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Place recognition plays an essential role in the field of autonomous
driving and robot navigation. Point cloud based methods mainly
focus on extracting global descriptors from local features of point
clouds. Despite having achieved promising results, existing solu-
tions neglect the following aspects, which may cause performance
degradation: (1) huge size difference between objects in outdoor
scenes; (2) moving objects that are unrelated to place recogni-
tion; (3) long-range contextual information. We illustrate that the
above aspects bring challenges to extracting discriminative global
descriptors. To mitigate these problems, we propose a novel method
named TransLoc3D, utilizing adaptive receptive fields with a point-
wise reweighting scheme to handle objects of different sizes while
suppressing noises, and an external transformer to capture long-
range feature dependencies. As opposed to existing architectures
which adopt fixed and limited receptive fields, our method bene-
fits from size-adaptive receptive fields as well as global contextual
information, and outperforms current state-of-the-arts with signif-
icant improvements on popular datasets.

1. Introduction

Navigation systems are essential for robots and self-driving cars to accurately
localize themselves in complex outdoor scenes, which commonly depend on
Global Positioning System (GPS). When GPS signal is not available, an
alternative method is to sense, monitor, and gather the surrounding infor-
mation of agents, such as the geometry of the buildings and roads, from
depth sensors or RGB cameras, and then perform localization by recogniz-
ing the current place. Compared with point clouds obtained from depth
sensors, images taken from RGB cameras are more sensitive to illumination
changes, which may lead to significant performance degradation [31]. To al-
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Figure 1: Pipeline of point cloud based place recognition. The continuous
trajectories are discretized into “places” represented by the scanned point
clouds. A recognition model first produces a discriminative descriptor for
each point cloud, and then finds the closest match in existing point clouds
for a query using the similarity of their descriptors.

leviate this problem, more and more works [12, 17, 29, 31, 36, 38] began to
focus on place recognition based on 3D point clouds due to their inherent
invariance to illumination.

Large-scale point cloud based place recognition is often regarded as an
instance retrieval problem, as illustrated in Fig. 1. Although methods have
been proposed to achieve promising results on research datasets, accurate
and robust place recognition remains a challenging problem for the follow-
ing reasons. First, in complex outdoor scenes, objects may differ drastically
in size, whereas most existing methods perform feature extraction utilizing
fixed receptive fields without consideration of size difference. For small ob-
jects like vehicles, large receptive fields will capture unrelated information,
making the extracted features less discriminative, while for large objects such
as buildings, small receptive fields would fail to encode the complete geomet-
ric structure. Second, moving objects in the scene, like pedestrians, are not
related to place recognition, which requires the feature extraction process to
be robust to such noise. Third, most of the existing methods only consider
extracting features of local regions, while neglecting long-range contextual
information. We argue that the lack of long-range contextual information
limits the representation power of the descriptors.
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To address the above issues, we propose a new architecture named
TransLoc3D. Our architecture first processes the input points using sparse
voxelization and 3D sparse convolution, followed by a novel feature extrac-
tion pipeline, and produces global descriptors by NetVLAD [1, 31]. Our
proposed feature extraction pipeline is capable of adaptively adjusting re-
ceptive field sizes in accordance with the targeted objects, which utilizes
a point-wise feature reweighting scheme to reweight features of multiple
receptive scales by a learned attention map. After that, we adopt external
attention layers [8] to capture long-range contextual information. Combining
the strengths of adaptive receptive fields and a transformer-based architec-
ture, TransLoc3D can produce more discriminative global descriptors for
point clouds. Quantitative results show that TransLoc3D surpasses exist-
ing methods and achieves state-of-the-art average recall on widely adopted
benchmarks. We also demonstrate the ability of TransLoc3D to alleviate the
above issues by qualitative visualizations.

Our contributions can be summarized as:

• We argue that taking object size differences into consideration is neces-
sary for point cloud based recognition of complex scenes, and propose
to use adaptive receptive fields for feature extraction. A point-wise
reweighting scheme is used to fuse features from different scales and
suppress noises.

• We design a new architecture named TransLoc3D, which effectively
combines the advantages of adaptive receptive fields and transformer,
making it suitable for the place recognition task. We also provide a
qualitative analysis of these modules by visualizing the results.

