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From DK-STP to non-square general linear algebra
and general linear group
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A new matrix product, called dimension keeping semi-tensor prod-
uct (DK-STP), is proposed. Under DK-STP, the set of m× n ma-
trices becomes a semi-group (G(m × n,F)), and a ring, denoted
by R(m × n,F). Then the action of semi-group G(m × n,F) on
dimension-free Euclidian space, denoted by R

∞, is discussed. This
action leads to discrete-time and continuous time S-systems. Their
trajectories are calculated, and their invariant subspaces are re-
vealed. Through this action, some important concepts for square
matrices, such as eigenvalue, eigenvector, determinant, invertibil-
ity, etc., have been extended to non-square matrices. Particularly,
it is surprising that the famous Cayley-Hamilton theory can also
been extended to non-square matrices. Finally, the Lie bracket
can also be defined, which turns the set of m × n matrices into
a Lie algebra, called non-square general linear algebra, denoted by
gl(m× n,F). Moreover, a Lie group, called the non-square general
Lie group and denoted by GL(m×n,F), is constructed, which has
gl(m×n,F) as its Lie algebra. Their relationship with classical Lie
group GL(m,F) and Lie algebra gl(m,F) has also been revealed.

1. Preliminaries

The past two decades have witnessed the development of STPs, which gen-
eralize the classical matrix (including vector) products to dimension-free
matrix products [20, 35]. These STPs have received various applications,
including Boolean networks [33], finite games [13], dimension-varying sys-
tems [11], engineering problems [29], finite automata [40], coding [42], etc. In
addition to thousands of papers, there are already many STP monographs
[5, 6, 7, 8, 11, 12, 15, 16, 18, 19, 30, 32, 34, 41], and books with STP chapter
or appendix [2, 38].

Roughly speaking, up to this time there are mainly three kinds of STPs.
They are matrix-matrix (MM)-STP, matrix-vector (MV)-STP, and vector-
vector (VV)-STP, which are defined as follows (please refer to Appendix A
for notations):
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Definition 1.

(i) MM-STP-1:
Let A ∈ Mm×n, B ∈ Mp×q and t = lcm(n, p). The first type MM-STP
of A and B is defined as [6, 7]

A�B := (A⊗ It/n)(B ⊗ It/p).(1)

MM-STP-2:
The second type MM-STP of A and B is defined as [11]

A�B := (A⊗ Jt/n)(B ⊗ Jt/p).(2)

(ii) MV-STP-1:
Let A ∈ Mm×n, x ∈ Rp and t = lcm(n, p). The first type MV-STP of
A and x is defined as [11]

A��x := (A⊗ It/n)(x⊗ 1t/p).(3)

MV-STP-2:
The second type MV-STP of A and x is defined as [11]

A��x := (A⊗ Jt/n)(x⊗ 1t/p).(4)

(iii) VV-STP:
Let x ∈ Rm, y ∈ Rn and t = lcm(m,n). The VV-STP of x and y is
defined as [10]

x�· y := (x⊗ 1t/m)T (y ⊗ 1t/n) ∈ R.(5)

In addition to aforementioned STPs, there are still some other STPs.
First, in previous STPs, the main objects, such as matrix A and vector x,
are lying on left, so they are also called the left STPs. It is also very natural
to put the main objects on right, then the obtained STPs are called the
right STPs. The left STPs are assumed to be default STPs, because they
have some nice properties superior than the right ones [7]. Precisely, we have
[6, 7]

(i) Right MM-STP-1:

A�B := (It/n ⊗A)(It/p ⊗B).(6)
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Right MM-STP-2:

A�r B := (Jt/n ⊗A)(Jt/p ⊗B).(7)

(ii) Right MV-STP-1:

A��x := (It/n ⊗A)(1t/p ⊗ x).(8)

Right MV-STP-2:

A��rx := (Jt/n ⊗A)(1t/p ⊗ x).(9)

(iii) Right VV-STP:

x �∗ y := (1t/m ⊗ x)T (1t/n ⊗ y) ∈ R.(10)

Second, instead of In, Jn, which are called matrix multiplier, or 1n,
which is called vector multiplier, may we choose other kinds of multipliers
to generate other kinds of STPs? The answer is “Yes.” But so far the others
are less useful [9].

