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Multiply-distorted stereoscopic images are common in real-world
applications. The mixture of multiple distortions results in com-
plex binocular visual behavior of multiply-distorted stereoscopic
images, making it challenging for existing blind singly-distorted
stereoscopic image quality assessment (IQA) methods to obtain
satisfactory results on multiply-distorted stereoscopic images. Be-
cause binocular rivalry caused by different distortions in the left
and right views greatly influences the final stereoscopic image qual-
ity, we propose a registration-based distortion and binocular repre-
sentation for blind quality assessment of multiply-distorted stereo-
scopic image in this paper. First, we employ a registration-based
distortion representation to characterize the distortion in the stereo-
scopic image. Then we represent the binocular rivalry by merging
the left and right views into a cyclopean image. Considering that
the color and intensity of pixels in the RGB image can better re-
flect the information of the distorted image, then a grayscale cyclo-
pean image is further converted to the color binocular representa-
tion using tone mapping. Finally, a multiply-distorted stereoscopic
IQA method based on a double-stream convolutional neural net-
work is proposed. The two subnetworks are used to extract quality
features from the registration-based distortion representation and
color binocular representation, respectively. Experimental results
demonstrate that the proposed model outperforms the state-of-the-
art models on the multiply-distorted stereoscopic image databases.

1. Introduction

With the emergence of the 5G era, visual information is changing from two-
dimensional to stereoscopic. The increasing demand from users for stereo-
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scopic content with deep visual perception has propelled the rapid advance-
ment of stereoscopic display technology, particularly in the domains of cin-
ema and television. As an integral component of the stereoscopic acquisi-
tion system, stereoscopic image quality assessment (SIQA) aims to ascer-
tain whether the perceptual quality of stereoscopic images meets the de-
sired standards. Stereoscopic distorted images can be divided into singly-
distorted stereoscopic image (SDSI) and multiply-distorted stereoscopic im-
age (MDSI), where the quality of SDSI is solely related to the perception of a
specific type of distortion, while MDSI is affected by the intricate interaction
between different types of distortion.

While SIQA has attracted considerable attention, limited studies have
been dedicated to MDSI [26, 10, 23, 34]. Typically, the stereoscopic im-
ages undergo various stages of acquisition, compression, and transmission.
Throughout this process, the stereoscopic image may be contaminated with
multiple types of distortion, and both the left and right views of the stereo-
scopic image are subjected to different degrees and types of distortion sym-
metrically or asymmetrically. Furthermore, disparities between stereo images
can vary significantly for different baselines, depths, and resolutions [33, 32].
This poses a great challenge to the binocular combination of stereoscopic vi-
sion [35, 38], leading to the occurrence of binocular rivalry [6] and other
unpredictable visual behaviors [25] occur during the process. Consequently,
the mixture of multiple distortions causes the problem of binocular quality
prediction more complex and challenging.

Because of the scene discrepancy between the left and right views, pre-
vious works [35, 36, 16, 37] have found that the difference image between
the left and right views of the distorted stereoscopic image is not a reliable
representation of the distortion. To resolve the negative influence of the in-
accurate distortion representation on SIQA, the monocular model based on
the registration-based distortion representation is constructed to represent
the distortion in the stereoscopic image more accurately.

Moreover, the left and right views of an MDSI have been distorted by
diverse types and degrees of distortion symmetrically or asymmetrically,
it becomes imperative to consider the influence of image content informa-
tion and binocular visual behavior on the stereoscopic image [10]. Since the
heightened complexity of MDSI compared to SDSI, the image perceived
by the human eye is significantly affected by binocular rivalry during the
subjective assessment. Therefore, the binocular representation of MDSI is
calculated to simulate the neural processing of stereoscopic imagery within
the brain, and then reflect the image content information and the effect of
binocular rivalry on image quality.
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Compared to grayscale images, color images provide a more comprehen-
sive representation of distorted images by capturing the color and intensity
of their pixels [20]. Hence, the grayscale cyclopean image is converted to
the RGB image by tone mapping. Subsequently, we design a double-stream
convolutional neural network (CNN) model that learns from the registration-
based distortion representation and color binocular representation, respec-
tively.

In this paper, we proposed a blind/no-reference (NR) SIQA framework
for MDSI, a double-stream CNN model is utilized to fuse the monocular
and binocular features. The experimental results on the LIVE 3D [6, 18]
and NBU-MDSID [26, 23] databases demonstrate the effectiveness of the
proposed model in handling complex multiple distortion cases. The main
contributions of this paper are summarized as follows.

(1) Based on the observation that the scene discrepancy causes the inac-
curate distortion representation, a registration-based distortion repre-
sentation, is proposed to better represent the distortion situation of
the stereoscopic image.

