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Exploring the evolutionary dynamics of infectious
diseases through SIS epidemic models

King-Yeung Lam, Yuan Lou, and Shizhao Ma

To study the evolution and interaction among multiple strains
of a given infectious disease, we incorporate phenotypic structure
into Susceptible-Infected-Susceptible (SIS) epidemic models of the
reaction-diffusion type. It is shown that the unique disease-free
equilibrium is globally asymptotically stable when the basic re-
production number is less than one, and the infected population
persists when the basic reproduction number is greater than one.
In the latter case, the asymptotic profile of the endemic equilib-
rium is determined when the mutation rate of the infected popula-
tion converges to zero. We integrate analytical results with numer-
ical simulations of the proposed model to investigate how multiple
phenotypic traits evolve. Our findings confirm that the susceptible
population evolves to be primarily made up of individuals with low
immunity, while the infected population is eventually comprised of
highly infectious individuals with low mutation rate. These results
indicate that as the disease infectivity continues to increase, the
group immunity will decrease. In addition, if the virus mutation
rate is initially small, it will first increase rapidly before eventually
decreasing. Finally, those strains with low mutation rates are more
advantageous in the long run, i.e. the virus might first employ the
high mutation rate to increase infectivity rapidly, and then use the
low mutation rate to maintain its advantageous position of high
infectivity.

1. Introduction

The COVID-19 pandemic is caused by the outbreak of coronavirus SARS-
CoV-2. [1]. First discovered in December of 2019, the disease spread rapidly
across the globe. As of December 14, 2022, a total number of 650,661,649
confirmed cases are reported along with 6,656,920 deaths [2]. COVID-19 has
become one of the largest epidemics in human history.

During the early phase of COVID-19, the virus evolved rapidly and
maximized transmission between individuals [3, 4, 5]. As the vaccinated
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and infected population grows, host immune pressure increases the selection
of SARS-CoV-2 variants that is more prone to immune escape [3, 4, 5].
Antigenic drift, which is caused by the high viral mutation rate, enables
immune escape, and limits the duration of immunity conferred by infection
or vaccination. This is especially relevant in the evolution of SARS-CoV-2 [3].

TheWorld Health Organization has classified 5 major variants of concern
(VOC) regarding SARS-CoV-2. They include the Alpha variant (Decem-
ber 2020), the Beta variant (December 2020), the Gamma variant (January
2021), the Delta variant (May 2021) and the Omicron variant (August 2021)
[6].

Since the outbreak of COVID-19, the adaptive evolution of virus can be
observed in terms of the changes of transmissibility, virulence and immune
escape [6]. As the virus evolves, each VOC seemed to be more infectious than
the strain it displaced [7, 6, 8]. Most of VOCs feature immune escape muta-
tion [5, 9], especially Omicron, which spreads explosively between individuals
with high immunity due to previous infection or vaccination [5, 10, 11].

While viral immune escape and transmissibility are also under strong
evolutionary pressure, the evolution of virulence is typically a by-product of
these effects and is hard to predict. Ultimately, the evolution of virulence
depends on the complex interactions between factors in both the host and
the pathogen [5].

Mathematical modeling [12, 13, 14, 15] has played an important role
in describing the dynamics of infectious diseases and in policy making. Us-
ing systems of nonlinear differential equations, classical epidemic models
aim to predict and provide a guide for policy-makers for the goals of dis-
ease prevention and control. The research of partial differential equation
(PDE) epidemiological models mainly focuses on the influence of spatial (or
phenotypic) heterogeneity on disease progression. See, for instance the spa-
tial Susceptible-Infected-Susceptible (SIS) epidemic reaction-diffusion model
[16] and a population evolution model with a continuously varying pheno-
typic trait [17].

In this paper, we introduce a set of partial differential equation models
with phenotypic heterogeneity to better understand the spread and evolu-
tion of diseases. These PDE models take into account the heterogeneity in
the susceptibility (determined by host immunological trait) of the healthy
population as well as the heterogeneity in the infectiousness (determined by
virus variants) of the population inflicted with the disease. In these models,
we presume that gene expression affect the immunological trait, and the
viral strain determines the infectivity of the infected population. In a long-
lasting epidemic, it is commonly observed that the immunity of susceptible
population decreases, while the infectivity of infected population increases.
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Based upon the mutation of quantitative traits in infectious diseases, our
models suggest some underlying mechanism for the evolution of infectivity,
immunity and mutation rate.

The rest of the paper is organized as follows. In Sect. 2, we introduce
several structured SIS PDE models for infectious diseases and perform the
mathematical analysis of the continuous trait models, together with the
numerical simulations of the dynamics of the models. We also consider the
asymptotic profile of the endemic equilibrium as the mutation rate converges
to zero. In Sect. 3, building upon the models in Sect. 2, we introduce another
set of structured mathematical models to study the evolution of the mutation
rate, and numerical simulations are presented to explore the evolutionary
trend of the infectious diseases. Some discussions are given in Sect. 4.

2. Evolution of infectivity and immunity

We start by introducing the Kermack-McKendrick model in epidemiology
[18, 19]. A population is divided into susceptible compartment and infected
compartment according to the proportion of uninfected and infected popu-
lations over the time. To be more specific, let S(t) and I(t) be the number of
susceptible individuals and infected individuals at time t, respectively. The
susceptible individuals become infected with the transmission rate β and the
infected individuals recover at the rate γ. It is assumed that each infected in-
dividual after recovery immediately becomes susceptible again. This process
is illustrated in Fig. 1A. The corresponding Susceptible-Infected-Susceptible
model is described by the system{

S′(t) = − βSI
S+I + γI,

I ′(t) = βSI
S+I − γI, t > 0.

(2.1)

This simple epidemic model (2.1) ignores individual variations in sus-
ceptibility and immunity. On the other hand, the heterogeneity of the pop-
ulation can be captured by introducing multiple compartments [20].

The properties which determine a host’s infectivity, such as the viral
load levels or the virus variants with higher infectivity, can differ among
individuals over time [14]. To explore the effects of individual variations, we
extend the single strain case (2.1) into the case of multiple infected groups
Ij that is infected with different virus strains j (j = 1, . . . ,m). Similarly, we
take into account n immunological types (or other properties that determine
the susceptibility, such as differential exposure to infection [12]) of suscepti-
ble individuals in order to model the individual variations in susceptibility
to infection.
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Figure 1: Schematic illustrations of models. (Panel A) S (or I) repre-
sents susceptible (or infected) individuals; (Panel B) Si (i = 1, . . . , n) indi-
cates the susceptible sub-populations with varied immunological traits, and
Ij (j = 1, . . . ,m) indicates the sub-populations infected with virus strain j.
An illustration of m = n = 2 is given in Fig. 1B. The dashed lines represent
the mutation process, while the solid lines represent the transmission and
recovery.

On the basis of the above assumption, we construct an epidemic model
in which all individuals are divided into n+m classes: The uninfected pop-
ulation is divided according to the type host immunological trait indexed
by i (Si, i = 1, . . . , n), and the infected population is divided according to
the viral strain indexed by j (Ij , j = 1, . . . ,m). Note that we do not consider
infection of an individual by more than one strain. This model highlights
population heterogeneity and link heterogeneity to disease transmission rate
and recovery rate, that is, different individuals can be characterized by their
transmission rate or recovery rate. We assume that Si(t) denotes the num-
ber of susceptible individuals of type i at time t; Ij(t) indicates the num-
ber of individuals infected with virus strain j at time t, respectively. Let
S = (S1, S2, . . . , Sn), I = (I1, I2, . . . , Im) and define the n×m matrix β, the
m× 1 matrix γ and the n× 1 matrix θ as follows:

β =

⎛
⎜⎜⎜⎝
β11 β12 · · · β1m
β21 β12 · · · β1m
...

...
. . .

...
βn1 βn2 · · · βnm

⎞
⎟⎟⎟⎠ , γ =

⎛
⎜⎜⎜⎝

γ1
γ2
...
γm

⎞
⎟⎟⎟⎠ , θ =

⎛
⎜⎜⎜⎝
θ1
θ2
...
θn

⎞
⎟⎟⎟⎠ ,

where βij represents the transmission rate at which susceptible individu-
als Si become infected with the virus strain j; γj is the recovery rate for
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the disease caused by virus strain j; θi denotes the probability that, as an
infected individual recovers, he/she enters the susceptible compartment Si

after recovery. Note that the vector θ satisfies
n∑

i=1
θi = 1, i.e. every recovered

person becomes susceptible again.

In order to incorporate the adaptation of individuals into the mathemat-
ical model, we use the mutation matrix to model the effect of the genetic or
phenotypic variations occurring at rate dS and dI , respectively. We define
the n× n mutation matrix M and m×m mutation matrix N as follows:

M =

⎛
⎜⎜⎜⎝
M11 M12 · · · M1n

M21 M22 · · · M2n
...

...
. . .

...
Mn1 Mn2 · · · Mnn

⎞
⎟⎟⎟⎠ , N =

⎛
⎜⎜⎜⎝

N11 N12 · · · N1m

N21 N22 · · · N2m
...

