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Computing electrostatic binding energy with the
TABI Poisson-Boltzmann solver∗

Leighton Wilson, Jingzhen Hu, Jiahui Chen, Robert

Krasny, and Weihua Geng

Computations of the electrostatic binding energy ΔΔGelec are pre-
sented for 51 solvated biomolecular complexes using the treecode-
accelerated boundary integral (TABI) Poisson-Boltzmann solver.
TABI computes the electric potential on the triangulated molecu-
lar surface of a complex and its monomers, and further process-
ing yields the solvation free energy ΔGsolv needed to compute
ΔΔGelec. The accuracy of the TABI results was verified using
the high-order finite-difference Matched Interface and Boundary
(MIB) method as the reference. Among two codes used here for
surface triangulation, MSMS and NanoShaper, the latter is found
to be more accurate, efficient, and robust. It is shown that the
accuracy of the computed ΔΔGelec using TABI can be efficiently
improved by extrapolating low triangulation density results to the
high density limit. The calculations needed to compute ΔΔGelec

are susceptible to loss of precision due to cancellation of digits and
this emphasizes the need for relatively higher accuracy in comput-
ing ΔGsolv.

1. Introduction

The binding of two monomers into a biomolecular complex is a fundamental

process in biochemistry and it takes place in various different forms including

enzyme-substrate [1–3], DNA-drug [4], and RNA-protein [5] interactions.

Figure 1 depicts two monomers A,B and the bound complex AB they form.

A key property of the complex is its binding energy,
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Figure 1: Binding of monomers A,B to form complex AB.

(1) ΔΔG = ΔGAB − (ΔGA +ΔGB),

where ΔGAB is the free energy of the complex and ΔGA,ΔGB are the free
energies of the unbound monomers. The binding energy is the work done in
assembling the complex; it is generally positive which means that the two
monomers do not bind spontaneously, but instead require external energy
to form the complex; the higher the value of the binding energy, the more
stable is the complex. Methods of computing the binding energy are widely
used to screen compounds for synthetic drug design.

Among several factors that determine the binding energy of a complex,
electrostatic and solvation effects have particular importance. With this in
mind, the present work focuses on computing the electrostatic binding en-
ergy of a solvated biomolecular complex,

(2) ΔΔGelec = ΔΔGcoul +ΔΔGsolv,

where the first term on the right arises from Coulomb attraction/repulsion
of the solute atoms and the second term arises from the reaction field due
to solvent polarization. The strength of these two terms determines when
binding occurs.

Various models with different levels of physical accuracy and compu-
tational efficiency are used for electrostatic binding energy calculations. A
common choice combines an atomistic representation of the solute with an
explicit or implicit description of the solvent. A study of protein-ligand bind-
ing compared three explicit water models with generalized Born (GB) and
Poisson-Boltzmann (PB) implicit solvent models, finding that the explicit
and implicit computations of ΔΔGelec have similar accuracy, yet the latter
are significantly faster [6]. Another study showed that the PB model captures
much of the nonspecific salt dependence of protein-protein complexation [7].
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In finite-difference PB simulations, studies have examined the dependence of

the computed ΔΔGelec on the grid spacing [8–10], while other work showed

that accuracy can be improved using a high-order discretization with rig-

orous treatment of the dielectric interface conditions [11]. In another study

utilizing the PB model, the computed ΔΔGelec was sensitive to the choice

of force field used to assign atomic partial charges, but consistent ranking

of complexes was obtained within each force field [12].

The present work uses the PB model to compute ΔΔGelec for 51 sol-

vated biomolecular complexes [8]. While several previous studies employed

finite-difference methods for this purpose [6–12], here we use the treecode-

accelerated boundary integral (TABI) solver [13]. TABI computes the elec-

tric potential and its normal derivative on the triangulated molecular surface

separating the solute and solvent, and further processing yields the solva-

tion free energy ΔGsolv needed to compute the binding energy. In this work

the molecular surface is triangulated using MSMS [14] and NanoShaper

[15], and we find that the latter is more accurate, efficient, and robust in

TABI calculations. The calculations needed to compute ΔΔGelec are sus-

ceptible to loss of precision due to cancellation of digits, and as a result,

the computed ΔΔGelec is sensitive to the accuracy of the PB solver, as

known in the case of finite-difference calculations [6, 8–10]. In TABI calcula-

tions, a given level of accuracy in ΔΔGelec can be achieved using sufficiently

high triangulation density, and we show how accuracy can be improved

more efficiently by extrapolating low density results to the high density

limit.

The work is organized as follows. Section 2 introduces the PB implicit

solvent model of a solvated biomolecule. Section 3 discusses numerical PB

solvers. Section 4 describes the TABI solver. Section 5 explains the pro-

cedure for computing ΔΔGelec. Section 6 presents implementation details.

Section 7 reports numerical results for the electrostatic binding energy of

51 biomolecular complexes [8]. The article ends with a section summarizing

the main points.

