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TSDFFilter: content-aware communication
planning for remote 3D reconstruction

Xu-Qiang Hu, Yu-Ping Wang, Zi-Xin Zou, and Dinesh Manocha

We present a novel solution, TSDFFilter, for remote 3D recon-
struction to relieve the high bandwidth requirement problem. Our
approach is designed for scenarios where agents are used to collect
data using an RGB-D camera and then transmit the information
over the regular network to a high-performance server, where a
global, dense, and volumetric model of a real-world scene is re-
constructed. Our approach uses a content-aware communication
planning framework in which agents can prune the gathered RGB-
D information according to the transmission policy generated by
the server. To generate the transmission policy, we introduce a
confidence value to estimate how much each RGB-D pixel con-
tributes to the reconstruction quality, and present an algorithm
to find the confidence value. As a result, agents can transmit less
RGB-D information without blindly compromising the reconstruc-
tion quality as the key-frame method and down-sampling method
do. We implement our TSDFFilter framework to achieve real-time
agent-assisted 3D reconstruction. Extensive evaluations show that
comparing with the key-frame and down-sampling methods, our
TSDFFilter framework can reduce the bandwidth requirement by
up to 36% with similar reconstruction Chamfer distance, and re-
duce the reconstruction Chamfer distance by up to 78% with sim-
ilar bandwidth requirement.

Keywords and phrases: Communication planning, remote 3D recon-
struction, TSDF, transmission policy.

1. Introduction

Reconstructing dense, volumetric models of real-world 3D scenes is an im-
portant research topic in Visual Media [3, 41, 43, 36]. With the wide usage of
consumer RGB-D cameras, gathering visual information for 3D reconstruc-
tion has become affordable, but data collection is still time-consuming. Thus,
offline 3D reconstruction, where reconstruction is done after data collection,
is time-consuming. With the widely usage of RGB-D cameras on mobile de-
vices, and the development of robotics and drones, agents are being used
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to automatically collect RGB-D data at remote locations [11, 6]. Such a
3D scene reconstruction framework is also called multi-agent collaborative
dense scene reconstruction, or remote 3D reconstruction for short.

Under the remote 3D reconstruction framework, each agent is respon-
sible for capturing part of the scene. For the reason of costs and energy,
agents are not equipped with powerful GPUs which are usually needed for
real-time reconstruction. Therefore, agents transmit the gathered RGB-D
information to a high-performance server on which the global 3D model
is reconstructed. However, this framework raises the requirements for high
network bandwidth. In [11], the authors stated that the network bandwidth
required to transmit the RGB-D images captured by a Kinect (640×480) is
roughly 250Mbps, or 25Mbps if the same sequence is compressed, but their
WiFi router can only provide a bandwidth of about 8Mbps. The situation
was even worse when there were multiple RGB-D cameras, since they com-
peted for the bandwidth of the WiFi router and the server’s network card.
Due to this issue, in practice, offline 3D reconstruction is usually preferred
than remote 3D reconstruction in order to obtain more precise 3D model.
Therefore, reducing the bandwidth requirements while retaining precision is
essential for remote 3D reconstruction to scale to more agents and higher-
resolution cameras.

Similar bandwidth problems also arise in remote simultaneous local-
ization and mapping (SLAM) systems [9, 24, 33, 34]. These systems also
gather and transmit high-resolution visual information to build a map and
achieve localization. However, the main purpose of SLAM algorithms is lo-
calization, and building a sparse map of the scene is sufficient for accurate
localization [8]. Therefore, not all collected points are valuable to SLAM
algorithms. Transmitting only the feature points is sufficient and can relieve
the bandwidth problem for remote SLAM systems [29]. However, this kind
of solution cannot be used for remote 3D reconstruction frameworks.

