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Gaussian and non-Gaussian colored noise induced
escape in a tumor-immune model

Xi Chen
∗
and Yanmei Kang

We investigate the mean first passage time of a tumor-immune
model with Gaussian colored noise by the two analytic approxi-
mation methods of singular perturbation analysis and small cor-
relation time approximation. For the first time, it is shown that
the singular perturbation analysis is accurate in the sense of re-
taining linear term of the small correlation time parameter, while
the small correlation time approximation keeps all the even higher-
order terms of the same small parameter, but it neglects the linear
leading order term. This contrast suggests that the singular pertur-
bation method has a better accuracy than the small correlation ap-
proximation method when the correlation time parameter is small.
As a further application of the singular perturbation method, the
mean first passage time in the case of non-Gaussian noise is also
deduced and discussed. It is shown that as the strength of immu-
nization or the non-Gaussian deviation parameter increases, the
mean first passage time decreases, and thus both enhancing im-
munization and applying heavy-tailed random perturbation can
accelerate the extinction of tumor cells.

AMS 2000 subject classifications: Primary 37H10, 60H10; secondary
62P10.
Keywords and phrases: Tumor-immune model, mean first passage
time, singular perturbation analysis, small correlation approximation,
non-Gaussian noise.

1. Introduction

Noise-induced escape has been one of the classical topics in the field of
stochastic nonlinear dynamics since Kramers’ rate theory for chemical reac-
tion [1],[2]. It has attracted wide interest ranging from stable and metastable
systems[3],[4] to excitable system [5],[6] and nonlinear maps with bifurcat-
ing attractors [7] etc. Mean first passage time (MFPT), usually defined as
the inverse escape rate, actually acts as the internal time scale that un-
derlies the basic escape or the rare random transition event[8],[9],[10],[11].
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The MFPT plays a critical role investigating many noise-induced unintu-
itive effects such as resonant activation [12], stochastic resonance [13] and
stochastic synchronization [14].

Many Fokker-Planck equation based methods including Laplace trans-
form [8], population over flux method [3], threshold integration method [15]
etc. have been developed for calculating the MFPT in nonlinear systems
driven by Gaussian white noise. For nonlinear systems driven by Gaussian
colored noise, the singular perturbation method [16, 17, 18] and the small
correlation time approximation [21] are the two most frequently-used tech-
niques. The former is designed for treating the Gaussian colored noise as
an Ornstein-Uhlenbeck process, while the latter essentially transforms the
Gaussian colored noise into an effective Gaussian white noise based on the
stochastic Liouville equation and Novikov formula [19, 20, 21, 22, 23, 24].
Noting that the both techniques can be used for calculating the MFPT when
the Gaussian colored noise of small correlation time is additive, but their ac-
curacy has never been compared. Based on this consideration, with the both
techniques applied to a tumor-immune model with weak Gaussian colored
noise, a systematic comparison on their accuracy is carried out, and it is
found when the correlation time is small, the singular perturbation method
is more accurate than the small correlation time approximation method.

The anomalous diffusion of long-range spatial correlation or long-time
memory is ubiquitous in biological transport processes [25, 26, 27]. Some
biological experiments including the sensory system of crayfish and rat shin
have offered strong indication that the noise source in this biological system
may be non-Gaussian [28, 29, 30, 31, 32, 33, 34]. Thus, the non-Gaussian
noise of heavy-tailed distribution [32, 33, 34] should be more appropriate for
depicting the fluctuations in the tumor growth system. In order to deduce
the mean first passage time in physically more realistic fluctuating envi-
ronment, we further apply the more accurate method, namely the singular
perturbation analysis to the tumor-immune model driven by non-Gaussian
noise. In tumor-immune systems, the MFPT depicts the mean time for the
tumor cells to escape from a higher stable concentration state to extinction
under random perturbation, and it could provide a theoretical evidence for
the medical therapy and radiotherapy cycles to certain extent [35], so the
investigation on the MFPT in the general non-Gaussian colored noise case
should be significant in theoretical treatment options with the cancer.

