
Communications in Information and Systems

Volume 23, Number 2, 151–184, 2023

A review of computational models for predicting
protein-protein interaction and non-interaction

Nan Zhao and Xinqi Gong
∗

Predicting potential protein-protein interaction and non-interaction
are vital to study the mechanism of protein function. Traditional
experimental technologies show their disadvantages of being ex-
pensive, time-consuming and laborious. Numerous computational
methods have been developed to detect potential interacting and
non-interacting protein partners. This paper reviews recent ad-
vancements in effective computational models for protein-protein
interactions and non-interactions prediction. We classified the com-
putational methods based on the protein information types into
five different categories and introduced the main ideas, advantages
and disadvantages of algorithms in each category. To obtain a high-
quality dataset, we analyzed the collection methods and composi-
tion of positive and negative samples in detail and described some
applications of real non-interacting protein pairs. Finally, we sum-
marized some challenges and open issues in the future.

1. Introduction

Protein is the direct executor of life activities, and its structure and dynamic

properties are closely related to physiological functions. Protein-protein in-

teractions (PPIs) are a fundamental component of intracellular and inter-

cellular communication, which play a vital role in all cellular functions, such

as cell development, cell metabolism, signal transduction, or cell apopto-

sis. Consequently, correctly detecting PPIs is helpful in understanding pro-

tein functions in-depth and essential for advancing structure-based drug de-

sign and disease treatment. The opposite of PPIs is protein-protein non-

interactions (PPNIs), where the number of non-interacting protein pairs far

exceeds that of interacting protein pairs. Identifying PPNIs facilitates the

collection of high-quality negative samples for more efficient characterization

of protein pairs. Furthermore, knowledge of PPNIs contributes to protein
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complex non-contact chains and is critical for predicting the structure of
super-large protein complexes.

Many high-throughput technologies have been developed to determine
protein partners, including yeast two-hybrid [1, 2], mass spectrometry [3, 4],
protein chips [5] and tandem affinity purification [6, 7]. While these tech-
niques can detect PPIs on a large scale, they exhibit time-consuming, labor-
intensive, and have a high fraction of false positive rates and low agree-
ments with each other [8, 9]. Furthermore, even well-studied organisms
have a protein-protein interaction network (PPI network) that is sketchy
at best [10]. This highlights that various computational methods are still
needed for PPIs and PPNIs prediction complementary to experimental
methods.

Dataset quality, feature representation and classifier selection are three
major determinants of the generalizability of predictive models. For classifier
selection, Hu et al. [11] and Soleyman et al. [12] focused on the computa-
tional model of deep learning frameworks. The former highlighted the diverse
learning architectures, benchmarks and extended applications, while the lat-
ter focused on reviewing recent deep learning models applied to protein tasks
such as predicting PPIs, protein functions and protein design. Chakraborty
et al. [13] summarized some support vector machine (SVM)-based PPIs pre-
diction computational models and challenges incurred in applying the SVM
method. For feature extraction, Hu et al. [14] focused on introducing the
algorithms used for predicting PPIs and different validation schemes and
metrics to evaluate the predictive performance. These studies focused less
on the quality of the dataset and did not delve into the PPNIs.

This review is structured as follows. We first outline protein-protein
interaction architectures in Section 2. Section 2.1 discusses protein-related
databases and datasets composition used in training and testing. Section 2.2
introduces diverse computational models, including sequence-based, struc-
ture-based, genomic-based, network-based and other computational meth-
ods. Next, we describe protein-protein non-interaction architectures in Sec-
tion 3. Section 3.1 briefly explains negative sample constructed methods to
obtain high-quality negative datasets. Section 3.2 analysis selection criteria
for positive and negative examples and unbalanced dataset construction.
Section 3.3 describes applications of real non-interacting protein pairs. Sec-
tion 4 discusses the challenges and future works of computational methods
for identifying PPIs and PPNIs.
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Figure 1: The overall framework of computational methods for PPIs predic-
tion.

2. Protein-protein interaction

With the enrichment of data and the continuous improvement of machine
learning algorithms, computational models have developed rapidly. Diverse
protein data can be used as input data for downstream analysis of different
protein tasks, such as primary sequence, protein structure, gene expression
and network topology. The framework of the model evaluation study is pre-
sented in Figure 1. It shows a clear data processing process, followed by
feature representation for diverse types of protein data, classifiers and per-
formance evaluation. Previous studies have introduced the machine learning
and deep learning algorithms used to predict PPIs in detail, as well as model
evaluation, so this paper focuses on the data analysis and feature represen-
tation.

2.1. Dataset

2.1.1. Data source Many reliable biological data have been obtained
with the development and maturity of experimental techniques and com-
putational methods. Bioinformatics research collates and stores these bi-
ological data and establishes the database of the gene, protein sequence,
protein structure, protein interaction, and other aspects. The details are
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as follows: (i) Protein sequences. Protein can obtain sequence information
from UniProt [15], SWISS-PROT [16], PIR [17], NCBI [18] and NRL3D [19]
databases. (ii) Protein structures. Protein can collect structure informa-
tion from PDB [20], SCOP [21], Pfam [22], InterDom [23] and 3did [24].
(iii) Gene ontology. Protein can derive gene ontology information from GO
Database [25] and QuickGO [26]. (iv) Genomic information. Protein can
obtain genomic information from MIPS mammalian protein-protein inter-
action database (MPPI) [27] and Candida Genome Database (CGD) [28].
(v) Protein-protein interactions. The databases include DIP [29], IntAct [30],
BIND [31], MINT [32], BioGRID [33], HPRD [34], STRING [35], HVIDB
[36], VirusMentha [37], HIPPIE [38], PRIN [39], DIPOS [40], PHISTO [41],
VirusMINT [42], VirHostNet [43], etc. (vi) Protein-protein non-interactions.
The databases include Negatome [44, 45], KUPS [46] and negative interac-
tions from large-scale two-hybrid experiments [47].

2.1.2. Data composition This section summarizes some typical compu-
tational methods for PPIs prediction, focusing on the dataset species, the
collecting methods of positive samples and negative samples, and the ratio
of positive samples and negative samples (see Tables 1 and 2).