• Extensive experiments demonstrate that the proposed TransLoc3D
achieves state-of-the-art results on four popular benchmarks, namely
Oxford RobotCar, B.D., U.S. and R.A. datasets.

2. Related work

2.1. 3D point cloud based place recognition

PointNetVLAD [31] is the first learning-based method for large-scale place
recognition. It follows the design of PointNet [25] to extract point-wise fea-
tures and then adopts NetVLAD [1] to transform point-wise features into a
global discriminative descriptor. Following PointNetVLAD, PCAN [36] in-
corporates a Point Contextual Attention module into the PointNet architec-
ture, which can predict the significance of each independent point feature
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based on contextual information. However, both of these methods ignore
the spatial point distribution in local areas, which limits the representation
power of the global descriptors. To capture local geometry information, LPD-
Net [17] adopts a graph-based aggregation module in both feature space
and Cartesian space and achieves state-of-the-art performance. Previously
mentioned works all operate directly on unordered point sets. In contrast,
MinkLoc3D [12] and Minkloc++ [13] use an alternative data representation
for place recognition. Point clouds are first voxelized into a sparse voxel rep-
resentation, and then a 3D sparse Convolution Neural Network (CNN) built
on a Feature Pyramid Network [15] is adopted to extract informative local
features. However, simply stacking convolution layers may ignore long-range
contextual information, and conventional CNNs with fixed receptive fields
fail to tackle the size difference problem.

2.2. Transformers in computer vision

Recently, inspired by the success of Vision Transformer [5], more and more
researchers focus their attention on applying the Transformer architecture
to vision tasks [4, 6, 9, 33, 34, 37]. NDT-Transformer [38] is the first deep
learning architecture modeled upon a standard Transformer for place recog-
nition. In this model, each point cloud is first transformed into the Normal
Distribution Transform Cell (NDT Cell) representation [19], and then fed to
a transformer with 3 encoders to capture long-range contextual information.
However, transformer-based models suffer from large memory consumption,
which limits the batch size for deep metric learning and further influences
the performance of models.

2.3. Multi-scale receptive fields

Numerous experiments [23, 24, 28] in neuroscience have suggested that the
receptive field size of a neuron is not fixed but adaptive to the input bio-
electric signals. However, this property does not receive sufficient attention
in constructing CNNs. InceptionNetV1 [30] is the first architecture aggre-
gating multi-scale information within the same layer via a simple concate-
nation mechanism. Following InceptionNet, many methods try to improve
feature representation by concatenating multi-scale features, but they often
fail to select appropriate scales for the targeted objects. The follow-up work
SKNet [14] enhances this architecture using an attention mechanism to fuse
multi-scale information from different receptive fields. Compared with simple
concatenation, the attention mechanism is more suited to adaptively adjust-
ing the receptive field sizes based on input and has potential for tackling the
size difference problem in outdoor scenes.
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Figure 2: TransLoc3D Network Architecture. Our proposed TransLoc3D
consists of four parts stacked in series, including a 3D sparse convolution
module, an adaptive receptive field module with point-wise feature reweight-
ing, an external transformer and a NetVLAD module. Each “RF Branch”
in the adaptive receptive field module consists of different numbers of con-
volutional blocks to extract features of different receptive field sizes, while
the module is capable of adaptively adjusting the size of its receptive field
according to the input point cloud.

3. Method

3.1. Overview

As illustrated in Fig. 2, our proposed TransLoc3D includes four main parts,
a 3D sparse convolution module, an adaptive receptive field module with
point-wise feature reweighting, an external transformer and a NetVLAD [1]
module. We use triplet margin loss [10] with batch hard mining [20] to train
our network, which requires a larger batch size to find more informative
triplets. Instead of using raw point clouds for feature extraction [16, 25, 26],
which requires quadratic space complexity to compute the neighborhood
of each point, sparse voxel representation enables our network to obtain
the neighborhood of each voxel using a hash algorithm with a linear space
complexity. Therefore, we transform the input point cloud into a sparse voxel
representation and adopt 3D Sparse Convolution (Sp-Conv) [3] as a basic
unit to build our network.

