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One of the very active research areas in bioinformatics is DNA simi-
larity analysis. There are several approaches using alignment-based
or alignment-free methods to analyze similarities/dissimilarities
between DNA sequences. In this work, we introduce a novel rep-
resentation of DNA sequences, using n-ary Cartesian products of
graphs for arbitrary positive integers n. Each of the component
graphs in the representing Cartesian product of each DNA se-
quence contain combinatorial information of certain tuples of nu-
cleotides appearing in the DNA sequence. We further introduce
a metric space structure to the set of all Cartesian products of
graphs that represent a given collection of DNA sequences in or-
der to be able to compare different Cartesian products of graphs,
which in turn signifies similarities/dissimilarities between DNA se-
quences. We test our proposed method on several datasets includ-
ing Human Papillomavirus, Human rhinovirus, Influenza A virus,
and Mammals. We compare our method to other methods in liter-
ature, which indicates that our analysis results are comparable in
terms of time complexity and high accuracy, and in one dataset,
our method performs the best in comparison with other methods.

Keywords and phrases: DNA similarity, graph representations, met-
ric space.

1. Introduction

DNA similarity analysis is one of the main areas in bioinformatics. Two
main approaches using in analyzing DNA sequences are alignment-based
methods and alignment-free methods. Among the alignment-based meth-
ods, the multiple sequence alignment (MSA) method has the highest ac-
curacy in analyzing similarities/dissimilarities between DNA sequences, but
its time complexity increases extremely large for large datasets of DNA
sequences whose lengths are sufficiently long. Thus searching for alignment-
free methods that is effective in time complexity as well as having a rea-
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sonably high accuracy has been a very research problem in DNA simi-
larity analysis. Alignment-free methods, using geometric approaches share
a similar strategy that first embed DNA sequences into vectors in a Eu-
clidean space, and then compute the similarity distance matrix, based on
the underlying Euclidean distance, whose entries are distances between the
representing vectors of DNA sequences. For papers containing alignment-
free methods that use this approach, the reader is, for example, referred to
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

In this work, an alignment-free method is proposed, which avoids the em-
bedding into Euclidean spaces and the use of numerical encoding of DNA
sequences as vectors in a Euclidean space. The main observation in our ap-
proach is that every DNA sequence can be viewed as a string of letters–a
combinatorial object in which each letter in the string is from the alphabet
consisting of four nucleotides A, C, G, T. Using this observation, for an
arbitrary positive integer n, and n positive integers d1, . . . , dn, our method
allows to represent each DNA sequence as an n-ary Cartersian product of
graphs, the ith component of which contains combinatorial information of
di-tuples of nucleotides appearing in the DNA sequence. In this way, the set
of all n-ary Cartesian products of graphs can be viewed as an analogue of n-
dimensional Euclidean spaces that contain the representing vectors of DNA
sequences as in the traditional alignment-free methods. In order to be able to
compare n-ary Cartesian products of graphs that represent DNA sequences
in our proposed method, a variety of metric space structures on graphs is
utilized such as the metric space structures equipped with spectral distance
metrics or matrix distance metrics. There are also other types of metric
space structures on graphs [21]. Fixing, once and for all, a distance metric
for each component in the set of all n-ary Cartesian products of graphs,
we can equip this set with a metric space structure by simply taking the
maximum of the values of all distances [22]. This procedure converts a given
collection of DNA sequences into a metric space consisting of n-ary Cartesian
products of graphs that contain combinatorial information of all di-tuples
of nucleotides in DNA sequences for any 1 ≤ i ≤ n, while also carrying a
distance metric that allows to compare similarities/dissimilarities between
n-ary Cartesian products of graphs that represent DNA sequences. The com-
binatorial information of tuples of nucleotides in DNA sequences can grow
extremely large when allowing n to become sufficiently large. Thus in our
approach, suitable values of n are chosen to assure the fast time complex-
ity while maintaining high accuracy in analyzing similarities/dissimilarities
between DNA sequences. In comparison with other methods in literature
such as the state-of-the-art Clustal Omega [23] – an MSA method, and the
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Fourier transform method in [24], an alignment-free method, the method
proposed in this paper performs comparable in accuracy and time complex-
ity, and in some datasets (see Section 4), the proposed method performs the
best among all the methods that are used to compare.

