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From dimension-free manifolds to
dimension-varying control systems
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∗
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∗

Starting from the vector multipliers, the inner product, norm, dis-
tance, as well as addition of two vectors of different dimensions are
proposed, which makes the spaces into a topological vector space,
called the Euclidean space of different dimension (ESDD). An
equivalence is obtained via distance. As a quotient space of ESDDs
w.r.t. equivalence, the dimension-free Euclidean spaces (DFESs)
and dimension-free manifolds (DFMs) are obtained, which have
bundled vector spaces as its tangent space at each point. Using
the natural projection from a ESDD to a DFES, a fiber bundle
structure is obtained, which has ESDD as its total space and
DFES as its base space. Classical objects in differential geom-
etry, such as smooth functions, (co-)vector fields, tensor fields,
etc., have been extended to the case of DFMs with the help of
projections among different dimensional Euclidean spaces. Then
the dimension-varying dynamic systems (DVDSs) and dimension-
varying control systems (DVCSs) are presented, which have DFM
as their state space. The realization, which is a lifting of DVDSs
or DVCSs from DFMs into ESDDs, and the projection of DVDSs
or DVCSs from ESDDs onto DFMs are investigated.

AMS 2000 subject classifications: 37N35, 34H05, 51H25.
Keywords and phrases: Cross-dimensional projection, dimension-
varying dynamic (control) systems, dimension-free Euclidean spaces
(manifolds), dimension-free dynamic (control) systems.

1. Introduction

Dimension-varying dynamic systems (DVDSs) and dimension-varying con-
trol systems (DVCSs) exist widely in nature and man-made equipments
or environments. For instance, on the internet users are joining and with-
drawing frequently. In a biological system, cells are producing and dying
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from time to time. Some man-made mechanical systems are also of vary-

ing dimensions. For instance, the docking and undocking of spacecrafts

[26, 17]; the connecting and disconnecting of vehicle clutch systems while

speed changes [9]. The DVDS models are also used for specious population

dynamics [25, 14].

Another interesting phenomenon which stimulates our interest is: a ge-

ometrical object, or a complex system, may be described by models of dif-

ferent dimensions. For instance, in power systems a single generator can be

modeled as a 2, 3, or 5, 6, or even 7-dimensional dynamic system [21]. In

contemporary physics, the sting theory assumes the dynamics of strings to

be the model for universe of time-space. But this model may have dimen-

sion 4 (special relativity), 5 (Kaluza-Klein theory), 10 (type 1 string), 11

(M-theory) or even 26 (Bosonic model) [19]. One observes from this phe-

nomenon that two models with different dimensions might be very similar

or even equivalent. In other words, dimension-varying model may be proper

to describe such dynamics.

So far, a classical way to deal with DVDSs and DVCSs is switching [26].

This approach ignores the dynamics of the system during the dimension-

varying process. In practice, the transient period may be long enough so that

the dynamics during this process is not ignorable. For instance, automobile

clutch takes about 1 second to complete a connection or separation action;

docking and undocking of spacecrafts take even longer. Not to mention that

some processes might be continuously dimension-varying. In the latter cases,

switching is almost meaningless.

To our best knowledge, there are few proper theories in existing mathe-

matics to model DVDSs and DVCSs. In ordinary or partial differential equa-

tions or difference equations, only dynamic models of fixed dimensions can

be treated. To provide a proper model for formulating DVDSs and DVCSs,

a new framework should be created.

The purpose of this paper is twofold. One is to build the dimension-

free Euclidean spaces (DFESs) and dimension-free manifolds (DFMs), which

provides a mathematical framework for DVDSs or DVCSs. The DFM is a

completely new “manifold”, where each point has its own dimension. It is

the base space of DFES while the total space of DFES is considered as the

tangent space of the DFM. It makes the “state space” of the DVDSs or

DVCSs a mathematically well-posed geometrical object; The other issue is

to use the geometric structure of DFMs to model, analyze and/or design con-

trols for DVDSs and DVCSs, either linear or nonlinear, are unambiguously

defined.
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This paper is a follow-up research of our previous works. In [6, 7] the
dimension-free matrix theory and mix-dimensional vector spaces have been
proposed and investigated. As an application of dimension-free matrix the-
ory, the dimension-varying linear (control) systems have been investigated
[9]. The basic concept used there was the equivalence of vectors of different
dimensions [8]. This idea is also one of the key techniques in this paper.

To build up a theory of dimension-free manifolds, the key issue is to
construct a connected topological space allowing the dimensions of the points
in it to vary. We first construct an equivalence relation on the ESDD V :=⋃∞

n=1 V, (equivalently, R∞ :=
⋃∞

n=1R
n) and take the quotient space Ω as

the model space, which is a topological vector space. it is called “dimension-
free” Euclidean space, which means each vector x̄ ∈ Ω has its dimension
1 ≤ dim(x̄) < ∞, but this dimension varies from point to point. We refer
to [6, 7] for details. Though these results have been discussed before, they
are re-organized systematically in Section 2 here. Then the projection of a
vector to a certain Euclidian space is recalled, which was firstly proposed in
[9] and was discussed in detail by [11, 12, 27, 28]. Then the cross-dimensional
linear control systems are investigated as S-systems (semi-group systems).

For each point x̄ ∈ Ω a neighborhood coordinate bundle is proposed.
Using neighborhood coordinate bundles, differentiable structure is obtained.
Unlike the classical differential manifold, this differential structure poses on
each point a bundled Euclidean spaces of different dimensions as its “tangent
space”. A DFM is a fiber bundle locally homeomorphic to a coordinate
neighborhood bundle of a DFES.

Over a DFES (or DFM), the smooth (Cr) functions, vector fields, co-
vector fields, distributions, co-distributions, tensor fields, etc. are proposed.
The integral curves of vector fields, or integral manifolds of distributions,
are also properly defined. In a word, a dimension-free differential geometric
structure is proposed for DFMs. Dimension-free tensor fields are also intro-
duced, and using degree-2 covariant tensor fields, dimension-free Riemannian
manifolds and symplectic manifolds are also proposed.

With these geometric constructions, this paper attempts to explore the
dynamics and control of DVDSs. The basic idea is as follows: Projection and
lift connect the DVDSs on DFMs (as the base space) with the DVDSs on
DFESs (as the total space): lifting the trajectory of a DVDS (or DVCS)
to ESDD, a set of trajectories over ESDD are obtained. Using them a
dimension-varying trajectory of the DVDS (or DVCS) can be constructed.
Conversely, if a classical dynamic (control) system is defined on a Euclidean
space, it can also be projected to DFES via natural projection. Therefore, the
fiber bundle (R∞,Pr,Ω) provides the bearing state space for both DVDSs
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and DVCSs. In addition to general DVDSs, particular attention has been
paid to the dynamics of the transient process of classical dimension-varying
systems, which have invariant dimensions except during the transient period.

The STP of matrices was proposed by the author and his colleagues
[4, 5]. It was the fundamental method in previous works [6, 7, 9] on DVDSs
and DVCSs. It is also a basic tool in this paper, where the default matrix
product is assumed to be STP. We refer to [4, 5] for notions and basic results.

Before ending this section, lists of notations and abbreviations are pro-
vided as follows.

(1) List of Notations:

• R: set of real numbers.
• Mm×n: set of m× n dimensional real matrices.
• a ∨ b: the least common multiple of two positive integers a and b.
• a ∧ b: the greatest common divisor of two positive integers a and b.
• �± : (left) vector addition.
• ��: (left) vector subtraction.
• 1n: [1, · · · , 1]︸ ︷︷ ︸

n

T ; 1m×n: m× n matrices with all entries being 1.

• δik: The i-th column of identity matrix Ik. δ
0
k is for a zero vector of

dimension k.
• ↔: vector equivalence.
• Ω := R∞/ ↔.

(2) List of Abbreviations:

• ESDD: Euclidean space of different dimensions.
• DFES: dimension-free Euclidean space.
• DFM: dimension-free manifold.
• DFEB: dimension-free Euclidean bundle.
• DFRM: dimension-free Riemannian manifold.
• DVDS: dimension-varying dynamic system.
• DVCS: dimension-varying control system.

The rest of this paper is organized as follows. The ESDDs are investi-
gated in Section 2. The inner product, norm, distance, topologies and equiv-
alence relations on them are introduced. In Section 3 a vector space structure
is given to ESDDs to form the DFESs using equivalence among vectors of
different dimensions. Using the natural projection from ESDDs to DFES, a
fiber bundle structure is obtained. Section 4 considers the projections among
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Euclidian Spaces of different dimensions. First, the projection of a vector
onto another vector, which may have different dimensions, is proposed. Us-
ing the coordinates from ESDD, smooth functions over DFESs are con-
structed. Then the least square approximation of a linear (control) system
is considered. The DFMs are considered in Section 5. After DFESs are en-
dowed with a differential structure, the (co)-vector fields, (co)-distributions,
and the integral curses of vector fields over them are proposed and inves-
tigated. In Section 6, the tensor fields over DFMs are constructed first.
Using proper symmetric and skew-symmetric covariant tensor fields, the
dimension-free Riemannian manifold and dimension-free symplectic man-
ifold are constructed respectively. As an application, Section 7 considers
DVDSs and DVCSs. First, the projection of a nonlinear (control) system on
an Euclidean space onto another Euclidean space of different dimension is
proposed. Then the nonlinear (control) systems over DFESs are considered,
which is then used to model dimension-varying nonlinear (control) systems
over ESDDs. Finally, the control problems of dimension-varying linear and
nonlinear systems are considered in principle. Section 8 contains some con-
cluding remarks. First, the construction of DFES (DFM) is summarized step
by step. Then the modeling and control design of DVDSs are also summa-
rized. Finally, a conjecture is presented, which claims that DFESs (DFMs)
might be used as the framework for string theory.

2. Euclidean space of different dimensions (ESDDs)

In this section we introduce the notion of ESDDs, which is constructed by
choosing {1n}n=1,2,··· as vector multipliers [8].

2.1. Mix-dimensional sets and mix-dimensional vector spaces

Consider an n dimensional real vector space, denoted by Vn. For simplicity,
one can take Vn = Rn. To construct mix-dimensional state space, the set of
mix-dimensional vectors, called ESDD, is defined as

V :=

∞⋃
n=1

Vn.

We may view V as R∞ :=
⋃∞

n=1R
n since they are isomorphic.

First, we define “addition” and “scalar product” over V to turn it into
a pseudo vector space.
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Definition 1. (i) Let x ∈ Vm ⊂ V, r ∈ R. Then the scalar product is

defined as follows:

r × x := rx ∈ Vm.(1)

(ii) Let x ∈ Vm, y ∈ Vn, and t = m∨n be the least common multiple of m

and n. Then the addition of x and y is defined as follows:

x �

±

y := (x⊗ 1t/m) + (y ⊗ 1t/n) ∈ Vt.(2)

Correspondingly, the subtraction of y from x is defined as x��y :=

x �

±

(−y).

Proposition 2. Set V with scalar multiplication defined as in (1), addition

as in (2) is a pseudo-vector space [1], where the set of zero elements is

0 := {[0, 0, · · · , 0︸ ︷︷ ︸
n

]T | n = 1, 2, · · · }.

Remark 3. For notational ease, when x ∈ Vn we assume −x ∈ Vn where

−x is the vector satisfying x+(−x) ∈ 0. Since such elements are not unique,

this −x is considered as a representative of the set of them.

2.2. Norm and distance on ESDDs

Definition 4. Let x ∈ Vm ⊂ V, y ∈ Vn ⊂ V, and t = m∨n. Then the inner

product of x and y is defined by

〈x , y〉V :=
1

t

〈
x⊗ 1t/m , y ⊗ 1t/n

〉
,(3)

where 〈· , ·〉 is the conventional inner product on Rt. That is, if x, y ∈ Rt,

then 〈x, y〉 =
t∑

i=1
xiyi. The inner product defined by (3) is called the weighted

inner product, because there is a weight coefficient 1/t.

Using inner product, the norm of x ∈ V can be defined.

Definition 5. The norm of x ∈ V is defined by

‖x‖V :=
√

〈x , x〉V .(4)
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One sees easily that ‖ · ‖V defined by (4) satisfies linearity and triangle
inequality, however, ‖x‖ = 0 ⇒ x ∈ 0. It is also called a pseudo-norm.

Finally, we define the distance on V.

Definition 6. Let x, y ∈ V. The distance between x and y is defined by

dV(x, y) := ‖x��y‖V .(5)

It is easily verified that dV satisfies symmetry and triangle inequality,
however, dV(x, y) = 0 ⇒ x��y ∈ 0. Hence, this distance is called a pseudo-
distance.

Remark 7. The distance defined on a vector space is, in general, required
to be invariant under displacement. That is,

d(x+ z, y + z) = d(x, y), x, y, z ∈ X.(6)

It is easy to verify that the dV defined by (5) satisfies (6).

2.3. Topology on ESDDs

This subsection considers the topology on V. We refer to any standard text-
book of topology for the basic topological concepts involved in this subsec-
tion, for instance, [10, 20]. In the following some topologies are considered.

• Natural Topology:

Naturally, the topology on each Rn is considered as conventional topol-
ogy. To be precise, the open balls in Rn with center at c = (c1, c2, · · · , cn),
and radius r > 0, are defined by

Bn
r (c) :=

{
(x1, · · · , xn) ∈ Rn

∣∣∣
√

n∑
i=1

(xi − ci)2 < r
}
.

Taking

Bn := {Bn
r (c) | c ∈ Rn, r > 0}

as topological basis, the topology on Rn generated by Bn is the conventional
topology on Rn.

Then each Rn, n = 1, 2 · · · , are considered as a set of clopen subsets in
V. Such a topology is called the natural topology on V, denoted by N.

The following properties are obvious.
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Proposition 8. (i) Assume ∅ �= On ∈ Rn is an open set, then it is also
open in (V,N).

(ii) (V,N) is a second countable Hausdorff space.

• Distance Topology:

Define open balls in V = R∞ by

Br(c) := {x ∈ R∞ | dV(x, c) < r}, c ∈ R∞.

Using B := {Br(c) | c ∈ R∞, r > 0} as a topological basis, the topology
generated by B is called the distance topology on R∞ deduced from dV ,
denoted by D.

Remark 9. (i) Assume ∅ �= On ∈ Rn is an open set, it is not open under
distance-deduced topology, i.e., not open in (V,D). This is because
∀x ∈ On there exists a point y = x⊗ 1s �∈ On. But d(x, y) = 0, which
means x is not an interior point of On. Hence, On is not open in
(V,D).

(ii) (V,D) is not a Hausdorff space. To see this, consider x and x ⊗ 1s,
s > 1, which are two different points. But they are not separable in
(V,D). It is clear that (V,D) is not even T0.

(iii) It is easy to see that if O is open in (V,D), then O is also open in
(V,N). Hence D ⊂ N, that is, the distance-deduced topology D is
rougher than the natural topology N.

• Product Topology:

One way to understand V = R∞ is to consider R∞ =
∏∞

n=1R
n, then the

product topology is generated by the topological basis

B =

{ ∞∏
n=1

On

∣∣∣∣∣ On ⊂ Rn is open, and On = Rn except for finite n

}
.

The product topology is denoted by P. It is easy to see that P = N.

2.4. Equivalent vectors

Definition 10. (i) Let x, y ∈ V. x and y are said to be equivalent, de-
noted by x ↔ y, if there exist two one-vectors 1α and 1β, such that

x⊗ 1α = y ⊗ 1β .(7)
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(ii) The equivalence class of x is denoted by x̄ :=
{
y
∣∣ y ↔ x

}
.

Remark 11. Obviously ↔ is an equivalence relation. Assume x, y ∈ V.
Then x ↔ y, if and only if x��y ∈ 0.

For the equivalence we have the following properties.

