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For various purposes and, in particular, in the context of data

compression, a graph can be examined at three levels. Its struc-

ture can be described as the unlabelled version of the graph; then

the labelling of its structure can be added; and finally, given then

structure and labelling, the contents of the labels can be described.

Determining the amount of information present at each level and

quantifying the degree of dependence between them requires the

study of symmetry, graph automorphism, entropy, and graph com-

pressibility. In this paper, we focus on a class of small-world graphs.

These are geometric random graphs where vertices are first con-

nected to their nearest neighbours on a circle and then pairs of

non-neighbours are connected according to a distance-dependent

probability distribution. We establish the degree distribution of

this model, and use it to prove the model’s asymmetry in an ap-

propriate range of parameters. Then we derive the relevant entropy

and structural entropy of these random graphs, in connection with

graph compression.
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1. Introduction

Our main aim in this work is to develop rigorous results on structural prop-
erties that are fundamental to statistical and information-theoretic problems
involving the information shared between the labels and the structure of a
random graph, specifically within the class of small-world graphs. For vari-
ous statistical and signal processing tasks and, in particular, in the context
of data compression, the information present in a graph can be examined
at three levels. First, its structure can be described, that is, the unlabelled
version of the graph. Second, its labelling can be described given its struc-
ture. And third, the actual contents of the labels can be described, given the
structure and the labelling [41]. In some problems, for example in recovering
the node arrival order of dynamic networks [30], the goal is to first recover
label information by examining a graph structure, and then to explain the
structural properties (such as symmetry) involved in their analysis.

More formally, the labelled and unlabelled graph compression problems
can be described as follows. Fix a graph model on the collection G(n) of all
simple, undirected, labelled graphs on n vertices. First, we aim to understand
the best achievable performance of efficiently computable source codes for
this model [16]. A source code (Cn, Dn) here consists of an encoder Cn

mapping graphs in G(n) to finite-length bit strings, and of a decoder Dn

that inverts Cn. The goal is to make the (expected) length of the output bit
string as short as possible. Of particular interest to us here is the related
problem of the compression of graph structures. In this case, the encoder
Cn is presented with a graph Gn isomorphic to a sample from G(n), and
Dn(Cn(Gn)) is only required to be a labelled graph isomorphic to Gn, so that
only the structural information is preserved. We again seek to characterize
efficient source codes with minimal code lengths. This optimal compression
performance is characterized by the entropy of the distribution on unlabelled
graphs induced by the model, which we call its structural entropy.

Structural properties. Several interesting structural properties and quan-
tities arise naturally in connection with graph compression. As we describe
next, determining the structural entropy often involves computing the size
of the automorphism group of a graph, as well as the typical number of
positive-probability labelled representatives (re-labellings or permutations)
of a given structure.

In general, given a labelled graph Gn generated by some model on G(n),
all n! label permutations lead to the same structure Sn := Sn(Gn); however,
not all permutations may be permissible under the model, and some per-
mutations may lead to the exact same graph. The latter property is well
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characterized by the automorphism group, Aut(Gn), of Gn. When the car-
dinality of the automorphism group is one, then the graph is asymmetric
since every feasible permutation is distinct (in term of the labelled graph)
and gives the same structure. In some cases, such as the Erdős-Rényi (ER)
model [12] and preferential attachment graphs (PAG) [8, 28], all permuta-
tions lead to the same graph with high probability. In other words, these
models are invariant under isomorphism. Furthermore, in the ER model ev-
ery permutation is feasible, unlike under the PAG model. For PAG graphs,
the number of distinct re-labellings can be computed as the ratio of the
number of feasible permutations, |Γ(Gn)|, and the size of the automorphism
group, |Aut(Gn)|. As a consequence, the structural entropy of the unlabelled
graph is a function of log |Γ(Gn)|/|Aut(Gn)| as well as of the (labelled) graph
entropy. However, when the model is not invariant under isomorphism, we
need to actually estimate the conditional entropy of the (labelled) graph
under a given structure.

One such class is the family of small-world graphs [44, 25] on the circle. In
this paper we focus on the symmetry, entropy and automorphism properties
of graphs generated by this model.

Contributions. We study the small-world model [44, 25] where n vertices
are arranged on the circle in increasing order, and each node is connected to
its two nearest neighbours. Then different pairs of nodes are (independently)
connected with probability proportional to 1/ka, where k is their distance
and a ∈ (0, 1) is fixed parameter; precise definitions are given in Section 3.
Such a model does not satisfy the two properties discussed above: it is not
invariant under isomorphism, and not every permutation is feasible.

For the small-word model we first compute the mean degree of a node
(Proposition 3.1), and in Theorem 3.4 we prove that it is asymmetric with
high probability. This allows us to derive very accurate asymptotic estimates
for the graph entropy and structural entropy; these are presented in Theo-
rem 4.2 and Corollary 4.3. Finally, in Theorem 4.4 we give a precise upper
bound on the conditional entropy of a small-world graph given its structure,
a result which is of independent interest from both the combinatorial and
information-theoretic points of view.

Prior work. There is a long history of very detailed results on the problem
of determining the fundamental limits of the best achievable compression
performance for sequential data; see, e.g., [40, 26, 27] and the references
therein. However, the study of the compression problem for graph and tree
models, in both the information theory and the computer science literature,
is more recent [45, 7, 1, 15, 17, 13]. In 1990, Naor [34] proposed an efficiently
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computable representation for unlabelled graphs (answering Turán’s [42]
open question), and showed that this representation is optimal up to the
second leading term of the entropy when all unlabelled graphs are equally
likely. Naor’s result is, asymptotically, a special case of corresponding ex-
pansions developed later in [15], where general ER graphs were analyzed.
Further extensions to PAG graphs were derived in [29].