We analyze it from the following three aspects: (1) Species. Table 1 shows
that computational methods for predicting intra-species PPIs are mostly
trained and tested on S. cerevisiae and H. sapiens datasets, while Table 2
shows that the host of inter-species PPIs mainly considers human. (2) Sam-
ple collection. Positive samples are mainly obtained from DIP, IntAct and
other PPIs databases, while negative samples are obtained by random pair-
ing or pairing proteins with different subcellular locations. (3) Proportion
of positive and negative samples. A balanced dataset is one in which the
number of positive and negative samples is equal, i.e., the ratio is 1:1. The
number of negative samples in an unbalanced dataset is usually K times the
number of positive samples (K = 2, 3, 5, 10, . . .). As indicated in Table 1,
most researchers use balanced datasets for intra-species PPIs prediction,
and some will additionally train and test on unbalanced datasets. Table 2
shows that inter-species PPIs are usually performed on unbalanced datasets.

2.2. Model

The essential components of proteins are amino acids. Amino acids have
various physicochemical properties, making proteins receive different forces
during the interaction process. In addition, the types of protein data are
rich and diverse, making people propose many computational methods to
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Table 1: Summary of computational models for Intra-species PPIs prediction.

Method Data species Positive samples Negative samples P: N URL

CT [48] H. sapiens HPRD randomly pairing proteins 1:1 N/A

AC+SVM [49] S. cerevisiae DIP

three strategies:

1. randomly pairing proteins;

2. pairing proteins with

different subcellular localization;

3. artificial shuffling of

protein sequences.

1:1
http://www.scucic.cn/

Predict PPI/index.htm

DPPI [50] H. sapiens, S. cerevisiae
HIPPIE

and DIP
randomly pairing proteins 1:10

https://github.com/

hashemifar/DPPI/

S. cerevisiae core subset DIP

pairing proteins with

different subcellular

localization

1:1

A large dataset consisting of 11

different species: H. sapiens,

S. cerevisiae, S. pombe,

M. musculus, D.melanogaster,

C. elegans, A. thaliana, B. subtilis,

B. taurus, E. coli and R. norvegicus

HINT randomly pairing proteins 1:10

NVDT [51] H. sapiens, M. musculus DIP Negatome 1:1
https://github.com/

Zhaonan99/NVDT

S. cerevisiae, H. sapiens, H. pylori,

D. melanogaster and M. musculus
DIP

pairing proteins with

different subcellular localization
1:1

DeepTrio [52] S. cerevisiae, H. sapiens
BioGRID

and DIP

artificial shuffling of

protein sequences
1:2

https://github.com/

huxiaoti/deeptrio.git

S. cerevisiae DIP
pairing proteins with

different subcellular localization
1:1

Struct2Graph [53]
S. cerevisiae, H. sapiens, E. coli,

C. elegans and S. aureus

IntAct and

STRING

large-scale two-hybrid

experiments

1:1, 1:2,

1:3, 1:5,

1:10

https://github.com/

baranwa2/Struct2Graph

TAGPPI [54]

Intra-species dataset: E. coli,

S. cerevisiae, C. elegans

and D. melanogaster

DIP randomly pairing proteins 1:1
https://github.com/

xzenglab/TAGPPI

Multi-species dataset: E. coli,

C. elegans and D. melanogaster
DIP randomly pairing proteins 1:1

Multi-class dataset: H. sapiens STRING N/A 75875 samples

Note: Saccharomyces cerevisiae (S. cerevisiae), Homo sapiens (H. sapiens), Escherichia coli (E. coli), Caenorhabditis elegans (C. elegans), Staphy-

lococcus aureus (S. aureus), Drosophila melanogaster (D. melanogaster), Helicobacter pylori (H. pylori), Mus musculus (M. musculus), Schizosac-

charomyces Pombe (S. pombe), Arabidopsis thaliana (A. thaliana), Bacillus Subtilis (B. subtilis), Bos taurus (B. taurus) and Rattus norvegicus (R.

norvegicus).

http://www.scucic.cn/Predict_PPI/index.htm
https://github.com/hashemifar/DPPI/
https://github.com/Zhaonan99/NVDT
https://github.com/huxiaoti/deeptrio.git
https://github.com/baranwa2/Struct2Graph
https://github.com/xzenglab/TAGPPI
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Table 2: Summary of computational models for Inter-species PPIs prediction.

Method Data species Positive samples Negative samples P: N URL

(Stefan Wuchtyet, 2011) [55] Parasite-Human

MINT,

IntAct,

Reactome

and HPRD

randomly pairing

proteins
1:1 N/A

(Kshirsagar et al., 2013) [56] Bacteria-Human PHISTO
randomly pairing

proteins
1:100

http://www.cs.cmu.edu/ mk

shirsa/ismb2013 paper320.html

Human and virus VirusMINT
randomly pairing

proteins
1:1

Denovo [57] Human and virus VirusMentha
randomly pairing

proteins
1:1

https://bioinformatics.cs.vt.

edu/ alzahraa/denovo

doc2vec+RF [58] Human and virus HPIDB
dissimilarity negative

sampling method
1:10 http://zzdlab.com/InterSPPI/

LSTM-PHV [59] Human and virus
HPIDB and

IntAct

dissimilarity negative

sampling method
1:10

http://kurata35.bio.kyutech.

ac.jp/LSTM-PHV

Human-SARS-CoV-2 BioGRID
dissimilarity negative

sampling method
1:10

(Yang et al., 2021) [60]

Human-HIV,

Human-Herpes,

Human-Papilloma,

Human-Influenza,

Human-Hepatitis,

Human-Dengue,

Human-Zika,

Human-SARS-CoV-2

HPIDB,

VirHostNet,

VirusMentha,

PHISTO

and PDB

dissimilarity negative

sampling method
1:10

https://github.com/XiaodiYang

CAU/TransPPI/

http://www.cs.cmu.edu/~mkshirsa/ismb2013_paper320.html
https://bioinformatics.cs.vt.edu/~alzahraa/denovo
http://zzdlab.com/InterSPPI/
http://kurata35.bio.kyutech.ac.jp/LSTM-PHV
https://github.com/XiaodiYangCAU/TransPPI/


A review of computational models for predicting PPIs and PPNIs 157

predict whether proteins interact with each other from multiple perspec-

tives. The computational methods mainly include four different categories:

sequence-based methods, structure-based methods, genomic-based methods

and network-based methods. Other computational methods are based on

multiple protein information or research in the literature.

