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Partial differential equations (PDEs) play a crucial role in studying
a vast number of problems in science and engineering. Numerically
solving nonlinear and/or high-dimensional PDEs is frequently a
challenging task. Inspired by the traditional finite difference and
finite elements methods and emerging advancements in machine
learning, we propose a sequence-to-sequence learning (Seq2Seq)
framework called Neural-PDE, which allows one to automatically
learn governing rules of any time-dependent PDE system from ex-
isting data by using a bidirectional LSTM encoder, and predict the
solutions in next n time steps. One critical feature of our proposed
framework is that the Neural-PDE is able to simultaneously learn
and simulate all variables of interest in a PDE system. We test the
Neural-PDE by a range of examples, from one-dimensional PDEs
to a multi-dimensional and nonlinear complex fluids model. The
results show that the Neural-PDE is capable of learning the initial
conditions, boundary conditions and differential operators defin-
ing the initial-boundary-value problem of a PDE system without
the knowledge of the specific form of the PDE system. In our ex-
periments, the Neural-PDE can efficiently extract the dynamics
within 20 epochs training and produce accurate predictions. Fur-
thermore, unlike the traditional machine learning approaches for
learning PDEs, such as CNN and MLP, which require great quan-
tity of parameters for model precision, the Neural-PDE shares pa-
rameters among all time steps, and thus considerably reduces com-
putational complexity and leads to a fast learning algorithm.

1. Introduction

The research of time-dependent partial differential equations (PDEs) is re-
garded as one of the most important disciplines in applied mathematics.
PDEs appear ubiquitously in a broad spectrum of fields including physics,
biology, chemistry, and finance, to name a few. Despite their fundamental
importance, most PDEs can not be solved analytically and have to rely
on numerical solving methods. Developing efficient and accurate numerical
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schemes for solving PDEs, therefore, has been an active research area over
the past few decades [1, 2, 3, 4, 5, 6]. Still, devising stable and accurate
schemes with acceptable computational cost is a difficult task, especially
when nonlinear and(or) high-dimensional PDEs are considered. Addition-
ally, PDE models emerged from science and engineering disciplines usually
require huge empirical data for model calibration and validation, and de-
termining the multi-dimensional parameters in such a PDE system poses
another challenge [7].

Deep learning is considered to be the state-of-the-art tool in classification
and prediction of nonlinear inputs, such as image, text, and speech [8, 9,
10, 11, 12]. Recently, considerable efforts have been made to employ deep
learning tools in designing data-driven methods for solving PDEs [13, 14, 15,
16]. Most of these approaches are based on fully-connected neural networks
(FCNNs), convolutional neural networks(CNNs) and multilayer perceptron
(MLP). These neural network structures usually require an increment of
the layers to improve the predictive accuracy [16], and subsequently lead
to a more complicated model due to the additional parameters. Recurrent
neural networks (RNNs) are another type of neural network architectures.
RNNs predict the next time step value by using the input data from the
current and previous states and share parameters across all inputs. This
idea [17] of using current and previous step states to calculate the state at
the next time step is not unique to RNNs. In fact, it is ubiquitously used
in numerical PDEs. Almost all time-stepping numerical methods applied
to solve time-dependent PDEs, such as Euler’s, Crank-Nicolson, high-order
Taylor and its variance Runge-Kutta [18] time-stepping methods, update
numerical solution by utilizing solution from previous steps.