The paper is organized into four parts. In Section 2, we employ the singu-
lar perturbation method to derive the MFPT formula of the tumor-immune
model. In Section 3, we derive the MFPT by means of the small correlation
approximation. Comparison and discussion about the accuracy of the two
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methods are also given in the part. In Section 4, the singular perturbation
method is applied to the tumor-immune system with non-Gaussian noise,
and the theoretical results are checked and discussed. Finally, conclusion is
drawn in Section 5.

2. Derivation of the MFPT by singular perturbation analysis

Increasing experimental evidences show that the severity of cancer depends
on the population/concentration of the tumor cells in body, which ranges
from a biochemically cancer-free state to a serious illness state. Thus how
fast the transition events between the extinct and active states occur directly
reflects the sensitivity of the tumor evoluting mechanism, especially it could
quantitatively characterize the treatment efficiency when the therapy is in-
troduced. This naturally proposes a necessity to explore the event timing
of the tumor concentration at certain state transiting to the other state,
which relates the fundamental biological events with the physical problem
of the mean first passage time. Before exploring that, let us give a brief
introduction to the tumor-immune model [36, 37, 38]

(1)
dx

dt
= rx(1− x

K
)− βx2

1 + x2
+ η(t),

where x is the concentration of the tumor cells at time t, r denotes the
growth rate, K represents the saturated concentration, and βx2

1+x2 charac-
terizes the immunization effect. Obviously, β describes an upper limit for
the immunological saturation when the concentration of tumor cells tends
to infinite, and immunization effect will vanish when the tumor cells disap-
pear. In Eq. (1), η(t) is the Gaussian colored noise of small correlation time
ε2(ε � 1) obeying

(2) 〈η(t)〉 = 0, 〈η(t)η(t′)〉 = σ2/ε2exp(−|t− t′|/ε2),

For applying the technique of singular perturbation technique [16, 17,
18], let us rewrite the Gaussian colored noise as η(t) = ε−1σz(t) so that
Eq. (1) has the form

(3)

{
dx
dt = f(x) + σ

ε z
dz
dt = − z

ε2 +
√
2
ε ξ(t).

Here f(x) = −U ′(x) = rx(1− x
K )− βx2

1+x2 with U(x) being potential function
(Fig.1) and ξ(t) is the standard Gaussian white noise of zero mean and
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Figure 1: The schema of the effective potential when r = 1.5,K = 1.5 are
fixed: β = 0 with the stable equilibrium point xs = 1.5 (solid line), β = 0.5
with xs ≈ 1.26 (dotted line) and β = 1 with xs = 1(dashed-dotted line).
The other barrier at the unstable equilibrium point all lies at xu = 0.

unit variance. Now let us calculate the MFPT from the potential well at xs
to the potential barrier at the unstable state at xu = 0 with the singular
perturbation method. Let P (x, z, t) be the solution to the Fokker-Planck
equation (FPE)

(4) Pt = −[∂x(f(x) +
σ

ε
z)− 1

ε2
∂zz]P +

1

ε2
∂2
zP,

with the initial condition P (x, z, 0) = δ(x − xu)μ(z) and a half-range ab-
sorbing boundary condition at x = xu. Here μ(z) denotes the initial prob-
ability density function of the O-U process z(t) and it has the form μ(z) =
exp(−z2/2)/

√
2π. Then the MFPT can be defined as

(5) 〈T 〉 =
∫ +∞

xu

∫ +∞

−∞

∫ +∞

0
P (x, z, t)dtdzdx.

To transform the time-dependent problem into the time-independent one, a
new function [16, 17, 18]

(6) G(x, z) =

∫ +∞

0
P (x, z, t)dt,

which gives the mean time staying at points (x, z) before reaching the half-



Gaussian/non-Gaussian noise 173

range absorbing boundary[16], is introduced to transform Eq. (5) into

(7) 〈T 〉 =
∫ +∞

xu

∫ +∞

−∞
G(x, z)dzdx.

Integrating the both sides of Eq. (4) with respect to t from zero to infinity
and noting the fact that all the population escape from the potential at
enough time, a time-independent equation is obtained as

(8)
1

ε2
∂2
zG−

[
∂x(f(x) +

σ

ε
z)− 1

ε2
∂zz

]
G = −δ(x− xs)μ(z).

