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Various kinds of human-friendly robot partners have recently been
developed to provide humans with superior services. Manipulation
skills, including grasping, arranging, and delivering, are essential
for home applications. A robot partner is designed to grasp the
meaning of human behavior and their intention in shared spaces
to assist older people at home. As a result, the robot partner re-
quires the cognitive ability to comprehend states of the environ-
ment based on both people’s and robot partners’ physical and sen-
sory embodiment. This research presents a human-robot interac-
tion technique for handover behaviors based on cognitive contexts.
First, we describe how to share a person’s cognitive environment
with a robot companion using the relevance idea presented in Cog-
nitive Pragmatics. The perceived cognitive environment of humans
contains a type of spatial topological structure, such as relative
placement and proximity among objects. Furthermore, the human
cognitive environment is continually updated due to the cyclic pro-
cess of perception and action. As a result, we will look at how to
apply topological mapping approaches in cognitive contexts. Next,
using the idea of the perceiving-acting cycle presented in Ecolog-
ical Psychology, we apply topological mapping methods of Grow-
ing Cell Structure (GCS) and Growing Neural Gas (GNG). The
GCS represents the effectivity in the action system. In contrast,
the GNG represents the human and robot task space. The experi-
mental findings and real-world robot application examples indicate
that the robot can correctly estimate human intention and conduct
handover actions. Finally, we examine the effectiveness of the pro-
posed approach and future research directions in the human-robot
interaction based on the perceiving-acting cycle.

1. Introduction

Recently, various types of human-friendly robot partners have been devel-
oped to realize sophisticated service to people. Both capabilities of verbal
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and nonverbal communication are needed for robot partners [1, 2]. How-
ever, the capability of environmental perception is also important to realize
unconstrained mutual interaction. In general, human communication is re-
stricted by their surrounding environments.

In general, human communication is restricted by their surrounding en-
vironments. According to the relevance theory, each person has his or her
cognitive environment. Communication starts with making a person pay at-
tention to a specific target object, events, or person. Thus, the cognitive
environment of the other person can be enlarged. The shared cognitive en-
vironment is called a mutual cognitive environment.

A robot partner should have a cognitive environment to achieve natural
interaction. The robot should keep upgrading the cognitive environment
based on existing knowledge acquired from experiences with people. A robot
partner needs cognitive capabilities of human detection and recognition,
verbal communication, nonverbal communication, object, and environmental
recognition through interaction with people. In this paper, we focus on how
to share cognitive environments. In Figure la, an older person approaches
the table and looks at the table near the robot. If the person points to a blue
cup, the person wants to get the blue cup. This is the ability to try to share
the intention with others, but it is difficult to specify the meaning of a gesture
as either “can you hand me the blue cup?” or “may I have the blue cup?”.
However, the meaning of such a pointing gesture can be estimated easier if
the robot partner can estimate the reachable human range (Figure 1b). And
then, the robot partner should also estimate the possible handover area. In
the viewpoint of ecological psychology [3], the surrounding environmental
conditions strongly influence the cyclic process of human perception and
action based on the physical embodiment. A typical handover behavior is
done as a result of a mutual perceiving-acting cycle [4].

This paper proposes a method to estimate the human cognitive environ-
ment according to their physical embodiment to realize handover behaviors.
We utilize two topological mapping methods i) Growing Neural Gas (GNG)
[5-9] to estimate human cognitive environment; ii) Growing Cell Structure
(GCS) [10] to estimate human reachable hand range.

This paper is organized as follows. Section 2 explains related work with
another research and the background understanding on perception and ac-
tion of this research to realize the sophisticated service. Section 3 proposes
a method of topological mapping based on the perceiving-acting cycle to
share mutual cognitive environments. Section 4 shows experimental results
to show the effectiveness of the proposed method. Section 5 concludes this
paper and discusses the future works to improve the methodology on the
perceiving-acting cycle.
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Figure 1: (a) Mutual cognitive environment through the visual and non-
verbal communication. (b) An example of handover behaviors based on the
estimation of human intention.