This motivates us to think what would happen if we replace the previ-
ous step data in the neural network with numerical solution data to PDE
supported on grids. It is possible that the neural network behaves like a
time-stepping method, for example, forward Euler’s method yielding the
numerical solution at a new time point as the current state output [19].
Since the numerical solution on each of the grid point (for finite difference)
or grid cell (for finite element) computed at a set of contiguous time points
can be treated as neural network input in the form of one time sequence
of data, the deep learning framework can be trained to predict any time-
dependent PDEs from the time series data supported on some grids if the
bidirectional structure is applied [20, 21]. In other words, the supervised
training process can be regarded as a practice of the deep learning frame-
work to learn the numerical solution from the input data, by learning the
coefficients on neural network layers.
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Long Short-Term Memory (LSTM) [22] is a neural network built upon
RNNs. Unlike vanilla RNNs, which suffer from losing long term informa-
tion and high probability of gradient vanishing or exploding, LSTM has a
specifically designed memory cell with a set of new gates such as input gate
and forget gate. Equipped with these new gates which control the time to
preserve and pass the information, LSTM is capable of learning long term
dependencies without the danger of having gradient vanishing or exploding.
In the past two decades, LSTM has been widely used in the field of natural
language processing (NLP), such as machine translation, dialogue systems,
question answering systems [23].

Inspired by numerical PDE schemes and LSTM neural network, we pro-
pose a new deep learning framework, denoted as Neural-PDE. It simulates
multi-dimensional governing laws, represented by time-dependent PDEs,
from time series data generated on some grids and predicts the next n time
steps data. The Neural-PDE is capable of intelligently processing related
data from all spatial grids by using the bidirectional [21] neural network,
and thus guarantees the accuracy of the numerical solution and the feasi-
bility in learning any time-dependent PDEs. The detailed structures of the
Neural-PDE and data normalization are introduced in Section 3.

The rest of the paper is organized as follows. Section 2 briefly reviews
finite difference method and finite element method for solving PDEs. Sec-
tion 3 contains detailed description of designing the Neural-PDE. In Sec-
tion 4, we apply the Neural-PDE to solve four different PDEs, including
the 1-dimensional(1D) wave equation, the 2-dimensional(2D) heat equation,
and two systems of PDEs: the invicid Burgers’ equations and a coupled
Navier Stokes-Cahn Hilliard equations, which widely appear in multiscale
modeling of complex fluid systems. We demonstrate the robustness of the
Neural-PDE, which achieves accuracy within 20 epochs with an admissible
mean squared error, even when we add Gaussian noise in the input data.

2. Preliminaries

2.1. Time dependent partial differential equations

A time-dependent partial differential equation is an equation of the form:
(2.1.1)

ut = f(x1, · · · , u,
∂u

∂x1
, · · · , ∂u

∂xn
,

∂2u

∂x1∂x1
, · · · , ∂2u

∂x1∂xn
, · · · , ∂nu

∂x1 · · · ∂xn
) ,

where u = u(x1, ..., xn, t) is known, xi ∈ R are spatial variables, and the
operator f maps R

N �→ R. For example, consider the parabolic heat equa-
tion: ut = α2Δu, where u represents the temperature and f is the Laplacian
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operator Δ. Eq. (2.1.1) can be solved by finite difference methods, which
are briefly reviewed below for the self-completeness of the paper.

2.2. Finite difference method

Consider using a finite difference method (FDM) to solve a two-dimensional
second-order PDE of the form:

(2.2.1) ut = f(x, y, ux, uy, uxx, uyy), (x, y) ∈ Ω ⊂ R
2, t ∈ R

+ ∪ {0} ,

with some proper boundary conditions. Let Ω be Ω = [xa, xb]× [ya, yb], and

uni,j = u(xi, yj , tn)(2.2.2)

where tn = nδt, 0 ≤ n ≤ N , and δt = T
N for some large integer N .

xi = iδx, 0 ≤ i ≤ Nx, δx = xa−xb

Nx
. yj = jδy, 0 ≤ j ≤ Ny, δy = ya−yb

Ny
. Nx

and Ny are integers.

