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Periodic solution for a free boundary problem
modeling small plaques

Yaodan Huang
∗
and Bei Hu

Plaque formation within arteries is one of the leading causes of
death in USA and worldwide. Mathematical models describing the
growth of plaque in the arteries (e.g., [1, 2, 3, 5, 6]) were introduced.
All of these models include the interaction of the “bad” choles-
terols, low density lipoprotein (LDL), and the “good” cholesterols,
high density lipoprotein (HDL), in triggering whether plaque will
grow or shrink.

Because the blood vessels tend to be circular, 2D cross section
model is a good approximation, and the 2D models are studied in
[2, 7, 8, 9]. A bifurcation into a 3D plaque was recently studied
in [4]. All of these models assume a constant supply of LDL and
HDL from the blood vessel.

In reality, nutrient concentration changes with the intake of
food, which happens very often in a periodic manner. In this pa-
per, we shall establish a periodic solution when the LDL and HDL
supplies from the blood vessel are periodic.

AMS 2000 subject classifications: Primary 35R35, 35B10, 92B05;
secondary 35Q92.
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1. Introduction

Atherosclerosis is caused by the build-up of arterial plaque which eventu-

ally causes potential heart problems including a heart attack or a stroke.
Mathematical models describing the growth of plaque in the arteries (e.g.,

[1, 2, 3, 5, 6]) were introduced. All of these models include the interaction

of the “bad” cholesterols, low density lipoprotein (LDL), and the “good”

cholesterols, high density lipoprotein (HDL), in triggering whether plaque
will grow or shrink.
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Friedman et al. [2] considered a simplified model involving LDL and
HDL cholesterol, macrophages and foam cells. As the blood vessel is a long
and thin tube, it is a good approximation to assume that the artery is a
radially symmetric infinite cylinder. They further simplified the problem
by considering the cross section only, which reduces the problem to a 2D
problem. And rigorous mathematical analysis was carried out. Since it is
not reasonable to assume that plaques have a strictly radially symmetric
shape, systematic symmetry-breaking bifurcation [8, 9, 7, 4] was carried out
utilizing the Crandall-Rabinowitz theorem.

All of these models, however, assume a constant supply of LDL and
HDL from the blood vessel. In reality, nutrient concentration changes with
the intake of food, which happens very often in a periodic manner. Thus we
shall assume that the LDL and HDL concentrations within the blood vessel
are of the form

(1.1) L0(t) = L∗(1 + τL1(t)), H0(t) = H∗(1 + τH1(t)),

where L1(t) and H1(t) are given periodic C2(R) functions with period T
with

(1.2)

∫ T

0
L1(t)dt =

∫ T

0
H1(t)dt = 0,

and

(1.3) ‖L1‖C2[0,T ] ≤ 1, ‖H1‖C2[0,T ] ≤ 1.

Since the LDL and HDL concentrations in the blood vary around their
prevalent values.

We shall study the solution in a small ring of thickness order O(ε), ε > 0
and take

(1.4) τ > 0 to be small.

That is, the food intake would not drastically change the prevailing concen-
tration values L∗, H∗.

A periodic solution is a characterization of the normal fluctuation in
reality. This is a solution that will never grow out of control and represent
a special stable state. When L0(t) and H0(t) are constants, a small radially
symmetric stationary plaque was established in [2] and bifurcations of var-
ious shape from this small plaque were found [8, 9, 4, 7]. In this paper, we
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are concerned only with the radially symmetric solution and establish the
existence of such a periodic solution of a small plaque.

We refer to [2, 8, 9] for the detailed derivation of the model. Here the
variables L, H, F represent respectively the low density cholesterol, high
density cholesterol, foam cells, and p represents the pressure build-up during
the cell growing or shrinking process. Given that the blood vessel is a long
tube, we assume a 2D cross section radially symmetric domain, with spatial
variables in polar coordinate system. Taking into account the periodic nature
of the low density cholesterol and high density cholesterol within the blood
flow, we find that they satisfy the following equations in the plaque region
{Ω(t), t > 0}, Ω(t) = {R(t) < r < 1}, with a moving boundary Γ(t) = {r =
R(t)} where 0 < R(t) < 1, and the fixed boundary {r = 1} representing the
blood vessel wall,

∂L

∂t
−ΔL = −k1

(M0 − F )L

K1 + L
− ρ1L,(1.5)

∂H

∂t
−ΔH = −k2

HF

K2 + F
− ρ2H,(1.6)

∂F

∂t
−DΔF −∇F · ∇p = k1

(M0 − F )L

K1 + L
− λ

F (M0 − F )L

M0(γ +H)

− k2
HF

K2 + F
+ (ρ3 − ρ4)

(M0 − F )F

M0
,

(1.7)

−Δp =
1

M0

[
λ
(M0 − F )L

γ +H
− ρ3 (M0 − F )− ρ4F

]
,(1.8)

where Δ = ∂rr+
1
r∂r+

1
r2∂θθ. The boundary conditions and the free boundary

condition are given by

∂L

∂r
=

∂H

∂r
=

∂F

∂r
= 0 {r = 1},(1.9)

∂p

∂r
= 0 {r = 1},(1.10)

∂L

∂�n
+ β1 (L− L0(t)) = 0 on Γ(t),(1.11)

∂H

∂�n
+ β1 (H −H0(t)) = 0 on Γ(t),(1.12)

∂F

∂�n
+ β2F = 0 on Γ(t),(1.13)

p = κ on Γ(t),(1.14)

Vn = −∂p

∂�n
on Γ(t),(1.15)
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where, as indicated in the introduction, L0(t) and H0(t) are assumed to
be periodic functions rather than constants. Here, κ is the curvature in the
outward unit normal �n (i.e., pointing towards the blood region) for Γ(t), and
in the case of a radially symmetric case r = R(t), κ = − 1

R(t) . All parameters

M0, λ, γ, Ki, ki, βi (i = 1, 2) and ρj (j = 1, 2, 3, 4) are positive.

In the simple case where the solutions are assumed to be independent
of θ variable, then we solve from (1.8) that

(1.16) pr(r, t) =
1

rM0

∫ 1

r

[(M0 − F )L

γ +H
− ρ3M0 + (ρ3 − ρ4)F

]
(ξ, t) · ξdξ.

