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dynamic supplement network for underwater image

enhancement
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The complex underwater environment causes light to suffer from
scattering effects and wavelength-dependent attenuation, and un-
derwater images exhibit color deviation and low contrast, which
hinder the progress of related underwater tasks. Deep learning al-
gorithms now make extensive use of multi-scale features to im-
prove underwater image quality, but the majority of these meth-
ods do not take channel differences into account while propagat-
ing features. To this end, we propose a cross aggregation trans-
former (CAT), which utilizes three stages of projection-crossing-
aggregation to adaptively select beneficial channels. This paper
also designs a dynamic supplement underwater image enhance-
ment network, which consists of a shallow network and an en-
hancement network. Through the encoder/decoder structure, the
enhancement network restores the original appearance of the un-
derwater image, while the shallow network extracts the shallow
features at different scales. Both networks are designed to focus
on under-enhanced regions and supplementary details in real time
through the residual supplement module (RSM). The experimental
findings demonstrate that CAT and RSM efficiently improve net-
work performance and elevate the network above other advanced
methods on various datasets.

1. Introduction

The resource-rich ocean promotes the vigorous development of the underwa-

ter vision, and related technologies are widely used in tasks such as marine

environmental monitoring, marine resource exploration, and marine salvage.
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However, the complex underwater environment plays a great obstacle to un-
derwater perception, and underwater images often show color deviation and
low contrast. To improve imaging quality in underwater environment, com-
pensating light sources are often used to create a better environment, but
the captured underwater images cannot form a satisfactory illumination ef-
fect [1]. Therefore, a key area of computer vision research is how to enhance
the quality of underwater images in various environments.

The atmospheric imaging model widely used in image dehazing [2, 3]
also reveals the underwater degradation process. According to the Jaffe-
McGlamery underwater optical imaging model [4, 5], the overall light con-
stituting the underwater image is obtained by a linear summation of direct
scattering, forward scattering, and backward scattering. Where direct scat-
tering is the direct light from the imaging scene to the acquisition point. Both
forward scattering and backward scattering are the products of refraction
of light when encountering underwater suspended particles. The difference
between the two is that the former comes from the imaging scene and the
latter comes from other scenes, both of which result in blurred details and
low contrast in underwater images [6]. In addition, unlike the atmospheric
environments, the light attenuation in underwater environments is related to
the propagation depth and light wavelength [7]. As the propagation depth
deepens, the longer wavelengths of red and yellow light are severely lost,
resulting in underwater images with predominantly green or blue color de-
viations. And the above problems will be aggravated with the increase of
distance from the imaging scene to the acquisition point [8].

In recent years, most research has proposed a series of solutions to im-
prove the poor-quality underwater images, which can be roughly divided
into three categories: image restoration methods, image enhancement meth-
ods, and deep learning methods. The image restoration methods derive the
degradation process by constructing an underwater optical imaging model,
and then restore the underwater image by reversing the degradation pro-
cess. Different from similar dehazing methods, most underwater methods
take into account the wavelength-dependent light attenuation process to en-
able more accurate color restoration. Since such methods require precise
estimation of parameters, the color deviation of the original image may be
increased or artifacts may be introduced in the face of underwater images
with various degradation levels. The introduction of artifacts will cause the
color and texture of the image to be obscured, which will further damage
the image clarity. The image enhancement methods enhance the visibility of
underwater images by compensating the lost color and modifying the pixels
in defective regions. Although such methods do not require estimation of the
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imaging model, inaccurate region delineation can compromise the original
appearance of the image in the face of different underwater environments
and large amounts of noise.

With a large amount of image data and a complex model, the deep
learning method learns how to enhance the underwater image to the target
image batch by batch. To build a larger field of view, the input information
is adjusted to multi-scale, multi-channel features by the encoder, and the
information loss in scale changes is reduced by skip connection. However,
different channels are not only diverse in content, but also in their contri-
bution to the network. In the process of transmitting the encoder features,
the skip connection transmits the beneficial and useless information to the
decoder simultaneously. This direct connection makes the network pay in-
sufficient attention to the defective regions and the visual quality of the final
enhanced images suffers. Inspired by [9], this paper proposes a cross aggrega-
tion transformer and builds a dynamic supplement network for underwater
image enhancement. The contributions of this paper are as follows:

1. A cross aggregation transformer (CAT) is designed. CAT adaptively
selects useful contents through three processes of projection-crossing-aggre-
gation, so that the network can focus on the contribution of different infor-
mation to the resulting image.