2. Related work

How robots can evaluate and comprehend human intents and behaviors has
been extensively investigated in various fields, with a variety of foci and
methodologies. Numerous disciplines have established frameworks for de-
scribing mutual modeling capability [11]. [12] developed robots capable of
cooperating with a human user in a confined experimental context by shar-
ing intents with her and accomplished by letting the robot observe a human’s
goal-directed behavior and then adopt the user’s strategy. Thus, the robot
demonstrates the capability of determining and recognizing the intents of
other agents and sharing intentions with the human user. In [13], the con-
cept of mutual understanding was established by defining it as an agent’s
ability to predict others and be predicted by others. In a pick-and-place
scenario involving a robot and a coworker, the robot arm should approach
things and places reasonably [14]. [15] presented online learning of deliber-
ate motion patterns and intention prediction using Hidden Markov Models,
enabling fast inference in real-time. The HMM can be gradually trained to
cope with novel motion patterns concurrently with projection [16]. Existing
systems of human-robot interaction can be categorized according to the type
of monitoring employed. One class of devices detects mechanical forces and
displacements produced by the robot during physical interaction [17, 18].
Another type of technology is involved in monitoring human communica-
tion signals [19]. These systems can also be classified as visual monitoring
systems or physiological monitoring systems. Visual monitoring systems cap-
ture video data of the human involved in robot-machine interaction and use
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this data to guide the machine response to the interaction. This monitoring
may involve visual tracking of the user’s eye-gaze direction [20, 21] and head
position, as well as facial expression classification [22], as well as hand and
body motion classification [23, 24].

In ecological psychology based on the concept of perceiving-acting cycle
[25, 26] related with the perception and action we explain multi-scopic cog-
nitive understanding [8]. In the field of robotics, the concept of perceiving-
acting cycle has widely implemented for social robots [26], robot locomotion
[27], teleoperated robots [28], intelligent control [29], and object grasping
recognition [8]. The measurement or sensing is done at the lowest level by
using sensors (Figure 2a). This motion control in the layer directly faces
the surrounding environment, and the sensing corresponds to the informa-
tion measurement. Essentially, reactive motion and sensory-motor coordi-
nation are performed at the lowest level or in the most direct way without
decision-making. As sensory inputs, the robot measures the necessary envi-
ronmental data and conducts the corresponding motion control. This level
could be assigned to the subsumption architecture because each layer is se-
lective based on direct sensory inputs [30, 31]. The selection mechanism in
the original subsumption architecture, on the other hand, covers high-level
decision-making. The active perception is the next cognitive level (D). The
perceiving-acting cycle in an intentional context must be the lowest unit of
analysis in ecological psychology [4]. Here, selective attention plays an im-
portant role in extracting external sensory information to continue making
a series of motions to take intentional action.

Moreover, the time series of action outputs constructs the spatiotempo-
ral context to persist the specific perception with the dynamics of environ-
ments. Therefore, the coupling process of perception and action is called the
perceiving-acting cycle (Figure 2b). Furthermore, affordance is an opportu-
nity for action offered by the environment. Here the effectivity is defined as
the possibility of realizing action restricted by the current posture. If the
posture is changed, its corresponding possible action is changed. Therefore,
a suitable posture is required to specify the affordance. The effectiveness of
the proposed of affordance-effectivity integration has been proved in robot
control [32], object manipulation tasks [33], imitation learning [34]. In our
previous research, we have done the affordance-effectivity learning for robot
climbing behaviors [35, 36] and safe robot manipulations [37].

The goal-specific information is specified as affordance in an intentional
behavior, while the goal-relevant control is specified as effectivity. In this
paper, an action is defined as a motion sequence observed by an internal de-
scription, while the behavior is defined as a motion sequence followed by an



Topological mapping based on perceiving-acting cycle 435

|| | L Attention ¥ Affordance ¥ Perception |
A S ] f S | '
L‘&’TH e s ] \ Coupling
S l [ | Action |
B. M | onsensus
%{‘;“_H 31‘2{;‘2?:::33:83:1 H B2, building ) I
[ [ 1 [ I1

Effectivity

situation intention

11

D2. Action control

C. Cognition  C1. Perception of H c2. Realization of |

D. Active Information
“extraction

[ ‘ “ ] l Posture |
| E. Sensing H E1. ::L‘;E?l:;:‘em H E2. Motion control
L]
Cognition Perception Action
(a) (b)

