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Emerging severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) variants have compromised existing vaccines and posed a

grand challenge to coronavirus disease 2019 (COVID-19) preven-

tion, control, and global economic recovery. For COVID-19 pa-

tients, one of the most effective COVID-19 medications is mon-

oclonal antibody (mAb) therapies. The United States Food and

Drug Administration (U.S. FDA) has given the emergency use au-

thorization (EUA) to a few mAbs, including those from Regeneron,

Eli Elly, etc. However, they are also undermined by SARS-CoV-

2 mutations. It is imperative to develop effective mutation-proof

mAbs for treating COVID-19 patients infected by all emerging

variants and/or the original SARS-CoV-2. We carry out a deep

mutational scanning to present the blueprint of such mAbs using

algebraic topology and artificial intelligence (AI). To reduce the

risk of clinical trial-related failure, we select five mAbs either with

FDA EUA or in clinical trials as our starting point. We demon-

strate that topological AI-designed mAbs are effective for vari-

ants of concerns and variants of interest designated by the World

Health Organization (WHO), as well as the original SARS-CoV-

2. Our topological AI methodologies have been validated by tens

of thousands of deep mutational data and their predictions have

been confirmed by results from tens of experimental laboratories

and population-level statistics of genome isolates from hundreds of

thousands of patients.

∗Research supported in part by NIH grants GM126189 and AI164266,

NSF grants DMS-2052983, DMS-1761320, and IIS-1900473, NASA grant

80NSSC21M0023, Michigan Economic Development Corporation, MSU Founda-

tion, Bristol-Myers Squibb 65109, and Pfizer.
†The authors thank The IBM TJ Watson Research Center, The COVID-19 High

Performance Computing Consortium, NVIDIA, and MSU HPCC for computational

assistance. The authors thank Drs. Kaifu Gao and Changchuan Yin, and Ms. Rui

Wang for useful discussions.
‡Corresponding author.

339

https://www.intlpress.com/site/pub/pages/journals/items/cis/_home/_main/index.php


340 Jiahui Chen and Guo-Wei Wei

1. Introduction

In combating the coronavirus disease 2019 (COVID-19) pandemic, there has

been exigency to develop effective antiviral treatments i.e., vaccines, antivi-

ral drugs, and antibody therapies. The developments in these treatments are

some of the most paramount scientific accomplishments in the battle against

COVID-19. However, emerging severe acute respiratory syndrome coron-

avirus 2 (SARS-CoV-2) variants, particularly variants of concern (VOCs),

impact transmission, virulence, and immunity and pose a threat to existing

vaccines and antibody drugs.

SARS-CoV-2 is an enveloped, unsegmented positive-sense single-strand

ribonucleic acid (RNA) virus, which enters cells depending on the binding

of its spike (S) protein receptor-binding domain (RBD) to host angiotensin-

converting enzyme 2 (ACE2) receptor [1]. The binding free energy (BFE)

between the S protein and ACE2, according to epidemiological and biochem-

ical analysis, is proportional to the infectivity of SARS-CoV-2 in the host

cells [2, 3]. In July 2020, it was shown that driven by natural selection [4],

mutations strengthen RBD-ACE2 binding and thus make the virus more in-

fectious. The high-frequency RBD mutations were shown to be undoubtedly

governed by natural selection [4, 5]. Additionally, natural selection also cre-

ates new SARS-CoV-2 variants easily escaping antibodies induced by either

infection or vaccination [6]. By comparing to the first SARS-CoV-2 strain

deposited to GenBank (Access number: NC 045512.2), the mutation-induced

BFE changes (ΔΔG) of the binding of S protein and ACE2 provide a way

to measure the infectivity changes of a SARS-CoV-2 variant. Positive BFE

changes induced by mutations of RBD binding to ACE2 reveal that muta-

tions potentially improve the binding, while negative BFE changes indicate

mutations weaken the transmissibility and infectivity. Thus, the impact of

SARS-CoV-2 RBD variants on infectivity can be evaluated according to

their BFE changes [7, 8, 4, 9].

