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PaletteNeRF: palette-based color editing for
NeRFs*

QILING WU, JIANCHAO TAN, AND Kun Xuf

Neural Radiance Field (NeRF) is a powerful tool to faithfully gen-
erate novel views for scenes with only sparse captured images.
Despite its strong capability for representing 3D scenes and their
appearance, its editing ability is very limited. In this paper, we
propose a simple but effective extension of vanilla NeRF, named
PaletteNeRF, to enable efficient color editing on NeRF-represented
scenes. Motivated by recent palette-based image decomposition
works, we approximate each pixel color as a sum of palette colors
modulated by additive weights. Instead of predicting pixel colors
as in vanilla NeRF's, our method predicts additive weights. The un-
derlying NeRF backbone could also be replaced with more recent
NeRF models such as KiloNeRF to achieve real-time editing. Ex-
perimental results demonstrate that our method achieves efficient,
view-consistent, and artifact-free color editing on a wide range of
NeRF-represented scenes.

1. Introduction

Neural Radiance Field (NeRF) [39] is a powerful tool for image-based mod-
eling and rendering. With only a sparse set of captured images, it can faith-
fully generate rendering results from novel views. The core of NeRF is a
neural volumetric representation of the scene using a multi-layer percep-
tron network. Due to its high effectiveness, it has attracted a wide range of
attention from the community, with a bunch of follow-up works and applica-
tions since its introduction in 2020. However, due to the black-box nature of
neural representations, all information, including geometries, materials, and
light transports, are tightly baked into NeRFs, which are hard to interpret
and edit.

Recently, some methods have been proposed to enable color editing of
NeRFs [34, 70]. Given a few user-provided color scribbles, EditingNeRF [34]
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Figure 1: Color editing results of scene chair represented by Neural Radiance
Field (NeRF). The origin and edited palettes are shown at the bottom-left
corner. Users can modify the extracted palette to achieve intuitive, view-
consistent, artifact-free editing of NeRFs.

propagates the user edits to the whole data to achieve color editing and
shape modification. However, this work is too demanding for datasets, which
require many instances from the same category for training, limiting its prac-
tical usage. CLIP-NeRF [70] uses embeddings of CLIP [53] to edit NeRFs.
They finetune layers that influence color while freezing layers that influ-
ence density, to match the embedding of NeRF’s output to that of the text
editing prompt. However, it sometimes modifies undesired areas, leaving
some artifacts in the results. PosterNeRF [68] gives an efficient way to ex-
tract palette from radiance fields, then utilizes posterization method [12]
to achieve real-time color editing. Despite the real-time performance, the
editing results have artifacts like color banding and leaking as side effects of
posterization.

In this paper, we propose PaletteNeRF, an intuitive, view-consistent,
and artifact-free palette-based color editing method for NeRF's. Inspired by
palette-based image editing works, we approximate pixel colors as the sum
of palette colors modulated by additive weights. Instead of predicting pixel
colors as in vanilla NeRFs, we predict the high dimensional additive weights
in our PaletteNeRF. The NeRF-represented scenes can be recolored by ad-
justing the palette colors without retraining or modifying the PaletteNeRF,
as shown in Figure 1. The underlying NeRF backbone could also be replaced
by more recent NeRF models, such as KiloNeRF [55], to achieve real-time
editing.
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2. Related work
2.1. Neural radiance field

Neural Radiance Field (NeRF) [39] utilizes radiance field to model a 3D
scene implicitly. Specifically, they use MLPs to infer volumetric density and
radiance for certain points and view directions of a scene and follow the
paradigm of volumetric rendering to compute the image pixel colors. Given
a sparse set of captured images, NeRF can generate high-quality results for
novel views. However, this framework needs to train a separate MLP for
every scene. All information about the scene, including geometries, mate-
rials, and light transports, is baked into the neural representation. Hence,
the vanilla NeRF does not allow for changes in scene geometries, colors, and
lighting.

Various follow-ups of NeRFs have been proposed to address this limi-
tation, i.e., to deal with deformable scenes [52, 69, 48, 49], dynamic light-
ing [36], and scene composition [44, 79, 77, 75, 22, 46].

To improve NeRF’s rendering speed, NSVF [33] and KiloNeRF [55] use
empty space skipping and early ray termination. In addition, KiloNeRF
divides the scene into small grids and uses a small and efficient MLP in each
grid to achieve further speedup. FastNeRF [20] and PlenOctrees [76] utilize
function factorization and cache the MLP results to speed up rendering.
Some other methods aim at efficient training, e.g., Instant-NGP [40] use
hierarchical hash encoding to replace the costly MLP.