2. We propose a dynamic supplement network consisting of two branches.
The enhancement network uses the encoder/decoder structure to enhance
the quality of underwater images, the shallow network extracts the shallow
features of the input image. The two sub-networks focus on under-enhanced
regions and supplement the detailed texture in real time through the de-
signed residual supplement module (RSM).

3. Experiments on various public datasets show that the proposed method
is superior to other advanced methods in subjective and objective aspects.,
and the combination of CAT and RSM brings significant gains to the net-
work.

The remainder of this paper is organized as follows. Section 2 describes
the domain related work. Section 3 introduces the modules and loss functions
involved in the network. In Section 4, we first conduct an ablation study ac-
cording to the relevant modules and then conduct comparative experiments
with other methods. Finally, Section 5 concludes the paper.

2. Related work

2.1. Image restoration methods

Ancuti et al. [10] proposed a color channel compensation model to com-
pensate for the loss of a specific color channel by restoring the opposition



4 Zhixiong Huang et al.

color to zero mean. Yang et al. [11] performed retinex decomposition on
the dark channel to estimate the transmission map, and used the estimated
backscattered light to restore edge details, allowing effective image sharp-
ness improvement. Berman et al. [12] considered the light attenuation in
different water bodies, and introduced the color channel attenuation ratio
into haze-lines model makes the underwater image restoration more compre-
hensive. Song et al. [13] proposed a manually annotated background light
database, where the imaging model was established by the estimated back-
ground light and transmission maps, and an improved white balance algo-
rithm was used to enhance the color and contrast. Marques and Albu [1]
proposed two contrast-guided atmospheric lighting models to generate two
images with prominent details and enhanced brightness for fusion. Wang et
al. [14] enhanced images based on retinex theory, while the reflectance and il-
lumination decomposition was performed after color equalization correction.
Zhou et al. [15] considered underwater image segmentation and smoothing
in estimating the imaging distance, eliminated backscattering with more
accurate depth map, and improved image visibility with adaptive global il-
lumination parameter. Liang et al. [16] corrected the color according to the
attenuation maps of different channels, and then used a multi-scale gradient
domain to repair details and remove haze. Miao et al. [17] introduced an ap-
proximate single viewpoint camera model in dealing with underwater light
scattering, which effectively improved the image clarity. Zhuang et al. [18]
eliminated color casts by the designed color constancy method, and then
made the retinex method generate results with good visibility by apply-
ing multiorder gradient priors. Liang et al. [19] estimated the backscattered
light by using hierarchical search technology, and then combined with the
underwater dark channel prior to estimate the transmission map. Finally,
the improved white balance method was used to further improve the image
visibility. Li et al. [20] first estimated the background light by comparing
the divided regions, then compensated the color of the degraded underwater
image, and finally used haze-line model to remove the haze effect. Zhou et
al. [21] used depth map and illuminant map to estimate backscatter and
correct color, respectively, and used color compensation to eliminate red
artifacts. Yan et al. [22] imitated the color constancy mechanism and hori-
zontal cells to correct for underwater color deviation, and then used a new
biological normalization model to deal with blur and noise. Li et al. [23]
first compensated the attenuated color information, and then estimated the
transmission map by color-line model to reverse the underwater degradation
process.



CATDS 5

2.2. Image enhancement methods

Ancuti et al. [24] respectively performed contrast enhancement and detail

sharpening on the white balanced images to obtain two input, and then

obtained the enhancement results through the fusion process guided by

weight estimation. Azmi et al. [25] first eliminated the color cast by en-

hancing defect channel, then fused the two mean images to improve the

contrast, and finally further enhanced the image by swarm equalization and

unsharp masking technique. Awad et al. [26] fused the degraded image and

the near-infrared image by measuring the contrast difference between the

two, so that the detail loss due to the haze effect was compensated. Zhu

et al. [27] introduced a weight map analysis in the process of fusing a se-

ries of gamma correction results, and then performed a linear saturation

adjustment to further improve the image color and saturation. Zhang et al.

[28] used a subinterval linear transform to process different pixel regions,

and then applied contrast enhancement and detail highlighting to the low

and high frequency components, respectively. Liu and Liang [29] first used

color channel transfer to pre-process the image, then designed an adaptive

attenuation curve to correct the color, and finally enhanced color and de-

tail by fusing the white balance of globally guided image filtering. Zhou

et al. [30] used an underwater imaging model to restore the image, where

the background light was estimated from the information distribution and

light scattering properties, and the projection map was obtained from the

connection between luminance information and color attenuation. Zhang et

al. [31] compensated the color based on the difference between color chan-

nels, then performed contrast enhancement globally and locally, and finally

fused the two enhanced images and sharpened the final image. Dong et al.