In 3D reconstruction algorithms, all collected points are potentially valu-
able. They improve the reconstruction quality by either providing new in-
formation or reducing errors [27]. To relieve the bandwidth problem, re-
mote 3D reconstruction systems currently have only two options: selecting
key-frames or down-sampling the gathered images [11, 6]. Selecting key-
frames results in the loss of some information provided only by the dropped
frames and down-sampling the gathered images causes the details to be
ignored. Reducing bandwidth requirements without compromising recon-
struction quality is still a challenging problem for remote 3D reconstruction
frameworks.
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Main results In this paper, we present a communication planning algorithm
for remote 3D reconstruction, TSDFFilter. Instead of totally dropping some
of the RGB-D frames, our idea is to drop some RGB-D pixels. We introduce
a confidence value for each RGB-D pixel and theoretically show that it
can represent how much the RGB-D pixel contributes to the reconstruction
quality. Based on the confidence value, the server can generate a transmis-
sion policy to the agents. Further, based on the transmission policy, the
agents then transmit only the pixels that contribute more to the reconstruc-
tion quality, and thus the bandwidth requirement is reduced. We test our
TSDFFilter framework to achieve real-time 3D scene reconstruction. Exper-
imental results show that comparing with the key-frame and down-sampling
methods, our TSDFFilter framework can reduce the bandwidth requirement
by up to 36% with similar reconstruction Chamfer distance, and reduce the
reconstruction Chamfer distance by up to 78% with similar bandwidth re-
quirement. The main contributions of this paper include:

(1) We present a communication planning framework for remote 3D
reconstruction, TSDFFilter, which can reduce the bandwidth requirement
while retaining more useful details.

(2) We present the confidence value for each RGB-D pixel to estimate
how much it contributes to the reconstruction quality, and an efficient algo-
rithm to generate the confidence value.

(3) We apply our TSDFFilter framework to practical TSDF-based recon-
struction system, InfiniTAM [17, 18], and implement it based on ROS [32],
which is the de-facto robotic middleware.

(4) Our TSDFFilter framework is extensively evaluated with data from
three datasets (the Scannet RGB-D dataset [4], the TUM RGB-D dataset
[38] and the Cow & Lady RGB-D dataset [28] and show significant results.
When the resulting reconstruction Chamfer distance is similar, our TSDF-
Filter framework can reduce the bandwidth requirement by up to 36% com-
paring with key-frame and down-sampling methods. When the bandwidth
is similar, our TSDFFilter framework can reduce the reconstruction Cham-
fer distance by up to 78% comparing with key-frame and down-sampling
methods.

2. Related work

2.1. 3D reconstruction

3D reconstruction is a common research interest in Computer Vision,
Robotics, and Multimedia. Since the emergence of commodity RGB-D sen-
sors (e.g., Microsoft’s Kinect) and modern GPU programming frameworks
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(e.g., NVidia’s CUDA), real-time dense 3D reconstruction has become feasi-
ble on commodity hardware. KinectFusion [26, 16] was one of the first real-
time volumetric reconstruction frameworks. To handle large-scale scenes, the
state-of-the-art solutions [27, 17] organize voxels with a hash map. To achieve
high reconstruction quality, the state-of-the-art frameworks [17, 18] employ
the truncated signed distance function (TSDF) [2] as the data structure to
store integrated depth images. Since the task of updating the TSDF value
of each voxel is suitable for data-parallel algorithms [46], these frameworks
rely on GPU to achieve real-time performance [39]. Our work is designed for
frameworks employing voxel hashing and TSDF. Prior arts [1] consider pixel
confidence maps in RGB-D reconstruction. Our work uses pixel confidence
maps to generate transmission policy.

2.2. Remote SLAM and 3D reconstruction

Widely used mobile phone and commodity UAVs have provided more con-
venient ways to capture sensor data. Research has shown that these sensor
data can be used for SLAM and 3D reconstruction. However, when these de-
vices cannot provide the high performance required for real-time algorithms,
the sensor data must be stored and processed off-line [49]. To process the
sensor data in an online manner, remote SLAM [9, 24, 34, 44] and remote
3D reconstruction [11, 6] frameworks have been proposed. Such frameworks
take advantage of the computing power provided by high-performance cen-
tral server(s), and captured sensor data are transmitted to the server(s).

For remote SLAM frameworks, a major issue is what data representation
should be transmitted. Opdenbosch et al. [29] proposed a solution where
fast feature extraction is performed at the agent, and the server performs
the following SLAM by collecting the features. These features are sufficient
to generate a sparse 3D map, but far from sufficient to reconstruct a dense
volumetric model. Therefore, this kind of solution works well for remote
SLAM, but is not suitable for remote 3D reconstruction.