Following the singular perturbation frame [16, 17, 18], Eq. (8) can be
rewritten as

(9)

[
1

ε2
L0 +

1

ε
L1 + L2

]
G(x, z) = −δ(x− xs)μ(z),

with μ(z) = 1√
2π
exp(− z2

2 ), L0 = ∂2
z + ∂zz, L1 = −σ∂xz and L2 = −∂xf(x).

Due to the smallness of ε, we can make the ansatz

(10) G(x, z) = G0(x, z) + εG1(x, z) + ε2G2(x, z) + · · · .

Substitution of Eq. (10) into Eq. (9) and comparison of the coefficients of
ε′s power yield a set of recurrent equations

L0G0 = 0,(11(a))

L0G1 + L1G0 = 0,(11(b))

L2G0 + L0G2 + L1G1 = −δ(x− xs)μ(z),(11(c))

L0G3 + L1G2 + L2G1 = 0.(11(d))

The embedded equations can be iteratively solved by means of Her-
mite functions [39] ρn(z) = e−z2/2/

√
2πHen(z) with Hen(z) = (−1)nez

2/2×
dn

dzn e−z2/2 being Hermite polynomial, which satisfies ∂zρn(z) = −ρn+1(z),
zρn(z) = ρn+1(z) + ρn−1(z) and

(12) L0ρn(z) = −nρn(z), n = 0, 1, 2, · · ·

From Eq.(11(a)), it is easy to see that G0(x, z) belongs to the kernel
subspace and thus there should exist

(13) G0(x, z) = r0(x)ρ0(z),
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with r0(x) to be determined. Substitution of Eq. (13) into Eq.(11(b)) obtains

(14) L0G1 = σρ1(z)∂xr0(x),

which implies that G1(x, z) belongs to the subspace spanned by ρ0(z) and
ρ1(z), so there should hold true

(15) G1(x, z) = r1(x)ρ0(z)− σρ1(z)∂xr0(x).

Continuing this procedure leads to

L0G2 = ρ0(z)[∂xf(x)r0(x)− σ2∂2
xr0(x)] + σρ1(z)∂xr1(x)(16)

− σ2ρ2(z)∂
2
xr0(x)− δ(x− xs)μ(z).

Since the operator L0 is not reversible in the subspace spanned by ρ0(z), the
condition of integrability for Eq. (16) implies that the coefficient for ρ0(z)
must vanish, that is to say,

(17) ∂xf(x)r0(x)− σ2∂2
xr0(x) = δ(x− xs).

In the derivation of Eq. (17), the fact μ(z) = ρ0(z) has been used. Eq. (17)
can be solved by Green function method. Integration of the both sides of
Eq. (17) with respect to x from x to xs when x belongs to (xu, xs) arrives
at

(18) r0(x) =
1

σ2

∫ xu

x
exp[

∫ +∞

z

f(x′)

σ2
dx′]dz · exp[−

∫ +∞

x

f(x′)

σ2
dx′].

Then integration of Eq. (17) with respect to x from x to xs when x ∈
(xs,+∞) gives

(19) r0(x) = d2exp[−
∫ +∞

x

f(x′)

σ2
dx′].

Combining Eq. (18) with Eq. (19) and using the consistence at xs, we solve
out d2 as

(20) d2 =
1

σ2

∫ xu

xs

exp[

∫ +∞

z

f(x′)

σ2
dx′]dz,

and thus we finally obtain
(21)

r0(x) =

{
1
σ2

∫ xu

x exp[
∫ +∞
z

f(x′)
σ2 dx′]dz · exp[−

∫ +∞
x

f(x′)
σ2 dx′], x ∈ [xu, xs]

1
σ2

∫ xu

xs
exp[

∫ +∞
z

f(x′)
σ2 dx′]dz · exp[−

∫ +∞
x

f(x′)
σ2 dx′], x ∈ (xs,+∞)
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with constant A to be determined. With Eq. (17) in mind, from Eq. (16)

there deduces

(22) G2(x, z) = r2(x)ρ0(z)− σρ1(z)∂xr1(x) +
1

2
σ2ρ2(z)∂

2
xr0(x),

and then substituting Eq. (22) into Eq.(11(d)) obtains

L0G3 = ρ0
[
∂xf(x)r1 − σ2∂2

xr1(x)
]

+ ρ1

[
σ∂xr2(x)− σ∂2

xf(x)r0(x) +
1

2
σ3∂3

xr0(x)

]

− σ2ρ2∂
2
xr1(x) +

1

2
ρ3σ

3∂3
xr0(x).