Currently, except for antiviral drugs which are proved more efficacious

than placebo such as Pfizer’s Paxlovid (nirmatrelvir), COVID-19 vaccines

are considered as the game-changer and SARS-CoV-2 monoclonal antibody

(mAb) therapies are shown to reduce the risk of disease progression. Both

approaches rely on antibodies in different mechanisms. Specifically, vaccines

are designed to stimulate an effective host immune response triggering the

host adaptive immune system to produce antibodies against future infec-

tion [10], while antibody therapies are obtained from patients convalescing

from COVID-19 or other diseases, which block viral entry by binding to
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the viral S protein. Various vaccines, including two mRNA vaccines de-

signed by Pfizer-BioNTech and Moderna, have been granted authorization

for emergency use as well as antibody therapies (such as casirivimab [11],

imdevimab [11], bamlanivimab [12], etesevimab [13], regdanvimab [14], et

al.) in many countries. However, RBD mutations simultaneously strengthen

SARS-CoV-2 infectious [4], escape existing vaccines [6], and attenuate anti-

bodies [15].

Genetic mutations of SARS-CoV-2 provide a mechanism for viruses to

adapt to and evade host immune responses, COVID-19 vaccines, and an-

tibody therapies. Although SARS-CoV-2 has higher fidelity and a slower

evolutionary rate than other RNA viruses [16], over 5,000 unique muta-

tions were found on SARS-CoV-2 S protein [5, 8]. This situation awakes

the question of the impacts of existing mutations on vaccines and antibod-

ies. According to the WHO tracking SARS-CoV-2 variants [17], variants are

characterized as Variants of Interest (VOIs) and Variants of Concern (VOCs)

and prioritized global monitoring and research. Other variants of local in-

terest/concern are designated by national authorities. There are more than

ten designated VOCs, including Alpha (B.1.1.7), Beta (B.1.351), Gamma

(P.1), Delta (B.1.617.2), etc. It is interesting to note that RBD residues 452

and 501 were predicted to “have high changes to mutate into significantly

more infectious COVID-19 strains” in early 2020 [4]. As predicted, variants

Alpha, Beta, Gamma, Delta, Kappa, Theta, Lambda, Mu, etc. all have at

least one of these two mutations.

Evidence shows VOCs have high transmissibility and dominate the

spreading of SARS-CoV-2 on multiple countries [15, 18, 19, 19] (see Fig. 4a).

Studies show VOCs are resistant to antibody neutralization. For example,

Alpha and Beta variants are reported as antibody resistance to neutral-

ization by some anti-N-terminal domain (NTD) and anti-BRD mAbs, in-

cluding casirivimab and bamlanivimab for Beta variants [15]. Gamma vari-

ant is also shown refractory to neutralization by some mAbs, including

emergency use authorization (EUA) antibody therapies casirivimab, imde-

vimab, and etesevimab [20, 21], and similar results are for Delta variant as

well [19]. Additionally, according to WHO [17], VOIs including Eta, Iota,

Kappa, and Lambda variants have genetic changes impacting virus char-

acteristics of transmissibility, disease severity, immune escape, and diag-

nostic escape and lead to significant community transmission. VOIs may

share some mutations with VOCs on RBD. Thus, single mutation experi-

ments on L452R, S477N, and E484K, can be used to analyze their effects

on antibody neutralization [22, 21, 23]. For example, the mutation L452R
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on the S protein RBD increases 20% of the transmissibility of SARS-CoV-

2 [23], and has mild negative impacts on the neutralization by EUA an-

tibody therapies according to Food and Drug Administration (FDA) [24,

25].

Experimental studies of mutational impacts on the existing antibodies

and antibody drugs are time-consuming and are limited to a small fraction of

known viral mutations. It is difficult to accurately determine whether a mu-

tation will evade a vaccine in general populations of various races, genders,

ages, and existing health conditions. Based on the molecular mechanism

of host cells infected by SARS-CoV-2 virus and immune system responses,

quantitative assessment of mutational impacts on SARS-CoV-2 infectivity

and antibody drugs can be achieved by computing BFE changes following

mutations of the RBD-ACE2 complex and RBD-antibody complexes. In

our earlier work, we applied a topology-based deep learning model to pre-

dict the binding free energy (BFE) changes of the RBD-ACE2 complex and

106 RBD-antibody complexes induced by RBD mutations [4, 8, 5, 9]. These

predictions were validated by experimental results [26, 27, 28, 29, 30]. For

example, our predictions of mutation-induced BFE changes on CTC-445.2

binding to RBD were shown to be highly correlated with the experimental

data [28, 8]. In recent work, we validated our predictions of BFE changes

on the RBD-ACE2 complex with deep mutational scanning data, achieving

the Pearson correlation of 70% [28, 8]. Moreover, in a comparison with ex-

perimental data, the predicted BFE changes have an 80% correlation with

the escape fraction [8]. A high prediction accuracy with experimental data

was found in predicting emerging variant impacts on clinical trial antibodies

[8].