As for editing, EditingNeRF [34] takes a set of objects with similar
shapes and colors, such as cars from the Carla dataset [16], then associate
each instance with a shape code and a color code, which are fed into Con-
ditional Radiance Fields (CRFs). The users provide a few color scribbles
to indicate color changes and shape addition/removal of an object, which
are propagated to specific regions of that object. However, it requires a
set of shapes in the same class with different geometries and colors. CLIP-
NeRF [70] takes texts or exemplar images as edit prompts, which are fed
into the multi-modal language model, i.e. CLIP, to obtain an embedding to
serve as an offset for shape and color codes. The CRF processes the mod-
ified codes to output edited results. PosterNeRF [68] extracts the palette
efficiently from radiance fields. They sample RGB color points and use vol-
umetric visibility to remove outliers, after which, a palette is extracted from
the remaining points. Each pixel is approximated as a linear blending of at
most 2 palette colors. Color editing is performed by adjusting the palette
color. However, undesired artifacts can be easily perceived in the editing
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results. In contrast, our work only requires a single scene to enable color
editing. Our method provides a relatively simple user interface and achieves
intuitive, artifact-free, and view-consistent color editing. Readers could refer
to more details in the surveys on NeRF's [13, 67].

2.2. Palette based editing

A palette is a concise representation of the color distributions of an image or
video, which can be used to efficiently edit the image or video. Several works
have studied the human perception of the palette. These works construct
various data fitting models according to human preference and then regress
a perceptual palette from input images [45, 31, 10, 18]. Other works [11,
41, 81, 1] adopt clustering methods (e.g., k-means) over pixel colors, and
use the cluster centers as palette colors. Some other types of works [65, 63,
71, 14, 21, 27] utilize geometric methods to generate palettes for images.
Specifically, Tan et al. [65, 63] compute an RGB space convex hull that
includes all colors of an image, followed by an iterative simplification of the
convex hull until the vertex number is reduced to a predefined number or
the reconstruction error reaches a predefined threshold. The vertices of the
simplified convex hull are considered palette colors. Recently, Du et al. [17]
further extend this geometry-based method to time-lapse videos, generating
time-varying palettes.

With the help of a palette, an image can be decomposed into multiple
compositing layers, each of which contains spatially varied per-pixel opaci-
ties or per-pixel mixing weights. Several methods [62, 65] generate ordered
translucent layers by assuming an alpha blending color composition mode.
Other methods [2, 30, 63, 71, 61] generate order-independent layers by as-
suming additive color composition mode. Another concurrent work, also
named PaletteNeRF [28], targets 3D scene palette-based editing, by using
intrinsic decomposition [6] to separate the radiance of each 3D point into
shading and reflectance, which is then decomposed into palette and mixing
weights. The palette can be adjusted to achieve color editing.

3. Background
3.1. Neural Radiance Field (NeRF)
Given a sparse set of captured images of a scene, NeRF [39] can faith-

fully synthesize novel views for the scene. The core is a neural volumetric
representation modeled with a multi-layer perceptron (MLP). The MLP f
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predicts the RGB color and density observed at a 3D position x from a view
direction d:

(1) (c,0) = f(v(x),7(d)),

where 7(-) denotes a positional encoding function.

To render an image from a novel view, NeRF follows conventional ray
marching techniques for volumetric rendering. For each image pixel, we first
cast a ray r from the viewpoint through the pixel to the scene. After that,
several 3D points are sampled along the ray, and each sampled point is
fed into the MLP to obtain its color and density. Finally, the colors of all
sampled points are blended to obtain the rendered pixel color.

A sparse set of captured images together with their camera parameters
is sufficient for training a NeRF. A separate NeRF is required to be trained
for each separate scene. During training, at each iteration, a batch of rays
is randomly sampled from all (or a subset of) pixels. L2 differences between
rendered pixel colors and ground truth pixel colors at given views are used
as the loss function to be minimized.