2.2.1. Sequence-based computational methods The amino acid ar-

rangement and combination determine the primary structure of proteins.

Protein sequences can be inferred from sequenced genomes, the most abun-

dant protein data available. Computational methods based on protein se-

quence usually vectorize the sequence of the collected dataset and then

use appropriate machine learning algorithms to train and predict. Due to

the easy availability of protein sequences and the fact that sequence-based

schemes do not require prior knowledge, various sequence-based computa-

tional models are favored by researchers [61, 62].

1. Single feature extraction In the early development, sequence-based com-

putational models focused on combining the single feature of sequences, like

sequence similarity, with the learning ability of traditional classifiers to per-

form prediction tasks. For instance, Bock and Gough [63] utilized amino

acid-associated physicochemical properties to extract sequence feature vec-

tors. The physicochemical properties included charge, hydrophobicity and

surface tension. Then, they systematically trained SVM with different kernel

functions to recognize interactions. This method provided a new attempt at

analyzing the interaction between proteins only using the primary structure

of proteins. However, it did not consider the local environment of amino

acids, which resulted in the predicted performance being unreliable and

robust. Shen et al. [48] expressed the primary protein sequence with the

conjoint triad (CT) and trained it with SVM to predict PPIs, in which CT

accounted for interactions between adjacent or close residues in the amino

acid sequence. To reduce dimension disaster, 20 amino acids were divided

into seven groups according to the dipole scale and volume scale. CT re-

garded the target amino acid and its two proximate amino acids as one unit

to statistic their overall electrostatic and hydrophobic properties. However,

the convoluted folding of proteins allows residues to interact not only at short

distances but also at long distances. Guo et al. [49] characterized the protein

primary sequence with auto covariance (AC) and trained with SVM to iden-

tify PPIs, in which AC adequately considered the interactions between long-

range residues. Seven different physicochemical properties of amino acids
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were considered, including hydrophobicity, hydrophilicity, side chain vol-

ume, polarity, polarizability, solvent-accessible surface area and net charge

index of side chains. Yang et al. [64] represented a computational method

that extracted sequence features by utilizing local descriptors (LD, includ-

ing composition, transition, and distribution), which considered the effect of

discontinuous amino acids but ignored global information. Zhou et al. [65]

utilized the codon pair frequency difference to identify PPIs and showed

comparable performance to other sequence-based methods. Najafabadi et

al. [66] exploited a Naive Bayesian classifier to combine the relative codon

frequency differences to predict PPIs, which performed well on S. cerevisiae,

E. coli and Plasmodium falciparum. This approach demonstrated that the

codon usage of functional and physically connected proteins in organisms

contained rich sequence information.

2. Multiple features fusion Since single-feature extraction methods are chal-

lenging to characterize the protein sequence information accurately,

researchers have proposed many computational methods integrating vari-

ous features for predicting PPIs [67, 68]. For instance, Du et al. [69] pro-

posed DeepPPI combining multiple sequence features with deep neural net-

work (DNN) for PPIs prediction. This method extracted features based on

common protein descriptors, including amino acid composition, dipeptide

composition, LD, quasi-sequence-order descriptors, and amphiphilic pseudo

amino acid composition. In addition, DNN can effectively learn the represen-

tations of protein pairs rather than directly connecting the feature vectors

of two proteins. Ahmed et al. developed [70] a neural network model pre-

dicting host-pathogen PPIs based on a combination of features, including

amino acid quadruplets, pairwise sequence similarity and human interac-

tome properties. Zhang et al. [71] presented EnsDNN to identify PPIs that

combined multiple sequence features and DNN. This model used AC, LD

and multi-scale continuous and discontinuous local descriptors to character-

ize the interaction between sequentially distant but spatially close residues.

Each descriptor was trained with a specific configured DNN and then in-

tegrated for prediction. Chen et al. [72] proposed StackPPI, a predictive

framework for predicting PPIs that combined multiple sequence features

and an ensemble classifier. This method used pseudo amino acid composi-

tion, Moreau-Broto, Moran and Geary autocorrelation descriptor, position-

specific scoring matrix, Bi-gram position-specific scoring matrix and LD to

encode biologically relevant sequence information. Multi-information fusion

can more fully characterize sequence features, thus improving prediction
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accuracy. StackPPI utilized XGBoost for dimensionality reduction and con-
structed a stacker ensemble classifier of random forest (RF), randomized
trees and logistic regression. This model reduced generalization errors and
improved prediction accuracy. Zhao et al. [51] developed a gene sequence-
based method, NVDT, which counted the number, average position and
second normalized central moments of nucleotides, and the frequencies of
dinucleotides and triplet nucleotides. NVDT not only combined the advan-
tages of local and global protein information but also had high computa-
tional speed with low dimensions, making it a robust and efficient method
for PPIs and PPNIs prediction. These feature extraction methods generally
summarized the physicochemical properties of amino acids, location distri-
bution and other statistical characteristics, but the massive dimension of
feature vectors dramatically increased the computational complexity.