For two matrices A,B, if the column number of A equals the row number
of B, then the classical matrix product is defined. In this case we say that A
and B satisfy dimension matching condition. All the STPs, including MM-
STPs, MV-STPs, and VV-STPs, are generalizations of the corresponding
classical products in linear algebra. That is, when the required dimension
matching condition is satisfied, they coincide with the classical matrix (vec-
tor) products.

Moreover, a significant advantage of STPs is: they keep the fundamental
properties of the classical MM, NV, or VV products available. This advan-
tage makes the usage of STPs very convenient. Hence they received wide
applications in many fields.

The basic idea for all STPs is the same, which can be described as fol-
lows: When the dimension matching condition for factor elements (matrices
or vectors) does not satisfied, we use certain matrices, such as In, to enlarge
the matrices or certain vector, such as 1n, to enlarge the vectors through
Kronicker product. Eventually, the enlarged matrices or vectors satisfy di-
mension matching condition, and then the conventional products of the en-
larged matrices or vectors are considered as the STP of the original matrices
or vectors. Roughly speaking, the enlargements change the sizes of the ma-
trices or vectors, but they do not change the “information” contained in the
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original matrices or vectors, because they only duplicate entries of the fac-
tor matrices or vectors. This fact makes STPs meaningful. That is, the STP
represents the “product” of original matrices or vectors in certain sense.

In addition to many engineering or dynamic system related applications
of STP, a challenging theoretical problem is how to describe the action
of matrices of various dimensions on vector spaces of various dimensions.
Because STPs have removed the dimension restriction of matrix-matrix or
matrix-vector products, this action becomes dimension-varying (or overall,
dimension-free). To explore such dimension-free actions, we first introduce
some new concepts, which provide a framework for such dimension-free ac-
tions.

Consider the set of matrices with arbitrary dimensions as [10]

M =

∞⋃
m=1

∞⋃
n=1

Mm×n,

and the dimension-free Euclidian space is defined as

R
∞ :=

∞∑
n=1

R
n.

Then G := (M,�) becomes a monoid (i.e., semi-group with identity); the
action of M on R∞, as �� : M×R∞ → R∞ (or �� : M×R∞ → R∞), forms
an S-system [31]; and the�· is an inner product over R∞.1 Recently, this kind
of systems have been developed into dynamic systems over dimension-free
manifold [17].

The purpose of this paper is to propose a new STP, called the dimension
keeping STP (DK-STP) and denoted by

�

. Dimension keeping means if
both two factor matrices are of the same dimension, say, they are in Mm×n,
then their product remains to be of the same dimension. This surprising
property makes semi-group G(m× n,R) := (Mm×n,

�

) a ring, denoted by
R(m× n,F).

The group action of G(m×n,R) on R∞ is then explored. Based on this
action, the corresponding dynamic systems are also proposed and investi-
gated in detail. As byproducts, some basic concepts of square matrices have

1Precisely speaking, the inner product over R∞, defined in [10] is

< x, y >V :=
1

t
x�· y.
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G(m× n,F)× R
∞ → R
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Figure 1: Outline of this paper.

been extended to non-square matrices. They are: eigenvalues, eigenvectors,
determinant, invertibility, etc. The Cayley-Hamilton theorem has also be
extended to non-square matrices.

Finally, a Lie bracket is defined to produce a Lie algebra, called non-
square (or STP) general linear algebra, denoted by gl(m × n,F). Certain
properties are obtained. Starting from this Lie algebra, its corresponding
non-square (or STP) general linear group, denoted by GL(m× n,F) can be
deduced. The outline of this paper is depicted in Figure 1.