(2) The color binocular representation that merges left and right views
into a cyclopean view, is introduced to incorporate the influence of
the binocular rivalry on stereoscopic imaging.

(3) A unified blind SIQA metric is proposed for both SDSI and MDSI,
employing a double-stream CNN architecture, which outperforms the
state-of-the-art SIQA metrics.

2. Related work

Based on the availability of the reference image, SIQA metrics can be cate-
gorized into full-reference (FR), reduced-reference (RR), and blind/NR met-
rics. Most existing SIQA metrics for SDSI are of the FR or blind/NR type,
while existing works for MDSI are limited and focus on the blind/NR type.
We provide an overview of related works on blind SIQA for SISD and MDSI
in Subsections 2.1 and 2.2, respectively.

2.1. Blind SIQA for singly-distorted image

SDSI means that the information of the stereoscopic image is corrupted by
a single distortion type, so that its quality is only related to the percep-
tion of the corresponding single distortion type. Blind SIQA metrics do not
require any information from the original reference image; therefore, the ap-
plication prospects of blind IQA are more practical than those of FR-IQA
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and RR-IQA metrics. Based on the information they use, blind SIQA can
be further classified into three categories: binocular perception-based, depth
perception-based, and difference perception-based metrics.

Many binocular perception-based metrics have been proposed for im-
proving the performance of SIQA metrics by incorporating binocular per-
ception. Ryu and Sohn [21] proposed a blind SIQA index that measures blur-
riness and blockiness for the left and right views and then combines these
using a binocular perception model. Shao et al. [25] developed a phase-tuned
quality lookup and a visual codebook from the binocular energy responses
to achieve blind quality prediction by pooling. Zhou et al. [38] presented
two binocular combinations of stimuli to extract quality features, and then
adapted the extreme learning machine to predict image quality. Shao et al.
[27] proposed a domain transfer framework that the information from the
source feature domain is transferred to its target quality domain by means
of dictionary learning.

Depth perception-based metrics assess the image quality based on the
disparity map or synthesized cyclopean (human brain) image. Akhter et al.
[1] proposed a blind SIQA index that first extracts image features from a
stereoscopic image and its disparity map, and then uses a logistic regression
model to predict the image quality. Chen et al. [5] proposed combining 2D
cues in a cyclopean view and 3D cues in disparity information to estimate
the perceptual quality of stereoscopic images. Jiang et al. [11] proposed an
index based on a deep non-negativity constrained sparse autoencoder with
the input of the cyclopean image and the left and right views. Shen et al.
[28] proposed a blind SIQA that simulates the perception route of human
visual system, and derives features from both fused and single views. Liu
et al. [15] proposed a two-stream interactive network model to simulate the
process of human stereo visual perception.

Difference perception-based metrics assess the image quality based on
the difference between the left and right views. The difference image was first
utilized in the FR-SIQA index presented in [35], representing information
differences between two views. Zhang et al. [36] proposed a CNN-based blind
SIQA index that considers the difference image to represent the depth and
distortion of the stereoscopic image. Shen et al. [29] proposed combining
the spatial frequency information and statistic feature extracted from the
cyclopean and difference maps to represent the binocular characteristic and
asymmetric information. Shi et al. [30] computed a registered distortion
representation based on the left and registered right views to represent the
distortion in the stereoscopic image, then designed a three-column model
that learns from the registered distortion representation and the left and
right views.
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Figure 1: The overall framework of proposed method.

2.2. Blind SIQA for multiply-distorted image

The quality of SDSI is only related to the perception of the associated distor-
tion type, while the interaction among different distortion types influences
the perceived quality of MDSI. Due to some unpredictable visual behav-
ior that may occur during image processing, various distortions are applied
to the left and right views symmetrically or asymmetrically. Additionally,
stereoscopic images are more likely to be polluted by multiple distortion
types in the acquisition, processing, and transmission stages, thus bringing
a greater challenge for IQA research.

Although stereoscopic images are prone to suffer from multiple distor-
tions, more work is needed to focus on quality assessment specifically for
MDSI. Shao et al. [26] proposed a multi-modal joint sparse representation
framework to learn a set of modality specific dictionaries, and then eval-
uates the quality of the image based on the reconstruction error. Jiang et
al. [10] presented a unified blind quality evaluator by learning monocular
and binocular local visual primitives based on a task-driven and modality-
specific sparse reconstruction errors. In the work [23], a multistage pooling
model for asymmetric MDSI was proposed, which establishes a multimodal
sparse representation framework for the phase and magnitude components
and employs a multistage pooling strategy to simulate the pooling proce-
dures. Wang et al. [34] proposed a sparse representation framework to learn
the local and global quality perception functions and characterized the per-
ceptual features of MDSI through five different channels.

