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The secondary structures of RNAs are the basis of building their
tertiary structures and understanding their functions. Many meth-
ods of RNA secondary structure prediction have been developed
and can be divided into single-sequence and multiple-sequence meth-
ods, depending on one sequence or multiple sequences as input.
Here we present a method, called 2dRNAx, that combines multiple-
sequences method with single-sequence method. The results show
that this combined method gives significantly higher accuracy than
current multiple-sequences methods. Current version of the method
only predicts canonical base pairs without pseudoknots, lone pairs
and multiplets.

1. Introduction

The secondary structures of RNAs are defined as special patterns of A-U, G-
C and G-U base pairings. They are important to their biological functions [1]
and tertiary structure [2, 3, 4, 5, 6]. Therefore, many methods have been
developed to predict the secondary structures. These methods can be divided
into single-sequence based [7, 8] or multiple-sequences based ones [9].

The single-sequence methods usually adopt the minimum free energy
(MFE) principle [7, 8, 10, 11, 12, 13, 14]. The advantage of these meth-
ods is that only the sequence of target RNA is needed as their inputs.
However, since accurate calculation of free energy is difficult, especially
for the loop regions of RNAs, the prediction accuracies of these meth-
ods are only about 70% [15, 16]. The multiple-sequence methods use the
evolution information of the homologous sequences of the target RNA to
infer their common secondary structures and their prediction accuracies
are about 70–80%, usually higher than those of the single-sequence meth-
ods [6, 9, 17, 18, 19, 20, 21, 22, 23, 24]. Since these methods need aligned
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homologous sequences of the target RNA as input, they will give lower pre-
diction accuracy or not work if the number of the homologous sequences are
not enough. This suggests that we can combine the advantages of the single-
sequence and multiple-sequences methods to improve accuracy of RNA sec-
ondary structure prediction.

It has been shown that the prediction accuracy of the single-sequence
MFE methods could be improved by using additional constraints of base
pairing provided by experiment, like SHAPE data [25, 26]. On the other
hand, it was shown that the prediction accuracy of the multiple-sequence
methods could be improved by using machine learning methods [27]. Moti-
vated by these, here we propose a two-stages method to combine the single-
sequence and multiple-sequences methods: For a target RNA, firstly we use
a deep learning (DL) model to predict the possible base pairs (A-U, C-G
and G-U) based on its homologous sequences and secondly, we use the MFE
methods to do further prediction by using the predicted base pairs by the DL
model as constraints. It is noted that the first step itself forms a multiple-
sequences method of RNA secondary structure prediction based on deep
learning approach. Comparing with the previous methods, this combined
method gives higher accuracy than current multiple-sequence methods.

2. Methods and materials

2.1. Prediction workflow of 2dRNAx

Figure 1 shows the prediction workflow of our combined method, called
2dRNAx. For a target RNA sequence, we firstly find its multiple sequence
alignment (MSA) from Rfam [28] database or using other methods. The
pairwise frequencies of the bases in the MSA (see the following for the de-
tails) are the input of the trained deep learning model to predict the pairing
probability of any two bases. Two bases are considered to form base pair if
their pairing probability is larger than a threshold (0.5 in this work). These
base pairs are further treated by a remove-and-expand procedure (see the
following for the details) and then taken as constraints to input to an MFE
algorithm to do further prediction. The results of the MFE method are also
treated by the same removing procedure above to remove lone pairs and
then taken as the final prediction output of the combined method.

2.2. Deep learning (DL) neural network

Our DL model is a U-net convolutional neural network model. We choose
the U-net based on two reasons: first, the secondary structure of an RNA
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Figure 1: The prediction workflow of the combined method 2dRNAx.

can be represented by a two-dimensional matrix, i.e., a dot image; second,
the samples of RNA secondary structures are not very large. The U-net
has good performance in image segmentation and it is also good for small
samples [29].

The U-net used in this work contains an input layer, nine hidden layers,
and an output layer as usual [29] but with two modifications: (1) each con-
volution layer is followed by a Batch normalization layer to accelerate the
model convergence and (2) a focal loss is used to solve the inharmonious
problem of positive (pairing bases) and negative (non-pairing bases) sam-
ples [30]. In the training process, we use a 4-fold cross validation to reliably
evaluate the model. In the testing process, the intersection of the results of
the four trained models is remained. The detailed structure of the model is
shown in Figure 2 and the details of each layer are as follows:

1) The input layer: The size of the input feature map is L × L × 25,
where the L of the first and second dimensions is the length of the
target RNA sequence, and the third dimension is the arrays of pairwise
base frequencies in aligned homologous sequences of the target RNA.
For example, the element (i, j) of AU array is the frequency that the
nucleotide A in the ith column and the nucleotide U in the jth column
of the aligned homologous sequences occur simultaneously in one row
or one sequence. Since there are five symbols (A, C, G, U and gap “-”)
in the aligned homologous sequences, we have 25 pairwise combinations
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Figure 2: The layout of our improved U-net convolution neural network
model [29]. L is the RNA sequence length. In training process, we use 4-fold
cross validation to reliably evaluate model.

for them and so 25 arrays of the pairwise base frequency. Although we
only focus on a very limited number of base pairs (AU, UA, CG, GC,
GU, UG) in this work, in practice there are also base pairs other than
them that are few but are very important to tertiary interactions.
We hope our DL model can be expanded to predict these base pairs
in future and so we have considered all 25 possibilities. Furthermore,
considering all possible types of base pairs is easier for probability
normalization. It is also noted that in current version of our DL model
the lengths (L) of the target RNAs are limited to be not longer than
512nt and so the sequences that are shorter than 512nt should be
padded with zeros.

2) The first layer: It includes two convolution layers, two Batch normaliza-
tion layers, and one pooling layer. The number of convolution kernels
of each convolution layer is 32. After the two convolution layers, the
feature map size is changed from L×L× 1 to L×L× 32. The pooling
layer size is 2×2, and the feature map size is changed from L×L×32
to L/2× L/2× 32 through this pooling layer.
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3) The second and third layers are similar in structure to the first layer
except that the number of convolution kernels of the convolution layer
is increased.

4) The fourth layer: In order to prevent over-fitting, a Dropout layer (the
value is 0.5) is added behind the two pooling layers, and after the
fourth layer, the feature map size becomes L/16× L/16× 256.

5) The fifth layer: this layer also includes a Dropout layer (the value is
0.5). Since there is no pooling layer, the size of the data will not shrink
and the shape of the fifth layer of the data becomes L/16×L/16×512.

6) The sixth layer: it includes the UpSampling2D layer, one convolution
layer, one concatenate layer and two convolution layers; UpSampling
factor is 2× 2, the data is doubled, and the feature map size becomes
L/8×L/8×512; The concatenate layer connects the feature map of the
Conv6 1 layer with the feature map of the Dropout4 layer according
to the specified axis (here, the third dimension).

7) The seventh, eighth, and ninth layers are similar to the sixth layer.
After the ninth layer, the feature map size becomes L× L× 32.

8) The output layer: It contains two convolution layers. For the first con-
volution layer, the number of convolution kernels is 2, the convolution
kernel size is 3 × 3; ReLU is the activation function and the feature
map size becomes L × L × 2; For the second convolution layer, the
number of convolution kernels is 1 and the convolution kernel size is
1 × 1, Sigmod is the activation function, and the output feature map
size is L×L× 1, where the first and second dimensions are the length
of the RNA sequence, and the third dimension reflects the probability
of each pair of bases that can form a base pair, being between 0 and
1.

9) For all convolutional layers from the first to the ninth layers, each
convolution layer is followed by a Batch normalization layer, ReLU is
the activation function; The convolution kernel size is 3 × 3, the step
size is 1; The padding (filling mode) is “Same” (the input and output
shapes are the same); The initializer of each layer weight matrix is
“he normal”.

It is noted that in convolutional neural network, 32 is a HyperParameter
(the number of filters computed by the convolution, every dimension is a
feature). This value is needed to try. If the value is too small, some features
can’t be learned, resulting in underfitting, otherwise overfitting. In the U-
net, the depth of the feature maps progressively increases (from 32 to 512)
in convolution network and the depth of the feature maps progressively
decreases (from 512 to 32) in deconvolution network [29].
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2.3. Minimum free energy (MFE) method

For a target RNA, if only its RNA sequence is given, the minimum free
energy principle is generally used to predict its secondary structure [15, 31,
32]. Our DL method uses the homologous sequences of a target sequence
to predict all possible base pairs. In principle, it can give the information
of all base pairs in the most stable structure, or more accurately in the
native structure, but in practice it can only predict part of the base pairs.
This is because that the quality of the homologous sequences is not the
same for each target sequence, e.g., for some target sequences the number of
the homologous sequences is very few or the aligned homologous sequences
have a lot of gaps in some regions. This will lead to that the DL method
cannot predict all standard base pairs in the native structure of these target
sequences in some cases. To solve this problem, we use an MFE method to
predict the remaining unpaired regions with the base pairs predicted by the
DL model as constraints.