The rest of this paper is outlined as follows:

Section 2 defines the DK-STP. A matrix, called bridge matrix, is defined.
Using it a formula to calculate the DK-STP is obtained. Some elementary
properties are also provided. Section 3 investigates further properties of the
DK-STP. The ring R(m × n,F) of Mm×n is considered in Section 4. Its
sub-ring, the ring homomorphism and isomorphism of R(m× n,F) are also
investigated. Section 5 considers the action of G(m×n,R) on dimension-free
pseudo-vector space R∞. A matrix A ∈ Mm×n is considered as an operator
on R∞. Then the operator norm, invariant subspace, etc. are considered. As
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byproduct, the square restriction of non-square A is obtained, which leads

to eigenvalues, eigenvectors, determinant, invertibility, etc. of non-square

(NS-) matrices. Moreover, the Cayley-Hamilton theorem has then been gen-

eralized to non-square matrices. Section 6 proposes the NS-general linear

algebra. Related topics such as sub-algebra, algebraic homomorphism, iso-

morphism, and Killing form etc. are discussed. Section 7 constructs general

linear group for NS-matrices, which is denoted by GL(m × n,F). It has

clearly demonstrated that GL(m× n,F) is second countable and Hausdorff

topological space, mn-dimensional manifold, and a Lie group. Finally, it is

proved that gl(m×n,F) is its Lie algebra. Section 8 is a concluding remark,

including some challenging problems which remain for further study.

A list of notations is presented in the Appendix A at the bottom of this

paper.

2. DK-STP

Definition 2. Let A ∈ Mm×n and B ∈ Mp×q, t = lcm(n, p). The DK-STP

of A and B, denoted by A

�

B ∈ Mm×q, is defined as follows.

A

�

B :=
(
A⊗ 1Tt/n

)
(B ⊗ 1t/p).(11)

Remark 3. (i) It is easy to verify that when the dimension matching

condition is satisfied, i.e., n = p, the DK-STP coincides with classical

matrix product. Hence, similarly to two kinds of MM-STPs, the DK-

STP is also a generalization of classical matrix product.

(ii) The two kinds of MM-STPs are not suitable for matrix-vector prod-

uct, because in general the results are not vectors. Hence they can not

realize linear mappings over vector spaces, and the two corresponding

MV-STPs have been established to perform linear mappings. Unlike

them, DK-STP can realize MM-product and MV-product simultane-

ously.

(iii) Comparing with the MM-STP defined in Definition 1 [6, 7], this DK-

STP has minimum sizem×q, no matter whether the dimension match-

ing condition is satisfied. That is why the product is named as dimen-

sion keeping STP.

(iv) If two matrices A and B have the same dimension, the dimension of

their DK-STP remains the same. This is a nice property.

Remark 4. (i) It is natural to define the right DK-STP as follows:
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Let A ∈ Mm×n and B ∈ Mp×q, t = lcm(n, p). The right DK-STP of

A and B, denoted by A � B ∈ Mm×q, is defined as follows.

A � B :=
(
1Tt/n ⊗A

)
(1t/p ⊗B).(12)

(ii) To be more general, let Wk ∈ Rk, k = 1, 2, . . . be a set of column

vectors, called weights, where W1 = 1, and 0 �= Wk ≥ 0, ∀k > 0. (That

is, Wk are non-zero vectors with non-negative entries.) Then we can

define the weighted (left) DK-STP as

A

�

wB :=
(
A⊗W T

t/n

)
(B ⊗Wt/p).(13)

(iii) Similarly, we can define the weighted right DK-STP as

A � wB :=
(
W T

t/n ⊗A
)
(Wt/p ⊗B).(14)

Example 5. The weight vectors can be chosen arbitrary. The following are

some examples.

(i) Taking average, a reasonable definition for Wk is

Wk =
1

k
1k, k ≥ 1.(15)

(ii) Taking normal distribution for Wk. Note that

φ(u) =
1√
2π

∫ u

−∞
e−

x2

2 dx.(16)

Define

W2k :=
(
φ(−0.1k), φ

(
−0.1(k − 1)

)
, . . . ,

φ(−0.1), φ(−0.1), . . . , φ(−0.1k)) ,

W2k+1 :=
(
φ(−0.1k), φ

(
−0.1(k − 1)

)
, . . . ,

φ(−0.1), φ(0), φ(−0.1), . . . , φ(−0.1k)) , k = 1, 2, . . . .