We first employ a small network with two Sp-Conv layers to aggregate
local geometric information and the details can be found in the appendix.
Then features of different receptive field sizes are extracted, and a point-wise
reweighting scheme is designed to adaptively fuse these features, while be-
ing able to suppress noises. Next, we introduce a transformer architecture to
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capture long-range contextual information. Finally, we adopt a NetVLAD
[1] layer to aggregate local features of each voxel to produce a global de-
scriptor for recognition. NetVLAD learns K cluster centers and sums the
difference between the local descriptors and the corresponding cluster cen-
ters, to obtain a permutation-invariant descriptor. To make fair comparisons,
NetVLAD is followed by a Multi-Layer Perceptron (MLP) to produce a de-
scriptor of the same size as that of previous works.

3.2. Adaptive receptive field module with point-wise feature
reweighting

Although a number of methods have obtained outstanding performance,
place recognition remains challenging due to the existence of unrelated mov-
ing objects and the effects of objects in different sizes. We argue that fixed
receptive fields cannot well tackle huge size differences between objects. To
capture clean and consistent geometric information of objects in all sizes, we
propose a novel module capable of adaptively adjusting the receptive field
size with a point-wise reweighting scheme.

The design of our proposed module is inspired by Selective Kernel Con-
volution (SK-Conv) [14]. Unlike SK-Conv, we replace the dilated convolu-
tions [2] with conventional convolutions because the combination of dilated
convolution and sparse feature maps leads to significant performance degra-
dation in our experiments. We also replace the lightweight fusion mechanism
with a novel point-wise reweighting scheme, based on our observation that
objects of the same category still have different sizes. Formally, for the given
feature map X ∈ RH×W×D×C output by the 3D sparse convolution module,
we first conduct transformations Fi : X → X ′

i ∈ RH×W×D×C with different
receptive field sizes. Fig. 3 illustrates that our module consists of five parallel
branches. For computing efficiency, branches with receptive field sizes larger
than 5×5×5 is implemented by stacking convolution layers with kernel size
3×3×3 and 5×5×5. All convolutions are followed by a batch normalization
[11] layer and ReLU activation, except for the last layer of each branch.

Considering that large receptive field would inevitably capture small
objects, we employ an ECA (Efficient Channel Attention) [32] module to
suppress noisy features. Formally, for the i-th branch, we multiply the feature
map X ′

i ∈ RH×W×D×C by a channel-wise weighting vector w′ ∈ RC

w′
i = σ(φi(AvgPool(X ′

i)))(1)

X ′′
i = X ′

i · w′
i(2)
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Figure 3: Adaptive receptive field module with a point-wise reweighting
scheme. Information from neighborhoods of different sizes is aggregated on
each branch, and then fed to ECA modules [32] for further enhancement. A
point-wise reweighting scheme is adopted to fuse information from different
branches.

where σ denotes the Sigmoid function and φi indicates 1D convolution with a
kernel of size k along the channel dimension to model local cross-channel in-
teractions. The hyperparameter k can be adaptively determined by channel
dimension C as proposed in ECA [32]. In the last step, the information orig-
inated from multiple branches is fused together by a point-wise reweighting
scheme

(3) Xout =
∑

i

W ′′
i ·X ′′

i

where W ′′
i ∈ RH×W×D×C denotes the attention weighting map of the i-th

branch. As illustrated in Fig. 3, to obtain the weighting maps W ′′
i , we fuse

results from multiple branches via an element-wise summation first.

(4) T =
∑

i

δi(X
′′
i )

Here δi is defined as a non-linear mapping function on the i-th branch, imple-
mented by stacking 1× 1 convolutions with batch normalization [11] layers
and ReLU non-linear functions. Notably, Selective Kernel Convolution [14]
squeezes the global spatial information for higher efficiency while we pre-
serve the spatial dimensions. Taking buildings as an example, we observe
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that regions representing buildings have huge size differences due to occlu-
sions, thus our intuition is that the weighting vectors should be different for
different positions. Therefore, the i-th weighting map W ′′

i is defined as

(5) W ′′
i =

exp(ϕi(T ))∑
j exp(ϕj(T ))

where ϕi denotes an element-wise non-linear mapping from aggregated in-
formation to the weighting maps of the i-th branch. In practice, it is im-
plemented by a convolution with C kernels of shape 1 × 1 × 1, followed by
batch normalization.