Theorem 12. (i) If x ↔ y, then there exists a γ ∈ V such that

x = γ ⊗ 1β , y = γ ⊗ 1α.(8)

(ii) In each equivalence class x̄ there exists unique smallest element x1 ∈ x̄,
such that x̄ = {x1 ⊗ 1k | k = 1, 2, · · · }.

The proofs follow similarly as in [8].
A partial order can be defined on V.

Definition 13. A partial order, denoted by ≺, is defined as follows: Let
x, y ∈ V. If there exists a one-vector 1s such that x ⊗ 1s = y, then x ≺ y.
For any equivalence class x̄, x1 ∈ x̄ is called the smallest element of x̄, if
∀y ∈ x̄, y ≺ x1 implies y = x1.

Remark 14. (i) If x = y⊗ 1s, then y is called a divisor vector of x, and
x is called a multiplier vector of y. This relation determines the order
y ≺ x.

(ii) If (8) holds, and α, β are co-prime, then the γ in Eq. (8) is called the
maximum common divisor vector of x and y, denoted by γ = gcd(x, y).
It is easy to prove that if z is also a common divisor vector of x and y,
then z ≺ γ. Moreover, the maximum common divisor vector is unique.

(iii) If (7) holds and α, β are co-prime, then ξ := x⊗1α = y⊗1β is called
the least common multiple vector of x and y, denoted by ξ = lcm(x, y).
It is also easy to prove that if z is also a common multiple vector of x
and y, then ξ ≺ z. Moreover, the least common multiple vector is also
unique.

Proposition 15. (i) Assume x ∈ V, then (x̄,≺) is a lattice [8].
(ii) Assume x, y ∈ V, then (x̄,≺) � (ȳ, ≺), where � stands for lattice

isomorphism. That is, any two equivalence classes as lattices are iso-
morphic.

Proof. It is straightforward verifiable that ∀u, v ∈ x̄, sup(u, v) = lcm(u, v);
inf(u, v) = gcd(u, v). Then the first part is obvious. Assume x̄ = {x1, x2, · · · }
and ȳ = {y1, y2, · · · }, where xi = x1 ⊗ 1i, i = 1, 2, · · · , etc. Define π :
x̄ → ȳ, π(xi) = yi, i = 1, 2, · · · , Then one sees easily that π is a lattice
isomorphism.
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The above arguments can be considered as special cases of that in Section
7 of [8] by choosing the vector multiplier as {1n}.

3. Constructing DFESs from ESDDs

3.1. Quotient spaces as vector spaces

Definition 16. The quotient space of V = R∞ under equivalence relation
↔ defined on it by (7), denoted by Ω, is called the DFES. That is,

Ω := V/ ↔ .(9)

(i) Let x̄ ∈ Ω. The scalar product on Ω is defined by

ax̄ := ax, a ∈ R.(10)

(ii) Let x̄, ȳ ∈ Ω. Then the addition of x̄ and ȳ is defined by

x̄ �

±

ȳ := x �

±

y.(11)

Correspondingly, the subtraction is defined by x̄��ȳ := x̄ �

±

(−ȳ), where
−ȳ := −y.

It is easy to verify that the scalar product (10) and the addition (11)
are well defined, that is, if x ↔ x′ and y ↔ y′, then ax ↔ ax′, ∀a ∈ R, and
x �

±
y ↔ x′ �

±

y′. One may refer to [8] for proofs.

Theorem 17. Using the addition defined as in (11) and the scalar product
as in (10), Ω is a vector space.

Consider the subspaces of ESDD and the corresponding subspaces of
DFES.

Definition 18. (i) Let p ∈ Z+ be a positive integer. Define the p-upper
truncated ESDD as

R[p,·] :=
⋃

{s
∣∣ p|s}R

s.

(ii) Define p-upper truncated DFES as

Ωp := R[p,·]/ ↔ =
{
x̄
∣∣ x1 ∈ Rpr, r ≥ 1

}
.
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(iii) Define p-lower truncated ESDD as

R[·,p] :=
⋃

{s
∣∣ s|p}R

s.(12)

(iv) Define p-lower truncated DFES as

Ωp := R[·,p]/ ↔ =
{
x̄
∣∣ x1 ∈ Rs, s|p

}
.

The next proposition is an immediate consequence of the definition.

Proposition 19. (i) Ωp, and Ωp, p = 1, 2, · · · are subspaces of Ω;

(ii) If i|j, Then, Ωj is a subspace of Ωi, Ωi is a subspace of Ωj.

Example 20. The lattice structure on R∞ can be transferred to Ω:

(i) Define Ω(n) := Rn/ ↔, n = 1, 2, · · · . Then Ω =
⋃∞

n=1Ω(n). Define

Ω(m) ≺ Ω(n) ⇔ Rm ≺ Rn, then it is obvious that (Ω,≺) is a lattice

with sup(Ω(p),Ω(q)) = Ω(p∨q), inf(Ω(p),Ω(q)) = Ω(p∧q).
(ii) Ωp is an ideal of Ω.

(iii) Ωp is a filter of Ω.

In fact, Ω has the same lattice structure as its filters.

Proposition 21. Let p > 1. The filter Ωp is lattice isomorphic to Ω.

Proof. Define a mapping ϕ : Ωp → Ω, ϕ(Ω(np)) := Ω(p). Then it is easy to

verify that ϕ is a lattice isomorphism.

3.2. Topology on DFESs

First, we extend the inner product over ESDD R∞ to DFES Ω.

Definition 22. Let x̄, ȳ ∈ Ω. Define their inner product as

〈x̄ , ȳ〉V := 〈x , y〉V , x ∈ x̄, y ∈ ȳ,(13)

where 〈·, ·〉V is defined as in (3).

The following proposition shows Definition 22 is well defined.

Proposition 23. (13) is properly defined. That is, it is independent of the

choice of representatives x and y.
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Proof. Assume x1 ↔ x2 and y1 ↔ y2. According to Theorem 12, there exist
x0 ∈ Rs and y0 ∈ Rt, such that

x1 = x0 ⊗ 1α; x2 = x0 ⊗ 1β ,
y1 = y0 ⊗ 1p; y2 = y0 ⊗ 1q.

First, we prove two facts:

• Fact 1: Let s∧ t = ξ, and s = aξ, t = bξ, where α∧ b = 1. If f, g satisfy
sf = tg, then, afξ = bgξ, i.e., af = bg. Since a ∧ b = 1, there exists a
c such that f = cb, g = ca.

• Fact 2: 〈x, y〉V = 〈x⊗ 1s, y ⊗ 1s〉V .

These facts can be verified by definition directly.

Next, we consider

〈x1, y1〉V = 〈x0 ⊗ 1α, y0 ⊗ 1p〉V
=
〈
x0 ⊗ 1α ⊗ 1 sα∨tp

sα
, y0 ⊗ 1p ⊗ 1 sα∨tp

tp

〉
V

=
〈
x0 ⊗ 1 sα∨tp

s
, y0 ⊗ 1 sα∨tp

t

〉
V
.

Hence we have s sα∨tps = t sα∨tpt . Using Fact 1, one sees that

sα ∨ tp

s
= cb;

sα ∨ tp

t
= ca.

Using Fact 2 yields

〈x1, y1〉V = 〈x0 ⊗ 1cb, y0 ⊗ 1ca〉V = 〈x0 ⊗ 1b, y0 ⊗ 1a〉V .

Similarly, we have 〈x2, y2〉V = 〈x0 ⊗ 1b, y0 ⊗ 1a〉V . The conclusion follows.

Since Ω is a vector space, (13) defines an inner product on Ω. This inner
product has the following properties.

Proposition 24. Ω with the inner product defined by (13) is an inner prod-
uct space. But it is not a Hilbert space.

Proof. Obviously Ω is an inner product space. To see that it is not a Hilbert
space, we construct a sequence as follows:

x1 = a ∈ R; xi+1 = xi ⊗ 12 +
1

2i+1

(
δ12i+1 − δ22i+1

)
, i = 1, 2, · · · .
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It is obvious that this sequence is a Cauchy sequence. But it does not con-

verge to any point x ∈ V. Let x̄i := xi. According to Proposition 23, it is

easy to see that {x̄i} is also a Cauchy sequence in Ω, but it can not converge

to any point in Ω.

∀x ∈ R∞, ϕx : y �→ 〈x , y〉V gives a mapping ϕx : R∞ → R. Similarly, a

point x̄ ∈ Ω can be used to construct a mapping ϕx̄ : Ω → R, ȳ �→ 〈x̄ , ȳ〉V .
Conversely, not every linear mapping ϕ : Σ → R can be expressed as a

mapping deduced by an element as ϕx̄. This is because Ω is an infinite

dimensional vector space, while each element x̄ ∈ Ω is a finite dimensional

element.

Using the inner product defined by (13), the norm and distance on Ω

are also well defined.

Definition 25. (i) Let x̄ ∈ Ω. The norm of x̄ is defined by

‖x̄‖V := ‖x‖V .(14)

(ii) Let x̄, ȳ ∈ Ω. The distance between x̄ and ȳ is defined as

dV(x̄, ȳ) := dV(x, y).(15)

According to Proposition 23, (14)(15) are both well defined.

Finally, as a topological space, the topology on Ω is deduced by the

distance. This topology is equivalent to the quotient topology of (R∞,N)

over equivalence. That is, the glued topology inherited from (R∞,N).

As a topological space, Ω has the following properties.

Proposition 26. Ω is a second countable Hausdorff space.

Proof. Since Rn is second countable, denote by {On
i | i = 1, 2, · · · } its count-

able topological bases. Then
⋃∞

n=1

⋃∞
i=1O

n
i is a topological basis of R∞,

which is also countable. Hence, as its quotient space, Ω = V/ ↔ is also

second countable.

Since Ω is a metric space, then x̄ �= ȳ, if and only if, dV(x̄, ȳ) > 0. It is

obvious that this space is a Hausdorff space. (In fact, it is easy to see that

this space is T4.)

Definition 27. Let x̄ ∈ Ω. The dimension of x̄, denoted by dim(x̄), is

the dimension of the smallest element in x̄. That is, dim(x̄) = dim(x1) =

minx∈x̄ dim(x).
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Remark 28. (i) Note that x̄ = {x1⊗1n | n = 1, 2, · · · }, it is clear that x̄
can be considered as x1 and the images of merging x1 ∈ Rs into Rns,
n = 2, 3, · · · . Hence x1 is the essential element in x̄, which determines
x̄ completely. This fact shows that the Definition 27 is reasonable.

(ii) It is surprising that Ω is a topological vector space with each point
x̄ ∈ Ω having its own dimension 1 ≤ dim(x̄) < ∞. Hence, the DFES
(dimension-free Euclidean space) is a totally new mathemat-
ical object.

3.3. Fiber bundle structure on ESDDs and DFESs

First, we recall the definition of a fibre bundle.

Definition 29. [15] Let T and B be two topological spaces, Pr : T → B
is a continuous surjective mapping. Then (T,Pr, B) is called a fiber bundle,
where T is the total space, B is the base space. ∀b ∈ B, Pr−1(b) is called the
fiber at b.

The following result comes from the definition immediately.

Proposition 30. Let T = (V,N) be the total space, B = (Ω,D) be the
base space, and Pr : T → B be the natural projection, i.e., x �→ x̄. Then

(V,N)
Pr−→ (Ω,D) is a fiber bundle, which is called the dimension-free Eu-

clidean bundle (DFEB).

The DFEB is said to be a discrete bundle, because the bundle at each
point x̄ is a discrete countable (topological) subspace of ESDD R∞.

Definition 31. (i) Two fiber bundles (Ti,Pri, Bi), i = 1, 2 are called ho-
momorphic, if there exist two continuous mappings π : T1 → T2 and
ϕ : B1 → B2, such that the diagram (16) is commutative. In addition,
if both π and ϕ are bijective, and π−1 : T2 → T1 and ϕ−1 : B2 → B1

are also making (16) commutative, (Ti, P ri, Bi), i = 1, 2 are said to be
isomorphic.

T1
π

Pr1

T2

Pr2

B1
ϕ

B2

(16)

(ii) Two fiber bundles on B, denoted by (Ti,Pri, B), i = 1, 2, are called
homomorphic, if there exists a continuous mapping π : T1 → T2, such
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that the diagram (17) is commutative. In addition, if π is bijective,
and π−1 : T2 → T1 making (17) commutative, (Ti,Pri, B), i = 1, 2 are
said to be isomorphic.

T1
π

Pr1

T2

Pr2

B1

(17)

Example 32. Consider
(
R[p,·],Pr,Ω

)
and (R∞,Pr,Ω). Define π : R[p,·] ↪→

R∞ as the including mapping. Then it is obvious that π is a fiber bundle
homomorphism, since the following diagram commutes.

R[p,·] π

Pr

R∞

Pr

Ω

3.4. Coordinate neighbourhoods

To establish a differential structure on DFES, we need a “local coordinate
neighborhood” for each point x̄ ∈ Ω. Since Ω is a dimension-free space,
the coordinate neighborhoods are not classical ones in standard differential
manifold. In fact, they are sub-bundles of DFEB.

Definition 33. Let x̄ ∈ Ω, and dim(x̄) = p. Assume Ox̄ is an open neigh-
borhood of x̄ ∈ Ω. That is, x̄ ∈ Ox̄, and Ox̄ ⊂ Ω is open. Then

VOx̄
:= Pr−1 (Ox̄)

⋂
R[p,·]

with R[p,·] defined as in (12), is called the set of coordinate charts of x̄,
(VOx̄

,Pr, Ox̄) is called the bundle of coordinate neighborhood of x̄.

Vr
Ox̄

:= Pr−1 (Ox̄)
⋂

Rrp, r = 1, 2, · · ·

is called a leaf of the bundle of coordinate neighborhood bundle of x̄.

An example is given in the following to depict the bundle of coordinate
neighborhood.

Example 34. Assume x = (α, α, β, β)T ∈ R4, then x̄ = {x1, x2, · · · }, where,
x1 = (α, β) ∈ R2. Hence dim(x̄) = 2. Consider Ox̄ = Br(x̄) ⊂ Ω, which is
an open ball neighborhood of x̄. Then the set of coordinate charts, deduced by
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�r3

R6
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Pr

x1

x2

x3

x̄ ∈ Ox̄ ⊂ Ω

Figure 1: Bundle of coordinate neighborhood.

Ox̄, is VO = {Br1(x1), Br2(x2), · · · }, where rk = 1/
√
2k, xk = (α, β)T ⊗ 1k,

k = 1, 2, · · · . The bundle of coordinate neighborhood of x̄ is (VOx̄
,Pr, Ox̄).

Fig. 1 demonstrates the bundle of coordinate neighborhood of x̄.

Note that the set of coordinate charts VO does not include all the inverse
image of O, i.e., VO � Pr−1(O). But it can provide coordinates for all points
within O. The following proposition shows this.

Proposition 35. Assume ȳ ∈ O, then Pr−1(ȳ)
⋂

VO �= ∅.
Proof. Assume ȳ ∈ O, dim(x̄) = p, dim(ȳ) = q, r = p ∨ q, then yr/q ∈
Pr−1(O)

⋂
Rr ⊂ VO.

Remark 36. Assume x̄ ∈ Ω with dim(x̄) = p. Then VΩx̄
:= Pr−1(Ω)

⋂
R[p,·]

= R[p,·] is a coordinate neighborhood of x̄, which is the largest coordinate
neighborhood of x̄. When the DFES is considered, we can simply use this
coordinate neighborhood, then the corresponding coordinates are called the
global coordinates. The general definition is mainly for DFM.