(17)
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Then

W1 = (1),

W2 = (0.4602, 0.4602),

W3 = (0.4602, 0.5, 0.4602),

W4 = (0.4207, 0.4602, 0.4602, 0.4207),

...

Using the VV-STP, defined in (5), an alternative definition of DK-STP

can be obtained.

Definition 6. Let A,B ∈ M, with A ∈ Mm×n and B ∈ Mp×q. The DK-

STP of A and B, denoted by C = A

�

B ∈ Mm×q, is defined as follows.

ci,j = Rowi(A)�· Colj(B), i ∈ [1,m], j = [1, q].(18)

The equivalence of the two definitions can be verified by a straightfor-

ward computation.

Proposition 7. Definition 2 and Definition 6 are equivalent.

Corollary 8. Let x, y ∈ R∞. Then

xT

�

y = x�·y.(19)

That is, DK-STP is also a VV-STP.

Remark 9. (i) The corresponding alternative definition of right DK-STP

is as follows:

Let A,B ∈ M, with A ∈ Mm×n and B ∈ Mp×q. The right DK-STP

of A and B, denoted by C = A � B ∈ Mm×q, is defined as follows.

ci,j = Rowi(A) �∗ Colj(B), i ∈ [1,m], j = [1, n].(20)

(ii) It is also easy to verify that the definition (12) is equivalent to the

definition (20).

(iii) Define the weighted VV-STP as follows: Let x ∈ Rm, y ∈ Rn, t =

lcm(m,n). Then the weighted VV-STP is defined by

x�·wy := (x⊗Wt/m)T (y ⊗Wt/n).(21)
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(iv) Let A,B ∈ M, with A ∈ Mm×n and B ∈ Mp×q. The alternative

definition of weighted DK-STP denoted by C = A

�

wB ∈ Mm×q, is

defined as follows.

ci,j = Rowi(A)�·w Colj(B), i ∈ [1,m], j = [1, q].(22)

(v) It is easy to verify that weighted DK-STP, defined by (13), is equivalent

to the one, defined by (22).

(vi) Define the weighted right VV-STP as follows: Let x ∈ Rm, y ∈ Rn,

t = lcm(m,n). Then the weighted VV-STP is defined by

x�∗wy := (Wt/m ⊗ x)T (Wt/n ⊗ y).(23)

(vii) Let A,B ∈ M, with A ∈ Mm×n and B ∈ Mp×q. The alternative def-

inition of weighted right DK-STP denoted by C = A � wB ∈ Mm×q,

is defined as follows.

ci,j = Rowi(A) �∗w Colj(B), i ∈ [1,m], j = [1, n].(24)

(viii) It is easy to verify that definition (14) is equivalent to definition (24).

Definition 6 implies that the block-multiplication rule for DK-STP is

available.

Lemma 10. Let x ∈ Rm, y ∈ Rn, and r = gcd(m,n). Divide both x and y

into r equal parts as x = (x1, x2, . . . , xr) and y = (y1, y2, . . . , yr). Then

x �· y =

r∑
i=1

xi �· yi.(25)

Proof. Note that xi ∈ Fm/r and yi ∈ Fn/r. Let t = lcm(m,n) and t′ =

lcm(m/r, n/r). Then t′ = t/r. Hence

t

m
=

t′

m/r
;

t

n
=

t′

n/r
.

Using it, a straightforward computation verifies (25).

Using Lemma 10, the following result is easily verifiable.
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Proposition 11. Let A ∈ Mm×n, B ∈ Mp×q, and r = gcd(n, p). Split A
into r equal size rows and B into r equal size columns as

A =

⎡
⎢⎢⎢⎣
A1,1 A1,2 · · · A1,r

A2,1 A2,2 · · · A2,r
...

A�,1 A�,2 · · · A�,r

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣
B1,1 B1,2 · · · B1,μ

B2,1 B2,2 · · · B2,μ
...

Br,1 Br,2 · · · Ar,μ

⎤
⎥⎥⎥⎦ ,

where � and μ could be arbitrary. The row size of Ai,j (as well as the column
size of Bi,j) do not need to be equal. Then the block multiplication rule is
correct. That is, let A

�

B = C = (Ci,j). Then

Ci,j =

r∑
k=1

Ai,k
�

Bk,j , i ∈ [1, �], j ∈ [1, μ].