The central difference methods approximate the spatial derivatives as
follows [5]:

ux(xi, yj , t) =
1

2δx
(ui+1,j − ui−1,j) +O(δx2) ,(2.2.3)

uy(xi, yj , t) =
1

2δy
(ui,j+1 − ui,j−1) +O(δy2) ,(2.2.4)

uxx(xi, yj , t) =
1

δx2
(ui+1,j − 2ui,j + ui−1,j) +O(δx2) ,(2.2.5)

uyy(xi, yj , t) =
1

δy2
(ui,j+1 − 2ui,j + ui,j−1) +O(δy2) .(2.2.6)

To this end, the explicit time-stepping scheme to update next step solution
un+1 is given by:

uni,j ≈ Un+1
i,j = Un

i,j + δtf(xi, yj , U
n
i,j , U

n
i,j−1, U

n
i,j+1, U

n
i+1,j , U

n
i−1,j) ,(2.2.7)

≡ F(xi, yj , δx, δy, δt, U
n
i,j , U

n
i,j−1, U

n
i,j+1, U

n
i+1,j , U

n
i−1,j) ,(2.2.8)

where Un
i,j is the numerical solution at grid point (xi, yj , tn).

Apparently, the finite difference method (2.2.7) for updating un+1 on a
grid point relies on the previous time steps’ solutions, supported on the grid
point and its neighbours. The scheme (2.2.7) updates un+1

i,j using five points
of un values (see Figure 1).



Neural-PDE: a RNN based neural network 227

Figure 1: Updating scheme for central
difference method.

Similarly, the finite element
method (FEM) approximates the
new solution by calculating the
corresponded mesh cell coefficient,
which is updated by its related
nearby coefficients on the mesh.

From this perspective, one may
regard the numerical schemes for
solving time-dependent PDEs as
methods catching the information
from neighbourhood data of inter-
est.

2.3. Finite element method

Finite element method (FEM) is a powerful numerical method in solving
PDEs. Consider a 1D wave equation of u(x, t):

utt − v2uxx = f, x ∈ [a, b] ≡ Ω ⊂ R, t ∈ R
+ ∪ {0} ,(2.3.1)

ux(a, t) = ux(b, t) = 0 .(2.3.2)

The function u is approximated by a FEM function uh:

u(x, t) ≈ uh(x, t) =

N∑
i=1

ai(t)ψi(x)(2.3.3)

where ψi ∈ V is the basis functions of some FEM space V , and ani denotes
the coefficients. N denotes the degrees of freedom.
Multiply the equation with an arbitrary test function ψj and integral over
the whole domain we have:∫

Ω
uttψj dx+ v2

∫
Ω
∇u∇ψj dx =

∫
Ω
fψj dx(2.3.4)

and approximate u(x, t) by uh:

N∑
i

∂2ai(t)

∂t2

∫
Ω
ψiψj dx︸ ︷︷ ︸
Mi,j

+v2
N∑
i

ai(t)

∫
Ω
∇ψi∇ψj dx︸ ︷︷ ︸

Ai,j

=

∫
Ω
fψj︸ ︷︷ ︸
b

dx ,(2.3.5)

≡ MTatt + v2ATa = b .(2.3.6)
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Here M is the mass matrix and A is the stiffness matrix, a = (a1, .., aN )t

is a N vector of the coefficients at time t. The central difference method for

time discretization indicates that [6]:

an+1 = 2an − an−1 +M−1(b− v2ATan) .(2.3.7)

This leads to

un+1 ≈ un+1
h =

N∑
i

an+1
i ψi(x) .(2.3.8)

2.4. Long short-term memory

Long Short-Term Memory networks (LSTM) [22, 24] are a class of artificial

recurrent neural network (RNN) architecture that is commonly used for

processing sequence data, and can overcome the gradient vanishing issue in

RNN. Similar to most RNNs [25], LSTM takes a sequence {x1,x2, · · · ,xt}
as input and learns hidden vectors {h1,h2, · · · ,ht} for each corresponding

input. In order to better retain long distance information, LSTM cells are

specifically designed to update the hidden vectors. The computation process

of the forward pass for each LSTM cell is defined as follows:

it = σ(W
(x)
i xt +W

(h)
i ht−1 +W

(c)
i ct−1 + bi) ,

ft = σ(W
(x)
f xt +W

(h)
f ht−1 +W

(c)
f ct−1 + bf ) ,

ct = ftct−1 + it tanh(W
(x)
c xt +W(h)

c ht−1 + bc) ,

ot = σ(W(x)
o xt +W(h)

o ht−1 +W(c)
o ct + bo),

ht = ot tanh(ct) ,

where σ is the logistic sigmoid function, Ws are weight matrices, bs are

bias vectors, and subscripts i, f , o and c denote the input gate, forget gate,

output gate and cell vectors respectively, all of which have the same size as

hidden vector h.

