0+)

dtk
= 0, k = 1, 2, · · · ,m;(8)

Fi−1,m(1) = 1, Gi−1,m(1) = 0,

dkFi−1,m(1−)

dtk
=

dkGi−1,m(1−)

dtk
= 0, k = 1, 2, · · · ,m.(9)

Here dkFi,m(0+)
dtk , dkGi,m(0+)

dtk are k-order right derivatives of Fi,m(t), Gi,m(t) at

t = 0, and dkFi−1,m(1−)
dtk , dkGi−1,m(1−)

dtk are k-order left derivatives of Fi−1,m(t),
Gi−1,m(t) at t = 1.

Proof. We will verify the lemma from four cases as follows.

(I) From (7) we know that when t ∈ [0, 1] in the first curve segment

C0(t), all F0,m(t) = 1 and G0,m(t) = 0 hold. Therefore, all dkF0,m(1−)
dtk =

dkG0,m(1−)
dtk = 0 establish for k = 1, 2, · · · ,m.

(II) As can be seen from (7), all Fn−1,m(t) = 0 and Gn−1,m(t) = 1 are
set up in the last curve segment Cn−1(t) when t ∈ [0, 1]. Hence, every
dkFn−1,m(0+)

dtk = dkGn−1,m(0+)
dtk = 0 hold, k = 1, 2, · · · ,m.

(III) When t equals 0 in the intermediate curve segment Ci(t) (i = 1, 2, · · · ,
n − 2), we get Fi,m(0) = 0 and Gi,m(0) = 1. Next step is to prove
dkFi,m(0+)

dtk = dkGi,m(0+)
dtk = 0 by mathematical induction.

For k = 1, due to Fi,m(t) is a rational function in t, we find that
dFi,m(t)

dt is still a rational function in t. In addition, the denominator

of dFi,m(t)
dt is unequal to zero, so dFi,m(t)

dt is right continuous at t = 0
in the segment Ci(t) (i = 1, 2, · · · , n− 2). Then with L’Hospital’s rule
we have

dFi,m(0+)

dt
= lim

t→0+

Fi,m(t)− Fi,m(0)

t
= lim

t→0+

Fi,m(t)

t

= lim
t→0+

dFi,m(t)

dt
=

dFi,m(t)

dt

∣∣∣
t=0

.
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Furthermore, the product factor tm is included in dFi,m(t)
dt . Therefore

with the equality Gi,m(t) = 1− Fi,m(t) we find that

dFi,m(0+)

dt
=

dGi,m(0+)

dt
= 0.

By induction, we assume for arbitrary positive integer m− 1, the con-

clusion dm−1Fi,m(0+)
dtm−1 = 0 is true. After differentiate m times, dmFi,m(t)

dtm

is still a rational function in t. As a result, dmFi,m(t)
dtm is right continuous

at t = 0. Continuing with L’Hospital’s rule, we derive m derivative
from the assumption:

dmFi,m(0+)

dtm
= lim

t→0+

dm−1Fi,m(t)
dtm−1 − dm−1Fi,m(0+)

dtm−1

t

= lim
t→0+

dmFi,m(t)

dtm
=

dmFi,m(t)

dtm

∣∣∣
t=0

.

Together with the fact that dmFi,m(t)
dtm contains the product factor t

and the equality Gi,m(t) = 1 − Fi,m(t) holds, we find the following
equalities:

dmFi,m(0+)

dtm
=

dmGi,m(0+)

dtm
= 0,

which exactly means the conclusion is true when k ism. So the equality
(8) follows.

(IV) For t = 1 in the segment Ci−1(t) (i = 2, 3, · · · , n − 1), the equality
(9) can be proved in a similar fashion to Case (III), due to the fact

that dkGi−1,m(t)
dtk is a rational function in 1 − t and the product factor

(1− t)m+1−k is involved in dkGi−1,m(t)
dtk (k = 1, 2, · · · ,m).

On the ground of aforesaid analyses, it can be found that (8) and (9)
are right.

Now we will introduce our main results.

Theorem 3. The curve {Ci(t)}n−1
i=0 defined by (6) and (7) is Cm continuous

at t = 0 in each curve segment Ci(t), or t = 1 in curve segment Ci−1(t), (i =
1, 2, · · · , n− 1).