3.3. External transformer

As mentioned before, the neglect of long-range contextual information may
limit the representation power of global descriptors. Therefore, we adopt an
External Transformer [8] to aggregate information from both nearby and far-
away voxels in spatial dimensions due to its linear space complexity and high
computational efficiency. As illustrated in Fig. 2, the transformer includes
6 External Attention (EA) layers stacked in series, which can be written as
follows

EA(Qi,K
(M)
i , V

(M)
i ) = Softmax(

QiK
(M)
i

T

√
dk

)V
(M)
i(6)

where K
(M)
i , V

(M)
i ∈ RS×d denote the i-th head of two external learnable

memory units and the hyper-parameter S is the number of keys and values
in the EA mechanism. For further reduction of model parameters, the values

V
(M)
i are obtained by applying a linear mapping φ to the keys K

(M)
i instead

of an extra memory unit

(7) V
(M)
i = φ(K

(M)
i )

The space complexity of External Attention [8] is O(N×S), thus we can
control the amount of memory consumed in the training process by adjusting
the hyper-parameter S. Same as PCT [7], we incorporate an offset-attention
module with a small modification1 to External Attention layer for further

1We replace the input to the LBR network Fin −FEA proposed in PCT [7] with
FEA − Fin, which does not affect the representation ability of the model in theory,
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enhancement

Fout = LBR(FEA − Fin) + Fin(8)

FEA = [EA(Qi,K
(M)
i , V

(M)
i )]

= [Softmax(QiK
(M)
i

T
)V

(M)
i ](9)

Here LBR combines Linear, BatchNorm and ReLU layers, Fin, Fout are the
input and output features of the EA module, and [·] denotes the concatena-
tion operation. Finally, the output of each EA layer is concatenated along the
channel dimension, followed by a transformation to aggregate information
from different levels.

3.4. Network training

Although a number of sophisticated loss functions have been proposed in
deep metric learning, recent works [22, 27] show that their advantages over
the classical triplet margin loss [10] are moderate. We use triplet margin
loss to train our network, which requires an anchor, a positive example
(structurally similar to the anchor) and a negative example (structurally
dissimilar to the anchor):

(10) Ltriplet =
1

N

N∑

i=1

[||δa − δp||2 − ||δa − δn||2 + α]+

Here N is the number of training samples in a batch, δa, δp and δn denote
the global descriptors of the anchor, positive and negative point clouds re-
spectively (the index i that refers to a specific sample is omitted to avoid
clutter). [·]+ denotes the function max(·, 0) and α is the constant margin.
Same as Minkloc3D [12], at the beginning of each epoch the training set
is partitioned into batches by randomly sampling positive pairs from the
remaining data repeatedly. For each batch we compute two N × N binary
masks indicating the structural similarity between each pair of point clouds.
The discriminative descriptor of each point cloud in a batch is obtained by
our proposed network. Then we construct informative triplets via the batch
hard mining approach [20] using the two binary masks.

but has a slight improvement in our experiments. We assume this is because the
LBR network now needs to learn a mapping closer to identity, which is easier to
model.
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At the early stage of training, the model cannot produce sufficiently
discriminative descriptors and mode collapse is more likely to occur with
a large batch size. Therefore, we adaptively adjust the batch size as the
training continues, as is proposed in Minkloc3D [12]. If the average number
of triplets producing non-zero loss accounts for over η of the total number,
the batch size will be enlarged to τ times of the previous value as long as the
batch size is still below a maximum threshold. Here τ is a hyper-parameter
larger than 1.

4. Experiments

4.1. Datasets

We use a modified Oxford RobotCar dataset [18] and three other datasets
introduced in PointNetVLAD [31], including Business District (B.D.), Resid-
ual Area (R.A.) and University Sector (U.S.) to evaluate our method. Point
clouds in Oxford RobotCar dataset are obtained by a Sick LMS-151 2D
LiDAR scanner mounted on a moving vehicle, while others are obtained
from a Velodyne-64 LiDAR scanner. The places are sampled with a fixed
interval on the continuous trajectory of the vehicle, and the corresponding
point clouds are generated by dividing the global map into a set of submaps.
During training, point cloud pairs with a distance less than 10m are defined
as positive pairs, while more than 50m are defined as negative pairs. The
rest of point cloud pairs are neither positive nor negative. To better learn
geometric features, the non-informative points on the ground are removed,
then the number of points is uniformly downsampled to 4096. Coordinates
of each point are shifted and scaled to [−1, 1].