Remark 12. (i) It is ready to verify that the Lemma 10 is also true
for�·w, hence Proposition 11 is also true for weighted DK-STP.

(ii) It is also easy to verify that the Lemma 10 is not true for �∗ and �∗w,
hence Proposition 11 is not true for right DK-STP and weighted right
DK-STP.

To explore further properties, we need the following lemma.

Lemma 13. Let A ∈ Mm×n. Then

(i)

A⊗ 1Tα = A
(
In ⊗ 1Tα

)
.(26)

(ii)

A⊗ 1β = (Im ⊗ 1β)A.(27)

Proof. (i)

RHS of (26) = A
(
In⊗1Tα

)
= (A⊗1)

(
In⊗1Tα

)
= A⊗1Tα = LHS of (26).

(ii)

RHS of (27) = (Im⊗1β)A = (Im⊗1β)(A⊗1) = A⊗1β = LHS of (27).
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Using Lemma 13, we have the following proposition.

Proposition 14. Let A ∈ Mm×n and B ∈ Mp×q, t = lcm(n, p). Then

A

�

B = A
(
In ⊗ 1Tt/n

)
(Ip ⊗ 1t/p)B := AΨn×pB,(28)

where

Ψn×p =
(
In ⊗ 1Tt/n

)
(Ip ⊗ 1t/p) ∈ Mn×p(29)

is called a (left) bridge matrix of dimension n× p.

Remark 15. Similar argument shows the following corresponding results.

(i)

A � B = A
(
1Tt/n ⊗ In

)
(1t/p ⊗ Ip)B := AΦn×pB,(30)

where

Φn×p =
(
1Tt/n ⊗ In

)
(1t/p ⊗ Ip) ∈ Mn×p(31)

is called a right bridge matrix of dimension n× p.
(ii)

A

�

wB = A
(
In ⊗W T

t/n

)
(Ip ⊗Wt/p)B := AΨw

n×pB,(32)

where

Ψw
n×p =

(
In ⊗W T

t/n

)
(Ip ⊗Wt/p) ∈ Mn×p(33)

is called a weighted bridge matrix of dimension n× p.
(iii)

A � wB = A
(
W T

t/n ⊗ In
)
(Wt/p ⊗ Ip)B := AΦw

n×pB,(34)

where

Φw
n×p =

(
W T

t/n ⊗ In
)
(Wt/p ⊗ Ip) ∈ Mn×p(35)

is called a right weighted bridge matrix of dimension n× p.

The following are some easily verifiable properties come from defini-
tions:
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Proposition 16.

(i) If n = p, then

A

�

B = AB.

(ii)

ΨT
α×β = Ψβ×α.(36)

(iii)

(A

�

B)T = BT �

AT .(37)

(iv)

rank(A
�

B) ≤ min
(
rank(A), rank(B)

)
.(38)

Remark 17. Proposition 16 remains true for � ,

�

w, and � w. That is,

(i) If n = p, then

A � B = AB; A

�

wB = AB; A � wB = AB.

(ii)

ΦT
α×β = Φβ×α;

[
Ψw

α×β

]T
= Ψw

β×α;
[
Φw
α×β

]T
= Φw

β×α.(39)

(iii)

(A � B)T = BT

� A
T ; (A

�

wB)T = BT �

wA
T ;(40)

(A � wB)T = BT

� wA
T .

(iv)

rank(A � B) ≤ min
(
rank(A), rank(B)

)
;

rank(A

�

wB) ≤ min
(
rank(A), rank(B)

)
;

rank(A � wB) ≤ min
(
rank(A), rank(B)

)
.

(41)
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3. Properties of BK-STP

Proposition 18.

(i) (Distributivity)

Let B,C ∈ Mm×n. Then

A

�

(B + C) = A

�

B +A
�

C,

(B + C)

�

A = B

�

A+ C
�

A.
(42)

(ii) (Associativity)

Let A,B,C ∈ M. Then

(A

�

B)
�

C = A

�

(B

�

C).(43)

Proof. The proof of (i) is straightforward.