An approach based on automata, was used in [33] to design an optimal
graph compression scheme. Recently, the authors of [18] proposed a general
universal lossless source coding algorithm for graphs, and there are also a
number of heuristic methods for real-world graph compression, including a
grammar-based scheme for data structures [13, 32, 38]. Efficient compression
algorithms were developed in [10], leveraging symmetry properties of graphs
arising in connection with deep neural networks. A comprehensive survey of
lossless graph compression algorithms can be found in [11].

There are a number of studies of the compression problem for trees [21,
23, 45, 31, 22]. For binary, plane-oriented trees, information-theoretic results
were rigorously obtained in [31], and a universal, grammar-based lossless
coding scheme was proposed in [22].

In the computer science literature, the focus has been almost exclu-
sively on algorithmic complexity, and very little attention seems to have
been given to comparisons with fundamental information-theoretic compres-
sion measures – which is the main focus of this paper. Also, work in both
communities has largely been restricted to labelled graphs, or graphs with
strong edge independence assumptions (with the exception of [2, 31]). As we
show, interesting additional complications arise when the goal is to compress
graphical structures.

Paper organization. In the next section, after some technical preliminar-
ies, we review some known symmetry and structural entropy properties of
the ER and PAG models. The small-world graph model is introduced in
Section 3, where its degree distribution is determined and its asymmetry
established. Our main results on the graph entropy and structural entropy
of small-world graphs are stated and proved in Section 4.

2. Preliminaries: random graphs and entropy

2.1. Graphs, structures, labels, and symmetry

Let G(n) denote the class of all (undirected, simple, labelled) graphs G =
(V,E) on n = |V | vertices, where for simplicity we take V = {1, 2, . . . , n}
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throughout. Let Pn denote a model for such graphs, that is, a discrete proba-
bility mass function (PMF) on G(n). For example, under the classical Erdős-
Rényi (ER) model [20, 12] with parameter p, for G ∈ G(n),

Pn(G) = p|E|(1− p)(
n

2)−|E|,

where |E| is the number of edges of G = (V,E). On the other hand, for the
preferential attachment graphs PA(m,n) studied, e.g., in [8], where a new
node connects to m existing nodes with probability which is proportional to
their degree, the probability Pn(G) does not depend only on |E|.

Any such model Pn induces a probability distribution Qn on structures.
Let S(n) denote the class of all unlabelled graphs of n vertices. Then the
induced probability of a structure S ∈ S(n) is the sum of the probabilities
of all graphs G with the same structure S,

Qn(S) =
∑

G∈Iso(S)
Pn(G),(1)

where Iso(S) ⊂ G(n) is the isomorphism equivalence class consisting of all
graphs in G(n) with structure S.

Some standard models Pn, such as the simple ER model and PA(m,n)
graphs [28], are invariant under isomorphism, that is, Pn(G) = Pn(G

′),
whenever G and G′ are both permissible (i.e., they have nonzero probability
under Pn) and there is an S such that both G,G′ ∈ Iso(S). In such cases we
simply have,

Qn(S) = Pn(G) · |Iso(S) ∩Πn|,
where G is any graph in Iso(S) and Πn denotes the collection of all permissi-
ble graphs in G(n), i.e., the support of Pn. If, in addition, every permutation
is permissible by a given model – as in ER model – then the number of
graphs isomorphic to a given G is equal to the number of permutations of
the labels, n!, divided by the number of such permutations that lead to ex-
actly the same graph, namely, the size of the automorphism group Aut(G)
of G. Therefore,

Qn(S) = Pn(G) · n!

|Aut(G)| .(2)

More generally, in cases like the PA(m,n) model [28], where not all
permutations are permissible, we have,

Qn(S) = Pn(G) · |Γ(G)|
|Aut(G)| .(3)
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where Γ(G) is the set of permissible permutations. For example, for PA(m,n)

we know that E[log |Γ(G)|] = n log n− O(n log log n) [28]. [Throughout the

paper, log denotes the natural logarithm loge.] As we will see later, the

small-world model considered here is not invariant under isomorphism, and

not every permutation is permissible.

It is of interest to know how much symmetry a given graph has. In

particular, in some applications one needs to know if a graph is asymmetric,

as defined below.

Definition 2.1. A graph G is called asymmetric if |Aut(G)| = 1.

It is known that, in appropriate parameter ranges, the ER [24] and

PAG [28] models generate asymmetric graphs with high probability:

Theorem 2.2 (ER asymmetry [24]). (i) For a sequence of random graphs

{Gn} under the ER model with parameters {pn}, such that, as n → ∞,

pn � log n

n
and 1− pn � logn

n
,

we have, for any t > 0,

Pr(Gn is symmetric) = O(n−t),

as n → ∞.

(PAG asymmetry [28]) (ii) For a sequence of random graphs {Gn} under

the PA(m,n) model with m ≥ 3, we have that, for some δ > 0,

Pr(Gn is symmetric) = O(n−δ),

as n → ∞.

One of our main results below will be the development of a statement

analogous to Theorem 2.2 for a class of small-world random graphs.