...
. . .

...
Nm1 Nm2 · · · Nmm

⎞
⎟⎟⎟⎠ ,

where M and N satisfy

Mii < 0, Mij ≥ 0 for i �= j, and

n∑
i=1

Mij = 0 for all j,

and

Nii < 0, Nij ≥ 0 for i �= j, and

m∑
i=1

Nij = 0 for all j.

This process is shown in Fig. 1B for the case m = n = 2. The model is
described by a system of n+m ordinary differential equations as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi

dt = dS

n∑
k=1

MkiSk︸ ︷︷ ︸
Mutation

−

m∑
j=1

βijIj

n∑
i=1

Si +
m∑
j=1

Ij

Si

︸ ︷︷ ︸
Infection

+ θi

n∑
j=1

γjIj

︸ ︷︷ ︸
Recovery

, t > 0, i = 1, . . . , n,

dIj
dt = dI

m∑
k=1

NkjIk︸ ︷︷ ︸
Mutation

+

n∑
i=1

βijSi

n∑
i=1

Si +
m∑
j=1

Ij

Ij

︸ ︷︷ ︸
Infection

− γjIj ,︸︷︷︸
Recovery

t > 0, j = 1, . . . ,m.

(2.2)
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Next, we let n,m → ∞ and extend the multi-compartment model (2.2)
to a continuum (in trait) version. For this purpose, we introduce the con-
tinuous variables x ∈ Ω1 = [0, L1] and y ∈ Ω2 = [0, L2] for the phenotypic
state of populations. As a result, S(x, t) denotes the density of susceptible
population with phenotypic state x at time t and I(y, t) denotes the density
of infected population with phenotypic state y at time t, respectively.

Generally speaking, x (or y) can refer to the expression levels of marker
genes and can be measured by single cell sequencing techniques [21]. For
simplicity, we refer to x as quantities that affect immunological trait and
y as quantities that affect infectivity, that is, the coefficients β, γ and θ in
model (2.2) are individual-specific and depending on the state x or y in the
population. We suppose that β(x, y) accounts for the rate of disease trans-
mission with phenotypic state x and y; Infected individuals with phenotypic
state y recover at rate γ(y). As in model (2.2), the probability of individuals

becoming susceptible again, θ(x), satisfies
∫ L1

0 θ(x) dx = 1. The dynam-
ics of the susceptible and infected populations is modeled by the following
reaction-diffusion system, which generalizes (2.2):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

St(x, t) = dSSxx(x, t)−
∫ L2
0

β(x,y)I(y,t) dy
∫ L1
0

S(x,t) dx+
∫ L2
0

I(y,t) dy
S(x, t)

+ θ(x)
∫ L2

0 γ(y)I(y, t) dy, 0 < x < L1, t > 0,

It(y, t) = dIIyy(y, t) +
∫ L1
0

β(x,y)S(x,t) dx
∫ L1
0

S(x,t) dx+
∫ L2
0

I(y,t) dy
I(y, t)− γ(y)I(y, t),

0 < y < L2, t > 0,

Sx(x, t) = Iy(y, t) = 0, x ∈ {0, L1}, y ∈ {0, L2}, t > 0,

S(x, 0) = S0(x) ≥ 0, I(y, 0) = I0(y) ≥ 0, 0 < x < L1, 0 < y < L2.

(2.3)

The interpretations of all nonnegative parameters in model (2.3) are
given in Table 1.

We define the size of susceptible and infected populations at time t,
respectively, as follows:

S̄(t) =

∫ L1

0
S(x, t) dx, Ī(t) =

∫ L2

0
I(y, t) dy.

Moreover, we define the mean phenotypic state at time t as

x̄(t) =

∫ L1

0 xS(x, t) dx∫ L1

0 S(x, t) dx
, ȳ(t) =

∫ L2

0 yI(y, t) dy∫ L2

0 I(y, t) dy
.
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Table 1: The variables in model (2.3)

Notation Description
x Immunity status of susceptible individuals
y Infectivity status of infected individuals
S(x, t) The density of susceptible population with phenotypic state x at time t
I(y, t) The density of infected population with phenotypic state y at time t
dS The mutation rate of immunity
dI The mutation rate of infectivity
β(x, y) The rate of disease transmission
γ(y) The rate of recovery
θ(x) The probability of individuals at state x becoming susceptible again
[0, L1] The mutation space of immunity x
[0, L2] The mutation space of infectivity y

Throughout this paper, we assume that the initial conditions satisfy

∫ L1

0
S(x, 0) dx+

∫ L2

0
I(y, 0) dy = N,

where N is a positive constant which is fixed throughout this paper.

Integrating the equation of S over x and integrating the equation of I

over y, summing two equations, we deduce that

∂

∂t

(∫ L1

0
S(x, t) dx+

∫ L2

0
I(y, t) dy

)
= 0, t > 0.

Therefore, it follows that

∫ L1

0
S(x, t) dx+

∫ L2

0
I(y, t) dy ≡ N for all t ≥ 0.(2.4)

We are interested in the non-negative equilibrium solutions of model

(2.3), that is, the non-negative solutions of the following system:

⎧⎪⎪⎨
⎪⎪⎩
dSSxx(x)−

∫ L2
0 β(x,y)I(y) dy

∫ L1
0 S(x) dx+

∫ L2
0 I(y) dy

S(x) + θ(x)
∫ L2

0
γ(y)I(y) dy = 0, 0 < x < L1,

dIIyy(y) +
∫ L1
0 β(x,y)S(x) dx

∫ L1
0 S(x) dx+

∫ L2
0 I(y) dy

I(y)− γ(y)I(y) = 0, 0 < y < L2,

Sx(x) = Iy(y) = 0, x ∈ {0, L1}, y ∈ {0, L2}.

(2.5)

Here, S(x) and I(y) denote the density of susceptible and infected individ-
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uals at equilibrium, respectively. Recall (2.4), we have∫ L1

0
S(x) dx+

∫ L2

0
I(y) dy ≡ N.(2.6)

In the population model (2.5), only solution (S(x), I(y)) satisfying
S(x) ≥ 0 on [0, L1] and I(y) ≥ 0 on [0, L2] are of interest. A disease-free
equilibrium (DFE) is a solution of (2.5)–(2.6) so that I(y) = 0 for every
y ∈ (0, L2); An endemic equilibrium (EE) of (2.5)–(2.6) is a solution in
which I(y) > 0 for some y ∈ (0, L2). We denote a DFE by (Ŝ, 0) and an EE
by (S̃, Ĩ). By direct computations and condition (2.6), we get Ŝ(x) = N/L1.
Thus (2.5) have a unique disease-free equilibrium, which is phenotypically
homogeneous.

Following [16], we define the basic reproduction number for model (2.3)
as follows:

R0 = sup
ϕ∈H1([0,L2])

ϕ �=0

{
1
L1

∫ L1

0

∫ L2

0 β(x, y)ϕ2(y) dxdy

dI
∫ L2

0 (ϕ′(y))2 dy +
∫ L2

0 γ(y)ϕ2(y) dy

}
.(2.7)

Remark 2.1. It follows from (2.7) that R0 > 1 provided that

1

L1

∫ L1

0

∫ L2

0
β(x, y) dxdy >

∫ L2

0
γ(y) dy.

2.1. Mathematical analysis of model (2.3)

In this subsection, we study the dynamics of model (2.3) when the ba-
sic reproduction number is less than one and greater than one, respec-
tively. Subsect. 2.1.1 provides some preliminary estimates on the solutions of
model (2.3). Subsect. 2.1.2 is devoted to the stability analysis of the disease-
free equilibrium. In Subsect. 2.1.3 the existence of endemic equilibrium is
established.

2.1.1. Preliminary estimates Let

X=

{
(S0, I0)∈C([0, L1];R+)× C([0, L2];R+) :

∫ L1

0
S0 dx+

∫ L2

0
I0 dy=N

}
.

We prove several a priori estimates of solutions to (2.3) in the next three
lemmas.
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Lemma 2.2. Let
∫ L1

0 S0 dx+
∫ L2

0 I0 dy = N for some constant N > 0. Then

lim inf
t→∞

∫ L1

0
S(x, t) dx ≥ N min

⎧⎨
⎩1,

min
[0,L2]

γ

max
[0,L1]×[0,L2]

β

⎫⎬
⎭ .(2.8)

Proof. Denote

S̄(t) =

∫ L1

0
S(x, t) dx and Ī(t) =

∫ L2

0
I(y, t) dy

and

β∗ = sup
[0,L1]×[0,L2]

β and γ∗ = inf
[0,L2]

γ.

If I0 ≡ 0, then it is easy to see that S(x, t) → N/L1 as t → ∞, and we are
done. We will henceforth assume that I0 �≡ 0, i.e. Ī(0) > 0 and S̄(0) < N .
Integrate the first equation of (2.3) over x ∈ [0, L1], then

dS̄

dt
≥ Ī

(
γ∗ −

β∗

N
S̄

)
= (N − S̄)

(
γ∗ −

β∗

N
S̄

)
.