3.2. Palette-based image decomposition

Given an RGB image I, palette-based image decomposition techniques [65,
63, 71, 17] extract a small set of colors named palette from an image, such
that the color ¢ of each pixel p could be approximately represented as a
linear combination of palette colors:

(2) cr Z w? - vy,

1<i<K

where K denotes palette size (i.e., number of palette colors) which usually
varies from 4 to 10, depending on the color complexity of the input image. v;
denotes the i-th palette color, and w} denotes the additive weight of pixel p
with respect to palette color v;. The pixel-wise additive weights are required
to satisfy two properties. First, they are non-negative: wlP >0(1<i<K);
second, they sum to one: Zfil wlp =1.

By denoting the palette as V' = [vq,...,vg| and the additive weight
vector at each pixel p as wP = [wl, ..., wf(]T, respectively, we could also
rewrite the above formula in the vector-matrix form as:

(3) cr V. -wP
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Figure 2: The pipeline of PaletteNeRF. We first preprocess input views to
obtain the palette and mixing weights. The weights are used as NeRF’s
fitting target. After training NeRF, we obtain output weights for a novel
view, and modify the palette color to edit that view.

By denoting the per-pixel additive weights (wP) as a weight image W, i.e.,
having the same resolution as the input image I while the channel size is
changed from 3 to K, we could approximate pixel colors of the input image
by:

(4) I~V -W.

There are various options of additive weights, including as-sparse-as-
possible weights [65], RGBXY barycentric weights [63], and mean value co-
ordinates (MVC) [71, 25, 19]. Since MVC weights can be efficiently computed
and have been demonstrated to be smooth, sparse, and effective [71, 17], we
use MVC weights in our paper.

Once the palette and the additive weight images are extracted, by simply
adjusting the colors in the palette, the images can be instantly recolored
through weighted linear interpolations from the palette colors (Eq. (2)).
This offers a more convenient editing interface than stroke-based methods,
since those methods additionally user interaction steps, i.e., drawing strokes
on the image.

4. Our method

In this section, we introduce PaletteNeRF, a concise modification to NeRF
that makes scenes editable. We will first introduce our pipeline (Sec. 4.1),
then discuss the details of our network structure and training strategy
(Sec. 4.2).
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4.1. Overview and pipeline

Our goal is to provide an intuitive, efficient, and artifact-free color editing
tool for NeRFs. Motivated by existing palette-based image decomposition
works [65, 63, 71, 17], we find that if we approximate additive weights rather
than pixel colors, the colors of the scene represented by NeRFs could be
naturally edited.

Specifically, instead of using NeRFs to model pixel colors which are
essentially 3D (RGB) signals, we model higher-dimensional signals, e.g., the
pixel-wise additive weights. Thanks to the high capacities of MLPs, the K-
dimensional pixel-wise additive weights can also be well approximated. After
that, we could intuitively edit the colors of the NeRF-represented scene by
adjusting the palette colors. We refer to our modified NeRF as Palette NeRF.

Our overall pipeline is shown in Figure 2. The steps for utilizing Palette-
NeRF include:

e Data Preparation. Given a set of sparse captured RGB images of
a scene, we convert them to the same number of K-channel additive
weight images and a shared palette V' with K colors. This is done
by stitching all images into a big image, and then directly applying
the method in [71]. The pixel-wise additive weights are obtained using
mean value coordinates.

e Modified MLP. We feed the K-channel additive weight images to
PaletteNeRF. Different from the vanilla NeRF which predicts 3-channel
RGB colors, our PaletteNeRF predicts a K-channel vector w indicat-
ing additive weights, i.e., its formulation is changed from f(x,d) —
(c,0) to f(x,d) = (w,0).

e Novel View Rendering. To obtain the additive weight image W,
from a novel view, we apply the same process as done in vanilla NeRF,
i.e., through ray marching and blending of K-channel values. The RGB
image from this novel view can be simply reconstructed through Eq. (2)
as:

(5) Io:V'WO.

e Color Editing. Then, we can freely adjust the palette colors V to
achieve recoloring of the scene. During the color editing process, our
PaletteNeRF, which predicts additive weights, is not modified at all.
This indicates that our editing process is decoupled with the Palette-
NeRF structure. Such decoupling has two advantages. First, the used
NeRF backbone could be replaced with any newer, faster variants of
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Figure 3: The network structure of our PaletteNeRF. The number inside
each block denotes the dimension of the layer. The top branch of the network
predicts 3D colors which are used in the pretrain stage, while the bottom
branch predicts K-channel additive mixing weights which are used in the
finetune stage.
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NeRFs. In our experiments, we also demonstrate our method with
KiloNeRF and Instant-NGP backbone [55, 40], which allows color edit-
ing in real-time. Second, the consistency between different views is also
naturally preserved, leading to artifact-free color editing with high fi-
delity.