2.2. Entropy and compressibility

Detailed asymptotic expansions for the graph entropy H(Gn) under the ER

and PAG models are known as we review below. First we note, without

proof, a simple expression for the binary entropy function.
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Lemma 2.3. The binary entropy function h(p) = −p log p−(1−p) log(1−p)
satisfies, as p → 0,

h(p) = p log
(1
p

)
+ p− 1

2
p2 +O(p3).

Moreover, the error term always satisfies −(1/2)p3 ≤ O(p3) ≤ 0, and for
p ≤ 1/4 it also satisfies O(p3) ≤ −(1/10)p3.

Lemma 2.4. (i) (ER graph entropy) For a sequence of ER random
graphs {Gn} with parameters {pn},

H(Gn) =
n(n− 1)

2
h(pn),

and if pn → 0 as n → ∞,

H(Gn) =
n(n− 1)

2

[
pn log

( 1

pn

)
+ pn − 1

2
p2n +O(p3n)

]
.

(ii) (PAG graph entropy [39, 28]) For a sequence of PA(m,n) random
graphs {Gn}, we have, as n → ∞,

H(Gn) = mn logn+m (log 2m− 1− logm!−A)n+ o(n),(4)

where,

A =

∞∑
d=m

log d

(d+ 1)(d+ 2)
.

Proof. We only sketch the proof for the ER model. By definition, Gn ∼ Pn

describes
(
n
2

)
independent Bern(pn) random variables, so,H(Gn) =

(
n
2

)
h(pn)

and using Lemma 2.3 gives the claimed result. The proof of (4) can be found
in [28].

For a random graph Gn with structure Sn, the chain rule for entropy
implies that,

H(Sn) = H(Gn)−H(Gn|Sn).(5)

Using this identity together with relation (2) in combination with Theo-
rem 2.2, Choi and Szpankowski [15] for the ER model and Luczak et al. [28]
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for PAG graphs, establish the following asymptotic expansions for the en-
tropy of ER and PAG random structures. An analogous expansion for a class
of small-world graphs is established in this paper.

Theorem 2.5 (ER structural entropy). (i) For a sequence of ER random
graphs {Gn} with parameters {pn} that satisfy,

pn � log n

n
and 1− pn � logn

n
,

as n → ∞, we have, for some β > 0,

H(Sn) =
n(n− 1)

2
h(pn)− logn! +O

( log n
nβ

)
.

(PAG structural entropy) (ii) For a sequence of PA(m,n) random graphs
{Gn} with m ≥ 3 we have, as n → ∞,

H(Sn) = (m− 1)n logn+Rn,(6)

where Rn satisfies,

Cn ≤ |Rn| ≤ O(n log logn),

for some nonzero constant C = C(m).

Definition 2.6. The compressibility of a random graph Gn = (Vn, En) is
measured by the average number of bits (or, rather, nats) per edge used in
its best possible description, that is, Cn = H(Gn)/E(|En|). We say that the
sequence of random graphs {Gn} is compressible, if Cn = O(1).

Recent studies indicate that many real-world examples of large graphs,
including web graphs and social media graphs, are compressible. For an
extensive discussion of compressibility in different models see [14].

For the ER model we note that each node has Bin(n−1, pn) edges, which
is ≈ Po(npn) for large n, as long as pn = o(1); to see this, recall Theorem 1
of [9]. Also, E(|En|) = n(n− 1)pn/2, so by Lemma 2.4 in this case,

Cn =
H(Gn)

E(|En|)
∼ − log pn,

which is unbounded. Therefore, in the above sense, the ER model with
parameters pn = o(1) is incompressible. Similarly, for PA(m,n) graphs, we
have Cn ∼ logn, for m ≥ 3.
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3. A small-world model

Here we examine a small-world model, similar to those introduced in [44, 25].
More specifically, it is a Newman-Watts-type model [37]; also see [35, 14, 2].
It is a model of geometric random graphs, with high-clustering properties
that differentiate them from ER and PAG models [19, 36].

Consider the vertex set V = {1, 2, . . . , n} arranged on the circle, with
each vertex connected by an edge to its two nearest neighbours. For each
one of the remaining

(
n
2

)
−n pairs of vertices (u, v), we add an edge between

them with probability p(|u − v|), where |u − v| is the discrete distance on
the circle and pn(k) = cnk

−a, for some a ∈ (0, 1) and with,

cn = bn(1− a)

(
2

n

)1−a

,

where {bn} is a nondecreasing, unbounded sequence of positive real numbers,
with bn = o(n1−a), as n → ∞. In all the results and discussion below we
implicitly assume that n is large enough so that all the pn(k) are less than
one, which is always possible by the assumptions on bn.

The graph shown in Figure 1 on is an example of a small world graph
with n = 16; nearest neighbour edges are shown in blue and random edges
are green. Note that there are more edges between nearby nodes and fewer
between distant ones.

Figure 1: Example of a small world graph on n = 16 vertices.

We call a random undirected graphGn generated by this model a random
small-world graph with parameters a and bn, and we write Gn ∼ SW(a, bn).
It is assumed throughout that a ∈ (0, 1) and bn = o(n1−a).
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Before examining the SW(a, bn) class further, we remark that small-
world models are an important class of geometric random graphs in that,
unlike in the ER model, the connectivity of a small-world graph depends
on the actual locations of the nodes. Although it will not play a role in our
analysis, we mention that another important characteristic of such graphs
is the “small-world property.” This means that the graph distance between
any two nodes is much smaller than in a purely random graph, with high
probability; see the above references or the texts [36, 43] for details.