Figure 2: (a) Multi-scopic cognitive understanding on perception and action.
(b) Perceiving-acting cycle based on attention and posture.

external description. The next level is based on cognition (C). The situated
perception enables the prediction suitable to the spatiotemporal context of
the environment. Furthermore, the estimation of human cognitive and phys-
ical capacities is useful to predict human goal-directed behaviors. Therefore,
the meaning of goal-directed behaviors can be shared between a person and
robot partner. In the level of mutual cognition based on relevance theory
(B), consensus building or intention sharing is conducted through the com-
munication and interaction between a person and robot partner. As a result,
they are able to engage in cooperative behaviors based on the trinomial re-
lationship of humans, robot partners, and objects. Social cognition is linked
to ontology and social knowledge at the highest level. Social learning in this
context refers to the acquisition of common sense or social value. The goal of
robot partners in social interaction is to express social logical thinking or so-
cial attitudes to people or establish robot social identities in a human-robot
coexisting society.

The most important thing to consider in this figure is the bottom-up
construction and top-down constraints. For instance, in B2, a consensus is
achieved through bottom-up estimation of others’ intentions in C2 while ad-
hering to the top-down constraint of social common sense in A2. The mecha-
nism of cognitive development in structured learning is therefore clarified by
top-down constraint and bottom-up building. In the example of Figure 2a,
the interpretable intention of a pointing gesture in B2 is restricted by social
consensus (common sense) in A2, and the situation is recognized accord-
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ing to the possible behaviors in C2 arising from the conjunction of actions
(effectivities) in D2. We explain the procedure of this example in Section 3.

3. Proposed method

Recently, various approaches to Digital Transformation [38], Cyber-Physical
Systems [39], and Digital Twin [40] have been proposed and discussed based
on the integration of information, intelligence, communication, and robot
technologies. The essence of these approaches is to realize super real-time
measurement, monitoring, simulation, prediction, search, adaptation, and
control integrated mutually from micro-, meso-, and macro-scopic points
of view. Especially, feature extraction from big data is important to real-
ize super real-time information processing. The methodology on topological
mapping [41], knowledge graph [42] and graph neural networks [43] is very
useful to deal with feature-based information processing. Topological map-
ping methods can extract hidden relationships among features and deal with
hidden relationships explicitly. Topological mapping methods are used for
3D modeling available for accurate physics simulation from the microscopic
point of view. In contrast, graph-based methods are used for knowledge
representation available for huge-scale rule-based inference from the macro-
scopic point of view. Furthermore, we can build a topological model and
knowledge according to a mesoscopic modeling and simulation approach to
integrate microscopic models and macroscopic knowledge, called Topologi-
cal Twin. In this way, topological twin can explicitly deal with relationships
hidden in real data to realize digital twin by real world simulation.

3.1. Topological approaches for perception and action

The proposed method comprises two main components: the Growing Cell
Structures (GCS) and the Growing Neural Gas (GNG) inspired by the per-
ceiving and acting cycle. GCS and GNG are unsupervised topological map-
ping algorithms that employ competitive learning to dynamically update the
nearby relation (edge) referring to the neighboring node’s ignition frequency.
The limitation to adding and deleting nodes and edges is the fundamental
distinction between GNG and GCS. GCS can be made up of k-dimensional
simplices, where k is a positive number that has been selected in advance.
GNG, on the other hand, is capable of node deletion and edge structur-
ing but not of maintaining k-dimensional simplices. GNG may partition a
data set into several data segments as a clustering approach. In this study,
we propose a modified learning method with distance-based node update
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and error-based node deletion to enhance rapid online adaptability. We ex-
plain the basic algorithm of GCS used in our previous paper [9, 36]. In the
algorithm, parameters w;, A, N;, and ¢; j, represent the n-th dimensional
reference vector of i-th node, a set of nodes numbers, a set of nodes con-
nected to the i-th node, and edge between i-th and j-th nodes nodes where
we assume c¢; ; = 0, respectively.

Step 0: Generate three nodes at random position wi, we, and ws in R™.
Initialize the connection set f(c12 =1, c13 =1, ca3 =1).