For remote 3D reconstruction, the only options are selecting key-frames
and down-sampling every frame [11, 6]. These two solutions can reduce the
bandwidth requirement significantly, but they also damage the reconstruc-
tion quality. The key-frame methods treat each image as a whole and drop
some full images without distinguishing which pixels might be valuable. The
down-sampling methods consider all pixels to be of equal value, which is not
always true.

Our idea is to distinguish which pixels are more valuable to the global
model. This is difficult, if not impossible, without knowing the status of the
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global map. Our solution is inspired by Giamou et al. [10]. This work aims

to detect inter-robot loop closures for remote SLAM under a constrained

network bandwidth. In this work, agents exchange some meta-data before

actually exchanging visual information. Based on these meta-data, agents

can design a policy regarding which data should be exchanged. Our solution

to the remote 3D reconstruction also allows the server to give some hints to

the agent, so the agent can distinguish which pixels are more valuable.

2.3. Video streaming

Dynamic Adaptive Streaming over HTTP (DASH) [37] is the de-facto stan-

dard for video streaming. By using the DASH technique, each video is par-

titioned into segments and each segment is encoded in multiple bitrates.

Which bitrate to use for the next segment is determined by Adaptive Bitrate

(ABR) algorithm. Generally, video streaming services aim to improve the

Quality of Experience (QoE) by increasing the average video bitrate, reduc-

ing rebuffering events, and/or increasing video bitrate smoothness. These

factors cannot be satisfied at the same time, and existing solutions have

made significant improvements in balancing these factors [22, 31, 35, 47, 14,

7, 45, 48].

Volumetric video streaming, such as point cloud-based volumetric video

[12, 20] or depth image (i.e., RGBD)-based volumetric video [21, 40], is more

in line with application for 3D reconstruction, where remote agents transmit

captured color and depth information to the server. Some researches extend

DASH technique towards volumetric video streaming [13, 42].

However, the DASH technique is not well suited for 3D reconstruction

services for two main reasons. On the one hand, down-sampling method used

in DASH when bad network situation would lead to worse 3D reconstruction

quality. On the other hand, some of content in sequence are redundant which

will not be contributed to improve 3D reconstruction, e.g., for those area of

already being well reconstructed. Our TSDFFilter algorithm only transmits

the content which is useful for 3D reconstruction.

There are also some works [19] employ video compression techniques

to transmit RGB-D streams and achieve competitive results. In all exper-

iments of our framework and the comparing frameworks, we employ the

same image compression algorithms for the convenience of implementation

based on ROS [32]. It is feasible to change the compression algorithms to

video compression algorithms, but we consider it orthogonal to our improve-

ments.
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3. Our approach

Figure 1(b) illustrates our TSDFFilter framework. In our framework, the
agent transmits the pose T of the equipped camera to the server, the server
generates a transmission policy π(T,G) based on the pose T and the global
status G of the server, and the agent prunes its RGB-D data from M to
M ′(M,π) based on the transmission policy. In contrast, in the common
framework (shown in Figure 1(a)), the agent does not know any information
from the server and can only blindly transmit its poses and RGB-D data
to the server. Down-sampling and selecting key-frames can only reduce the
bandwidth requirement without knowing the needs of the server.

Figure 1: An overview of the frameworks for remote 3D reconstruction. In
our experiments, the overall bandwidth requirements are compared.

Here, we assume that each agent knows its own pose. This can be
achieved separately by either low-cost SLAM algorithms [25], low-bandwidth
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remote SLAM frameworks [5], or other sensors (e.g., IMU) equipped on the

agent. Therefore, we can focus on how to transmit the information needed

by the integration routines of 3D reconstruction frameworks.

3.1. Generating transmission policy

The key challenge is how to express and generate a transmission policy that

can conform to the following principles:

• The pruned RGB-D data and the original RGB-D data should con-

tribute similarly to the reconstruction quality.

• The transmission policy should be generated efficiently.

• The transmission policy should help reduce the overall bandwidth.