This LSTM structure is used in the paper to simulate the numerical

solutions of partial differential equations.
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3. Proposed method

3.1. Mathematical motivation

Recurrent neural network including LSTM is an artificial neural network
structure of the form [23]:
(3.1.1)
ht = σ(Whxxt +Whhht−1 + bh) ≡ σa(x

t,ht−1) ≡ σb(x
0,x1,x2, · · · ,xt) ,

where xt ∈ R
d is the input data of the tth state and ht−1 ∈ R

h denotes the
processed value in its previous state by the hidden layers. The output yt of
the current state is updated by the current state value ht:

yt = σ(Whyht + by)(3.1.2)

≡ σc(h
t) ≡ σd(x

0,x1,x2, · · · ,xt) .(3.1.3)

HereWhx ∈ R
h×d,Whh ∈ R

h×h,Why ∈ R
h×h are the matrix of weights,

vectors bh, by ∈ R
h are the coefficients of bias, and σ, σa, σb, σc, σd are corre-

sponded activation and mapping functions. With proper design of input and
forget gate, LSTM can effectively yield a better control over the gradient
flow and better preserve useful information from long-range dependencies
[24].

Now consider a temporally continuous vector function u ∈ R
n given by

an ordinary differential equation with the form:

(3.1.4)
du(t)

dt
= g(u(t)) .

Let un = u(t = nδt), a forward Euler’s method for solving u can be
easily derived from the Taylor’s theorem which gives the following first-order
accurate approximation of the time derivative:

(3.1.5)
dun

dt
=

un+1 − un

δt
+O(δt) .

Then we have:

du

dt
= g(u)

(3.1.5)−−−−−→ un+1 = un + δt g(un) +O(δt2)

→ ûn+1 = f1(û
n) = f1 ◦ f1 ◦ · · · f1(û0)︸ ︷︷ ︸

n

(3.1.6)
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Here ûn ≈ u(nδt) is the numerical approximation and f1 ≡ un + δt g(un) :
R
n → R

n. Combining equations (3.1.1) and (3.1.6) one may notice that the
residual networks, recurrent neural network and also LSTM networks can
be regarded as a numerical scheme for solving time-dependent differential
equations if more layers are added and smaller time steps are taken. [19]

Canonical structure for such recurrent neural network usually calculates
the current state value by its previous time step value ht−1 and current state
input xt. Similarly, in numerical PDEs, the next step data at a grid point
is updated from the previous (and current) values on its nearby grid points
(see Eq. 2.2.7).

Thus, what if we replace the temporal input ht−1 and xt with spatial
information? A simple sketch of the upwinding method for a 1D example of
u(x, t):

(3.1.7) ut + νux = 0

will be:

un+1
i = uni − ν

δt

δx
(uni − uni−1) +O(δx, δt) → ûn+1

i = f2(û
n
i−1, û

n
i )

(3.1.8)

≡ fθ
(
fη(xi,hi−1(u))

)
= fθ,η

(
ûn0 , û

n
1 , · · · , ûni−1, û

n
i

)
= vn+1

i(3.1.9)

xi = ûni , hi−1(û) = σ(ûni−1,hi−2(û)) ≡ fη(û
n
0 , û

n
1 , û

n
2 , · · · , ûni−1).(3.1.10)

Here we use vn+1
i to denote the prediction of ûn+1

i processed by neural
network. We replace the temporal previous state ht−1with spacial grid value
hi−1 and input the numerical solution ûni ≈ u(iδx, nδt) as current state
value, which indicates the neural network could be seen as a forward Euler
method for equation 3.1.7 [26]. Function f2 ≡ ûni − ν δt