4.2. Implementation details

To reduce the risk of overfitting, data augmentation is introduced into the
preprocessing stage. Specifically, we adopt random jittering with a noise sam-
pled from the normal distribution N (0, 0.001) and clipped to [−0.002, 0.002],
random translation with an offset vector sampled from the uniform dis-
tribution [−0.01, 0.01]3, random point removal with a probability of dr ∼
[0.0, 0.1], random symmetrical transformation and random rotation. We also
use random fronto-parallel cuboid erasing approach proposed in [12] for fur-
ther augmentation.

Augmented point clouds are quantized with quantization step 0.01, and
then fed to the network implemented by Minkowski Engine [3]. The hyper-
parameter S of each EA layer is set to 256, 128, 128, 64, 64, 64 in sequence
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Table 1: Evaluation Results(AR@1%). All the methods are trained on Ox-
ford RobotCar dataset and evaluated on four datasets without finetuning.
Our method achieves the state-of-the-art performance on Oxford RobotCar
dataset, and has a competitive generalization ability

Method Oxford B.D. R.A. U.S.
PointNetVLAD 80.3 65.3 60.3 72.6
PCAN 83.8 66.8 71.2 79.1
DAGC 87.5 71.2 75.7 83.5
LPD-Net 94.9 89.1 90.5 96.0
SOE-Net 96.4 88.5 91.5 93.2
Minkloc3D 97.9 88.5 91.2 95.0
NDT-Transformer 97.7 – – –
Minkloc++ 98.2 82.7 85.1 93.0
TransLoc3D(ours) 98.5 88.4 91.5 94.9

to capture rich local geometric information. The number of heads is set to 2.
The concatenation of outputs from different attention layers is transformed
to 512-dimensional space, and then fed to NetVLAD [1]. With regard to the
hyperparameters within NetVLAD, the size of the cluster is set to 64 and
the dimension of the output descriptor is set to 256 for fair comparisons. We
also introduce context gating mechanism [21], which is initially proposed for
large-scale video understanding, into NetVLAD to produce more informative
descriptors.

We adopt Adam optimizer with an initial learning rate 2 × 10−4, and
multiplied by 0.1 on epoch 80, 120 and 160. The triplet loss margin α is set
to 0.2 in our experiments. The batch size is initially set to 32 and increased
by 40% once the number of active triplets is less than 70% of the total. All
experiments are conducted on a server with 6 NVidia GeForce GTX 1080Ti
GPUs and an Intel i7-6850K CPU.

4.3. Quantitative comparisons

Following the same evaluation protocol introduced in PointNetVLAD [31],
we compare our model with previous works and the results are shown in
Tab. 1. All these models are trained on modified Oxford RobotCar dataset
and evaluated on test splits of four datasets without further finetuning. It is
worth noting that Minkloc++ is a multimodal architecture taking geometric
information from RGB images and 3D point clouds as input and we only use
the 3D modality sub-network. If the results are not reported in the original
paper, we run the evaluation by ourselves with publicly available source
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Table 2: Evaluation Results on Oxford RobotCar dataset. Our method has
a remarkable improvement of 1.1% on AR@1 and 0.3% on AR@1%

Method AR@1 AR@1%
PointNetVLAD 63.3 80.3
PCAN 70.7 83.8
DAGC 73.3 87.5
LPD-Net 86.3 94.9
SOE-Net 89.4 96.4
Minkloc3D 93.8 97.9
NDT-Transformer 93.8 97.7
Minkloc++ 93.9 98.2
TransLoc3D(ours) 95.0 98.5

codes, otherwise we take the results reported by authors with the identical
evaluation protocol.