(23)

Again, annihilating the coefficient of ρ0 gives

(24) ∂xf(x)r1 − σ2∂2
xr1(x) = 0

whose solution can be found by direct integration as

(25) r1(x) = Bexp

(∫ x

+∞

f(x′)

σ2
dx′

)
.

The constant B in Eq. (25) can be determined by the half-range absorbing

boundary condition G(xu, z) for z > − ε
σf(xu). According to the singular

perturbation theory [16-18], the half-range absorbing boundary condition

can be transformed into

(26) r(xu) = εσαr′(xu)

with εσα the Milne extrapolation length and α ≡ −ζ(1/2) ≈ 1.46 deter-

mined by the Riemann Zeta function. Considering r(θ) = r0(θ)+εr1(θ)+· · · ,
there holds true B = α

ε exp[−
∫ xu

+∞
f(x′)
σ2 dx′], and thus we have

(27) r1(x) =
α

ε
exp

[∫ x

xu

f(x′)

σ2
dx′

]
.

Combining Eqs. (18) and (19) with Eqs. (13) and (15) and using the consis-
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tence at xs, then from Eq. (7) one can approximate the MFPT as

〈T 〉 =
∫ xs

xu

∫ z

+∞

1

σ2
exp

[
−

∫ +∞

x

f(x′)

σ2
dx′

]
dx · exp

[∫ +∞

z

f(x′)

σ2
dx′

]
dz

+ ε
α

σ

∫ +∞

xu

exp

[∫ x

xu

f(x′)

σ2
dx′

]
dx,

(28)

which is exact within the range of keeping the linear terms of ε.
For deriving an explicit expression, we apply the steepest descent method

[8] to approximate the infinite integral in Eq. (28) to get

∫ z

+∞
exp[−

∫ +∞

x

f(x′)

σ2
dx′]dx ≈

∫ +∞

−∞
exp[−U(x)

σ2
]dx

≈
√

2π

|f ′(xs)|
σ · exp[−U(xs)

σ2
],

and then an approximation of the MFPT is obtained as

〈T 〉 = 1

σ

√
2π

|f ′(xs)|

∫ xs

xu

exp

[∫ xs

x

f(x′)

σ2
dx′

]
dx

+ εα

√
2π

|f ′(xs)|
exp

[∫ xs

xu

f(x′)

σ2
dx′

]
.

(29)

3. Derivation of the MFPT by small correlation time
approximation

Let P (x, t) = 〈δ(x(t)−x)〉be the probability density function of the stochas-
tic process (1), then the corresponding stochastic Liouville equation [8, 19,
20] reads

(30)
∂P (x, t)

∂t
= − ∂

∂x
f(x)P (x, t)− ∂

∂x
〈δ(x(t)− x)〉.

As x(t) and η(t) are both functions of t, we take functional differential
from the formal solution to the system (1) to yield

(31)
δx(t)

δη(t′)
= 1 +

∫ t

t′
f ′(x(s))

δx(s)

δη(t′)
ds, t ≥ t′
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and thus it is easy to find that δx(t)
δη(t′) = H(t−t′)exp(

∫ t
t′ f

′(x(s))ds). Here H(·)
is the Heaviside unit step function. Meanwhile, with the fact f(y) ∂

∂xδ(y −
x) = ∂

∂x(f(x)δ(y − x)) for any function f(y) [20, 24] in mind, we have

δ(δ(x(t)− x))

δη(t′)
=

∂(x(t)− x)

∂x(t)

δx(t)

δη(t′)

= −∂(x(t)− x)

∂x

δx(t)

δη(t′)
= − ∂

∂x

δx(t)

δη(t′)
|x(t)=xδ(δ(x(t)− x)),

(32)

and then following the Novikov formula [19-20], there holds

〈η(t)δ(x(t)− x)〉 =
∫ t

0
dt′〈η(t)η(t′)〉

〈
δ[δ(x(t)− x)]