[32] performed color compensation and contrast enhancement in RGB color

space and LAB color space, respectively, and a normalized guided filtering

was introduced in the process of the contrast enhancement. Zhou et al. [33]

first corrected color deviation based on self-adaptive standard deviation, and

then enhanced luminance and detail through gamma correction and spatial

linear adjustment. Li et al. [34] used the difference of gaussian filter and

bilateral filter to separate high-frequency and low-frequency components,

and performed image denoising and color correction in the two components.

Zhang et al. [35] first enhanced the color and detail by a minimum color loss

principle and a maximum attenuation map, then adjusted the saturation

using the integral and squared integral maps, and finally further improved

the visibility by balancing the difference between the A and B channels in
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CLELAB space. Huang et al. [36] separate the underwater image enhance-
ment in two steps, a manual process and a deep learning process. First, the
attenuation color channel was compensated, and then the scattering and
blurring were eliminated through the dual image wavelet fusion and general
adaptive network.

2.3. Deep learning methods

Li et al. [37] constructed a large-scale underwater image dataset with refer-
ence images, in which the reference images are from the artificial selection
results of twelve enhancement methods, and trained a baseline network for
underwater image enhancement. Fu et al. [38] divided the enhancement pro-
cess into two steps. First, global color compensation and local contrast en-
hancement were performed through a double branch network, and then the
quality was further improved through compressed histogram equalization.
Wang et al. [39] first combined RGB and HSV color spaces for underwa-
ter deep learning, where the former performs denoising and removing color
cast, while the latter performs color, brightness, and saturation adjustments,
and finally uses attention to fuse the two results. Li et al. [6] used features
from RGB, HSV, and Lab color spaces to enhance images, and guided the
network to focus on poor quality regions by channel attention and medium
transmission. Huang et al. [40] used local binary patterns and additional de-
tail restoration module to enhance details, and the final image was obtained
by superimposing the results of both correction and restoration branching
networks. Fu et al. [41] combined the UNet structure and channel normal-
ization to process images of various underwater degradation types, allowing
the network to generate cleaner enhancement results. Liu et al. [42] pro-
posed a novel parallel attention module to focus on illumination and color
features and build an adaptive learning network for underwater image en-
hancement. Huang et al. [43] proposed a novel adaptive group attention,
which enabled the network to compress model parameters efficiently while
adaptively selecting complementary visual features.

Since it is difficult to obtain corresponding air images in underwater
environments, many research methods have addressed the need for paired
training images by introducing generative adversarial networks (GAN). [44,
45] first introduced GAN to underwater scenes to synthesize underwater
style images, so that the underwater image enhancement network was fully
trained. Liu et al. [46] performed color correction of underwater images based
on GAN. The network achieves a more efficient learning process by dynam-
ically fusing global features and local features. Guo et al. [47] introduced
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Figure 1: The main framework of the proposed network, with two trapezoids
in the figure representing the decreasing and increasing image size. The
overall network is mainly divided into the upper shallow network and the
lower enhanced network. The structures of CAT and RSM are given in Figure
2 and Figure 3.

dense connection and residual learning in the process of underwater image

enhancement using GAN, which effectively improved the reusability of fea-

tures. Chen et al. [48] combined underwater image enhancement and target

detection to guide the GAN to generate visually or detect more beneficial

images, and combined with physical prior and deep learning to generate

training datasets. Islam et al. [49] constructed a large underwater dataset

containing paired and unpaired images and trained GAN based on this,

where the loss of the network is calculated by the proposed perceptual loss

function. Desai et al. [50] considered the effect of more attenuation factors

on underwater imaging, and synthesized underwater images with the modi-

fied imaging model to train the conditional generative adversarial network.

Jiang et al. [51] transformed underwater style images into air images by Cy-

cleGAN, and then improved the image clarity by encoder-decoder network.