Since the curvature of a disk is a constant, the boundary condition (1.14) is
no longer needed. Writing the domain as {R(t) < r < 1}, we find that the
term ∇F · ∇p in (1.7) becomes Fr · pr, and (1.7), (1.8), (1.15) reduce to

∂F

∂t
−DΔF

− Fr

rM0

∫ 1

r

[(M0 − F )L

γ +H
− ρ3M0 + (ρ3 − ρ4)F

]
(ξ, t) · ξdξ

= k1
(M0 − F )L

K1 + L
− k2

HF

K2 + F
− λ

F (M0 − F )L

M0(γ +H)

+ (ρ3 − ρ4)
(M0 − F )F

M0
,

(1.17)

1

2

d

dt

[
R2(t)

]
=

−1

M0

∫ 1

R(t)

[(M0 − F )L

γ +H
− ρ3M0 + (ρ3 − ρ4)F

]
rdr.(1.18)

Therefore the equation for p is eliminated and the radially symmetric system
then formulates as

Problem (P):

⎧⎨⎩
equations (1.5), (1.6), (1.17),
boundary conditions (1.9), (1.11)–(1.13),
free boundary condition (1.18).

Our main result on the periodic small plaque is

Theorem 1.1. Let the assumptions (1.1)–(1.3) hold. For every small ε > 0
and fixed H∗ > 0, there exists a L∗ = L∗(ε,H∗) such that Problem (P) admits
a periodic solution with period T and R(0) = 1−2ε and 1−3ε ≤ R(t) ≤ 1−ε
for all 0 ≤ t ≤ T . In particular,

(1.19) L∗ = ρ3(γ +H∗) +O(ε+ τ).
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Remark 1.1. Since a periodic solution returns to its original state after

one period, the high density cholesterol and the low density cholesterol need

to be balanced to produce such a result. Hence the requirement between L∗
and H∗ is reasonable.

One of the challenges for establishing this theorem is the complexity of

the system. Even for the case of constant nutrient supply, the system does

not allow an explicit stationary solution. So we shall explore a variety of

expansion formulas with respect to ε. Notice that the plaque region disap-

pears when ε approaches 0, so it is crucial to derive various estimates that

are independent of ε as ε → 0, and that is the theme throughout this paper.

The remainder of this paper is devoted to proving this theorem.

For convenience, we make a change of variables

(1.20) L̂ = L− L0(t), Ĥ = H −H0(t), F̂ = F.

Then Problem (P) is equivalent to the following system:

∂L̂

∂t
−ΔL̂ =− ρ1L̂− k1

(M0 − F̂ )L̂

K1 + L̂+ L0(t)

− k1
(M0 − F̂ )L0(t)

K1 + L̂+ L0(t)
− ρ1L0(t)− L′

0(t),

(1.21)

∂Ĥ

∂t
−ΔĤ = −k2

ĤF̂

K2 + F̂
− ρ2Ĥ − k2

H0(t)F̂

K2 + F̂
− ρ2H0(t)−H ′

0(t),(1.22)

∂F̂

∂t
−DΔF̂

− F̂r

rM0

∫ 1

r

[(M0 − F̂
)
(L̂+ L0(t))

γ + Ĥ +H0(t)
− ρ3M0 + (ρ3 − ρ4)F̂

]
· ξdξ

=k1
(M0 − F̂ )(L̂+ L0(t))

K1 + L̂+ L0(t)
− k2

(Ĥ +H0(t))F̂

K2 + F̂

− λ
F̂ (M0 − F̂ )(L̂+ L0(t))

M0(γ + Ĥ +H0(t))
+ (ρ3 − ρ4)

(
M0 − F̂

)
F̂

M0
,

(1.23)

with boundary conditions

∂L̂

∂r
=

∂Ĥ

∂r
=

∂F̂

∂r
= 0 on {r = 1},(1.24)
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⎧⎪⎪⎨⎪⎪⎩
−∂L̂

∂r
+ β1L̂ = 0, −∂Ĥ

∂r
+ β1Ĥ = 0,

− ∂F̂

∂r
+ β2F̂ = 0

on {r = R(t)},(1.25)

and

1

2

d

dt

[
R2(t)

]
=

−1

M0

∫ 1

R(t)

[(M0 − F̂ )(L̂+ L0(t))

γ + Ĥ +H0(t)
− ρ3M0 + (ρ3 − ρ4)F̂

]
rdr.

(1.26)

2. Preliminaries

In this paper, we shall use the function

(2.1) ξ(r) =
1− r2

4
+

1

2
log r

a lot when we apply the maximum principle. This function is introduced in
[2] and satisfies

(2.2)
−Δξ = 1, ξr(r) =

1− r2

2r
,

and ξ(r) ≤ 0, ξ(r) = O(ε2) when 1− ε < r < 1.

Take

c(β, ε) =
1

β

ε(2− ε)

2(1− ε)
− ε(2− ε)

4
− 1

2
log(1− ε) ≡ ε

β
+O(ε2).

Then it is easy to verify that

(2.3)
[
− ∂[ξ + c(β, ε)]

∂r
+ β

(
ξ + c(β, ε)

)]
r=1−ε

= 0.

The following continuity lemma is handy when deriving estimates for
nonlinear system.

Lemma 2.1 (See [8, Lemma 5.1]). Let { �Q(i)
δ }Mi=1 be a finite collection of

real vectors, and define the norm of the vector by | �Qδ|max = max
1≤i≤M

|Q(i)
δ |.

Suppose that 0 < C1 < C2, and

(i) | �Q0|max ≤ C1;
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(ii) For any 0 < δ ≤ 1, if | �Qδ|max ≤ C2, then | �Qδ|max ≤ C1;
(iii) �Qδ is continuous in δ.

Then | �Qδ|max ≤ C1 for all 0 < δ ≤ 1.

3. Approximation

We start with several lemmas. In order to obtain a periodic solution, we
consider the following auxiliary problem

Problem (P∗):

⎧⎨⎩
equations (1.21), (1.22), (1.23),
boundary conditions (1.24), (1.25),
free boundary condition (3.1),

where

1

2

d

dt

[
R2(t)

]
=η+

−1

M0

∫ 1

R(t)

[(M0 − F̂ )(L̂+ L0(t))

γ + Ĥ +H0(t)
− ρ3M0+(ρ3 − ρ4)F̂

]
rdr.

(3.1)

and the constant η satisfies

∫ T

0

{
η+

−1

M0

∫ 1

R(t)

[(M0 − F̂
)(
L̂+ L0(t)

)
γ + Ĥ +H0(t)

−ρ3M0 + (ρ3 − ρ4)F̂
]
rdr

}
dt=0,

(3.2)

where the period T is given in (1.3). The introduction of η forces the free
boundary to be periodic, and later on we shall that η can be chosen as 0 to
recover the original problem.

As a balance between LDL and HDL is required to produce a periodic
solution, we assume

(3.3) L∗ = ρ3(γ +H∗) +m(ε+ τ), −1 < m(ε+ τ) < 1,

with m a constant to be determined and, as indicated in the introduction,
ε > 0, τ > 0, ε, τ are small. The second assumption in (3.3) is crucial, as
the various estimates we derive in the following are all independent of m,
allowing us to freely choose m to allow η to be 0.