Our proposed TransLoc3D achieves state-of-the-art results on Oxford
RobotCar dataset, with a 0.3% higher average recall@1% than the runner-
up method, Minkloc++. Compared with NDT-Transformer which is also
based on a Transformer architecture, our method adopts a nearly cost-free
preprocessing step and achieves a remarkable improvement of 0.8% on av-
erage recall@1%, which shows the significance of adaptive receptive fields.
For generalization capability, our model surpasses other models on the R.A.
dataset while is slightly worse than LPD-Net on other datasets. We argue
that there exist huge differences in data distribution and LPD-Net enhances
the input with hand-crafted features, which improves the generalization abil-
ity of the network by introducing prior knowledge. The following experiment
shows that our method surpasses LPD-Net after finetuning.

Due to that AR@1% is already close to 100%, we also compare the per-
formance of various models using AR@1 on the Oxford RobotCar dataset.
As illustrated in Tab. 2, our method is significantly better than the previ-
ous state-of-the-art model, with an improvement of 1.1%, which shows that
TransLoc3D has stronger discrimination ability than other methods.

We also test the performance with finetuning. Same as PointNetVLAD
[31], the training subsets of U.S. and R.A. are also added to the training
data in addition to the Oxford RobotCar dataset, in order to verify the
generalization ability of models on unseen scenarios. Inspired by transfer
learning, we pretrain our model on Oxford RobotCar dataset, and then
finetune the model with a small learning rate on downstream datasets. Tab. 3
illustrates the evaluation results of different methods under this setting,
where the evaluation of Minkloc++ [13] is conducted by ourselves due to
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Table 3: Evaluation Results. Place recognition methods are trained on Ox-
ford RobotCar, U.S. and R.A. datasets. After finetuning, our method sur-
passes other methods with a significant improvement of average recall on all
datasets

Method B.D. R.A. U.S.
AR@1 AR@1% AR@1 AR@1% AR@1 AR@1%

PointNetVLAD [31] 80.1 86.5 82.7 93.1 86.1 90.1
PCAN [36] 80.3 87.0 82.3 92.3 83.7 94.1
DAGC [29] 81.3 88.5 82.8 93.4 86.3 94.3
LPD-Net [17] 90.8 94.4 90.8 96.4 94.4 98.9
SOE-Net [35] 89.0 92.6 90.2 95.9 91.8 97.7
Minkloc3D [12] 94.0 96.7 96.7 99.3 97.2 99.7
NDT-Transformer [38] – – – – – –
Minkloc++ [13] 91.8 95.5 95.3 98.5 96.5 99.5
TransLoc3D(ours) 94.8 97.4 97.3 99.7 97.5 99.8

the lack of reported results, and other results are reported by the authors. It
is shown that our method is superior to previous methods with a remarkable
improvement on three datasets. The comparison to LPD-Net [17] shows that
hand-crafted features contribute greatly to the model performance under
the condition that the amount of data is relatively small or there exist huge
differences in data distribution. Otherwise, learning-based models have a
stronger representation power.

4.4. Visualization

To intuitively explain how our model addresses three issues mentioned be-
fore, we visualize the retrieval results and perform qualitative comparisons,
which is illustrated in Fig. 4. The leftmost column shows the query point
cloud and other columns show its nearest neighbors using our method and
Minkloc3D. In the first case, the large receptive field of Minkloc3D neglects
peaked roofs (red circle) of the building, while our model can adaptively ad-
just the receptive field size according to the target object size. In the second
case, points distributed on the continuous building surfaces are divided into
several patches due to the occlusions brought in by pedestrians and trees,
while our model is more robust than Minkloc3D under this circumstance.
In the third case, the model is required to capture geometric information of
the horizontal road (red circle) to produce a discriminative descriptor. Min-
kloc3D fails to encode the road due to its limited receptive field size, while
our transformer-based architecture enables our model to capture global in-
formation.
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Figure 4: Visualization of some representative retrieval results. Our method
recognize the correct places while Minkloc3D [12] fails under these cases.