4.2. Network structure and training

As shown in Figure 3, our network structure is almost the same as the
vanilla NeRF, except for the last layer. We use a 128 x K fully connected
(FC) layer, instead of a 128 x 3 FC layer, as the last layer to output a
K-channel vector.

For training a PaletteNeRF, we need to change the loss function from
computing L2 differences between rendered and GT RGB images to com-
puting L2 differences between rendered (predicted) and the GT K-channel
additive weight images. A straightforward training process would be directly
using the same process as done for training a vanilla NeRF, only with the
above change on the loss function. While such a straightforward training
strategy could work, we find that its reconstruction quality is relatively
low.

Based on the fact that our PaletteNeRF and the vanilla NeRF share
a majority part of network structures, we propose a two-stage pretrain +
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finetune training strategy. Specifically, we first pretrain a vanilla NeRF using
RGB input images. After that, we fix the parameters of the density-related
layers, i.e. the parameters in the first 9 layers are kept unchanged, and
finetune the parameters of the last 2 color-related layers by minimizing the
L2 differences between the rendered and the GT K-channel additive weight
images. Experiments in Sec. 6.1 show that such a two-stage training strategy
leads to better reconstruction accuracy.

5. Method extensions

Our method can be easily extended in several ways. In the following, first, we
show that the backbone of PaletteNeRF can be replaced by KiloNeRF and
Instant-NGP [55, 40] to achieve real-time recoloring (Sec. 5.1). Second, we
extend the palette and mixing weights of PaletteNeRF to capture indirect
lighting in synthetic scenes (Sec. 5.2).

Besides, we have shown that applications in palette-based editing can
be directly incorporated into our framework, including color harmonization
and color transfer.

5.1. Real-time color editing

As mentioned earlier, our editing process is decoupled with the underly-
ing NeRF backbone. The vanilla NeRF backbone can be replaced by any
newer, faster variants of NeRFs as long as they are still volumetric repre-
sentations. To demonstrate this ability, we also implement our PaletteNeRF
with KiloNeRF and Instant-NGP backbones [55, 40], which allows color
editing in real-time. Similar to NeRF, we modify the output dimension of
the network used in each work from 3 to K. The modified network produces
frame rates of 14.3 and 21.0 FPS for KiloNeRF and Instant-NGP respec-
tively, which are usable for real-time editing. The editing results of each
backbone are shown in Figure 4. The results with KiloNeRF and Instant-
NGP backbones are visually indistinguishable from those with vanilla NeRF
backbones.

We also make a GUI to enable real-time novel view synthesis and color
editing. Our GUI is based on the framework DearPyGUI [23]. Figure 5 shows
an example of our GUI. A video demo is also provided in the supplementary
video.

5.2. Second-order weights for synthetic scenes

NeRF scenes can be classified into captured scenes and synthetic scenes.
Captured scenes refer to those scenes where only captured images from spe-
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Figure 4: Editing results of using vanilla NeRF, KiloNeRF and Instant-
NGP as backbones, respectively. All methods can fit the multi dimensional

weights well, and achieve editing results with visually indistinguishable qual-
ity.

Figure 5: Recoloring scene chair with our GUIL. User can select and modify
palette to achieve real-time recoloring.

cific views are available. While the images of synthetic scenes are generated
using renderers with given 3D geometries, materials, and lighting informa-
tion.

For synthetic NeRF scenes, we can further extend our method to provide
a more semantically meaningful palette and better controls on recoloring,
i.e., supporting higher-order effects (indirect lighting) besides additive mix-
ing. Let’s imagine a synthetic 3D scene with static geometry and static light-
ing, but with some editable materials, whose diffuse colors v; are allowed
to adjust. Considering indirect illuminations up to 2 bounces, the rendered
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color c of a pixel p can be computed as follows:

(6) c=uwh+ Zw v+ Z wp; - (Vi ©vj),

I<i<K I<i<i<K

where © denotes channel-wise multiplication, w denotes contributions from

light paths not intersecting with any editable matenals w? and wp denote

contributions from light paths intersecting one and two tlmes of edltable

materials, respectively. All these weights are essentially light transports and

can be directly computed using a path tracing renderer such as PBRT [50].
The equation can be written in the vectorized form:

(7) c=V- wP,
where
® V=[1,vi,...,VK,Vi1,.--, VK K],
wP = [wg, wy, ..., wh,wly, ... ,w%K]T.