The objective of this work is to introduce a mathematical artificial

intelligence (AI)-based computational strategy for the rational design of

mutation-proof mAbs. As examples, we consider high-frequency RBD mu-

tations on 5 mAb therapies, namely casirivimab, imdevimab, etesevimab,

bamlanivimab, and regdanvimab. Among them, casirivimab and imdevimab

are authorized for the treatment of COVID-19 by the U.S. Food and Drug

Administration (FDA). Etesevimab and bamlanivimab also obtained FDA’s

emergency use authorization (EUA). Regdanvimab is issued advice on use

for treating COVID-19 by European Medicines Agency (EMA). We use our

intensively-validated algebraic topology-based deep learning model to esti-

mate the mutation-induced BFE changes of antibody-RBD complexes. This

study also offers an important strategy for the design of mutation-proof

mAbs for other viruses.
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Table 1: The statistics of BFE changes (ΔΔG) induced by AI-based deep
mutations on antibody variable domains. The number of AI-based deep mu-
tations on each chain is denoted as “Total No”. Three categories of the
numbers of topological AI-based mutations are given to BFE changes greater
than 0 kcal/mol, 0.5 kcal/mol, and 1 kcal/mol, respectively

Antibody Chain Total No
ΔΔG > 0 kcal/mol ΔΔG > 0.5 kcal/mol ΔΔG > 1 kcal/mol

No Ratio (%) No Ratio (%) No Ratio (%)

REGN10933
Heavy 2223 742 33.38 46 2.07 19 0.85

Light 1995 858 43.01 11 0.55 1 0.05

REGN10987
Heavy 2223 675 30.36 24 1.08 11 0.49
Light 1995 734 36.79 7 0.35 1 0.05

LY-CoV016
Heavy 2242 220 9.81 8 0.36 2 0.09
Light 2090 168 8.04 2 0.10 1 0.05

LY-CoV555
Heavy 2337 480 20.54 35 1.50 5 0.21
Light 2014 518 25.72 11 0.55 3 0.15

CT-P59
Heavy 2394 514 21.47 18 0.75 8 0.33
Light 2090 542 25.93 9 0.43 0 0.00

Average 2160 545 25.51 17 0.77 5 0.23

2. Results

2.1. AI-based deep mutational screening of five RBD-binding
antibodies

We first carry out a topological AI-based deep mutational scanning on the
antibody variable domains that bind to the RBD for five mAbs. These muta-
tions are conducted systematically such that each residue in each mAb’s light
and heavy chains are mutated to all 19 other possible amino acids. Then,
the BFE change for the antibody-RBD complex induced by each mutation
is computed by the topological AI model. Most mutations on the antibody
variable domain tend to have negative BFE changes or mild positive BFE
changes (see the Appendix), indicating that mAbs have been optimized for
their RBD binding. Table 1 shows the statistical results for five mAbs involv-
ing about 21,600 AI-based deep mutations on antibody variable domains.
An average of 25.51% mutations cause the strengthening of antibody-RBD
binding (or having positive BFE changes). In fact, only 0.77% and 0.23%
mutations have BFE changes greater than 0.5 kcal/mol and 1 kcal/mol, re-
spectively. The dramatic decrease in the number of mutations having BFE
changes greater than 0.5 kcal/mol indicates that these antibodies have a
small number of residue sites for improving the mAb neutralization effect
against SARS-CoV-2. Among the five antibodies, LY-CoV016 has the least
number of antibody mutations for strengthening its binding with RBD, while
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REGN10933 has a relatively large number of residues that can be improved.
The heap map of complete virtual mutational scans on the antibody variable
domains is provided in the Appendix.

In Figure 4c, the residues with at least one mutation having BFE changes
greater than 1 kcal/mol are presented according to Table 1. For REGN10933,
two residues A75 and T102 on the heavy chain have four mutations (A75Y/W
/F/M) and seven mutations (T102D/E/Q/W/I/L/V) with BFE changes
greater than 1 kcal/mol. For the heavy chain of REGN10987, A33 has
eight candidates (A33K/D/E/Q/T/I/L/M) for strengthening the binding
of REGN10987 and RBD. For the rest of the selected residues, none of them
have more than three effective mutants. These small numbers of candidates
also indicate that these antibody therapies were optimized. However, their
optimizations were with respect to the original SARS-CoV-2 virus and these
mAbs are prone to emerging RBD mutations.