3. Co-evolutionary analysis The studies suggest that co-evolutionary pro-
teins interact more easily with each other. Hu et al. [73] focused on extract-
ing co-evolutionary features from sequence information, which were essential
for protein function. They proposed CoFex, a feature extraction approach
that took into account the co-evolutionary position of amino acids. Yin et
al. [74] used biochemical properties of amino acids to characterize protein
sequences and conducted co-evolutionary analysis combined with Fourier
transform to predict PPIs. Position Specific Scoring Matrix (PSSM) is a
vital scoring matrix generated by sequence similarity comparison, which
contains not only the evolutionary information between sequences but also
the conserved and mutated information of amino acids. It has been success-
fully used in computational biologies, such as protein secondary structure
prediction [75], protein binding site prediction [76] and disorder region pre-
diction [77]. Yang et al. [60] designed a deep learning framework to predict
human–virus PPIs that combined evolutionary sequence profile features with
a Siamese-based multi-scale convolutional neural network (CNN) architec-
ture and a multi-layer perceptron (MLP). This model represented interacting
proteins by PSSM and introduced two types of transfer learning methods
(“frozen” type and “fine-tuning” type). These two transfer learning meth-
ods allowed training on a source human-virus domain. They used the data
of the target domain to retrain the CNN layer, significantly improving the
cross-viral prediction performance.

4. Deep learning extract features In the last few years, deep learning-based
approaches have massively impacted the field of protein bioinformatics.
Some computational methods do not use proteins’ prior information, such
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as the physicochemical properties, but directly use deep learning algorithms
to extract protein sequence features. Hashemifar et al. [50] reported a deep
learning framework, DPPI, to identify PPIs based on the primary protein
sequence. DPPI exploited a Siamese-like CNN architecture combined with
a random projection module and data augmentation. This framework could
efficiently handle large amounts of training data, fine-tune parameters to
adapt to different tasks, and robustly capture complex and non-linear re-
lationships in PPIs. Hu et al. [52] proposed a deep learning model, Deep-
Trio, that used mask multiple parallel CNN for PPIs prediction. This model
captured the multi-scale contextual information of protein sequences. Chen
et al. [78] developed an end-to-end framework, PIPR, which employed a
Siamese architecture based on a deep residual recurrent convolutional neu-
ral network to effectively capture the mutual influence of protein pairs. The
model performed well on interaction type and binding affinity estimation
prediction tasks and can be generalized to different PPIs prediction tasks
without the need for predefined features. However, the bidirectional gated
recurrent unit of this algorithm suffered from slow convergence speed and
low learning efficiency.

5. NLP or PLM extract features In recent years, the computational meth-
ods of extracting protein sequence features based on natural language pro-
cessing (NLP) and Protein language model (PLM) have become increasingly
popular. These methods require training on a large number of protein se-
quences to extract informative features of protein sequences. They can not
only sufficiently consider the semantic information in the entire sequence,
such as the order of residues, but also mine massive potential information
of unlabeled protein. For instance, Yang et al. [58] combined a doc2vec
embedding method with RF to predict human-virus PPIs. The doc2vec em-
bedding method captured the semantic information of residues in the whole
sequence as much as possible, thus representing the protein sequence as rich
feature vectors of low dimensionality. Tsukiyama et al. [59] reported LSTM-
PHV, an approach that combined the long short-term memory (LSTM)
model with word2vec to predict human-virus PPIs. The word2vec embed-
ding method utilized the amino acid sequence context as a word to encode
sequence features, which effectively improved the prediction performance.
Madan et al. [79] developed an approach that used the ProtBERT [80] deep
sequence embedding method and Siamese neural network to detect PPIs.
These methods avoid the error of encoding protein sequences by manual
features and can potentially capture more comprehensive protein sequence
information.
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2.2.2. Structure-based computational methods The protein struc-
ture is closely related to its function. It contains essential protein biological
information, which can be used to guide the prediction of PPIs. Protein in-
teraction studies using structure information are more reliable and accurate
at the atomic level.

1. Structural similarity measurement Protein complexes with known three-
dimensional structures provide the best context, containing reliable infor-
mation about protein interactions. Song et al. [54] proposed an end-to-end
method, TAGPPI, which utilized protein structural information for PPIs
prediction. This method extracted multi-dimensional features by employing
convolutional structure on amino acid sequences and graph learning method
on contact maps constructed from AlphaFold [61], so it obtained much spa-
tial structure information. Baranwal et al. [53] proposed Struct2Graph, a
structural approach was predicting PPIs solely from protein 3D structures.
Struct2Graph used a graph convolutional network-based representation of a
protein globule rather than descriptors like solvent accessible surface area.
Doolittle et al. [81] used protein structural similarity to identify the interac-
tions between HIV-1 and human, based on the assumption that human pro-
teins with highly similar structures may have similar interacting pathogen
partners. This approach was applicable to any host-pathogen system with
known protein structures.

2. Domain information The domain is a special amino acid sequence with
conserved protein function, which is the structural and functional unit of
protein. The domain has a relatively independent and stable 3D-dimensional
conformation, and its function is relatively conservative. Abnormality of the
domain may lead to dysfunction and even induce disease [82, 83]. Behind
PPIs are often physical interactions between protein domains to perform
significant functions. Therefore, predicting the interaction between proteins
can be transformed into predicting whether domains interact. Deng et al. [84]
applied the Maximum Likelihood Estimation method, which estimated the
interactions probabilities of domain pairs, to validate domain–domain in-
teractions consistent with the observed PPIs. This probabilistic model was
robust in handling experimental errors and allowed for incorporating various
PPIs data, such as from different organisms. However, the model assumed
the independence of the domain-domain interaction, which was not com-
pletely consistent with the fact. Moreover, the PFAM domains are not nec-
essarily subunits with a special structure essential to the protein interaction.
Ma et al. [85] presented a computational method based on interolog and the
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domain-based method to predict blast fungus-rice PPIs. Then SVM and the
enrichment of pathogenic proteins were further used to identify potential
PPIs.

3. Docking system Traditional protein-protein docking methods play a vi-
tal role in sampling the conformational space of protein complexes. High-
precision docking methods have been developed and continuously improved,
including HDOCK [86], ZDOCK [87], LzerD [88], HADDOCK [89], Clus-
Pro [90], and LightDock [91]. Mirabello et al. [92] proposed a fully automated
pipeline, InterPred, to predict PPIs using structural modeling combined with
massive structural comparisons and molecular docking. A vital component
of the method was that the RF classifier integrated several structural fea-
tures to distinguish PPIs. The time-consuming steps of structural template
searching and docking decreased the efficiency of InterPred.