3. Methodology

Figure 1 and algorithm 1 show the schematic figure and procedure of the

proposed network, which mainly consists of a shallow network and an en-

hanced network. In this section, we will first introduce the main framework

of the network, then elaborate on the designed CAT and RSM, and finally

introduce the loss function adopted by the network.
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Algorithm 1 Enhancement procedure of our method
Input: Underwater images: x
Output: Enhanced images: y

1. Extract shallow features fs through convolution and LeakyReLU:
fs = FC (x)LR

2. Change feature scales using convolution with 2 strides and PixelShuffle:
f = FC (fs)LR

f = FPS (FC (fs))LR

3. Complement details by RSM before and after scale change:
f = FRSM (f, fs)

4. Input encoding features fe into CAT and combine with decoding featuresfd:
f = FCAT (fe) + fd

5. Use shallow features and original inputs to further enhance the color:
y = FC (f)LR + x× fs

3.1. Network structure

The input of the proposed network is a single underwater image. It can be

seen that in addition to the serious color deviation, the underwater image

also has the problems of blurred details or insufficient exposure, and the

brightness and contrast are also variable in different regions. Due to the

layered features brought by different scales, the network can focus on specific

positions, so as to carry out more thorough image enhancement. Therefore,

the enhanced network adopts a network architecture similar to UNET. First,

the input image is expanded from 3 channels to 64 channels by convolutional

layers and LeakyReLU activation function. Then, the encoder progressively

maps the input features to low-scale, high-dimensional features, while the

decoder reconstructs the high-dimensional features into an enhanced image,

where the features are scaled down and up through the convolutional layer

with 2 strides and PixelShuffle, respectively.

In the process of scale change, the content information of features is

mapped to different channels, which also means that the contribution of

channels is different. For underwater image enhancement, regions of poor

quality need to receive more attention. However, traditional UNet tends to

use only simple skip connection to connect the same level features between

the encoder and the decoder. The network does not focus on defective regions

due to ignoring the variability of feature channels. Inspired by [9], we design

a CAT for the skip connection, where the features before scale change in

the encoder will be transmitted to the CAT, and then they are transmitted

to the decoder after cross-learning. The CAT can enrich the representation
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of features and obtain more accurate enhancement performance by cross-
learning correlations between channels.

Due to the lack of attention to the original input information, the net-
work can not completely correct the color deviation, and will lose some
original image details. Therefore, we designed a shallow network. The un-
derwater image first passes through a channel expansion block consisting
of a convolutional layer-activation function crossover, with the number of
channels expanded from 3 to 64. Corresponding to the three scales of en-
hanced features in the network, the features pass through three scale change
blocks, respectively, where the scale change of the image is completed by a
convolutional layer with 2 strides. The extracted shallow features are then
transferred to each RSM. As the smaller the scale, the greater the informa-
tion loss, we set 2, 4, and 8 RSM at different scales to assist the network
in building more accurate colors and textures by progressively enhancing
the complement of shallow features. In addition, we add a weight estima-
tion process to the end of the shallow network to distinguish the different
region contributions of the original image Ii to the final enhancement effect.
We combine the estimation results with the output Ie of the enhancement
network to obtain the final enhanced image Io. The process is as follows:

Io = θ (Ii) · Ii + Ie,(1)

where θ (·) represents the convolution layer, which is used to restore the
expanded channel to the original channel. By introducing weight estimates
for different regions, the network will pay more attention to the poorly en-
hanced regions, allowing for a more thorough correction of color deviation
in underwater images.

3.2. Cross aggregation transformer

In the network, the input image is mapped to high-dimensional features
through multiple convolutions, and the feature channels are expanded sev-
eral times. However, diverse channels contribute differently to the network.
When connecting the coding and decoding features at the same level, a large
amount of useless information and noisy information from the encoding pro-
cess are also synchronously propagated, and this undesirable information is
amplified step by step in the decoder. For such problems, channel atten-
tion (CA) [52, 53] provides a solution to how to select beneficial channels.
However, existing CA measures the salience of channels by convolutional lay-
ers, and the expansion of the perceptual field gradually suppresses the local
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Figure 2: The specific structure of CAT, where λ1, λ2, λ3 represents three
learnable parameters.

modeling ability. For this reason, we propose a cross aggregation transformer
(CAT), which differs from CA in that the CAT adaptively selects beneficial
channels through the remote dependency building capability in the trans-
former.