2.2. AI-based rational design of mutation-proof antibodies

SARS-CoV-2 variants have been evolving to increase their capability to
evade vaccine and antibody protections [6]. With the threat of emerging
SARS-CoV-2 variants, it is important to design mutation-proof antibody
therapies. Our essential idea is to systematically mutate each residue of
an antibody into 19 possible other amino acids to search for mutation-
proof new designs of antibodies. Variants Alpha (B.1.1.7), Beta (B.1.351),
Gamma (P.1), Delta (B.1.617.2), Lambda (C.37), Epsilon (B.1.427), and
Kappa (B.1.427) encode spike proteins with mutations K417N/T, L452R/Q,
T478K, E484K/Q, F490S, and N501Y in the spike protein RBD that provide
a degree of resistance to neutralization by our previous modeling prediction
[9] and experimental analysis [31, 32, 33, 34, 35, 36, 37] (see Fig. 4b). In ad-
dition to WHO designated variants, the 10 most observed RBD mutations
in terms of their frequencies are more infectious and increase the virus trans-
missibility [9], which include seven mutations appearing in the WHO des-
ignated variants plus S477N, N439K, and S494P. Mutation S477N, N439K,
and S494K rank 5th, 7th, and 9th in terms of frequencies. Mutations L452Q
and E484Q of Lambda and Kappa variants, respectively, where E484Q ranks
11th, are not in the top ten observed RBD mutations [5]. Thus, we focus
on these twelve mutations for the antibody redesigning and provide the 100
most observed RBD mutation results in the Appendix.

2.2.1. REGN10933 and REGN10987 As shown in Figures 1a and 1d,
the analysis of antibodies REGN10933 and REGN10987 are given for the



Mathematical AI design of mutation-proof COVID-19 mAbs 345

Figure 1: The deep mutational analysis on antibodies REGN10933 and
REGN10987. a The mutational scanning on antibody REGN10933 bind-
ing to S protein RBD and mutated RBD. In the bottom column labels, H
indicates the heavy chain of REGN10933 and L indicates the light chain.
BFE change range is from -3.46kcal/mol to 1.94kcal/mol. b 3D structure
of the complex (PDB: 6XDG) [11]. c Illustration of BFE changes of ef-
fective antibody mutations. The first column indicates the BFE changes
induced by RBD mutations of the binding between RBD and antibody. The
first row indicates the BFE changes induced by antibody mutations of the
binding between RBD and antibody. d The mutation scanning on antibody
REGN10987 binding to S protein RBD and mutated RBD. e Illustration of
BFE changes of effective antibody mutations.

deep mutational scanning on antibody variable domains that bind to the

original S protein RBD and mutated RBD of variants. The mutations on

antibodies are considered if the distances between Cαs of antibody residues

and RBD residues are less than 15 Å and selected when antibody mutations
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have positive BFE changes greater than 0.5 kcal/mol both for binding to
the original RBD and the RBD of variants. Figure 1a shows ten mutations
on the S protein RBD with effective mutations on antibody REGN10933.
For unselected RBD mutations N439K and L452Q, the deep mutational
scanning on antibody variable domains within 15 Å to the RBD shows no
BFE changes greater than 0.5 kcal/mol. The first row of Figure 1a gives the
frequency information of each RBD mutation. The following two rows give
the BFE changes following the RBD mutations of the binding between S
protein RBD and ACE2 or between the RBD and antibodies, where RBD
mutations are more favorable of the binding to ACE2 than to antibody
REGN10933. The rest rows demonstrate the deep mutational scanning on
REGN10933 binding to S protein RBD on odd columns and RBD mutations
on even columns. For a pair of the RBD and its mutation, there are multiple
residues on the antibody REGN10933 having mutations that increase the
binding affinity for both. Notice that not all mutations on residues have
positive BFE changes, and in total, there are 42 candidates on antibody
REGN10933.