2. Poisson-Boltzmann model

Figure 2 shows the PB model of a solvated biomolecule with the solute

domain Ω1, solvent domain Ω2, and dielectric interface Γ which we take to be

the molecular surface (or solvent-excluded surface). The solute is represented

by partial charges qk at atomic centers yk, k = 1 : Na and the solvent has a

distribution of dissolved ions.
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Figure 2: Poisson-Boltzmann model, solute domain Ω1, solvent domain Ω2,
dielectric constants ε1,2, molecular surface Γ, solute is represented by atomic
partial charges, solvent is continuum dielectric with dissolved ions.

In this work the solute domain has dielectric constant ε1 = 1 corre-

sponding to a vacuum and the solvent domain has a high dielectric constant

ε2 = 80 corresponding to water. The electric potential φ(x) satisfies the

linear PB equation,

(3) −∇ · ε(x)∇φ(x) + κ̄2(x)φ(x) =

Na∑
k=1

δ(x− yk)qk, x ∈ Ω1 ∪ Ω2,

subject to interface conditions for the potential and its normal derivative,

(4) φ1(x) = φ2(x), ε1
∂φ1

∂n
(x) = ε2

∂φ2

∂n
(x), x ∈ Γ,

where subscripts 1,2 indicate the limiting value from either side of the in-

terface. The screening parameter is κ̄2 = ε2κ
2, where κ is the inverse Debye

length; κ̄ = 0 in Ω1 and has a nonzero constant value in Ω2. References give

more detail about the definition and units of these coefficients [16, 17]. The

potential also satisfies the far-field boundary condition,

(5) lim
|x|→∞

φ(x) = 0.
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Equations (3)-(5) define a boundary value problem for the potential φ(x)

which in general must be solved numerically.

3. Numerical PB solvers

Numerical PB solvers face several challenges; the solute biomolecule is repre-

sented by singular point charges, the molecular surface typically has complex

geometry, the dielectric constant is discontinuous across the surface, and the

domain is unbounded. As described in comprehensive reviews [18, 19], sev-

eral types of numerical PB solvers have been developed including grid-based

finite-difference and finite-element methods [20–23, 25–30], and boundary

element methods [13, 31–38].

Grid-based PB solvers discretize the truncated volumetric domain and

solve a sparse linear system for the potential at the grid points. These solvers

are available in popular software packages such as APBS [39], AMBER [26,

40], CHARMM [23, 24], and DelPhi [21, 41]. In these methods, the singular

charges are interpolated to the grid, the interface conditions are enforced

implicitly, and the far-field boundary condition is implemented by a focusing

technique applied on a sequence of truncated domains. The computational

error can be reduced by refining the grid, and schemes with higher order

accuracy have been developed that enforce the interface conditions more

rigorously and account for the singular charges using a Green’s function

based decomposition [42–44].

Boundary element methods (BEMs) convert the PB differential equation

into an equivalent set of integral equations for the surface potential and its

normal derivative which are solved on the triangulated molecular surface.

BEMs account for the singular charges, interface conditions, and far-field

boundary condition analytically. These advantages are offset by the cost

of solving a dense linear system, but the solution can be accelerated using

GMRES iteration [45] with matrix-vector products computed by the Fast

Multipole Method [46–48] or a treecode [49–51].

4. TABI PB solver

This section describes the treecode-accelerated boundary integral (TABI)

PB solver, starting with the boundary integral form of the PB implicit sol-

vent model, then the discretization of the integral equations, and finally the

treecode algorithm used to accelerate the matrix-vector product.
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4.1. Boundary integral form of PB model

The TABI solver utilizes a well-conditioned boundary integral form of the PB

implicit solvent model [32]. Applying Green’s second identity to Eq. (3), the

electric potential is expressed in terms of single and double layer potentials.

In the solute domain, x ∈ Ω1, this takes the form

(6) φ(x) =

∫
Γ

[
G0(x,y)

∂φ(y)

∂n
− ∂G0(x,y)

∂ny
φ(y)

]
dSy +

Na∑
k=1

G0(x,yk)qk,

while in the solvent domain, x ∈ Ω2, it is

(7) φ(x) =

∫
Γ

[
−Gκ(x,y)

∂φ(y)

∂n
+

∂Gκ(x,y)

∂ny
φ(y)

]
dSy,

where the Coulomb and screened Coulomb potentials are

(8) G0(x,y) =
1

4π|x− y| , Gκ(x,y) =
e−κ|x−y|

4π|x− y| .

Enforcing the interface conditions in Eq. (4) yields a set of coupled inte-

gral equations relating the surface potential φ1(x) and its normal derivative

∂φ1/∂n(x) on the molecular surface, x ∈ Γ,

ε

ε1
φ1(x) =

∫
Γ

[
K1(x,y)

∂φ1(y)

∂n
+K2(x,y)φ1(y)

]
dSy + S1(x),(9a)

ε

ε2

∂φ1(x)

∂n
=

∫
Γ

[
K3(x,y)

∂φ1(y)

∂n
+K4(x,y)φ1(y)

]
dSy + S2(x),(9b)

where ε = (ε1 + ε2)/2, and the kernels K1,2,3,4 depend on G0, Gk and their

first and second order normal derivatives [32], while the source terms are

(10) S1(x) =
1

ε1

Na∑
k=1

G0(x,yk)qk, S2(x) =
1

ε1

Na∑
k=1

∂G0(x,yk)

∂nx
qk.
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4.2. Discretization of boundary integral equations