In what follows we shall establish

(3.4) η = O(ετ + ε2).
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We shall carefully show that all our estimates, including (3.4), are indepen-
dent of m.

We first consider the initial value problem, with the initial condition
satisfying the compatibility conditions:

(3.5)

∂L̂

∂r
(1, 0) =

∂Ĥ

∂r
(1, 0) =

∂F̂

∂r
(1, 0) = 0,

−∂L̂

∂r
(1− 2ε, 0) + β1L̂(1− 2ε, 0) = 0,

−∂Ĥ

∂r
(1− 2ε, 0) + β1Ĥ(1− 2ε, 0) = 0,

−∂F̂

∂r
(1− 2ε, 0) + β2F̂ (1− 2ε, 0) = 0,

with the bounds on the initial data

(3.6) |L̂(r, 0)| ≤ C∗
0ε, |Ĥ(r, 0)| ≤ C∗

0ε, 0 ≤ F̂ (r, 0) ≤ C∗
0ε,

and its first order derivatives

(3.7)
∣∣∣∂L̂
∂r

(r, 0)
∣∣∣ ≤ C∗

1ε,
∣∣∣∂Ĥ
∂r

(r, 0)
∣∣∣ ≤ C∗

1ε,
∣∣∣∂F̂
∂r

(r, 0)
∣∣∣ ≤ C∗

1ε,

where the constants C∗
0 and C∗

1 are independent of ε and τ . We also assume

(3.8)
∣∣∣∂L̂
∂t

(r, 0)
∣∣∣ ≤ φ(r),

∣∣∣∂Ĥ
∂t

(r, 0)
∣∣∣ ≤ φ(r),

∣∣∣∂F̂
∂t

(r, 0)
∣∣∣ ≤ φ(r),

with a function φ defined explicitly later in (3.31). These conditions can be
rewritten in terms of the derivatives of the initial data through the use of
the equations, but it is clearer to leave the expressions as above.

We take ε to be small so that

C∗
0ε ≤ 1, C∗

1ε ≤ 1.

We let

I =
{
(L,H, F ) ∈ (C2[1− 2ε, 1])3; (L,H, F ) satisfies (3.5)–(3.8)

}
.

Lemma 3.1. Assume that the period T is given in (1.3). Given initial condi-
tions (L̂(·, 0), Ĥ(·, 0), F̂ (·, 0)) ∈ I and the initial position of the free bound-
ary R(0) = 1− 2ε. For small ε, the Problem (P ∗) admits a unique solution
for 0 ≤ t ≤ T .
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Proof. This is accomplished by contraction mapping principle. Let

R =
{
R ∈ C1[0, T ]; R(0) = R(T ) = 1− 2ε, |R′(t)| ≤ ε

T

}
.

It is clear that any R ∈ R must satisfy

(3.9) 1− 3ε ≤ R(t) ≤ 1− ε.

Step 1. Given R ∈ R, the system (1.21)–(1.23) with boundary condi-

tions (1.24), (1.25) and initial conditions (3.5)–(3.8) admit a unique solution.

We use a contraction mapping principle in this step.

Take

(3.10) Λ =

{
(L,H, F );

|L| ≤ C∗∗
0 ε, |H | ≤ C∗∗

0 ε, 0 ≤ F ≤ C∗∗
0 ε,

|∂rL| ≤ C∗∗
1 ε, |∂rH| ≤ C∗∗

1 ε, |∂rF | ≤ C∗∗
1 ε.

}
,

where C∗∗
0 and C∗∗

1 are to be determined, with C∗∗
0 ε ≤ 1, C∗∗

1 ε ≤ 1. For

each (L,H, F ) ∈ Λ, we solve the following linear equations:

∂L̂

∂t
−ΔL̂ =− k1

(M0 − F )L̂

K1 + L+ L0(t)
− ρ1L̂

− k1
(M0 − F )L0(t)

K1 + L+ L0(t)
− ρ1L0(t)− L′

0(t),

(3.11)

∂Ĥ

∂t
−ΔĤ = −k2

ĤF

K2 + F
− ρ2Ĥ − k2

H0(t)F

K2 + F
− ρ2H0(t)−H ′

0(t),(3.12)

∂F̂

∂t
−DΔF̂ − F̂r

rM0

∫ 1

r

[(M0 − F
)
(L+ L0(t))

γ +H +H0(t)

− ρ3M0 + (ρ3 − ρ4)F
]
· ξdξ

=k1
(M0 − F̂ )(L+ L0(t))

K1 + L+ L0(t)
− k2

(H +H0(t))F̂

K2 + F

− λ
F̂
(
M0 − F

)
(L+ L0(t))

M0(γ +H +H0(t))
+

ρ3
M0

(M0 − F̂ )F

− ρ4
M0

(M0 − F )F̂ ,

(3.13)

∂L̂

∂r
=

∂Ĥ

∂r
=

∂F̂

∂r
= 0 on {r = 1, t > 0},(3.14)
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⎧⎪⎪⎨⎪⎪⎩
−∂L̂

∂r
+ β1L̂ = 0, −∂Ĥ

∂r
+ β1Ĥ = 0,

− ∂F̂

∂r
+ β2F̂ = 0,

on {r = R(t)},(3.15)

and the compatibility conditions:

(3.16)

∂L̂

∂r
(1, 0) =

∂Ĥ

∂r
(1, 0) =

∂F̂

∂r
(1, 0) = 0,

−∂L̂

∂r
(1− 2ε, 0) + β1L̂(1− 2ε, 0) = 0,

−∂Ĥ

∂r
(1− 2ε, 0) + β1Ĥ(1− 2ε, 0) = 0,

−∂F̂

∂r
(1− 2ε, 0) + β2F̂ (1− 2ε, 0) = 0,

and under our assumptions (3.6)–(3.7) that L̂(r, 0), Ĥ(r, 0) and F̂ (r, 0) sat-

isfy

|L̂(r, 0)| ≤ C∗
0ε, |Ĥ(r, 0)| ≤ C∗

0ε, 0 ≤ F̂ (r, 0) ≤ C∗
0ε,(3.17)

|L̂r(r, 0)| ≤ C∗
1ε, |Ĥr(r, 0)| ≤ C∗

1ε, |F̂r(r, 0)| ≤ C∗
1ε.(3.18)

Define a map L : (L,H, F ) → (L̂, Ĥ, F̂ ). We shall prove that L maps

Λ into itself and L is a contraction, which indicates that the unique fixed

point of L is the unique classical solution of the system (3.11)–(3.17).