The structure of our paper is as follows. In Section 2, one-dimensional
and high-dimensional graph representations of DNA sequences as well as
their metric space structures are introduced, which will be used in experi-
mental analysis. In Section 3, the proposed method is described in detail.
In Section 4, the proposed method is applied to test on several real datasets
including Human Papillomavirus (HPV) [25, 26], Human rhinovirus (HRV)
[27], Influenza A virus [28, 29], and Mammals [30]. In the supplemental file,
we tabulate the GenBank1 accession numbers of DNA sequences contained
in the datasets on which we test our method (http://www.intlpress.com/
site/pub/files/ supp/cis/2022/0022/0003/cis-2022-0022-0003-s002.pdf).

2. Graph-theoretic representation of DNA sequences

In this section, several representations of DNA sequences using graph theory
are described, which allows to equip a given collection of DNA sequences
with metric space structures. Such metric space structures of a collection
of DNA sequences will be exploited in the proposed method for analyzing
similarities/dissimilarities between DNA sequences.

We begin by introducing one-dimensional graph representation of DNA
sequences.

Let α denote a DNA sequence of length m of the form a1a2 · · · am, where
each ai is one of the nucleotides A, C, G, T. Let d be a positive integer such
that d < m. In general, it suffices to choose small values of d between 2 and
10. Let w be a sufficiently small positive integer, and let h be the largest
positive integer such that 0 ≤ m − (wh + 1) < d − 1. The last inequality
condition assures that there are exactly h d-tuples of nucleotides appearing
the sequence α, and the remaining nucleotides appearing after the hth d-
tuple do not have enough d letters to form another d-tuple. Using such a pair
of integers (d,w), we associate to α a weighted undirected graph, denoted by
G(d,w) whose nodes are constructed using d consecutive nucleotides in the
sequence α, and two nodes form an edge when they are represented by two
consecutive sequences of d nucleotides that are exactly w nucleotides apart
from each other. For the rest of the paper, w is called the window of α that
indicates the distance one needs to walk along the sequence α to construct
nodes in G(d,w). The number of nodes in G(d,w) is at most h.

1See https://www.ncbi.nlm.nih.gov/genbank/

http://www.intlpress.com/site/pub/files/_supp/cis/2022/0022/0003/cis-2022-0022-0003-s002.pdf
http://www.intlpress.com/site/pub/files/_supp/cis/2022/0022/0003/cis-2022-0022-0003-s002.pdf
https://www.ncbi.nlm.nih.gov/genbank/
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The first node, say v1, in G(d,w) is represented by the ordered d-tuple
a1a2 · · · ad consisting of the first d consecutive nucleotides in the DNA se-
quence α. In order to construct the second node, we start at nucleotide
aw+1 which is exactly w nucleotides apart from a1, and form the second
node v2 of the form aw+1aw+2 · · · aw+d. In general, by induction, we can
define the k-th node, say vk, with 1 ≤ k ≤ h, as the ordered d-tuple
aw(k−1)+1aw(k−1)+2 · · · aw(k−1)+d. Since each ai is one of the nucleotides A,
C, G, T, there are only finitely many choices for each node vk. In fact, there
are exactly 4d choices for each vi. So it may occur that the construction can
result in vi = vj for some i �= j, which implies that the set of nodes of G(d,w)

consists of all the distinct elements in the multiset {v1, v2, . . . , vh}.
Two distinct nodes vi, vj form an edge e = (vi, vj) in G(d,w) if there

exists an integer 1 ≤ k ≤ h such that either of the following is true.

(i) vi = aw(k−1)+1aw(k−1)+2 · · · aw(k−1)+d and vj = awk+1awk+2 · · · awk+d.
(ii) vj = aw(k−1)+1aw(k−1)+2 · · · aw(k−1)+d and vi = awk+1awk+2 · · · awk+d.

In other words, e = (vi, vj) is represented by two consecutive ordered d-
tuples appearing in the DNA sequence α. The weight of e is defined to be
the number of times that the pair (vi, vj) that represents the edge e, appears
as two consecutive ordered d-tuples in the sequence α.