The specific structure of CAT is shown in Figure 2. CAT is divided into
three stages: projection-crossing-aggregation. First, we choose to enrich the
feature representation by three convolutional layers, where the kernel size
of each layer is 1*1. Thus the feature is mapped to a channel sequence,
and the shape is changed from H*W to C. The three convolutional layers
obtain a group of 3*C mapping features by amplifying the diversity. Then we
reshape the features into flattened 2D facet sequences and perform position
labeling respectively. Second, we put the three tokens into Channel-wise
Cross Attention (CCA) to compute the inter-channel dependencies. Unlike
[9], our main purpose is not to narrow the semantic gap, but to select more
meaningful channels among the features. Therefore, the input tokens do not
have scale differences. Through the Linear and LayerNorm layers, the three
tokens are converted into queries qi(i = 0, 1, 2), while the key and value are
from the aggregation of the three queries k, v =

∑2
i=0 qi. Thereby obtaining

the following CCA calculation:

CCAi = [(qi · k)I ]S · vT ,(2)

where (·)I represents the instance normalization of the normalized similarity
matrix, (·)S represents the sigmoid function for calculating the weight, and

(·)T represents transpose. The three groups of channel sequences are used to
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obtain correlations between channels by interactive learning of aggregated
sequences, and the importance of channels is further captured by normal-
ization and activation functions. Next, the output of the second stage is
obtained by the following calculation:

oi = MLP (qi + CCAi)LN + CCAi(3)

In the third stage, we aggregate the outputs of the three paths. For
further selection of features on different paths, three learnable parameters
λ1, λ2, λ3 are set to adjust the intensity of each path:

o = λ1o1 + λ2o2 + λ3o3(4)

Finally, the aggregated features are recovered to the input channel by
a layer of 1*1 and a layer of 3*3 convolution, and we input the aggregated
features to the same level features of the decoder, so as to give the network
a clearer perception of the saliency of different regions.

3.3. Residual supplement module

While the network corrects the color of underwater images, loss of detail and
color deviation will affect the final quality of the image. To solve these two
problems, the original input is fed to the shallow network to extract shallow
features. However, simple cascaded peer features introduce supplementary
information while introducing useless information. Therefore, we design a
residual supplement module (RSM) to provide distillation mechanism and
residual supplement for shallow features and enhanced features.

Figure 3 illustrates the structure of RSM. We first transform the shallow
features fs into a weight matrix by 1*1 convolution and Softmax activation
function, and multiply them with the convolved enhanced features fe to
obtain the global feature dependencies. Next, we performed two residual
connections in RSM using fs and fe. The first connection ensures the gra-
dient flow of the network, and the second connection can attach the learned
global dependencies to each position of the original feature. In addition, a
few connection processes can reduce the computational cost of the network.
The whole process is as follows:

fRSM = W ((fs)S × fe + fs) + fe,(5)

where fe and fs represent enhanced features and shallow features, respec-
tively. (·)S and W represent the softmax function and the weight learned by
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Figure 3: The structure of RSM, wherein the supplementary features are
from the shallow network.

convolution. Through the application of RSM, the network will make full
use of different shallow features, so as to obtain better color and texture
images.

3.4. Loss function

By calculating the loss between the enhancement result and the ground
truth, the end-to-end training of the proposed network is effectively super-
vised, and the final loss L of the network is obtained by combining two kinds
of losses:

L = �char (x, y) + μ× �ssim(x, y),(6)

where x is the enhanced image, y is the ground truth, and �char represents
the charbonnier loss, �ssim represents the SSIM loss. We set μ = 0.5 to bal-
ance the two losses. The �char , which is used to measure the pixel similarity
between two images, is calculated as follows:

�char (x, y) =
√

‖x− y‖2 + ε2,(7)

where constant ε is set to 10−3 to stabilize the loss. �ssim is used to measure
the structural similarity between two images, and its definition is as follows:

SSIM(x, y) =
(2μxμy + c1)

(μ2
x + μy

2 + c1)
· (2σxσy + c2)

(σx2 + σy2 + c2)
,(8)
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�s sim(x, y) = 1− SSIM(x, y),(9)

where μ represents the brightness, σ represents the contrast and structure.
We set c1 = 0.0001 and c2 = 0.0009. When the final loss L decreases, the
pixel and structure between the enhanced results and the ground truth are
closer.

4. Experiment

This section first describes the experimental setup, second conducts an ab-
lation study to demonstrate the effectiveness of the components, and third
compares with other methods on reference and non-reference datasets.

4.1. Experimental details

Datasets: After years of development, various datasets have been proposed
in the field of underwater image enhancement for training and evaluation.
In this paper, we used the UIEB [37] dataset for training the proposed
model. The original underwater images of UIEB were obtained from mul-
tiple sources, and multiple enhancement methods were used to obtain the
corresponding high-quality images. Finally, the corresponding ground truth
was voted by volunteers from the multiple enhancement results. We divided
the total number of 890 image pairs into 790 training pairs and 100 test
pairs. In addition, the reference-free dataset EUVP [49] (130 images), Im-
ageNet [54] (1813 images), LNRUD [55] (500 images), and UFO [56] (120
images) were also used to evaluate all methods in this paper.