4. Projections on ESDDs and continuous functions on
DFESs

In this section we introduce the cross-dimensional projections on ESDD,
which is crucial for prolonging functions on a finite-dimensional Euclidean
space to construct continuous functions on DFES.
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4.1. Cross-dimensional projection of a vector

Definition 37. Assume ξ ∈ Vn. A cross-dimensional projection of ξ to Vm,
denoted by πn

m(ξ), is defined as follows:

πn
m(ξ) := argmin

x∈Vm

‖ξ − x‖V .(18)

Assume t = lcm(n,m) = t and denote α := t/n, β := t/m. Then the
distance between ξ and x ∈ V is Δ := ‖ξ − x‖2V = 1

t ‖ξ ⊗ 1α − x⊗ 1β‖2.
Denote ξ ⊗ 1α := (η1, η2, · · · , ηt)T , where ηj = ξi, (i − 1)α + 1 ≤ j ≤

iα; i = 1, · · · , n. Then, Δ = 1
t

m∑
i=1

β∑
j=1

(
η(i−1)β+j − xi

)2
. Setting ∂Δ

∂xi
= 0, i =

1, · · · ,m yields

xi =
1

m

⎛
⎝ β∑

j=1

η(i−1)β+j

⎞
⎠ , i = 1, · · · ,m.(19)

That is, πn
m(ξ) = x. Moreover, it is easy to verify the following orthogonality,

i.e.
〈
ξ��x, x

〉
V
= 0. The above argument leads to the following conclusion:

Proposition 38. Let ξ ∈ Vn. Then the projection of ξ on Vm, say, x, can
be calculated by (19). Moreover, ξ��x and x are orthogonal.

Example 39. Assume ξ = [1, 0,−1, 0, 1, 2,−2]T ∈ R7. Consider its pro-
jection on R3, denoted by π7

3(ξ) := x. Then η = ξ ⊗ 13. Denote by x =
[x1, x2, x3]

T , then

x1 =
1

7

7∑
j=1

ηj = 0.2857, x2 =
1

7

14∑
j=8

ηj = 0, x3 =
1

7

21∑
j=15

ηj = 0.1429.

Moreover,

ξ��x = [0.7143, 0.7143, 0.7143,−0.2857,−0.2857,
−0.2857,−1.2857,−1,−1, 0, 0, 0, 1, 1, 0.8571, 1.8571,
1.8571, 1.8571,−2.1429,−2.1429,−2.1429].

Since the projection of a vector to a space of different dimension πn
m is

a linear mapping, it can be expressed by a matrix. Assume there exists a
matrix Πn

m, such that the projection of ξ ∈ Rn to Rm can be expressed as

πn
m(ξ) = Πn

mξ, ξ ∈ Vn.(20)
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We try to figure out this matrix.

Let lcm(n,m) = t, α := t/n, and β := t/m. Then

η = ξ ⊗ 1α = (In ⊗ 1α) ξ, x =
1

β

(
Im ⊗ 1Tβ

)
η =

1

β

(
Im ⊗ 1Tβ

)
(In ⊗ 1α) ξ.

Hence we have

Πn
m =

1

β

(
Im ⊗ 1Tβ

)
(In ⊗ 1α) .(21)

Using this structure, we have the following result.

Lemma 40. (i) Let n ≥ m. Then Πn
m is of full row rank. Therefore,

Πn
m(Πn

m)T is invertible.

(ii) Let n ≤ m. Then Πn
m is of full column rank. Hence, (Πn

m)TΠn
m is

invertible.

Proof. (i) Assume n ≥ m. When n = m, Πn
m(Πn

m)T is an identity matrix,

the conclusion is trivial. We, therefore, need only to consider the case

when n > m. According to the structure of Πn
m determined by (21),

it is easy to see that each row of Πn
m contains at least two non-zero

elements. Moreover, when j > i the column of non-zero element in row

i is prior to the column of non-zero element in row j, and only when

j = i + 1 there is an overlapped column. This structure ensures the

full row rank of Πn
m. Hence, Πn

m(Πn
m)T is invertible.

(ii) According to (21), one sees easily that Πm
n = β

α (Πn
m)T , hence, the full

column rank of Πn
m comes from the full row rank of Πm

n .

The following proposition shows that the projection from factor dimen-

sion space to multiple dimension space does not lose information.

Proposition 41. Let X ∈ Rm. Project it to Rkm and then project the image

back to Rm, the vector X remains unchanged. That is,

Πkm
m Πm

km = Im.(22)

Proof. Πkm
m Πm

km = 1
k

(
Im ⊗ 1Tk

)
(Im ⊗ 1k) =

1
k

(
Im ⊗ 1Tk 1k

)
= Im.

4.2. Continuous functions on DFESs

Now we are ready to define continuous functions on Ω.
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Definition 42. Let f : Ω → R be a real function on Ω.

(i) Define f : R∞ → R, x �→ f(x̄).
(ii) If for each point x̄ ∈ Ω there exists a neighborhood Ox̄ of x̄ such that

on each leaf Vr
Ox̄

⊂ Rrp f ∈ C(Vr
Ox̄

), then f is called a continuous
function on Ω.

(iii) If on each leaf of the bundle of coordinate neighborhood f ∈ Cr(Vr
Ox̄

),
then f is called a Cr function on Ω, where r = 1, 2, · · · ,∞, ω, r = ω
means f is an analytic function.

Remark 43. In definition 33, the set of coordinate neighborhood is used. In
fact, up to now only global coordinates are used. So the definition can also
use global coordinates. That is, consider Rrp as each leaf of the bundle of
coordinate neighborhood.

Constructing a differentiable function on Ω directly is very difficult. Our
technique to construct such a function is to transfer a smooth function on
R∞ to Ω. Note that Rn is a clopen subset of R∞. f : R∞ → R is continuous,
if and only if, fn := f |Rn , n = 1, 2, · · · , are continuous. Hence, it is reasonable
to transfer an f ∈ Cr(Rn) to Ω.

Definition 44. Let f ∈ Cr(Rn). Define f̄ : Ω → R as follows: Let x̄ ∈ Ω
and dim(x̄) = m. Then

f̄(x̄) := f(Πm
n (x1)), x̄ ∈ Ω,(23)

where x1 ∈ x̄ is the smallest element in x̄.

Proposition 45. Assume f ∈ Cr(Rn), then the function f̄ defined by (23)
is Cr, that is, f̄ ∈ Cr(Ω).

Proof. Given x̄ ∈ Ω, where dim(x̄) = m. Consider a leaf of the bundle of
coordinate neighborhood Vr

Ox̄
of x̄. Assume y ∈ Vr

Ox̄
, consider the following

two cases:

• Case 1: y ∈ Rrm is the smallest element of ȳ. By definition,

f̄(y) = f(Πrm
m y).(24)

• Case 2: y1 ∈ ȳ is the smallest element of ȳ and dim(y1) = ξ. Then
there exists s such that y = y1 ⊗ 1s. Since y ∈ Rrm, then ξs = mr. By
definition,

f̄(y) = f(ȳ) = f(Πξ
my1).(25)
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Denote z0 := Πξ
my1 ∈ Rm. Then z0 is the point on Rm, which is

closest to y1. Since y ↔ y1, According to Proposition 23, we know
dV(z, y) = dV(z, y1), z ∈ Rm. Hence, z0 is also the point on Rm which

is closest to y. That is, Πmr
m y = z0 = Πξ

my1. Hence, (25) becomes (24).
It is obvious that f̄ is a Cr function on Vr

Ox̄
.

The following is a simple example.

Example 46. Given

f(x1, x2, x3) = x1 + x22 − x3 ∈ Cω(R3).(26)

(i) Assume ȳ ∈ Ω, where y1 = (ξ1, ξ2, ξ3, ξ4, ξ5)
T ∈ R5. It is easy to

calculate that

Π5
3 =

1

5

(
I3 ⊗ 1T5

)
(I5 ⊗ 13) =

1

5

⎡
⎣3 2 0 0 0
0 1 3 1 0
0 0 0 2 3

⎤
⎦ .

Hence we have

f̄(ȳ) = f(Π5
3y1) =

1

5
(3ξ1 + 2ξ2) +

1

25
(ξ2 + 3ξ3 + ξ4)

2 − 1

5
(2ξ4 + 3ξ5).

(ii) Assume ȳ ∈ Ω, where y1 = (ξ1, ξ2) ∈ R2.

Consider V1
O: since Π2

3 = 1
2

⎡
⎣ 1 0
0.5 0.5
0 1

⎤
⎦, we have f̄ |V1

O
= ξ1 +

1
4(ξ1 +

ξ2)
2 − ξ2.

Consider V2
O: since Π4

3 = 1
4

⎡
⎣3 1 0 0
0 2 2 0
0 0 1 2

⎤
⎦, we have f̄ |V2

O
= 1

4(3ξ1 +

ξ2) +
1
16(ξ2 + ξ3)

2 − 1
4(ξ3 + 3ξ4).

4.3. Least square approximation of linear systems

Consider a linear system

ξ(t+ 1) = Aξ(t), ξ(t) ∈ Rn.(27)

Our goal is to find a matrix Aπ ∈ Mm×m, and construct a linear system
on Rm as

x(t+ 1) = Aπx(t), x(t) ∈ Rm.(28)
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Then take (28) as the projected system of (27) on Rm.
We are mainly concerning about the trajectories. The trajectory of the

idea projected system should satisfy the same projection relation. That is,

x(t, π(ξ0)) = πn
m(ξ(t, ξ0)).(29)

Unfortunately, it is, in general, impossible to realize this. So we can only
search such a system that makes the error of (29) smallest. Then a practical
way is that we can search for the least square approximation.

Proposition 47. Let system (27) be approximated by system (28). Then
the least square approximation satisfies

Aπ =

{
Πn

mA(Πn
m)T

(
Πn

m(Πn
m)T
)−1

n ≥ m

Πn
mA
(
(Πn

m)TΠn
m

)−1
(Πn

m)T n < m.
(30)

Proof. From (29) we have x(t) = Πn
mξ(t), with x0 = Πn

mξ0. Plugging it into
(28) yields

Πn
mξ(t+ 1) = AπΠ

n
mξ(t).(31)

Using (27) and noting that ξ(t) is arbitrary, we have

Πn
mA = AπΠ

n
m.(32)

Assume n ≥ m, right multiplying by (Πn
m)T
(
Πn

m(Πn
m)T
)−1

both sides of
(32) yields the first equality of (30).

Assume n < m. Then we search for a solution of the following form:
Aπ = Ã(Πn

m)T . Then the least square solution Ã can be obtained as Ã =

Πn
mA
(
(Πn

m)TΠn
m

)−1
. Hence, Aπ = Πn

mA
(
(Πn

m)TΠn
m

)−1
(Πn

m)T , which is the
second equality of (30)

Using a similar argument to continuous time linear system, we have the
following result:

Corollary 48. Consider a continuous time linear system

ξ̇(t) = Aξ(t), ξ(t) ∈ Rn.(33)

Its least square projected system on Rm is

ẋ(t) = Aπx(t), x(t) ∈ Rm,(34)

where, Aπ is the same as in (30).



106 Daizhan Cheng and Zhengping Ji

As an application, assume n is very large, that is, system (27) is a large
scale one. Then we may project it onto a lower dimensional space Vm, where,
m << n. That is, we have a lower dimensional trajectory to approximate
the original one, which might reduce the computational complexity. In the
sequel one may see that the projection of lower dimensional system into a
higher dimensional vector space is sometimes also necessary.

Similarly, the projection of linear control systems can also be obtained.

Corollary 49. (i) Consider a discrete-time linear control system{
ξ(t+ 1) = Aξ(t) +Bu, ξ(t) ∈ Rn

y(t) = Cξ(t), y(t) ∈ Rp.
(35)

Its least square projected system on Rm is{
x(t+ 1) = Aπx(t) + Πn

mBu, x(t) ∈ Rm

y(t) = Cπx(t),
(36)

where, Aπ is defined as in (30). Moreover,

Cπ =

{
C(Πn

m)T
(
Πn

m(Πn
m)T
)−1

, n ≥ p

C
(
(Πn

m)TΠn
m

)−1
(Πn

m)T , n < p.
(37)

(ii) Consider a continuous time linear control system{
ξ̇(t) = Aξ(t) +Bu, ξ(t) ∈ Rn

y(t) = Cξ(t), y(t) ∈ Rp.

Its least square projected system on Rm is{
ẋ(t) = Aπx(t) + Πn

mBu, x(t) ∈ Rm

y(t) = Cπx(t), y(t) ∈ Rp,

where Aπ is defined as in (30), Cπ as in (37).

4.4. Approximation of linear dimension-varying systems

Consider a discrete-time linear dimension-varying system

ξ(t+ 1) = A(t)ξ(t),(38)
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where ξ(t) ∈ Rn(t), ξ(t+ 1) ∈ Rn(t+1), A(t) ∈ Mn(t+1)×n(t).
We search its least square projection on Rm as

x(t+ 1) = Aπx(t).(39)

Similarly to the constant dimensional case, the following result can be
obtained.

Proposition 50. Let (39) be the least square projected system of (38) on
Rm. Then

Aπ =

⎧⎨
⎩Π

n(t+1)
m A(Π

n(t)
m )T

(
Π

n(t)
m (Π

n(t)
m )T

)−1
n(t) ≥ m

Π
n(t+1)
m A

(
(Π

n(t)
m )TΠ

n(t)
m

)−1
(Π

n(t)
m )T n(t) < m.

(40)

An obvious advantage of this projection is the projected system is of
constant dimension.

Consider a continuous-time linear dimension-varying system

ξ̇(t) = A(t)ξ(t),(41)

where ξ(t) ∈ Rn(t), ξ(t+ 1) ∈ Rn(t+1), A(t) ∈ Mn(k)×n(k), k ≤ t < k + 1.
We search its least square projection on Rm as

ẋ(t) = Aπx(t).(42)

To use the previous technique, we assume the dimension of x(t) is piece-
wise constant. Precisely speaking, we assume:

dim(ξ(t)) = dim(ξ(n)), n ≤ t < n+ 1.(43)

Then the following result can be obtained.

Proposition 51. Let (42) be the lease square projected system of (41) on
Rm. Under the assumption that (43) holds, the Aπ is as in (40).

Next, we consider dimension-varying linear control systems. Using sim-
ilar technique, it is easy to obtain the following projected control systems:

Proposition 52. (i) Consider a discrete-time linear dimension-varying
control system {

ξ(t+ 1) = A(t)ξ(t) +B(t)u

y(t) = C(t)ξ(t),
(44)
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where ξ(t) ∈ Rn(t), A(t), B(t) ∈ Mn(t+1)×n(t), C(t) ∈ Mp×n(t). Then

its least square projected control system is{
x(t+ 1) = Aπ(t)x(t) + Π

n(t+1)
m Bu, x(t) ∈ Rm

y(t) = Cπ(t)x(t), y(t) ∈ Rp,
(45)

where Aπ is defined as in (40). Moreover,

Cπ =

⎧⎨
⎩C(t)(Π

n(t)
m )T

(
Π

n(t)
m (Π

n(t)
m )T

)−1
, n(t) ≥ p

C(t)
(
(Π

n(t)
m )TΠ

n(t)
m

)−1
(Π

n(t)
m )T , n(t) < p.

(46)

(ii) Consider a continuous-time linear dimension-varying control system

{
ξ̇(t) = A(t)ξ(t) +B(t)u

y(t) = C(t)ξ(t),
(47)

where ξ(t) ∈ Rn(t), A(t), B(t) ∈ Mn(k)×n(k), k ≤ t < k + 1, C(t) ∈
Mp×n(t). Assume (43) holds, then its least square projected system is

{
ẋ(t) = Aπ(t)x(t) + Π

n(t+1)
m Bu, x(t) ∈ Rm

y(t) = Cπ(t)x(t), y(t) ∈ Rp,
(48)

where Aπ is defined as in (40), Cπ as in (46).

Later on, it will be seen that the fixed-dimensional projected system is

a very useful realization of dimension-varying systems.

In the following an example is presented to depict projected system.