The first principle requires us to mine the properties of the reconstruc-

tion algorithm. As we have stated, to achieve high-quality 3D reconstruction,

TSDF has become a de-facto expression of high-quality 3D models. TSDF

is a volumetric representation of a scene for integrating depth images. When

integrating a new depth image, new voxels that have never been captured

before are allocated. Then, the TSDF value TSDF (x) and the weight W (x)

of each associated voxel x are updated with Equation (1). t is the truncation

parameter, wi(x) is the weight for each round of update, which is usually set

as 1, di(x) is the depth captured by depth camera, and zi(x) is the depth of

the voxel.

TSDF i(x) =
TSDF i−1(x) ·Wi−1(x) + tsdfi(x) · wi(x)

Wi−1(x) + wi(x)

tsdfi(x) = max

(
−1,min

(
1,

di(x)− zi(x)

t

))

Wi(x) = Wi−1(x) + wi(x)

(1)

For each round of updates, the captured depth di(x) is an approximate

value of the depth from the view point to the real-world surface, si(x). We

can assume that di(x) is a random variable that follows a normal distribution

with mean si(x), and each di(x) is independent (see Figure 2). The variance

σ2
i reflects the error introduced by the RGB-D camera. Thus, we can deduce

in Equation (2) that the TSDF i(x) also follows a normal distribution after

Wi(x) rounds of update. In this normal distribution, the expectation reflects

the real-world TSDF (x). Note that the variance becomes smaller as the

update round Wi(x) increases. Specifically, when all σj is the same, the
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variance becomes σ2

t2·Wi(x)
which is inversely proportional to Wi(x).

di(x) ∼ N
(
si(x), σ

2
i

)

tsdfi(x) ∼ N

(
si(x)− zi(x)

t
,
σ2
i

t2

)

TSDF i(x) ∼ N

(
Σ(sj(x)− zj(x))

t ·Wi(x)
,

Σσ2
j

t2 ·W 2
i (x)

)(2)

Figure 2: The depth captured by the RGB-D camera can be modeled as a
normal distribution. For each voxel x, the TSDF i(x) also follows a normal
distribution after Wi(x) round of updates.

For the second and the third principles, our purpose is to express the
transmission policy, which decides whether each RGB-D pixel needs to be
transmitted. If we can find a voxel x on the ray corresponding to the RGB-
D pixel with its TSDF (x) = 0, we can estimate the real-world TSDF (x)
with the normal distribution of voxel x. If we can estimate the real-world
TSDF (x) with enough confidence, we do not need further updates. Since
smaller variance indicates more confidence, and the variance is inversely
proportional to Wi(x), we can set a WMAX to indicate the confidence thresh-
old. Thus, the error caused by the generated transmission policy follows a
normal distribution in Equation (3), and we can expect the reconstruction
Chamfer distance of the result dense model is about σ2

t2·WMAX
. Since σ2 is

a constant that reflects the error introduced by the RGB-D camera, and
t is a constant set by the 3D reconstruction algorithm, the reconstruction
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Chamfer distance of the resulting dense model is expected to be inversely

proportional to WMAX.

(3) Error(x) ∼ N

(
0,

σ2

t2 ·WMAX

)

Algorithm 1: Generate a Transmission Policy(on the server)

Data: modle, the current 3D model; WMAX, the confidence threshold.
Input: pose, the current pose of robot.
Output: res, a binary image.

1 procedure genTransPolicy(pose):
2 for each pixel p of res do
3 while loop ray-casting from p, pose do
4 x ← current voxel
5 if (x is unexplored) then
6 p ← 1
7 else if (TSDF (x) > 0) then
8 continue ray-casting.
9 else

10 interpolate a position with TSDF = 0.
11 compute the average W at the interpolate position.
12 if W >= WMAX then
13 p ← 0 // this pixel need not to be transmitted

14 else
15 p ← 1
16 end

17 end

18 end

19 end
20 return res

21 end

Overall, the algorithm for generating the transmission policy is shown

in Algorithm 1. The transmission policy is expressed with a binary image

with the same size of the RGB-D images. For each RGB-D pixel, we try

to find a voxel x on the corresponding ray that satisfies TSDF (x) = 0 and

W (x) ≥ WMAX. If such a voxel is found, the transmission policy decides not

to transmit the RGB-D pixel or, otherwise, the transmission policy decides to

still transmit the RGB-D pixel. This routine is highly parallelizable and can

be accomplished quickly on the server with modern GPU, which meets the
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second principle. The binary image that expresses the transmission policy
can be further compressed to reduce the required bandwidth. We will verify
the third principle in Section 4.