The methods based on protein structure similarity and molecular dock-
ing simulation are limited by the number of protein structures analyzed ex-
perimentally. While AlphaFold can obtain massive protein structures with
atomic accuracy, it is limited by the length of the protein sequence. Most
domain–based methods use correlation algorithms and maximum likelihood
estimation to obtain the interaction probability of a single domain. Never-
theless, they only consider the quantitative relationship of a single domain,
ignoring the internal domain properties. Therefore, the structure-based ap-
proach needs to be further improved.

2.2.3. Genomic-based computational methods The arrangement of
genes in the genome is regular, and genes with similar functions tend to be
arranged more closely. Therefore, studying the location of protein-coding
genes in the genome can help infer functional similarity and interaction be-
tween proteins. Existing computational methods mainly involve the follow-
ing three categories: gene fusion event, gene neighborhood and phylogenetic
profile.

1. Gene fusion event Gene fusion occurs when two independent proteins in
one species fuse into a protein component or a polypeptide chain in another
species. A gene fusion event between two proteins during the evolution of a
species is thought to be an interaction between these two proteins. Marcotte
et al. [93] developed a computational approach to identifying PPIs from com-
plete genome sequences based on observing gene fusion events. Enright et
al. [94] proposed a computational method detecting gene fusion event com-
plete genomes from sequence comparison. Gene fusion-based methods can
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only predict functional associations between proteins or direct interactions

that have fused but cannot predict proteins without fusion events through

genome sequencing analysis.

2. Gene neighborhood Gene neighborhood speculates that there will be

functional interactions between the gene products of an operon [95, 96].

Therefore, the interactions between proteins can be predicted based on the

adjacent conservatism of genes in different biological genomes. However,

gene neighborhood-based methods only work for microorganisms with simple

structures in early evolution. It is not applicable to eukaryotes with complex

structures, so it cannot be widely used.

3. Phylogenetic profile If two genes have identical or similar phylogenetic

profiles, it can be inferred that they are functionally related and likely to

have functional interactions. Pellegriniet et al. [97] constructed phylogenetic

profiles of three proteins through fully sequenced bacterial genomes, which

showed that phylogenetic profiles could cluster functionally related proteins.

However, the limitation of the phylogenetic profile-based methods is that

it is impossible to determine whether the function-related proteins are in

“physical” direct contact. Its accuracy depends on the number of sequenced

genomes and the reliability of the phylogenetic profile construction.

2.2.4. Network-based computational methods Different PPIs data-

bases store different protein interactions and related information. Still, most

data mainly focuses on protein interactions and records relevant information,

such as obtained experimental methods, interaction types, etc. The proteins

in the PPIs database can be connected and mapped into one or several PPI

networks. A PPI network is a simple undirected graph, where the nodes

are proteins, and the edges indicate an interaction between the two pro-

teins. As the coverage of PPI networks has increased, many network-based

computational models have been developed to predict missing PPIs.

1. Local network information Local network information refers to the prox-

imity information between a target protein and its nearest neighbor protein.

Li et al. [98] designed a new method, LAC, to identify essential proteins

by deeply considering the relationship between the target protein and their

neighbors. Therefore, the local network information contains rich network

features of the protein in the PPI network. Studies have shown that if one

of the two proteins is similar to the interacting partner of the other, the
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two proteins have a higher probability of interacting. L3 [99] defined a de-
gree standardized score that depends on a network path of length three,
and its performance was significantly superior to all existing link prediction
methods. However, L3 is not suitable for predicting PPIs between far-apart
proteins that do not have a common neighbor.

2. Global network information In the PPI network, the global network in-
formation refers to the topological information considering the whole protein
interaction network. Global network information can provide more compre-
hensive evidence for verifying PPIs. For example, Lei et al. [100] considered
global network structure and developed a novel network topology-based al-
gorithm to reduce the noise present in PPI networks. Two proteins sharing
some higher-order topological similarities, as measured by a new random-
walk-based algorithm, are likely to interact.

2.2.5. Other computational methods

1. Multiple information combinations Different information sources have
advantages and disadvantages, and they can complement each other to char-
acterize proteins better. Zhang et al. [101] proposed the PrePPI model,
which integrated protein structural information and other biological func-
tional evidence to detect PPIs. Wang et al. [102] presented DeepViral, a deep
learning-based method jointly learning from protein sequences, phenotype
functions and taxonomy features to predict potential protein interactions
between viruses and human hosts. The scarcity of training interaction data
between viruses and hosts other than humans limited the generalization per-
formance of the model. Lei et al. [103] combined manifold embedding with
multiple information integration to identify PPIs, which embedded PPI net-
works into low-dimensional metric space based on manifold learning theory.
Liu et al. [104] utilized graph convolutional networks (GCNs) to learn pro-
tein position information in the PPI networks graph and capture the graph
structure information. This method combined sequence information with
position information to represent proteins, which improved the prediction
performance of PPIs.

2. Literature information mining The literature database covers much in-
formation about protein interactions, such as subcellular localization and
biological function. Therefore, some computational methods for PPIs pre-
diction are based on literature mining. Huang et al. [105] used dynamic pro-
gramming and matching algorithms to detect PPIs from literature, with a
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recall rate of 80.00% and a precision rate of 80.50%. Hao et al. [106] presented
an approach to identify PPIs from literature, which can automatically dis-
cover and optimize English expression related to protein interactions. Jang
et al. [107] proposed a PubMed-abstract-based PPIs validation method that
can automatically query and extract much interaction information for two
given proteins. The research found that 67.37% of interactions in the DIP
were from PubMed abstracts, and 87.37% were from PubMed full text.

3. Protein-protein non-interaction

3.1. Negative samples construct

Previous studies have proved that dataset quality significantly impacts the
robustness of the computational models [108]. Positive samples can be eas-
ily collected from PPIs databases, where many experimentally verified in-
teracting protein pairs are stored. These samples are verified to have high
reliability by biological experiments. A high-quality positive dataset can be
obtained by filtering the interacting protein pairs depending on the sequence
similarity and distribution. Since few experiments have established PPNIs
databases of non-interacting protein pairs, finding reliable samples of non-
interacting protein pairs is more of a challenge. The difficulty in construct-
ing a high-quality negative dataset is that there is no “gold standard” for
planning negative samples in reality. Therefore, negative samples must be
collected with care, or it may adversely affect the predicted accuracy. Exist-
ing computational models rely on the following negative sample construction
methods.