3. Proposed method

The overall framework of the proposed method is illustrated in Figure 1.The
scene discrepancy causes the difference image between the left and right
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views to be inaccurate for distortion representation, especially in image re-

gions where the depth changes. However, his issue can be addressed by image

registration. Compared to the difference image, the registration-based dis-

tortion representation provides a more accurate representation of the distor-

tion in the stereoscopic image, and has proven to be effective in the quality

evaluation of SDSI [30].

Nevertheless, MDSI is more complex than SDSI, where the left and right

views of the stereoscopic image are introduced to different types or degrees

of distortion, and it is insufficient to only consider the distortion of the

images, the effects of image content and binocular vision to the stereoscopic

image also need to be taken into consideration. The imaging in the mind

under the action of binocular vision can more accurately represent the image

content information and binocular visual behavior than consider the content

information of left and right views separately. To this end, the color binocular

representation is proposed to simulate the actual imaging in the human brain

based on binocular rivalry.

Inspired by [31], we design a double-stream CNNmodel which uses image

patches from registration-based distortion representation and color binocu-

lar representation to train the monocular model and binocular model re-

spectively, and the two subnetworks are used to extract feature information

independently, followed by feature fusion and mapping to obtain the image

quality score. With the combination of distortion information and content

information based on binocular rivalry, the proposed model can effectively

predict the visual quality of MDSI.

3.1. Registration-based distortion representation

Existing works [36, 35, 16, 37, 29] commonly use the difference image be-

tween the left and right views of a distorted stereoscopic image to represent

the distortion. However, the scene discrepancy causes inaccurate distortion

representation of it, especially in edge and contour regions with pronounced

depth variations. As indicated in Figure 2, the difference image (Figure 2(f))

between the left (Figure 2(c)) and right (Figure 2(d)) views is affected by

the scene discrepancy, resulting in strong fake cues of distortion along the

boundaries of steps and twigs. Compared to the true distortion representa-

tion of the left view (the difference image between the reference left (Fig-

ure 2(a)) and distorted left (Figure 2(c)) views displayed in Figure 2(e)),

there is no severe distortion along the boundaries of steps and twigs. There-

fore, we propose to first address scene discrepancy by image registration, and
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Figure 2: Example of proposed registration-based distortion representation.
(“Ref.” represents reference, “Dis.” denotes distorted, “Reg.” is the abbre-
viation for registration-based, and “rep.” means representation.)

then compute a more accurate registration-based distortion representation

for the stereoscopic image.

In this paper, we first perform the image registration on the input left

and right views by the SIFT flow algorithm [14]. The SIFT flow is a method

of scene registration to its nearest image in a large image database containing

various scenes according to the input images. Specifically, we register the

right view Ir to the left view Il of the stereoscopic image, matches and

distinguishes regions based on the masking map (Figure 2(h)), and obtain

the registered image, denoted as Im. The proposed metric only uses the

matched regions in the registered image, as information in the no-matching

regions is unavailable. As indicated in Figure 2(g), the pixels of the registered

image are derived from the right view (Figure 2(d)), while the structure of

the registered image as aligns with that of the left view (Figure 2(c)). The

registration-based distortion representation is computed as the difference of
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the registered image Im and the left view Il as follows,

(1) Id(x, y) = Ig
m
(x, y)− Igl (x, y),

where (x, y) indicates the position of the pixel, Ig
m
and Igl are the registered

image and left view of the distorted stereoscopic image in grayscale, and Id
is the computed registration-based distortion representation.

Compared to the difference image displayed in Figure 2(f), the registra-
tion-based distortion representation displayed in Figure 2(i) is more similar
to the distortion in the left view presented in Figure 2(e), especially in
the edge and contour regions. Moreover, the left and right views of MDSI
are distorted by different types or degrees of distortion symmetrically or
asymmetrically. Although the registration-based distortion representation
can better represent the distortion of the image than the difference image,
the image registration cannot guarantee its validity due to the interaction of
multiple distortion types. The registration-based distortion representation
of the MDSI (Figure 2(i)) still has some inaccurate distortion information
around the boundary of steps and twigs compared with the actual distortion
of the left view (Figure 2(e)).

3.2. Color binocular representation

The registration-based distortion representation can effectively represent the
distortion between the left and right views on the SDSI. However, due to
the intricate interaction among different distortion types on MDSI, partic-
ularly in the case of asymmetrically stereoscopic distorted images, where
substantial differences exist between the visual stimuli of the left and right
views. The accuracy of the registration-based distortion representation may
be compromised when applied to MDSI, only considering distortion infor-
mation may have a negative impact on SIQA.