3.2. Alternative solutions

We can also theoretically analyze the error introduced by the key-frame
method and the down-sample method.

For the key-frame method, let key-frame ratio K ≤ 100% represent the
ratio of preserved frames, e.g., K = 25% indicates that one out of every
4 frames is preserved. On average, this configuration is equivalent to the
case where each frame has a probability of K to be dropped. Thus, for a
voxel x that could be updated for W (x) rounds, there are only K · W (x)
rounds after key-frame selection. We showed in Equation (2), the error for a
voxel x whose TSDF (x) = 0 is inversely proportional to W (x). Key-frame
method reduces every W (x) by K times, and therefore increase the error
for every voxel by K−1 times. If W (x) is large for all voxels originally, the
key-frame method introduces fewer errors; however, if W (x) is small, the
key-frame method could introduce large errors. In extreme cases, for some
voxel x whose W (x) = 1 originally, it could be reduced to W (x) = 0, which
means the voxel x is completely lost. In this case, the error depends on the
distance to the next nearest voxel, which is not predictable.

For the down-sampling method, let down-sampling ratio R ≤ 100% rep-
resent the ratio of preserved pixels on each width and height, e.g., R = 25%
indicates that a 1024×768 image will be down-sampled into a 256×192 im-
age. On average, this configuration is equivalent to the case where each ray
of each frame has a probability of R2 to be dropped. Similar to the analysis
of the key-frame method, we can expect that the down-sampling method
to increase the error for every voxel by R−2 times. In practice, however,
the down-sampled RGB-D images are up-sampled by interpolation back to
the original resolution before being used to achieve 3D reconstruction. If
some part of the scene is a plane, linear interpolation can accurately restore
the depth of the plane. However, on other parts of the scene, interpolation
introduces a large error in the depth of the observed depth di(x).

3.3. Pruning RGB-D data

When the agent receives the transmission policy from the server, it is used to
prune the RGB-D data. Since we have represented the transmission policy
with a binary image, we can simply prune each pixel of the RGB-D data
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Algorithm 2: Tailoring the RGB-D data(on the agent)

Input: rgb, the RGB image; depth, the depth image; trans, the
transmission policy(a binary image).

1 procedure tailorRGBD(rgb, depth, trans):
2 for each pixel depth[i][j] do
3 if trans[i][j] is 0 then
4 depth[i][j] ← 0
5 rgb[i][j] ← (0, 0, 0)

6 end

7 end

8 end

when the corresponding pixel on the binary image is 0. The pseudo code of
pruning the RGB-D data is shown in Algorithm 2.

Figure 3 shows two examples of how the pruning works. Figure 3(a)
shows an RGB image in the Scannet RGB-D dataset, and Figure 3(b) shows
the image after our pruning routine. At run time, the camera is moving to
the upper-right. At the rays corresponding to the upper-right side of the
pose, there is not enough information, and the transmission policy of those
pixels is 1. Therefore, we cannot drop those pixels. In contrast, the bottom-
left side of the pose has already been updated enough times, and most of the
pixels are pruned. Similarly, for Figure 3(c) and (d), the camera is moving
to the right, and most pixels on the left are pruned.

Before the server can achieve the reconstruction task with the pruned
RGB-D data, there is an issue about how to transmit pruned RGB-D data
efficiently. In our pruned RGB-D images, many pixels are pruned and re-
placed with depth 0 and the color black (i.e., (R, G, B) = (0, 0, 0)). We find
that ordinary compression methods for RGB images and depth images work
well, since connected regions of the same value can be greatly compressed. In
order to quantify the effectiveness when image compression methods work-
ing on our pruned RGB-D images, we conduct a study. We generate a series
of images by pruning pixels from the same image, compress them with the
same PNG compression level, and measure their sizes. The result is shown in
Figure 4. As we can see, as more pixels are pruned, the size of the compressed
image decreases in a linear fashion. The decrease in size will directly result
in a reduction in bandwidth, which is exactly what our framework needs.