In this work the molecular surface Γ is triangulated using either MSMS [14]
or NanoShaper [15]. As an example, Fig. 3 shows the triangulated sur-
faces for a barnase-barstar complex (PDB ID 1b2s) with MSMS density
d = 5. Letting xi, i = 1 : N denote the triangle centroids, the integrals
in Eqs. (9a)-(9b) are discretized by centroid collocation, yielding a linear
system of equations, Ax = b, where the elements of matrix A involve ker-
nel evaluations of type K(xi,xj), vector x contains the surface potentials
φ1(xi) and normal derivatives ∂φ1/∂n(xi), and vector b contains the source
terms S1(xi), S2(xi). The system is solved for vector x by GMRES iter-
ation which requires a matrix-vector product in each step [45], but the
matrix A is dense and computing the product by direct summation re-
quires O(N2) operations, which is prohibitively expensive when N is large.
Next we describe the treecode used to accelerate the matrix-vector prod-
uct.

Figure 3: Triangulated molecular surfaces of barnase-barstar (PDB ID 1b2s)
using MSMS density d = 5, (a) monomers, barnase (upper left), barstar
(lower right), (b) complex.

4.3. Treecode

We summarize the treecode algorithm and refer to previous work for more
detail [49–51]. The matrix-vector product for the discretization of Eqs. (9a)-
(9b) requires computing N -body potentials of the form
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(11) Vi =

N∑
j=1,j �=i

K(xi,xj)qj , i = 1 : N,

where K(x,y) is a kernel, xi,xj are triangle centroids (also called particles
in this context), and qj is a charge associated with xj . The treecode starts
by dividing the particles {xi} into a hierarchy of clusters {C} having a
tree structure as shown schematically in Fig. 4a. Next the treecode loops
through the particles and computes each potential as a sum of particle-
cluster interactions,

(12) Vi ≈
∑
C ∈Ni

∑
xj∈C

K(xi,xj)qj +
∑
C ∈Fi

p∑
||k||=0

ak(xi,xc)m
k
C , i = 1 : N,

where Ni, Fi denote the near-field and far-field clusters of particle xi. Fig-
ure 4b shows a particle-cluster interaction.

Figure 4: Schematic of treecode, (a) tree structure of particle clusters, (b) particle-
cluster interaction between particle xi and cluster C = {xj}, xc: cluster center, rc:
cluster radius, R: particle-cluster distance.

The first term on the right of Eq. (12) is a direct sum for particles xj

near xi, and the second term is a pth order Cartesian Taylor approximation
for clusters that are well-separated from xi, where ak(xi,xc) are the Taylor
coefficients of kernel K about the cluster center xc and mk

C are the cluster
moments. Multi-index notation is used with k = (k1, k2, k3), ||k|| = k1 +
k2 + k3. A particle xi and a cluster C are defined to be well-separated if
the multipole acceptance criterion (MAC) is satisfied, rc/R ≤ θ, where rc
is the cluster radius, R = |xi − xc| is the particle-cluster distance, and θ
is a user-specified parameter. The accuracy of the treecode is controlled
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by the order p and MAC parameter θ. Using the treecode, the operation
count for the matrix-vector product is O(N logN), where the factor N is
the number of particles xi, and the factor logN is the number of levels in
the tree.

5. Energy computations

This section explains how the electrostatic free energy ΔGelec and electro-
static binding energy ΔΔGelec are computed in the framework of the TABI
solver for the boundary integral form of the PB implicit solvent model.

5.1. Electrostatic free energy

The electrostatic free energy of a solvated biomolecule is given by

(13) ΔGelec =

∫
R3

(
φ(x)ρ(x) + ΔΠ(x)− 1

2
ε(x)|E(x)|2

)
dx,

where φ is the electric potential, ρ is the fixed charge density of the solute,
ΔΠ is the excess osmotic pressure of the ions in the solvent, and 1

2ε|E|2
is the electrostatic stress [52]. The pressure and stress terms are typically
small in magnitude, and their evaluation involves computationally challeng-
ing integrals, so in practice they are commonly omitted [52–54]. With this
assumption the electrostatic free energy is

(14) ΔGelec = ΔGcoul +ΔGsolv,

where the first term is the Coulomb energy of the solute atoms in vacuum,

(15) ΔGcoul =
1

8πε1

Na∑
j,k=1
j �=k

qjqk
|yj − yk|

,

and the second term is the solvation energy due to solvent polarization,
which in the boundary integral PB framework [32] is

(16) ΔGsolv =
1

2

Na∑
k=1

qk

∫
Γ

(
K1(yk,y)

∂φ1(y)

∂n
+K2(yk,y)φ1(y)

)
dSy.

Numerical solution of the PB boundary integral form in Eqs. (9a)-(9b) yields
the electric potential and its normal derivative at the triangle centroids from
which the solvation energy in Eq. (16) is computed.
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5.2. Electrostatic binding energy

Figure 5 shows the thermodynamic loop which yields the electrostatic bind-

ing energy of a solvated complex,

(17) ΔΔGelec = ΔΔGcoul +ΔΔGsolv,

where the Coulomb binding energy and solvation binding energy are given

in terms of the electrostatic free energy of the complex and its monomers,

ΔΔGcoul = ΔGAB
coul − (ΔGA

coul +ΔGB
coul),(18a)

ΔΔGsolv = ΔGAB
solv − (ΔGA

solv +ΔGB
solv).(18b)

In these calculations, the Coulomb energy ΔGcoul is computed directly using

Eq. (15) and is free of numerical error, while the solvation energy ΔGsolv is

computed by the TABI solver using Eq. (16), so the latter determines the

numerical accuracy of the computed electrostatic binding energy ΔΔGelec.