Example 53. Consider a dimension-varying system{
ξ(t+ 1) = A(t)ξ(t) +B(t)u

y(t) = C(t)ξ(t),
(49)

where

ξ(t) ∈
{
R5, t is even,

R4, t is odd.
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A(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 =

⎡
⎢⎢⎢⎣
1 0 −1 2 1

2 −2 1 1 −1

1 2 −1 −2 0

0 1 0 −1 2

⎤
⎥⎥⎥⎦ , t is even

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 2 1

2 1 1 −1

1 2 −1 0

0 1 0 −1

1 −1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, t is odd

,

B(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1 =

⎡
⎢⎢⎢⎣
2 1

2 −1

1 2

0 −1

⎤
⎥⎥⎥⎦ , t is even

B2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 1

1 −1

2 −1

0 −1

1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, t is odd

,

C(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
C1 =

[
−1 2 1 1 −1

2 −1 −2 −1 2

]
, t is even

C2 =

[
2 1 2 −1

0 1 0 −2

]
, t is odd

.

A straightforward computation shows that

Π4
3 = (I3 ⊗ 1T4 )(I4 ⊗ 13)/3 =

⎡
⎣1 1/3 0 0
0 2/3 2/3 0
0 0 1/3 1

⎤
⎦ .

Π5
3 = (I3 ⊗ 1T5 )(I5 ⊗ 13)/3 =

⎡
⎣1 2/3 0 0 0
0 1/3 1 1/3 0
0 0 0 2/3 1

⎤
⎦ .

Then the projected system becomes{
x(t+ 1) = Aπ(t)x(t) +Bπ(t)u

y(t) = Cπ(t)x(t),
(50)

where,

A(t) = Ã1; B(t) = B̃1; C(t) = C̃1 t is even,

A(t) = Ã2; B(t) = B̃2; C(t) = C̃2 t is odd,
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where

Ã1 = Π4
3A1(Π

5
3)

T
(
Π5

3(Π
5
3)

T
)−1

=

⎡
⎣0.9316 −0.5556 1.6239
1.4325 −0.3111 −0.7214
1.0923 −0.6000 0.7077

⎤
⎦ ;

Ã2 = Π5
3A2(Π

4
3)

T
(
Π4

3(Π
4
3)

T
)−1

=

⎡
⎣0.8333 1.3333 0.8333
2.0500 1.2500 −1.0500
0.9167 −0.5833 0.4167

⎤
⎦ ;

B̃1 = Π4
3B1 =

⎡
⎣2.6667 1.3333
2.0000 2.0000
0.3333 −0.3333

⎤
⎦ ; B̃2 = Π5

3B2 =

⎡
⎣2.6667 0.3333
2.3333 −1.6667
1.0000 −0.6667

⎤
⎦ ;

C̃1 = C1(Π
5
3)

T
(
Π5

3(Π
5
3)

T
)−1

=

[
−0.0359 1.7333 −0.4974
1.3333 −2.6667 1.3333

]
;

C̃2 = C2(Π
4
3)

T
(
Π4

3(Π
4
3)

T
)−1

=

[
1.7000 2.0000 −0.7000
0.0500 1.2500 −2.0500

]
.

5. Differential structures on DFMs

With the notion of continuous functions over DFESs, we proceed to en-

dow differential structures to a DFES, generalizing it to a dimension-free

manifold.

5.1. From DFESs to DFMs

Definition 54. Given a fiber bundle (T, π,B).

(i) Let ∅ �= O ⊂ B be an open set of B. Then (π−1(O), π, O) is called the

open sub-bundle (over O).

(ii) Let Oλ, λ ∈ Λ be an open cover of B, that is,
⋃

λ∈ΛOλ = B, then{(
π−1(Oλ), π, Oλ

)}
λ∈Λ is called an open cover of the bundle (T, π,B).

Definition 55. Assume (T, π,B) is a fiber bundle, where both T and B are

second countable Hausdorff spaces. (T, π,B) is called a Cr DFEB with B as

a Cr DFM, if the following conditions are satisfied.

(i) There is an open cover {(Wλ, π, Bλ)}λ∈Λ of (T, π,B).
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(ii) For each (Wλ, π, Bλ) there is an open sub-bundle
(
Pr−1(Oλ),Pr, Oλ

)
of (R∞,Pr,Ω) with two bijective mappings

Ψλ : Wλ → Pr−1(Oλ), ϕλ : Bλ → Oλ,

such that (Wλ, π, Bλ) and (Pr−1(Oλ),Pr, Oλ) are fiber bundle isomor-
phic, that is, diagram (51) commutes.

Wλ
Ψλ

Pr

Pr−1(Oλ)

π

Bλ
ϕλ

Oλ

(51)

(iii) Assume Bλ1

⋂
Bλ2

�= ∅. Then the map ϕ2 ◦ ϕ−1
1 : ϕ1(Bλ1

⋂
Bλ2

) →
ϕ2(Bλ1

⋂
Bλ2

) is Cr.

The following proposition comes from definition immediately.

Proposition 56. Let T
π−→ B be a Cr DFEB. Set Mn :=

⋃
λ∈ΛΨ−1

λ (On
λ),

then Mn is an n-dimensional Cr manifold. Moreover, M =
⋃∞

n=1Mn.

The following example provides a DFM.

Example 57. Consider S∞ :=
⋃∞

n=1 Sn, where Sn is the n-dimensional
unit sphere in Rn+1, n = 1, 2, · · · . Denote by Pn = (0, · · · , 0︸ ︷︷ ︸

n

,−1) and

Qn = (0, · · · , 0︸ ︷︷ ︸
n

, 1) the north and south poles of the n-dimensional sphere

respectively.

(i) Set Mn := Sn\Pn, and define a mapping Ψn : Mn → Rn by ξi =
xi

1+xn+1
, i = 1, 2, · · · , n.

Define M =
⋃∞

n=1Mn, and using the inherent topology from Rn+1 for
Mn, and assume Mn are clopen in M . Then the mapping Ψ : M → R∞

is a topological isomorphism.
To see this, we have only to show that Ψ is bijective and Ψ−1 is also
continuous. It is clear from definition that

(ξ21 + · · ·+ ξ2n)(1 + xn+1)
2 =

n∑
i=1

x2i .

Then we have

‖ξ‖2(1 + xn+1)
2 + x2n+1 = 1.(52)
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Solving Equation (52) and noting that xn+1 �= −1 yield

xn+1 =
1− ‖ξ‖2
1 + ‖ξ‖2 ,(53)

and

xi = (1 + xn+1)ξi, i ∈ [1, n].(54)

(53)-(54) show that Ψ−1 is also continuous.

Next, for a, b ∈ M we define

a ∼M b ⇔ Ψ(a) ↔ Ψ(b).(55)

Then we can define a mapping ψ : M/ ∼M→ Ω by

Ψ(a) = x ⇒ ψ(ā) := x̄.(56)

Because of (55), (56) is properly defined.

Finally, we define π1 : M → M/ ∼M as π1 = ψ−1 ◦ Pr ◦Ψ. Then it

is ready to verify that (M,π1,M/ ∼M ) is a DFEB and M/ ∼S is a

DFM.

(ii) Set Nn := Sn\Qn, and define a mapping Φn : Nn → Rn by

ηi =
xi

1− xn+1
, i = 1, 2, · · · , n.(57)

Similarly to case (i), from definition (57) we have

(η21 + · · ·+ η2n)(1− xn+1)
2 =

n∑
i=1

x2i .

Then we have

‖η‖2(1− xn+1)
2 + x2n+1 = 1.(58)

Solving Equation (58) and noting that xn+1 �= 1 yield

xn+1 =
‖η‖2 − 1

1 + ‖η‖2 ,(59)
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and

xi = (1− xn+1)ηi, i ∈ [1, n].(60)

(59)(60) show that Φ−1 is also continuous.
Next, for x, y ∈ N we define

x ∼N y ⇔ Φ(x) ↔ Φ(y),

and π2 : N → N/ ∼N as π2 = φ−1 ◦Pr ◦Φ, where φ can be constructed
similarly as for ψ. Then (N, π2, N/ ∼N ) is a DFEB and N/ ∼N is a
DFM.

(iii) Consider

S∞ =

∞⋃
n=1

Sn = M
⋃

N.

It is clear that {M,N} is an open cover of S∞. Consider (x1, · · · , xn+1)
∈ M

⋂
Sn. From (53)(54) we can solve x1, · · · , xn+1 out as xi(ξ),

i ∈ [1, n + 1]. Similarly, for (x1, · · · , xn+1) ∈ N
⋂

Sn, using (59)(60)
we can also express x1, · · · , xn+1 as xi(η), i = 1, · · · , n+ 1.
Now, assume ξ̄ ∈ M/ ∼M and η̄ ∈ N/ ∼N , dim(ξ̄) = dim(η̄), and the
smallest elements in ξ̄ and η̄ are ξ1 and η1 respectively. Let dim(ξ1) =
dim(η1) = n. Then ξ̄ is said to be equivalent to η̄, denoted by ξ̄ � η̄,
if xi(ξ1) = xi(η1), ∀i = 1, · · · , n+ 1.
It is easy to see that � is an equivalence relation. Then we define

B :=
(
M/ ∼M

⋃
N/ ∼N

)
/ � .(61)

Define

B1 := (M/ ∼M ) / �,
B2 := (N/ ∼N ) / � .

Then it is easy to verify that {B1, B2} is an open cover of B. Moreover,
it is ready to see that π1 : M → B1, π2 : N → B2 are consistent. Hence
π : S∞ → B can be defined as

π(x) :=

{
π1(x), x ∈ M,

π2(x), x ∈ N.
(62)

We conclude that (S∞, π, B) is a DFEB with B a DFM.
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Remark 58. Hereafter, to avoid notational mess, we consider only DFES.
In fact, all the following arguments can easily be extended to DFM. Hence
in the following the DFES can be considered as a bundle of coordinate chart,
which has a set of fixed coordinate frames on each leaves.

5.2. Vector fields on DFESs

First, we define the tangent space of Ω.

Definition 59. Let x̄ ∈ Ω and dim(x̄) = m. Then the tangent space of x̄,
called the tangent bundle at x̄ and denoted by Tx̄(Ω), is defined by

Tx̄(Ω) := R[m,·].(63)

Remark 60. (i) When Ω is replaced by a DFM, Definition 59 can only
be considered as for a given fixed set of coordinate charts.

(ii) Consider Ω. Then we assume on each leaf of Tx̄(Ω), say Rs, where s =
km, the coordinate frame is fixed as (x1, x2, · · · , xs). Then the basis of
the leaf is { ∂

∂x1
, ∂
∂x2

, · · · , ∂
∂xs

}. Hence each vector at Tx̄(Ω), denoted be

(a1, a2, · · · , as), is an operator
s∑

i=1
ai

∂
∂xi

. Of course, this operator can

be extended to coordinate-free form for DFM. But restricting on Ω can
avoid the complexity of expression.

Recall the definition of bundle of coordinate neighborhood of DFES.
(refer to Figure 1), it is easily seen that for each x̄ ∈ Ω the bundle of
coordinate neighborhood coincides with its tangent bundle.

When a DFM M is considered, Let x̄ ∈ M and dim(x̄) = m, then the
tangent bundle Tx̄(M) is depicted at Figure 2, where T i

x̄ = Rim, i = 1, 2, · · · .
That is, Tx̄(M) = R[m,.].

If we consider the tangent space over whole Ω, that is,

T (Ω) :=
⋃
x̄∈Ω

Tx̄,

Then it is obvious that T (Ω) = R∞.

Next, we define vector fields on Ω. The following definition is also avail-
able for DFMs.

Definition 61. X̄ is called a Cr vector field on Ω, denoted by X̄ ∈ V r(Ω),
if it satisfies the following condition:
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Figure 2: Tangent Bundle on Dimension-Free Manifold.

(i) At each point x̄ ∈ Ω, there exists p = px̄ = μx̄ dim(x̄), called the

dimension of the vector field X̄ at x̄ and denoted by dim(X̄x̄), such

that X̄ assigns to the bundle of coordinate neighborhood at x̄ a p sub-

lattice, V [p,·]
O = {Op, O2p, · · · }, then at each leaf of this sub-lattice the

vector field assigns a vector Xj ∈ Txjμ
(Ojp), j = 1, 2, · · · .

(ii) {Xj | j = 1, 2, · · · } satisfy consistence condition, that is, Xj = X1 ⊗
1j , j = 1, 2, · · · .

(iii) At each leaf Ojp ⊂ Rjμdim(x̄),

X̄|Ojp ∈ V r(Ojp).(64)

Definition 62. A vector field X̄ ∈ V r(Ω) is said to be dimension bounded,

if max
x̄∈Ω

dim(X̄x̄) < ∞.

In the following a method is presented to construct a Cr vector field on

Ω. The method is similar to the construction of continuous functions. It is

first built on Vm = Rm, and then extended to T (Ω) = R∞.

Algorithm 63. • Step 1: Assume there exists a smallest dimension

m > 0, such that X̄ is defined over whole Rm. That is,

X̄|Rm := X ∈ V r(Rm).(65)
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From the constructing point of view: A vector field X ∈ V r(Rm) is
firstly given, such that the value of X̄ at leaf Rm is uniquely determined
by (65).

• Step 2: Extend X to Tȳ. Assume dim(ȳ) = s, denote m∨ s = t, t/m =
α, t/s = β. Then dim(Tȳ) = t. Let y ∈ ȳ

⋂
R[t,·], and dim(y) = kt,

k = 1, 2, · · · . Define

X̄(y) := Πm
ktX(Πkt

my), k = 1, 2, · · · .(66)

Theorem 64. (i) The X̄ generated by Algorithm 63 is a Cr vector field,
that is, X̄ ∈ V r(Ω).

(ii) If X̄ ∈ V r(Ω) is dimension bounded, then X̄ can be generated by Al-
gorithm 63.

Proof. (i) By definition, for any ȳ ∈ Ω and assume dim(ȳ) = s, then on a
sub-lattice R[t,·] of the bundle of coordinate neighborhood of ȳ (Since
only the DFES is considered now, each leaf of the bundle of coordinate
neighborhood can be whole Euclidean space.) a vector X̄y is assigned.
In the following we prove that the set of such vectors are consistent.
Assume dim(y) = kt = kβm, when k = 1, y = yβ , then

X̄(yβ) = Πm
βmX(Πβm

m yβ)

= (Iβm ⊗ 1T1 )(Im ⊗ 1β)X(Πβm
m yβ)

= (Im ⊗ 1β)X(Πβm
m yβ)

= X(Πβm
m yβ)⊗ Iβ .

Similar calculation shows that

X̄(ykβ) = X(Πkβm
m ykβ)⊗ Ikβ.

Since yβ ↔ ykβ, then Πkβm
m ykβ = Πβm

m yβ . Hence,

X̄(ykβ) = X̄(yβ)⊗ 1k.

The consistence is proved.
Finally, we show (64) holds. That is, to show that on leaf Rjp, X̄ is a
Cr vector field. Since on a leaf all the points are of the same dimension,
then the construction (66) ensures X̄|Rjp is a Cr vector field.

(ii) Assume X̄ is dimension bounded, set

m := lcm
{
dim(X̄x̄) | x̄ ∈ Ω

}
.
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Then it is clear that X := X̄|Rm ∈ Cr(Rm). Moreover, since X̄ satisfies
Definition 61, then starting from this X, the vector field constructed
by (66) coincides with X̄.

Hereafter, we consider only dimension bounded vector fields. This is
because note only they are easily constructible, but also they are practically
useful in modeling dynamic systems.

We construct an example.

Example 65. Let X = (x1 + x2, x
2
2)

T ∈ Cω(R2). Assume X̄ ∈ Cω(Ω) is
generated by X.

(i) Consider ȳ ∈ Ω, dim(ȳ) = 3, Denote y1 = (ξ1, ξ2, ξ3)
T ∈ R3. Since

2 ∧ 3 = 6, X̄ at

ȳ
⋂

R6k = {y2, y4, y6, · · · }
is well defined.
Now consider y2.