3.1.1. Protein pairing

1. Random Pairing The proteins in the positive dataset were randomly
paired to generate candidate non-interacting protein pairs [46, 109], and
then the candidate pairs in the positive dataset were removed to obtain the
final negative samples. Many authors use this simple approach to construct a
negative dataset [50, 78, 110, 111]. For example, Chen et al. [46] constructed
a class of negative datasets to develop KUPS database using uniform ran-
dom pairs, which is generally considered less biased than selection methods
based on molecular processes. However, the false negative probability of the
negative samples constituted by this mechanism is relatively high, which
leads to problems such as the prediction approach will learn the pattern
of missing values. The estimates show that the number of interacting pro-
tein pairs in the randomly pairing dataset can be unacceptably high when
considering the specific biological context [47].



166 Nan Zhao and Xinqi Gong

2. Subcellular Location Non-interacting protein pairs were generated by
pairing proteins with different subcellular localization and deleted protein
pairs appearing in the positive dataset [109]. Previous studies have proven
that proteins from different subcellular locations are unlikely to interact,
so most interaction prediction studies use this common method to define
negative samples for training models [112]. The annotations of protein sub-
cellular location are available from the UniProt [15] and Swiss-Prot [16]
databases. The limited distribution of negative samples generated by this
method makes the PPIs prediction task easier, resulting in a biased estima-
tion of accuracy [10].

3.1.2. Protein similarity

1. Reversed order One of the interacting protein pairs reverses its order
of amino acids and forms a non-interacting protein pair with the remaining
protein. Many researchers have constructed negative samples through this
method [109]. It has been proven that if one sequence of an interacting pro-
tein pair is shuffled, the possibility of the interaction between the remaining
protein and the new protein can be considered negligible [113]. However, ar-
tificially altered amino acid sequences do not exist in reality, so this method
cannot reflect the natural protein interaction sequences.

2. Similarity and degree Zhang et al. [114] have proposed that for an inter-
acting protein pair (protein i and protein j) that experiments have verified,
the larger the sequence dissimilar between protein i and protein k, the lower
the probability that protein j interacted with protein k. A new method to
construct negative samples, NIP-SS, was proposed based on the above as-
sumptions. The steps were: Firstly, the sequence similarities between any
two proteins in the positive dataset were counted and sorted in ascending
order. Then, select the top-m protein pairs with low similarities from the
sorted dataset as non-interacting protein pairs. Considering that the nega-
tive samples obtained in this way may be concentrated in a few proteins,
it was not conducive to computational model construction and evaluation.
Therefore, the negative samples were further adjusted by maintaining the
similarity of the protein degree distribution in the positive dataset, while
the generated non-interacting pairs appearing in the positive dataset were
eliminated. Selecting negative samples with low sequence similarity to pos-
itive samples obviously reduced the probability of false negative. Still, it
also made the task much easier than it is, resulting in over-optimistic esti-
mates of accuracy. Eid et al. [57] introduced a method based on sequence
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dissimilarity to generate non-interacting protein pairs for virus-host PPIs
prediction, which reduced the noise in the negative dataset. This method
was based on the hypothesis that if the sequences of two viral proteins are
similar, a human protein interacting with one of them would have a high
probability of pairing with the other virus as a positive sample. Conversely,
negative examples can be found. All-versus-all global alignment bit-scores of
the viral proteins were first calculated by the dissimilarity-random-sampling
algorithm and normalized. Then the impossible negative cases were excluded
according to a dissimilarity threshold, and the remaining negative interac-
tion was randomly sampled.

3. Semantic similarity Chen et al. [46] defined functionally dissimilar pairs
as non-interacting protein pairs in the KUPS database. KUPS first cal-
culated the semantic similarities [115, 116] between any two proteins and
ranked them. Based on the assumption that the most dissimilar annotation
pairs have the lowest similarity score, potential non-interacting protein pairs
are selected.

3.1.3. PPI network-based

1. Random walk Previous studies have proved that those interacting pro-
teins are likely to share similar functions. So for the target protein in the PPI
network, the neighborhood (or direct interacting) protein with the shortest
path of 1 is more likely to share similar functions than the neighborhood pro-
tein with the shortest path of 2. Because the latter cannot interact directly
with the target protein, the interaction is more likely to be mediated by an-
other protein. In other words, the probability that two proteins share similar
functions gradually decreases as the shortest path increases. Therefore, con-
sidering the small probability that two proteins share similar functions at a
sufficiently large shortest path, they are regarded as a non-interacting pro-
tein pair. Zhang et al. [114] proposed NIP-RW based on random walk in
PPI network to distinguish high-confidence non-interacting protein pairs.

2. Low degree Studies on the viral protein pathway showed that viruses are
more likely to target higher-degree human proteins than lower-degree human
proteins [117]. Dey et al. [118] have collected negative samples generated
from virus protein and human proteins with a low degree in the human
PPI network [34]. First, the degree of each human protein in the HPRD
database was calculated and sorted. Then, one virus protein and one low-
degree human are used to form non-interacting protein pairs. However, this
negative sample construction method is only suitable for predicting virus-
host PPIs.
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3.1.4. Experiments evidence

1. Two-hybrid experiments Trabuco et al. [47] utilized a dataset from two-
hybrid experiments to infer non-interacting protein pairs that were not ob-
served experimentally. Negative samples in Struct2Graph [53] were retrieved
from Trabuco et al. and selected pairs that were not involved in any inter-
action of STRING and IntAct Databases. However, this method was only
suitable for two-hybrid experiments to detect protein pairs, not other exper-
imental platforms.