Note however that in addition to the discretization error arising from the

TABI solver, the calculations needed to compute ΔΔGelec are susceptible to

loss of precision due to cancellation of digits; this is commented on further

below.

Figure 5: Thermodynamic loop for binding of monomers A,B to form com-
plex AB, subscripts v, s denote vacuum and solvent, electrostatic binding
energy ΔΔGelec has contributions from Coulomb binding energy in vacuum
and solvation free energy of monomers and complex.
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6. Implementation details

This section describes the data sets of biomolecular complexes that were
studied, the molecular surface triangulation codes used in the calculations,
and an extrapolation scheme to efficiently improve the accuracy of the com-
puted ΔΔGelec.

6.1. Data sets of biomolecular complexes

We consider three data sets comprising 51 biomolecular complexes. The
PQR files containing the atomic coordinates and radii were originally ob-
tained from Dr. Marcia Fenley at Florida State University [8, 9] and are
also available from Dr. Guowei Wei at Michigan State University [55]. Ta-
ble 1 gives the Protein Data Bank ID of each complex, and Fig. 6 dis-
plays the number of atoms and total charge of each monomer and com-
plex.

Data set 1 includes 28 DNA-minor groove drug complexes comprising
a large DNA segment (A) and a small drug molecule (B), where the DNA
segment is negatively charged (≈−20ec), while the drug molecule is slightly
positively charged. Data set 2 includes 9 wild-type and mutant barnase-
barstar complexes in which the barnase (A) and barstar (B) are about the
same size, while the barnase is slightly positively charged and the barstar is
negatively charged. Data set 3 includes 14 RNA-peptide complexes, where
in most cases the RNA (A) is larger than the peptide (B) and is highly
negatively charged, while the peptide (B) is positively charged with relatively
smaller magnitude.

Table 1: Protein Data Bank ID of biomolecular complexes [8, 9, 55]

data set 1 102d 109d 121d 127d 129d 166d 195d 1d30
1d63 1d64 1d86 1dne 1eel 1fmq 1fms 1jtl
1lex 1prp 227d 261d 264d 289d 298d 2dbe
302d 311d 328d 360d

data set 2 1b27 1b2s 1b2u 1b3s 1x1u 1x1w 1x1x 1x1y
2za4

data set 3 1a1t 1a4t 1biv 1exy 1g70 1hji 1i9f 1mnb
1nyb 1qfq 1ull 1zbn 2a9x 484d

6.2. Molecular surface triangulation codes

Two molecular surface triangulation codes were employed, MSMS [14] and
NanoShaper [15]. In MSMS the user specifies the density d which sets the



258 Leighton Wilson et al.

Figure 6: Biomolecular complexes, (a) number of atoms, (b) total charge
(ec), complex (◦), monomer A (×), monomer B (	), data set 1 (DNA-drug,
index 0-27), data set 2 (barnase-barstar, index 28-36), data set 3 (RNA-
peptide, index 37-50).

number of triangle vertices per Å2 of surface area, while in NanoShaper the
user specifies the scale s which sets the number of grid points per Å in the
marching cubes algorithm used for surface generation. Table 2 lists five val-
ues of the MSMS density di and NanoShaper scale si yielding triangulations
of comparable size, where the relation di ≈ 1.6s2i is found empirically. For
each density/scale value, Table 2 also gives the corresponding number of
triangles N for representative complexes (102d, 1b27, 1a1t) from each data
set. For some complexes, MSMS did not produce a valid triangulation for
high density d4,5 = 40, 80, while NanoShaper had no such limitation, so we
mainly consider d1,2,3 = 5, 10, 20, with partial results for d4,5 = 40, 80 given
in the supplementary material. For simplicity in some instances below, the
term “density” and notation “di” refers to both the MSMS density and the
corresponding NanoShaper scale in Table 2.

Table 2: Molecular surface triangulation, values of MSMS density di and
NanoShaper (NS) scale si for i = 1 : 5 yielding triangulations of comparable
size N for representative complexes from each data set

102d, N 1b27, N 1a1t, N
i di si MSMS NS MSMS NS MSMS NS
1 5 1.76 33859 33248 79846 78188 55800 55592
2 10 2.47 65945 65580 152996 154400 106729 109728
3 20 3.49 137079 131552 318333 309168 223542 219748
4 40 4.94 276275 264004 639682 621140 449744 440900
5 80 7.13 566091 550432 1305099 1295040 921589 919476
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6.3. Extrapolation for improved accuracy

The accuracy of the computed electrostatic binding energy ΔΔGelec depends
on the triangulation density used in solving the PB equation, where higher
density yields better accuracy. However, higher density is also more compu-
tationally expensive, so here we consider an alternative approach in which
the binding energy is computed for two low density values and these are ex-
trapolated to the high density limit. In particular, we assume the computed
binding energy depends smoothly on the triangulation density,