Table 4: Ablation study on several design choices. The elimination of each
module leads to a significant degradation on the performance

Network AR@1 AR@1%
w/o adaptive receptive fields 83.6 93.9
w/o ECA 94.5 98.4
w/o point-wise feature reweighting 94.6 98.5
w/o transformer 94.2 98.2
ours full 95.0 98.5

4.5. Ablation studies

We conduct ablation studies to evaluate the impact of different design choices
of our method. In all experiments of this section, the network is trained and
evaluated only using the Oxford RobotCar dataset. We first eliminate several
independent modules including adaptive receptive field module, ECA [32],
point-wise feature reweighting and transformer, referred as “w/o adaptive re-
ceptive fields”, “w/o ECA”, “w/o point-wise feature reweighting” and “w/o
transformer”. We denote the complete network architecture as “ours full”.
The results are illustrated in Tab. 4. The elimination of point-wise feature
reweighting scheme is implemented by replacing weighted summation based
on attention weights with a concatenation operation along the channel di-
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Figure 5: Visualization of some representative retrieval results. Our complete
model recognizes correct places while others fail under these cases.

mension, followed by a 1× 1× 1 convolution used to aggregate information
from different branches. Compared with the complete TransLoc3D model,
other alternatives all have significant degradation on average recall@1, from
0.4% to 11.4%.

To further explore the significance of these module, we visualize sev-
eral typical cases in which the complete TransLoc3D model surpasses other
models. As illustrated in Fig. 5, in the first case, the retrieval results are
perturbed by noise including vehicles on the road and buildings in the dis-
tance. The ECA module enables our complete model to be more robust to
noises than “w/o ECA”. In the second cases, the vehicles on the street ob-
scures the huge building, which further changes the distribution of points
and splits the whole point cloud into patches of different sizes. The point-
wise reweighting mechanisms can adaptively adjusting the receptive field
sizes according to the input point clouds, which is suitable for this case. In
the third case, only part of the buildings (bottom of the retrieval result) can
match the query point cloud, thus it requires long-range contextual infor-
mation to produce sufficiently discriminative descriptors when local regions
have similar geometry.

We also conduct an experiment on how Average Recall changes with the
number of branches in the adaptive receptive field module. As illustrated in
Fig. 6 and Tab. 5, as the number of branches increases, the discrimination
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Figure 6: Ablation study on the number of branches in the adaptive receptive
field module. As the number of branches increases, average recall goes up to
saturation with 5 branches(ours).

Table 5: Ablation study on the number of branches in the adaptive receptive
field module. “–” means mode collapse

Network AR@1 AR@1%
1 branch – –
2 branches 92.0 97.4
3 branches 93.2 97.9
4 branches 94.1 98.3
5 branches (ours) 95.0 98.5
6 branches 94.3 98.4

ability of the descriptors produced by TransLoc3D becomes stronger, and
saturation occurs when more than 5 branches are used. The result indicates
that the local feature extractor requires aggregating geometric information
from a local area larger than a certain threshold to produce sufficiently
discriminative descriptors, while oversized receptive fields lead to too com-
plicated geometric information for local descriptors to efficiently represent.
More ablation studies can be seen in the appendix.

4.6. Failure cases

Although our proposed network has achieved encouraging results on popular
datasets, there are still several cases TransLoc3D cannot handle well. Fig. 7
illustrates two typical kinds of failure cases. In the first case, geometry of
the buildings on different sides of the road changes dramatically, while a
similar building (right side of the retrieval result) lies on another location.
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Figure 7: Failure cases. We visualize two typical cases in which our proposed
model fails.

In the second case, the tree on the street obscures the huge building (right
side of the retrieval result) and further changes the distribution of points
related to the building, whereas our network does not take occlusion between
unmovable objects into consideration.

5. Conclusion

In this paper, we put emphasis on three issues in point cloud based place
recognition, including moving objects, size difference of the objects and long-
range contextual information. We propose TransLoc3D, which combines the
advantages of adaptive receptive fields and transformer to tackle these is-
sues. Extensive experiments show that our network achieves state-of-the-art
performance on benchmark datasets, and qualitative analysis also demon-
strates the effectiveness of our model in complex outdoor scenes. We believe
our work can promote further exploitation in visual transformers by utilizing
multi-scale geometry information.

Appendix A. Network architecture

In this section, we provide more details of our method, including sparse
voxelization and 3D sparse convolution module.

A.1. Voxelization

To reduce the time and space complexity of obtaining the neighbors of each
point, we transform the raw point clouds into sparse voxelization repre-
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Figure A1: Changes in the number of points during voxelization. About 15%
points on average are removed in the voxelization process, which demon-
strates that information loss is quite moderate.