δx(û
n
i − ûni−1) : R

2 → R

and the function fθ represents the dynamics of the hidden layers in decoder
with parameters θ, and fη specifies the dynamics of the LSTM layer [22, 24]
in encoder withe parameters η. The function fθ,η simulates the dynamics of
the Neural-PDE with parameters θ and η. By applying Bidirectional neural
network, all grid data are transferred and it enables LSTM to simulate the
PDEs as:

vn+1
i = fθ

(
fη(hi+1(ˆ̂u), û

n
i ,hi−1(û))

)
(3.1.11)

hi+1(û) ≡ fη(û
n
i+1, û

n
i+2, û

n
i+3, · · · , ûnk).(3.1.12)

For a time-dependent PDE, if we map all our grid data into an input matrix
which contains the information of δx, δt, then the neural network would
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regress such coefficients as constants and will learn and filter the physical
rules from all the k mesh grids data as:

(3.1.13) vn+1
i = fθ,η

(
ûn0 , û

n
1 , û

n
2 , · · · , ûnk

)
The LSTM neural network is designed to overcome the vanishing gradi-

ent issue through hidden layers, therefore we use such recurrent structure to
increase the stability of the numerical approach in deep learning. The highly
nonlinear function fθ,η simulates the dynamics of updating rules for un+1

i ,
which works in a way similar to a finite difference method (section 2.2) or a
finite element method.

3.2. Neural-PDE

In particular, we use the bidirectional LSTM [22, 24] to better retain the
state information from data on grid points which are neighbourhoods in the
mesh but far away in input matrix.

The right frame of Figure 2 shows the overall design of the Neural-PDE.
Denote the time series data at collocation points as aN

1 ,aN
2 , · · · ,aN

k with
aN
i = [û0i , û

1
i , · · · , ûNi ] at ith point. The superscript represents different time

points. The Neural-PDE takes the past states {aN
1 ,aN

2 , · · · ,aN
k } of all col-

location points, and outputs the predicted future states {bM1 , bM2 , · · · , bMk },
where bMi = [vN+1

i , vN+2
i , · · · , vN+M

i ] is the Neural-PDE prediction for the
ith collocation point at time points from N + 1 to N +M . The data from
time point 0 to N are the training data set.

Figure 2: Neural-PDE.
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The Neural-PDE is an encoder-decoder style sequence model that first
maps the input data to a low dimensional latent space that

(3.2.1) hi =
−−−−→
LSTM(ai)⊕

←−−−−
LSTM(ai),

where ⊕ denotes concatenation and hi is the latent embedding of point ai

under the environment.
One then decoder, another bi-lstm with a dense layer:

(3.2.2) vi =
(−−−−→
LSTM(hi)⊕

←−−−−
LSTM(hi)

)
·W,

where W is the learnable weight matrix in the dense layer. Moreover, the
final decode layers could also have an optional self attention [27] layer, which
makes the model easier to learn long-range dependencies of the mesh grids.

During training process, mean squared error (MSE) loss L is used as we
typically don’t know the specific form of the PDE.

(3.2.3) L =

N+M∑
t=N+1

k∑
i=1

||ûti − vti ||2 ,

3.3. Data initialization and grid point reshape

Figure 3: An example of maping 2d
data matrix into 1d vector where k =
Nx×Ny and Nx and Ny are the num-
bers of grid points on x and y, respec-
tively.

In order to feed the data into our
sequence model framework, we map
the PDE solution data onto aK×N
matrix, whereK ∈ Z

+ is the dimen-
sion of the grid points and N ∈ Z

+

is the length of the time series data
on each grid point. There is no regu-
larization for the input order of the
grid points data in the matrix be-
cause of the bi-directional structure
of the Neural-PDE. For example, a
2D heat equation at some time t
is reshaped into a 1D vector (See
Fig. 3). Then the matrix is formed
accordingly.