X̄(y2) = Π2
6X(Π6

2(y2)) = (I2 ⊗ 13)X
(
1
3(I2 ⊗ 1T3 )(y1 ⊗ 12)

)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

2
3(ξ1 + ξ2 + ξ3)
2
3(ξ1 + ξ2 + ξ3)
2
3(ξ1 + ξ2 + ξ3)
1
9(ξ2 + 2ξ3)

2

1
9(ξ2 + 2ξ3)

2

1
9(ξ2 + 2ξ3)

2

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Consider y4, similar calculation shows that

X̄(y4) = Π2
12X(Π12

2 (y4)) = X̄(y2)⊗ 12.

In fact, we have

X̄(y2k) = X̄(y2)⊗ 1k, k = 1, 2, · · · .

(ii) Consider X̄|R6 :
Assume z = (z1, z2, z3, z4, z5, z6)

T ∈ R6. Then

X6 := X̄z = Π2
6X(Π6

2z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
3(z1 + z2 + z3 + z4 + z5 + z6)
1
3(z1 + z2 + z3 + z4 + z5 + z6)
1
3(z1 + z2 + z3 + z4 + z5 + z6)

1
9(z4 + z5 + z6)

2

1
9(z4 + z5 + z6)

2

1
9(z4 + z5 + z6)

2

⎤
⎥⎥⎥⎥⎥⎥⎦ .(67)



118 Daizhan Cheng and Zhengping Ji

X6 ∈ V ω(R6) is a standard vector field.

Next, we consider the integral curve of a vector field on Ω.

Definition 66. Assume X̄ ∈ Cr(Ω), X ∈ Cr(Rn) is its generator, if X =
X̄|Rn. The generator of smallest dimension is called the minimum generator.

The following result is an immediate consequence of the definition and
Theorem 64.

Proposition 67. Assume X̄ ∈ V r(Ω).

(i) If X ∈ V r(Rn) is its generator, then X ⊗ 1s ∈ V r(Rsn) is also its
generator.

(ii) If X ∈ V r(Rn) is its generator, Y ∈ V r(Rm), m < n is also its
generator, then m|n, and X = Y ⊗ 1n/m.

(iii) Assume X̄ ∈ V r(Ω) is dimension bounded, then it has at least one
generator, and hence has a minimum generator.

Definition 68. Let X̄ ∈ Cr(Ω). x̄(t, x̄0) is called the integral curve of X̄
with initial value x̄0, denoted by x̄(t, x̄0) = ΦX̄

t (x̄0), if for each initial value
x0 ∈ x̄0

⋂
Rn, and each generator of X̄, denoted by X = X̄|Rn, the following

condition holds:

ΦX̄
t (x̄0)|Rn = ΦX

t (x0), t ≥ 0.(68)

Next, we consider the existence and the properties of integral curve.
First, assume X = X̄|Rn is the smallest generator of X̄. Then, all the gener-
ators of X̄ are Xk = X̄|Rkn , k = 1, 2, · · · . Now assume x̄0 ∈ Ω, dim(x̄0) = j,
and j ∨ n = s, then,

x̄
⋂

R
 �= ∅,

if and only if, � = ks, k = 1, 2, · · · . Denote xs0 = x̄0
⋂
Rs, then

ΦXs

t (xs0) = ΦX̄
t (x̄0)|Rs .

Moreover,

ΦX̄
t (x̄0)|Rks = ΦXks

t (xks0 ) = ΦXs

t (xs0)⊗ 1k.

Hence, the integral curve of X̄ with initial value x̄0 is a set of integral curves
defined on the sublattice bundle R[s,·] = {Rks | k = 1, 2, · · · }, and they are
all equivalent. That is, for any 0 ≤ k, k′ < ∞

ΦXks

t (xks0 ) ↔ ΦXk′s
t (xk

′s
0 ), ∀t ≥ 0.
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Example 69. Recall Example 65 Let X̄ ∈ Ω be generated by X = (x1 +
x2, x

2
2)

T ∈ Cω(R2), and assume the initial value is x̄0 ∈ Ω, dim(x̄0) = 3,
i.e., x1 = (ξ1, ξ2, ξ3)

T . Find the integral curve of X̄ initiated at x̄0.
Since 2 ∨ 3 = 6, the integral curve is a set of equivalent curves de-

fined on R6k, k = 1, 2, · · · . We can first calculate the one defined on R6,
X|R6 := X6, it is calculated by (67). Note that x02 := x̄0

⋂
R6, then x02 =

(ξ1, ξ1, ξ2, ξ2, ξ3, ξ3)
T . Hence the integral curve is ΦX6

t (x02). It follows that

ΦX̄
t (x̄0) =

{
ΦX6

t (x02)⊗ 1k | k = 1, 2, · · ·
}
.(69)

5.3. Distributions on DFESs

Definition 70. A distribution D̄ on Ω is a rule, which assigns at each point
x̄ ∈ Ω a sub-lattice of its bundle of coordinate neighborhood Ox̄, denoted by
Oj = Ox̄ ∩Rjrs, r ∈ Z+, s = dim(x̄), j = 1, 2, · · · , and on the tangent space
of xjr ∈ Ojr, Txjr

(Rjrs), a subspace Dj(xrj) ⊂ Txrj
(Rrjs). Moreover, this

set of subspaces satisfies the consistence condition, i.e.,

Dj(xrj) = D1(xr)⊗ 1j , j = 1, 2, · · · .(70)

Similarly to vector fields, a distribution can be construct as follows:
First, a distribution can be defined on a leaf Vm = Rm, then it is extended
to T (Ω) = R∞.

Algorithm 71. • Step 1: Assume m is the smallest one, such that D̄
is defined on leaf Rm. That is,

D̄|Rm := D(x) ⊂ T r(Rm).(71)

• Step 2: Extend D(x) to Tȳ(Ω). Let dim(ȳ) = s, and m∨s = t, t/m = α,
t/s = β. Then dim(Tȳ) = t. Assume y ∈ ȳ

⋂
R[t,·], and dim(y) = kt,

k = 1, 2, · · · . Define

D(y) := Πm
ktD(Πkt

my), k = 1, 2, · · · .(72)

Similarly to vector fields, the following result can be obtained.

Theorem 72. The D̄ constructed by Algorithm 71 is a distribution on Ω.
That is, D̄(x̄) ⊂ Tx̄(Ω), ∀x̄ ∈ Ω.

The most commonly used distributions are expanded by a set of vector
fields.
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Definition 73. Assume X̄i ∈ V r(Ω) and dim(X̄i) = mi, i ∈ [1, n], and

m = lcm{mi | i ∈ [1, n]}. Moreover, let X̄i|Rm = Xi, and Dm(x) ⊂ T (Rm)

be the distributions generated by the expansions of Xi, i ∈ [1, n]. Then the

distribution D̄ ⊂ T (Ω) constructed by Dm(x)s, s = 1, 2, · · · is called the

distribution spanned by X̄i, i ∈ [1,m].

Definition 74. Assume X̄i ∈ V ∞(Ω), dim(X̄i) = mi, i = 1, 2, and m =

m1 ∨m2. Then the Lie bracket of X̄1 and X̄2 is defined by

[X̄1, X̄2] := X̄ ∈ V ∞(Ω)(73)

where X̄ is the vector field determined by generator X, and

X = [X̄1

∣∣
Rm , X̄2

∣∣
Rm ].

Example 75. Assume X̄, Ȳ ∈ V ∞(Ω), X̄ and Ȳ are generated by X0 ∈
V ∞(R2) and Y0 ∈ V ∞(R3), where

X0(x) = [x1 + x2, x
2
2]
T ,

Y0(y) = [y21, 0, y2 + y3]
T .

(74)

Then m = 2 ∨ 3 = 6. On leaf R6, we have

X(z) := Π2
6X0(Π

6
2z) = [α, α, α, β, β, β]T ,

where,

α =
1

3
(z1 + z2 + z3 + z4 + z5 + z6), β =

1

9
(z4 + z5 + z6).

Y (z) := Π3
6Y0(Π

6
3z) = [γ, γ, 0, 0, μ, μ]T ,

where,

γ =
1

4
(z1 + z2)

2, μ =
1

2
(z3 + z4 + z5 + z6).

Then Z̄ := [X̄, Ȳ ], which is generated by Z0 ∈ V ∞(R6), and

Z0 = [X,Y ] = ∂Y
∂z X − ∂X

∂z Y
= [a, a, b, c, d, d]T .
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where

a = 1
3(z1 + z2)(z1 + z2 + z3 + z4 + z5 + z6)
−1

6(z1 + z2)
2 − 1

3(z3 + z4 + z5 + z6)
b = −1

6(z1 + z2)
2 − 1

3(z3 + z4 + z5 + z6)
c = −2

9(z4 + z5 + z6)(z3 + z4 + z5 + z6)
d = 1

6(z1 + z2 + z3 + z4 + z5 + z6) +
1
6(z4 + z5 + z6)

2

−2
9(z4 + z5 + z6)(z3 + z4 + z5 + z6)

Definition 76. (i) Distribution D̄(x̄) ⊂ Tx̄(Ω), x̄ ∈ Ω is called an involu-
tive distribution, if any two vector fields X̄, Ȳ ∈ D̄ satisfy [X̄, Ȳ ] ∈ D̄.

(ii) Let X̄i, i ∈ [1, n] be given. The involutive distribution generated by
{X̄i | i ∈ [1, n]}, or equivalently, the smallest involutive distribution
containing {X̄i | i ∈ [1, n]}, is called the Lie algebra generated by
{X̄i | i ∈ [1, n]}, denoted by

〈
X̄i | i ∈ [1, n]

〉
LA

.

6. Dimension-free Riemannian manifolds

Parallel to the previous discussions, this section introduce the tensor fields
and co-distributions on a DFES, and use them to define the Riemannian
and symplectic structure over DFESs.

6.1. Co-vector fields and co-distributions on DFESs

First, we define the cotangent space on DFES Ω.

Definition 77. Let x̄ ∈ Ω and dim(x̄) = m. Then the cotangent space at x̄,
called the cotangent bundle at x̄ and denoted by T ∗

x̄ (Ω), is defined by

T ∗
x̄ (Ω) := V∗[m,·].(75)

Remark 78. When Ω is replaced by DFM, Definition 77 remains available.

Similarly to tangent bundle, for a given x̄ ∈ Ω, each leaf of its cotangent
bundle is an Euclidean space. Moreover, the cotangent bundle at each point
is a sub-lattice of R∞. If Ω is replaced by a DFM, then the cotangent bundle
is similar to tangent bundle. Hence, the Figure 2 may also be considered as
a description of cotangent bundle of DFM.

Next, we define co-vector field on Ω. The following definition is also
applicable to DFM.

Definition 79. ω̄ is called a Cr co-vector field on Ω, denoted by ω̄ ∈ V ∗r(Ω),
if it satisfies the following conditions:
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(i) At each point x̄ ∈ Ω, there exists a p = px̄ = μx̄ dim(x̄), called the di-

mension of co-vector field ω̄ at x̄, denoted by dim(ω̄x̄), such that ω̄ as-

signs a p-upper sub-lattice of the bundle of coordinate neighborhood at x̄

as V [p,·]
O = {Op, O2p, · · · }, and then a set of co-vectors ωj ∈ T ∗

xjμ
(Ojp),

j = 1, 2, · · · .
(ii) {ωj | j = 1, 2, · · · } satisfy consistent condition, that is,

ωj = ω1 ⊗ 1

j
1Tj , j = 1, 2, · · · .(76)

(iii) On each leaf Ojp ⊂ Rjμdim(x̄),

ω̄|Ojp ∈ V ∗r(Ojp).(77)

Definition 80. ω̄ ∈ V ∗r(Ω) is said to be dimension bounded, if

max
x̄∈Ω

dim(ω̄x̄) < ∞.(78)

Similarly to the vector field, the co-vector field can be constructed as

follows: First, define it on a leaf Vm = Rm, then extend it to T ∗(Ω) = R∞.

Algorithm 81. • Step 1: Assume there exists a smallest m, such that

ω̄ is defined on Rm. That is

ω̄|Rm := ω ∈ V ∗r(Rm).(79)

From constructing point of view, assume ω ∈ V ∗r(Rm), then ω̄ is de-

fined on Rm as in (79).

• Step 2: Extend ω to T ∗
ȳ . Assume dim(ȳ) = s, m ∨ s = t, t/m = α,

t/s = β, and then dim(Tȳ) = t. Let y ∈ ȳ
⋂

R[t,·], and dim(y) = kt,

k = 1, 2, · · · . Define

ω̄(y) := ω(Πkt
my)Πkt

m, k = 1, 2, · · · .(80)

Similarly to the case of vector fields, we can prove the following theorem:

Theorem 82. (i) The ω̄ constructed by Algorithm 81 is a Cr co-vector

field, that is, ω̄ ∈ V ∗r(Ω).
(ii) If ω̄ ∈ V ∗r(Ω) is dimension bounded, then any ω̄ can be constructed

through Algorithm 81.
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Similarly to vector fields, hereafter we consider only dimension bounded
co-vector fields.

Similarly to vector fields, co-vector fields are defined on a sub-lattice of
the bundle of coordinate neighborhood of a point x̄ ∈ Ω. Assume ω = ω̄|Rn

is the smallest generator of ω̄. Then, all the generators of ω̄ are ωk = ω̄|Rkn ,
k = 1, 2, · · · . Now assume x̄0 ∈ Ω and dim(x̄0) = j. Denote j ∨ n = s, then,

x̄
⋂

R
 �= ∅,

if and only if, � = ks, k = 1, 2, · · · .
In fact, a co-vector field can also be considered as a function of vector

field. Hence, the consistence of co-vector fields and vector fields is important.
The following proposition shows this consistence.

Proposition 83. Let X̄ ∈ V r(Ω), ω̄ ∈ V ∗r(Ω), and dim(X̄) = dim(ω̄).
Then at any point x̄ ∈ Ω and the sub-lattice of the bundle of coordinate
neighborhood of x̄ where both X̄ and ω̄ are well defined, the action of ω̄
on X̄, denoted by ω̄(X̄), is uniquely defined. That is, on xk = x̄

⋂
Rkp,

k = 1, 2, · · · ,

ω̄(X̄)|xk
= const., k = 1, 2, · · · .(81)

Proof. Denote dimx = s, dim(X̄) = dim(ω̄) = m. According to the previous
argument, it is clear that the sub-lattice, where both X̄ and ω̄ are defined,
is {xp, x2p, · · · }, where, p = s ∨m. To prove (81), it is enough to show that

ω̄(X̄)|xk
= ω̄(X̄)|x1

, k = 1, 2, · · · .(82)

Assume p = rm, then

ω1 = ω (Πrm
m (xp))Π

rm
m , ωk = ω

(
Πrkm

m (xkp)
)
Πrkm

m ,
X1 = Πm

rmX (Πrm
m (xp)) , Xk = Πm

rkmX
(
Πrkm

m (xkp)
)
,

Using which we have

ω1(X1) = ω (Πrm
m (xp))Π

rm
m Πm

rmX (Πrm
m (xp))

ωk(Xk) = ω
(
Πrkm

m (xkp)
)
Πrkm

m Πm
rkmX

(
Πrkm

m (xkp)
)(83)

Since xp ↔ xkp, then Πrm
m (xp) = Πrkm

m (xkp). Hence, to prove (83) it is
enough to show

Πrm
m Πm

rm = Πrkm
m Πm

rkm.
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A straightforward computation shows

Πrm
m Πm

rm = Πrkm
m Πm

rkm = 1.

Co-vector field is also called one-form. Assume f̄ ∈ Cr(Ω), then on each
leaf Rm fm := f̄ |Rm has its differential

dfm = (
∂fm

∂x1
,
∂fm

∂x2
, · · · , ∂f

m

∂xm
).(84)

Then one sees easily that

Proposition 84. (84) generates a co-vector field.