Step 1: Generate at random an input data p

Step 2: Select the nearest nodes (winner) s by

1 _ .
(1) s argr;leachp wi||

Step 3: Update the reference vectors of the winner and its direct topological
neighbors by the learning rate p1, ps and coefficient us, respectively.

(2) Wsj < We; + #1(]? - wsi)

(3) wj — wj; + M2£j(p — wj) if Cs,j = 1

where &; = exp(—ps|lv — wj||) as a distance-based learning method.
Step 4: Add the squared distance between the input data and the winner to
a local error variable.

(4) By + Es+ |lp — will?

Step 5: If the number of input data generated so far is an integer multiple
of a parameter A, insert a new node as follows.
i. Select the node ¢ with the maximum accumulated error.

5 = E;

(5) ¢ = argmax E;

ii. Select the node f with the maximum accumulated error among the neigh-
bors of q.

iii. Add a new node r to the network and interpolate its reference vector
from ¢ and f.

(6) wy = 0.5(wg + wy)

iv. Insert the edges connecting the new node r with nodes ¢ and f(c, 4 = 1,
Crf = 1).
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Figure 3: (a) Teaching data robot (b)Teaching data robot and human
(c)Learning result.

v. Decrease the error variables of ¢ and f by a fraction «.

(7) E, « E,— aF,

(8) E; «— Ef —aky

vi. Interpolate the error variable of r from g and f
9) Ey=0.5(E,+ Ey)
Step 6: Decrease the error variables of all nodes
(10) E; <« E;—BE;(V; € A)

Step 7: Continue with step 2 if a stopping criterion (e.g., net size or some
performance measure) is not yet fulfilled.

We apply GCS to estimate the effectivity based on movable range. First,
we generate teaching data generated by the direct Kinematics (the gripper
position (z,y,z) calculated from 5 joint parameters). In this way, GCS can
learn Inverse Kinematics. GCS can cover the movable range of the arm of
the robot partner. Figure 3 shows a learning result of inverse Kinematics by
GCS. The j-th node includes the joint parameters (vj;, k=1, 2, ..., o) to
move the arm to the target point. The target trajectory from the current
position to the target position is generated in the topological map. The
nearest node toward the target position is selected sequentially. In order to
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improve the continuity of a trajectory, the joint parameters are calculated by
the distance-based weighted average of the nearest node and its connected
nodes step by step.

Z]ENS é-j'v‘],k? + Us7k

11 Vi =
( ) g ZjeNSfj+1

where s is the selected nearest node.

Next, we explain the learning algorithm of GNG according to the differ-
ence with the above GCS. The main difference with GCS is how to update
the edge and to delete the nodes and edges. Furthermore, the concept of
age is introduced to control the edge connectivity in GNG. Step 2 in GCS
is modified in the following.

Step 2’-1. We select the nearest node of GNG (winner) (s1) and the second-
nearest unit (s2) of GNG calculated as follows:

(12) 51 = argmax || p — w; ||
i€A
(13) So = argmax || p — w; ||
i€ A\{s1}

Step 2-ii. We create the connection between si-th node and sa-th (cg1 52=1)
node. Then, the age of the connection between si-node and ss-node is set
to zero;

(14) aShSz =0

Step 3 in GCS is modified in the following to deal with age-dependent pro-
cessing. Step 3’-i. Update the reference vectors of the winner and its direct
topological neighbors by (2) and (3).

Step 3’-ii. Increment the age of all edges connecting from s;.

(15) as,j < as,;+1 ifcg, =1

Step 3’-iii. Delete edges with an age larger than a,,qz (¢;j = 0). If this results
in nodes with no more connecting edges, delete those nodes as well.

Step 6 in GCS is modified in the following to improve the online adaptivity
of topological mapping to changing environment.

Step 6’-i: Decrease the error variables of all nodes by (10).
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Figure 4: Point cloud measured by virtual 3D-LRF (a) Laser Top View (b)
Laser front view (c)An example of layout.

Step 6’-ii: Delete the i-th note and its connecting edges (¢;; = 0,5 € N;), if
FE); is less than FE,,;, where E,,;, is a deletion criterion.