Finally, after the server receives the pruned RGB-D data, it can achieve
the reconstruction task. Since the depths of the pruned pixels are 0, they
will not contribute to the reconstruction.
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Figure 3: Examples of how the pruning works.(a) and (c) are RGB images
before pruning. (b) and (d) are the pruned RGB images (white pixels are
pruned), and the required bandwidth can be reduced about 50% and 90%
respectively. For (a) and (b), the camera is moving up. For (c) and (d), the
camera is moving to the right.

4. Evaluation

To show practical results, our experiments are carried out completely online.
We use three datasets, Scannet RGB-D dataset [4], TUM RGB-D SLAM
dataset [38] and Cow & Lady real-world RGB-D dataset [28]. We select 6
sequences of different lengths from the three datasets, because we consider
them representative to different scenarios. The detail and characteristic of
these 6 sequences are shown in Table 1. Each data sequence is replayed on
the agent side and transmitted to the server side for 3D reconstruction. On
the server side, we run the InfiniTAM framework [17, 18], a state-of-the-art
3D reconstruction framework. All software modules (i.e., 3D reconstruction
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Figure 4: The effectiveness when image compression methods working on our
pruned RGB-D images. As more pixels are pruned, the size of the compressed
image decreases in a linear fashion.

and data sequence replaying) are connected with ROS middleware. For con-
venience, we use image compression algorithms employed by ROS in data
transmission. The ROS version is Melodic on Ubuntu 18.04.

4.1. Comparison with mobile reconstruction methods

In the remote 3D reconstruction scenario, agents transmit the collected data
to the server to utilize the powerful computing resources of the server to com-
plete the reconstruction task and generate a reconstruction model. However,
we can also use the extremely limited computing resources on agents to com-
plete the reconstruction task. We refer this kind of solutions as mobile recon-
struction methods. Voxfield [30] is the state-of-the-art TSDF-based mobile
reconstruction framework, which can complete reconstruction tasks without
the support of high-performance GPU.

In order to show the difference between the remote reconstruction frame-
work and the mobile reconstruction framework, we first conduct an exper-
iment comparing the results of Voxfield and InfiniTAM. We run the ex-
periment multiple times under varying voxel size settings. The processing
time per frame is recorded to compare the execution efficiency, and the er-
ror is calculated to compare the quality of the resulting models generated
by two frameworks. The error is calculated as the reconstruction Chamfer
distance [23] between the generating reconstruction models and the ground-
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Table 1: Sequences used in experiments

Dataset Sequence Characteristic Description

Scannet
scene0709 00 The scene is a medium

kitchen.
Captured with the cam-
era moving around a
kitchen.

scene0710 00 The scene is a room and
the camera aim at nearly
the same direction.

Captured with the cam-
era translating and aim-
ing at nearly the same di-
rection.

scene0717 00 The scene is large and
most voxels has a small
W.

Captured with the cam-
era moving in a big col-
lege dormitory.

TUM
fr1/xyz The scene contain peo-

ple and there is informa-
tion overlap between the
frames of this sequence.

Recorded laboratory
desks and a student
sitting in a chair.

fr1/desk The scene doesn’t con-
tain any people and
there is large overlap be-
tween the frames of this
sequence.

Recorded laboratory
desks without people.

Cow & Lady cow and lady The scene is large and
there are not many effec-
tive pixels measured by
the depth camera.

Recorded an indoor
scene with a cow, man-
nequin and a few other
typical office accessories.

truth model provided by datasets. The Chamfer distance is calculated be-
tween the reconstructed mesh N and the ground-truth G is:

(4) dCD(N,G) =
1

2N

∑
n∈N

min
g∈G

‖n− g‖22 +
1

2G

∑
g∈G

min
n∈N

‖g − n‖22

Table 2 shows the results. We can see that with the support of high-
performance GPUs, the InfiniTAM method only takes about one percent
of the processing time of Voxfield method to complete the reconstruction
task with the same voxel size, and generate a 3D model with smaller error
at the same time. Therefore, in order to obtain higher quality models and
more efficient execution efficiency, we need the agent to transmit data to the
server for 3D reconstruction. When the voxel size is small, it will be difficult
to complete the reconstruction task only by relying on the agents’ limited
computing resources.
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Table 2: Comparison between the state-of-the-art mobile 3D reconstruction
framework (Voxfield with only CPU) and remote 3D reconstruction frame-
work (InfiniTAM with GPU) under varying voxel sizes. The “V / I Ratio”
column means the value of Voxfield divided by the corresponding value of
InfiniTAM. With the same voxel size, the processing time of Voxfield is more
than 100 times that of InfiniTAM, and the reconstruction Chamfer distance
is also larger