Many excellent algorithms of RNA secondary structure prediction based
on the MFE principle are available. Since we need to input the predicted
base pairs from the DL model as constraints into the algorithms, we will use
the algorithms Mfold [8], RNAfold [11, 14] and RNAstructure [12].

2.4. Remove-and-expand post-treatment

In this work all the predictions by our DL and combined methods will be
post-treated by a remove-and-expand procedure (Figure 1). This procedure
is proposed simply based on the following reasons: (1) The RNA secondary
structures in most current prediction methods are defined by the standard
base pairs C-G, A-U and G-U since their binding interactions are much
stronger than those of nonstandard base pairs. So, we only consider the
standard base pairs too and remove the nonstandard base pairs. (2) From
point of view of chemistry, one base can form stable base pair only with
another one but not many bases and so we remove one-to-many base pairs
predicted by DL. Furthermore, a lone base pair usually is not stable and so
we also remove it. But this does not mean that one-to-many or lone base
pairs do not exist in practice, and we neglect them since they are higher
order interactions. (3) The longer the stems and the more stable and so we
expand the stems as longer as possible. Of course, the expanded base pairs
are limited only to the standard base pairs.

According to the reasons above, we only predict the secondary struc-
tures formed by the standard base pairs A-U, C-G and G-U and without
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pseudoknots, we remove non-standard base pairs, pseudoknot base pairs,

lone base pairs and one-to-many base pairs predicted from the DL model

and the MFE methods. We’ll also maximize the number of the base pairs

A-U, C-G and G-U for the DL predictions. We do this in following steps:

1) Removing all base pairs other than A-U, C-G, and G-U in the predicted

base pairs.

2) Removing all the predicted lone-pairs that cannot be extended to form

consecutive canonical base pairs A-U, C-G and the wobble base pair

G-U.

3) Removing the pairs in the predicted one-to-many pairs that have no

or cannot be extended to form consecutive canonical base pairs A-U,

C-G and the wobble base pair G-U.

4) Expanding or maximizing the base pairs A-U, C-G and G-U from

the unpaired bases if they can form a continuous stacking with the

predicted base pairs. During the expanding process, the hairpin loops

are kept having at least four bases.

5) Removing the pseudoknot base pairs after expanding process.

2.5. Prediction performance estimation

Precision (PPV), sensitivity (STY) and Matthews correlation coefficients

(MCC) [33, 34] are used to measure the performance of our method. They

are defined as follows:

PPV =
TP

TP + FP
, STY =

TP

TP + FN

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP ) ∗ (FP + TN) ∗ (TN + FN) ∗ (FN + TP )

where TP denotes true positive; FP, false positive; TN, true negative; FN,

false negative.

These three performance evaluation metrics were usually used in the

evaluation of RNA secondary structure prediction methods, and we use them

because we want to compare with other methods. Furthermore, it is also

for considering different aspects of the performance to use all these three

metrics. You can just use one of the metrics, e.g., PPV if you focus on the

precision. If you want to obtain a balance of PPV and STY, you can use

MCC.
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2.6. Training and testing sets

The RNAstrand dataset and PDB dataset in compaRNA [9] were frequently
used as a training set and a testing set for multiple-sequence methods and
they contain 1987 and 121 sequences, including their secondary structures
and aligned homologous sequences, respectively. They can be downloaded
from the website: http://iimcb.genesilico.pl/comparna/ [9]. The secondary
structures of the RNAs in the PDB dataset were calculated from their 3D
structures by RNAView [35]. We only selected the sequences with length
less than 500 and so the training set finally contains 1128 sequences with
the sequence lengths from 40 to 499 nucleotides. In order to find out which
sequences in the testing set are similar to the training set, we use the tools
provided by blast. The specific method is to use the training set as the
database for blast search, and the testing set as the search data. If the
similarity between the sequences in the training set and the sequences in
the testing set is greater than 85%, then remove these sequences in the
testing set to ensure that the sequences in the test set are not similar to
those in the training set. Finally, the testing set contains 92 RNAs with the
sequence lengths from 29 to 377 nucleotides. The number of the homologous
sequences of the RNAs in these two datasets is from 6 to 1023.

We use a K-fold cross validation to train the U-net neural network model.
Since our training set is not large, we choose K= 4. In fact, we found that
the results were similar for K = 3, 4 and 5. Furthermore, the available data is
randomly split into 4 partitions and so the training result should not depend
on the initial split of the data. During the training, each of the four parts is
taken as a validation set and the other three are as the training set.