ΔΔGelec(d) ∼ c0 + c1d
−1, d → ∞,(19a)

ΔΔGelec(s) ∼ c0 + c1s
−2, s → ∞,(19b)

where Eq. (19a) is used for MSMS calculations and Eq. (19b) is used for
NanoShaper calculations. These asymptotic relations are justified empir-
ically from the numerical results, and a similar approach was previously
used in boundary element PB calculations of electrostatic solvation en-
ergy [13, 38]. In either case, the constants c0, c1 are obtained by interpo-
lating the two ΔΔGelec(d) values computed using TABI with density d1, d2
or d2, d3, and then c0 is our estimate of the exact binding energy.

7. Numerical results

The results presented below were obtained on a single core of the University
of Michigan FLUX cluster with Intel Xeon CPUs running at either 2.5 or
2.8GHz. In this system the type of processor could not be specified, so the
timing results were averaged over multiple runs. The code was compiled with
the GCC Fortran compiler using the -O2 optimization flag.

The original TABI code was utilized [56] with atomic partial charges set
by the CHARMM force field [24], solvent temperature T = 298K, dielectric
constant ε1 = 1 in the solute and ε2 = 80 in the solvent, and ionic strength
κ = 0.1M NaCl. The treecode used Taylor approximation order p = 3, MAC
parameter θ = 0.5, and maximum number of particles in a leaf N0 = 500;
these values ensure that the treecode approximation error is smaller than
the boundary element discretization error.

Results for the three data sets are given in the supplementary material.
Tables S1-S3 give the computed ΔΔGelec using MSMS and NanoShaper
with density di/scale si, and Tables S4-S6 give the extrapolated values using
d1,2, d2,3/s1,2, s2,3, where for example the notation d1,2 means that extrapola-
tion with density d1 and d2 was used. Tables S4-S6 also give ΔΔGelec values
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computed using the Matched Interface and Boundary (MIB) PB solver [11],
a finite-difference scheme with rigorous treatment of the interface jump con-
ditions [42], geometric singularities [43], and charge singularities [44]. The
MIB calculations used fine mesh spacing h = 0.2Å and they serve as the
reference for the accuracy of the TABI results.

7.1. Accuracy and efficiency of TABI

Table 3 presents the relative deviation (%) in computed electrostatic bind-
ing energy ΔΔGelec between TABI and reference MIB results, where the
deviation is averaged over the complexes in each data set. For low triangula-
tion density/scale, TABI+MSMS is more accurate than TABI+NanoShaper
for data set 1 and data set 3, but TABI+NanoShaper is more accurate for
data set 2. As previously mentioned, for some complexes MSMS did not
produce a valid triangulation for high density d4, d5, but NanoShaper was
able to provide better accuracy for high scale s4, s5. Extrapolation improves
the accuracy for both TABI+MSMS and TABI+NanoShaper, but the lat-
ter is more accurate for each data set and for the combined set of all 51
complexes.

Table 3: Relative deviation (%) in electrostatic binding energy ΔΔGelec

between TABI and reference MIB results, MSMS/NanoShaper triangulation
density di/scale si from Table 2, extrapolation with d1,2, d2,3/s1,2, s2,3

TABI+MSMS
d1 d2 d3 d4 d5 d1,2 d2,3

data set 1 36.8 19.6 14.6 na na 12.8 11.1
data set 2 52.5 44.0 40.9 na na 34.6 38.0
data set 3 56.6 34.8 25.4 na na 13.5 17.0

all 45.0 28.1 22.2 na na 16.9 17.4

TABI+NanoShaper
s1 s2 s3 s4 s5 s1,2 s2,3

data set 1 84.1 44.7 25.0 15.0 10.2 8.1 6.5
data set 2 34.6 18.6 12.3 8.4 7.9 5.6 6.6
data set 3 71.1 39.1 22.3 13.4 10.0 8.7 6.7

all 71.8 38.6 22.0 13.4 9.8 7.8 6.6

Table 4 presents the TABI computational run time (hr) which is the sum
of the run times for each complex and its two monomers in a given data set.
For extrapolated results, the run time is the sum of the run times for the
two density/scale values used in the extrapolation. The results show that
for a given density/scale, TABI+NanoShaper is faster than TABI+MSMS,
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in agreement with previous solvation energy calculations [57]. In addition,
TABI+NanoShaper is faster and more accurate using extrapolation of two
low scale values than one high scale calculation; for example considering
the combined set of all 51 complexes, scale s5 yields 9.8% deviation and
100.1 hr run time, while extrapolation s1,2 yields 7.8% deviation and 10.7 hr
run time.