To address the effect of binocular rivalry on stereoscopic imaging, the
left and right views are merged into a cyclopean view to emulate the ac-
tual imaging of the stereoscopic image within the brain. We calculate the
cyclopean image based on the linear summation model [13] and Gabor fil-
ter [7]. Subsequently, the obtained grayscale cyclopean image is transformed
into an RGB image by tone mapping to further extract color and content
information.
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Figure 3: Examples of proposed color binocular representation. (Distortion
degree for (a)–(d) is 131 in the left view and 131 in the right view; for (e)–(h)
is 121 in the left view and 321 in the right view; for (i)–(l) is 132 in the left
view and 111 in the right view. Corresponding distortion types are Gaussian
blur, JPEG and Gaussian noise. “Dis.” denotes distorted, “Cyc.” represents
cyclopean,“Col.” indicates color, “bino.” is the abbreviation for binocular,
and “rep.” means representation.)

3.2.1. Cyclopean image synthesis Binocular rivalry significantly im-

pacts the final imaging of MDSI, in which two distinct views compete for

dominance, suppressing one monocular input while the other remains visible.

Specifically, the left and right views can be merged into a single cyclopean

view to represent the outcome of this competition [6]. Since binocular per-

ception plays a crucial role in the visual perception of the stereoscopic image,

synthesizing left and right views to simulate stereoscopic scene perception

ecomes a pivotal aspect of a successful SIQA model.

Drawing inspiration from discovery of biological vision, the linear sum-

mation model [13] has been proposed to elucidate the process of binocular

combination, where visual information from left and right views is inte-

grated. Although this model cannot fully characterize the complex binocular

vision mechanism, it is regarded as a fundamental model for binocular vision

because of its simplicity and rationality, and the model can be described as
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follows,

(2) C = ωlEl + ωrEr,

where El and Er denote the visual signals of the left and right views, re-
spectively, ωl and ωr represent the corresponding weights of the two views,
wl and wr satisfy ωl +ωr = 1. Eq. (2) can explain the experience of binocu-
lar rivalry in the perceiving cyclopean image when stereoscopic stimuli are
presented. Since binocular rivalry is locally independent [8], the local linear
model for synthesizing cyclopean image according to [6], is as follows,

(3)
Igc (x, y) = ωl(x, y)I

g
l (x, y)

+ ωr

(
(x+ d), y

)
Igr
(
(x+ d), y

)
,

where Igc is the synthetic grayscale cyclopean image, Igl and Igr are the left
and right views in grayscale, and d is the disparity of the left view corre-
sponding to the relevant pixel on the right view, ωl and ωr represent the
corresponding weights of the two views, respectively.

Since the experience of binocular rivalry is independent of the absolute
stimulus intensity of each view and is related to the relative stimulus inten-
sity of two views, the local energy of the Gabor filter response is used to
weight the left and right views stimuli [7]. The ωl and ωr can be obtained
as follows,

ωl(x, y) =
Gl(x, y)

Gl(x+ y) +Gr((x+ d), y)
,(4)

ωr

(
(x+ d), y

)
=

Gr((x+ d), y)

Gl(x+ y) +Gr((x+ d), y)
,(5)

where Gl and Gr represent the Gabor filter responses for the left and right
views, respectively.

As mentioned in [4], when the left eye perceives an undistorted image
while the right eye sees a blurred distorted image, the undistorted image
tends to dominate as blur reduces visual stimulation. Conversely, when one
eye receives an undistorted image while the other eye receives a JPEG dis-
torted image, e, the eye viewing the JPEG distorted image tend to dominate
due to increased visual stimulation.

As shown in Figure 3, the left and right views are symmetrically dis-
torted in the MDSI 1, the distortion in the grayscale cyclopean image 1
(Figure 3(c)) is also evenly distributed, but the distorted details in the JPEG
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representation of the wall are less obvious. In the MDSI 2, the distortion de-
gree of blur in the left view is lower than that of the right view. Therefore,
the blur distortion in the grayscale cyclopean image 2 (Figure 3(g)) is less
pronounced than in the right view, which is consistent with the principle
that blur reduces visual stimulation. The JPEG distortion degree of the left
view is higher than that of the right view in the MDSI 3. However, since
JPEG distortion involves color mode conversion, the human eye is relatively
insensitive to the JPEG distortion of the generated grayscale cyclopean im-
age 3 (Figure 3(k)).