The above modification can be directly supported by our PaletteNeRF, by
only modifying the data preparation step at the beginning and the color
editing step at the end, as described in Sec. 4.1. Notice that a palette size of
K would produce a second-order weight vector V' of length (K +1)(K+2)/2.

In the data preparation step, we no longer use existing palette-based im-
age decomposition methods to extract palette and additive weights. Instead,
we ask users to manually specify several materials he or she want to adjust
and use the diffuse colors of specified materials as palette colors. Then, we
compute the second-order weights in Eq. (8) directly using PBRT [50]. In
the color editing step, we use Eq. (6) instead of Eq. (2) to compute the
reconstructed colors.

We have tested two synthetic scenes: Cornell box and breakfast. The
editing results are shown in Figure 6. Notice the visually plausible indirect
illumination effects after recoloring, e.g., color bleeding effects in the ceiling
and reflection of the sphere on the cylinder surface in scene Cornell box, and
color bleeding effects including pink tint of the floor and green tint of the
desk in scene breakfast.

5.3. Color harmonization and transfer

Our work bridges between NeRF rendering and palette-based editing. There-
fore, many applications in either domain can be directly Incorporated into
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Figure 6: Rendered scenes (Cornell box, breakfast) and editing results. For
each scene, the 4 rows are: ground truth, PaletteNeRF output, amplified
areas, color of tunable materials. Colored rectangles amplify area which have
interreflection effects. Palette colors are gamma-corrected.

our framework. In this section, we demonstrate two applications of palette-
based editing in [64], including color harmonization and color transfer.

These two applications are based on several harmonic color templates
in the Hue space. We use 7 harmonic templates designed for palette colors
in [64]. Each harmonic template has at least 1 parameter «, which describes
the angle of rotation in the hue of the axis. The harmonization is performed
in HCL color space (Hue, Chroma, Luminance). We utilize the palette V ex-
tracted in the data preparation step of PaletteNeRF. For template T}, (),
we find the closest axis to each color in V', by measuring the distance of
hue in the HCL color space. The distance is weighted and summed to com-
pute a template fitting cost, which is then minimized to find the best «
for each template. Once the template is chosen, each palette color in V is
projected onto the nearest axis of the template, forming the harmonized
palette V'. Then, as described in the main paper, V' is used to recolor, i.e.
harmonize the whole scene. Figure 7 shows harmonized results of the scene
orchids.

Based on harmonic templates, we can perform the color transfer ap-
plication. Given an input image I and a reference image R, we extract
their palette P, Pr, and compute optimal templates T7(ar), Tr(agr). Tan
et al. [64] proposed two template-based color transfer methods — template
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Figure 7: Comparison of the same scene orchids harmonized by 7 different
templates.

Original Harmonized

Figure 8: Examples of color harmonization applied to NeRF scenes.

alignment transfer and template fitting transfer. For the first one, we com-
pute the main color axis of T7(ay), Tr(ar). The main axis represents the
dominant color distribution of an image. Then we rotate T7(ay) to align the
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Figure 9: Results of two different template-based color transfer methods and
palette bipartite matching based color transfer.

main axis with Tr(ar). Finally, we perform harmonization on image I using
Tr(ar). The second method aims at better preserving the original colors.
In this case, we harmonize palette P by fitting it to template Tr(ag) with-
out any rotation. Figure 9 demonstrates each method. Our palette-based
NeRF editing is general to various down-streaming palette editing, we also
show the palette bipartite matching-based color transfer application, which
minimizes the Euclidean distance in HCL space between two palettes while
performing their bipartite matching. The result is also shown in Figure 9.

6. Experiments

We conduct our experiments on a PC with an NVIDIA RTX 3080Ti GPU,
a Ryzen 5900X CPU, and 64GB of RAM. For each scene, we train Palette-
NeRF for 200k iterations, which takes around 5 hours.