We apply the adaptive GNG to estimate the position of the target ob-
ject. The input to GNG is the 3D position of the points cloud (z,y,z). The
adaptive GNG can conduct online fast clustering and topological mapping.
Figure 4a shows the measurement direction of a simulated 3D Laser Range
Finder (virtual 3D-LRF) and an example of point cloud measured by virtual
3D-LRF, respectively. The resolution of the point cloud is 200 by 200 on the
XY-axis. Figure 4. shows measurement results of the virtual 3D-LRF with
down sampling of 5 points on each axis to objects shown in Fig. 4c

3.2. Sharing cognitive environments

In general, human communication is restricted by their surrounding envi-
ronments, as explained in Chapter 1. According to the relevance theory [44],
each person has their cognitive environment, and the communication starts
with making a person pay attention to a specific target object, events, or per-
son. Human communication plays a role in achieving consensus. For exam-
ple, while saying different things, one person can communicate with another
and interpret the sense of an unfamiliar word spoken by the other since the
symbol corresponds to the perception. The significance principle [45] helps
discuss the verbal speech. According to the significance principle, human
thinking is exchanged rather than communicated between two beings. The
ability of utterances or gestures to draw an individual’s attention to a par-
ticular target object or entity is one of their most essential functions. The
cognitive environment of the other individual may be enhanced as a prod-
uct of attention’s representation. A mutual cognitive environment is a shared
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cognitive environment in which two or more people share their thoughts. A
human-friendly robot should have such a cognitive environment to achieve
natural communication. The robot could keep updating the cognitive envi-
ronment according to current perception through contact with a human.

The research reported in [46] examines how one human’s non-verbal com-
munication clues enable others to discern his behavior intentions. The actor’s
non-verbal communication was captured utilizing a motion-tracking device
to capture the actor’s body movement and a head-mounted eye tracker to
capture the actor’s eye gaze behavior. One actor interacted with three indi-
viduals and performed one of two actions: placing an object on a table or
handing the thing to one of the persons facing him. The activities of putting
and giving were chosen because they fell within two types of actions out-
lined in micro-sociological studies [47]. The placement action is an example
of individual activity, but the providing step is an example of interactional
action, requiring communication between the interaction partners. Duarte
et al. [46] increased focus on the value of nonverbal communication indica~
tors such as arm movement, head movement, and eye movement. Human
volunteers were exposed to brief segments of footage of the actor doing one
of two possible behaviors. These pieces contain varying levels of information
about non-verbal signals, and the goal was to determine the effect of each
cue on the capacity to “read” the actor’s intents. The obtained data was
utilized to simulate armed behavior for the two types of activities and to
suggest a gaze controller that, when paired with arm movement, may cre-
ate human-like motions similar to those found in human-human interaction
(HHI) tests. However, the work is incomplete since it only investigates one
aspect of the connection. As a result, the next essential step is to investigate
not just the nonverbal communication of the human performing the activity,
but also the information shared by the environment.

In our work, the sharing information environment is called the shared
cognitive environment. A cognitive environment is an area perceived by hu-
man attention, and effectivity is represented by topological maps. Further-
more, the area paid more attention to is characterized by a higher density
of nodes in topological maps. A robot partner also has a cognitive environ-
ment. Each cognitive site is updated through communication and interaction
between the human and robot partner. The shared cognitive environment
(mutual cognitive environment) is represented by the overlapping human
and robot cognitive areas. Figure 5d visualizes the attention of humans and
robots by showing the density of nodes, and higher density occurs in the
position of humans, tables, and objects around them. Higher density shows
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Figure 5: Updates the attention ranges as a cognitive environment. (a). Hu-
man pose detection, red lines depict skeleton poses of humans. (b). Point-
cloud and adaptive GNG show in rviz. (c) Adaptive GNG show in rviz. (d).
adaptive GNG node density level in human images illustrates the increasing
attention of robots in humans.

the intersection of human and robot attention. Human attention leads to
the table, and robot attention leads to humans and the table.