Proof. From the foregoing Lemma 2, we know that

Fi−1,m(1) = 1, Gi−1,m(1) = 0,

dkFi−1,m(1−)

dtk
=

dkGi−1,m(1−)

dtk
= 0, k = 1, 2, · · · ,m.
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Therefore, for the curve segment Ci−1(t) (i = 1, 2, · · · , n−1) on t ∈ [0, 1], it

can be acquired that the value of dkCi−1(1−)
dtk is totally decided by the value

of dkSi,1(1−)
dtk (k = 0, 1, · · · ,m). Analogously, on t ∈ [0, 1] in each segment

Ci(t) (i = 1, 2, · · · , n− 1), the value of dkCi(0+)
dtk is equivalent to the value of

dkSi,2(0+)
dtk (k = 0, 1, · · · ,m).
According to our construction strategy, it is obvious to find that Si,1(t)

and Si,2(t) (i = 1, 2, · · · , n − 1) are located in the same rational quadratic
Bézier curve, since they are acquired by subdividing the Bézier curve Si(t)
with de Casteljau algorithm at Si(

1
2). Hence, Si,1(t) and Si,2(t) are Cm

continuous at t = 0 in Ci(t) or t = 1 in Ci−1(t) (i = 1, 2, · · · , n− 1), which
indicates that Theorem 3 is true.

4.2. Analyses of shape properties

From the very beginning we provide the geometric characters of the fullness
parameters {wi}n−1

i=1 , then present the impact of the alteration of fullness
parameters and control points on the generated curves’ shape.

As can be seen from the definition of Ri,0 and Ri,1, these two points
are getting close to the point Pi when the parameter wi increases. Adding
the condition Si,2(0) = Ri,0, we find that the distance between the point Pi

and the control point Si,2(0) shrinks when wi increases. Then according to
the equality Ci(0) = Si,2(0), we know that wi helps to regulate the space
from the point Pi to the relevant curve point Ci(0). Similarly, the separation
between the point Pi and the corresponding curve point Ci−1(1) expands
as well when wi decreases.

Furthermore, we will offer how the change of fullness parameters influ-
ences the shape of curves. As described above, the alteration of parameter
wi affects the value of Ri,0 and Ri,1, which decide the control point Si,2(t).
Meanwhile, wi also has impact on the value of Qi,1 and Qi,2 determining
the control point Si,1(t). Consequently, the fullness parameter wi will have
influence on the shape of two curve segments Ci−1(t) and Ci(t).

One more thing, the change of one point Pi will have influence on the
form of four curve segments containing Ci−2(t), Ci−1(t), Ci(t) and Ci+1(t).
It is because that when we alter the position of the point Pi, the values
of control points {Sj,1(t)}i+1

j=i−1 and {Sj,2(t)}i+1
j=i−1 will be altered. Conse-

quently, the corresponding four curve segments will change their shape.

5. Numerical examples and comparisons

In this section, we will provide some numerical examples to show the ef-
ficiency of our approach. Of all graphs, polygons and their corresponding
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generated curves are identified with black line segments and colorful curves
respectively.

Example 4. Two convex polygons and their generated C2 and C3 curves,
defined on t ∈ [0, 1], are presented in Fig. 3. Initial vertices of the con-
vex polygon in Fig. 3(a) are (5, 1), (2, 3), (2, 8), (6, 10), (10, 8), (10, 3) and
(7, 1), and original control points of the convex polygon in Fig. 3(b) are
(−2.17, 5.64), (−11.75, 3.4), (−12, 2), (−6.83,−4.23), (−5.2,−4) and
(0.77, 4).

Fig. 3 also provides two concave polygons and their generated C2 and C3

curves defined on t ∈ [0, 1]. In Fig. 3(c), the points of the concave polygon are
(9.24, 8.35), (7.24, 9.8), (4.76, 9.8), (2.76, 8.35), (6, 6), (2.76, 3.65), (4.76, 2.2),
(7.24, 2.2), (9.24, 3.65) and (10, 6). In Fig. 3(d), the original vertices are
(−9.8, 2.9), (−5.7, 3.2), (−4.8, 6.6), (−10, 6.4), (−11.3, 1.6), (−7.3,−1.5) and
(−3.8, 1.9).

In Fig. 3, upper left figure offers all fullness parameters {wi}5i=1 values 2
except for varying w3 from 2 to 1 and 3 and upper right graph provides all
fullness parameters {wi}4i=1 values 2 except for varying w2 from 2 to 1 and 3,
creating the corresponding blue and green curves respectively. Meanwhile,
lower left graph presents all fullness parameters {wi}8i=1 values 2 except that
w4 is varied from 2 to 1 and 3 and lower right figure offers all fullness param-
eters {wi}5i=1 values 2 except for varying w5 from 2 to 1 and 3, generating
the corresponding blue and green curves respectively.

As shown in Fig. 3(a), it can be found that the distance between the point
P3 and the relevant points C3(0) or C2(1) (shown in blue cross) shrinks as
w3 increases. Simultaneously, when the parameter w2 decreases, the distance
from the point P2 to the corresponding pointsC2(0) orC1(1) (shown in blue
cross) enlarges in Fig. 3(b). Moreover, the lower two figures show that this
nice property similarly holds for the concave polygons.