Once the 42 candidates of antibody REGN10933 are selected, their BFE
changes of the binding to the RBD with the 12 mutations induced by an-
tibody mutations are displayed in Figure 1c. The cross marks indicate that
the BFE changes are less than 0.5 kcal/mol. Meanwhile, the first column
of the heatmap gives the BFE changes of the RBD binding to antibody in-
duced by RBD mutations, and the first row of the heatmap gives the BFE
changes of the binding complex induced by antibody mutations. Here, 17
of 42 mutations on REGN10933 have one or more BFE changes less than
0.5 kcal/mol. Especially, D31W on the heavy chain of REGN10933 causes
a negative BFE change of -3.16 kcal/mol. Y53N on the heavy chain and
L94W on the light chain induce four BFE changes less than 0.5 kcal/mol.
For antibody REGN10933, mutations H-S30Y/W, H-Y50W, H-T52Q, H-
A75M/W/F/E/K/Y, H-R100H/N/W, H-T102M/V/L/W/Y/D/K/I,
L-A50E, and L-L96F/W can be the effective candidates for improving the
neutralization of antibody REGN10933 against the S protein RBD and its
variants.

For antibody REGN10987, there are 21 candidates on the variable do-
main and 10 candidates are on the heavy chain A33 in Figure 1e. Consid-
ering REGN10987 does not directly connect S protein RBD to the receptor
the binding motif of ACE2, three RBD mutations are selected with dis-
tances less than 15 Å to REGN10987 (see Fig. 1b) and having BFE changes
greater than 0.5 kcal/mol for both cases (see Fig. 1d). Except for the an-
tibody mutations with BFE changes less than 0.5 kcal/mol, there are 19
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Figure 2: The deep mutational analysis on antibodies LY-CoV016 and LY-
CoV555. a 3D structure of LY-CoV016 and RBD (PDB: 7C01) [13]. b 3D
structure of LY-CoV555 and RBD (PDB: 7KMG) [12]. c The deep mu-
tational scanning on antibody LY-CoV016 binding to S protein RBD and
mutated RBD. In the bottom column labels, H indicates the heavy chain
of LY-CoV016 and L indicates the light chain. BFE change range is from
-3.46kcal/mol to 1.94kcal/mol. d Illustration of BFE changes of effective
antibody mutations. The first column indicates the BFE changes induced
by RBD mutations of the binding between RBD and antibody. The first row
indicates the BFE changes induced by antibody mutations of the binding
between RBD and antibody. e The deep mutational scanning on antibody
LY-CoV555 binding to S protein RBD and mutated RBD. f Illustration of
BFE changes of effective antibody LY-CoV55 mutations.

mutations H-A33K/D/E/Q/T/I/L/M/V/P, H-S56F/W/R/Y, H-D101Y/F,

L-L91Y, L-T92D, and L-S95Y/R/F improve the neutralizing efficacy against

SARS-CoV-2 and variants.

2.2.2. LY-CoV016 and LY-CoV555 With a similar analysis on anti-

bodies LY-CoV016 (see Fig. 2a) and LY-CoV555 (see Fig. 2b), we collected
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Figure 3: The deep mutational analysis on antibody CT-P59. a 3D structure
of CT-P59 and RBD (PDB: 7CM4) [14]. b The mutational scanning on
antibody CT-P59 binding to S protein RBD and mutated RBD. In the
bottom column labels, H indicates the heavy chain of CT-P59. BFE change
range is from -3.46kcal/mol to 1.94kcal/mol. c Illustration of BFE changes
of effective antibody mutations. The first column indicates the BFE changes
induced by RBD mutations of the binding between RBD and antibody. The
first row indicates the BFE changes induced by antibody mutations of the
binding between RBD and antibody.

10 candidates and one candidate for LY-CoV016 and LY-CoV555, respec-
tively, in Figure 2. In Figure 2c, seven RBD mutations are evaluated on 6
antibody residues H-S31, H-S53, H-F58, H-P100, L-S30, and L-T94. Inter-
estingly, half of the residues are serine, which has a small polar uncharged
side chain. From the second and third columns of Figure 2c, it is noticed
that RBD mutations are more favorable to the RBD binding to ACE2 than
to LY-CoV016. Eliminating the mutations with BFE changes less than 0.5
kcal/mol, there are five effective mutations H-S31Y and H-S53D/N/T/P
for LY-CoV016 for improving its competitiveness (see Fig. 2d). As for LY-
CoV555, only one candidate H-S35H is selected as shown in Figures 2e and f.