Human detection by human pose skeleton and clustering using adap-
tive GNG. The robot requires intelligent capabilities such as human visual
awareness, gesture recognition, and object recognition to share a cognitive
environment. As sensory inputs, the robot obtains environmental data from
the RGB-D camera to detect human and object recognition. Human posture
is identified using the skeleton data generated from the OpenPose [48-50]
library. The OpenPose produces 18 annotated 2D main points linked to the
human body’s posture. A subset of these critical points and their pair-wise
anatomical relationships are created for humans, as shown in Figure 6a.
Only the point on the face and the right hand is used to identify human
intentions in pointing at a target object. The surrounding objects are also
recognized simultaneously in addition to human recognition. The method
for object recognition is shown in Figure 6b. We use “You only look once”
(YOLO) [51]. The robot recognizes the intention from the pointing gesture
in Figure 6¢ according to three conditions in the following; i) the angle at
the elbow calculated by eq. 16 is the threshold; 6,45 ii) both of the distance
ds between human hand direction and the same target object and between
the gaze direction and that are shorter than the threshold; d,,;, shown in
Figure 6c where the gaze direction is estimated by calculating the normal
vector [52] fo eq. 17, iii) the time duration is longer than the threshold;
tmaz- When the above three conditions are satisfied, the robot recognizes
human intention and conducts a handover behavior of the target object.
The robot raised the arm based on the predicted object position after the
person demonstrated actions to hit the object for several seconds. At the
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Figure 6: (a) Human pose estimation (b) Object recognition using YOLO
(c). Pointing gesture estimation where the node w is the position on the
human arm and v is the position of feature points on face.

end of the learning process, the robot began rotating its arm to grab the
desired object. In this way, the robot’s predictive ability allows it to have a
seamless relationship with a person. In addition, the robot shares a cognitive
environment with a person.

(16) 6 — cos! (H(wl —up) - (uz — up) )

ur — up)|| - [|(uz — uo)||

- (1)0 — ’Ul) X (UO - 'U2)
(7) N = o — o) [ 1too — el

3.3. Handover behaviors

A handover behavior starts by recognizing the target object by utilizing ROS
(Robot Operating System). A pointing gesture consists of an arm’s motion
to point to a target in space and emphasize it to other people through these
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Figure 7: Grasping and handover behavior experimental flow.

movements without explaining its location verbally. The relation connecting
the two joints mentioned above and the named pointing vector is shown in
Figure 6¢c were measured to define a pointing gesture. Figure 7 shows the
system architecture used for handover behavior by HSR. First, the center
of the detected object is calculated by using an image geometry message on
ROS. Next, we will transform it into a 3D Position in the real world. To
see the center of the 3D Position in each object, we use an Xtion camera
attached to the head of HSR. To realize the grasping task in the handover
behavior, HSR detects the 3D central point of the object and solves the
inverse kinematics. Moreover, we use the motion planner of HSR to perform
post-grasp movement according to the 3D central point of the target human.

4. Simulation and experimental results
4.1. Preliminary simulation results of perception and action

This subsection shows preliminary simulation results of perception and ac-
tion in the handover behavior by a robot partner. Figure 8a shows a simula-
tion result where the number of nodes in GCS is 108 (left side) and that in
GNG is 200 (right side). The second object from the right is selected as the
first target, and the node nearest to the target object is set in the percep-
tion. Figure 8b shows an estimated path from the current arm position to
the target point on the right side of effectivity estimation. However, the res-
olution for both the perception and the control is not enough. Furthermore,
the reached position of the gripper is a little far away from the target point
in Figure 8c. The node of GCS can be increased if the distance between
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Figure 8: Preliminary simulation results: The trained topological map of
GCS is shown virtually at the left side and that of GNG at the right side in
each figure.
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Figure 9: Adaptability of adaptive GNG.

the target and the point of GCS perception is less than the threshold. The
threshold value is the minimum distance that the robot’s hand can take the
object.