Combining (1.3) with (3.10), we immediately obtain

∣∣∣∂L̂
∂t

−ΔL̂+ k1
(M0 − F )L̂

K1 + L+ L0(t)
+ ρ1L̂

∣∣∣
=

∣∣∣k1 (M0 − F )L0(t)

K1 + L+ L0(t)
+ ρ1L0(t) + L′

0(t)
∣∣∣ ≤ C,

where C is independent of ε, τ , C∗∗
0 and C∗∗

1 . Here and hereafter we shall use

the notation C to denote various different positive constants independent of

ε, τ , C∗∗
0 and C∗∗

1 . It follows that C(ξ(r)+ c(β1, ε))+C∗
0ε is a supersolution

for ±L̂, then, recall (2.2),

(3.19) |L̂| ≤ C(ξ(r) + c(β1, ε)) + C∗
0ε ≤ Cc(β1, ε) + C∗

0ε ≤
2C

β1
ε+ C∗

0ε,
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where ξ(r) is defined in (2.1). Similarly, we also obtain

(3.20) |Ĥ| ≤ 2C

β1
ε+ C∗

0ε.

The fact (L,H, F ) ∈ Λ implies that L+L0(t) ≥ 0 and H+H0(t) ≥ 0 for
small ε and τ . By the maximum principle, we clearly have, for R(t) < r < 1
and t > 0,

(3.21) 0 ≤ F̂ ≤ M0.

By (3.10) and (3.21), the right-hand side of equation (3.13) is bounded, i.e.,

∣∣∣∂F̂
∂t

−DΔF̂ − F̂r

rM0

∫ 1

r

[(M0−F
)
(L+L0(t))

γ +H +H0(t)
− ρ3M0 + (ρ3 − ρ4)F

]
· ξdξ

∣∣∣
≤ C.

The extra term involving F̂r gets a coefficient of order O(ε) and alters only
in an insignificant manner the computation of the supersolution. One can
show that C(ξ(r) + c(β2, ε)) + C∗

0ε is a supersolution for F̂ , so that

|F̂ | ≤ C(ξ(r) + c(β2, ε)) + C∗
0ε ≤ Cc(β2, ε) + C∗

0ε ≤
2C

β2
ε+ C∗

0ε.

Thus we can take

(3.22) C∗∗
0 = C∗

0 + 2Cmax
( 1

β1
,
1

β2

)
.

We next proceed to find C∗∗
1 . Differentiating the equations in r and

applying maximum principle, we find that the system for r-derivatives is
similar to that for the original functions, with the right-hand sides bounded
by C1. Furthermore, on r = 1, L̂r = Ĥr = F̂r = 0. On r = R(t), we use the
boundary conditions (3.15) to derive

1

β1
|L̂r| ≤ C∗∗

0 ε,
1

β1
|Ĥr| ≤ C∗∗

0 ε,
1

β2
|F̂r| ≤ C∗∗

0 ε.

Thus a similar argument as above gives us

(3.23) C∗∗
1 = C∗

1 +max
(2C1

β1
,
2C1

β2
, β1C

∗∗
0 , β2C

∗∗
0

)
.
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Above all, we have shown that (L̂, Ĥ, F̂ ) ∈ Λ, which implies that L
maps Λ into itself. We shall next prove that L is a contraction.

Suppose that (L̂j , Ĥj , F̂j) = L (Lj , Hj , F j) for j = 1, 2, and set

A = ‖L1 − L2‖L∞ + ‖H1 −H2‖L∞ + ‖F 1 − F 2‖L∞ ,

B = ‖L̂1 − L̂2‖L∞ + ‖Ĥ1 − Ĥ2‖L∞ + ‖F̂1 − F̂2‖L∞ .

Recalling (3.11)–(3.12), we get, for some constant C
∗
independent of ε,

∣∣∣∂(L̂1 − L̂2)

∂t
−Δ(L̂1 − L̂2)

∣∣∣ ≤ C
∗
(A + B ),∣∣∣∂(Ĥ1 − Ĥ2)

∂t
−Δ(Ĥ1 − Ĥ2)

∣∣∣ ≤ C
∗
(A + B ).

We now establish the inequality that F̂1 − F̂2 satisfies. By a simple compu-
tation, we have

∣∣∣∂(F̂1 − F̂2)

∂t
−DΔ(F̂1 − F̂2)−

g(L1, H1, F 1)

rM0
∂r(F̂1 − F̂2)

∣∣∣ ≤ C
∗
(A + B ),

where

g(L1, H1, F 1) =

∫ 1

r

[(M0 − F 1

)
(L1 + L0(t))

γ +H1 +H0(t)
− ρ3M0 + (ρ3 − ρ4)F 1

]
· ξdξ.

By (3.10), we have |g(L1, H1, F 1)| ≤ Cε. Recall that ∂rF̂i (i = 1, 2) are

bounded by C∗∗
1 ε. Therefore the presence of the term g(L1,H1,F 1)

rM0
∂r(F̂1− F̂2)

only presents a minor addition and does not alter the computation of our
supersolution. Since we have zero initial conditions for L̂1−L̂2, Ĥ1−Ĥ2, F̂1−
F̂2, the function C

∗
(A +B )(ξ(r)+c(βi, ε)) clearly serves as a supersolution

and therefore by the maximum principle,

|L̂1 − L̂2| ≤ C
∗
(A + B )(ξ(r) + c(β1, ε)),

|Ĥ1 − Ĥ2| ≤ C
∗
(A + B )(ξ(r) + c(β1, ε)),

|F̂1 − F̂2| ≤ C
∗
(A + B )(ξ(r) + c(β2, ε)),

which implies

|L̂1 − L̂2| ≤ C
∗∗
(A + B )ε,
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|Ĥ1 − Ĥ2| ≤ C
∗∗
(A + B )ε,

|F̂1 − F̂2| ≤ C
∗∗
(A + B )ε,

where both C
∗
and C

∗∗
are independent of ε and τ . The above inequalities

imply that

B ≤ C
∗∗
(A + B )ε.

By taking ε sufficiently small, we have

C
∗∗
ε

1− C
∗∗
ε
< 1,

so that L is a contraction mapping. The contraction mapping principle

then gives us a unique solution in Λ of (1.21)–(1.25) for each fixed R ∈ R.

Step 2. We now have a solution of (1.21)–(1.25) for each fixed R ∈ R.

We next proceed to derive the estimates for |L̂t|, |Ĥt| and |F̂t|. We claim

that, for the function φ(t) in (3.8) still to be determined,

(3.24) |L̂t| ≤ φ(r), |Ĥt| ≤ φ(r), |F̂t| ≤ φ(r), R(t) ≤ r ≤ 1, 0 ≤ t ≤ T.