3.2.2. Tone mapping RGB images offer enhanced capabilities for ex-
tracting distortion, brightness, and contrast information compared to gray-
scale images. The color and intensity of pixels in RGB images can reflect the
original information of distorted images well. In order to further simulate
the final imaging of the brain for the cyclopean image, we converted the
grayscale cyclopean image to the RGB image. Movitated by the tone map-
ping method in [19, 2], we consider the three channels of the color image are
R, G, and B, and the grayscale map is denoted as Gs. Firstly, the left and
right views of the stereoscopic image are transformed into grayscale maps
to obtain the three-dimensional scale coefficients of the left and right views.
Then, the RGB and grayscale scale coefficients are averaged as follows,

(6) rl =
(Rl, Gl, Bl)

(Gsl, Gsl, Gsl)
, rr =

(Rr, Gr, Br)

(Gsr, Gsr, Gsr)
.

The grayscale channel (Gsc, Gsc, Gsc) of the grayscale cyclopean image
is synthesized with the scale coefficients r = (rl + rr)/2 to obtain the color
binocular representation Ic as follows,

(7) Ic = (Gsc, Gsc, Gsc) ∗ r.

As shown in Figure 3, compared to the grayscale cyclopean image 1
(Figure 3(c)), the color binocular representation 1 (Figure 3(d)) exhibits
more pronounced details of the JPEG distortion on the wall. Consistent with
the grayscale cyclopean image 2 (Figure 3(g)), the blur distortion remains
less obvious in the color binocular representation 2 (Figure 3(h)) than in the
distorted right view 2 (Figure 3(f)). In the MDSI 3, the left view exhibits
a higher degree of JPEG distortion than the right view, and the JPEG
distortion is more visible in the color binocular representation 3 (Figure 3(l))
than in the distorted right view 3 (Figure 3(j)). These observations are
consistent with the notion that JPEG distortion amplifies visual stimuli. In
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Figure 4: The architecture of proposed double-stream CNN model.

summary, color binocular representation enhances the sensitivity of distorted
information, thereby enabling more accurate stereoscopic imaging based on
binocular rivalry.

3.3. Double-stream convolutional neural network model

Figure 4 illustrates the architecture of the double-stream CNN, which learns
from registration-based distortion representation and color binocular repre-
sentation. The double-stream CNN model uses five cascaded convolutional
layers (consisting of 16 convolutional layers and 5 pooling layers) for feature
extraction, along with two fully connected layers for regression. The two
sub-networks extract the feature information independently and fuse them
as the input of the fully connected layer to achieve the final image quality
evaluation.

The registration-based distortion representation and color binocular rep-
resentation are both divided into a number of k × k image patches with
overlaps by stride “24” to increase the scale of training data. Patches that
overlap with no-matching regions are discarded. Additionally, two image
patches from the same position with the same size of the registration-based
distortion representation and color binocular representation are used as the
inputs of the double-stream CNN model.

The proposed architecture of the double-stream CNN model has five
cascaded convolutional layers and two fully connected layers. The first two
cascaded convolutional layers are composed of the repeated application of
two 3×3 convolutional layers, followed by a 2×2 max pooling operation with
stride “1”. Subsequently, the following three cascaded convolutional layers
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involve repeated applications of four 3 × 3 convolutional layers, followed
by a 2 × 2 max pooling operation with stride “2” for downsampling. All
convolutional layers are applied with zero padding and stride “1” to obtain
an output of equal size to the input. ReLU is employed in all convolutional
layers and the first two fully connected layers to mitigate the likelihood of
the gradient vanishing and accelerate the convergence of optimization [9].

During the training stage, we use the Euclidean distance as a loss func-
tion. The optimal weights of the proposed double-stream CNN model can be
learned via adaptive moment estimation (Adam) [12] and back-propagation.
The initial learning rate is set to be 10−4 and we reduce it every 20000 iter-
ations by a gamma of 0.7. During the testing stage, the global image score
is obtained by calculating the average score of the patches belonging to the
same image.

4. Experiment

In this section, we present the experimental results of the proposed model
and the performance comparisons with some state-of-the-art SIQA metrics
on four widely used 3D IQA databases.

4.1. Databases and performance indicators

In the experiments, we used four 3D IQA databases.
LIVE 3D IQA Database Phase-I [18] consists of 20 reference stereo-

scopic images and 365 distorted stereoscopic images, including 80 images for
JPEG, JP2K, FF, and WN, and 45 images for BLUR. Each image in the
database is symmetrically distorted on its left and right views.

LIVE 3D IQA Database Phase-II [6] consists of 8 reference images
and 360 symmetrically or asymmetrically distorted stereoscopic images. The
distortion types include BLUR, JPEG, JP2K, FF, and WN. For each dis-
tortion type, a reference image pair generates three symmetrically distorted
images and six asymmetrically distorted images.