Voxel Size
Process Time (s) Reconstruction Chamfer Distance (m)

Voxfield InfiniTAM V / I Ratio Voxfield InfiniTAM V / I Ratio
0.080 0.0887 0.000597 148.7 0.0631 0.0526 120%
0.040 0.0959 0.000572 167.5 0.0341 0.0295 115%
0.020 0.1035 0.000609 169.9 0.0223 0.0188 119%
0.010 0.1379 0.000618 223.0 0.0234 0.0222 106%
0.005 0.4244 0.000636 667.5 0.0323 0.0256 126%

4.2. Numeric comparison

The main purpose of our TSDFFilter framework is to reduce the bandwidth
requirement while retaining more useful details. To measure detail retention,
we use the rostopic bw tool on each ROS topic. The overall bandwidth
requirement is the sum of transmitting the RGB-D data from the agent
to the server and transmitting the transmission policy from the server to
the agent. In order to measure detail retention capabilities, we measure
the Chamfer distance between the resulting reconstruction models and the
ground-truth model. The ground-truth model is achieved by running the
same reconstruction algorithm in an off-line manner, because we would like
to show the effect of our communication planning algorithm by showing the
difference of its results with that of the off-line results.

There is a parameter in our TSDFFilter framework that can affect the
result, i.e., the threshold WMAX. We run the experiment multiple times with
different values of WMAX to show the influence of this value on the result.
For comparison, we run the experiment with the key-frame method and the
down-sampling method.

Since our TSDFFilter framework prunes the transmitted information
based on its own features, it is expected that these results would differ when
using different sequences. To make a fair and extensive comparison, we run
the experiment with 6 sequences from 3 different datasets, shown in Table 1.

All of the results are organized into Figure 5. The figure shows the re-
construction errors that can be obtained by the above three methods under
different bandwidth conditions. With the increase of WMAX, our method
can obtain smaller model error under the same bandwidth condition. Each
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figure includes the results of handling a different sequence in three meth-
ods, including down-sampling, key-frame and our TSDFFilter. For the key-
frame method, each point has different a key-frame ratio K, resulting in
different bandwidths and reconstruction Chamfer distance results; for the
down-sampling method, each point has different down-sampling ratio R; for
our TSDFFilter framework, each point has different threshold WMAX. Each
sub-figure includes the normalized bandwidth requirement (the horizontal
axis) and reconstruction Chamfer distance (the vertical axis). The band-
width requirement is normalized by dividing by the bandwidth required to
generate the ground-truth.

In general, with a lower key-frame ratio K, a lower down-sampling ra-
tio R, or a lower threshold WMAX, the bandwidth requirement becomes
lower while the reconstruction Chamfer distance become higher. The band-
width requirement when using the key-frame method or the down-sampling
method is less affected by the content of different sequences. On the other
hand, the bandwidth requirement when using our TSDFFilter framework
differs when handling different sequences. The result of reconstruction Cham-
fer distance values verifies the analysis in Section 3 that the reconstruction
Chamfer distance using our TSDFFilter is inversely proportional to WMAX.
In Figure 5, we show that WMAX values varies from 1 to 205. Specially, we
show the extreme result when the threshold WMAX = 1, which indicates
a pixel will be pruned as long as it has been observed once. Another ex-
treme result is when the threshold WMAX = 255. This threshold is so high
that our TSDFFilter framework can prune little pixels. In this case, the
resulting normalized bandwidth requirement is about 80%, which also indi-
cates that the bandwidth required for transmitting the transmission policy
is low. However, the resulting reconstruction Chamfer distance is not zero
because of the uncontrollable randomness. For WMAX = 50 and 75, the re-
sults are comparable with the key-frame method and the down-sampling
method. With similar bandwidth requirements, our TSDFFilter framework
can achieve about 70% lower reconstruction Chamfer distance.

We should note that, for the Cow & Lady sequence, the bandwidth for
our TSDFFilter framework is high even when WMAX = 1. This is probably
because of the characteristics of the Cow & Lady sequence. In this sequence,
the camera moves along without turning back, and thus each frame is valu-
able.