2. Literature evidence Smialowski et al. [44] constructed the Negatome
database 1.0 containing non-interacting protein pairs. The process was based
on a simple keyword search in the PubMed database, especially noting a
large amount of non-interaction information in many figures and tables.
Blohm et al. [45] proposed the second version of this database, Negatome
Database 2.0. They used an advanced text-mining process to guide the man-
ual annotation process, which focused on the entire corpus of PubMed ab-
stracts and PMC full-text articles. This method has shifted from the time-
consuming analysis of figures and tables to a more high-throughput auto-
mated approach.

3. Protein complex-based KUPS database [46] defined non-interacting pro-
tein pairs not by spatial distance but by cellular component annotations
without overlap. The Negatome database [44, 45] showed that some protein
pairs in protein complexes with more than three chains do not interact di-
rectly with each other while they are in the immediate vicinity of the protein
complex environment. So a new set of non-interacting protein pairs can be
obtained by selecting complex chain pairs with a Cβ-Cβ (Cα-Cα for glycine)
distance larger than 8Å.

4. Non-interacting domain pairs Chen et al. [46] collected a class of nega-
tive datasets based on non-interacting domain pairs defined in the Negatome
database. Nevertheless, this approach assumed that non-interacting protein
pairs have been obtained.

3.1.5. Database for negative samples High-quality negative samples
are critical to capture protein-protein interacting and non-interacting in-
formation for protein tasks. This section describes two important PPNIs
databases.
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1. Negatome [44, 45] The non-interacting protein pairs in the Negatome
database are collected from manual literature curation and analysis of 3D
protein complexes. Many studies currently use real non-interacting pro-
tein pairs in the Negatome database to construct negative samples. Bryant
et al. [119] applied AlphaFold2 and optimized multi-sequence alignment
to predict heterodimeric protein complexes using negative samples from
the Negatome database. Das et al. [120] used a negative dataset from the
Negatome database to study the knowledge of protein-protein interface prop-
erties combined with SVM and delineate native-like protein complexes from
non-native protein complexes. Therefore, real non-interacting protein pairs
in the Negatome database can help to generalize the training model and
improve the accuracy of task results. However, it also has some disadvan-
tages: (i) The number of negative samples in the Negatome database is
small and needs to be expanded. (ii) The Negatome database mainly col-
lects non-interacting protein pairs that do not interact in a direct physi-
cal manner. (iii) This database relies on results from experiments, but the
overlap between different experimental datasets is weak. And the fact that
two proteins have not been reported to interact experimentally does not
mean that they do not actually interact in cells. The Negatome database
is freely available through the website http://mips.helmholtz-muenchen.de/
proj/ppi/negatome.

2. KUPS [46] The KUPS database contains datasets of non-interacting
protein pairs using four negative sample construction methods to alleviate
the biased estimation problems, including uniform random pairs, function-
ally dissimilar pairs, spatially separated pairs and non-interacting domains.
In addition, KUPS created two benchmark datasets: one with balanced inter-
acting protein pairs and non-interacting protein pairs and the other with un-
balanced interacting protein pairs and non-interacting protein pairs. These
negative sample construction methods still have scope for improvements,
such as considering some physical and chemical properties, including solvent
accessibility and hydrophobicity. In addition, the established method can be
extended to proteome and other organisms. The KUPS is freely available
through the website: http://www.ittc.ku.edu/chenlab/.

3.2. Unbalanced dataset

To obtain a high-quality dataset, positive samples directly collected from
PPIs databases must be preprocessed. It mainly includes the following four
points: (i) Length. Protein pairs were generally removed if the sequence

http://mips.helmholtz-muenchen.de/proj/ppi/negatome
http://mips.helmholtz-muenchen.de/proj/ppi/negatome
http://www.ittc.ku.edu/chenlab/
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length of one protein was less than 50 amino acids [69, 72]. Different ex-
periments have different requirements for protein length. A few experiments
require the protein length to be a minimum of 30 and a maximum of 5000
amino acids [58], while others even require a protein length of 30–1000 [59]
or 150–1000 [52]. Protein sequences can be retrieved from UniProt/Swiss-
Prot. (ii) Nonredundant. To avoid the classifier will possibly be biased to
homologous sequence pairs, protein pairs were deleted if two proteins share
a sequence identity greater than or equal to 30% [58] (or 40% [69, 72]) by
cluster analysis of the CD-HIT [121] program. (iii) MS experiments. Pro-
tein pairs were collected if the experimental interactions were from two or
more high-throughput MS experiments [60]. Each PPIs database uses differ-
ent publications and ontologies to report protein interactions. Consequently,
PPIs reported by each database are different, with only up to a 75% con-
sistency between all PPIs databases [122]. (iv) Interactions of inter-species
with a certain confidence. Protein pairs with an MI score of below 0.3 were
deleted. MI score is a confidence score for protein interactions, which can
be obtained from IntAct and VirHostNet. Different methods for obtaining
negative samples detail the specific conditions for collecting non-interacting
protein pairs and then randomly selected from the collected negative samples
according to the required number of samples.

Protein-protein interaction and non-interaction prediction is a binary
problem in which positive samples are collected from PPI databases, while
negative samples are almost all other protein pairs. The number of nega-
tive samples collected is much higher than that of positive samples, which
is vast and extremely unbalanced data. For intra-species PPIs prediction,
balanced datasets are usually used in previous studies. A common practice
is forming a balanced dataset by randomly sampling the same number of
negative samples from the original dataset as the positive ones. For exam-
ple, Shen et al. [48] conducted training and testing on a balanced dataset
of 16443 positive samples and 16443 negative samples for PPIs prediction.
Guo et al. [49] utilized a balanced dataset of 5545 positive samples and 5545
negative samples to identify PPIs. Zhao et al. [51] trained the prediction
model using a balanced dataset comprising an equal number of interacting
and non-interacting protein pairs. Most of these approaches have achieved
satisfactory prediction performance on balanced datasets. However, the con-
struction of this dataset differs from that of the cell environment. Therefore,
such predictive performance may not be achieved under natural conditions.
Recently, researchers have begun to conduct simultaneous experiments on
unbalanced datasets. For instance, Baranwal et al. [53] used two kinds of
datasets: (i) Balanced dataset: Close to 1:1 (4698 positive samples and 5036
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negative samples); (ii) Unbalanced dataset: Design different ratios of posi-
tive to negative pairs, including 1:2 (2518 positive samples and 5036 negative
samples), 1:3 (1679 positive samples and 5036 negative samples), and 1:10
(504 positive samples and 5036 negative samples). Unbalanced datasets are
usually used for inter-species PPIs prediction, and the ratio of positive sam-
ples and negative samples is mostly 1:10. Further, the selected samples were
divided into a training set (80%) and an independent test set (20%), which
were used for model training and performance evaluation respectively. Sev-
eral training sets and independent testing sets can be randomly constructed
to reduce sampling bias caused by sample division.