Table 4: Run time (hr) for electrostatic binding energy calculations using
TABI+MSMS/NanoShaper, triangulation density di/scale si from Table 2,
extrapolation with d1,2, d2,3/s1,2, s2,3

TABI+MSMS
d1 d2 d3 d4 d5 d1,2 d2,3

data set 1 1.2 2.5 6.4 na na 3.7 8.9
data set 2 2.2 6.5 14.4 na na 8.6 20.9
data set 3 1.4 4.0 8.8 na na 5.4 12.8

all 4.7 12.9 29.7 na na 17.7 42.6

TABI+NanoShaper
s1 s2 s3 s4 s5 s1,2 s2,3

data set 1 0.9 2.1 4.8 10.4 24.2 3.0 6.9
data set 2 1.3 3.1 8.1 19.2 49.2 4.4 11.3
data set 3 1.0 2.3 5.2 11.3 26.8 3.2 7.5

all 3.2 7.4 18.2 41.0 100.1 10.7 25.7

Hence extrapolation improves the accuracy and efficiency of electrostatic
binding energy calculations, and TABI performs better with NanoShaper
than with MSMS. Figure 7 shows this graphically, where the TABI run
time (hr) is plotted versus the relative deviation (%) from the reference
MIB results for each data set (1, 2, 3, all), and the results for MSMS den-
sity d1,2, d2,3 (◦) and NanoShaper scale s1,2, s2,3 (×) are connected by a
line.

7.2. Sensitivity of electrostatic binding energy

Several previous studies have noted the sensitivity of electrostatic binding
energy calculations to numerical errors [6, 8–10, 12]. Among various terms
needed in these calculations, the Coulomb free energy ΔGcoul in Eq. (15)
is computed directly and has no numerical error, while the solvation free
energy ΔGsolv in Eq. (16) is subject to the discretization error in the TABI
solver. However another issue is that the calculations needed to compute
ΔΔGelec are susceptible to loss of precision due to cancellation of dig-
its.
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Figure 7: Electrostatic binding energy calculations, TABI run time (hr) ver-
sus relative deviation (%) from MIB for each data set (1, 2, 3, all), extrapo-
lation with MSMS density d1,2, d2,3 (◦), NanoShaper scale s1,2, s2,3 (×).

This can be seen in Table 5 which gives the terms used in calculating
ΔΔGelec for three representative complexes, one from each data set. For
example consider complex 102d, where according to Eq. (17), ΔΔGelec =
10.52 is the result of adding ΔΔGcoul = −1146.38 and ΔΔGsolv = 1156.90;
in this case, the two leading digits of the components have been cancelled and
the 1st digit of ΔΔGelec is determined by the 3rd digit of the components.
Another instance occurs for complex 1b27, where according to Eq. (18b),
ΔΔGsolv = 589.43 is the result of subtracting ΔGA

solv +ΔGB
solv = −2858.91

from ΔGAB
solv = −2269.48; in this case the leading digit of the components has

been cancelled and the 1st digit of ΔΔGsolv is determined by the 2nd digit
of the components. Cancellation of digits can also occur for the Coulomb
energy calculation in Eq. (18a), which even though it is done directly can
still be sensitive to the choice of force field used to assign the partial atomic
charges [12].

The issue arises when leading digits are cancelled in the calculations
needed to compute a ΔΔG value, and it is difficult to know in advance
when the problem will occur. Hence to ensure that the electrostatic binding
energy ΔΔGelec is accurate to a certain number of digits, the solvation free
energy ΔGsolv should be accurate to several more digits. This is consistent
with the results of finite-difference calculations of binding energy [6, 8–10]. In
the case of TABI calculations, it emphasizes the utility of extrapolating low
triangulation density results to the high density limit to efficiently improve
accuracy.
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Table 5: Terms used in calculating ΔΔGelec for representative complexes
from each data set, energy in kcal/mol, solvation energy and binding energy
are extrapolated using NanoShaper scale s1,2

102d 1b27 1alt

ΔGA
coul -18772.59 -34506.17 -16493.30

ΔGB
coul -439.32 -27780.19 -16729.86

ΔGA
coul +ΔGB

coul -19211.91 -62286.36 -33223.16

ΔGAB
coul -20358.29 -62786.71 -37697.99

ΔΔGcoul -1146.38 -500.35 -4474.83

ΔGA
solv -6235.19 -1273.09 -5402.25

ΔGB
solv -149.91 -1585.82 -2499.25

ΔGA
solv +ΔGB

solv -6385.10 -2858.91 -7901.50

ΔGAB
solv -5228.20 -2269.48 -3357.10

ΔΔGsolv 1156.90 589.43 4544.40

ΔΔGelec 10.52 89.08 69.57

8. Conclusion

This work presented computations of electrostatic binding energy ΔΔGelec

for 51 solvated biomolecular complexes using the treecode-accelerated bound-
ary integral (TABI) Poisson-Boltzmann solver. TABI computes the elec-
tric potential on the triangulated molecular surface of a complex and its
monomers, and further processing yields the solvation free energy ΔGsolv

needed to compute the binding energy. The accuracy of the TABI results was
verified using the high-order finite-difference Matched Interface and Bound-
ary (MIB) method as the reference. Among two codes used here for surface
triangulation, MSMS and NanoShaper, the latter is found to be more accu-
rate, efficient, and robust. It was shown that the accuracy of the computed
ΔΔGelec using TABI can be efficiently improved by extrapolating low trian-
gulation density results to the high density limit. The calculations needed
to compute ΔΔGelec are susceptible to loss of precision due to cancellation
of digits and this emphasizes the need for relatively higher accuracy in com-
puting ΔGsolv. An updated version of the TABI-PB solver is available in
Github [58] or as a contributed module in APBS [59, 60]. It is hoped that
the capability demonstrated here in computing electrostatic binding energy
of solvated biomolecular complexes may facilitate biophysical modeling and
screening studies for synthetic drug design.
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Appendix: Supplementary material