4.3. Visualized reconstruction results

In addition to the numeric results, we also visualize an example of the results
to show the advantage of our TSDFFilter framework.
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Figure 5: The numeric comparison results. Each figure includes the results
of handling a different sequence with three method: down-sampling, key-
frame and our TSDFFilter. The figure shows the bandwidth requirements
that need with different the reconstruction errors using these three meth-
ods. With the increase of WMAX, our method can work in less bandwidth
requirement conditions with the same reconstruction errors.
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Figure 6: Visualized reconstruction results of the Scannet scene0710 00 se-
quence. Each subfigure is generated by one of the four methods. In each
subfigure, the first row illustrates higher views of the reconstructed models
and the second row illustrates the detail within the yellow box and red box,
which shows the detail on the door handle and sweeping robot. In the yellow
boxes, we can clearly see the door handle, which indicates that our TSDFFil-
ter framework successfully retains more details. The down-sampling method
loses more detail because it has more depth values which are estimated by
interpolation; the key-frame method, on the other hand, tends to smooth
the result.

Figure 6 shows the visualized results of the Scannet scene0710 00 se-

quence. Figure 6(a) illustrates the reconstruction result with the key-frame

method (K = 0.75); Figure 6(b) illustrates the reconstruction result with

the down-sampling method (R = 0.75); Figure 6(c) illustrates the recon-
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Figure 7: Visualized reconstruction results of the Scannet scene0714 00 se-
quence. Each subfigure is generated by one of the four methods. The first
and second rows illustrate higher views of the reconstructed models. The
third and fourth rows illustrate the detail within the yellow boxes and red
boxes. The key-frame method loses a lot of points, and the down-sampling
method produces lots of outliers.

struction result with our TSDFFilter framework (WMAX = 50); Figure 6(d)

illustrates the reconstruction result with off-line manner (i.e., the ground

truth). The bandwidth requirements for these sets of results are similar.
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The first row of each subfigure illustrates higher views of the reconstructed
models. The second row of each subfigure illustrates the detail within the
yellow and red boxes, which shows the detail on the door handle and sweep-
ing robot. From the parts within the yellow boxes, we can clearly see the
door handle, which indicates that our TSDFFilter framework successfully
retains more details. Interestingly, our TSDFFilter framework successfully
retains more details around the door knob (shown in the yellow boxes) than
the ground truth. This is because our TSDFFilter framework stops updating
voxels whose confidence value is high enough, and can probably avoid these
voxels being damaged by future inaccurate scans.

Figure 7 shows the visualized results of the Scannet scene0714 00 se-
quence. Each subfigure illustrates the reconstruction result with one of the
four methods. The first and second rows illustrate the full views of the re-
constructed models. The third and fourth rows illustrate the detail within
the red and yellow boxes, which shows the detail on the sofa and wall. From
the parts within the yellow boxes, we can clearly see our TSDFFilter frame-
work can obtain more points compapred to the key-frame method. From
the parts within the red boxes, we can clearly see the sofa, which indi-
cates that our TSDFFilter framework successfully retains more details and
the down-sampling method introduce outliners. The down-sampling method
loses more detail because it has more depth values that are estimated by
interpolation; the key-frame method, on the other hand, tends to smooth
the result; and our TSDFFilter framework retains much of the detail.

5. Conclusion and future work

We have presented a communication planning framework for remote 3D re-
construction called TSDFFilter. In our TSDFFilter framework, agents do
not blindly transmit their data but are instead able to prune their data
according to the transmission policy generated by the server. To generate
the transmission policy, we present the confidence value for each RGB-D
pixel to estimate how much it contributes to the reconstruction quality
and an efficient algorithm to generate the confidence value. Experimental
results show that our TSDFFilter framework can reduce the bandwidth re-
quirement and overcome the disadvantages of down-sampling and key-frame
methods.

As far as we know, this is the first remote 3D reconstruction framework
that applies feedback from the server to guide the agents how to transmit
data. Besides, our TSDFFilter framework focuses on TSDF-based recon-
struction method, and cannot be directly applied on semantic-aware ap-
proaches, such as [50, 15]. But it would be an interesting future work.
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