3. Results

In the following we will evaluate the performance of the DL model only and
the combined methods over the testing set, respectively. For the predictions
of the DL model, if the predicted pairing probability of two bases by all the
four trained models is larger than or equal to the threshold value 0.5, they
are considered to form a base pair. We have also examined other threshold
values but 0.5 gives the best performance. The results are shown in Table 1
and Figure 3. It is noted that the results have already been treated by the
remove-and-expand procedure.

To compare with other multiple-sequence methods, CentroidAlifold [21],
MXSCARNA [23] are selected because they are the two of the best multiple-
sequence methods [9]. Other two [9] are RNAalifold [24] and Turbofold [22]

http://iimcb.genesilico.pl/comparna/
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Table 1: The performances of different prediction methods

Methods Number of RNAs PPV STY MCC
DL 92 0.86 0.80 0.81
DL+Mfold 92 0.82 0.90 0.86
DL+RNAfold 92 0.82 0.90 0.86
DL+RNAstructure 92 0.82 0.91 0.86
Mfold 92 0.68 0.75 0.71
RNAfold 92 0.68 0.77 0.72
RNAstructure 92 0.69 0.78 0.72
CentroidAlifold∗ 87 0.83 0.48 0.61
MXSCARNA∗ 87 0.76 0.72 0.73

∗ The PPV, STY and MCC of CentroidAlifold and MXSCARNA
are calculated based on the prediction results given at the web-
sites: http://iimcb.genesilico.pl/comparna/atlas/pdb/. The num-
ber of RNAs for a method is that the method can predict at least
one base pair for each of these RNAs.

Figure 3: Performance (PPV colored in green, STY colored in blue, MCC
colored in red) of different methods listed in Table 1.

but they can give prediction results only for 50 and 28 out of the 93 RNAs in
the testing set, respectively, i.e., they do not predict any base pairs for other
RNAs. So, it is not suitable to compare them with other methods. In com-

http://iimcb.genesilico.pl/comparna/atlas/pdb/


372 Xiaoling He et al.

Figure 4: Prediction results for a RNA (PDB index: 4WFL A). A: DL
method; B: Native structure; C: RNAstructure; D: DL+ RNAstructure. All
the secondary structures were drawn by the Forna [36].

parison with CentroidAlifold and MXSCARNA (see Table 1 and Figure 3),
the MCCs and STYs of the combined methods are significantly higher. Cen-
troidAlifold has slightly higher PPV (1%) than the combined methods but
its STY and so MCC are much lower and are the lowest among all the meth-
ods. It is noted that the performance of the DL method only is significantly
higher than those of CentroidAlifold and MXSCARNA on average.

Figures 4, 5, 6 show three examples of the predictions of different meth-
ods. We can see that the structure predicted by the DL model has long
loops and that by RNAstructure is different from the native one in some
cases while the predicted structure of the combined method is very closer to
the native one.

4. Discussion

The results above show that in general the DL and combined methods have
significantly better performance than the popular multiple-sequence meth-
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Figure 5: Prediction results for a RNA (PDB index: 4RFN A). A: DL
method; B: Native structure; C: RNAstructure; D: DL+ RNAstructure. All
the secondary structures were drawn by the Forna [36].

ods. The DL model is good at increasing the precision (PPV) while the MFE
model can further find more true positives or native base pairs (STY). On
the other hand, the combined method can significantly increase the accu-
racy of the MFE methods if the homologous sequences of the target RNAs
are available. It is noted that recently single-sequence methods of RNA sec-
ondary structure prediction using deep learning have been reported and they
could also significantly increases the prediction precision (PPV) [37, 38, 39].
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Figure 6: PPrediction results for an RNA (PDB index: 3NPB A). A: DL
method; B: Native structure; C: RNAstructure; D: DL+ RNAstructure. All
the secondary structures were drawn by the Forna [36].

There was also a method of RNA secondary structure prediction that inte-
grated the MFE method and the machine learning approach [40]. However,
since these methods did not use information of homologous sequences as
input, we’ll not compare their results here.

Comparing with the DL method, the average PPVs of the combined
methods decrease slightly but the average STYs increase significantly. To
quantify this difference, we consider the ratio of the number of correctly
predicted stems (successive base-pairing regions) to the total number of
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Figure 7: Paired occupy of the predictions of the DL and combined methods
on the testing set.

stems in native structure for each RNA and we call it Paired Occupy (PO).
For example, if the number of correctly predicted stems is 5, the total number
of native stems is 10 in native structure, then the PO is 5/10 = 0.5. A stem
is considered as correctly predicted if at least one native base pair in it is
predicted. For a stem, if too few native base pairs are predicted, usually
other native base pairs can be found by the expanding step as shown above.
The prediction results of the DL model without expanding are worse. If the
predicted stem is longer than the actual one, it is considered as a correctly
predicted one. It is noted that the definition here is used only for the Paired
Occupy but not for PPV and STY.