For a n-dimensional time-de-
pendent partial differential equation
with K collocation points, the input
and output data for t ∈ (0, T ) will
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be of the form:

A(K,N) =

⎡
⎢⎢⎢⎢⎢⎢⎣

aN
0
...

aN
�
...

aN
K

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

û00 û10 · · · ûn0 · · · ûN0
...

...
. . .

...
. . .

...
û0� û1� · · · ûn� · · · ûN�
...

...
. . .

...
. . .

...
û0K û1K · · · ûnK · · · ûNK

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.3.1)

B(K,M) =

⎡
⎢⎢⎢⎢⎢⎢⎣

bM0
...

bM�
...

bMK

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

vN+1
0 vN+2

0 · · · vN+m
0 · · · vN+M

0
...

...
. . .

...
. . .

...

vN+1
� vN+2

� · · · vN+m
� · · · vN+M

k
...

...
. . .

...
. . .

...

vN+1
K vN+2

K · · · vN+m
K · · · vN+M

K

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.3.2)

Here N = T
δt and each row 
 represents the time series data at the 
th

mesh grid, and M is the time length of the predicted data.
By adding Bidirectional LSTM encoder in the Neural-PDE, it will au-

tomatically extract the information from the time series data as:

(3.3.3)
B(K,M)=PDESolver(A(K,N))=PDESolver(aN

0 ,aN
1 , · · · aN

i , · · · ,aN
K)

4. Computer experiments

Table 1: Error analysis models

Wave Heat Burgers’

Equation utt =
1

16π2uxx ut = uxx
∂u
∂t + u∂u

∂x = 0.1∂2u
∂x2

IC sin(4πx) 6 sin(πx) u(0 ≤ x ≤ L, t = 0) = 0.9
BC periodic periodic periodic

Table 2: L2 error for model evaluation

Δx = 0.1 Wave Heat Burgers’

Δt = 0.1 4.385× 10−3 6.912× 10−5 9.450× 10−4

Δt = 0.01 3.351× 10−5 5.809× 10−5 5.374× 10−3

Δt = 0.001 1.311× 10−5 3.757× 10−5 1.244× 10−3

Since the Neural-PDE is a sequence to sequence learning framework
which allows to predict within any time period by the given data. One may
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Table 3: L2 error for model evaluation

Δt = 0.1 Wave Heat Burgers’

Δx = 0.1 2.190× 10−5 1.162× 10−4 2.561× 10−4

Δx = 0.01 6.059× 10−5 7.706× 10−4 4.206× 10−4

Δx = 0.001 1.498× 10−5 1.400× 10−5 3.700× 10−4

test the Neural-PDE using different permutations of training and predicting

time periods for its efficiency, robustness and accuracy. In the following

examples, the whole dataset is randomly splitted in 80% for training and

20% for testing. We will predict the next tp ∈ [31× δt, 40× δt] PDE solution

by using its previous ttr ∈ [0, 30× δt] data as:

(4.0.1) B(K, 10) = PDESolver(A(K, 30))

We tested Neu-PDE using three classical PDE models with different Δx

and Δt, Table 1 summarizes the information of these models. Table 2 and

Table 3 show the experimental results of the Neural-PDE model solving the

above three different PDEs. We used the Neural-PDE which only consists

of 3 layers: 2 bi-lstm (encoder-decoder) layers with 20 neurons each and 1

dense output layer with 10 neurons and achieved MSEs from O(10−3) to

O(10−5) within 20 epochs, a MLP based neural network such as Physical

Informed Neural Network [16] usually will have more layers and neurons

to achieve similar L2 errors. Additional examples are also discussed in this

section.