3.1. Degree distribution

Proposition 3.1 (SW mean degree). The mean degree μn of an arbitrary
node in a random graph Gn ∼ SW(a, bn) satisfies,

μn = 2bn + 2 +O
( bn
n1−a

)
,

as n → ∞.

For the proof we need the following lemmas. The expansions in Lemma 3.2
follow from straightforward applications of Euler-Maclaurin summation; see,
e.g., [5, 6].

Lemma 3.2. As n → ∞,

n∑
k=1

1

k
= log n+ γ +

1

2n
+O

( 1

n2

)
,

where γ is Euler’s constant and the error term is bounded in absolute value
by 1

6n2 , for all n ≥ 2. Also, as n → ∞, for any s > 0, s �= 1,

n∑
k=1

1

ks
=

1

(1− s)ns−1
+ ζ(s) +

1

2ns
+O

( 1

ns+1

)
,

where ζ is the Riemann zeta function,

ζ(s) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
k=1

1

ks
, if s > 1,

lim
M→∞

[
M∑
k=1

1

ks
− M1−s

(1− s)

]
, if s ∈ (0, 1),

and the error term is bounded in absolute value by s
6ns+1 .
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Next we will apply Lemma 3.2 to get some simple estimates regarding
the probabilities pn(k). The proof of Lemma 3.3 is given in the Appendix.

Lemma 3.3. For odd n, let:

Sn,1 = 2

(n−1)/2∑
k=2

pn(k), Sn,2 = 2

(n−1)/2∑
k=2

pn(k)
2.

Similarly, for even n, let:

S′
n,1 = 2

(n−2)/2∑
k=2

pn(k) + pn(n/2), S′
n,2 = 2

(n−2)/2∑
k=2

pn(k)
2 + pn(n/2)

2.

Then, as n → ∞,

Sn,1 = 2bn +O
( bn
n1−a

)
,

Sn,2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
4(1−a)2

1−2a

)
b2n
n +O

(
b2n

n2−2a

)
, a ∈ (0, 1/2),

b2n logn
n +O

(
b2n
n

)
, a = 1/2,

23−2a(1− a)2ζ(2a) b2n
n2−2a +O

(
b2n
n

)
, a ∈ (1/2, 1),

and the same results hold with S′
n,1 in place of Sn,1, and S′

n,2 in place of
Sn,2.

Proof of Proposition 3.1. The edges of Gn can be described as
(
n
2

)
−n

independent Bernoulli random variables. Choose and fix n ≥ 5 be arbitrary.
Suppose n is odd. Considering, without loss of generality, the node u =

1, let Xk, Yk, for k = 2, 3, . . . , (n − 1)/2, denote binary random variables,
where each Xk and each Yk describe whether node u = 1 is connected to a
different node at distance k from node u = 1. Then {Xk, Yk} are independent
Bernoulli random variables with corresponding parameters {pn(k)}, and the
degree of node u = 1, Wn, say, can be expressed as Wn = [2+

∑
k(Xk+Yk)].

Therefore, the mean degree of any vertex is,

μn := E(Wn) = 2 + 2

(n−1)/2∑
k=2

pn(k) = 2 + Sn,1.(7)

Similarly, if n is even, there are n possible edges between pairs of nodes
at each distance k = 2, 3, . . . , n−2

2 , and n/2 possible edges between pairs of
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nodes at distance n/2. Here, the mean degree of a vertex is,

μn = 2 + 2

(n−2)/2∑
k=2

pn(k) + pn(n/2) = 2 + S′
n,1.(8)

Combining (7) and (8) with Lemma 3.3 completes the proof.

3.2. Asymmetry

Let G = (V,E) be an arbitrary undirected graph on V = {1, 2, . . . , n}, with
no self loops. We first make a series of definitions following the terminology
of [24].

The set of neighbours of a vertex u ∈ V is denoted,

N(u) = {v ∈ V : (u, v) ∈ E}.

Let π be any permutation on V . The defect of a vertex u ∈ V under the
permutation π is,

Dπ(u) = |N(π(u))
π(N(u))|,
which can also be expressed as,

Dπ(u) =
∑

v �=π(u)

[
I{(π(u), v) ∈ E, (u, π−1(v)) �∈ E}

+ I{(π(u), v) �∈ E, (u, π−1(v)) ∈ E}
]
.(9)

The defect of the graph G under π is, Dπ(G) = maxu∈V Dπ(u), and the total
defect of G is,

D(G) = min
π �=id

Dπ(G),

where id denotes the identity permutation. Note that G is asymmetric iff
D(G) �= 0.

Theorem 3.4 (SW asymmetry). Let {Gn} be a sequence of small-world
random graphs, Gn ∼ SW(a, bn), n ≥ 1. If,

bn = o(n1−a), and
bn

log n
→ ∞, as n → ∞,

then, for any t > 0, as n → ∞:

Pr(Gn is symmetric) = O(n−t).
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Following [24], the proof of Theorem 3.4, given in the Appendix, is based
in part on an application of the following simple concentration bound.

Proposition 3.5. [3, 4] Let Z = f(ξ1, ξ2, . . . , ξm) be a function of the inde-
pendent Bernoulli random variables {ξi}, and suppose that f has the bounded
difference property that, for some c > 0,

max
j,{ξi}

∣∣f(ξ1, . . . , ξj−1, ξj , ξj+1, . . . , ξm)

− f(ξ1, . . . , ξj−1, 1− ξj , ξj+1, . . . , ξm)
∣∣ ≤ c.(10)

Let pi = E(ξi) for each i, and σ2 = c2
∑

i pi(1 − pi). Then, for all 0 < t <
2σ/c:

Pr
[
|Z − E(Z)| > tσ

]
≤ 2e−t2/4.