Example 2.1. Let α denote the DNA sequence AACTGTATGACGTATG
of length m = 16. We illustrate the above construction to represent α as a
weighted undirected graph G(2,1), where d = 2 and w = 1. Such a graph
representation is called a dinucleotide representation with window 1. Using
the above construction, we obtain that v1 = AA, v2 = AC, v3 = CT , v4 =
TG, v5 = GT , v6 = TA, v7 = AT , v8 = TG, v9 = GA, v10 = AC, v11 = CG,
v12 = GT , v13 = TA, v14 = AT , and v15 = TG. Thus the set of nodes of
G(2,1) consists of all distinct elements in the multiset {v1, v2, . . . , v15}, which
implies that the set of nodes of G(2,1) is AA, AC, AT, CG, CT, GA, GT, TA,
TG. Note that GT and TG are distinct nodes since we consider the ordered
2-tuples appearing in α. The graph G(2,1) that represents α is illustrated in
Figure 1(A) in which the positive integer appearing on each edge indicates
its weight. For example, the edge (AC, CG) appears in G(2,1) with weight 1
since AC, CG appear as two consecutive ordered 2-tuples in α exactly one
time.

When (d,w) is (3, 1) (resp., (4, 1), we, in a similar way as above, obtain
the trinucleotide representation with window 1 (resp. the tetranucleotide
representation with window 1) of α. See Figure 1(B) and (C) for the graphs
G(3,1) and G(4,1).
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Figure 1: Graph representations of DNA sequence AACTGTATGACG-
TATG.

There is a natural generalization of one-dimensional graph representa-

tion to high-dimensional graph representations of DNA sequences as follows.

To each DNA sequence α we associate a Cartersian product of weighted undi-

rected graphs. Let α be a DNA sequence of length m. Let (d1, w1), . . . , (dn,

wn) be n pairs of positive integers, where each di satisfies di < m, and the wi

are chosen to be sufficiently small. In our experimental analysis, we choose

wi = 1, which is fast in time complexity as well as high in accuracy. For each

(di, wi) with 1 ≤ i ≤ n, we associate to α the weighted undirected graph

G(di,wi). We then combine all the graphs G(di,wi), and associate to the DNA

sequence α the n-ary Cartersian product
∏n

i=1G(di,wi), which can be viewed

as a high-dimensional graph representation of α.

As illustration, let α be the DNA sequence as in Example 2.1. Let

(d1, w1) = (2, 1), (d2, w2) = (3, 1), and (d3, w3) = (4, 1). Using the above

construction, we obtain the 3-ary Cartersian product G(2,1)×G(3,1)×G(4,1)

that represents the sequence α, where G(2,1), G(3,1), and G(4,1) are the graphs

in Example 2.1 and Figure 1.

Once a graph representation of DNA sequences is chosen in the above

method, such a Cartesian product representation of DNA sequences is

equipped with a metric to convert a given collection of DNA sequences into a

metric space. Let C be a finite set of DNA sequences, the minimum of whose

lengths ism. Let (d1, w1), . . . , (dn, wn) be n pairs of positive integers for some

integer n ≥ 1, where each di satisfies di < m, and the wi are chosen to be suf-

ficiently small. Let Gn be the set of all n-ary Cartesian products of weighted

undirected graphs. As described above, for each DNA sequence α ∈ C, there
is an n-ary Cartersian product

∏n
i=1G

α
(di,wi)

of weighted undirected graph

that represents α. Thus we obtain a map Γn : C → Gn that sends each DNA
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sequence α to its associated n-ary Cartesian product
∏n

i=1G
α
(di,wi)

. The map
Γn is called an n-ary Cartersian product representation of C.

It is well-known that there are many metric space structures for a collec-
tion of graphs [21], i.e. for a given collection of graphs X , there exist several
distance metrics d : X × X → [0,∞) that satisfy the following conditions:

(D1) (symmetry) d(G1, G2) = d(G2, G1) for any graphs G1, G2 in X ; and
(D2) (triangle inequality) d(G1, G2) ≤ d(G1, G3) + d(G2, G3) for any

graphs G1, G2, G3 in X .