Example: wave equation

Consider the 1D wave equation:

utt = cuxx, x ∈ [0, 1], t ∈ [0, 2] ,(4.0.2)

u(x, 0) = sin(4πx)(4.0.3)

u(0, t) = u(1, t)(4.0.4)

Let c = 1
16π2 and use the analytical solution given by the characteristics for

the training and testing data:

(4.0.5) u(x, t) =
1

2
(sin(4πx+ t) + sin(4πx− t)) .
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Here we used δx = 1×10−2, δt = 1×10−2, and the mesh grid size is 101.
We obtained a MSE 3.5401 × 10−5. The test dataset batch size is 25 and
thus the total discrete testing time period is 250. Figures 4(a) and 4(b) are
the heat map for the exact test data and our predicted test data. Figure 4(c)
shows both training and cross-validation errors of Neural-PDE convergent
within 20 epochs.

We selected the final four states for computation and compared them
with analytic solutions. The result indicates that the Neural-PDE is robust
in capturing the physical laws of wave equation and predicting the sequence
time period. See Figure 5.

Figure 4: The Neural-PDE for solving the wave equation.

Example: heat equation

The 1D wave equation case maps the data into a matrix (3.3.1) with its
original spatial locations. In this test, we solve the 2D heat equation de-
scribing how the motion or diffusion of a heat flow evolves over time. Here
the 2-dimensional PDE grid in space is mapped into matrix without regular-
ization of the position. The experimental results show that the Neural-PDE
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Figure 5: Comparison between exact solution and Neural-PDE prediction of
the 1D wave equation at various time points.

is able to capture the valuable features regardless of the order of the grid
points in the matrix. Let’s start with a 2D heat equation as follows:

ut = uxx + uyy ,(4.0.6)

u(x, y, 0) =

{
0.9, if (x− 1)2 + (y − 1)2 < 0.25
0.1, otherwise

(4.0.7)

Ω = [0, 2]× [0, 2], t ∈ [0, 0.15] .(4.0.8)

Figures 6 and 7 show the test of the Neural-PDE using the 2D heat
equation. We obtained a MSE O(10−6).

Example: inviscid Burgers’ equation

Inviscid Burgers’ equation is a classical nonlinear PDE in fluid dynamics.
In this example, we consider a 2D invicid Burgers’ equation which has the
following hyperbolic form:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 0 ,

∂v

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 0 ,(4.0.9)
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Figure 6: Heatmaps of the heat equation data. δx = 0.02, δy = 0.02, δt =
10−4, MSE: 2.1551× 10−6.

Figure 7: The Neural-PDE for solving the 2D heat equation. (a) is the exact
solution u(x, y, t = 0.15) at the final state. (b) is the Neural-PDE prediction.
(c) is the corresponding error map and (d) shows the training and cross-
validation errors.
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Ω = [0, 1]× [0, 1], t ∈ [0, 1] ,(4.0.10)

and with the initial and boundary conditions:

u(0.25 ≤ x ≤ 0.75, 0.25 ≤ y ≤ 0.75, t = 0) = 0.9 ,(4.0.11)

v(0.25 ≤ x ≤ 0.75, 0.25 ≤ y ≤ 0.75, t = 0) = 0.5 ,(4.0.12)

u(0, y, t) = u(1, y, t) = v(x, 0, t) = v(x, 1, t) = 0 .(4.0.13)

The invicid Burgers’ equation is difficult to solve due to the discontinuities
(shock waves) in the solutions. We use a upwinding finite difference scheme
to create the training data and put the velocity u, v in to the input matrix.
Let δx = δy = 10−2, δt = 10−3, our empirical results (see Figure 9) show
that the Neural-PDE is able to learn the shock waves, boundary conditions
and the rules of the equation, and predict u and v simultaneously with an
overall MSE of 2.3070×10−6. The heat maps of exact solution and predicted
solution are shown in Figure 8.

Figure 8: Neural-PDE prediction on the 2D Burgers’ equation.
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Figure 9: Neural-PDE shows accurate prediction on Burgers’ equation.