Figure 9 shows a simulation result of adaptability of adaptive GNG.
The clusters of nodes move to the face from the overall view and picture the
transition of the attention range from the human face to the human hand
and its near objects. And then, the second object from the right is selected
as the target object. When the attention range is transited, nodes decrease
quickly, and GNG is adaptive to the transited target. The robot updates
the attention ranges as a cognitive environment through verbal and non-
verbal communication with a person. The robot partner confirms the facial
direction and hand gesture of the person. The attention range is shown in
Figure 10, from the left side of the attention, is directed towards the head,
then the attention moves towards the human hand and the object. The
attention range is shown by the density value of the GNG nodes. Figure 11
offers the numerical value of the number of nodes at each attention and
adaptability of the adaptive GNG—the number of nodes changes dependent
on the attention of the robot partner. Figure 12 shows the point density level
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Figure 10: Transition of attention range from human face to the human hand
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Figure 11: The learning state of GNG according to the transition of attention
range. (a) The number of active nodes. (b). average error (distance) to all
sampling data.

as the level of attention. The density of the nodes increases in the human
area as the main object. Node density has risen fourfold in the human area
than in other regions to reduce the computational cost of recognizing human
behavior.

4.2. Experimental results of visual perception

Scenarios are prepared in advance for the experimental environment set
up to demonstrate the visual perception of the proposed system, as shown
in Figure 13. We show experiments by both simulation and real environ-
ment. The simulation uses the Open Dynamic Engine (ODE) to visualize
the robot’s perception based on the topological map of the adaptive GNG
shown in Figure 13a. The blue dot shows the node, and the green line shows
the connected edge nodes. The total number of nodes formed from the image
is 300, spread across tables, objects, and people. These nodes are used to
find out the target object’s position for handover behavior to the person. s
position for grasping by the robot partner.
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Figure 12: GNG adaptive node density shows the attention range, and high
density is in the human position. the thickness is four times more than the
other areas.
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Figure 13: (a). Simulation of visual perception (b). Visual perception with
SSD Inception in real environment.

In real life environment illustration, the scenario can be seen in Fig-
ure 13a. The robot is placed in front of the table with several objects on
it. For each attempt, one actor executes the action of trying to reach or
point to one of the objects on the table (left/center/right). The distance
of each object is between 20-25 cm. The actor was instructed to act as
normally as possible when performing those actions. The actor will try to
grab the object randomly to prevent the actor from adapting its posture
prior to initiation. A total of 60 experiments were carried out with the ac-
tion configuration: left, center, and right were performed 20 times each. The
RGB-D camera tracking system records world camera videos at 30-35 Hz.
Furthermore, to recognize the human intention in reaching the surrounding
object, it is carried out with the following stages, the human position is
identified using Openpose. The robot’s attention will increase in the human
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area, described by the increasing density of GNG nodes around the skele-
ton. If the time duration of the human arm position shown in Figure 6¢
exceeds the limit time, then the human gaze direction will be calculated
to determine the object’s to be achieved. The accuracy of determining the
target object is improved by calculating the distance of the GCS and GNG
nodes, where the GCS node is the effectivity of humans and GNG is the
object’s position. Experiments results in the real environment are shown in
Figure 13b. Rviz is used to display the results of object recognition experi-
ments. In addition, we analyze the success rate of recognizing human actions
to reach objects in the vicinity. The success rate gets 93.3% when Pointing
at the object on the right of humans, 85% when pointing at the object in
the middle, and the lowest success rate is obtained at the object on the left,
which is 78.3%. This happens because the accuracy of the calculation of the
angle at the elbow is inaccurate and occlusion occurs when the right-hand
points to the left. Errors also often occur when detecting the direction of
the human gaze. The points of the facial skeleton often go undetected. As
a comparison with other researchers, Duarte et al. [46] read human intent
by using motion capture and glasses that can detect the gaze direction. The
results are more accurate but require more equipment and costs, such as
room-mounted cameras and eyeglasses to see pupils, and also the installa-
tion of instruments on humans is considered unnatural and uncomfortable.
Luo et al. [53] predict human intention by hand motion. The experiment
was conducted similarly with us, using a tabletop manipulation task with
three initial positions and four target positions. The experiment was similar
to ours, using a table manipulation task with four target positions. Still, the
recognition was only on hand movements without considering the object to
be addressed. Huang et al. [54] showed that the characteristics of gaze cues,
especially duration and frequency, only focused on using gaze cues to pre-
dict customer intentions without considering environmental conditions. Shi
et al. [55] also experimented with pointing at some objects on the table and
recognizing intentions by looking at the Earth Moving Distance (EMD). The
results still showed a gaze drift error and could not be applied in real-time.