NBU-MDSID Phase-I [26] consists of 10 reference stereoscopic im-
ages, 270 MDSIs, and 90 SDSIs. MDSI is corrupted by JPEG, WN, and
BLUR. Each image in the database is symmetrically distorted on its left
and right views.

NBU-MDSID Phase-II [23] consists of 10 reference images and 300
asymmetrically MDSIs distorted by JPEG, WN, and BLUR. For each dis-
torted image in the database, one or two types of distortion are applied
asymmetrically on the left and right views.
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Table 1: Experimental results on NBU-MDSID Phase-I and NBU-MDSID
Phase-II. Best performance values on each database are indicated in
boldface

Type Metric
NBU-MDSID Phase-I NBU-MDSID Phase-II

SRCC PLCC RMSE SRCC PLCC RMSE

FR Chen [6] 0.877 0.885 4.385 0.749 0.763 7.560
Bensalma [3] 0.834 0.856 4.943 0.780 0.819 7.110
Shao [24] 0.905 0.919 3.687 0.862 0.802 7.212

NR BLIINDS-II [22] 0.919 0.921 3.543 0.746 0.763 7.763
BRISQUE [17] 0.889 0.910 3.967 0.750 0.766 7.723
MUMBLIM [26] 0.882 0.878 4.570 0.627 0.606 9.586
MUSF [23] 0.922 0.916 3.836 0.765 0.785 7.442
Wang [34] 0.936 0.940 3.804 0.819 0.845 7.020
Shi [30] 0.921 0.910 3.279 0.831 0.836 3.749
Shen [28] – – – – – –
Proposed 0.939 0.944 2.835 0.861 0.869 3.565

In this paper, three widely used performance indicators are used to eval-
uate the performance of SIQA: 1) Spearman’s Rank Order Correlation Coef-
ficient (SRCC); 2) Pearson’s Linear Correlation Coefficient (PLCC); 3) Root
Mean Squared Error (RMSE). Greater PLCC and SROCC values indicate a
closer relation with the human subjective evaluation, smaller RMSE values
indicate superior correlation with human perception.

We report the median results obtained from train-test iterations of 20.
Specifically, distorted images corresponding to 80% of the reference images
were used as the training set and distorted images corresponding to the
remaining 20% of the reference images were used as the testing set, so there
was no overlap between the training and testing sets. The distribution of
training and testing sets is the same with comparison methods. In the tables
in this section, we use a symbol “–” to indicate that the performance value
was not provided in the corresponding paper, and we could not obtain the
corresponding source code.

4.2. Performance on multiply-distorted stereoscopic image
databases

To validate the performance of the proposed model on MDSI, comprehensive
experiments were conducted on the NBU-MDSID Phase-I and NBU-MDSID
Phase-II, which were compared with ten existing IQA metrics. Among the
comparison IQA metrics, Chen [6], Bensalma [3] and Shao [24] are FR-IQA
metrics; BLIINDS-II [22] and BRISQUE [17] were initially presented for 2D
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Table 2: Experimental results on LIVE 3D Phase-I. Best performance values
are indicated in boldface

Type Metric
JPEG WN BLUR LIVE 3D Phase-I

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC RMSE

FR Chen [6] 0.530 0.603 0.948 0.942 0.925 0.942 0.916 0.917 6.533

Bensalma [3] 0.328 0.380 0.906 0.915 0.916 0.937 0.875 0.887 7.559

Shao [24] 0.615 0.656 0.943 0.941 0.938 0.951 – – –

NR BLIINDS-II [22] 0.496 0.525 0.726 0.835 0.786 0.871 0.910 0.917 6.553

BRISQUE [17] 0.490 0.529 0.479 0.446 0.764 0.774 0.901 0.910 6.793

MUMBLIM [26] 0.693 0.703 0.899 0.896 0.853 0.862 0.885 0.8914 –

MUSF [23] 0.696 – 0.914 – 0.875 – 0.896 – –

Wang [34] 0.633 0.762 0.920 0.951 0.903 0.958 0.868 0.938 –

Shi [30] 0.681 0.780 0.938 0.970 0.910 0.974 0.936 0.963 4.161

Shen [28] 0.879 0.906 0.921 0.947 0.945 0.988 0.962 0.972 –

Proposed 0.755 0.874 0.943 0.972 0.908 0.985 0.938 0.962 3.872

images. For these 2D IQA metrics, we first computed the quality scores of
the left and right views individually, and then averaged to obtain the 3D
quality score of the stereoscopic image; MUMBLIM [26], MUSF [23], and
Wang [34] are blind IQA metrics designed for MDSI; Shi [30] and Shen [28]
are blind IQA metric designed for SDSI.