Proof. Taking dfm as the smallest generator of a co-vector field. Consider
the differential of f̄ on Rkm. Assume y ∈ Rkm, consider f(Πkm

m y). A simple
computation shows that

df(Πkm
m y) =

(
∂fm

∂x1
|Πkm

m y, · · · ,
∂fm

∂xm
|Πkm

m y

)
Πkm

m = df(Πkm
m y)Πkm

m y.(85)

This fact shows that the differential of f̄ on leaf Rkm is exactly the co-vector
field deduced by dfm.

Definition 85. A co-distribution D̄∗ on Ω is a rule, which assigns at each
point x̄ ∈ Ω a sub-lattice Oj = Ox̄ ∩ Rjrs, r ∈ Z+, s = dim(x̄), j = 1, 2, · · · ,
of its bundle of coordinate neighborhood Ox̄, and a sub-space D∗

j (xrj) ⊂
T ∗
xrj

(Rrjs) at xjr ∈ Ojr. Moreover, this set of sub-spaces of T ∗
xjr

(Rjrs) satisfy
the consistence condition, i.e.,

D∗
j (xrj) = D∗

1(xr)⊗ 1Tj , j = 1, 2, · · · .(86)

Similarly to distribution, a Cr co-distribution on Ω can be constructed
as follows:

Algorithm 86. • Step 1: Assume m is the smallest one, such that D̄∗

is defined on Rm. That is,

D̄∗|Rm := D∗(x) ⊂ T ∗r(Rm).

• Step 2: Extend D∗(x) to T ∗
ȳ (Ω). Assume dim(ȳ) = s, m ∨ s = t,

t/m = α, t/s = β, and dim(T ∗
ȳ ) = t. Let y ∈ ȳ

⋂
R[t,·], and dim(y) =

kt, k = 1, 2, · · · . Define

D∗(y) := D∗(Πkt
my)Πkt

m, k = 1, 2, · · · .
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Similarly to distributions, the most important co-distributions are gen-

erated by a set of co-vector fields.

6.2. Tensor fields on quotient spaces

Let

φ : V (Rm)× · × V (Rm)︸ ︷︷ ︸
r

×V ∗(Rm)× · × V ∗(Rm)︸ ︷︷ ︸
s

→ R

be an (r, s) th order tensor field on Rm, where r is the covariant order and s

is the contro-variant order. The set of (r, s) th order tensor fields is denoted

by T r
s (R

m). Let {e1, e2, · · · , em} be a basis of V (Rm), and {d1, d2, · · · , dm}
be a basis of V ∗(Rm). Then

γi1,i2,··· ,irj1,j2,··· ,js := φ (ei1 , ei2 , · · · , eir , dj1 , dj2 , · · · , djs) ,
1 ≤ i1, · · · , ir ≤ m, 1 ≤ j1, · · · , js ≤ m,

(87)

are called the structure parameters of φ. Using structure parameters, the
structure matrix is constructed as follows:

Γφ :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ11···1
11···1 · · · γ11···m

11···1 · · · γmm···1
11···1 · · · γmm···m

11···1
.
.
. · · ·

.

.

. · · ·
.
.
. · · ·

.

.

.

γ11···1
11···m · · · γ11···m

11···m · · · γmm···1
11···m · · · γmm···m

11···m
.
.
. · · ·

.

.

. · · ·
.
.
. · · ·

.

.

.

γ11···1
mm···1 · · · γ11···m

mm···1 · · · γmm···1
mm···1 · · · γmm···m

mm···1
.
.
. · · ·

.

.

. · · ·
.
.
. · · ·

.

.

.

γ11···1
mm···m · · · γ11···m

mm···m · · · γmm···1
mm···m · · · γmm···m

mm···m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(88)

Using this structure matrix, we have the evaluation formula for φ as

φ(X1, · · · , Xr, ω1, · · · , ωs) = ωs · · ·ω1ΓφX1 · · ·Xr.(89)

In the following we construct a tensor field on Ω, denoted by Ξ̄ ∈ T r
s (Ω).

Assume Ξ ∈ T r
s (R

m) is the smallest generator of Ξ̄ ∈ T r
s (Ω), and denote

Ξ̄|Rkm := Ξk.

Then it is enough to construct the structure matrix Ξk, k = 1, 2, · · · .
It is clear that Ξk should satisfy the following requirement: for any

X1, · · · , Xr ∈ V r(Rm) and ω1, · · · , ωs ∈ V ∗r(Rm), their tensor value of Ξ



126 Daizhan Cheng and Zhengping Ji

should be the same as the value of Ξk with its arguments as the projected

vectors and co-vectors to Rkm. That is,

Ξ(x)(X1(x), · · · , Xr(x), ω1(x), · · · , ωs(x))
= Ξk(y)(π

k
km(X1(x(y)), · · · , πk

km(Xr(x(y)),
πk
km(ω1(x(y)), · · · , πk

km(ωs(x(y))),
(90)

where y = Πm
km(x), x(y) = Πkm

m (y).

Let Γ(x) be the structure matrix of Ξ and Γk(y) be the structure matrix

of Ξk. Then (90) can be expressed as

ωs(x) · · ·ω1(s)Γ(x)X1(x) · · ·Xr(x)
= ωs(Π

km
m y)Πkm

m · · ·ω1(Π
km
m y)Πkm

m Γk(y)
Πm

kmX1(Π
km
m (y)) · · ·Πm

kmXr(Π
km
m (y))

= ωs(x) · · ·ω1(x)
(
I(s−1)m ⊗Πkm

m

)
· · ·(

Im ⊗Πkm
m

)
Πkm

m Γk(y)Π
m
km (Im ⊗Πm

km) · · ·(
I(r−1)m ⊗Πm

km

)
X1(x) · · ·Xr(x).

Hence we have

Γ(x) =
(
I(s−1)m ⊗Πkm

m

)
· · ·(

Im ⊗Πkm
m

)
Πkm

m Γk(y)P
m
km (Im ⊗Πm

km) · · ·(
I(r−1)m ⊗Πm

km

)
.

(91)

It follows immediately that

Γk(y) := Πm
km (Im ⊗Πm

km) · · ·(
I(s−1)m ⊗Πm

km

)
Γ(Πkm

m (y))
(
I(r−1)m ⊗Πkm

m

)
· · ·
(
Im ⊗Πkm

m

)
Πkm

m .
(92)

A straightforward verification shows that the Γk defined by (92) satisfies

(91).

Next, set x̄ ∈ Ω, dim(x̄) = s, s ∨m = p, and let p = μs = λm. Then, Ξ̄

is defined at x̄
⋂
Rkp, k = 1, 2, · · · . Denote xk = x̄

⋂
Rkp, then

Γ̄(xk) := Πm
kλm (Im ⊗Πm

kλm) · · ·(
I(s−1)m ⊗Πm

kλm

)
Γ(Πkλm

m (xk))(
I(r−1)m ⊗Πkλm

m

)
· · ·
(
Im ⊗Πkλm

m

)
Πkλm

m .
(93)
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Example 87. Assume Ξ̄ ∈ T 2
1 (Ω), and its smallest generator is Ξ ∈ T 2

1 (R
2),

which has its structure matrix as

Γ(x) =

[
0 sin(x1 + x2) 0 cos(x1 + x2)

− cos(x1 + x2) 0 sin(x1 + x2) 0

]
(94)

(i) Find the structure matrix of Ξ̄|R4 .
Using formula (92), we have

Ξ̄|R4 = Π2
4Γ(Π

4
2(y))

(
I2 ⊗Π4

2

)
Π4

2

= Π2
4Γ([

y1+y2

2 , y3+y4

2 ])
(
I2 ⊗Π4

2

)
Π4

2

= 1
4

[
0 S 0 S 0 C 0 C
−C 0 −C 0 S 0 S 0

]
,

where

0 =

{
0 0
0 0

}

S =

{
sin
(y1+y2+y3+y4

2

)
sin
(y1+y2+y3+y4

2

)
sin
(y1+y2+y3+y4

2

)
sin
(y1+y2+y3+y4

2

) }

C =

{
cos
(y1+y2+y3+y4

2

)
cos
(y1+y2+y3+y4

2

)
cos
(y1+y2+y3+y4

2

)
cos
(y1+y2+y3+y4

2

) }
(ii) Assume x̄ ∈ Ω and dim(z̄) = 3. Then Ξ̄ is defined only on zkp, p =

2 ∨ 3 = 6, k = 1, 2, · · · . Using formula (93), we have

Ξ̄|z2 = Π2
6Γ(Π

6
2(z2))

(
I2 ⊗Π6

2

)
Π6

2

= Π2
6Γ([

2z1+z2
3 , z+2z3

3 ])
(
I2 ⊗Π6

2

)
Π6

2

= 1
9 [A,A,A,B,B,B]⊗ 13×3,

where

A =

⎧⎨
⎩ 0 sin

(
2(z1+z2+z3)

3

)
cos
(
2(z1+z2+z3)

3

)
0

⎫⎬
⎭

B =

⎧⎨
⎩ 0 cos

(
2(z1+z2+z3)

3

)
sin
(
2(z1+z2+z3)

3

)
0

⎫⎬
⎭

Remark 88. (i) The above constructing technique is applicable to tensor
fields on DFMs. Hence, we assume tensor fields on DFMs are also
properly defined.
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(ii) A tensor field T 0
s is called a covariant tensor field. A tensor field T r

0

is also called an r-form.

6.3. Dimension-free Riemannian manifolds and dimension-free
symplectic manifolds

Definition 89. Let Ξ ∈ T r
0 (Ω) be an r th order covariant tensor field.

(i) Ξ is said to be symmetric, if

Ξ(X1, · · · , Xr) = Ξ(Xσ(1), · · · , Xσ(r)), σ ∈ Sr.(95)

(ii) Ξ is said to be skew-symmetric, if

Ξ(X1, · · · , Xr) = sign(σ)Ξ(Xσ(1), · · · , Xσ(r)), σ ∈ Sr.(96)

Second order covariant tensor fields (or 2-forms) are of special impor-
tance. Their structure matrices can also be expressed into a quadratic form
as

MΞ =

⎡
⎢⎢⎢⎣
γ11 γ12 · · · γ1n

γ21 γ22 · · · γ2n

...
γn1 γn2 · · · γnn

⎤
⎥⎥⎥⎦(97)

Using this structure matrix, the tensor field can be the expressed into a
classical quadratic form as

Ξ(X1, X2) = XT
1 MΞX2.(98)

Then we have

Proposition 90. Ξ̄ ∈ T 2(Ω) is symmetric (skew-symmetric), if and only
if, its smallest generator Ξ is symmetric (skew-symmetric). That is, it has
a symmetric (skew-symmetric) structure matrix.

Definition 91. Consider Ω. Assume there is an order 2 covariant tensor
field Ξ̄ ∈ T 2(Ω).

(i) (Ω, Ξ̄) is called a dimension-free Riemannian manifold, if Ξ̄ is gen-
erated by Ξn = Ξ̄|Rn and (Rn,Ξn) is a Riemannian manifold. That
is, Ξn := Ξ̄|Rn ∈ T 2(Rn) has a symmetric positive definite structure
matrix MΞn

.
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(ii) (Ω, Ξ̄) is called a dimension-free symplectic manifold, if Ξ̄ is generated

by Ξn = Ξ̄|Rn, where n = 2m is even, and (Rn,Ξn) is a symplectic

manifold. That is, Ξ2m := Ξ̄|R2m ∈ T 2(R2m) has a skew-symmetric,

non-singular structure matrix MΞ2m
, and Ξ is closed.

Remark 92. An r form Ξ is closed if dΞ = 0 [2]. Let Ξ ∈ T 2(Rn). Ξ is

closed, if and only if, its structure coefficients satisfy [13]

∂

∂xi
(γjk) +

∂

∂xj
(γki) +

∂

∂xk
(γij) = 0, 1 ≤ i, j, k ≤ n.(99)

Definition 93. (i) A DFM M with a two-form Θ̄ is called a dimension-

free Riemannian manifold, if there exists an open sub-bundle cover of

M such that each open sub-bundle is bundle isomorphic to an open

sub-bundle of a Riemannian manifold of Ω with Riemannian two-form

Ξ̄. Moreover, Θ̄ is isomorphic consistently to Ξ̄.

(ii) A DFM M with a two-form Θ̄ is called a dimension-free symplec-

tic manifold, if there exists an open sub-bundle cover of M such that

each open sub-bundle is bundle isomorphic to an open sub-bundle of a

symplectic manifold of Ω with symplectic two-form Ξ̄. Moreover, Θ̄ is

isomorphic consistently to Ξ̄.

Remark 94. Let M1 and M2 be two DFMs, and Ψ : M1 → M2 be an

isomorphism. Ξ̄i ∈ T r
s (Mi), i = 1, 2 are said to be isomorphic consistently,

if

Ξ̄1(X1, · · · , Xr;ω1, · · · , ωs)

= Ξ̄2(Ψ∗(X1), · · · ,Ψ∗(Xr),Ψ
−1∗(ω1), · · · ,Ψ−1∗(ωs)),

X1, · · · , Xr ∈ V (M1), ω1, · · · , ωs ∈ V ∗(M1).
(100)

Example 95. Consider DEES Ω.

(i) Assume Ω has a two form σ̄ ∈ T 2(Ω) with its generator σ ∈ T 2(R2),

and the structure matrix of σ is Mσ =

[
0 −1
1 0

]
. Since Mσ is a sym-

plectic matrix, it is clear that (Ω, σ̄) is a dimension-free symplectic

manifold.

Assume x̄ ∈ Ω and dim(x̄) = 2. Then σ̄ is defined on Tx̄ = {R2k | k =

1, 2, · · · }. Moreover, the structure matrix of σ̄(xk) is

Mk := M |xk
= Π2

2kMσΠ
2k
2 = Mσ ⊗ Ik.
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Assume ȳ ∈ Ω and dim(ȳ) = 3. Then σ̄ is defined on Tȳ = {R6k | k =
1, 2, · · · }. Moreover, the structure matrix of σ̄(y2k) is

Mk := M |y2k
= Π2

6kMσΠ
6k
2 = Mσ ⊗ I3k.