Figure A2: Visualization of voxelized point clouds.

sentation before feeding them into our proposed network. However, sparse
voxelization inevitably leads to information loss. To quantify information
loss introduced in this step, we conduct an experiment on how the number
of points changes during voxelization. As illustrated in Fig. A1, about 600
out of 4096 points are removed on average for being too closed to other
points with a quantization size of 0.01. We also visualize the sparse voxel
representation in Fig. A2. As the smallest independent semantic unit, the
pedestrian is still roughly recognizable in the complex scene. Thus, we can
safely assume that the information loss introduced during voxelization is
negligible.
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Table A1: Details of the 3D sparse convolution module

Layer Parameters

Conv0 C
64
5k1s

Conv1 C
64
2k2s

A.2. 3D sparse convolution module

We adopt a very shallow 3D CNN consisting of two sparse convolutional
layers to aggregate local geometric information and extract point features.
The details of the 3D sparse convolution module are shown in Tab. A1,
where Cc

akbs
denotes a convolutional layer with c kernels of shape a× a× a

and stride b. Same as Minkloc3D [12], the first convolution has a 5× 5× 5
kernel to aggregate information from a large area. In order to extract low-
level geometric features, only one 2× 2× 2 convolution with stride 2 is used
in our network, which halves the spatial resolution in each dimension. All
convolutions are followed by a batch normalization [11] layer and a ReLU
non-linear activation function.

Appendix B. Experiments

In this section, we visualize some retrieval results on Oxford RobotCar
dataset and provide more ablation studies on hyper-parameter selection.
We also conduct a detailed analysis on applying dilated convolutions on
sparse feature maps.

B.1. Visualization

Some retrieval results of our proposed TransLoc3D are shown in Fig. B1,
where the leftmost column (blue) shows the query point clouds and other
columns show top 4 nearest neighbors in sequence. The green boxes denote
the correct results, while the red ones denote the unexpected retrieval results.

B.2. Ablation studies

Different from SK-Net [14] which adopts dilated convolutions for further
improving efficiency, we build our adaptive receptive field module with con-
ventional convolutions. We argue that dilated convolution is not suitable for
sparse feature maps and provide qualitative and quantitative analysis to sup-
port this claim. Notably, the positions of nonzero features in sparse feature
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Figure B1: Visualizations of some retrieval results on the Oxford RobotCar
dataset. The query point clouds are shown in the leftmost column (blue),
and the top 4 nearest neighbors are shown in the other columns in order.
The green boxes represent the correct retrieval results, whereas the red boxes
indicate the unexpected ones.
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Figure B2: Visualization of dilated convolution and conventional convolution
applied on a sparse feature map. Green areas indicate non-zero values in the
sparse feature map, while red crosses indicate the receptive field of the cen-
tral location. Dilated convolution (on the left) cannot aggregate information
from the immediate neighbors of the central location.

Figure B3: Ablation study on dilated convolution. We find dilated convolu-
tion not suitable for sparse feature maps.

maps do not change when adopting sparse convolution, and most non-zero
features extracted from point cloud data are distributed along the outer sur-
face of objects. We observe that dilated convolution applied on the sparse
feature map may aggregate much less local information than conventional
convolution. Without loss of generality, we visualize the feature map of a 2D
point cloud as illustrated in Fig. B2, where nonzero values (green) are evenly
scattered over the left surface or right surface of the 2D object. The num-
ber of non-zero features fed to dilated convolutional layer is lower than the
theoretical maximum, and as a result the dilated convolutions cannot aggre-
gate local information effectively. Fig. B3 shows the quantitative comparison
between adaptive receptive field module built on conventional convolutions
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Figure B4: Ablation study on the number of attention layers in the External
Transformer. As the number of attention layers increase, average recall goes
up to saturation with 6 layers (ours).

and dilated convolutions. It can be seen that the dilated convolution-based
network has obvious degradation on average recall@N, which demonstrates
that dilated convolution applied on sparse feature maps has negative impact
on performance.

We also provide an analysis on the number of attention layers in the
External Transformer. As illustrated in Fig. B4, TransLoc3D with 6 layers
achieves the best results. However, it only has a minor improvement on aver-
age recall compared with other settings, which demonstrates the robustness
of TransLoc3D to hyper-parameter selection.
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