This, together with S̄(0) < N , implies that (2.8) holds.

Lemma 2.3. Let t1 > 1. For any p > 0, there exists C0 > 0 independent of
t1 such that

sup
0<x<L1

t1<t<t1+1

S ≤ C0

(
‖S‖Lp([0,L1]×[t1−1,t1+1]) + sup

t≥t1−1
‖I(·, t)‖L1([0,L2])

)
.(2.9)

In particular,

sup
[0,L1]×[1,∞)

S ≤ 2C0N.(2.10)

Proof. The estimate (2.9) is a direct consequence of the local maximum
principle [22, Theorem 7.36]. Next, take p = 1 in (2.9), and use the fact that∫ L1

0 S(x, t) dx+
∫ L2

0 I(y, t) dy = N , we deduce (2.10).

Lemma 2.4. Let t1 ≥ 2. There exists C1 > 0 such that for any solution
(S, I) of (2.3) with initial data in X, we have

sup
t≥2

[
‖S(·, t)‖C1([0,L1]) + ‖I(·, t)‖C1([0,L2])

]
≤ C1.(2.11)
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Proof. By the Harnack inequality [23, 24], there exists C2 > 1 independent

of initial data such that

sup
0<y<L2

I(y, t) ≤ C2 inf
0<y<L2

I(y, t) for t ≥ 1.(2.12)

Note that we have used the fact that I satisfies a linear parabolic equation,

with L∞ bounded coefficient 1
N

∫ L1

0 β(x, y)S(x, t) dx− γ(y), in the above. It

follows that

sup
t>1

‖I(·, t)‖L∞([0,L2]) ≤ C2 sup
t>1

∫ L2

0
I(y, t) dy ≤ C2N.

Combining with (2.10) we have

sup
t≥1

[
‖S(·, t)‖L∞([0,L1]) + ‖I(·, t)‖L∞([0,L2])

]
≤ C3.

By Lp estimates and Sobolev embedding, we obtain (2.11).

Definition 2.5. (i) We define Φ to be the semiflow generated by (2.3);

i.e. for initial data P0 = (S0, I0) ∈ X and each t ≥ 0 for which the

solution remains in X, define Φt(P0) = (S(·, t), I(·, t)), where (S, I) is

the solution of (2.3) with initial data (S0, I0).

(ii) We say that Φ is point-dissipative if there exists C > 0 independent

of initial condition such that

lim sup
t→∞

(‖S(·, t)‖+ ‖I(·, t)‖) ≤ C.

(iii) We say that Φ is eventually bounded on compact subsets K of X if⋃
t≥t0

Φt(K) is bounded for some t0 ≥ 0.

(iv) For each t > 0, we say that Φt : X → X is compact if Φt(B) is

precompact for every bounded subset B of X.

Proposition 2.6. The system (2.3) generates a semiflow Φ in X. Moreover,

Φ is (i) point-dissipative, (ii) eventually bounded onX, and (iii) Φt : X → X

is compact for each t > 1.

Proof. This is a consequence of (2.11).

Corollary 2.7 (Existence of compact global attractor). The semiflow Φ

has a compact attractor A of X, i.e. distX(Φt(X), A) → 0 as t → ∞.
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Proof. Since Φ is point-dissipative, eventually bounded in X and that Φt :
X → X is compact for some t > 0, it follows from [25, p. 41, Theorem 2.30
and Remark 2.26(b)].

Lemma 2.8. Let λ1 be the principal eigenvalue of the problem{
dIϕyy + ϕ[ 1

L1

∫ L1

0 β(x, y) dx− γ(y)] = λϕ for 0 < y < L2,

ϕy = 0 for y = 0, L2,
(2.13)

then

sgn(R0 − 1) = sgnλ1.

Proof. By the definition of R0, there exists some positive function φ ∈
C2([0, L2]) such that{

−dIφyy + γ(y)φ = 1
R0L1

(∫ L1

0 β(x, y) dx
)
φ for 0 < y < L2,

φy = 0 for y = 0, L2.
(2.14)

The principal eigenvalue λ1 satisfies{
dI(ϕ1)yy + ϕ1[

1
L1

∫ L1

0 β(x, y) dx− γ(y)] = λ1ϕ1 for 0 < y < L2,

(ϕ1)y = 0 for y = 0, L2.
(2.15)

Multiplying (2.14) by ϕ1 and integrating by parts in (0, L2), we have

dI

∫ L2

0
φx(ϕ1)y dy +

∫ L2

0
γ(y)φϕ1 dy =

1

R0L1

∫ L1

0

∫ L2

0
β(x, y)φϕ1 dxdy.

(2.16)

Multiplying (2.15) by φ and integrating by parts in (0, L2), we have

−dI

∫ L2

0
φx(ϕ1)ydy +

∫ L2

0

[∫ L1

0

β(x, y)

L1
dx− γ(y)

]
φϕ1dy = λ1

∫ L2

0
φϕ1dy.

(2.17)

Adding (2.16) and (2.17), we can obtain

(1− 1

R0
)
1

L1

∫ L1

0

∫ L2

0
β(x, y)φϕ1 dxdy = λ1

∫ L2

0
φϕ1 dy.(2.18)
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Since 1
L1

∫ L1

0

∫ L2

0 β(x, y)φϕ1 dxdy > 0 and
∫ L2

0 φϕ1 dy > 0, we can obtain
that sgn(R0 − 1) = sgnλ1. This proves Lemma 2.8.

Definition 2.9. (i) Define a function ρ : X → [0,∞) by

ρ((S0, I0)) = inf
0<y<L2

I0(y).

(ii) We say that the semiflow Φ is uniformly weakly ρ-persistent (resp.
uniformly ρ-persistent) if there exists η0 > 0 independent of initial
data (S0, I0) ∈ X such that any solution to (2.3) satisfies

lim sup
t→∞

ρ(S(·, t), I(·, t)) ≥ η0 (resp. lim inf
t→∞

ρ(S(·, t), I(·, t)) ≥ η0).

Lemma 2.10. If R0 > 1, then Φ is uniformly weakly ρ-persistent.

Proof. Suppose R0 > 1, by Lemma 2.8, the principal eigenvalue λ1 of (2.13)
is positive. By continuous dependence on parameter, there exists 0 < δ1 < 1
such that the principal eigenvalue λ̂1 of{

dIϕyy + ϕ
[
1−δ1
L1

∫ L1

0 β(x, y) dx− γ(y)
]
= λϕ for 0 < y < L2,

ϕy = 0 for y = 0, L2

(2.19)

is positive. We denote by φ̂1 a positive eigenfunction corresponding to the
prinicipal eigenvalue λ̂1 of (2.19). Let 0 < δ2 < 1 be a positive number to
be specified later. Suppose to the contrary that for some t1 ≥ 2,

inf
0<y<L2

I(y, t) <
δ2N

C2L2
for all t ≥ t1,(2.20)

where C2 is as in (2.12). By this choice of C2, we obtain

sup
0<y<L2

I(y, t) <
δ2N

L2
for all t ≥ t1.

Decompose S(x, t) = S̄(t) + S̃(x, t), where S̄(t) =
∫ L1

0 S(x, t) dx. Then

S̄(t) = N −
∫ L2

0
I(y, t) dy ≥ N(1− δ2) for t ≥ t1 − 2,(2.21)

and {
S̃t − dSS̃xx = F (x, t)−

∫ L1

0 F (x, t) dx for 0 < x < L1, t > 1,

S̃x = 0 for x = 0, L1, t > 1,
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where

F (x, t) = −S(x, t)

N

∫ L2

0
β(x, y)I(y, t) dy + θ(x)

∫ L2

0
γ(y)I(y, t) dy.

Using (2.10) we have

‖F (x, t)‖L∞([0,L1]×[t1−2,∞)) ≤ (2C0‖β‖∞ + ‖θ‖∞‖γ‖∞)Ī(t) ≤ C4δ2N.

Let L = −∂xx and X2 = {ψ ∈ L2([0, L1]) :
∫ L1

0 ψ dx = 0}, then

S̃(·, t) = e−tLS̃(·, 1) +
∫ t

t1

e−(t−s)L

[
F (·, s)−

∫ L1

0
F (x, s) dx

]
ds.