4.3. Experimental results of handover behaviors

This subsection shows experimental results of handover behaviors. Figure 14.
show a simulation result of grasping and handover behaviors; (a) the robot
partner detected a person, (b) the robot partner confirmed the facial direc-
tion and hand gesture, this is indicated by the density of the topological map



Topological mapping based on perceiving-acting cycle 449

(e)

Figure 14: Simulation handover behavior.

on the human head, (c) the robot partner estimated and shared human cog-
nitive environment (gazing at the human hand and objects). The red nodes
and lines show the area where the effectivity of humans and robot intersects
mutually or the possible handover area. The robot partner estimated hu-
man intention and decided to grasp the second object, (d) the robot partner
moved the arm to the second object, and (e,f) the robot partner gave it
to the person, the table, a change in the table color indicates a handover
behavior condition.

In the real environment, we performed grasping and handover experi-
ments using the Toyota HSR. We used HSR mobile and manipulator move-
ment to achieve the grasping and handover behavior. The object detection
framework was run in Python with Tensorflow API and on an Intel i7 with
GPU. Figure 15a shows an experimental result of human and object detec-
tion to start a handover behavior. To solve the inverse kinematics for the
grasping and handover behavior, HSR uses the detected object and human
position concerning the real-world situation based on the ROS geometry
transformation calculation shown in Figure 15b. The sequential movement
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(b)

Figure 15: 2D to 3D object and human transformation and distance visual-
ization in Rviz (ROS Visualization).

(d)

Figure 16: HSR grasping and handover sequential movement.

on grasping and handover behavior is shown in Figure 16. (a) HSR esti-
mated the position of both the target person and the object nearest to the
extracted human hand. (b,c) HSR performed moving forward for the grasp-
ing task, (d) HSR grasped the object, (¢) HSR performed the post-grasping
movement to deliver the object based on the central position of the target
person in Figure 16f. In addition, we analyzed the success rate of robots
in picking up and handing objects to humans. The success of handover an
object is judged by whether humans can reach the object without moving
the body; only the hands move. Each experiment was carried out 20 times
for each object so that a total of 60 times by taking objects at random. The
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retrieval success rate is about 86.6%. An error occurred in converting the
point cloud object with frame geometry to a gripped position. The grasping
position is calculated from the center point of the bounding box object and
the average value of the 8 points around the center point. The handover
success rate is 90%, errors occur when estimating the human position, and
the robot arm hits the table. Arm collision with the table occurs because it
ignores the position of the edge of the table with the arm.

5. Summary

This paper proposed a human-robot interaction method based on a mutual
cognitive environment for handover behaviors. First, we discussed how to
share the cognitive environment between a person and robot partner based
on relevance theory discussed in Cognitive Pragmatics. Next, we applied
topological mapping methods of growing cell structure (GCS) and growing
neural gas (GNG) based on the concept of perceiving-acing cycle discussed
in Ecological Psychology. The growing cell structure is used to represent the
effectivity in the action system. The essence of GCS is in the unsupervised
learning of continuously regular topological structure according to the dis-
tribution of input data. Therefore, the GCS can be applied to the smooth
control of a robot manipulator and human arm. On the other hand, GNG is
used to visualize the human and robot task space. The essence of GNG is in
the features of clustering and topological mapping. The clustering realizes
the segmentation into several different objects, while the topological map-
ping realizes the surface feature of objects. Furthermore, we propose adap-
tive GNG using distance-based node update and error-based node deletion
to improve online stability and adaptability in a dynamic environment. In
this way, we applied two different topological mapping methods to the per-
ceptual system and action system in this paper. We showed the effectiveness
of the proposed method through several simulation results in the learning of
effectivity and change of attention in human-robot interaction. Finally, we
conducted a real robot application of handover behavior by HSR. In future
work, we intend to discuss the online learnability of GCS and GNG based
on the perceiving-acting cycle in other human interaction tasks. Further-
more, we integrate the proposed method with gesture recognition methods
to realize different types of non-verbal communication.
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