4. Entropy of the small-world model

4.1. Graph entropy

As with Lemma 3.2, the expansions in Lemma 4.1 below are easy applica-
tions of Euler-Maclaurin summation [5, 6]. It will be used in the proof of
Theorem 4.2, given in the Appendix.

Lemma 4.1. As n → ∞,

n∑
k=1

log k

k
=

1

2
(log n)2 + γ′ +

1

2

logn

n
+O

( log n
n2

)
,

where γ′ is defined, in analogy to Euler’s constant, as,

γ′ = lim
n→∞

[
n∑

k=1

log k

k
− 1

2
(log n)2

]
,

and the error term is bounded in absolute value by 1+logn
6n2 , for all n ≥ 2.

Also, as n → ∞, for any s > 0, s �= 1,

n∑
k=1

log k

ks
=

log n

(1− s)ns−1
− 1

(1− s)2ns−1
− ζ ′(s) +

log n

2ns
+O

( log n
ns+1

)
,

where the error term is bounded in absolute value by 1+s logn
6ns+1 , for all n ≥ 2.
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Theorem 4.2 (SW graph entropy). Let Gn ∼ SW(a, bn), n ≥ 1, be a
sequence of small-world random graphs with,

bn = o(n1−a), and
bn

log n
→ ∞, as n → ∞.

The entropy of this small-world model is,

H(Gn) = nbn
[
log n− log bn − Ca + o(1)

]
,(11)

where,

Ca = a
(1 + log 2

1− a

)
+ log

(
(1− a)21−a

)
− 1.(12)

Remark. Note that, combining the above expansion for the entropy H(Gn)
with the expression for the mean degree of an arbitrary node in Gn given in
Proposition 3.1, we have that, as n → ∞,

H(Gn)

E(|En|)
=

nbn log n(δn + o(1))

2nbn +O(n)
∼ δn

2
log n,

where the positive sequence {δn} is bounded above and bounded away from
zero. Therefore, the average number of “bits per edge” in Gn is unbounded,
so in the terminology of [14] the SW(a, bn) model here is incompressible.

4.2. Structural entropy

Having an estimate for the entropy of a random graph Gn ∼ SW(a, bn) in
Theorem 4.2, it is easy to get a corresponding estimate for the entropy of
the random structure Sn associated with Gn. Since, given Sn, there are at
most n! ≤ nn possible graphs Gn with structure Sn, we have that,

H(Gn|Sn) ≤ n log n.(13)

And since H(Sn) = H(Gn) − H(Gn|Sn) as noted in (5), combining (13)
with (11) immediately yields:

Corollary 4.3 (SW structural entropy). Under the assumptions of The-
orem 4.2, the entropy of the structures Sn associated with the small-world
random graphs Gn ∼ SW(a, bn) satisfies,

H(Sn) = nbn
[
log n− log bn − Ca + o(1)

]
,

where the constant Ca is given in (12).
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Finally we examine the conditional entropy H(Gn|Sn), which describes

the degree of uncertainty that remains about the graph Gn after knowing its

structure Sn. In Theorem 4.4 we obtain a slightly more refined estimate than

the crude upper bound in (13), which gives a tighter result when bn = o(nt)

for all t > 0.

Theorem 4.4 (SW conditional entropy). Let Gn ∼ SW(a, bn) be a sequence

of small-world random graphs with associated structures Sn, n ≥ 1. Suppose

that,

bn = o(n1−a), and
bn

log n
→ ∞, as n → ∞.

Then the conditional entropy of the graph Gn given its structure Sn has:

H(Gn|Sn) ≤ n log bn + (log 5)n+ log
( n

bn

)
+O(1).

First we establish a simple, general upper bound. As in Section 2, we

write Pn for the PMF of Gn on G(n) and similarly Qn for the induced PMF

of Sn in S(n). We also write Ga(n) ⊂ G(n) for the support of Pn, and we

call graphs G ∈ Ga(n) admissible.

Lemma 4.5. For any graph G ∈ Ga(n) with structure S, let τ(G) denote

the number of admissible graphs G′ that are isomorphic to G,

τ(G) = |Iso(S) ∩ Ga(n)|.

Then:

H(Gn|Sn) ≤
∑

G∈G(n)
Pn(G) log τ(G).

Proof. First observe that τ(G) is the same for all G ∈ Iso(S) ∩ Ga(n).

Therefore, with only a slight abuse of notation, we will write τ(S) for τ(G)

if S is the structure of some G ∈ Ga(n). In analogy with Ga(n), let Sa(n)

denote the set of admissible structures, i.e., those S ∈ S(n) for which there

is an admissible G with structure S. Then we have,

H(Gn|Sn) =
∑

S∈Sa(n)

Qn(S)H(Gn|Sn = S)

(a)

≤
∑

S∈Sa(n)

Qn(S) log τ(S),
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so that,

H(Gn|Sn)
(b)
=

∑
S∈Sa(n)

∑
G∈Iso(S)

Pn(G) log τ(S)

=
∑

G∈G(n)
Pn(G) log τ(G),

where (a) follows from the elementary fact that the entropy of a random

variable with m values is at most logm, and (b) follows from the basic

observation (1).