By the fact that e−tL : X2 → X2 satisfies (see, e.g. [24, Theorem 4.22])

‖e−tL‖ ≤ e−σt for some σ > 0,

we deduce that there is t2 ∈ (t1,∞) and C5 > 0 such that

‖S̃(·, t)‖L2([0,L1]) ≤ C5δ2, for t ≥ t2,

where t2 = t2(δ2) but C5 can be chosen to be independent of δ2. Combining

with (2.21), we have

∫ L1

0
β(x, y)S(x, t) dx =

∫ L1

0
β(x, y) dxS̄(t) +

∫ L1

0
β(x, y)S̃(x, t) dx

≥ N(1− δ2)

∫ L1

0
β(x, y) dx− C6

√
δ2

≥ N(1− δ1)

∫ L1

0
β(x, y) dx for t ≥ t2,

where δ1 is given in (2.19). Note that this is possible by choosing δ2 small

enough, as inf β > 0 is a fixed positive constant. We deduce that I(y, t) is a

supersolution of

{
wt = dIwyy +

[
1−δ1
L1

∫ L1

0 β(x, y) dx− γ(y)
]
w for 0 < y < L2, t > t2,

wy = 0 for y = 0, L2, t > t2.
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By taking η > 0 small enough, we observe that I(y, t) = ηeλ̂1(t−t2)φ̂1(y) is a
subsolution of the above problem with λ̂1 > 0. It follows that

I(y, t) ≥ ηeλ̂1(t−t2)φ̂1(y) for 0 < y < L2, t ≥ t2.

This is in contradiction with (2.20).

2.1.2. Stability of the Disease-Free Equilibrium (DFE) To study
the stability of the DFE, we consider an eigenvalue problem associated
with (2.3). We linearize (2.3) around DFE to obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ηt(x, t) = dSηxx(x, t)− 1

L1

∫ L2

0 β(x, y)ξ(y, t) dy

+ θ(x)
∫ L2

0 γ(y)ξ(y, t) dy, 0 < x < L1, t > 0,

ξt(y, t) = dIξyy(y, t) + ( 1
L1

∫ L1

0 β(x, y) dx− γ(y))ξ(y, t),

0 < y < L2, t > 0.

(2.22)

Suppose that (η, ξ) = (e−λtφ, e−λtψ) is a solution of the linear system where
λ ∈ R, φ = φ(x), and ψ = ψ(y). We substitute this solution into the lin-
earized equations and divide by e−λt to get the following linear eigenvalue
problem

⎧⎪⎨
⎪⎩
dSφxx(x)− 1

L1

∫ L2

0 β(x, y)ψ(y) dy + θ(x)
∫ L2

0 γ(y)ψ(y) dy = λφ(x),

0 < x < L1,

dIψyy(y) + ( 1
L1

∫ L1

0 β(x, y) dx− γ(y))ψ(y) = λψ(y), 0 < y < L2,

(2.23)

with boundary conditions

φx(x) = 0 for x ∈ {0, L1}, and ψy(y) = 0 for y ∈ {0, L2}.
(2.24)

By (2.6), we additionally impose that

∫ L1

0
φ(x) dx+

∫ L2

0
ψ(y) dy = 0.(2.25)

Lemma 2.11. If R0 < 1 then the DFE is stable, but if R0 > 1 then it is
unstable.
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Proof. 1. Suppose first that R0 < 1. We will show that the DFE is linearly
stable. Suppose the conclusion is false, then we can find (λ, φ, ψ) which is
a solution of (2.23) with the condition (2.24), with at least one of φ and ψ
not identical zero, and that Reλ ≥ 0. We consider the case (i) ψ �≡ 0 and
(ii) ψ ≡ 0.

For the first case, 0 ≤ Reλ ≤ λ1, where λ1 is the principal eigenvalue
of (2.13). But this is in contradiction with Lemma 2.8. Therefore we must
have ψ ≡ 0 on [0, L2] and φ �≡ 0 on [0, L1]. Hence,{

dSφxx(x) = λφ, 0 < x < L1,

φx(x) = 0, x ∈ {0, L1}.
(2.26)

It is easy to see that λ is real and nonpositive (e.g. by multiplying (2.26)
with the complex conjugate of φ(x) and integrating by parts). Since also
Reλ ≥ 0, we deduce that λ = 0 and φ is a constant. But then (2.25) implies
that φ ≡ 0. This is again a contradiction. Therefore, we must have Reλ < 0,
i.e. the DFE is linearly stable.

2. Suppose that R0 > 1. We will show that DFE is linearly unstable.
We will establish that there exists a solution (λ, φ, ψ) of (2.23) with λ > 0.
Lemma 2.8 implies that the principal eigenvalue λ1 > 0 and is associated
with a positive eigenfunction ψ1(x) > 0. Consider the first equation of (2.23)
with (λ, ψ) = (λ1, ψ1), i.e.,

⎧⎪⎨
⎪⎩
−dSφxx(x) + λ1φ = − 1

L1

∫ L2

0 β(x, y)ψ1(y) dy + θ(x)
∫ L2

0 γ(y)ψ1(y) dy,

0 < x < L1,

φx(x) = 0, x ∈ {0, L1}.

(2.27)

By the invertibility of the operator −dS∂xx+λ1 I with zero Neumann bound-
ary condition, (2.27) has a unique solution φ1. Hence, the triple (φ1, ψ1, λ1)
satisfies (2.23). Hence, the DFE is linearly unstable.

Next, we show that if R0 < 1 then the DFE is globally asymptotically
stable.

Lemma 2.12. If R0 < 1 then (S̃, Ĩ) → (Ŝ, 0) in C([0, L1]) × C([0, L2]) as
t → ∞.

Proof. Suppose that R0 < 1. By the equation of (2.3), we have

Ĩt(y, t)≤dI Ĩyy(y, t)+

(
1

L1

∫ L1

0
β(x, y)dx−γ(y)

)
Ĩ(y, t), 0 < y < L2, t > 0.
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Set u(y, t) = Me−λ1tψ1 where λ1 > 0 by Lemma 2.8, ψ1 > 0 on [0, L2], and
M is chosen so large that Ĩ(y, 0) < u(y, 0) for every y ∈ [0, L2]. Here, u(y, t)
satisfies

{
ut(y, t) = dIuyy(y, t) + ( 1

L1

∫ L1

0 β(x, y) dx− γ(y))u(y, t),0 < y < L2, t > 0,

uy(y) = 0, y ∈ {0, L2}.

(2.28)

By the comparison principle, Ĩ(y, t) ≤ u(y, t) for every y ∈ [0, L2] and t > 0.
Since u(y, t) → 0 as t → ∞ for every y ∈ [0, L2], we also have that Ĩ(y, t) → 0
as t → ∞ for every y ∈ [0, L2].

Finally we show that S̃ tends to Ŝ as t → ∞. Observe from the first
equation of (2.3) that

S̃t(x, t)− dSS̃xx(x, t) =−
∫ L2

0 β(x, y)Ĩ(y, t) dy∫ L1

0 S̃(x, t) dx+
∫ L2

0 Ĩ(y, t) dy
S̃(x, t)

+ θ(x)

∫ L2

0
γ(y)Ĩ(y, t) dy, 0 < x < L1, t > 0.

By the continuity of β(x, y) and γ(y) on [0, L2], together with the above
argument about I(y, t) and u(y, t), we have

|S̃t(x, t)− dSS̃xx(x, t)| ≤ C8e
−λ1t, x ∈ [0, L1], t > 0,

for some positive constant C8. Since the right-hand side tends to 0 exponen-
tially, it follows that S̃(x, t) tends to some positive function S̃∗(x) as t → ∞,
where S̃∗ satisfies

(S̃∗)xx = 0 in [0, L1], (S̃∗)x = 0 for x = 0, L1, and

∫ L1

0
S̃∗ dx = N.

Thus, S̃∗(x) = N/L1 = Ŝ(x).

The global asymptotic stability of the DFE when R0 < 1 implies that
there can be no EE in this case. We consider the situation when R0 > 1 in
the next subsection.

2.1.3. Existence of Endemic Equilibrium (EE) The main result of
this subsection is given by the following theorem.

Theorem 2.13. If R0 > 1, then the following statements hold.
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(a) The infected population is uniformly ρ-persistent, i.e. there exists η0 >
0 (independent of initial data) such that for any solution (S, I) of (2.3)
such that I0 �≡ 0, we have

lim inf
t→∞

[
inf

0<y<L2

I(y, t)

]
≥ η0.

(b) There exists at least one EE.
(c) If, in addition, β(x, y) = β(y), then EE is unique, and is globally

asymptotically stable among solutions of (2.3) with initial data in X
satisfying I0 �= 0.

Proof. Suppose R0 > 1. First, we prove (a), i.e. Φ is uniformly ρ-persistent.
Now, let

B = {(S0, I0) ∈ X : ‖S0‖C1([0,L1]) + ‖I0‖C1([0,L2]) ≤ C1},

where C1 is given by Lemma 2.4. Observe that B satisfies the following:

(i) For every P0 ∈ X such that ρ(P0) > 0, we have dist(Φt(P0), B) → 0;
(ii) B is compact;
(iii) If P0 ∈ X and ρ(P0) > 0, then ρ(Φt(P0)) > 0 for all t > 0;
(iv) Φ is uniformly weakly ρ-persistent.

Here (i) and (ii) follow from Lemma 2.4, (iii) follows from the strong maxi-
mum principle applied to the second equation of (2.3), and (iv) follows from
Lemma 2.10. We can then apply [25, Theorem 4.13] to conclude assertion
(a), i.e. Φ is uniformly ρ-persistent.