(ii) Assume Ω has a two form ω̄ ∈ T 2(Ω), where ω is deduced from part of
sphere S2\P2. We refer to Example 57 for notations. Assume S2 has
the standard distance inherited from R3. Then the structure matrix of
ω is

Mω = (
∂x

∂ξ
)T I3(

∂x

∂ξ
) =

⎡
⎣
∥∥∥ ∂x
∂ξ1

∥∥∥2 〈
∂x
∂ξ1

, ∂x
∂ξ2

〉
〈

∂x
∂ξ1

, ∂x
∂ξ2

〉 ∥∥∥ ∂x
∂ξ2

∥∥∥2
⎤
⎦ ,

where ∥∥∥ ∂x
∂ξ1

∥∥∥2 = (∂x1

∂ξ1

)2
+
(
∂x2

∂ξ1

)2
+
(
∂x3

∂ξ1

)2〈
∂x1

∂ξ ,
∂x2

∂ξ

〉
= ∂x1

∂ξ1
∂x1

∂ξ2
+ ∂x2

∂ξ1
∂x2

∂ξ2
+ ∂x3

∂ξ1
∂x3

∂ξ2∥∥∥ ∂x
∂ξ2

∥∥∥2 = (∂x1

∂ξ2

)2
+
(
∂x2

∂ξ2

)2
+
(
∂x3

∂ξ2

)2
,

and
∂x1

∂ξ1
= 2−2ξ21+2ξ22

(1+ξ21+ξ22)
2 ,

∂x1

∂ξ2
= −4ξ1ξ2

(1+ξ21+ξ22)
2

∂x2

∂ξ1
= −4ξ1ξ2

(1+ξ21+ξ22)
2 ,

∂x2

∂ξ2
= 2+2ξ21−2ξ22

(1+ξ21+ξ22)
2

∂x3

∂ξ1
= −4ξ1

(1+ξ21+ξ22)
2 ,

∂x3

∂ξ2
= −4ξ2

(1+ξ21+ξ22)
2

Hence, (Ω, ω̄) is a dimension-free Riemannian Manifold (DFRM).
Assume Θ has a two form θ̄ ∈ T 2(Θ), where θ is deduced from part
of sphere S2\Q2. Assume S2 has the standard distance inherited from
R3. Then the structure matrix of Θ is

Mθ = (
∂x

∂η
)T I3(

∂x

∂η
) =

⎡
⎣
∥∥∥ ∂x
∂η1

∥∥∥2 〈
∂x
∂η1

, ∂x
∂η2

〉
〈

∂x
∂η1

, ∂x
∂η2

〉 ∥∥∥ ∂x
∂η2

∥∥∥2
⎤
⎦ ,

where ∥∥∥ ∂x
∂η1

∥∥∥2 = (∂x1

∂η1

)2
+
(
∂x2

∂η1

)2
+
(
∂x3

∂η1

)2〈
∂x1

∂η ,
∂x2

∂η

〉
= ∂x1

∂η1

∂x1

∂η2
+ ∂x2

∂η1

∂x2

∂η2
+ ∂x3

∂η1

∂x3

∂η2∥∥∥ ∂x
∂η2

∥∥∥2 = (∂x1

∂η2

)2
+
(
∂x2

∂η2

)2
+
(
∂x3

∂η2

)2
,
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and
∂x1

∂η1
= 2−2η2

1+2η2
2

(1+η2
1+η2

2)
2 ,

∂x1

∂η2
= −4η1η2

(1+η2
1+η2

2)
2

∂x2

∂η1
= −4η1η2

(1+η2
1+η2

2)
2 ,

∂x2

∂η2
= 2+2η2

1−2η2
2

(1+η2
1+η2

2)
2

∂x3

∂η1
= −4η1

(1+η2
1+η2

2)
2 ,

∂x3

∂η2
= −4η2

(1+η2
1+η2

2)
2

Hence, (Θ, θ̄) is also a DFRM.

Combining Ω with Θ, one sees that S∞ is a DFRM too.

7. Dimension-varying dynamic (control) systems

7.1. Dynamic (control) systems over DFMs

7.1.1. Projection of dynamic (control) systems Consider a dynamic

system over Rp, described as

Σ : ẋ = F (x), x ∈ Rp.(101)

Definition 96. Consider dynamic system (101). Its projection onto Rq is

a dynamic system over Rq, described as

πp
q (Σ) : ż = F̃ (z), z ∈ Rq,(102)

where

F̃ (z) = Πp
qF (Πq

p(z)).(103)

Consider a control system

ΣC : ẋ = F (x, u), x ∈ Rp, u ∈ Rr.(104)

Definition 97. Consider control system (104). The u = u1, · · · , ur can be

considered as parameters. Then its projection to Rq can still be considered

as a projection of vector field as

πp
q (Σ

C) : ż = F̃ (z, u), z ∈ Rq, u ∈ Rr,(105)

where

F̃ (z, u) = Πp
qF (Πq

p(z), u).(106)
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Remark 98. The projection from Rp to Rq can be extended to a projection

from p dimensional manifold to q dimensional manifold. Then the above

descriptions can be considered as the expression over local coordinate charts.

The following is an example.

Example 99. Consider the following control system Σ:

{
ẋ1 = u1 sin(x1 + x2),

ẋ2 = u2 cos(x1 + x2).
(107)

(i) Project (107) onto R3. It is ready to calculate that

Π3
2 =

1

3

[
2 1 0
0 1 2

]
, Π2

3 =
1

2

⎡
⎣2 0
1 1
1 2

⎤
⎦ .

Then the projected system π2
3(Σ) is calculated as

⎧⎪⎨
⎪⎩
ż1 = u1 sin(

2
3(z1 + z2 + z3)),

ż2 =
1
2

(
u1 sin(

2
3(z1 + z2 + z3)) + u2 cos(

2
3(z1 + z2 + z3))

)
,

ż3 = u2 cos(
2
3(z1 + z2 + z3)).

(108)

(ii) Project (107) onto R4. We have

Π4
2 =

1

2

[
1 1 0 0
0 0 1 1

]
, Π2

4 =

⎡
⎢⎢⎣
1 0
1 0
0 1
0 1

⎤
⎥⎥⎦ .

Then the projected system π2
4(Σ) is easily obtained as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ż1 = u1 sin(

1
2(z1 + z2 + z3 + z4)),

ż2 = u1 sin(
1
2(z1 + z2 + z3 + z4)),

ż3 = u2 cos(
1
2(z1 + z2 + z3 + z4)),

ż4 = u2 cos(
1
2(z1 + z2 + z3 + z4)).

(109)
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(iii) Project (108) (i.e., π2
3(Σ)) back to R2, we have

{
ẋ1 =

1
6 (5u1 sin(x1 + x2) + cos(x1 + x2)) ,

ẋ2 =
1
6 (u1 sin(x1 + x2) + 5 cos(x1 + x2)) .

(110)

System (110) differs from the original system, which means the trans-

fer loses information.

(iii) Project (109) (i.e., π2
4(Σ)) back to R2, we have Σ, which means the

transfer is lossless.

Motivated by the above example, we can prove the following result.

Proposition 100. Let f(x) ∈ V ∞(Rp) and q = kp. Then

πq
p ◦ πp

q (f(x)) = f(x).(111)

Proof. First, a straightforward computation can prove the following equal-

ity:

Πkp
p Πp

kp = Ip.(112)

Using it, we have that

f(x)
πp
kp−−→ Πp

kpf
(
Πkp

p z
)

πkp
p−−→ Πkp

p Πp
kpf
(
Πkp

p Πp
kpx
)
= f(x).

Remark 101. (i) Proposition 100 shows that when a vector field is pro-

jected onto its multiple-dimension Euclidean space there is no infor-

mation lost. This is essential for constructing a control system on

dimension-free manifolds.

(ii) In previous sections, according to the definition of a vector field on

R∞, for a vector field on Rp only its integral curves over Rkp are

considered. That means only the projection of the vector field to Rkp are

considered. In current definition, the projection to any Rs is allowed.

In fact, only when s = kp, the extension is lossless. When s �= kp, the

projected system can only be considered as an approximated system of

the original one. Its integral curve can not be considered as the integral

curve of the original system, but only an approximation too.
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7.1.2. Nonlinear control systems over Ω To avoid counting the de-

grees of differentiability, the functions, vector fields, etc. are assumed to be

of C∞.

Definition 102. (i) A nonlinear control system over Ω, denoted by Σ̄, is

described by {
˙̄x = F (x̄, u)

ȳs = h̄s(x̄), s ∈ [1, p],
(113)

where F (x̄, u) ∈ V ∞(Ω), h̄s ∈ C∞(Ω), s ∈ [1, p], u = (u1, u2, · · · , um)

are controls, which can be considered as parameters in F . ȳs, s ∈ [1,m]

are outputs.

(ii) Let f̄ , ḡj , j ∈ [1,m] ∈ V ∞(Ω),

⎧⎨
⎩F (x̄, u) = f̄(x̄) +

m∑
j=1

ḡj(x̄)uj ,

ȳs = h̄s(x̄), s ∈ [1, p].

(114)

Then (114) is called an affine nonlinear control system over Ω.

(iii) Assume

q := lcm
(
dim(F (u)), dim(h̄s), s ∈ [1, p]

)
.

Then Σ̄|Rq := Σ is called the minimum generator of Σ̄, denoted by{
ẋ = F (x, u), x ∈ Rq

ys = hs(x), s ∈ [1, p].
(115)

(iv) Σ̄ is said to be completely controllable (observable), if Σ is completely

controllable (observable).

Remark 103. (i) If the state space of minimum generator is on Rq, then,

Σ̄ is well posed on Rkq, k = 1, 2, · · · . They will be called the realizations

of F (u). Unfortunately, the control properties, such as controllability,

observability, etc., of the realizations with different dimensions are not

the same. Hence the controllability and observability of Σ̄ are defined

by corresponding properties of its minimum generator.

(ii) Hereafter all the control properties of Σ̄ are referred to the correspond-

ing properties of its minimum generator.
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7.2. Linear systems over DFMs

• Linear vector fields

Let X̄ ∈ V ∞(Ω) be a linear vector field and dim(X̄) = m. Then there
exists A ∈ Mm×m such that X := X̄|Rm = Ax. Consider X̄|Rkm : Let y ∈
Rkm. Then

Xk := X̄(y) = Πm
km(X

(
Πkm

m (y)
)
) = Πm

kmAΠkm
m y := Aky,(116)

where,

Ak = Πm
kmAΠkm

m =
1

k
(Im ⊗ 1k)A

(
Im ⊗ 1Tk

)
.(117)

Then we consider the integral curve of X̄.

Assume X̄ ∈ V ∞(Ω) is a linear vector field and dim(X̄) = m. X :=
X̄|Rm = Ax. Consider x̄0 ∈ Ω.

Case 1: Assume dim(x̄0) = m. Then the integral curve of X̄ with initial
value x̄0 is defined only on a filter of the tangent bundle

Tx̄0

⋂
Rkm, k = 1, 2, · · · .

On Tx̄0

⋂
Rkm, at x0k = x01⊗1k, the vector field is determined by (117).

Then the integral curve becomes

xk(t, x
0
k) = eXktx0k

=
(
Ikm + t(Im ⊗ 1k)A(Im ⊗ 1Tk )+

t2

2!
(Im ⊗ 1k)A

2(Im ⊗ 1Tk ) + · · ·
)
(x01 ⊗ 1k)

=
1

k
(Im ⊗ 1k)e

At(Im ⊗ 1Tk )(x
0
1 ⊗ 1k)

= (Im ⊗ 1k)e
Atx0

= eAtx0 ⊗ 1k.

Case 2: Assume dim(x̄0) = s, m∨ s = p = km = rs. Then the integral
curve of X̄ with initial value x̄0 is defined on a filter of its tangent
bundle

Tx̄0)

⋂
Rjp, j = 1, 2, · · · .
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On leaf Tz̄0

⋂
Rp, the initial value z0r = z01 ⊗ 1r, where z01 ∈ z̄0 is its

smallest element. The vector field is Akz, where Ak is determined by
(117). Hence, the integral curve is

zr(t, z
0
r ) = eXktz0r =

1

k
(Im ⊗ 1k)e

At(Im ⊗ JT
k )(z

0
1 ⊗ 1r).

On leaf Tz̄0

⋂
Rjp, the integral curve with initial value z0jr = z01 ⊗ 1jr

is

zjr(t, z
0
jr) = eXjktz0jr =

1

k
(Im ⊗ 1k)e

At(Im ⊗ JT
k )(z

0
1 ⊗ 1jr).

Summarizing the above argument, we have the following result.

Proposition 104. Let X̄ ∈ V ∞(Ω) be a linear vector field, and dim(X̄) =
m. X := X̄|Rm = Ax. Assume x̄0 ∈ Ω, dim(x̄0) = s.

(i) If s = m, then the integral curve of X̄|Rm is

ΦX
t (x01) = eXtx01.

Hence, the integral curve of X̄|Rrm becomes

ΦXr

t (x0r) =
[
eXtx01

]
⊗ 1r.

Finally the integral curve of X̄ with initial value x̄0 is ΦX
t (x01) ⊂ Ω.

(ii) If s = km, then the integral curve of X̄|Rkm is

ΦXk

t (x01) = eXktx01,

where, Xk is determined by (116). Hence the integral curve of X̄ with

initial value x̄0 is ΦXk

t (x01) ⊂ Ω.
(iii) If m ∨ s = p = km = rs, then the integral curve of X̄|Rp is

ΦXk

t (x0r) = eXkt(x01 ⊗ Is).

Hence, the integral curve of X̄ with initial value x̄0 is ΦXk

t (x01 ⊗ Is) ⊂
Ω.

• Linear control systems

First, we consider the relationship among equivalent matrices, equivalent
vectors, and linear vector fields.



From DFM to DVCS 137

Definition 105. Let A, B ∈ M.

(i) The matrices A and B are said to be type 1 left equivalent, denoted
by A ∼ B, if there exist Iα and Iβ, such that A ⊗ Iα = B ⊗ Iβ. The
equivalence class of A is denoted by 〈A〉
.

(iii) The matrices A and B are said to be type 2 left equivalent, denoted by
A ≈ B, if there exist Jα and Jβ, such that A ⊗ Jα = B ⊗ Jβ, where
Ji :=

1
i1i×i, i = 1, · · · . The equivalence class of A is denoted by 〈〈A〉〉
.

More general notions on matrix equivalence can be found in [8]. With
these concepts we can define the linear vector fields over Ω.

Proposition 106. Let X̄ ∈ V ∞(Ω) be a linear vector field and dim(X̄) = m.
X := X̄|Rm = Ax. Assume x̄0 ∈ Ω, dim(x̄0) = s. m ∨ s = p = km = rs.
Then X̄ is defined only on the filter of its tangent bundle

x0jr = Tx̄0

⋂
Rjp, j = 1, 2, · · · .

Moreover, on the leaf containing x0r it is X̄(x0r) = Akx
0
r, where Ak is de-

termined by (116). On the leaf containing x0jr it is X̄(x0r) = Ajkx
0
jr, j =

1, 2, · · · , where the two sets of consistent matrices are

Ajk = Ak ⊗ Ij ∼ Ak,(118)

Ajk = Ak ⊗ Jj ≈ Ak,(119)

respectively. The available variables are

x0jr = x0r ⊗ 1j ↔ x0r .(120)

Proof. In fact, what do we need to show is that the tangent vectors on the
bundle leaves are consistent. That is,

X̄(x0jr) = X̄(x0r)⊗ 1j , j = 1, 2, · · · .(121)

It is obvious that (118) together with (120), or (119) together with (120)
can ensure (121) to be true.

Next, we consider the linear control system on Ω. Recall a classical linear
system [18] ⎧⎨

⎩ẋ = Ax+
m∑
i=1

biui,

y = Cx, x ∈ Rn, y ∈ Rp.
(122)



138 Daizhan Cheng and Zhengping Ji

One sees that a classical linear control system consists of three ingredients:
linear vector field Ax, a set of constant vector fields B = {b1, · · · , bm}, and
linear function Cx. To extend a classical linear control system to Ω, it is
enough to create these three kind of objects to Ω. The key of this extension
is to make them consistent at each x̄ ∈ Ω.

(i) Linear Vector Field: Assume the smallest generator of linear vector
field X̄ is X = Ax ∈ V ∞(Rm). dim(x̄0) = s, m ∨ s = p = μm = rs.
Then according to the argument in previous subsection, we know

X̄
⋂

Tx̄0 = {X̄(xjr) | j = 1, 2, · · · }.(123)

Moreover,

X̄(xjr) = Ajμxjr, j = 1, 2, · · · ,(124)

where, Ajμ is defined by (117) with k = jμ.
(ii) Constant Vector Field: Assume the smallest generator of the constant

vector field X̄ is X = b ∈ V ∞(Rm), where dim(x̄0) = s, m ∨ s = p =
μm = rs, that is, (123) holds, and

X̄(xjr) = Πm
jμmX(Πjμm

m xjr) = Πm
jμmb = b⊗ 1jμ.

(iii) Linear Function: Let h̄ ∈ C∞(Ω). dim(x̄0) = m, h̄ is expressed at x01
as hx = cmx, where cTm ∈ Rm. Let z̄ ∈ Ω, dim(z̄) = s, m ∨ s = p =
rs = μm. Then h̄ is expressed at z1 as

h̄(z1) = h̄(Πs
mz1) =

1

μ
cm
(
Im ⊗ 1Tμ

)
(Is ⊗ 1r) z1

Hence h̄ can be expressed on leaf Rs as

h̄|Rs = csz,

where cs =
1
μcm

(
Im ⊗ 1Tμ

)
(Is ⊗ 1r).

Particularly, when s = km, we have ckm = 1
kcm

(
Im ⊗ 1Tk

)
.