Next we obtain a simple bound on the tails of the degree of the nodes

of Gn ∼ SW(a, bn). Its proof is given in the Appendix.

Proposition 4.6. Under the assumptions of Theorem 4.4, the probability

that there is at least one node in Gn with degree greater than 9bn/2 is O(n−t),

for any t > 0.

We are now in a position to prove the theorem.

Proof of Theorem 4.4. Let Bn be the collection of ‘bad’ graphs G ∈
Ga(n) in the sense of Proposition 4.6, that have at least one node with degree

greater than d := 9bn/2. For any ‘good’ graph G ∈ Bc
n, we can estimate τ(G)

as follows. Suppose G has structure S and let G′ ∈ Iso(S) ∩ Ga(n) be not

identical to G. Let π �= id be the permutation on V = {1, 2, . . . , n} that

maps G to G′. For G′ to be admissible it must contain the cycle of edges

1− 2− · · · − n− 1, which means that G must contain the cycle,

π−1(1)− π−1(2)− · · · − π−1(n)− π−1(1).

So to bound τ(G) it suffices to get an upper bound on the number of per-

mutations π with this property.

Fix an arbitrary i ∈ V as i = π−1(1). Since G ∈ Bc
n, the degree of i is

at most d, so there are at most d choices for the node π−1(2), and similarly,

there are then at most d choices for π−1(3). Continuing this way, there are

at most a total of dn−1 choices for the values of π−1(j), for j = 2, 3, . . . , n,

and an additional n choices for the initial value of i = π−1(1). Therefore,

there are at most ndn−1 possible such permutations, and so,

τ(G) ≤ n(5bn)
n−1.



Compression and symmetry of small-world graphs and structures 291

Finally, we can substitute this in Lemma 4.5 to obtain that,

H(Gn|Sn) ≤
∑
G∈Bc

n

Pn(G) log τ(G) +
∑
G∈Bn

Pn(G) log τ(G)

≤ log
[
n(5bn)

n−1
]
+ Pn(Bn) logn! ,

and using the elementary bound n! ≤ nn, and Proposition 4.6 with t = 2,
we obtain,

H(Gn|Sn) ≤ n log bn + (log 5)n+ [log n− log bn] +O(1),

as claimed.

5. Conclusions

This works examines the degree of compressibility of random graphs and
structures generated by a one-dimensional version of the Newman-Watts
small-world model. First, it is shown that graphs from that model are asymp-
totically asymmetric with high probability, and the graph entropy of the
model is computed. Then, using this symmetry, it is established that the
structure entropy is asymptotically equal to the graph entropy – with equal-
ity proved for the first three (and most significant) terms in their asymptotic
expansion. Finally, a more accurate bound is given on the conditional en-
tropy of the random graph itself given its structure.

Potential applications of this work can be developed in areas where large
graphs naturally arise, with characteristics similar to those in the model
examined here; e.g., see [44, 37, 25, 35, 36] for references to empirical studies
involving graphical data sets with high clustering and other small-world
properties. In particular, our results can provide theoretical guidelines for
designing effective compression algorithms for such data sets, as well as
benchmark values for the fundamental limits of the best compression ratios
that can be achieved theoretically.

An interesting and important direction for future work is the design
of efficient, near-optimal compression algorithms for random-world random
structures. These could have important applications for the communication
and storage of many real-world data sets, including, e.g., metabolite pro-
cessing networks, neuronal brain networks, and social influence networks.

Finally we note that all the basic estimates in Lemmas 2.3, 3.2, and 4.1
are given in nonasymptotic form with closed-form expressions for the error
terms. Therefore, we expect that all the asymptotic results in this paper can,



292 Ioannis Kontoyiannis et al.

with some additional work, be turned into precise, nonasymptotic, finite-n

bounds with explicit constants.

Appendix: Proofs

Proof of Lemma 3.3. We only give the proof for odd n; the case of even

n is similar.

For Sn,1, by the definition of the pn(k) we have,

Sn,1 = 2bn(1− a)
( 2

n

)1−a

⎡
⎣(n−1)/2∑

k=1

1

ka
− 1

⎤
⎦ ,

and by Lemma 3.2 this is,

Sn,1 = 2bn(1− a)
( 2

n

)1−a
[
[(n− 1)/2]1−a

1− a
+O(1)

]
= 2bn +O

( bn
n1−a

)
.

For Sn,2, we similarly have,

Sn,2 = 2b2n(1− a)2
( 2

n

)2−2a

⎡
⎣(n−1)/2∑

k=1

1

k2a
− 1

⎤
⎦ ,

and we apply Lemma 3.2 in three cases.

For a ∈ (0, 1/2),

Sn,2 = 2b2n(1− a)2
( 2

n

)2−2a
[
[(n− 1)/2]1−2a

1− 2a
+O(1)

]

=
2(1− a)2

1− 2a
b2n

( 2

n

)( 2

n

)1−2a [
[(n− 1)/2]1−2a +O(1)

]
=

(4(1− a)2

1− 2a

)b2n
n

+O
( b2n
n2−2a

)
.

For a = 1/2,

Sn,2 =
b2n
n

⎡
⎣(n−1)/2∑

k=1

1

k
− 1

⎤
⎦ =

b2n log n

n
+O

(b2n
n

)
.
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And for a ∈ (1/2, 1),

Sn,2 = 2b2n(1− a)2
( 2

n

)2−2a
[
ζ(2a) +O

( 1

n2a−1

)]

= 23−2a(1− a)2ζ(2a)
b2n

n2−2a
+O

(b2n
n

)
,

as claimed.