Next, we prove (b). We have shown that (v) the semiflow Φ is uniformly
ρ-persistent, (vi) Φt : X → X is compact for each t > 1, and (vii) Φ has
a compact attractor of X. Observe, in addition, that (viii) X is a closed
convex subset of the Banach space C([0, L1];R) × C([0, L2];R), and (ix)
ρ : X → [0,∞) is continuous and concave. Here concave means

ρ(τ(S1, I1) + (1− τ)(S2, I2)) ≥ τρ(S1, I1) + (1− τ)ρ(S2, I2)

for τ ∈ [0, 1], (Si, Ii) ∈ X. Having verified (v)–(ix), the existence of an en-
demic equilibrium then follows from [25, p. 158, Theorem 6.2]. This proves (b).

Suppose β(x, y) = β(y). Then the equation of I can be written as

It(y, t) = dIIyy(y, t) + β(y)

∫ L1

0 S dx

N
I(y, t)− γ(y)I(y, t)(2.29)
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for 0 < y < L2, t > 0. Using the conservation (2.4), we observe that I(y, t)
in fact satisfies a single PDE with nonlocal dependence:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
It(y, t) = dIIyy(y, t) +

[
β(y)− γ(y)− 1

N

∫ L2

0 I(y′, t) dy′
]
I(y, t)

for 0 < y < L2, t > 0,

Iy(y, t) = 0 for y = 0, L2, t > 0,

I(y, 0) = I0(y) for 0 < y < L2.

(2.30)

It then follows from [24, Theorem 10.1.1] that when

β(y) > γ(y),(2.31)

the nonlocal parabolic equation (2.30) has a unique positive equilibrium
Ie(y) and moreover that I(·, t) → Ie in C([0, L2]) as t → ∞. This proves
the assertion (c) when (2.31) holds. For the general case, observe that the
hypothesis (2.31) is needed to conclude that the principal eigenvalue λ̂1 of

dIφyy + (β − γ)φ+ λ̂1φ = 0 in [0, L2], φy(0) = φy(L2) = 0,(2.32)

is negative. Since (2.32) is a special case of (2.13), this is equivalent to
R0 > 1 thanks to (2.8). Once we have that λ̂1 < 0, we can then repeat the
proof of [24, Theorem 10.1.1] to show the existence, uniqueness and global
attractivity of equilibrium Ie.

Finally, we prove convergence of S as t → ∞. By compactness, we
can pass to a subsequence tn → ∞ such that S(x, t + tn) → S̃(x, t) in
Cloc([0, L1]× R), where S̃ is a bounded entire solution of{

S̃t = dSS̃xx − p(x)S̃ + q(x) for 0 < x < L1, t ∈ (−∞,∞),

S̃x(0, t) = S̃(L1, t) = 0 for t ∈ (−∞,∞),
(2.33)

where p(x) = 1
N

∫ L2

0 β(y)Ie(y) dy and q(x) = θ(x)
∫ L2

0 γ(y)Ie(y) dy > 0.

Since sup
t∈R

‖S̃(·, t)‖∞ is bounded, it follows that S̃(x, t) = Se(x), where Se =

[−dS∂xx + p(x)I]−1[q]. This completes the proof of (c).

2.2. Numerical simulation

In this subsection, we present some numerical results of model (2.3). Set
t̃ = δt, dI = ε2, where δ = τε indicates the time scale parameter for a
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fixed τ . For the sake of simplicity in notations, we drop the tilde, with the
focus on the situation when ε is small.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δSt(x, t) = dSSxx(x, t)−
∫ L2
0

β(x,y)I(y,t) dy
∫ L1
0

S(x,t) dx+
∫ L2
0

I(y,t) dy
S(x, t)

+θ(x)
∫ L2

0 γ(y)I(y, t) dy, 0 < x < L1, t > 0,

δIt(y, t) = ε2Iyy(y, t) +
∫ L1
0

β(x,y)S(x,t) dx
∫ L1
0

S(x,t) dx+
∫ L2
0

I(y,t) dy
I(y, t)− γ(y)I(y, t),

0 < y < L2, t > 0,

Sx(x, t) = Iy(y, t) = 0, x ∈ {0, L1}, y ∈ {0, L2}, t > 0,

S(x, 0) = S0(x) ≥ 0, I(y, 0) = I0(y) ≥ 0, 0 < x < L1, 0 < y < L2.

(2.34)

We assume that initially, the immunity level of susceptible individuals,
indicated by the variable x, is uniformly distributed. In addition, vaccines
can prevent infection and render breakthrough cases less infectious to avert
transmission [11], so we assume that the initial distribution of infected pop-
ulation remains in low infectivity (indicated by y) level. Hence, we consider
the initial population density functions as shown below in order to appro-
priately describe the above assumptions:

S(x, 0)=N−
∫ 1

0
I(y, 0) dy, I(y, 0) = Cε exp

(
−(y − y0)

2

ε

)
for some y0>0.

(2.35)

In addition, we assume the followings.

• The transmission rate, β, decreases as immunity x increases or as
infectivity y decreases. For simulation purpose, we choose β(x, y) =
1+y
1+ax , where a is a positive number.

• All infected individuals, regardless of their infectivity, will recover at
the same rate. That is, the recovery rate is given by γ(y) ≡ 1.

• The immunity level of the individual changes after infection, and for
simulation purpose, assumed to be distributed with probability den-
sity θ(x) = 2(1 − x). We observe that the function θ(x) has a strong
influence on the long term immunity of the susceptible population. As
such, it is an important quantity to monitor in practice.

The results established by Theorem 2.13 are discussed in Subsect. 2.2.1
and illustrated by numerical simulations. In Subsect. 2.2.2, we are inter-
ested in how the dynamics and equilibrium solutions exhibit the dominant
phenotype under the processes of selection and mutation.
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Table 2: The parameter values in model (2.34) simulation

Symbol Relation Value
dS Mutation rate of immunity x 1
ε2 Mutation rate of infectivity y 0.0012

y0 Mean infectivity state at t = 0 0.1
a Shape parameter for transmission rate 0
N Total population size 1
τ Time scale parameter 100
[0, L1] The mutation space of immunity x [0,1]
[0, L2] The mutation space of infectivity y [0,1]

2.2.1. Population dynamics Point (c) of Theorem 2.13 reveals that, if

R0 > 1, i.e.
∫ 1
0

∫ 1
0 β(x, y) dxdy >

∫ 1
0 γ(y) dy is satisfied, the number of sus-

ceptible and infected populations (S̄(t), Ī(t)) converge to the stable positive
value. The result is illustrated by Fig. 2A which presents the total num-
ber of infected individuals Ī(t) =

∫ 1
0 I(y, t) dy and susceptible individuals

S̄(t) =
∫ 1
0 S(x, t) dx against time. We can observe that the total number of

infected individuals Ī(t) increases while the number of susceptible individu-
als S̄(t) decreases against time, eventually attaining endemic equilibrium.

Figure 2: (A) The number of susceptible population S̄(t) =
∫ 1
0 S(x, t) dx and

the number of infected population Ī(t) =
∫ 1
0 I(y, t) dy are indicated by black

and grey curves, respectively. (B) Susceptible population density function
S(x, t) at t = 0, 20, 40, 60, 80 day. (C) Infected population density function
I(y, t) at t = 0, 20, 40, 60, 80 day. The value of parameters in simulation is
the same with Table 2.

2.2.2. Evolution of phenotypic heterogeneity The distribution of
susceptible population density S(x, t) and infected population density I(y, t)
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at various time points are shown in Figs. 2B and 2C, respectively. The im-
munity distribution S(x, t) at a fixed time indicates that the density of sus-
ceptible individuals S(x, t) increases as immunity (x) decrease. It is observed
that the infectivity distribution I(y, t) at a fixed time is unimodal with the
mean phenotypic state y = ȳ(t) being the maximum point of the distribu-
tion. Fig. 2C suggests that I(y, t) ≈ Ī(t)δ(y − ȳ(t)), i.e., I(y, t) behaves like
a moving Dirac mass, supported at y = ȳ(t).

For susceptible population, we can observe that as S̄(t) decreases over
time, the proportion of individuals with lower immunity increases, while the
proportion of individuals with higher immunity decreases as well. This find-
ing may help explain the phenomenon wherein the immunity of susceptible
people decreases in the process of increasing the infectivity of diseases. The
above results for continuous time are shown in Figs. 3A and 3B.

Moreover, the mean immunity x̄(t) of susceptible individuals, given by

x̄(t) =

∫ 1
0 xS(x, t) dx∫ 1
0 S(x, t) dx

,

declines against time (Fig. 3C). The mean infectivity ȳ(t) =
∫ 1

0
yI(y,t) dy

∫ 1

0
I(y,t) dy

grad-

ually rises over time, the result is depicted in Fig. 3D. Finally, the infected
population is dominated by the individuals with the phenotypic state y = 1
(large phenotypic state correlating to the higher level of infectivity), as il-
lustrated in Fig. 3B. In other words, the infected population evolves to be
mainly composed of highly infected individuals, in agreement with Fig. 2C.
While the decline in mean immunity is possibly attributed to the choice of a
decreasing θ(x), the increase in virulence seems to be a robust phenomenon
independent of our choice of parameters [26]. This is possibly due to the
choice of θ(x).