Example: multiscale modeling: Coupled
Cahn–Hilliard–Navier–Stokes system

Finally, let’s consider the following 2D Cahn–Hilliard–Navier–Stokes system
widely used for modeling complex fluids:

ut + u · ∇u = −∇p+ νΔu− φ∇μ ,(4.0.14)

φt +∇ · (uφ) = MΔμ ,(4.0.15)

μ = λ(−Δφ+
φ

η2
(φ2 − 1)) ,(4.0.16)

∇ · u = 0 .(4.0.17)

In this example we use the following initial condition:

φ(x, y, 0) = (
1

2
− 50 tanh(f1 − 0.1)) + (

1

2
− 50 tanh(f2 − 0.1)) , where

(4.0.18)

f1(x, y) =
√

(x+ 0.12)2 + (y)2, f2(x, y) =
√

(x− 0.12)2 + (y)2
(4.0.19)
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Figure 10: Predicted data by the Neural-PDE (1st row) and the exact data
(2nd row) of volume fraction φ, predicted pressure p (3rd row) and exact
pressure(4th row). The graphs of columns 1-4 represent the time states of
t1, t2, t3, t4, respectively, where 0 ≤ t1 < t2 < t3 < t4 ≤ 1.

with x∈ [−0.5, 0.5], y∈ [−0.5, 0.5], t∈ [0, 1], M = 0.1, ν = 0.01, η = 0.1.
(4.0.20)

This fluid system can be derived by the energetic variational approach

[28]. Here u is the velocity and φ(x, y, t) ∈ [0, 1] is the labeling function of

the fluid phase. M is the diffusion coefficient, and μ is the chemical potential

of φ. Equation (4.0.17) indicates the incompressibility of the fluid. Solving

such PDE system is notorious because of its high nonlinearity and multi-

physical and coupled features. A challenge of deep learning in solving a

system like this is how to process the data to improve the learning efficiency

when the input matrix consists of variables such as φ ∈ [0, 1] with large
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Figure 11: Neural-PDE shows ideal prediction on Fluid System.

magnitude value and variable of very small values such as p ∼ 10−5. For the

Neural-PDE to better extract and learn the physical features of variables in

different spatial-temporal scales, we normalized the p data with a sigmoid

function. We set δt = 5 × 10−4. Here the training dataset is generated

by the FEM solver FreeFem++ [29] using a Crank-Nicolson in time C0

finite element scheme. Our Neural-PDE prediction shows that the physical

features of p and φ have been successfully captured with an overall MSE:

6.1631 × 10−7 (see Figure 10). In this example, we only coupled p and φ

together to show the learning ability of the Neural-PDE. Another approach

is to couple p, φ and the velocity u together in the training data to predict

all the related variables (p, φ,u), which would need more normalization and

regularization, techniques such as batch normalization would be helpful,

please see recent research on PINN based neural network in solving such

system [30].
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5. Conclusions

In this paper, we proposed a novel sequence recurrent deep learning frame-

work: Neural-PDE, which is capable of intelligently filtering and learning

solutions of time-dependent PDEs. One key innovation of our method is

that the time marching method from the numerical PDEs is applied in the

deep learning framework, and the neural network is trained to explore the

accurate numerical solutions for prediction.

Our experiments show that the Neural-PDE is capable of simulating

from 1D to multi-dimensional scalar PDEs to highly nonlinear and cou-

pled PDE systems with their initial conditions, boundary conditions with-

out knowing the specific forms of the equations. Solutions to the PDEs can

be either continuous or discontinuous.

The state-of-the-art researches have shown the promising power of deep

learning in solving high-dimensional nonlinear problems in engineering, bi-

ology and finance with efficiency in computation and accuracy in prediction.

However, there are still unresolved issues in applying deep learning in PDEs.

For instance, the stability and convergence of the traditional numerical algo-

rithms have been rigorously studied by applied mathematicians. Due to the

high nonlinearity of the neural network system, theorems guiding stability

and convergence of solutions predicted by the neural network are yet to be

revealed.

Lastly, it would be helpful and interesting if one can theoretically char-

acterize a numerical scheme from the neural network coefficients and learn

the forms or mechanics from the scheme and prediction. We leave these

questions for future study. The code and data for this paper will become

available at https://github.com/YihaoHu/Neural PDE upon publication.
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