δη(t′)

〉

= − ∂

∂x

∫ t

0
dt′〈η(t)η(t′)〉

〈
exp

[∫ t

t′
f ′(x(s))ds

]
δ(x(t)− x)

〉

= −σ2/ε2
∂

∂x

∫ t

0
dt′exp[−|t− t′|/ε2]

×
〈
exp

[∫ t

t′
f ′(x(s))ds

]
δ(x(t)− x)

〉

= −σ2

∫ 1/ε2

0
dθexp(−θ)

×
〈
δ(x(t)− x)exp

[∫ t

t−ε2θ
f ′(x(s))ds

]〉

≈ −σ2

∫ 1/ε2

0
dθexp(θ(ε2f ′(xs)− 1))

∂

∂x
〈δ(x(t)− xs)〉

≈ − σ2

1− ε2f ′(xs)

∂

∂x
P (x, t),

(33)

with θ � (t − t′)/ε2. We emphasize that the Fox method [21] which holds

true in the case of ε � 1 is adopted to get the above approximations. Noting

f ′(xs) = −U ′′(xs) and inserting Eq. (31) into Eq. (30) give an approximate

Fokker-Planck equation

(34) Pt(x, t) = − ∂

∂x
f(x)P (x, t) +

σ2

1− f ′(xs)ε2
∂2

∂x2
P (x, t),
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from which the MFPT for the system Eq. (1) can be directly acquired [8] as
(35)

〈T 〉 =
∫ +∞

xu

dx

∫ x

−∞

(1− f ′(xs)ε2)dz

σ2

exp((1− f ′(xs)ε2)
∫ z
+∞

f(x′)
σ2 dx′)

exp((1− f ′(xs)ε2)
∫ x
+∞

f(x′)
σ2 dx′)

.

Again, using the steepest decent method, we finally obtain

(36) 〈T 〉 ≈ 2π|f ′(xs)f
′(xu)|−1/2exp((1− f ′(xs)ε

2)

∫ xs

xu

f(x′)

σ2
dx′).

By means of Taylor series expansion, it can be seen that Eq. (36) consists
of all the even-order terms of the small parameter ε.

Figure 2: The MFPT of the tumor-immune system as a function of the noise
intensity with r = 1.5, K = 1.5, β = 0.5, ε = 0.1.

With Eq. (29) compared with Eq. (36), it is easy to see that although
the small correlation time approximation can keep all the even higher-order
terms of the small correlation time parameter, it neglects all the linear odd-
order terms which include the first-order term; by contrast, the method of
singular perturbation analysis is generally accurate in the sense of keeping
the linear terms of the same small parameter. Since the first-order term
is the leading-order one in the case of small correlation time, we are con-
vincing that the singular perturbation method has better accuracy than the
small correlation time approximation method. In fact, this theoretical anal-
ysis can be verified by Monte-Carlo simulation. In Figs. 2-4, we exhibit the
theoretical results based on Eq. (29) and Eq. (36) as well as the simulated
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Figure 3: The MFPT of the tumor-immune system as a function of the noise
intensity with r = 1.5, K = 1.5, β = 0.5, ε = 0.15.

curves from 104 samples, and it is clear that in the weak noise level, the
MFPT derived from the singular perturbation method has a better agree-
ment with the simulated result than that derived from the small correlation
time approximation method.

4. Effect of non-Gaussian noise on the MFPT

Let us turn to the tumor-immune model with non-Gaussian noise

(37)
dx

dt
= rx

(
1− x

K

)
− βx2

1 + x2
+ u(t),

where the non-Gaussian noise [24],[32, 33] u(t) is described by a nonlinear
Ornstein-Uhlenbeck process

(38)
du(t)

dt
= − 1

τ0
dVp(u)/du+

1

τ0
ζ(t),

with Vp(u) = D/(τ0(p− 1))ln(1 + τ0/D(p− 1)u2/2). ζ(t) is Gaussian white
noise with noise intensity D, the deviation parameter p characterizes the
non-Gaussianity, and τ0 is correlation time. For p > 1, u(t) denotes the
heavy-tailed non-Gaussian noise and corresponds to the bounded noise for
p < 1.