To prove (ii), let A ∈ Mm×n, B ∈ Mp×q, and C ∈ Mr×s. Using Propo-

sition 14, we have

(A
�

B)

�

C = (AΨn×pB)Ψq×rC

= AΨn×p(BΨq×rC) = A

�

(B

�

C).

Remark 19. Similar argument shows that Proposition 18 remains true for

� ,
�

w, and � w respectively.

Proposition 20. Given A,B,C,D ∈ M.

(i) If (B,C) satisfy dimension matching condition, (i.e., |Col(B)| =

|Row(C)|), then

A

�

(BC) = (A

�

B)C.(44)

(ii) If (A,B) satisfy dimension matching condition, then

(AB)

�

C = A(B

�

C).(45)

(iii) If both (A,B) and (C,D) satisfy dimension matching condition, then

(AB)

�

(CD) = A(B

�

C)D.(46)
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Proof. (i) First, assume B ∈ M∗×s and C ∈ Rs. Then

A

�

(BC) = A

�

(
s∑

i=1

Coli(B)ci

)

=

s∑
i=1

ciA

�

Coli(B)

= (A

�

B)C.

Next, assume C ∈ Ms×t. Then

A

�

(BC) = A

� [
B Col1(C), . . . , B Colt(C)

]
=

[
A

� (
B Col1(C)

)
, . . . , A

� (
B Colt(C)

)]
=

[
(A

�
B) Col1(C), . . . , (A

�

B) Colt(C)
]

= (A

�

B)C.

(ii) Using (44) and (i), we have

[
(AB)

�
C
]T

= CT �

(AB)T = CT � (
BTAT

)
=

[
CT � (

BT
)]
AT .

Taking transpose yields (45).
(iii) (46) follows from (44)–(45) immediately.

Remark 21. Similar argument shows that Proposition 20 remains true for

� ,

�

w, and � w respectively.

4. DK-STP ring

Recall that if A,B ∈ Mm×n then A

�

B ∈ Mm×n. This fact makes

�

a
dimension invariant operator over Mm×n. Taking Proposition 18 into con-
sideration, the following claim is obvious.

Proposition 22. (Mm×n,+,

�

) is a ring, denoted by R(m× n,F).

Remark 23. According to [24], (R,×,+) is a ring, if

(i) (R,+) is an abelian group;
(ii) (R,×) is a semi-group;
(iii) (Distributivity)

(a+ b)× c = a× c+ b× c,

a× (b+ c) = a× b+ a× c.
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Following this definition, it is straightforward to verify Proposition 22. (Some

other references, say, [28], require (R,×) to be a monoid (semi-group with

identity).)

Remark 24. (i) It is ready to verify that (Mm×n,+, � ), (Mm×n,+,

�

w), and (Mm×n,+, � w) are also rings, denoted by R

�

(m × n,F),

Rw� (m× n,F), and Rw

�

(m× n,F) respectively. Hence, we also under-

stand that R � (m × n,F) = R(m × n,F). All these rings are called

DK-STP rings. But for statement ease, hereafter the default one is

R(m× n,F) = R � (m× n,F).

(ii) Since (Mm×n,+) is a vector space, then (Mm×n,+,

�

), (Mm×n,+,

� ), (Mm×n,+,

�

w), and (Mm×n,+, � w) are also algebras [28]. Then

the following discussion about sub-ring can also be considered as for

the sub-algebra.

Consider the sub-rings of DK-STP ring.

Definition 25 ([24]). Let (R,+, ∗) be a ring and H ⊂ R. If (H,+, ∗) is also
a ring, it is a sub-ring of R.

In the following some examples for sub-rings of DK-STP ring are pre-

sented.

Example 26. Consider DK-STP ring R(m× n,F).

(i) Let r = (r1, . . . , rs) ⊂ [1,m].

M(m\r)×n :=
{
A ∈ Mm×n | Rowr(A) = 0, r ∈ r

}
.(47)

Then it is ready to verify that

M(m\r)×n ⊂ Mm×n

is a sub-ring.