Table S1: Data set 1, electrostatic binding energy ΔΔGelec (kcal/mol),
MSMS density di, NanoShaper scale si from Table 2

NanoShaper MSMS

PDB ID s1 s2 s3 s4 s5 d1 d2 d3 d4 d5
102d 16.1 13.3 11.6 10.7 10.3 14.5 11.5 10.6 10.4 10.1

109d 7.6 5.0 4.2 3.5 3.2 5.2 3.7 3.6 3.3 na

121d 35.4 29.8 27.2 26.1 25.5 29.6 26.9 25.7 25.2 na

127d 37.0 33.8 32.0 30.9 30.6 34.2 32.2 31.3 na na

129d 48.3 44.6 42.9 41.8 41.6 45.8 43.1 42.5 41.7 na

166d 21.6 18.5 17.0 16.4 15.9 17.9 16.7 16.2 15.9 15.7

195d 11.3 7.9 5.8 5.1 4.4 7.0 5.5 4.7 na na

1d30 19.3 15.3 13.0 11.7 11.5 15.5 12.7 11.8 11.3 na

1d63 24.2 18.5 15.9 14.2 13.8 18.0 15.4 14.1 11.8 12.0

1d64 20.9 17.6 16.2 15.6 15.3 16.7 16.1 15.4 15.2 15.1

1d86 37.7 32.2 28.9 27.8 26.9 31.4 28.9 27.2 27.0 26.5

1dne 34.1 28.5 25.9 24.9 24.3 28.4 25.8 24.5 24.3 24.0

1eel 21.6 18.3 16.7 15.8 15.2 18.5 16.3 15.5 na na

1fmq 21.9 18.1 16.4 15.9 15.5 18.5 16.5 15.7 na na

1fms 34.0 29.7 28.0 27.2 26.2 30.2 28.0 27.2 26.3 na

1jtl 18.8 14.6 12.8 11.7 11.4 13.6 11.6 11.5 11.1 na

1lex 20.9 15.1 12.5 11.3 10.7 14.5 11.8 11.0 12.2 na

1prp 18.6 15.2 13.3 12.7 12.3 14.6 13.2 12.4 12.2 12.0

227d 15.7 11.7 9.1 7.8 7.4 11.2 9.0 7.9 7.1 na

261d 11.8 7.4 5.1 3.6 3.0 4.2 1.4 0.8 na na

264d 37.9 35.3 33.9 33.5 33.1 35.8 33.5 32.7 31.9 na

289d 23.6 20.0 18.8 18.0 17.8 19.6 18.3 17.7 17.5 na

298d 21.8 18.5 16.9 16.5 16.0 18.4 16.6 16.0 15.8 na

2dbe 15.5 11.0 8.5 7.4 6.9 10.4 8.4 9.1 na na

302d 32.1 28.6 27.0 26.1 25.7 28.7 26.6 25.9 na na

311d 20.4 14.7 12.2 11.1 10.4 14.3 11.6 10.4 10.1 na

328d 23.0 20.4 19.1 18.6 18.2 20.5 18.6 17.9 na na

360d 88.5 82.9 80.4 79.3 79.1 58.5 57.2 56.1 55.8 na
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Table S2: Data set 2, electrostatic binding energy ΔΔGelec (kcal/mol),
MSMS density di, NanoShaper scale si from Table 2

NanoShaper MSMS

PDB ID s1 s2 s3 s4 s5 d1 d2 d3 d4 d5
1b27 118.3 103.9 97.9 93.6 92.6 125.9 118.6 116.1 113.7 na

1b2s 102.7 89.4 82.5 78.9 78.3 108.4 102.4 99.8 na na

1b2u 102.6 91.7 88.0 84.6 84.8 117.6 112.8 111.5 110.0 na

1b3s 78.6 63.3 59.0 55.2 54.6 76.1 69.5 67.0 67.2 na

1x1u 105.0 94.5 87.0 83.1 82.6 107.4 98.2 94.9 93.3 na

1x1w 123.9 113.2 105.9 102.2 101.5 135.7 128.5 126.4 na na

1x1x 147.1 132.5 125.8 121.6 121.0 162.8 156.0 153.0 148.0 na

1x1y 116.2 105.3 99.6 96.4 95.4 140.7 134.1 132.3 na na

2za4 86.4 76.4 70.5 68.2 67.4 141.8 135.9 133.2 na na

Table S3: Data set 3, electrostatic binding energy ΔΔGelec (kcal/mol),
MSMS density di, NanoShaper scale si from Table 2

NanoShaper MSMS

PDB ID s1 s2 s3 s4 s5 d1 d2 d3 d4 d5
1a1t 103.8 86.9 76.6 72.0 69.0 108.9 97.0 91.1 87.5 na