In general, we do not require that d(G1, G2) = 0 if and only if G1 = G2,
as in the traditional notion of a distance metric in mathematics [22]. In
practice, and in our experimental analysis, we rarely encounter two graphs
G1, G2 that represent two DNA sequences such that d(G1, G2) = 0. It suffices
to obtain that G1 is very similar to G2 from the fact that d(G1, G2) is
sufficiently small from which we wish to deduce that the DNA sequences
that G1, G2 represent are similar.

For such a distance metric d satisfying (D1) and (D2) as above, we can
equip the collection X of graphs with a metric space structure associated
to d, which allows us to compare similarities/dissimilarities between graphs
contained in X . For the proposed method in this paper, the edit distance
[21]2 is used to equip the collection of graphs that represent a given collection
of DNA sequences, with a metric space structure. Note that the edit distance
for DNA similarity analysis used in this paper scales linearly or near-linearly
in the size in the graphs associated to the DNA sequences.

Using the edit distance as a distance metric on a collection of graphs, a
distance metric for a collection of n-ary Cartersian products of graphs is nat-
urally constructed as follows. Let Gn denote a collection of n-ary Cartersian
products of graphs of the form

∏n
i=1Gi, where the Gi are weighted undi-

rected graphs. For each 1 ≤ i ≤ n, let Xi denote the collection of weighted
undirected graphs Gi appearing in the i-th component of the n-ary Carter-
sian products of graphs in Gn. There is a natural bijection between Gn and
the Cartesian product

∏n
i=1Xi.

Let d denote the edit distance which is a distance metric on each Xi. We
can define a distance metric dmax : Gn × Gn → [0,∞) by setting

dmax(

n∏

i=1

Gi,

n∏

i=1

G′
i) = max

(
d(G1, G

′
1), · · · , d(Gn, G

′
n)

)
.(1)

2The Python library that implements the above distances used in this work can
be accessed from the GitHub of Peter Wills (see https://github.com/peterewills/
netcomp).

https://github.com/peterewills/netcomp
https://github.com/peterewills/netcomp
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It is not difficult to verify that dmax satisfies the requirements of a dis-
tance metric, say (D1) and (D2) above.

3. Geometric graph representation method (GGRT)

In this section, an alignment-free method is proposed for analyzing simi-
larities/dissimilarities between DNA sequences. The proposed method for
reconstructing a phylogenetic tree of DNA sequences, using graph represen-
tations described in Section 2, is described in the following algorithm:

Algorithm 1: Geometric Graph Representation Method (GGRT)

Input : A collection C consisting of m DNA sequences α1, . . . , αm.
Output: Phylogenetic tree of the DNA sequences

1 Choose n tuples of positive integers (di, wi) for 1 ≤ i ≤ n, where the di is
less than the minimum of the lengths of α1, . . . , αm, and the wi are
sufficiently small. In practice, and in our experimental analysis, we
choose wi = 1 for all i.

2 Construct high-dimensional graph representation (HDGR) of each DNA
sequence αi to obtain a finite collection Gn of n-ary Cartesian products of
graphs PGα1 , . . . ,PGαm , where the PGαi is the n-ary Cartesian product
of graphs, corresponding to the DNA sequence αi

3 Associate the distance metric dmax on Gn as in Section 2, where each
component distance metric is the edit distance d.3

4 Compute the distance matrix of dimensions m×m whose (i, j)-entry is
the distance d(PGαi ,PGαj ).

5 Construct the phylogenetic tree of the DNA sequences from the distance
matrix in Step 3, using UPGMA algorithm [31].

4. Experimental analysis

In this section, we describe our experimental analysis, and the results ob-
tained from applying our proposed method in Section 3 to several real
datasets including Human Papillomavirus (HPV) [25, 26], Human rhinovirus
(HRV) [27], Influenza A virus [28, 29], and Mammals [30]. The GenBank4

accession numbers of DNA sequences contained in these datasets are listed
in the supplemental file. Computations in this research are implemented on
a PC with configuration of Intel Core i7, CPU 2.50 GHz, and 16 GB 1600
MHz DDR3.