Notice that in the definition of the closed convex set R, R is assumed to

be a C1 function. Differentiating the equations (1.21)–(1.23) in t, we obtain

the equations for L̂t, Ĥt and F̂t, respectively. Even though the equations are

more complex, they are similar in structure as the equations (1.21)–(1.23).

For example, for the equation for F̂t, we have

∂tF̂t −DΔF̂t

−∂rF̂t

rM0

∫ 1

r

[(M0 − F̂ )(L̂+ L0(t))

γ + Ĥ +H0(t)
− ρ3M0 + (ρ3 − ρ4)F̂

]
· ξdξ

=
F̂r

rM0

∫ 1

r

{ M0 − F̂

γ+Ĥ+H0(t)
L̂t −

(M0 − F̂ )(L̂+ L0(t))

(γ+Ĥ+H0(t))2
Ĥt

− L̂+ L0(t)

γ + Ĥ +H0(t)
F̂t +

M0 − F̂

γ + Ĥ +H0(t)
L′
0(t)

−(M0 − F̂ )(L̂+ L0(t))

(γ + Ĥ +H0(t))2
H ′

0(t)
}
ξdξ

+
k1K1(M0 − F̂ )

(K1 + L̂+ L0(t))2
L̂t −

λ

M0

F̂ (M0 − F̂ )

γ + Ĥ +H0(t)
L̂t
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−k2
F̂

K2 + F̂
Ĥt +

λ

M0

F̂ (M0 − F̂ )(L̂+ L0(t))

(γ + Ĥ +H0(t))2
Ĥt

−k1
L̂+ L0(t)

K1 + L̂+ L0(t)
F̂t −

k2K2(Ĥ +H0(t))

(K2 + F̂ )2
F̂t

− λ

M0

(M0 − 2F̂ )(L̂+ L0(t))

γ + Ĥ +H0(t)
F̂t +

ρ3 − ρ4
M0

(M0 − 2F̂ )F̂t

+
k1K1(M0 − F̂ )L′

0(t)

(K1 + L̂+ L0(t))2
− k2

F̂H ′
0(t)

K2 + F̂
− λ

M0

F̂ (M0 − F̂ )L′
0(t)

γ + Ĥ +H0(t)

+
λ

M0

F̂ (M0 − F̂ )(L̂+ L0(t))H
′
0(t)

(γ + Ĥ +H0(t))2
.

The equations for L̂t and Ĥt can be computed in a similar manner (and
simpler). In summary, we have, for R(t) < r < 1, 0 < t < T ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tL̂t −ΔL̂t = a1LL̂t + a2LĤt + a3LF̂t + a4L,

∂tĤt −ΔĤt = a1H L̂t + a2HĤt + a3H F̂t + a4H ,

∂tF̂t −DΔF̂t + bF∂rF̂t =

∫ 1

r
(a1F L̂t + a2F Ĥt + a3F F̂t + a4F )ξdξ

+ a1F L̂t + a2F Ĥt + a3F F̂t + a4F ,

(3.25)

where bF = O(ε), and ajL, ajH , ajF , ajF (j = 1, 2, 3, 4) are bounded with the
bounds depending only on the known quantities.

We next derive boundary conditions for the t-derivatives. Obviously,
differentiating the boundary conditions with respect to t, we obtain at r = 1,

(L̂t)r(1, t) = (Ĥt)r(1, t) = (F̂t)r(1, t) = 0.

To derive the boundary conditions at r = R(t), we differentiate the boundary
condition for L̂ in (1.25) in t and obtain

(3.26) − L̂rrR
′ − L̂rt + β1(L̂rR

′ + L̂t) = 0, r = R(t), 0 ≤ t ≤ T.

The equation (1.21) together with the estimates in (3.10) imply

(3.27) |L̂t − L̂rr| ≤ C0, R(t) ≤ r ≤ 1, 0 ≤ t ≤ T,

for some constant C0 depending only on the given data (i.e., C0 depends only
on ‖L0‖C1[0,T ], ‖H0‖C1[0,T ],M0, ρ1, ρ2, ρ3, ρ4, k1, k2,K1,K2, λ, γ). Combining
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the estimates (3.26) and (3.27), using also the fact that R ∈ R, we find, for
small ε,

(3.28) |−(L̂t)r + (β1 −R′)L̂t| ≤ 1, r = R(t), 0 ≤ t ≤ T.

We also have

β1 −R′ ≥ β1 −
ε

T
≥ 1

2
β1.

Similarly,

(3.29) |−(Ĥt)r + (β1 −R′)Ĥt| ≤ 1, r = R(t), 0 ≤ t ≤ T,

and

(3.30)
∣∣∣−(F̂t)r +

(
β2 −

1

D
R′

)
F̂t

∣∣∣ ≤ 1, r = R(t), 0 ≤ t ≤ T,

where, for small ε,

β2 −
1

D
R′ ≥ 1

2
β2.

Choose C in the definition (3.31) below such that

∣∣∣∂L̂
∂t

(r, 0)
∣∣∣ ≤ φ(r),

∣∣∣∂Ĥ
∂t

(r, 0)
∣∣∣ ≤ φ(r),

∣∣∣∂F̂
∂t

(r, 0)
∣∣∣ ≤ φ(r),

where

(3.31) φ(r) � 1√
ε
[ξ(r)− ξ(1− 3ε)] + max

( 4

β1
,
4

β2
, C

)
.

Then the function φ is a supersolution for ±L̂t,±Ĥt,±F̂t. Indeed, for any
0 < δ ≤ 1, if

(3.32) max
R(t)≤r≤1, 0≤t≤δT

{ |L̂t|
φ(r)

,
|Ĥt|
φ(r)

,
|F̂t|
φ(r)

}
≤ 2,

then the right-hand side functions of (3.25) are all bounded by a constant de-
pending only on the known data. Furthermore, for the equation and bound-
ary conditions for F̂t, the supersolution φ satisfies

∂tφ−DΔφ+ bF∂rφ = D
1√
ε
+O(ε)

1√
ε

1− r2

2r
≥ D

2
√
ε
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∂rφ = 0, r = 1, 0 < t < T,

and

− ∂rφ+
(
β2 −

1

D
R′

)
φ

= − 1√
ε
O(ε) +

(
β2 −

1

D
R′

) 1√
ε
O(ε2) +

(
β2 −

1

D
R′

)
max

( 4

β1
,
4

β2
, C

)
≥ 2 +O(ε1/2), r = R(t), 0 < t < T.