Definition 107. Assume f̄(x) is a linear vector field, B̄ = [b̄1, · · · , b̄m] is
a set of constant vector fields, C̄ = [c̄1, · · · , c̄p]T is a set of linear functions,
then {

˙̄x = f̄(x) + B̄u,

ȳ = C̄x̄,



From DFM to DVCS 139

is a linear control system over Ω.

Example 108. Consider a linear control system Σ̄ over Ω, which has its
dynamic equation as (114), where the smallest generator of f̄ is f(x) =
2[x1 + x2, x2]

T ∈ V ∞(R2), m = 2, the smallest generators of ḡ1 and ḡ2 are
g1 = [1, 0, 0, 1]T ∈ V ∞(R4), g2 = [0, 1, 0, 0]T ∈ V ∞(R4) respectively. p = 1,
h̄|R2 = x2 − x1.

Then, q = 4.

f̄ |R4 = Π2
4f
(
Π4

2[z1, z2, z3, z4]
T
)
=

⎡
⎢⎢⎣
z1 + z2 + z3 + z4
z1 + z2 + z3 + z4

z3 + z4
z3 + z4

⎤
⎥⎥⎦ := Az,

where,

A =

⎡
⎢⎢⎣
1 1 1 1
1 1 1 1
0 0 1 1
0 0 1 1

⎤
⎥⎥⎦ .

h̄|R4 = h(Π4
2z) = h(z1 + z2, z3 + z4) = z1 + z2 − z3 − z4 := Cz,

where C = [1, 1,−1,−1].
Then the smallest generator of system Σ̄, denoted by Σ := Σ̄|R4 , is{

ż = Az +Bu,

y = Cz.

It is easy to calculate that the controllability matrix of Σ is

C =

⎡
⎢⎢⎣
1 0 2 1 6 2 16 4
0 1 2 1 6 2 16 4
0 0 1 0 2 0 4 0
1 0 1 0 2 0 4 0

⎤
⎥⎥⎦ .

Since rank(C) = 4, Σ is completely controllable. By definition, Σ̄ is com-
pletely controllable.

The observability matrix of Σ is

O =

⎡
⎢⎢⎣
1 1 −1 −1
2 2 0 0
4 4 4 4
8 8 16 16

⎤
⎥⎥⎦
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Since rank(O) = 2 < 4, Σ is not completely observable, and so is Σ̄.

7.3. Dimension-varying dynamic (control) systems

Consider a continuous time dynamic system

ẋ = F (x), x ∈ X ,(125)

where F is considered as a vector field on a manifold X . Then the solution
(integral curve) is expressed as x(t, x0) = ΦF

t (x0). It is well known that if
(125) is a dynamic system, then x(t, x0) must be continuous with respect to
t [22]. Hence a continuous time dimension-varying dynamic system can not
be defined on ESDD R∞. It can only be defined on DFES Ω (or in general,
DFM).

Definition 109. Consider a dynamic system

˙̄x = F̄ (x̄), x̄ ∈ Ω.(126)

ẋ = F (x), x ∈ Rn ⊂ R∞,(127)

is called a realization (or a lifting) of (126), if for each x̄ there exists x ∈ x̄,
such that the corresponding vector field F (x) ∈ F̄ (x̄). Meanwhile, system
(126) is called the project system of (127).

The following result is an immediate consequence of the definition.

Proposition 110. x̄(t) = x̄(t, x̄0) is the solution of (126), if and only if,
x(t) = x(t, x0) is the solution of (127), where x(t) ∈ x̄(t), t ∈ [0,∞).

It is obvious that the lifting system of (126) is not unique. Assume at
t ∈ [0, T ) the system (126) is lifted to Rn and at t ∈ [T,∞) the system is
lifted to Rm (m �= n), then the overall lifting system becomes a dimension-
varying system.

Definition 111. System (127) is called a dimension-varying system, if there
are at least two points x1, x2 such that F (x1) ∈ V (Rd1), F (x2) ∈ V (Rd2)
and d1 �= d2.

Remark 112. The Definitions 109 and 111 can easily be extended to cor-
responding control systems in a natural way. The Proposition 110 has also
its corresponding version for control systems.



From DFM to DVCS 141

In the following we consider how to construct dimension-varying control

systems. We consider two cases.

• Case 1: switching dimension-varying control systems

Assume the original control system is

ẋ = F (x, u), x ∈ Rm, u ∈ Rp.(128)

The target system is

ż = G(z, v), z ∈ Rn, v ∈ Rq.(129)

Our purpose is to switch system (128) to system (129) at time t = T .

To get a continuous trajectory over Ω, the following condition is necessary:

x̄(T ) = z̄(T ) ∈ Ω.(130)

Proposition 113. Assume (130) is satisfied, and assume system (128) is

controllable. Then the dynamic switching from system (128) to system (129)

at time t = T is realizable.

Proof. We construct the following system over Ω:

˙̄ξ =

{
F̄ (ξ̄, u), t < T,

Ḡ(ξ̄, v), t > T.
(131)

Since system (128) is controllable, there exists u(t), t < T , such that (131)

is controllable to ξ̄(T ) = x̄(T ) = z̄(T ), where dim(ξ̄) = p ∧ q.

Then the minimum realization of (131) becomes the required dimension-

varying system.

Example 114. Consider two systems

Σ1 : ẋ =

[
0 1
0 0

]
x+

[
0
1

]
, x ∈ R2, x(0) = (0, 0)T ,

Σ2 : ż = Az +Bv, z ∈ R3.

Design a control such that Σ1 is switched to Σ2 at T = 1.

Since Σ1 is completely controllable, and 2 ∧ 3 = 1, so we have to design

a control which can drive the system from x(0) to x(T ) with dim(x̄(T )) =
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1. We may choose x(T ) = (1, 1)T . Then it is easy to calculate that the
controllability Gramian matrix is

WC(t) =

∫ t

0
e−AτBBT e−AT τdτ =

1

6

[
2t3 −3t2

−3t2 t

]
.

Then the control is

u(t) = −BT e−AT tW−1
C (T )

(
x(0)− e−ATx(T )

)
= −6t.

Using this control, the system can be switched from Σ1 to Σ2 at T = 1.

• Case 2: continuous dimension-varying control systems

In this case we require the designed dimansion-varying system has con-
tinuous F̄ (x̄, u). For instance, in a docking/undocking process, we want the
dimension-transient process to be as smooth as possible.

First, let us see what a dimension-varying system with “continuous”
vector field means.

Let v̄0 and v̄2 be two vector fields on Ω. Our purpose is to design a new
vector field which continuously transfer from v̄0 to v̄2. Define

v̄ :=

⎧⎪⎨
⎪⎩
v̄0, t ∈ [t0, 0, t1),

v̄1 = (1− λ)v̄0 + λv̄2, t ∈ (t1, t2),

v̄2, t ∈ (t2,∞),

where λ = t−t1
t2−t1

.
Assume the minimum realization of v̄0 is v0 ∈ V r(Rp), the minimum

realization of v̄2 is v2 ∈ V r(Rq). Then the minimum realization of v̄1 is
v1 ∈ V r(Rp∨q). Then the integral curve of v̄ can be lifted as shown in Fig 3.

• Docking:

Assume there are two original control systems as

Σ1 : ẋ = F (x, u), x ∈ Rm, u ∈ Rp;(132)

Σ2 : ż = G(z, v), z ∈ Rn, u ∈ Rq.(133)

They will be docked into the target system Ω as

ξ̇ = H(ξ, w), ξ ∈ Rs, w ∈ R
.(134)
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Figure 3: Lift and projection of integral curves.

It is required that the docking happens during a transient period [T0, T1],
and the process is smooth.

Definition 115. System (132) and system (133) are said to be docked into
(134) smoothly during the transient period [T0, T1]. If the following require-
ments are satisfied.

(i) There exists a smooth monotonically non-decreasing function λ(t), t ∈
[T0, T1], such that

λ(t) =

{
0, t = T0,

1, t = T1.

(ii) There exists a control deformation function w = ϕ(u, v), and using it
a control system over Ω, called a transient system, is constructed as

˙̄ξ = (1− λ(t))

[
F̄ (x̄, u)
Ḡ(z̄, v)

]
+ λ(t)H̄(ξ̄, w) + Ψ(x̄, z̄, ξ̄, u, v), t ∈ [T0, T1].

(135)

(iii) The transient system is controllable to[
x̄(T1)
z̄(T1)

]
= ξ̄(T1),

with dim( ¯ξ(T1)) = p ∧ q ∧ s.
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Remark 116. In (135) Ψ(x̄, z̄, ξ̄, u, v) is a (fictitious) virtual force, caused
by the interaction of docking objects, satisfying

Ψ(x̄, z̄, ξ̄, u, v) = 0, if

[
x̄
z̄

]
��ξ̄ = 0.

In control of Clutch System the virtual force is chosen as [23, 24]

τc = FcRaψ(ωi, ω0).

Particularly, it was chosen as [9]: τc = sign(ωi − ω0)F .

• Undocking:

Assume there is an original system Σ1 as:

ξ̇ = H(ξ, w), ξ ∈ Rs, w ∈ R
.(136)

It will be undocked into two systems as

Σ2 : ẋ = F (x, u), x ∈ Rm, u ∈ Rp;(137)

Σ3 : ż = G(z, v), z ∈ Rn, u ∈ Rq.(138)

It is required that the docking happens during a transient period [T0, T1],
and the process is smooth.

Definition 117. System (136) is said to be un-docked into (137) and (138)
smoothly during the transient period [T0, T1]. If the follow requirements are
satisfied.

(i) There exists a smooth monotonically non-decreasing function λ(t), t ∈
[T0, T1], such that

λ(t) =

{
0, t = T0,

1, t = T1.

(ii) There exist two control deformation functions u = ϕ(w), v = ϕ(w),
and using them a control system over Ω, called a transient system, is
constructed as

˙̄ξ = (1− λ(t))H̄(ξ̄, w)

+λ(t)

[
F̄ (x̄, u)

Ḡ((̄z), v)

]
+Ψ(x̄, z̄, ξ̄, w), t ∈ [T0, T1].

(139)
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(iii) The transient system is controllable to state ξ̄(T1) =

[
x̄(T1)
z̄(T1)

]
, where

dim( ¯ξ(T1)) = p ∧ q ∧ s.

Remark 118. In (139) F (x̄, z̄, ξ̄, w) is a virtual force, caused by the inter-
action of docking objects, satisfying

Ψ(x̄, z̄, ξ̄, w) = 0, if

[
x̄
z̄

]
��ξ̄ = 0.

8. Concluding remarks

The main purpose of this paper is to construct a new geometric object called
the DFES (or DFM), which provides a framework (i.e., the state space) for
DVDS. We briefly summarize the results.

The DFES is constructed as follows:

• Step 1: Define an inner product for two vectors of different dimensions.
It turns the ESDD V = R∞ =

⋃∞
n=1R

n into a distance space.
• Step 2: Two vectors x, y ∈ R∞ are said to be equivalent, denoted by
x ↔ y, if their distance is zero. The quotient space Ω = R∞/ ↔ is
called the DFES. In fact, dV(x, y) = 0, if and only if, there exist 1α and
1β such that x⊗1α = y⊗1β . It is clear that two vectors are equivalent
if they contain the same information. In other words, vector form is a
way for a set of data to express itself. It may be expressed as vectors
of different dimensions, but from information point of view, they are
equivalent.

• Step 3: By posing scalar multiplication and addition Ω becomes a topo-
logical real vector space. Let Pr : R∞ → Ω be the natural projection.
Then (R∞,Pr,Ω) becomes a fiber bundle.

• Step 4. Using the fiber bundle structure of (R∞,Pr,Ω), each x̄ ∈ Ω
has a coordinate neighborhood, which is a set of coordinate charts of
various dimensions. It is called a bundle of coordinate charts. Hence
Ω is called a DFES.

• Step 5. Using the bundles of coordinate charts, a differentiable struc-
ture can be posed on Ω, making it a DFM. Then the continuous func-
tions, (co)-vector fields, (co)-distributions, and tensor fields can be
built for Ω. Eventually, the dimension-free Riemannian manifolds and
dimension-free symplectic manifolds can be properly constructed.

Note that the gluing topology on the DFES Ω = R∞/ ↔makes it a path-
wise connected topological space. Therefore, intuitively, the trajectories of
dynamic systems over Ω can continuously move “across” Euclidian spaces of
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different dimensions. This is the main idea for using DFM to design DVDS
and DVCS. Lifting the trajectory of a dynamic system over Ω to a leaf
(a Euclidian space of fixed dimension) is called a realization. As a dynamic
system over Ω is lifted onto leafs of different dimensions, a dimension-varying
realization is obtained. Conversely, we can also project the trajectory of a
dynamic system on a Euclidian space of fixed dimension onto Ω.

The design of dimension-varying dynamic (control) systems can be de-
scribed as follows:

• Step 1: Project a dimension-varying dynamic system, which has bro-
ken vector fields over Euclidian spaces of different dimensions, onto
Ω to form a dynamic system over Ω, which consists of several (finite
number) of vector fields.

• Step 2: Lifting the dynamic system on Ω to a Euclidian space of proper
dimension, where all the vector fields involved by the dynamic system
on Ω can be properly lifted into this Euclidian space.

• Step 3: All the analysis and control design can be done in conventional
way for this lifting system on its Euclidian space.

• Step 4: Project the resulting manipulated system back to Ω and then
lifting it into several original Euclidean spaces, where the original
dimension-varying system lies on.

It is noteworthy that our construction may have a physical interpretation
from the viewpoint of multi-agent system synchronization: if there are m
independent agents moving on an n-dimensional manifold and obtaining
complete synchronization, then the dimension of the system can be reduced
from mn to n, which gives the equivalence defined by (7) in this paper when
the state space is Euclidean.

Finally, we would like to present a conjecture: The DFM might provide
a framework (i.e., the state space) for string theory in physics. The idea is
sketched as follows:

Consider a subspace of DFM as Ω3 := {x̄ ∈ Ω | dim(x̄) ≤ 3}. We choose
3 because it is the dimension of real physical world.

Now (R∞, P r,Ω3) is a sub-bundle of the fiber-bundle (R∞,Pr,Ω). If
we consider all possible realization of dynamic systems over Ω3, then the
minimum total subspace which allow all possible realizations is R[·,6]. Hence,
if we desire a space which is of minimum dimension and contains all moves
(or dynamic systems), then it is B := (R[·,6] → Ω3). Since this manifold is of
dimension 9, plus a dimension for t, a manifold of dimension 10 is reasonable
for describing state-motion-time. This might be the string space.

Some further arguments are the following:
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(i) It is well known in classical differential geometry that an n-dimension
manifold M has an n-dimensional tangent space at each point. Hence,
if taking both M and T (M) into consideration, an n-dimensional man-
ifold with its tangent bundle is a 2n dimensional manifold, which is a
well known fact. So consider the bundle B as a 9-dimensional manifold
is reasonable.

(ii) It seems that there is no static particle in the world. That is, particles
are always joined with their moves. Moves can be described by vector
fields. So to describe a particle, a position plus a vector field on its
tangent space may be reasonable to describe it, as the particle is small
and its movement is very fast. Using string to describe a particle might
essentially be a description for both the position and the trajectory of
a particle.

(iii) Now taking the position and moving trajectory into consideration.
We may consider the extra 6 dimensions being used to describe open
string (or open movement of a particle). In addition, we need SU(3)
to describe the gauge group and SU(1) for rotation. Then we have
B + SU(3) + SU(1) + time, which is of dimension 26. This manifold
might be proper for Bosonic super-sting model.

In brief, DFM could provide a framework for systems with arbitrary
dimensions. DFM with a Reimannian structure becomes a DFRM. The in-
vestigation of DFRM in this paper is very elementary. A continuous study is
necessary. It is promising that DFRM might overcome the crisis of classical
Riemannian geometry [29].
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