As indicated in Table 1, the proposed model outperformed all compar-
ison metrics in terms of all performance indicators except SRCC on the
NBU-MDSID Phase-II, which ranked the proposed model inferior to the
FR-IQA metrics presented by Shao [24]. From the results, there are follow-
ing observations: 1) on symmetrically MDSI (NBU-MDSID Phase-I), Shao
[24], BLIINDS-II [22], MUSF [23], Wang [34], Shi [30], and the proposed
model achieved the competitive performance; 2) on asymmetrically MDSI
(NBU-MDSID Phase-II), the performance of other metrics is significantly
decreased except for Shao [24] and the proposed model. In summary, the
proposed model outperformed most existing IQA metrics.

4.3. Performance on singly-distorted stereoscopic image
databases

To verify the scalability of the proposed model and further evaluate the
performance on SDSI, comparative experiments were conducted on two SDSI
databases (LIVE 3D Phase-I database and LIVE 3D Phase-II database) with
ten existing IQA metrics. The experimental results on the two databases are
presented in Table 2 and Table 3, which include the experimental results of
SRCC and PLCC values on individual distortion type (JPEG, WN, and
BLYR) and SRCC, PLCC, and RMSE values for all SISDs. In Table 2 and
Table 3, the metrics with the best performance are indicated in bold. From
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Table 3: Experimental results on LIVE 3D Phase-II. Best performance values
are indicated in boldface

Type Metric
JPEG WN BLUR LIVE 3D Phase-I

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC RMSE

FR Chen [6] 0.843 0.862 0.940 0.957 0.908 0.963 0.889 0.900 4.987

Bensalma [3] 0.846 0.858 0.939 0.944 0.884 0.908 0.751 0.770 7.204

Shao [24] 0.720 0.750 0.846 0.850 0.801 0.827 – – –

NR BLIINDS-II [22] 0.516 0.576 0.904 0.900 0.677 0.708 0.910 0.917 6.553

BRISQUE [17] 0.736 0.760 0.831 0.758 0.743 0.823 0.901 0.910 6.793

MUMBLIM [26] 0.622 0.583 0.803 0.824 0.713 0.755 0.805 0.784 –

MUSF [23] 0.653 – 0.836 – 0.733 – 0.875 – –

Wang [34] 0.788 0.846 0.929 0.957 0.909 0.984 0.831 0.851 –

Shi [30] 0.945 0.967 0.967 0.972 0.933 0.991 0.948 0.961 2.675

Shen [28] 0.816 0.825 0.923 0.954 0.951 0.988 0.951 0.953 –

Proposed 0.947 0.975 0.952 0.978 0.933 0.993 0.941 0.954 2.492

the experimental results, we can conclude that proposed model still has high
performance on most individual distortion types and also performs well on
all distorted stereoscopic images.

Compared with Shi [30] and Shen [28] designed for SDSI, the proposed
model achieved comparative performance on SDSI and better performance
on MDSI. In terms of computational complexity, the proposed model is more
complex and time-consuming to train because it needs to generate color
binocular representation as input. The frameworks in Shi [30] and Shen [28]
are more efficient than the proposed model in terms of input image gen-
eration and model training efficiency. Therefore, for SDSI, the frameworks
in Shi [30] and Shen [28] can maintain the best balance between training
efficiency and performance. For MDSI, although the proposed model has
a higher computational and training complexity, its performance is greatly
improved compared with them. In summary, the proposed model is more
suitable for quality evaluation task of MDSI.

4.4. Validation on color binocular representation

In this subsection, we evaluate the effectiveness of the proposed color binocu-
lar representation. As described in Subsection 3.2, the obtained color binoc-
ular representation is initially in grayscale, and we convert the grayscale
cyclopean image into a RGB image by the tone mapping. To substantiate
the effectiveness of the color binocular representation, we replaced the patch
from the color binocular representation with a patch from the grayscale cy-
clopean image and obtained a variation of the double-stream CNN model,
denoted by Gray-cy. The experimental results on four databases are pre-
sented in Table 4. The performance of the double-stream CNN model with
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color binocular representation is better than that of the variation with the
grayscale cyclopean image. Thus, we can conclude that the proposed color
binocular representation can better represent the results of binocular rivalry
and the content information of stereoscopic image than the grayscale cyclo-
pean image.