The computations for other equations in the system are similar. By maxi-

mum principle, for small ε,

(3.33) |L̂t| ≤ φ(r), |Ĥt| ≤ φ(r), |F̂t| ≤ φ(r), R(t) ≤ r ≤ 1, 0 ≤ t ≤ δT,

i.e.,

(3.34) max
R(t)≤r≤1, 0≤t≤δT

{ |L̂t|
φ(r)

,
|Ĥt|
φ(r)

,
|F̂t|
φ(r)

}
≤ 1.

Note that the above estimate is true for δ = 0 since it is assumed in (3.8).

The continuity lemma, Lemma 2.1, then implies our t derivative estimates

for δ = 1.

With the estimates of t derivatives in hand, we immediately obtain es-

timates for the second order r-derivatives through the equations.

Step 3. We now define η by (3.2), and define a new R̃(t) by (3.1) with

R̃(0) = 1− 2ε:

d

dt

[R̃2(t)

2

]
= η +

−1

M0

∫ 1

R(t)

[(M0 − F̂ )(L̂+ L0(t))

γ + Ĥ +H0(t)
− ρ3M0 + (ρ3 − ρ4)F̂

]
rdr,∫ T

0

{
η +

−1

M0

∫ 1

R(t)

[(M0 − F̂ )(L̂+ L0(t))

γ + Ĥ +H0(t)
− ρ3M0 + (ρ3 − ρ4)F̂

]
rdr

}
dt = 0.

We next proceed to show that the map M : R → R̃ � MR is a contraction.

First we show M maps R into itself. From (3.1), (3.2), (1.1) and (3.3),

we find that |R̃′(t)| ≤ C(ετ + ε2), so that |R̃′(t)| ≤ ε/T for 0 ≤ t ≤ T if τ

and ε are small enough.

To show that it is a contraction, take R1, R2 ∈ R. Let (Li, Hi, Fi, ηi)

(i = 1, 2) be the corresponding solutions from Step 1. We need to make a
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change of variables to transform the equations into the same domain:

(3.35) (r̃, t̃) =
(
1− 2ε

1− r

1−Ri(t)
, t
)
, i = 1, 2.

It maps r = Ri(t) (i = 1, 2) into r̃ = 1 − 2ε and keeps the boundary r = 1

fixed. Notice that under our assumptions,

ε ≤ 1−Ri(t) ≤ 3ε.

Under this change of variables,

∂

∂t
=

∂

∂t̃
+

R′
i(t)

1−Ri(t)
(r̃ − 1)

∂

∂r̃
=

∂

∂t̃
− R′

i(t)

Si(t)

1− r̃

2ε

∂

∂r̃
,

Si(t) � 1−Ri(t)

2ε
,

1

2
≤ Si(t) ≤

3

2
, 0 ≤ 1− r̃

2ε
≤ 1,

S1(t)− S2(t) =
R2(t)−R1(t)

2ε
,

∂

∂r
=

1

Si(t)

∂

∂r̃
,

1

r

∂

∂r

(
r
∂

∂r

)
=

1

S2
i (t)

∂2

∂r̃2
+

1

1− Si(t)(1− r̃)

1

Si(t)

∂

∂r̃
.

Let L̃i(r̃, t̃) = L̂i(r, t), H̃i(r̃, t̃) = Ĥi(r, t) and F̃i(r̃, t̃) = F̂i(r, t), i = 1, 2.

Then the system is transformed to

∂L̃i

∂t̃
− 1

S2
i (t)

∂2L̃i

∂r̃2
+
[
− R′

i(t)

Si(t)

1− r̃

2ε
− 1

1− Si(t)(1− r̃)

1

Si(t)

]∂L̃i

∂r̃

=fL(L̃i, H̃i, F̃i),

∂H̃i

∂t̃
− 1

S2
i (t)

∂2H̃i

∂r̃2
+
[
− R′

i(t)

Si(t)

1− r̃

2ε
− 1

1− Si(t)(1− r̃)

1

Si(t)

]∂H̃i

∂r̃

=fH(L̃i, H̃i, F̃i),

∂F̃i

∂t̃
−D

1

S2
i (t)

∂2F̃i

∂r̃2

+
[
− R′

i(t)

Si(t)

1− r̃

2ε
− 1

1− Si(t)(1− r̃)

1

Si(t)

(
D +

g̃(L̃i, H̃i, F̃i)

M0

)]∂F̃i

∂r̃

=fF (L̃i, H̃i, F̃i),
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for 1− 2ε < r̃ < 1 and t > 0, where

fL(L̃i, H̃i, F̃i) = −k1
(M0 − F̃i)L̃i

K1 + L̃i + L0(t)

− ρ1L̃i − k1
(M0 − F̃i)L0(t)

K1 + L̃i + L0(t)
− ρ1L0(t)− L′

0(t),

fH(L̃i, H̃i, F̃i) = −k2
H̃iF̃i

K2 + F̃i

− ρ2H̃i − k2
H0(t)F̃i

K2 + F̃i

− ρ2H0(t)−H ′
0(t),

fF (L̃i, H̃i, F̃i) = k1
(M0 − F̃i)(L̃i + L0(t))

K1 + L̃i + L0(t)
− k2

(H̃i +H0(t))F̃i

K2 + F̃i

− λ
F̃i(M0 − F̃i)(L̃i + L0(t))

M0(γ + H̃i +H0(t))
+

ρ3 − ρ4
M0

(M0 − F̃i)F̃i

g̃(L̃i, H̃i, F̃i) = Si(t)

∫ 1

r̃

[(M0 − F̃i)(L̃i + L0(t))

γ + H̃i +H0(t)
− ρ3M0

+ (ρ3 − ρ4)F̃i

]
·
(
1− Si(t)(1− ξ)

)
dξ.

It is also clear that, at r̃ = 1,

(L̃i)r̃(1, t) = (H̃i)r̃(1, t) = (F̃i)r̃(1, t) = 0,

and at r̃ = 1− 2ε,

−(L̃i)r̃(1− 2ε, t) + β1Si(t)L̃i(1− 2ε, t) = 0,

−(H̃i)r̃(1− 2ε, t) + β1Si(t)H̃i(1− 2ε, t) = 0,

−(F̃i)r̃(1− 2ε, t) + β2Si(t)F̃i(1− 2ε, t) = 0.