Metrics: In this paper, four reference metrics (PSNR, SSIM, FSIM
[57], and LPIPS [58]) and three non-reference metrics (UCIQE [59], FDUM
[60], and Entropy) were used to evaluate the objective performance of the
enhancement results. For the reference dataset, we used all metrics for eval-
uation, and for the non-reference datasets, we used the three non-reference
metrics for evaluation.

Methods: We compared the proposed network with many advanced un-
derwater image enhancement methods, including three traditional methods
(CBF [24], BR [18], and ACDC [31]), two unsupervised methods (M-GAN
[46] and F-GAN [49]), and three supervised methods (WaterNet [37], UIE2-
Net [39], and SCNet [41]).

Settings: We built the model using the PyTorch framework and trained
it on a TITAN RTX graphics card. Since the proposed network is end-to-end,
no additional pre-training is required. The total number of batches trained
was 100. The learning rate was initially 2*10−4 and continuously adjusted
by the Adam optimizer. In addition, all images were cropped to 256*256.
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Table 1: Module configuration of each group in ablation study

CAT RSM
OriNet × ×
-w/o CAT × √

-w/o RSM
√ ×

Ours
√ √

4.2. Ablation study

As shown in Table 1, we configured four networks based on the proposed
modules, and compared them on the UIEB test dataset to verify the effec-
tiveness of the two module combinations. Figure 4 and Figure 5 show the
subjective and residual comparison of all configuration, respectively, while
Table 2 indicates the objective metrics for all the results. As shown in Fig-
ure 4, it can be seen that OriNet generates images with large dark regions,
and the color texture of the images is also affected. Therefore, the residual

Figure 4: Visual comparison of network results with different configurations
on UIEB dataset.



CATDS 15

Figure 5: Residual comparison between network results and ground truth for
different configurations. The white region in the residual figures represent
the difference with the ground truth.

Table 2: Module configuration of each group in ablation study (optimal,
suboptimal)

PSNR SSIM FSIM LPIPS UCIQE FDUM Entropy
OriNet 22.130 0.9129 0.9550 0.1699 0.5797 0.7636 7.5525
-w/o CAT 26.062 0.9455 0.9630 0.1111 0.6156 0.8550 7.7299
-w/o RSM 25.212 0.9390 0.9619 0.1366 0.6203 0.8208 7.7420
Ours 26.656 0.9482 0.9661 0.1098 0.6274 0.8620 7.7382

figure of OriNet has the widest white areas, which means that the variability
between the result and the ground truth is the greatest. −w/o CAT does
not completely restore the color texture of the results due to the lack of
CAT that focuses on the important content, and the overall exposure phe-
nomenon is appears. −w/o RSM does not completely remove color deviation,
and image clarity is affected by fogging effects. The network with the full
component not only completely corrects for color deviation, but also has the
best color and sharpness. The fewest white regions in Figure 5 also verify
the fit of the enhanced result to the ground truth. In Table 2, the complete
network achieves the best values for four reference and two non-reference
metrics, while slightly underperforming the −w/o RSM on Entropy, which
still demonstrates the gainfulness of using both modules.

4.3. Experiments on reference dataset

On the UIEB test dataset, we conducted reference comparisons with other
advanced methods. Figure 6 and Figure 7 show the enhancement results for
all methods. As can be seen in Figure 6 (a), CBF and BR introduce other
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Figure 6: Visual comparison of all methods on UIEB dataset.

color effects, which corrupt the overall image color. The results of ACDC

and WaterNet are dark in brightness, and ACDC shows severe color loss

problem. Therefore, the four methods have the most extensive white regions

in Figure 7, which represents the difference between the four enhancement

results and the ground truth. The enhancement results of M-GAN, F-GAN,

and SCNet have good contrast improvement and are more consistent with

the ground truth color, but still fail to address the color deviation of fish.

UIE2-Net and our method can effectively enhance the contrast and clarity

of the image while removing the underwater color deviation. In Figure 6 (b)

and (c), CBF and ACDC results are dull in color and the original texture

details are not clear. BR overcompensates the red channel, so its enhanced



CATDS 17

Figure 7: Residual comparison of all methods on UIEB dataset. The white
region in the residual figures represent the difference with the ground truth.

images show most red artifacts. M-GAN, F-GAN, and SCNet failed to ensure
the image quality improvement, and the hazing effect is deepened in some
images instead. Compared with other methods, our method results in a
powerful enhancement of the color, sharpness, and contrast of the images,
which is related to the fact that the network focuses on different contents
in various ways. By adding CAT, the deep network pays attention to the
beneficial information, thus making the enhancement of underwater images
better. In addition, with the increasing number of RSM as the scale changes,
the features of the two branches are complemented in real time, allowing a
more comprehensive recovery of color and texture in the defective regions.
Therefore, our method has the least white regions in the residual figure in
Figure 7, which means that our method is more similar to the ground truth.