2.2.3. CT-P59 Finally, we analyze antibody CT-P59 with 11 effective
mutations on 6 residues on the heavy chain, which are H-S32M/L, H-D54E/Y,
H-D56Y/F/M, H-N58Y, H-P101Y/W, and H-Y106W (see Fig. 3). There
are seven RBD mutations K417T/N, L452R, E484K/Q, F490S, S494P, and
N501Y. For example, mutation L452R, a mutation of the Delta variant, is
favorable to the neutralization of binding to ACE2, but disrupts the neutral-
ization of the binding to CT-P59. Six candidates H-S32M/L, H-N56Y/F/M,
and H-N58Y on CT-P59 can counteract the disrupting effect by mutation
L452R. In addition, the RBD mutation T478K, another mutation of the
Delta variant, has a mild positive BFE change of its binding to CT-P59 and
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positive BFE changes in its binding to CT-P59 with mutations as shown in
Figure 3c. Although the Delta variant reduces susceptibility against CT-P59,
the selected candidates H-S32M/L, H-D54E/Y, H-D56Y/F/M, H-N58Y,
and H-P101W can improve the neutralizing efficacy of CT-P59 against the
Delta variant. Notably, our early predictions of BFE changes induced by
mutations L452R and T478K binding to CT-P59 [9] are proved by later
experimental results on the neutralization of CT-P59 binding to the sin-
gle mutants of the RBD [38]. Overall, mutations H-S32M/L, H-D54E/Y,
H-D56Y/F/M, H-N58Y, and H-P101W on CT-P59 can improve the neu-
tralization ability of CT-P59 binding to the S protein RBD.

3. Discussion

Emerging variants have dominated the spreading of SARS-CoV-2 worldwide
and have been shown to reduce the neutralization efficacy of antibodies and
degrade the protection of SARS-CoV-2 vaccine and antibody treatments.
Especially, more attention should be paid to RBD mutations as the S pro-
tein RBD and ACE2 binding is the key to SARS-CoV-2 virus-host cell entry.
The SARS-CoV-2 RBD mutations can strengthen the RBD-ACE2 binding
to make the virus more infectious and meanwhile, weaken the RBD-antibody
binding to breakthrough vaccines and mAbs. Consequently, the efficacy of
vaccines and antibody therapies are compromised and viral transmissibil-
ity is enhanced. Twelve mutations on RBD are observed from variants of
concern (VOCs) and variants of interest (VOIs) (see Fig. 4). Interestingly,
according to our prediction on BFE changes induced by RBD mutations for
RBD binding to human ACE2, all these VOCs have at least one mutation on
RBD has a BFE change greater than 0.5 kcal/mol. For instance, Alpha, Beta,
and Gamma variants have the mutation N501Y with a BFE change 0.55
kcal/mol, and the Delta variant has mutations L452R and T478K with BFE
changes 0.58 kcal/mol and 1.00 kcal/mol, respectively. The BFE strength-
ening mutations on the Delta variant RBD enhance the infectivity of the
Delta variant, creating a dominant strain. For VOIs, none of them have a
mutation on RBD with BFE changes greater than 0.5 kcal/mol. The highest
BFE change is induced by L452Q from the Lambda variant which is 0.44
kcal/mol. Thereafter, the hypothesis is that emerging SARS-CoV-2 variants
have at least one mutation with BFE changes greater than 0.5 kcal/mol.
Based on our previous findings in [4], 606 out of 1149 RBD mutations that
we predicted as “most likely” mutations have been observed, while the rest
mutations 1912 “likely” and 625 “unlikely” mutations are rarely found on the
S protein RBD. In Figure 4, we list 61 most likely mutations on RBD whose
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Figure 4: a 3D structure of host ACE2 (ACE2) and RBD (PDB: 6M0J) [39].
b The lists of variants of concerns (VOCs) and variants of interest (VOIs).
c Residues on antibodies selected with at least one mutation having BFE
changes greater than 1 kcal/mol. BFE change range is from -3.84kcal/mol to
2.35kcal/mol. d Illustration of SARS-CoV-2 mutation-induced BFE changes
for the complexes of S protein and ACE2. Here, mutations with BFE changes
greater than 0.5 kcal/mol are presented. e Comparison of experimental fold
change and predicted fold change in IC50 of CT-P59 and S protein RBD
complex induced by mutations L452R and T478K.

BFE changes are greater than 0.5 kcal/mol, 38 of 61 mutations have been
observed and 17 mutations V350I, I410L, A411G, D420V, Y421F, N422S,
L452Q, R454K, L455M, R457K, E465V, T478K, V483D, L492V, F497Y,
Y508S/C have BFE changes from 0.82 kcal/mol to 1.21 kcal/mol, which
could be effective mutations for VOCs. Note that a high BFE change of the
binding between S protein RBD and ACE2 indicates the strengthening of
SARS-CoV-2 infectivity. Potentially, this mutation could be a vaccine escape
mutation if it weakens the binding of RBD to antibodies.