As in Step 1, define

A = ‖L̃1 − L̃2‖L∞ + ‖H̃1 − H̃2‖L∞ + ‖F̃1 − F̃2‖L∞ ,

where the norms on L̃, H̃, F̃ are taken in the transformed domain. We let

D =
1

ε
‖R1 −R2‖L∞[0,T ] + ‖R′

1 −R′
2‖L∞[0,T ].
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Then L̃1 − L̃2 satisfies L̃1(·, 0)− L̃2(·, 0) = 0 and

∂(L̃1 − L̃2)

∂t̃
− 1

S2
1(t)

∂2(L̃1 − L̃2)

∂r̃2

+
[
− R′

1(t)

S1(t)

1− r̃

2ε
− 1

1− S1(t)(1− r̃)

1

S1(t)

]∂(L̃1 − L̃2)

∂r̃

=
[ 1

S2
1(t)

− 1

S2
2(t)

]∂2L̃2

∂r̃2
+
[(R′

1(t)

S1(t)
− R′

2(t)

S2(t)

)1− r̃

2ε

+
1

1− S1(t)(1− r̃)

1

S1(t)
− 1

1− S2(t)(1− r̃)

1

S2(t)

]∂L̃2

∂r̃

+ fL(L̃1, H̃1, F̃1)− fL(L̃2, H̃2, F̃2)

� JL,

where by Step 2 and (3.10), we clearly have

|JL| ≤ C(A + D )

with C independent of ε and τ . The equations that H̃1 − H̃2 and F̃1 − F̃2

satisfy are similar. Using maximum principle as in Step 1, we find that the
function C(A + D )(ξ(r) + 3c(βi, ε)) is a supersolution, i.e.,

|L̃1 − L̃2| ≤ CεA + CεD ,(3.36)

|H̃1 − H̃2| ≤ CεA + CεD ,(3.37)

|F̃1 − F̃2| ≤ CεA + CεD .(3.38)

Taking 3Cε < 1
2 we find

(3.39) A ≤ CεD .

Notice that in the new variables

d

dt

[R̃2
i (t)

2

]
= ηi +

−1

M0

∫ 1

1−2ε

[(M0 − F̃i)(L̃i + L0(t))

γ + H̃i +H0(t)
− ρ3M0

+ (ρ3 − ρ4)F̃i

]
Si(t)[1− Si(t)(1− r̃)]dr̃,∫ T

0

{
ηi +

−1

M0

∫ 1

1−2ε

[(M0 − F̃i)(L̃i + L0(t))

γ + H̃i +H0(t)
− ρ3M0

+ (ρ3 − ρ4)F̃i

]
Si(t)[1− Si(t)(1− r̃)]dr̃

}
dt = 0,



282 Yaodan Huang and Bei Hu

from which and (3.39) it follows that

|η1 − η2| ≤ C(ε2 + ετ)D ,(3.40) ∣∣∣d[R̃2
1(t)− R̃2

2(t)]

dt

∣∣∣ ≤ C(ε2 + ετ)D .(3.41)

Since R̃1(0) = R̃2(0) = 1− 2ε, we derive

(3.42) ‖(R̃1)
2 − (R̃2)

2‖C1[0,T ] ≤ C(ε+ τ)‖R1 −R2‖C1[0,T ].

Combining with the fact that 1− 3ε ≤ R̃i ≤ 1− ε, we find

(3.43) ‖R̃1 − R̃2‖C1[0,T ] ≤ C(ε+ τ)‖R1 −R2‖C1[0,T ],

and hence we have a contraction if ε and τ are small. Thus we have a unique
fixed point.

Notice that with the introduction of η, the free boundary r = R(t) is
already periodic with period T , namely, R(T ) = R(0) = 1−2ε. To produce a
periodic solution, we use another contraction mapping principle. We define
a map that will map the initial data at time t = 0 to the data after one
period t = T . Then a fixed point of this map will correspond to a periodic
solution. But first we need to show that this map will map an appropriate
set of initial data satisfying (3.6), (3.7) and (3.8) into itself. The estimate
for (3.8) at t = T was already established in Lemma 3.1. We shall establish
(3.6) and (3.7) for t = T in the next lemma, which will serve this purpose.
This lemma can be established in our case since the energy is released at the
boundary at r = R(t) while the domain is small.

Lemma 3.2. The constants C∗
0 and C∗

1 in (3.6) and (3.7) can be selected
such that, at t = T ,

|L̂(r, T )| ≤ C∗
0ε, |Ĥ(r, T )| ≤ C∗

0ε, |F̂ (r, T )| ≤ C∗
0ε,(3.44)

|L̂r(r, T )| ≤ C∗
1ε, |Ĥr(r, T )| ≤ C∗

1ε, |F̂r(r, T )| ≤ C∗
1ε,(3.45)

and

(3.46) |R′(t)| ≤ ε

T
for 0 ≤ t ≤ T.

Proof. We have already established (3.46) and the following estimates:

|L̂(r, t)| ≤ C∗∗
0 ε, |Ĥ(r, t)| ≤ C∗∗

0 ε, |F̂ (r, t)| ≤ C∗∗
0 ε,(3.47)

|L̂r(r, t)| ≤ C∗∗
1 ε, |Ĥr(r, t)| ≤ C∗∗

1 ε, |F̂r(r, t)| ≤ C∗∗
1 ε,(3.48)
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where, by (3.22) and (3.23),

C∗∗
0 = C∗

0 + 2Cmax
( 1

β1
,
1

β2

)
,

C∗∗
1 = C∗

1 +max
(2C1

β1
,
2C1

β2
, β1C

∗∗
0 , β2C

∗∗
0

)
,

with the constants C and C1 independent of C∗
0 and C∗

1 , as long as ε is
small so that C∗∗

0 ε ≤ 1, C∗∗
1 ε ≤ 1. Thus C(ξ(r) + c(β1, ε)) + C∗

0εe
−t is a

supersolution for ±L̂ for small ε. Taking C∗
0 such that

(3.49) C∗
0 (1− e−T ) = 2Cmax

( 1

β1
,
1

β2

)
,

then, for small ε,

|L̂(r, T )| ≤ C(ξ(r) + c(β1, ε)) + C∗
0εe

−T =
C

β1
ε+O(ε2) + C∗

0εe
−T ≤ C∗

0ε.

Then, as in the proof of Lemma 3.1, we also conclude the estimate for
|L̂r(r, T )|. The rest of the proof is similar.

Lemma 3.3. Assume that R(0) = 1− 2ε and (L̂(·, 0), Ĥ(·, 0), F̂ (·, 0)) ∈ I .
We define the solution (L̂, Ĥ, F̂ , R, η) by Lemma 3.1. Then the mapping
N : (L̂(·, 0), Ĥ(·, 0), F̂ (·, 0)) → (L̂(·, T ), Ĥ(·, T ), F̂ (·, T )) maps I into itself
and is a contraction and therefore admits a unique solution in I . It is clear
that this unique solution corresponds to a periodic solution of (P∗).