In order to apply the singular perturbation method to derive the MFPT
of the system Eq. (37), let us follow the path integral technique [32, 33].
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Figure 4: The MFPT of the tumor-immune system as a function of the noise
intensity with r = 1.5, K = 1.5, β = 0.5, ε = 0.2.

When |p − 1| � 1, the above non-Gaussian colored noise can be effectively

approximated to the Gaussian colored one

du(t)

dt
= − 1

τ1
u(t) +

1

τ1
ξ(t),

where 1
τ0
dvp(u)/du ≈ u

τ1
, τ1 = 2(2−p)

5−3p τ0 and Gaussian white noise ξ(t) satis-

fies 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2D1δ(t − t′) with D1 = (2(2 − p)/(5 − 3p))2D.

To make sense of τ1, we can see that here p should belong to (0, 5/3). With
√
τ1 being the small perturbation parameter and repeating the procedure in

Section 2, we derive the MFPT in the non-Gaussian noise case

〈T 〉 =
∫ xs

xu

∫ z

+∞

1

D1
exp

(
−

∫ +∞

x

f(x′)

D1
dx′

)
dxexp

(∫ +∞

z

f(x′)

D1
dx′

)
dz

+ α

√
τ1
D1

∫ +∞

xu

exp

(∫ x

xu

f(x′)

D1
dx′

)
dx,

(39)

which is exact within the range of keeping the linear terms of
√
τ1. Similar
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to Eq. (29), Eq. (39) also can be approximated as

〈T 〉 =
√

2π

|f ′(xs)|D1

∫ xs

xu

exp

(∫ xs

x

f(x′)

D1
dx′

)
dx

+ α

√
πτ1

|f ′(xs)|
exp

(∫ xs

xu

f(x′)

D1
dx′

)
,

(40)

which holds true in the range of |p− 1| � 1 andτ1 � 1, as shown in Fig. 5.

Figure 5: The MFPT of the tumor cell growth system driven by non-
Gaussian noise as a function of the noise intensity with τ0 = 0.1 (a)
p = 1.2;(b) p = 0.9.

Now let us check the effect of the deviation parameter p and the im-

munological coefficient β on the MFPT of the tumor-immune system. From

Figs. 2-5, the MFPT of the tumor-immune system declines with the in-

crease of the noise intensity, and this means the growth of tumor can be in-

hibited by adding external perturbation. Noting that the MFPT decreases

as the deviation parameter increases, which equivalently implies that the

MFPT decreases as the non-Gaussian noise turns from the bounded-noise

case (p < 1) to the heavy-tailed case (p > 1), so we can infer that the heavy-

tailed perturbation might be more effective in the potential treatment on

cancer. Besides, Fig. 6 shows that increase in the strength of immunization

also leads to a decline of MFPT, and thus our result further confirms that
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Figure 6: The MFPT of the tumor-immune system driven by Gaussian col-
ored noise as a function of the noise intensity with different strengths of
immunization where r = 1.5, K = 1.5,ε = 0.2.

in given perturbation, the improvement of the effectiveness of the immune

system can accelerate the extinction of the cancer [37].

5. Conclusion

We have explored the MFPT in tumor-immune model with Gaussian/non-

Gaussian colored noise. At first, the singular perturbation method and the

small correlation time approximation method have been applied to the

tumor-immune model with the weak Gaussian colored noise for analytically

calculating the MFPT. It is found that the small correlation time approxi-

mation neglects all the linear odd-order terms of the small correlation time

parameter, although it can keep all the even higher-order terms. By con-

trast, the method of singular perturbation analysis is accurate in the sense

of keeping the linear terms of the same small parameter. With the analyti-

cal results compared with that obtained from Monte-Carlo simulation, the

same conclusion holds true, namely, the result derived from the singular

perturbation method has a better agreement with the simulated result than

that derived from the small correlation time approximation method in the

weak noise level. And then, we apply the singular perturbation method to

the system with non-Gaussian colored noise. It is shown that the increase in

the strength of immunization is helpful for accelerating the extinction of the

tumor cells. Moreover, since the increase of the non-Gaussian deviation pa-
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rameter can lead to a reduction of the MFPT, the heavy-tailed non-Gaussian
perturbation has more benefit for tumor treatment.
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