Proof of Theorem 3.4. In view of the discussion preceding the theorem,
if Gn ∼ SW(a, bn), the probability that it is symmetric can be bounded
above as,

Pr(Gn is symmetric) = Pr(D(Gn) = 0)

≤
∑
π �=id

Pr(Dπ(Gn) = 0)

=
∑
π �=id

Pr
(
max
u∈V

Dπ(u) = 0
)
,

and defining, for any π �= id,

Zπ =
∑

u:u�=π(u)

Dπ(u),

we have,

Pr(Gn is symmetric) ≤
∑
π �=id

Pr(Zπ = 0).(14)

To further bound the probability that Zπ = 0, we will use Proposi-
tion 3.5. To that end, first observe that, after ignoring the first term in (9),
we have, for any π and any u such that u �= π(u),

E[Dπ(u)] ≥
∑

v �=u,π(u)

Pr
(
(u, π−1(v)) ∈ E, (π(u), v) �∈ E

)
.

Under the assumptions that u �= π(u) and v �= u, π(u), the two events in
the last probability above always refer to two distinct edges, so they are
independent, and hence,

(15) E[Dπ(u)] ≥
∑

v �=u,π(u)

Pr
(
(u, π−1(v)) ∈ E

)[
1− Pr

(
(π(u), v) ∈ E

)]
.
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Each term in the last sum is of the form pn(k)[1 − pn(k
′)] for some k, k′.

Therefore, since pn(k) is decreasing in k for each n, for odd n, E[Dπ(u)] is
bounded below by,

(16) [1− pn(2)]
∑

v �=u,π(u)

Pr
(
(u, π−1(v)) ∈ E

)
≥ [1− pn(2)][Sn,1 − pn(2)],

with Sn,1 defined in Lemma 3.3. Note that in the sum that appears in (15)
and in (16) we ignore terms that correspond to edges between nodes at
distance k = 1, and only sum over pairs at distance k between 2 and (n−1)/2.
So, by the result of the lemma, we have,

E[Dπ(u)] ≥ [1− pn(2)]
[
2bn +O

( bn
n1−a

)
− pn(2)

]
=

[
1−O

( bn
n1−a

)][
2bn +O

( bn
n1−a

)]
= 2bn[1 + o(1)],

since bn = o(n1−a). A similar computation shows that the same result holds
for even n. And letting d(π) denote the degree of a permutation π, i.e., the
number of u such that π(u) �= u, we have, by the above bound and the
definition of Zπ, that:

E(Zπ) ≥ 2d(π)bn[1 + o(1)].(17)

Recall that all Dπ(u) and Zπ can be expressed as functions of the in-
dependent Bernoulli random variables introduced in the proof of Proposi-
tion 3.1. From the expression in (9) it is clear that, changing the value of any
one of the edges corresponding to these random variables can only change
the value of Dπ(u) by at most 2, and adding or deleting any such edge only
affects at most four of the terms in the sum Zπ. Therefore, Zπ considered as a
function of these Bernoulli random variables satisfies the bounded difference
property (10) with c = 8.

For the variance σ2 we note that each of the d(π) many terms in the
sum defining Zπ depends on (n − 3) of the corresponding binary variables.
Therefore, since some of them may influence Dπ(u) for more than one u, we
can bound, for odd n,

σ2 ≤ 82 × 2× d(π)×
(n−1)/2∑
k=2

pn(k)[1− pn(k)] = σ̄2 := 64d(π)[Sn,1 − Sn,2],
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where Sn,2 is defined in Lemma 3.3. By the result of the lemma, under the

present assumptions we have Sn,2 = o(bn) for all a ∈ (0, 1), and hence,

σ2 ≤ σ̄2 := 128d(π)bn[1 + o(1)].(18)

On the other hand, for each u in the definition of Zπ, considering the

influence on Dπ(u) of only those v �= π(u) that lie on the “right” of π(u) on

the circle (in order to avoid double-counting edges), and arguing exactly as

above, we obtain a corresponding lower bound,

σ2 ≥ σ2 := 64d(π)bn[1 + o(1)].(19)

Analogous computations show that the bounds (18) and (19) also hold for

even n, and we are now in a position to apply Proposition 3.5.

Let N be large enough so that, for all n ≥ N , we have 120d(π)bn ≤ σ̄2 ≤
132d(π)bn by (18), σ2 ≥ 60d(π)bn by (19), and the lower bound in (17) is at

least d(π)bn. Note that N can be chosen independently of π, since the o(1)

terms in each of these bounds do not depend on π.

Let s = λσ̄, for a fixed λ ∈ (0, 1/132). Then, for any π �= id and all

n ≥ N , we have, by the choice of λ and the upper bound on σ̄2,

Pr(Zπ = 0) ≤ Pr(Zπ < d(π)bn(1− 132λ))

≤ Pr(Zπ < d(π)bn − λσ̄2)

= Pr(Zπ < d(π)bn − sσ̄).

And by the definition of σ̄2 and the lower bound on E(Zπ),

Pr(Zπ = 0) ≤ Pr(Zπ < d(π)bn − sσ) ≤ Pr(Zπ < E(Zπ)− sσ).