In addition, Fig. 3E shows the change in the heterogeneity of infectivity
over time, which also indicates that I(y, t) behaves like a moving Dirac mass,
supported at y = ȳ(t). Here ȳ(t) denotes the peak location of I(y, t), being
an increasing function against time. This result is also in agreement with
Fig. 2C and Fig. 3B and it will be further discussed in the next subsection.

2.3. Dirac asymptotics of infected populations: formal analysis

In this subsection, we formally determine the asymptotic profile of Iε(y, t),
where (Sε(x, t), Iε(y, t)) denotes solutions of model (2.34) with initial con-
dition (2.35). For model (2.34), as in Subsect. 2.2, we choose the following
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Figure 3: Yellow denotes high density and blue denotes low density, respec-
tively. (A) Susceptible population density function S(x, t) in t ∈ [0, 100].
(B) Infected population density function I(y, t) in t ∈ [0, 100]. (C) Mean im-
munity state x̄(t) against time. (D) Mean infectivity state ȳ(t) against time.
(E) Infected population density function I(y, t) in t ∈ [0, 80] and y ∈ [0, 1].
The value of parameters in simulation is the same with Table 2.

formulas and parameters:

β(x, y) =
1 + y

1 + ax
, γ(y) ≡ 1, θ(x) = 2(1− x), L1 = L2 = 1, δ = τε.

Based upon those assumptions, we will formally establish the asymptotic
behavior of Iε as ε → 0. To this end, consider the WKB-ansatz

uε(y, t) = −ε log Iε(y, t) or Iε(y, t) = exp

(
−uε(y, t)

ε

)
.

Since
∫ 1
0 Iε(y, t) dy is uniformly bounded away from zero and infinity, we

deduce that

inf
0<y<1

uε(y, t) = o(1).

For 0 < ε � 1, we will formally derive the law governing the moving
Dirac solution, i.e.

Iε(y, t) ≈ Īε(t)δ(y − ȳε(t)).(2.36)

Imposing (2.36) into the equation of Sε, we have

o(1) = Sε
xx(x, t) +

[
− 1

N
Sε(x, t)β(x, ȳε(t)) + γ(ȳε(t))θ(x)

]
Īε(t).
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Integrating in x, and using the Neumann boundary condition, we obtain

1

N

∫ 1

0
Sε(x, t)β(x, ȳε(t)) dx ≈ γ(ȳε(t))

∫ 1

0
θ(x) dx,(2.37)

and

Sε(x, t) = γ(ȳε(t))Īε(t)

[
−∂xx +

1

N
β(x, ȳε(t))Īε(t)

]−1

[θ(·)].(2.38)

Integrating in x, and using the constraint S̄ε(t) + Īε(t) = N , we can

determine Īε(t) by

N − Īε(t) = γ(ȳε(t))Īε(t)

∫ 1

0

[
−∂xx +

1

N
β(x, ȳε(t))Īε(t)

]−1

[θ(·)] dx.

(2.39)

Using the form γ(y) = 1 and substituting (2.37) into the equation of Iε, we

obtain

δIεt (y, t) = ε2Iεyy(y, t) +
1

N
Iε(y, t)

[∫ 1

0
(β(x, y)− β(x, ȳε(t))Sε(x, t) dx

]
.

Now, we may derive the equation for the rate function uε(y, t) =

−ε log Iε(y, t):⎧⎪⎨
⎪⎩
τuεt − εuεyy + |uεy|2 + 1

N

∫ 1
0 (β(x, y)− β(x, ȳε(t)))Sε(x, t) dx ≈ 0

for (y, t) ∈ [0, 1]× R
+,

inf uε(·, t) ≈ 0 for t ∈ R
+.

Suppose that uε(y, t) → u(y, t) locally uniformly, and that ȳε(t) → ȳ(t), we

deduce that u is a solution, in viscosity sense, to the following equation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
τut + |uy|2 + 1

N

∫ 1
0 (β(x, y)− β(x, ȳ(t)))S(x, t) dx = 0

for (y, t) ∈ [0, 1]× R
+,

inf u(·, t) = u(ȳ(t), t) = 0 for t ∈ R
+,

u(y, 0) = (y − y0)
2 for y ∈ [0, 1],

(2.40)

with Neumann boundary condition. Here Ī(t) and S(x, t) can be uniquely
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determined (for given ȳ(t)) by

N − Ī(t) = γ(ȳ(t))Ī(t)

∫ 1

0
[−∂xx +

1

N
β(x, ȳ(t))Ī(t)]−1[θ(·)] dx,

S(·, t) = γ(ȳ(t))Ī(t)[−∂xx +
1

N
β(x, ȳ(t))Ī(t)]−1[θ(·)].

If u(y, t) = σ(t)(y − ȳ(t))2 + O(|y − ȳ(t)|3), for some σ(t) > 0, then we
can differentiate the following identity

uy(ȳ(t), t) = 0 for t ≥ 0,

to obtain

uyy(ȳ(t), t)
d

dt
ȳ(t) = −uyt(ȳ(t), t) =

1

τN

∫ 1

0
βy(x, ȳ(t))S(x, t) dx.

Hence, we obtain the following equation governing the dynamics of ȳ(t):

d

dt
ȳ(t) =

1

τNuyy(ȳ(t), t)

∫ 1

0
βy(x, ȳ(t))S(x, t) dx.

Using the form β(x, y) = 1+y
1+ax , we have

d

dt
ȳ(t) =

1

τNuyy(ȳ(t), t)

∫ 1

0

1

1 + ax
S(x, t) dx > 0.(2.41)

The relation (2.41) indicates that ȳ(t) is an increasing function. To sup-
port the result, we numerically solve the Hamilton-Jacobi equation (2.40).
The value of parameters in simulation is the same with Table 2. Numeri-
cally we found that ȳ(t), the peak location of I(y, t), increases against time
in Fig. 4A (indicated by blue curve), which is consistent with the analytical
description in (2.41).

In Subsect. 2.2.2, we noted that when ε = 0.001, the mean infectivity ȳ(t)
in model (2.34) increases over time, as seen in Fig. 3D. Now we choose ε =
0.01, 0.02, 0.03, 0.04, 0.05 to simulate individually and the other parameters
in (2.34) are the same as those in Table 2.
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Let error(ε) be the sum of squared errors between the mean infectiv-

ity ȳε(t) of model (2.34) for different ε and ȳ(t) in Hamilton-Jacobi equa-

tion (2.40), that is,

error(ε) = ‖ȳε(t)− ȳ(t)‖ =

√√√√ T∑
i=1

(ȳε(ti)− ȳ(ti))2,

where t ∈ [0, 60] and the time interval is discretised with the uniform step

Δt = 0.01. T indicates the number of time points.

In Fig. 4, we compare the results of ȳε(t) in model (2.34) for different ε

values with the result of Hamilton-Jacobi equation (2.40), which supports

that the results of ȳε(t) in model (2.34) for different ε values converge to the

result of Hamilton-Jacobi equation (2.40) as ε decreases.

Figure 4: The results comparison of Hamilton-Jacobi equation and
model (2.34). (A) shows ȳε(t) at different ε values and (B) shows error(ε)
at different ε values.

3. Evolution of mutation rate

In this section, we first consider k phenotypes of infected population with

continuous trait y (i.e. infectivity) based upon the model (2.3) introduced in

Sect. 2 and the mutation-selection model considered by Dockery et al. [27].

We assume that the phenotypes differ only in mutation rates, i.e. phenotype i

has mutation rate ε2i . σ
2Mij represents the mutation process from phenotype

i to j. When σ = 0, there is no mutation. The model has the following
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form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂tS(x, t) = dS

∂2

∂x2S(x, t)−
k∑

i=1

∫ L2
0 β(x,y)Ii(y,t) dy

∫ L1
0 S(x,t) dy+

k∑

i=1

∫ L2
0 Ii(y,t) dy

S(x, t)

+ θ(x)
k∑

i=1

∫ L2

0
γ(y)Ii(y, t) dy, 0 < x < L1, t > 0, i = 1, . . . , k,

∂
∂tIi(y, t) = ε2i

∂2

∂y2 Ii(y, t) +
∫ L1
0 β(x,y)S(x,t) dx

∫ L1
0 S(x,t) dy+

k∑

i=1

∫ L2
0 Ii(y,t) dy

Ii(y, t)

− γ(y)Ii(y, t) + σ2
k∑

j=1

MjiIj(y, t), 0 < y < L2, t > 0, i = 1, . . . , k,

∂
∂xS(x, t) =

∂
∂y Ii(y, t) = 0, x ∈ {0, L1}, y ∈ {0, L2}, t > 0, i = 1, . . . , k,

S(x, 0) = S0 ≥ 0, Ii(y, 0) = Ii,0 ≥ 0, 0 < x < L1, 0 < y < L2, i = 1, . . . , k,

(3.1)

where 0 < ε1 < ε2 < · · · < εk are constants. M is a constant k × k matrix
which satisfies (i) Mii < 0 for all i and Mij ≥ 0 for i �= j; (ii) Mii =
−
∑
j �=i

Mij . σ
2 ≥ 0 is the mutation rate. Other parameters are the same with

model (2.3).