4See https://www.ncbi.nlm.nih.gov/genbank/

https://www.ncbi.nlm.nih.gov/genbank/ 
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Each of the above datasets is represented by a finite collection C of DNA
sequences α1, . . . , αl for various lengths l. We apply the proposed method
in Section 3 for the collection C. More precisely, in Step 1, we fix, once and
for all, n = 3, (d1, w1) = (2, 1), (d2, w2) = (3, 1), and (d3, w3) = (4, 1).
Thus in Step 2, we, for each αi, obtain a 3-ary Cartersian product of graphs
G(2,1),αi

× G(3,1),αi
× G(4,1),αi

that represents αi. Here the construction of
graphs G(2,1),αi

, G(3,1),αi
, G(4,1),αi

and their 3-ary Cartesian products follow
Section 2. In other words, G(2,1),αi

, G(3,1),αi
, and G(4,1),αi

are dinucleotide,
trinucleotide, and tetranucleotide representations with window 1 of αi, re-
spectively. Thus one obtains a collection G of exactly l 3-ary Cartesian prod-
ucts of graphs of the above form that represent all the αi. See Example 2.1
for an explicit example of a DNA sequence, and its graph representations.

In carrying out computations, several representations of DNA sequences
as in Section 2 are used, but the results are approximately similar, and
the above representation provides us with the fastest time complexity and
highest accuracy in analyzing similarities/dissimilarities between DNA se-
quences. In addition to edit distance, spectral distance [21] is also used in
Step 3 of the proposed GGRT method to compare with the GGRT method
using edit distance in this paper. Using the time complexity summary in
[21], edit distances have faster time complexity than spectral distances. The
proposed method is compared with other methods in literature such as the
Fourier transform method developed in [24] and the state-of-the-art alignt-
ment method for DNA similarity analysis called Clustal Omega in [23]. The
proposed method using edit distance performs the best in comparison with
the two methods in [23] and [24] when applying to test some of the above
datasets in terms of time complexity as well as accuracy. Tables 1 and 2
summarize time complexity and accuracy in applying our proposed methods,
using both edit distances and adjacency spectral distances, to the datasets
HPV, HRV, Influenza A virus, and Mammals. The tables also list time com-
plexity and accuracy, using the methods in [23] and [24]. The computations
and reconstruction of phylogenetic trees using Clustal Omega were produced
in [24].

4.1. Influenza A virus

We first consider the dataset of Influenza A viruses. Influenza A viruses
are very dangerous because they have a diverse range of hosts including
birds, horses, swine, and humans. These viruses have been a serious health
threat to humans and animals [32], and are known to have high degree
of genetic and antigenic variability [28, 29]. Some subtypes of Influenza A
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Table 1: Time complexity using our proposed methods in comparison with
those in [24] and [23]

Method Influenza HPV Mammals HRV
GGRT

(Edit distance)
0.51s

(see Fig. 2)
43.31s

(see Fig. 3)
4.34s

(see Fig. 4)
8.15s

(see Fig. 5)
GGRT

(Spectral distance)
54.67s 2h 29min 42.60s 10min

Clustal Omega in
[23]

9s 2h 17min 10min 19min 35s

Fourier transform
method in [24]

< 1s < 30s 4s 7s

Number of DNA
sequences

38 400 31 116

Lengths of DNA
sequences

1350− 1467 7814− 10424 16338− 17447 6944− 7458

Table 2: Number of misclassified sequences using our proposed methods in
comparison with those in [23] and [24]

Method Influenza HPV Mammals HRV
GGRT
(Edit distance)

1
(A/turkey/VA/H5N1)2

(see Fig. 2)

1
(HPV11-14)
(see Fig. 3)

0
(see Fig. 4)

0
(see Fig. 5)

GGRT
(Spectral
distance)

0 1
(HPV11-14)

2
(Rabbit, Pig)

1
(C c025*)

Clustal
Omega in [23]

1
(A/turkey/VA/H5N1)2

0 1
(Squirrel)

0

Fourier
transform
method in [24]

1
(A/duck/Guangxi/
H1N1)

1
(one from
HPV11)

1
(Squirrel)

0

viruses are even lethal including H1N1, H2N2, H5N1, H7N3, and H7N9. The

GGRT method is tested on the dataset consisting of 38 Influenza A virus

genomes. From Figure 2, and Tables 1 and 2, the GGRT method using edit

distance incorrectly identifies one subtype of Influenza A viruses. In terms of

time complexity, the GGRT method using edit distance is comparable with

the Fourier transform method in [24], and both methods perform the best

in terms of time complexity. Figures 2 illustrates the phylogenetic trees of

Influenza A viruses, based on the GGRT method.