4. Validation

The validation of our topological AI model predictions for mutation-induced
BFE changes has been demonstrated by comparison with experimental data
in recent publications [8, 9]. Firstly, we showed high correlations of experi-
mental deep mutation enrichment data and predictions for SARS-CoV-2 S
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protein RBD and CTC-445.2 complex [8] and SARS-CoV-2 RBD and ACE2
complex [9]. In the comparison with experimental data on clinical trial an-
tibody therapies for high-frequency mutations, our predictions achieve a
Pearson correlation of 0.80 [9]. Considering the BFE changes induced by
mutations on the RBD of the ACE2-RBD complex, predictions on muta-
tions L452R and N501Y have a highly similar trend with experimental data
[9]. Meanwhile, as we presented early [5], high-frequency mutations are as-
sociated with positive BFE changes. Moreover, for multi-mutation tests, our
BFE change predictions have the same pattern as experimental data on the
impact of SARS-CoV-2 variants on major antibody therapeutic candidates
[9].

Recent studies on the potency of CT-P59 in vitro and in vivo against
Delta variants [38] show that the neutralization of CT-P59 is reduced by
the effects of L452R (13.22 ng/mL) and is retained against T478K (0.213
ng/mL). In our predictions [9], L452R induces a negative BFE change (−2.39
kcal/mol) and T478K induces a positive BFE change (0.36 kcal/mol). In
Figure 4e, the fold changes are presented for experimental and prediction
values.

Further validation on the Alpha variant RBD mutation was discussed
elsewhere [40]. Our predictions of Omicron BA.1 and BA.2 infectivity, vac-
cine breakthrough, and antibody resistance, which was made when there
were no experimental results available, were later nearly perfectly confirmed
by experimental data [41, 42].

5. Methods

The development of our deep learning model for BFE change predictions
on protein-protein interactions for SARS-CoV-2 problems can be summa-
rized in four steps. First, preparing genome sequence data from the GI-
SAID database [43] (https://www.gisaid.org/). By taking the first complete
SARS-CoV-2 genome from the GenBank (NC 045512.2) as the referencing
[44], a set of single nucleotide polymorphism (SNP) profiles is generated,
i.e., residues 329 to 530 on the S protein RBD have 606 non-degenerate
mutations are found. Then, 100 most observed mutations have been col-
lected with frequency more than 40 times. Next, collecting SARS-CoV-2
data and related data is the key step, which makes the model reliable and
accurate. Massive data of BFE changes of SARS-CoV-2 are rarely reported,
while the enrichment ratio data via high-throughput deep mutations are rel-
atively easy to obtain. With the fundamental dataset of BFE changes upon
mutations the SKEMPI 2.0 dataset [45], deep mutational enrichment ratio

https://www.gisaid.org/
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data is added as another database for our machine learning training [9].

After the database preparation, the third step is the feature generations of

protein-protein interaction complexes. We implemented the element-specific

algebraic topological analysis on point cloud samples consisting of complex

atoms [46, 9, 47]. This topological approach is based on persistent homology

[48, 49], a powerful method for protein structure representation [47, 50] and

drug discovery [51]. Additionally, biophysics and biochemistry features such

as surface areas, partial charges, Coulomb interactions, et al., are combined

with topological features [8]. Lastly, deep neural networks are constructed

for the BFE change prediction of protein-protein interactions involving mu-

tations [9].

In the third step, obtaining the mutant protein structure requires using

Scap utility from Jackal software package [52], which replaces the side chain

of the mutation site with min option being set to 4 with additional conform-

ers obtained by perturbing conformers in a rotamer library. The mutant

protein structures of RBD variants are constructed by Scap and, then, are

used as primal structures for the calculation of antibody mutation impact

on RBD variants.

The detailed descriptions of datasets and machine learning model are

given in literature [4, 53, 9] and are available at TopNetmAb. In addition,

the SARS-CoV-2 single nucleotide polymorphism data in the world is avail-

able at Mutation Tracker. The analysis of RBD mutations is available at

Mutation Analyzer.