Example 5. Fig. 4 compares the effect caused by the alteration of one pa-
rameter among quintic NURBS curves, P-curves and our FC-NURBS curves.
The involved control vertices are (3, 8), (3, 4), (5, 1), (5, 7), (7, 9), (7, 2),
(9, 5), (9, 10), (11, 9) and (11, 6). The original red NURBS curve is defined on
the knot vector [0, 0, 0, 0, 0, 0, 0.11, 0.2, 0.36, 0.44, 0.63, 0.73, 0.86, 0.92, 1, 1, 1,
1, 1, 1] and has all weights equivalent to 1, while only w4 is changed by the
number 5 in the blue NURBS curve. The primitive red P-curve is defined
on the knot vector [0, 0.11, 0.2, 0.36, 0.44, 0.63, 0.73, 0.86, 0.92, 1] and shaped
with the parameter γ = 0.05, while γ is varied to 0.1 in the blue curve. Our
red FC-NURBS curve assigns all fullness parameters {wi}8i=1 the value 1.8,
while only w4 is reassigned the value 3 in the blue curve.
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Figure 3: (a): convex hexagon and created three C2 curves; (b): convex
pentagon and created three C3 curves; (c): concave polygon and created
three C2 curves; (d): concave polygon and created three C3 curves.

As can be seen from Fig. 4, when only one parameter is changed, there

are six curve segments affected for the quintic NURBS curves and whole

curve segments influenced for P-curves, while only two curve segments are

affected for FC-NURBS curves.

Example 6. The difference affected by the alteration of one control point is

presented among quintic NURBS curves, P-curves and FC-NURBS curves

in Fig. 5. All involved data, including the incipient vertices of the original

polygons, the fullness parameters and knot vectors of red quintic NURBS

curves, red P-curves and red FC-NURBS curves, are the same as those of

red curves in Fig. 4. Except that the weight w4 of the blue quintic NURBS

curve is assigned the value 8. In addition, the vertex P4 varies from (7, 9)

to (7,−5) to generate the cyan curves in Fig. 5.
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Figure 4: (a): the control polygon and generated quintic C4 NURBS curves;
(b): the control polygon and created C∞ P-curves; (c): the control polygon
and our generated C4 FC-NURBS curves.

From Fig. 5 we find that after alter the position of one control point, six

curve segments and whole curve are influenced for quintic NURBS curves

and P-curves respectively, whereas only four curve segments change their

positions by our approach.

Example 7. A comparison of three kinds of curves, cubic C2 NURBS curve,

C∞ P-curve and our C2 FC-NURBS curve is made in Fig. 6. All concave

polygons are expressed as

(3.52, 4.41), (0.68, 10.52), (4.88, 15.32), (8.57, 10.61), (6.58, 5.06),

(14.76, 3.80), (12.37, 6.97), (15.06, 9.87), (14.06, 15.09), (9.97, 13.04).

Upper cubic NURBS curve is defined on knot vector [0, 0, 0, 0, 0.13, 0.26, 0.37,

0.49, 0.65, 0.73, 0.81, 0.91, 1, 1, 1, 1] and all weights are equal to 1. Middle P-

curve has knot sequence [0, 0.13, 0.26, 0.37, 0.49, 0.65, 0.73, 0.81, 0.91, 1] with

the fullness parameter γ = 0.05. As to the lower FC-NURBS curve, all

weights {wi}8i=1 are 1.8.
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Figure 5: (a): the control enneagons and generated quintic C4 NURBS
curves; (b): the control enneagons and created C∞ P-curves; (c): the con-
trol polygons and our C4 FC-NURBS curves. The cyan curves are created
after altering the position of the control point P4 to P′

4.

Green curves represent the curvature plots of all generated curves, which

shows that our method can construct fair curves similar to cubic NURBS

curves and P-curves.

6. Conclusions

We have introduced FC-NURBS curves with fullness control and local prop-

erty. The fullness parameters contribute to adjusting the distances between
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Figure 6: (a): the concave polygon and generated cubic C2 NURBS curve;
(b): the concave nonagon and created C∞ P-curve; (c): the concave nonagon
and our C2 FC-NURBS curve. Green curves show the curvature plot of all
created three curves.

the control points and generated FC-NURBS curves. Meanwhile, the influ-

ence regions of fullness parameters in our approach are smaller than those

of traditional NURBS curve and P-curve design. This verdict is appropriate

for the alteration of one control point as well. Our constructed FC-NURBS

curve is Cm continuous and can be converted to NURBS curve exactly.

These advantages render FC-NURBS curves more room to utilize in CAGD

and relevant areas.
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