Table 3 shows the objective performance, model parameter and FLOPs
of all methods on the UIEB test dataset. Our method achieves five optimal
values and two suboptimal values on the four referenced and three non-
reference metrics, respectively. The comparison of the metrics in the table
shows that our method is objectively closest to the ground truth, and is
outstanding in terms of color, sharpness, and content richness. UIE2-Net
achieves suboptimal values for most metrics and outperforms our method in
LPIPS, which is related to its good color recovery and detail enhancement.
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Table 3: Metrics performance of all methods on UIEB dataset (optimal,
suboptimal)

PSNR SSIM FSIM LPIPS UCIQE FDUM Entropy Param
(M)

FLOPs
(G)

CBF[24] 21.915 0.9146 0.9484 0.2163 0.5639 0.6900 7.4570 - -
BR[18] 21.050 0.8515 0.9025 0.2708 0.5933 0.8860 7.7103 - -
ACDC[31] 18.951 0.8084 0.8901 0.3442 0.5544 0.6197 7.7005 - -
M-GAN
[46]

18.720 0.6595 0.8191 0.5093 0.5356 0.4277 7.3182 45.79 14.80

F-GAN
[49]

20.856 0.8267 0.9140 0.2366 0.5567 0.6320 7.4639 7.01 10.23

Water-
Net[37]

20.477 0.8489 0.9213 0.1467 0.5685 0.6349 7.4112 1.09 142.9

UIE2-
Net[39]

26.148 0.9412 0.9636 0.1052 0.6210 0.7823 7.6986 0.51 24.2

SCNet[41] 24.731 0.9163 0.9488 0.1344 0.5916 0.7054 7.5899 0.77 21.93
Ours 26.656 0.9482 0.9661 0.1098 0.6274 0.8620 7.7382 11.02 34.84

BR, on the other hand, outperforms us in FDUM due to its bright color per-
formance. In terms of model parameter and FLOPs, UIE2-Net and F-GAN
perform well, and our method does not perform well, which is a drawback
of our method.

4.4. Experiments on non-reference datasets

In this paper, we also compare with other methods on several non-reference
datasets. Figure 8–Figure 11 shows the effect and enlarged comparison of
all methods on EUVP, ImageNet, LNRUD, and UFO datasets, respectively,
while Table 4–Table 7 show the metric performance of all methods.

In Figure 8(a), M-GAN, F-GAN, SCNet, and our method restore the
image appearance, while SCNet and our method have brighter colors. Com-
paring the details in (b), it can see that CBF, M-GAN, F-GAN, and Wa-
terNet fail to enhance the brightness of the image, and the color texture of
the fish is covered by darkness. The enhanced results of BR and ACDC are
overall white, with weak color texture contrast. UIE2-Net, SCNet and our
method generate results with attractive colors, while our method is better
in saturation and contrast.

As can be seen in Figure 9, BR, M-GAN, F-GAN, WaterNet, and SCNet
fail to restore the original image, and their results still have varying degrees
of blue and green deviation. BR also introduces the effect of red artifacts.
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Figure 8: Visual comparison of all methods on EUVP dataset.

The results of CBF and ACDC have grayish colors, and blurred texture
details of the scene in the field. UIE2-Net and our method are much better
at recovering the image colors, and the texture details are much clearer in
the enlargement.

The outstanding color of our method is well illustrated in Figure 10
and Figure 11. In the visual comparison of all methods, our method effec-
tively removes the hazing effect and exhibits bright contrast and sharpness
enhancement. In the enlarged detail, the color benefits of our method are
more clearly contrasted, and the more vibrant colors further improve the
attractiveness of the image.

In the metric tables corresponding to the four datasets, our method
achieves the best values for all UCIQE, FDUM, and most of the Entropy
metrics, indicating that the enhancement results of our method have excel-
lent color, contrast, and sharpness performance. BR outperforms our method
for Entropy on the UFO dataset and achieves all sub-optimal values for
FDUM, due to its excellent red channel compensation, but the frequent red
artifacts affect the visibility of the resulting images.
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Figure 9: Visual comparison of all methods on ImageNet dataset.