The POs estimated by the DL and combined methods are shown in
Figure 7, respectively. We find that many high PPV predictions by the DL
model have low PO values, i.e., the predicted base pairs only distribute
to a part of the stems in many cases although the DL method gives more
predictions with high PPV. This may be the reason why the average PPV
of the combined method is lower than that of the DL model since the MFE
methods may introduce false positives. On the other hand, the predictions
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Figure 8: The scatter plot of performances of the DL (top) and combined
(DL+RNAstrucutre) (bottom) methods with the sequence lengths (in nt)
of the RNAs in the testing set.

by the combined method have a shift to the high PO values in comparison
with those by the DL model, i.e., the predicted base pairs by the former
cover more stems than those by the latter. This means that the predictions
by the combined method have higher STY than those by the DL model, i.e.,
the MFE model can predict additional native base pairs on the basis of the
DL prediction. This can also be seen from the lower plot in Figure 7 where
the predictions by the combined method have a shift to both higher STY
and PO values on average.

Figure 8 shows the performance of the DL and combined (DL+RNAstruc-
ture) methods with the sequence length of the RNAs in the testing set.
We find that their performances have no clear dependence on the sequence
lengths, at least when the lengths are shorter than 150nt. When the lengths
are longer than 150nt, the performance of both methods are much better.
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Table 2: Performances of our method for different types of RNAs in the
testing set

RNA Type Numbers
DL combined(DL+RNAstructure)

PPV STY MCC PPV STY MCC
Riboswitch 21 0.89 0.73 0.80 0.82 0.86 0.84
tRNA 34 0.87 0.96 0.91 0.86 0.97 0.91
rRNA 17 0.82 0.86 0.83 0.73 0.91 0.81
Ribozyme 2 0.46 0.29 0.36 0.47 0.47 0.47
tmRNA 1 0.78 0.82 0.80 0.66 0.90 0.77
Others 17 0.92 0.69 0.78 0.91 0.92 0.91

Table 3: RNA types and numbers in training and test sets

RNA Type
Numbers

Training Set Test Set
Riboswitch 3 21
tRNA 208 34
Ribozyme 45 2
tmRNA 232 1
RNaseP 275 0
Intron gpI 15 0
rRNA 70 17
Telomerase 17 0
Vimentin 8 0
s2m 13 0
signal recognition particle 196 0
Others 46 18

However, this needs to be further validated since only a few RNAs have the
lengths longer than 150nt in the testing set.

Table 2 shows the performances of the combined method (DL+RNAstruc-
ture) for different types of RNAs in the testing set (also see Table 3). The
performances for tRNA and ribozyme are the highest and lowest, respec-
tively. This may be due to the large or small number of them in the testing
and training sets (Table 3). However, it is interesting to note that the per-
formance of the DL and combined methods for riboswitch is higher than
those for ribozyme and tmRNA although there are only three riboswitches
in the training set. The reason for this needs further investigations.

It should be pointed out that the higher performance of 2dRNAx is only
for the target RNAs that have enough homologous sequences. Otherwise, the
DL model cannot work well and so 2dRNAx performs similarly as the MFE
methods. As mentioned above, the performance of single-sequence method
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can also be improved by using deep learning. So, it may be better to combine

single-sequence and multiple-sequence methods by applying deep learning

to both of them. It is also noted that the computational complexity of the

combined method is similar to the MFE method since the DL model is

time-consuming only in the training process.

In addition, it should be noted that the current method was trained and

tested with Rfam prealigned sequences while Rfam may use experimentally

determined secondary structures for their alignments. Thus, the performance

may be different if other automatic alignment techniques are used.

5. Conclusion

In this paper, we combine deep learning with the traditional MFE methods

to improve RNA secondary structure prediction. The results show that this

combined method not only gives significantly higher accuracy than current

multiple-sequence methods. The used DL model is good at increasing the

precision (PPV) while the MFE methods are able to find more true positives

or native base pairs (STY). Furthermore, merely the DL model already

has better performance. These results show that the combination of single-

and multiple-sequence methods may be a way of improving RNA secondary

structure prediction.

6. Data and webserver availability

The data used for training and testing and 2dRNAx web server are available

at http://biophy.hust.edu.cn/new/2dRNAx.
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