Proof. Lemma 3.2 and (3.24) ensure that N maps the set I into it-
self. Given two set of initial data (L̂i(·, 0), Ĥi(·, 0), F̂i(·, 0)) (i = 1, 2), by
Lemma 3.1, there exist corresponding unique solutions (L̂i, Ĥi, F̂i, Ri) for
(P∗). We now proceed with the transform (3.35) to map into the same do-
main. Let L̃i(r̃, t̃) = L̂i(r, t), H̃i(r̃, t̃) = Ĥi(r, t) and F̃i(r̃, t̃) = F̂i(r, t). Then,
for 1− 2ε < r̃ < 1 and t̃ > 0,

∂L̃i

∂t̃
− 1

S2
i (t)

∂2L̃i

∂r̃2
+
[
− R′

i(t)

Si(t)

1− r̃

2ε
− 1

1− Si(t)(1− r̃)

1

Si(t)

]∂L̃i

∂r̃

=fL(L̃i, H̃i, F̃i),

∂H̃i

∂t̃
− 1

S2
i (t)

∂2H̃i

∂r̃2
+
[
− R′

i(t)

Si(t)

1− r̃

2ε
− 1

1− Si(t)(1− r̃)

1

Si(t)

]∂H̃i

∂r̃

=fH(L̃i, H̃i, F̃i),
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∂F̃i

∂t̃
−D

1

S2
i (t)

∂2F̃i

∂r̃2

+
[
− R′

i(t)

Si(t)

1− r̃

2ε
− 1

1− Si(t)(1− r̃)

1

Si(t)

(
D +

g̃(L̃i, H̃i, F̃i)

M0

)]∂F̃i

∂r̃

=fF (L̃i, H̃i, F̃i),

where fL, fH , fF are defined in Step 3 of Lemma 3.1, and

Si(t) =
1−Ri(t)

2ε
.

Furthermore, L̃1 − L̃2 satisfies

∂(L̃1 − L̃2)

∂t̃
− 1

S2
1(t)

∂2(L̃1 − L̃2)

∂r̃2

+
[
− R′

1(t)

S1(t)

1− r̃

2ε
− 1

1− S1(t)(1− r̃)

1

S1(t)

]∂(L̃1 − L̃2)

∂r̃

=
[ 1

S2
1(t)

− 1

S2
2(t)

]∂2L̃2

∂r̃2
+
[(R′

1(t)

S1(t)
− R′

2(t)

S2(t)

)1− r̃

2ε

+
1

1− S1(t)(1− r̃)

1

S1(t)
− 1

1− S2(t)(1− r̃)

1

S2(t)

]∂L̃2

∂r̃

+fL(L̃1, H̃1, F̃1)− fL(L̃2, H̃2, F̃2)

� JL,

where |JL| ≤ C(A +D ) with C independent of ε and τ . The equations that

H̃1 − H̃2 and F̃1 − F̃2 satisfy are similar. And as in the proof of Lemma 3.1,

|η1 − η2| ≤ CετD + CεA ,(3.50) ∣∣∣d[R2
1(t)−R2

2(t)]

dt

∣∣∣ ≤ CετD + CεA ,(3.51)

where

A � ‖L̃1 − L̃2‖L∞([1−2ε,1]×[0,T ]) + ‖H̃1 − H̃2‖L∞([1−2ε,1]×[0,T ])

+ ‖F̃1 − F̃2‖L∞([1−2ε,1]×[0,T ]),

D =
1

ε
‖R1 −R2‖L∞[0,T ] + ‖R′

1 −R′
2‖L∞[0,T ].
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It follows from (3.51) that

‖R1 −R2‖L∞[0,T ] ≤ CετD + CεA + Cε2D ,

‖R′
1 −R′

2‖L∞[0,T ] ≤ CετD + CεA + Cε2D .

Choosing ε and τ to be small enough, we find

(3.52) ‖R1 −R2‖C1[0,T ] ≤ CεA .

Then we follow the proof of Lemma 3.2, say, to construct supersolutions

CA [ξ(r) + 3c(β1, ε)] + e−t‖L̃1(·, 0)− L̃2(·, 0)‖L∞ for L̃1 − L̃2. After working

through all equations, we find

‖L̃1(·, t)− L̃2(·, t)‖L∞ + ‖H̃1(·, t)− H̃2(·, t)‖L∞ + ‖F̃1(·, t)− F̃2(·, t)‖L∞

≤ C̃εA + e−t[‖L̃1(·, 0)− L̃2(·, 0)‖L∞ + ‖H̃1(·, 0)− H̃2(·, 0)‖L∞

+ ‖F̃1(·, 0)− F̃2(·, 0)‖L∞ ],

which implies, if C̃ε ≤ 1
2 ,

1

2
A ≤ ‖L̃1(·, 0)− L̃2(·, 0)‖L∞ + ‖H̃1(·, 0)− H̃2(·, 0)‖L∞

+ ‖F̃1(·, 0)− F̃2(·, 0)‖L∞ .

Taking ε small so that 2C̃ε+ e−T < 1, we then conclude that the mapping

N is a contraction.

4. Completing the proof

We now proceed to show the existence of a periodic solution of the original

problem. All we have to show is that η = 0 for appropriate data.

Lemma 4.1. For every small ε, τ and fixed H∗ > 0, there exists a L∗ =

L∗(ε,H∗) such that the problem (P ∗) admits a periodic solution with period

T , R(0) = 1− 2ε, and with η = 0.

Proof. From (3.2), we have

η =
1

M0T

∫ T

0

∫ 1

R(t)

[ M0L0(t)

γ +H0(t)
− ρ3M0 +O(ε)

]
rdrdt(4.1)
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=
1

T

∫ T

0

∫ 1

R(t)

[ L∗
γ +H∗

− ρ3 +O(ε) +O(τ)
]
rdrdt.

The integrand in the above expression is of order[
mε+O(ε)

]
+
[
mτ +O(τ)

]
, ε > 0, τ > 0.

and the estimates for all previous lemmas are independent of m. It follows
that if we choose m 
 1 in (3.3), then η > 0, and likewise, it is clear
that η < 0 when m � 1. Notice that the solution is unique within I and
therefore the values η various continuously with the changing m value. Thus
there must a value m for which η = 0. This completes the proof.

Remark 4.1. It is also clear that

L∗ = ρ3(γ +H∗) +O(ε) +O(τ).

5. Conclusion

In reality, nutrient concentration changes with the intake of food, which hap-
pens very often in a periodic manner. It is therefore biologically reasonable
to seek a periodic solution. Indeed, we have rigorously established a periodic
small-plaque solution in this paper, once again confirming the strength of
the model, established by Friedman et al. [1, 3].

Establishing a small radially symmetric periodic plaque is only the first
step. Questions such as stability, and potential bifurcation into non-radially
symmetric periodic solutions, are the subject matters for future studies.
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