6. Conclusion

Driven by natural selection [4], severe acute respiratory syndrome coron-

avirus 2 (SARS-CoV-2) has been evolving towards increasingly more infec-

tious, vaccine escape, and antibody resistance [6]. Interestingly, this evolu-

tion can be achieved through mutations at the viral spike protein receptor-

binding domain (RBD), which binds to the human angiotensin-converting

enzyme 2 (ACE2) to facilitate the viral cell entry. Meanwhile, the RBD is

also a target of most monoclonal antibodies (mAbs) for direct neutraliza-

tion of the virus. As a result, natural selection-driven virus evolution gives

rise to variants of concerns (VOCs), such as Variants Alpha, Beta, Gamma,

Delta, etc. VOCs fuel the waves of widespread infections, evade vaccines,

and attenuate the efficacy of existing mAbs. This work provides a mathe-

matical artificial intelligence (AI)-based strategy to design mutation-proof

antibodies.

https://github.com/WeilabMSU/TopNetmAb
https://users.math.msu.edu/users/weig/SARS-CoV-2_Mutation_Tracker.html
https://weilab.math.msu.edu/MutationAnalyzer/
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Figure 5: BEF changes of the 100 most observed RBD mutations with their
frequency. The variants’ mutations are colored in orange.

Our mathematical AI model utilizes persistent homology and deep learn-
ing and was trained with tens of thousands of experimental data, including
SARS-CoV-2 related deep mutational data. We carry out an AI-based deep
mutational screen of five existing mAbs, including those approved by the
U.S. Food and Drug Administration (FDA) for emergency use authoriza-
tion (EUA). Our deep mutational screen indicates that most mAbs have
been optimized against the original SARS-CoV-2 but are prone to the RBD
mutations. By considering high-frequency RBD mutations, including those
from VOCs, we systematically mutate each residue of the five selected mAbs
to 19 possible variants to search for potentially mutation-proof new mAbs.
Our study offers many alternative designs of mutation-proof mAbs.

Appendix

The 100 most observed RBD mutations are collected with their BFE changes
and frequency correspondingly. In Figure 5, variants’ mutations are colored
in orange. Mutations L452R, T478K, and N501Y are predicted with high
BFE changes.

Second, this appendix provides the full results of the mutational scan-
ning on antibodies REGN10933 (see Figure 6), REGN10987 (see Figure 7),
LY-CoV016 (see Figure 8), LY-CoV555 (see Figure 9), and CT-P59 (see
Figure 10) binding to S protein RBD and mutated RBD. Note that some of
these results do not show a good option in designing mutation-proof anti-
bodies. For example, Figure 6 shows that the deep mutational scanning is on
antibody REGN10933 of the binding to S protein RBD and mutated RBD.
The mutations on S protein RBD are selected from the twelve-selected muta-
tions. As a global observation, an antibody mutation from others to residue
tryptophan (denoted as W) favors the binding of S protein RBD and mu-
tated RBD than the others. This provides potential suggestions on antibody
design that increasing tryptophan populations on the binding interface will
enhance the binding affinity of REGN10933 to S protein RBD.



354 Jiahui Chen and Guo-Wei Wei

Figure 6: The mutational scanning on antibody REGN10933 binding to S
protein RBD and mutated RBD. In the bottom column labels, H indicates
the heavy chain of REGN10933. L indicates the light chain of RENG10933.
BFE change range is from -3.28kcal/mol to 2.41kcal/mol.

Figure 7: The mutational scanning on antibody REGN10987 binding to S
protein RBD and mutated RBD. In the bottom column labels, H indicates
the heavy chain of REGN10987. L indicates the light chain of RENG10933.
BFE change range is from -2.47kcal/mol to 2.98kcal/mol.

Figure 8: The mutational scanning on antibody LY-CoV016 binding to S
protein RBD and mutated RBD. In the bottom column labels, H indicates
the heavy chain of LY-CoV016. L indicates the light chain of LY-CoV016.
BFE change range is from -3.08kcal/mol to 2.03kcal/mol.
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Figure 9: The mutational scanning on antibody LY-CoV555 binding to S
protein RBD and mutated RBD. In the bottom column labels, H indicates
the heavy chain of REGN10987. L indicates the light chain of LY-CoV555.
BFE change range is from -3.79kcal/mol to 2.23kcal/mol.

Figure 10: The mutational scanning on antibody CT-P59 binding to S pro-
tein RBD and mutated RBD. In the bottom column labels, H indicates the
heavy chain of CT-P59. L indicates the light chain of LY-CoV555. BFE
change range is from -3.80kcal/mol to 2.26kcal/mol.
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