6.1. Evaluation

6.1.1. Training strategy As mentioned in Sec. 4.2, we have proposed a
two-stage (pretrain + finetune) training strategy. To validate the effective-
ness of the two-stage strategy, we compare it against the traditional one.
For a fair comparison, we set the number of iterations to be the same for
both training strategies. Specifically, the traditional strategy uses 200k iter-
ations, while our two-stage strategy sets iteration steps as 180k (pre-train)
+ 20k (finetune) for captured scenes, and 140k (pre-train) + 60k (finetune)
for synthetic scenes. We have tested 8 scenes, including 6 captured scenes
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Table 1: Quantitative comparison between the traditional strategy and
our two-stage (pretrain + finetune) training strategy. “Additive Weights”
columns report average scores of 6 captured scenes (lego, chair, flower, or-
chids, vasedeck, valley). “Second Order Weights” columns report average
scores of 2 synthetic scenes (Cornell box, breakfast)

training Additive Weights Second Order Weights
method PSNR?T SSIM1 LPIPS| PSNRf SSIM1 LPIPS])

traditional 25.21 0.832 0.129  8.58 0.084 0.363
ours 26.71 0.833 0.095 40.11 0.976 0.024

Table 2: Ablation studies on the dimension of the last layer of PaletteNeRF
(shown in the first 3 rows) evaluated on scenes vasedeck and lego. The last
row shows scores of the vanilla NeRF with 128 dimension for comparison

vasedeck lego
dimension PSNRf SSIM?T LPIPS| PSNR?T SSIM{ LPIPS|
128 24.26  0.693 0.172  30.30 0.941 0.031
256 24.73 0.722 0.154 30.53 0.944 0.030
512 24.73 0.720 0.156 30.66 0.945 0.029

NeRF(128) 24.71 0.715 0.163  30.60 0.946 0.030

and 2 synthetic scenes, and report the average reconstruction scores for both
strategies in Table 1.

From the results, we could find that our two-stage training strategy im-
proves the reconstruction quality by a large gap, especially on the synthetic
scenes with second-order weights. This is possibly due to the relatively large
number of channels making it harder to be directly trained, while a pre-train
step helps provide a good initialization.

6.1.2. Dimension of the last layer We also evaluate different choices
of the input dimension of the last layer. Table 2 shows the reconstruction
scores on two scenes when the dimension of the last layer is set to 128,
256, and 512, respectively. Increasing the dimension of the last layer could
slightly increase reconstruction quality, at the cost of longer rendering time.
However, to make a good trade-off between quality and speed, we set it as
128 in our experiments.

6.2. Comparisons

6.2.1. Comparisons with other palette-based models Figure 10
compares our edited results with a concurrent work — PosterNeRF [68] on
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Figure 10: Comparison with PosterNeRF [68]. For each example, from top
to bottom, we show the GT original view from dataset, recolored results
generated by PosterNeRF and by our PaletteNeRF, respectively. Palettes
on the left illustrate the editing operations used by each method.

two scenes lego and drums. PosterNeRF also employs a palette-based editing
interface. However, it could easily generate visible artifacts, i.e., producing
inconsistent recoloring results. Please see the close-up images in Figure 10:
PosterNeRF produces unnatural recoloring on the ground near the exca-
vator in scene lego and generates unsmooth recoloring on the cymbal in
scene drums. In contrast, our recoloring results are much better without
artifacts.

The reason why PosterNeRF generates artifacts lies in the way it uses
palettes and computes mixing weights. PosterNeRF will choose at most 2
palette colors, resulting in at most 2 non-zero values of weight wP in Eq. (3).
Thus, some colors cannot be reproduced precisely. Furthermore, the weights
are also quantized with large step sizes, which leads to color banding arti-
facts. In contrast, our method approximates each pixel with a linear blending
of an arbitrary number of palettes, and the weight of linear blending is ac-
curate, thus producing smooth results.

In Figure 11, we compare with two state of art palette-based recolor-
ing methods, including a concurrent work (Kuang et al. [28]) and a video
recoloring method (Du et al. [17]). In scene kitchen, our results are com-
parable to Kuang et al., while Du et al. unexpectedly modified leaves to
become reddish. We show two views of scene bonsai to demonstrate 3D
consistency. Du et al. perform well in one view, but make the whole image
become purple in another. In contrast, our model produces view-consistent
results.
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Input Ours Kuang et al. Du et al.

kitchen

bonsai

Figure 11: Comparison with Kuang et al. [28] and Du et al. [17] on dataset
MipNeRF360 [5]. For each recolored images, we show the corresponding
edited palette on the left side. We change the color of lego in scene kitchen,
and bicycle in scene bonsai.