The continuum (in trait) version of the mutation-selection model con-
sidered by Dockery et al. [27] is studied in [28, 29, 30, 17, 31]. Similarly,
we further generalize that the rate of mutation ε is itself a continuous trait
varying in the range E = [J∗, J∗] ⊆ (0,∞). We then obtain a continuum
version of the model (3.1) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

St(x, t) = dSSxx(x, t)−
∫ J∗
J∗

∫ L2
0 β(x,y)I(ε,y,t) dydε

∫ L1
0 S(x,t) dx+

∫ J∗
J∗

∫ L2
0 I(ε,y,t) dydε

S(x, t)

+ θ(x)
∫ J∗

J∗

∫ L2

0
γ(y)I(ε, y, t) dydε, 0 < x < L1, J∗ < ε < J∗, t > 0,

It(ε, y, t) = ε2Iyy(ε, y, t) +
∫ L1
0 β(x,y)S(x,t) dx

∫ L1
0 S(x,t) dx+

∫ J∗
J∗

∫ L2
0 I(ε,y,t) dydε

I(ε, y, t)

− γ(y)I(ε, y, t) + σ2Iεε(ε, y, t), 0 < y < L2, J∗ < ε < J∗, t > 0,

Sx(x, t) = 0, x ∈ {0, L1}, t > 0,

Iy(ε, y, t) = 0, y ∈ {0, L2}, J∗ < ε < J∗, t > 0,

Iε(ε, y, t) = 0, 0 < y < L2, ε ∈ {J∗, J∗}, t > 0,

S(x, 0) = S0(x) ≥ 0, 0 < x < L1,

I(ε, y, 0) = I0(ε, y) ≥ 0, 0 < y < L2, J∗ < ε < J∗,

(3.2)

where S(x, t) denotes the density of susceptible population with immunity
x at time t; I(ε, y, t) indicates the density of infected population with mu-
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tation rate ε2 and infectivity y at time t, respectively. We again impose the
initial value when t = 0 and the no-flux boundary condition in all other
variables.

We now rescale time as t̃ = δt, where δ = τσ indicates the time scale
parameter for a fixed τ . To be consistent with model (2.34), we drop the
tilde and obtain the following model:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δSt(x, t) = dSSxx(x, t)−
∫ J∗
J∗

∫ L2
0 β(x,y)I(ε,y,t) dydε

∫ L1
0 S(x,t) dx+

∫ J∗
J∗

∫ L2
0 I(ε,y,t) dydε

S(x, t)

+ θ(x)
∫ J∗

J∗

∫ L2

0
γ(y)I(ε, y, t) dydε, 0 < x < L1, J∗ < ε < J∗, t > 0,

δIt(ε, y, t) = ε2Iyy(ε, y, t) +
∫ L1
0 β(x,y)S(x,t) dx

∫ L1
0 S(x,t) dx+

∫ J∗
J∗

∫ L2
0 I(ε,y,t) dydε

I(ε, y, t)

− γ(y)I(ε, y, t) + σ2Iεε(ε, y, t), 0 < y < L2, J∗ < ε < J∗, t > 0,

(3.3)

where the boundary conditions and initial conditions are the same as in
(3.2).

Similar to the definitions in the model (2.34), we define the size of the
susceptible and infected populations at time t, respectively, as follows:

S̄(t) =

∫ L1

0
S(x, t) dx, Ī(t) =

∫ J∗

J∗

∫ L2

0
I(ε, y, t) dydε.

We also define the mean phenotype state at time t as

x̄(t) =

∫ L1

0 xS(x, t) dx∫ L1

0 S(x, t) dx
,

ȳ(t) =

∫ L2

0

∫ J∗

J∗
yI(ε, y, t) dεdy∫ L2

0

∫ J∗

J∗
I(ε, y, t) dεdy

, ε̄(t) =

∫ J∗

J∗

∫ L2

0 εI(ε, y, t) dydε∫ J∗

J∗

∫ L2

0 I(ε, y, t) dydε
.

We assume that the initial infected population composed of low infectiv-
ity (y) and low mutation rate (ε) individuals, while susceptible population
composed of individuals with uniformly distributed immunity. Let the initial
population density functions be given by

S(x, 0) = N −
∫ J∗

J∗

∫ L2

0
I(ε, y, 0) dydε,

I(ε, y, 0) = exp

(
−(y − y0)

2

ε
− (ε− ε0)

2

σ

)
,



316 King-Yeung Lam et al.

and fix an N > 0 such that∫ L1

0
S(x, 0) dx+

∫ J∗

J∗

∫ L2

0
I(ε, y, 0) dydε = N,

where y0, ε0 are positive numbers.

Recall (2.4), for t > 0, we can obtain the total population size

∫ L1

0
S(x, t) dx+

∫ J∗

J∗

∫ L2

0
I(ε, y, t) dydε ≡ N.

Then we present the numerical simulation results of the model (3.3).
The choices of disease transmission rate β(x, y), recovery rate γ(y), and
probability distribution θ(x) are identical to those in Subsect. 2.2. The value
of parameters in simulation are also identical with Table 3. The numerical
results can be summarized as follows.

• The susceptible population evolves to be primarily made up of indi-
viduals with low immunity, which indicates that as diseases continue
to evolve, group immunity decreases. It could be important to boost
group immunity through techniques like ongoing immunization.

• The majority of the infected population is eventually comprised of
highly infectious individuals with a low mutation rate. This indicates
that the disease transmissibility will continue to increase.

• When the ceiling of virulence is reached in the model, disease strains
with low mutation are more advantageous, assuming that the mutation
rates have no impact on disease transmission and recovery rates. In
other words, the virus will use the low mutation rate to maintain its
advantageous evolutionary position. We do note that death caused by
the disease is not included in the model. In fact, highly virulent strains
may not be selected if death rate is included.

These findings are discussed and illustrated by numerical simulation in
the following subsections. Because virus mutations can persist in human
population for years or decades [9], the time length of the simulation is set
at 120 months.

3.1. Convergence to endemic equilibrium

The number of infected individuals Ī(t) and susceptible individuals S̄(t)
throughout time is depicted in Fig. 5. We can observe that the number
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Table 3: The parameter values in model (2.34) simulation

Symbol Relation Value
y0 Mean infectivity state at t = 0 0.3
ε0 Mean mutation rate at t = 0 0.1
dS Mutation rate of immunity x 1
σ2 Mutation rate of trait ε 0.012

N Total population size 1
τ Time scale parameter 1500
[0, L1] The mutation space of immunity x [0,1]
[0, L2] The mutation space of infectivity y [0,10]
[J∗, J

∗] The mutation space of mutation rate ε [0.01, 0.5]

of infected individuals Ī(t) increases while the number of susceptible indi-
viduals S̄(t) decreases against time, until reaching the endemic equilibrium
(EE).

Figure 5: The populations size. The number of susceptible population
S̄(t) and the number of infected population Ī(t) against time are indicated
by black and grey curves, respectively. All parameter values are the same as
in Table 3.

3.2. Evolution of phenotypic heterogeneity

The distribution of susceptible population density S(x, t) and mean immu-
nity state x̄(t) in t ∈ [0, 120] are displayed in Fig. 6A. The mean immunity
of susceptible individuals declines x̄(t) over time, and then stabilizes at a
low level. It appears that the distribution of immunity level in suscepti-
ble population reaches an equilibrium distribution resembling the function
θ(x) = 2(1− x).
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Figure 6: (A) Susceptible population density S(x, t) in t ∈ [0, 120]. (B)

The infectivity distribution of infected individuals Î1(y, t) =
∫ J∗

J∗
I(ε, y, t) dε

in t ∈ [0, 120]. (C) The mutation rate distribution of infected individuals

Î2(ε, t) =
∫ L2

0 I(ε, y, t) dy in t ∈ [0, 120]. Yellow denotes high density and
blue denotes low density, respectively. The yellow line highlights the mean
immunity x̄(t) of susceptible population, mean infectivity ȳ(t) and mean
mutation rate ε̄(t) of infected population, respectively. All parameter values
are the same as in Table 3.

Similar to the results in model (2.34), when S̄(t) declines over time, sus-
ceptible individuals with lower immunity tend to become susceptible again,
which reduces the average immunity of susceptible population. This find-
ing highlights the importance of tracking the change of individual immunity
post infection. When current infection does not provide better immunity
against future infection (e.g. when θ(x) is decreasing in x), vaccination is a
way to improve the overall immunity level.