4.5. Other applications

To test the enhancement effect of the proposed network in other scenes,
we apply the model of this paper to the low-light dataset (DICM [61] and
LIME [62]) and the overexposure dataset (MIT [63]), respectively. As shown
in Figure 12, our method significantly improves the luminance of the low-
light images, and the texture details covered by darkness are well recovered.
The lost saturation is effectively enhanced in the overexposure scene, and
the overexposed image becomes vividly colored as well as layered. The good
application in both scenes further demonstrates the visibility enhancement
of our method in different scenes.
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Figure 10: Visual comparison of all methods on LNRUD dataset.

Figure 11: Visual comparison of all methods on UFO dataset.



22 Zhixiong Huang et al.

Table 4: Metrics performance of all methods on EUVP dataset (optimal,
suboptimal)

UCIQE FDUM Entropy
CBF[24] 0.5782 0.5097 7.5711
BR[18] 0.5890 0.6293 7.7633
ACDC[31] 0.5605 0.4510 7.7558
M-GAN[46] 0.5802 0.4734 7.4852
F-GAN[49] 0.5895 0.5585 7.5276
WaterNet[37] 0.5870 0.5440 7.5125
UIE2-Net[39] 0.6233 0.5972 7.7105
SCNet[41] 0.6127 0.5778 7.6987
Ours 0.6380 0.6436 7.7649

Table 5: Metrics performance of all methods on ImageNet dataset (optimal,
suboptimal)

UCIQE FDUM Entropy
CBF[24] 0.5791 0.6450 7.5354
BR[18] 0.5826 0.7520 7.6826
ACDC[31] 0.5614 0.5820 7.7097
M-GAN[46] 0.5687 0.4770 7.3713
F-GAN[49] 0.5786 0.6482 7.4722
WaterNet[37] 0.5681 0.5897 7.3939
UIE2-Net[39] 0.6119 0.6930 7.6536
SCNet[41] 0.5995 0.6608 7.6089
Ours 0.6269 0.7835 7.7139

Table 6: Metrics performance of all methods on LNRUD dataset (optimal,
suboptimal)

UCIQE FDUM Entropy
CBF[24] 0.5788 0.5492 7.5359
BR[18] 0.5871 0.6696 7.7252
ACDC[31] 0.5620 0.4940 7.7341
M-GAN[46] 0.5727 0.4629 7.4310
F-GAN[49] 0.5856 0.5735 7.5141
WaterNet[37] 0.5843 0.5521 7.4705
UIE2-Net[39] 0.6215 0.6248 7.6911
SCNet[41] 0.6111 0.6023 7.6676
Ours 0.6354 0.6834 7.7482
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Table 7: Metrics performance of all methods on UFO dataset (optimal,
suboptimal)

UCIQE FDUM Entropy
CBF[24] 0.5901 0.5434 7.5676
BR[18] 0.5918 0.6394 7.7517
ACDC[31] 0.5664 0.4784 7.7325
M-GAN[46] 0.5890 0.4990 7.4146
F-GAN[49] 0.5961 0.5835 7.4804
WaterNet[37] 0.5913 0.5580 7.4930
UIE2-Net[39] 0.6219 0.6050 7.6618
SCNet[41] 0.6196 0.6052 7.6465
Ours 0.6362 0.6558 7.7248

Figure 12: The application of the proposed method to low-light and overex-
posure scenes, where the first row of images are low-light images from the
DICM and LIME datasets, the third row are overexposure images from the
MIT-Adobe FiveK dataset, and the second and fourth rows are the enhanced
images corresponding to our method.

5. Conclusion

In this paper, a dynamic supplement network based on cross aggregation
transformer is proposed to enable significant quality enhancement of under-
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water images. The overall framework consists of a shallow network and an
enhancement network, where the enhancement network introduces a multi-
scale enhancement process through an encoder/decoder structure. The shal-
low network uses multi-scale input information to extract shallow features.
To enable more thorough enhancement of underwater images, we design a
CAT to perform a channel-focused skip connection and utilize a RSM to
focus on poorly enhanced regions and supplement detailed textures in real
time. Experiments on public datasets demonstrate that the network en-
hances better with both CAT and RSM, not only significantly improving
low-quality images in different scenes, but also having outstanding advan-
tages in the comparison of many advanced methods. In further work, we will
investigate the ability of the model on a wider range of enhancement tasks
such as image denoising and image dehazing, and design more lightweight
model to ensure the framework efficiency.
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