Source CLIP-NeRF Ours

“A green excavator” E

Figure 12: Comparison with CLIP-NeRF [70], which takes “A green exca-
vator” as text edit prompt to edit the scene. We change one of the palette
colors from yellow to green.

6.2.2. Comparison with CLIP-NeRF In Figure 12, we further com-
pare our color editing results with CLIP-NeRF [70] on scene lego. We can
see that CLIP-NeRF tends to blur the details of the excavator, add noise to
the ground, and modify undesired regions such as red lights and grey-blue
shafts. In contrast, our method has better image quality and provides better
controllability for color editing.

We do not compare with EditingNeRF [34] since it is hard to make a
fair comparison. Our method, like vanilla NeRF, could be trained through a
single scene and used to recolor the scene. In contrast, EditingNeRF requires
a scene dataset with many instances from the same category to enable edit-
ing, disabling its ability to edit a single NeRF scene (such as the standard
ones like lego and drums).
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Table 3: Quantitative comparison of PaletteNeRF to the vanilla NeRF on
8 scenes. We report PSNR/SSIM (higher is better) and LPIPS (lower is
better). PaletteNeRF is able to achieve similar performance compared to
the vanilla NeRF

lego chair
method PSNR1 SSIMtT LPIPS| PSNRf SSIMftT LPIPS|
NeRF 31.15 0.952 0.025 31.32 0.956 0.041
PaletteNeRF 30.14 0.941 0.030 30.72 0.950 0.045
flower orchids

method PSNRt SSIMftT LPIPS| PSNRf SSIM{T LPIPS|
NeRF 28.15 0.887 0.053 21.33 0.750 0.109
PaletteNeRF 28.17 0.881  0.059 21.52 0.759 0.108

vasedeck valley
method PSNRtT SSIM?T LPIPS| PSNR?T SSIM?T LPIPS]
NeRF 24.71 0.715 0.163 27.10 0.760 0.137
PaletteNeRF 24.66 0.721 0.152 26.64 0.745 0.159

Cornell box breakfast

method PSNRtT SSIMftT LPIPS| PSNRfT SSIM{T LPIPS|
NeRF 44.15 0.993 0.007 39.95 0.971 0.03

PaletteNeRF 41.34  0.985 0.013 38.88  0.967 0.035

6.3. Results

In Figures 1 and 14, we show the recoloring results on several scenes using
our PaletteNeRF. For each example, the recolored results on multiple novel
views are provided. PaletteNeRF can produce consistent recoloring results
across multiple views.

In Table 3, we also provide the quantitative reconstruction scores (in-
cluding PSNR, SSIM, and LPIPS) of PaletteNeRF for all input scenes. The
reconstruction score of the vanilla NeRF is also provided. Figure 13 gives
visual comparisons between the reconstructed results of our PaletteNeRF
and the vanilla NeRF. It could be found that the quality of PaletteNeRF is
comparable to the vanilla NeRF from both aspects of quantitative measures
and visual results. Without reducing visual qualities, our method enables
the ability of color editing for NeRFs. Readers can view our supplementary
video for more color editing results, including results of different backbones,
and a GUI demo mentioned above.
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PaletteNeRF

Figure 13: Qualitative comparison of PaletteNeRF to the vanilla NeRF. For
each scene, from left to right, we show novel views synthesized by the vanilla
NeRF and by our method, respectively, and the ground truth.

7. Conclusion

In this paper, we present PaletteNeRF, which unifies the palette-based im-
age decomposition methods and NeRFs to enable color editing of NeRF-
represented scenes. Our method is intuitive, efficient, view-consistent, and
artifact-free. The users could recolor the scene by adjusting palette colors
and previewing the recolored results from any novel views. Moreover, the
editing process is decoupled from the network structure, which means the
backbone of PaletteNeRF and the data preparation step can be replaced
with more advanced follow-ups.

Nevertheless, several limitations still exist in our method. For example,
we only allow global color editing, hence, if a scene contains two red ap-
ples, it is not allowed to only change the color of one apple. Local color
editing is an valuable topic for future work. Furthermore, geometry edit-
ing is not supported. It is worthwhile to investigate ways to edit geome-
tries.
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Figure 14: Color editing results of our method. In each 2 rows, the top one
is NeRF’s output, the bottom one is editing results of PaletteNeRF. Scenes
are from [39, 72, 5]. We use vanilla NeRF as backbone for the first 3 scenes,
and Instant-NGP for the last 2.
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