3.3. Applications of real non-interacting pairs

The artificially constructed negative samples can not reflect the actual pre-
diction situation. More and more models have begun testing on the pairs of
real non-interacting proteins to obtain a prediction model with solid gener-
alization ability. Zhang et al. [114] constructed six independent datasets con-
taining only interacting protein pairs (five datasets) and non-interacting pro-
tein pairs (one dataset). The negative samples dataset was Mammalian col-
lected from Negatome 2.0 (1937 non-interacting pairs). The results showed
that the accuracy of the Mammalian dataset using the NIP-SS and NIP-
RW strategies (the proposed negative examples generation methods) was
3.36 and 3.98 times that of pairing proteins with different subcellular local-
ization, respectively. It is inferred that negative samples generated by sub-
cellular localization may have a bias in the predictive performance during
model training and testing. Zhao et al. [51] collected two types of datasets:
real dataset and constructed dataset. The real dataset consisted of real in-
teracting protein pairs and real non-interacting protein pairs. The positive
samples were downloaded from the public DIP database and the negative
samples were derived from the Negatome Database 2.0. Finally, 2434 protein
pairs for H. sapiens and 694 protein pairs for M. musculus were obtained,
with the same number of positive and negative samples. For PPNIs, the pro-
posed method obtained accuracies of 86.23% for H. sapiens and 85.34% for
M. musculus real datasets. It also performed well on three non-interaction
networks consisting of non-interacting protein pairs, including one-core net-
work, multiple-core network and crossing network. To test whether the lack
of core protein non-interaction information leads to low accuracy, they added
existing non-interaction knowledge for 10%, 30%, and 40% of core proteins
in the multiple-core network. The accuracy obtained could be increased
from 80.49% to 85.37%, 92.68% and 96.34%, respectively. Patrick Bryant
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et al. [119] applied Alphafold2 and optimized multi-sequence alignment to
predict heterodimeric protein complexes. The non-interacting proteins used
were the negative samples collected in the Negatome database. Real non-
interacting protein pairs can be used to evaluate PPIs/PPNIs prediction
methods. Especially the non-interacting PDB pairs can help predict the 3D
structure of protein complexes and improve the training of interaction and
non-interaction prediction algorithms.

4. Challenge and future work

PPIs and PPNIs are critical to understanding the mechanisms of most bio-
logical processes. Since laboratory-based approaches have the disadvantages
of being time-consuming and labor-intensive, various computational models
have been developed to supplement them. This paper summarizes the effec-
tive prediction models of PPIs and PPNIs, focusing on data analysis and
feature representation. However, these models still have many challenges and
future work.

1. Data quality At present, many computational methods for predicting
the interaction between proteins have achieved very high accuracy. But is
such high accuracy reliable? Continue to test/doubt it. To improve the qual-
ity of the dataset, we can proceed from three aspects: (i) Negative sample
construction. The common negative sample construction methods have the
problems of uneven distribution, which causes the deviation of prediction
results. New effective negative sample construction methods need to be fur-
ther developed. (ii) Data preprocessing. Both the positive samples collected
from the PPIs databases and the negative samples constructed by the exist-
ing sampling methods are redundant and imperfect. The screening criteria
should be strictly controlled for filtering. (iii) The ratio of positive and neg-
ative samples. In computational experiments, the training and testing of
the model should be carried out on different proportions of balanced and
unbalanced datasets. In addition, multiple datasets can be set for the com-
putational evaluation, and the average value is taken as the final prediction
result.

2. Species Most of the existing computational methods focus on S. cere-
visiae and H. sapiens, which involve a small range of species. So it is diffi-
cult to ensure that the high prediction performance can be maintained on
other species datasets. At the same time, the intra-species PPIs prediction
is mostly a eukaryotic dataset, which is difficult to extend to bacteria and
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other research problems. Most of the hosts for inter-species PPIs prediction
are human, which makes the generalization performance of models to other
species not high.

3. Computational method In the past, with the emergence of the induced
fit theory, the primary sequence was the most accessible data to obtain pro-
tein information, and sequence-based methods have become the most widely
used method. But other data types, such as protein structure, are not easy
to obtain on a large scale. Now advances in artificial intelligence have made
it much more efficient at capturing large amounts of diverse protein data.
Different protein information can complement each other to better charac-
terize proteins. The computational methods have gradually changed from
relying on single protein information to combining multiple protein infor-
mation for prediction. Although integrating these different data types may
provide additional evidence for PPIs predictions, their relationship remains
to be studied in depth. Effectively integrating various data types with ma-
chine learning technology is crucial to predict PPIs successfully.

4. Genetic, dynamic and disordered PPIs PPIs can be classified as physi-
cal interaction and genetic interaction. However, readily available PPIs and
PPNI databases have only shown whether there are physical interactions but
are not sure free of any genetic interactions. In addition, PPIs are dynamic in
cells, but the scientific quest to capture PPIs dynamics under physiological
and disease conditions are limited [14]. Few computational models have been
developed to predict dynamic PPIs, which should be further improved in fu-
ture work. Intrinsically disordered protein (IDP) is a kind of protein that
lacks a stable three-dimensional structure in its natural state. Natural dis-
ordered proteins cover a series of proteins in various states, from completely
without fixed ordered structures to partial structures. Research emphasizes
that the role of disordered protein interaction as a critical coordinator of gene
expression and other complex biological functions is underestimated [123].
These findings will also help better understand other potential diseases, such
as cancer and viral infection. Therefore, PPIs of disordered proteins are also
an important research issue.
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