2a part of H1N1 viruses are incorrectly grouped with H5N1 subtype.
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Figure 2: Phylogenetic tree of Influenza based on the GGRT method.

4.2. Human Papillomavirus (HPV)

In this subsection, we consider the dataset of Human Papillomavirus (HPV).
Human Papillomavirus is mostly responsible for cervical cancer which is
the second most common cancer among women [25]. The GGRT method
is tested on the data set of 400 HPV genomes. In terms of time complex-
ity and accuracy, the GGRT method using edit distance is similar to the
Fourier transform method in [24]. The GGRT method incorrectly identifies
one HPV genome HPV11-14. In terms of time complexity. See Figures 3 for
the phylogenetic trees of HPV, using the GGRT method.

4.3. Mammals

It is known that there is a rapid mutation rate in the mitochondrial genome.
In 2011, Deng et al. [30] classified a complete mitochondrial DNA dataset
of 31 mammalian genome sequences from GenBank. The dataset was classi-
fied into 7 groups consisting of Carnivore, Perissodactyla, Cetacea and Ar-
tiodactyla, Lagomorpha, Rodentia, Primates, and Erinaceomorpha. In this
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Figure 3: Phylogenetic tree of HPV based on the GGRT method.

subsection, the GGRT method is tested on the same datatse. The GGRT
method (see Figure 4 and Tables 1 and 2) correctly groups 31 mammalian
genome sequences into their corresponding 7 groups. Both Clustal Omega
and the Fourier transform method in [24] have a misplacement. It took
Clustal Omega 10 minutes and 9 seconds for the classification, and the
Fourier transform method in [24] 4 seconds for the classification. It took
the GGRT method using edit distance 4.34 seconds to correctly classify 31
mammalian genome sequences.
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Figure 4: Phylogenetic tree of Mammals based on the GGRT method.

4.4. Human rhinovirus (HRV)

Human rhinovirus (HRV) is the most common viral infectious agent in hu-

mans, and is the main cause of the common cold [27]. Using multiple se-

quence alignment, Palmenberg et al. [27] correctly classified the complete

HRV genomes into three genetically distinct groups within the genus En-
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Figure 5: Phylogenetic tree of HRV based on the GGRT method.

terovirus (HEV) and the family Picornaviridae. The dataset used in [27]

consists of three groups HRV-A, HRV-B, HRV-C including 113 genomes,

and three outgroup sequences HEV-C. The GGRT method (see Tables 1

and 2 and Figure 5) for the phylogenetic tree of HRV genomes correctly

classifies the complete HRV genomes into the corresponding genetically dis-

tinct groups in about 8.15 seconds. In terms of time complexity, the GGRT

method is comparable to the Fourier transform method in [24], which per-

forms the computation in 7 seconds.
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5. Conclusions and discussions

In this paper, an alignment-free method for DNA similarity analysis, called
the GGRT method is proposed, using a combination of graph theory-for rep-
resenting DNA sequences as Cartesian products of graphs, and metric space
structures on graphs, to view a given collection of DNA sequences as points
in a metric space. In order to analyze similarities/dissimilarities, distances
between such points are computed,which indicates similarities/dissimilarities
between the corresponding DNA sequences. Throughout the paper, the edit
distance on graphs is used due to its well-performed features in time com-
plexity, accuracy as well as simplicity in computations. The GGRT method
is tested on several standard datasets in literature, and compared with other
available methods such as Fourier transform method [24] and Clustal Omega
[23]. In some dataset, the GGRT performs the best in terms of time complex-
ity and accuracy, and in several datsets, the GGRT method is comparable
with Fourier transform method. In future work, we plan to improve accu-
racy and time complexity of the GGR method. Furthermore, we plan to
study variants of the GGRT method, in combination with algebraic topol-
ogy such as persistence diagrams from topological data analysis to propose
more alignment-free methods for DNA similarity analysis.
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