As described in Subsection 3.3, the proposed model uses three image
patches from the same position of the registration-based distortion repre-
sentation and color binocular representation as inputs. The inclusion of the
color binocular representation is justified by its ability to more faithfully
synthesize the stereoscopic image within the mind, considering the nuances
of binocular rivalry. However, it is necessary to note that the left and right
views of the stereoscopic image also contribute to the content information.
To verify the effectiveness of color binocular representation, we extended
the double-stream CNN into a three-channel structure, using three image
patches from the same position of the registration-based distortion repre-
sentation, and the left and right views as inputs, denoted as Left-right. As
shown in Table 4, the performance of the proposed double-stream CNN net-
work is better than that of the three-channel structure, especially on MDSI.
The experimental results reaffirm the significant superiority of the proposed
double-stream CNN model employing the color binocular representation as
input. Therefore, it can be concluded that MDSI is more profoundly influ-
enced by binocular rivalry than SDSI. The color binocular representation,
which comprehensively considers the influence of binocular rivalry on imag-
ing, effectively represents the actual perception of the stereoscopic image
within the brain and also represents the content information of the image.

4.5. Validation of registration-based distortion representation

As described in Subsection 3.1, we computed registration-based distortion
representation to represent the distortion of the stereoscopic image. In or-
der to validate the effectiveness of the registration-based distortion repre-
sentation, we conducted an experiment where replaced the patch from the
registration-based distortion representation with a patch from the difference
image between the left and right views, subsequently training the varia-
tion of the double-stream CNN model. The experimental results on the four
databases are presented in Table 4. The performance of the proposed model
with registration-based distortion representation is better than that of the
variation with the difference image. We can conclude that the proposed
registration-based distortion representation can more accurately represent
the distortion than the difference image between the left and right views of
the stereoscopic image.
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Table 4: Experimental results on different binocular representations on four
databases. Best performance values across all models are indicated in bold-
face

Database Variation SRCC PLCC RMSE
LIVE 3D IQA Phase-I Gray-cy 0.928 0.955 4.195

Left-right 0.929 0.956 4.285
Difference image 0.930 0.953 4.467
Proposed 0.938 0.962 3.872

LIVE 3D IQA Phase-II Gray-cy 0.933 0.951 2.768
Left-rightk 0.930 0.953 2.754
Difference image 0.929 0.947 2.896
Proposed 0.941 0.954 2.492

NBU-MDSID Phase-I Gray-cy 0.932 0.939 2.899
Left-right 0.921 0.910 3.279
Difference image 0.899 0.903 3.569
Proposed 0.938 0.944 2.835

NBU-MDSID Phase-II Gray-cy 0.852 0.850 3.867
Left-right 0.831 0.836 3.749
Difference image 0.789 0.793 4.678
Proposed 0.861 0.869 3.565

Table 5: SRCC, PLCC, RMSE, and parameters for different patch sizes on
NBU-MDSID Phase-I. Best performance values across all sizes are indicated
in boldface

SIZE 32× 32 48× 48 64× 64
SRCC 0.939 0.934 0.938
PLCC 0.944 0.932 0.937
RMSE 2.835 3.107 3.088

Params. (×105) 97.5 221.9 375.6

4.6. Effects of patch size

In this subsection, we investigated the impact of patch size on the perfor-
mance of the proposed double-stream CNN model. As indicated in Table 5,
three different patch sizes (32 × 32, 48 × 48, and 64 × 64) were compared
using the NBU-MDSID Phase-I to observe the performance change of the
proposed model. As the patch size increased from 32×32 to 48×48, the per-
formance decreased slightly. However, the performance gradually improved
with further increments in patch size from 48 × 48 to 64 × 64. The differ-
ences in terms of SRCC, PLCC, and RMSE are less than 0.005, 0.012, and
0.272, respectively, the patch size of 32× 32 achieved the best performance.
Because an image patch of 32 × 32 encompasses local information and re-
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tains global structures for quality assessment and the training parameters
are only 26% of those of 64 × 64. Above all, based on the consideration of
training complexity and performance, the default patch size of 32 × 3 was
chosen in all experiments for the proposed double-stream CNN model.

5. Conclusion

In this paper, we presented a registration-based distortion and binocular rep-
resentation for blind quality assessment of MDSI. Since the left and right
views of MDSI are symmetrically or asymmetrically imposed with different
types and degrees of distortion, the imaging inside human eye is influenced
by binocular rivalry. The registration-based distortion representation was
computed to represent the distortion in the stereoscopic image. Then we
merged the left and right views into a cyclopean image to present the binoc-
ular rivalry, and further converted it to the color binocular representation
through tone mapping. Finally, a double-stream CNN model was used to
predict image quality of MDSI, and two subnetworks extracted quality fea-
tures from the registration-based distortion representation and color binoc-
ular representation, respectively. The experimental results demonstrate the
superiority of the proposed model over the state-of-the-art SIQA metrics.
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