Therefore, by the bound in Proposition 3.5, we obtain,

Pr(Zπ = 0) ≤ Pr(|Zπ − E(Zπ)| > sσ)

≤ 2e−s2/4 = 2e−λ2σ̄2/4 ≤ 2e−33λ2d(π)bn ,(20)

as long as,

λ <
1

8
<

√
5

4
√
11

=

√
60d(π)bn

4
√

132d(π)bn
≤ σ

4σ̄
≤ σ

4σ̄
,

which implies s < σ/4 = 2σ/c.
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Finally, we will sum all the probabilities in (20) as in (14). Since there
are no more than n!/(n − d)! ≤ nd permutations that fix (n − d) vertices,
we have, that,

Pr(Gn is symmetric) ≤
∑
π �=id

Pr(Zπ = 0)

≤ 2

n∑
d=1

nde−33λ2dbn

= 2

n∑
d=1

ed[logn−33λ2bn],

and since bn/ logn → ∞, the right-hand side above is O(n−t), for any t > 0,
as claimed.

Proof of Theorem 4.2. In the notation of the proof of Proposition 3.1,
the edges connecting each node on the circle is described by a collection of
independent Bernoulli random variables. Therefore, considering all n nodes
and accounting for double-counting, when n is odd (the case when n is even
is similar),

H(Gn) =
n

2
H({Xk, Yk}) = n

(n−1)/2∑
k=2

h(pn(k)).

A weaker version of Lemma 2.3 is that, h(p) = p log(1/p) + p − O(p2), for
small p, where the error term is between 0 and p2 for p < 1/2. Therefore,
taking n large enough so that all pn(k) < 1/2, we have that,

H(Gn) = − n

(n−1)/2∑
k=2

pn(k) log pn(k)

+ n

(n−1)/2∑
k=2

pn(k)− n

(n−1)/2∑
k=2

Δn,kpn(k)
2

= ancn

(n−1)/2∑
k=2

log k

ka
− n

2
(log cn)Sn,1 +

n

2
Sn,1 −Δn

n

2
Sn,2,(21)

for appropriate constants Δn,k,Δn in [0, 1], where Sn,1 and Sn,2 are defined
as in Lemma 3.3.
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Using Lemma 4.1, the first term in (21) can be expressed as,

a(1− a)21−anabn×

×
[

log((n− 1)/2)

(1− a)((n− 1)/2)a−1
− 1

(1− a)2((n− 1)/2)a−1
+O(1)

]

= nabn

[
a(n− 1)1−a log((n− 1)/2)− a(n− 1)1−a 1

(1− a)
+O(1)

]

= nabn

[
an1−a log n− an1−a

(1 + log 2

1− a

)
+O(1)

]

= abnn log n− abnn
(1 + log 2

1− a

)
+ o(n).(22)

The sum of the second and third terms in (21), using Lemma 3.3, is,

−n

2

[
log

(
(1− a)21−a

)
+ log bn − (1− a) log n− 1

]
×

×
[
2bn +O

( bn
n1−a

)]

= nabn

[
(1− a)n1−a log n+ n1−a − n1−a log bn

− n1−a log
(
(1− a)21−a

)]
+ o(n logn)

= (1− a)bnn logn− bnn log bn

− bnn log
(
(1− a)21−a

)
+ bnn+ o(nbn).(23)

And the last term in (21), by Lemma 3.3, is o(nbn) for all a ∈ (0, 1). Sub-
stituting this together with (22) and (23) into (21), yields,

nbn

{
log n− log bn −

[
a
(1 + log 2

1− a

)
+ log

(
(1− a)21−a

)
− 1

]
+ o(1)

}
,

as required.

Proof of Proposition 4.6. We give the proof for odd n; the case of even
n is similar.

Let Wn(i) denote the (random) degree of node i in Gn, so that Wn(1) =
Wn as in the proof of Proposition 3.1. We will apply Proposition 3.5 to bound
the tails of Wn. Note that, E(Wn) = 2+Sn,1 = 2bn+2+o(1), by Lemma 3.3.
Also, as a function of the Bernoulli variables {Xk, Yk} introduced in the
proof of Proposition 3.1, Wn satisfies the assumptions of Proposition 3.5
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with c = 1. And in this case, in the notation of Lemma 3.3, the variance σ2

is,

σ2 = 2

(n−1)/2∑
k=2

pn(k)(1− pn(k)) = Sn,1 − Sn,2 = bn[2 + o(1)].

Now consider N large enough such that, for all n ≥ N ,

2bn ≤ E(Wn) ≤ 3bn, and bn ≤ σ2 ≤ 3bn.

Then by the union bound and symmetry, we have that, for any λ ∈ (0, 1/2)
and n ≥ N ,

Pr
(

max
1≤i≤n

Wn(i) > 2(λ+ 2)bn

)
≤ nPr

(
Wn > 2(λ+ 2)bn

)
≤ nPr

(
Wn > E(Wn) + (2λ+ 1)bn

)
≤ nPr

(
|Wn − E(Wn)| > (2λ+ 1)bn

)
= nPr

(
|Wn − E(Wn)| > sσ

)
,

where we took s = (2λ + 1)bn/σ. Since 0 < s < 2σ for n ≥ N by our
assumptions, we can apply Proposition 3.5 with λ = 1/4 to obtain that,

Pr
(

max
1≤i≤n

Wn(i) > 9bn/2
)

≤ 2n exp(−s2/4)

= 2 exp
{
log n− 9b2n

16σ2

}
≤ 2 exp

{
log n− 3bn

16

}
,

and since bn/ log n → ∞ as n → ∞, the result follows.
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