The mean infectivity level and the mean mutation rate in infected pop-
ulation I both increase rapidly in the first phase 0 ≤ t ≤ 10. These results
(indicated by yellow curves) are shown in Figs. 6B and 6C, where the heat

map of Î1(y, t) =
∫ J∗

J∗
I(ε, y, t) dε and Î2(ε, t) =

∫ L2

0 I(ε, y, t) dy are displayed.
That is, the number of individuals with high infectivity and mutation rate
increase rapidly at the initial time. This phenomenon can also be illustrated
in Figs. 7A–D, which depict the density distribution of infected population
I(ε, y, t) at t = 0, 2.5, 5, 10 month.

For t > 10, we observe in Figs. 6B and 6C that the infected individu-
als maintain high infectivity state, while the mutation rate of infected in-
dividuals starts to decrease over time. These results are consistent with
Figs. 7E-H, which are the density distribution of infected population at
t = 15, 25, 40, 50 month.

Fig. 6C indicates that the increase in mean mutation rate ε̄(t) is only an
initial transient: when t > 10, infected individuals with low mutation rate
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Figure 7: Infected population density function I(ε, y, t) at different time
points. Consider Fig. 7B as an illustration, the mean infectivity ȳ(t) and
mean mutation rate ε̄(t) increase compared to Fig. 7A (t = 0). The maximum
point of infected population density I(ε, y, t) is attained in phenotypic state
(y, ε) = (0.9, 0.14). Yellow denotes high density and blue denotes low density,
respectively. All parameter values are the same as in Table 3.

will gradually dominate the population. Fig. 8 supports the conclusion that
lower mutation rates provide a competitive advantage. That is, the infected
population gradually evolves to be mainly composed of individuals with low
mutation rate.

4. Discussion

In this work, we propose to study a Susceptible-Infected-Susceptible (SIS)
model (2.3) for populations structured by phenotypical traits. Our analytical
results demonstrate that the existence of endemic equilibrium when the basic
reproduction number R0 > 1. Based upon asymptotic analysis of evolution-
ary dynamics, the simulation results generated from model (2.34) indicate
that the mean immunity of susceptible individuals gradually decreases over
time and eventually remains at a low level, while high infectivity individuals
have competitive advantage. There is good agreement between our numerical
simulations and analytical results. The results of our analysis and numeri-
cal simulations are consistent with the trend that more virulent strains are
selected over the less virulent wild type.

Furthermore, we consider an extension (3.2) of the model (2.3) to account
for the variability in mutation rate. Numerical simulations are carried out to
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Figure 8: The evolution of mutation rate ε. The mutation rate distri-
bution of infected individuals Î2(ε, t) =

∫ L2

0 I(ε, y, t) dy in t ∈ [10, 120]. The
infected sub-population with smallest mutation rate dominates the dynam-
ics for large t. Yellow denotes high density and blue denotes low density,
respectively. All parameter values are the same as in Table 3.

demonstrate that, if the virus mutation rate is low initially, it will increase
rapidly and then decrease slowly over time, resulting in the individuals with
the lowest mutation rate eventually dominating the infected population,
assuming the virulence ceiling have been reached.

In model (3.2), we impose that the reaction term be independent of
mutation rate ε2, i.e., the correlation between mutation rate ε2 and disease
transmission rate β(x, y) and recovery rate γ(y) are not taken into account.
The assumption may not hold true in actual pandemic scenarios. The ad-
vantage of a low mutation rate may be strengthened or diminished by the
current lack of clarity regarding the relationship between mutation rate,
disease transmission rate and recovery rate.

We also discuss several possible extensions of current work. From the
perspective of mathematical modeling, it should be noted that our model
does not examine the spatial distribution of population. Spatial movement
of populations could play major role in speeding up the disease spreading.
Moreover, spatial environmental heterogeneity of population could also im-
pact disease spread. Our current model somewhat mimics the scenario when
the populations are quickly mixed in space, which may introduce error in our
estimate of the basic reproduction number. While current work is focused
on the dynamics of susceptible and infected individuals, we leave the role of
exposed individuals and asymptomatic individuals in disease dynamics for
future work. In this work we did not include the death caused by the dis-
ease so that the total population size remains to be constant in time, which
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is accessible for mathematical analysis. Biologically, while COVID has sig-
nificant death rate in the early stage of pandemics, the current death rate
caused by the Omicron strain seems to be decreasing dramatically, so our
model might also help provide some insight into the current development
of COVID pandemics. From an epidemiological perspective, the model may
further consider the recruitment rate and mortality rate of populations, and
by integrating with the actual biological process and epidemiological data,
to achieve more accurate modeling of the epidemic. Last but not least, we
point out that the disease transmission rate β(x, y) is assumed to be station-
ary in time in this work. In epidemiology, the disease transmission rate is
usually time-dependent, and the time dependence corresponds to a variety
of factors, including changes in non-pharmaceutical interventions (NPIs),
behavioral changes and seasonal changes (influenced by weather or human
population migration schedules) [11, 32].
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[23] Húska, J. (2006) Harnack inequality and exponential separation for

oblique derivative problems on Lipschitz domains. J. Differential Equa-

tions, 226(2), 541–557. MR2237690

[24] Lam, K.-Y. and Lou, Y. (2022) Introduction to Reaction-Diffusion

Equations: Theory and Applications to Spatial Ecology and Evolution-

ary Biology. Lecture Notes on Mathematical Modelling in the Life Sci-

ences, Springer, Cham.

[25] Smith, H. L. and Thieme, H. R. (2011) Dynamical Systems and Popu-

lation Persistence, Vol. 118 of Graduate Studies in Mathematics, Amer-

ican Mathematical Society, Providence, RI. MR2731633

[26] van Baalen, M. and Sabelis, M. W. (1995) The dynamics of multi-

ple infection and the evolution of virulence. The American Naturalist,

146(6), 881–910.

https://mathscinet.ams.org/mathscinet-getitem?mr=2379454
https://mathscinet.ams.org/mathscinet-getitem?mr=1739925
https://mathscinet.ams.org/mathscinet-getitem?mr=0520143
https://mathscinet.ams.org/mathscinet-getitem?mr=4067996
https://mathscinet.ams.org/mathscinet-getitem?mr=1465184
https://mathscinet.ams.org/mathscinet-getitem?mr=2237690
https://mathscinet.ams.org/mathscinet-getitem?mr=2731633


324 King-Yeung Lam et al.

[27] Dockery, J., Hutson, V., Mischaikow, K., and Pernarowski, M. (1998)
The evolution of slow dispersal rates: a reaction diffusion model. Journal
of Mathematical Biology, 37(1), 61–83. MR1636644

[28] Lam, K.-Y. and Lou, Y. (2017) An integro-PDE model for evolution of
random dispersal. Journal of Functional Analysis, 272(5), 1755–1790.
MR3596707

[29] Perthame, B. (2006) Transport Equations in Biology, Springer Science
& Business Media. MR2270822

[30] Perthame, B. and Souganidis, P. E. (2016) Rare mutations limit of
a steady state dispersal evolution model. Mathematical Modelling of
Natural Phenomena, 11(4), 154–166. MR3545815

[31] Lam, K.-Y., Lou, Y., and Perthame, B. (2023) A Hamilton-Jacobi ap-
proach to evolution of dispersal. Communications in Partial Differential
Equations, 48(1), 86–118.

[32] Pu, L., Lin, Z., and Lou, Y. (2023) A West Nile virus nonlocal model
with free boundaries and seasonal succession. Journal of Mathematical
Biology, 86(2), 25. MR4531830

King-Yeung Lam

Department of Mathematics

Ohio State University

Columbus, OH 43210

USA

E-mail address: Lam.184@osu.edu

Yuan Lou

School of Mathematical Sciences, CMA-Shanghai

Shanghai Jiao Tong University

Shanghai 200240

China

E-mail address: yuanlou@sjtu.edu.cn

Shizhao Ma

Institute for Mathematical Sciences

Renmin University of China

Beijing 100872

China

E-mail address: shizhaoma@ruc.edu.cn

Received January 26, 2023

https://mathscinet.ams.org/mathscinet-getitem?mr=1636644
https://mathscinet.ams.org/mathscinet-getitem?mr=3596707
https://mathscinet.ams.org/mathscinet-getitem?mr=2270822
https://mathscinet.ams.org/mathscinet-getitem?mr=3545815
https://mathscinet.ams.org/mathscinet-getitem?mr=4531830
mailto:Lam.184@osu.edu
mailto:yuanlou@sjtu.edu.cn
mailto:shizhaoma@ruc.edu.cn

	Introduction
	Evolution of infectivity and immunity
	Mathematical analysis of model (2.3)
	Preliminary estimates
	Stability of the Disease-Free Equilibrium (DFE)
	Existence of Endemic Equilibrium (EE)

	Numerical simulation
	Population dynamics
	Evolution of phenotypic heterogeneity

	Dirac asymptotics of infected populations: formal analysis

	Evolution of mutation rate
	Convergence to endemic equilibrium
	Evolution of phenotypic heterogeneity

	Discussion
	Acknowledgements
	References