1a4t 99.9 87.4 80.4 77.5 75.7 89.5 80.4 77.0 75.4 na

1biv 75.6 59.4 53.4 48.7 46.8 60.6 51.8 48.3 46.7 45.9

1exy 219.3 200.9 191.5 185.7 184.3 206.7 193.4 185.9 na na

1g70 169.3 153.1 144.7 140.2 139.0 158.4 148.4 145.9 160.3 na

1hji 84.9 69.7 63.1 59.1 57.0 81.4 71.1 66.8 64.2 68.0

1i9f 13.6 -0.6 -9.8 -13.5 -16.4 2.1 -7.2 -12.9 -14.7 na

1mnb 165.4 148.4 140.1 136.4 133.4 153.2 141.2 135.7 na na

1nyb 17.7 4.7 -2.4 -5.8 -7.2 9.6 1.3 -2.2 -4.7 na

1qfq 45.8 35.0 29.8 25.8 25.3 48.9 40.3 38.0 35.4 36.0

1ull -12.9 -35.8 -46.5 -53.5 -56.3 -21.2 -38.8 -46.8 na na

1zbn 250.3 234.6 225.3 221.3 219.2 239.6 228.7 224.5 221.7 na

2a9x 413.4 399.8 395.3 389.2 387.8 402.3 395.3 390.4 387.1 na

484d 189.8 166.5 153.9 147.2 143.6 191.6 174.9 168.8 na na
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Table S4: Data set 1, extrapolated binding energy ΔΔGelec (kcal/mol),
MSMS density di, NanoShaper scale si from Table 2, MIB grid spacing
h = 0.2Å

NanoShaper MSMS MIB

PDB ID s1,2 s2,3 d1,2 d2,3 h

102d 10.5 9.8 8.3 9.8 10.3

109d 2.4 3.4 2.1 3.5 2.7

121d 24.0 24.6 24.0 24.6 23.9

127d 30.5 30.2 30.1 30.5 29.1

129d 40.8 41.3 40.3 41.9 40.2

166d 15.4 15.5 15.4 15.7 15.7

195d 4.4 3.8 3.9 4.0 2.7

1d30 11.3 10.6 9.8 11.0 10.6

1d63 12.8 13.2 12.6 12.9 12.4

1d64 14.3 14.7 15.5 14.7 14.6

1d86 26.5 25.7 26.3 25.6 25.5

1dne 22.7 23.4 23.0 23.3 22.8

1eel 14.9 15.1 14.0 14.7 15.1

1fmq 14.2 14.7 14.4 15.0 15.4

1fms 25.5 26.3 25.7 26.5 25.7

1jtl 10.3 11.0 9.5 11.4 11.5

1lex 9.1 9.9 9.0 10.3 9.7

1prp 11.9 11.4 11.7 11.7 11.6

227d 7.5 6.6 6.7 6.9 5.6

261d 3.0 2.9 -1.6 0.2 2.9

264d 32.7 32.4 31.1 32.0 32.3

289d 16.4 17.5 16.9 17.1 16.6

298d 15.1 15.4 14.7 15.4 15.4

2dbe 6.4 6.1 6.3 9.8 5.8

302d 24.9 25.5 24.4 25.2 25.2

311d 8.8 9.7 8.8 9.3 9.3

328d 17.7 17.9 16.6 17.2 17.5

360d 77.0 77.9 55.8 55.1 55.6
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Table S5: Data set 2, extrapolated binding energy ΔΔGelec (kcal/mol),
MSMS density di, NanoShaper scale si from Table 2, MIB grid spacing
h = 0.2Å

NanoShaper MSMS MIB

PDB ID s1,2 s2,3 d1,2 d2,3 h

1b27 89.1 91.9 110.6 113.8 87.1

1b2s 76.0 75.5 95.8 97.4 72.1

1b2u 80.5 84.4 107.5 110.3 78.6

1b3s 47.6 54.8 62.2 64.7 49.3

1x1u 83.8 79.5 88.2 91.8 76.0

1x1w 102.2 98.6 120.6 124.5 95.3

1x1x 117.6 119.2 148.6 150.2 114.7

1x1y 94.2 94.0 126.9 130.6 89.2

2za4 66.2 64.7 129.4 130.7 74.4

Table S6: Data set 3, extrapolated binding energy ΔΔGelec (kcal/mol),
MSMS density di, NanoShaper scale si from Table 2, MIB grid spacing
h = 0.2Å

NanoShaper MSMS MIB

PDB ID s1,2 s2,3 d1,2 d2,3 h

1a1t 69.6 66.3 84.0 85.7 63.0

1a4t 74.6 73.4 70.5 73.8 72.3

1biv 43.0 47.3 42.2 45.0 44.8

1exy 182.4 182.1 178.9 178.9 177.4

1g70 136.5 136.4 137.4 143.5 133.5

1hji 54.0 56.5 59.8 62.9 51.2

1i9f -15.2 -19.0 -17.5 -18.2 -19.2

1mnb 130.9 131.8 128.1 130.6 128.2

1nyb -8.7 -9.5 -8.0 -5.4 -12.6

1qfq 24.0 24.7 30.8 35.9 20.3

1ull -59.3 -57.2 -58.2 -54.2 -52.8

1zbn 218.5 215.9 216.9 220.6 215.7

2a9x 385.6 390.9 387.7 385.8 385.4

484d 142.5 141.3 156.8 163.1 133.4
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