(ii) Let r = (r1, . . . , rs) ⊂ [1, n].

Mm×(n\r) :=
{
A ∈ Mm×n | Colr(A) = 0, r ∈ r

}
.(48)

Then

Mm×(n\r) ⊂ Mm×n

is a sub-ring.
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(iii) Let r = (r1, . . . , rα) ⊂ [1,m] and s = (s1, . . . , sβ) ⊂ [1, n].

M(m\r)×(n\s) :=
{
A ∈ Mm×n | Colr(A) = 0,Rows = 0 r ∈ r, s ∈ s

}
.

(49)

Then

M(m\r)×(n\s) ⊂ Mm×n

is a sub-ring.
(iv) The above arguments are also true for R

�

(m× n,F), Rw� (m× n,F),

Rw

�

(m× n,F).

Next, we consider the ring homomorphism.

Definition 27 ([24]). Let (Ri,+i, ∗i), i = 1, 2 be two rings.

(i) φ : R1 → R2 is a ring homomorphism, if

φ(r +1 s) = φ(r) +2 φ(s), r, s ∈ R1.(50)

and

φ(r ∗1 s) = φ(r) ∗2 φ(s), r, s ∈ R1.(51)

(ii) φ : R1 → R2 is a ring isomorphism, if it is a one-to-one and onto
homomorphism. Moreover, its inverse φ−1 : R2 → R1 is also a ring
homomorphism.

(iii) If φ : R → R is a ring isomorphism, it is called an automorphism.

Lemma 28.

(i)

1p×q = 1p ⊗ 1Tq = 1Tq × 1p.(52)

(ii)

1p×q ⊗ 1s = 1s ⊗ 1p×q.(53)

(iii)

1p×q ⊗ 1Ts = 1Ts ⊗ 1p×q.(54)

(iv)

J2
s = Js.(55)
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Proof. (i) It can be proved by a straightforward verification.

(ii) Using (i), we have

1p×q ⊗ 1s =
(
1p ⊗ 1Tq

)
⊗ 1s

= 1p ⊗ 1s ⊗ 1Tq

= 1s ⊗ 1p ⊗ 1Tq

= 1s ⊗ 1p×q

(iii) The proof is similar to the one for (ii).

(iv) It can be verified by a straightforward calculation.

As special cases of (52)–(54) we have

Jp =
1

p
1p ⊗ 1Tp =

1

p
1Tp ⊗ 1p,(56)

Jp ⊗ 1s = 1s ⊗ Jp,(57)

Jp ⊗ 1Ts = 1Ts ⊗ Jp.(58)

The following Theorem is fundamental for R(m×n,F) homomorphism.

Theorem 29. (i) Let π1 : Mm×n → Msm×sn be defined by

π1 : A �→ Js ⊗A.

Then π1 is a ring homomorphism.

(ii) Let π2 : Mm×n → Msm×sn be defined by

π2 : A �→ A⊗ Js.

Then π2 is a ring homomorphism.

(iii)

π1
(
R(m× n,F)

) ∼= π2
(
R(m× n,F)

)
.(59)

Proof. Let A,B ∈ Mm×n.

(i) Since πi, i = 1, 2 are linear mappings, it is obvious that

πi(A+B) = πi(A) + πi(B), i = 1, 2.
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Set t = lcm(m,n), then

π1(A)

�

π1(B) =
(
Js ⊗A⊗ 1Tt/n

)
(Js ⊗B ⊗ 1t/p)

= J2
s ⊗ (A

�

B) = Js ⊗ (A

�

B) = π1(A

�

B).

(ii)

π2(A)

�

π2(B)

=
(
A⊗ Js ⊗ 1Tt/n

)
(B ⊗ Js ⊗ 1t/p)

=
(
A⊗ 1Tt/n ⊗ Js

)(
A⊗ 1Tt/n ⊗ Js

)
=

(
A⊗ 1Tt/n

)
(B ⊗ 1t/p)⊗ J2

s

=
(
A⊗ 1Tt/n

)
(B ⊗ 1t/p)⊗ Js

= π2(A
�

B).

We conclude that

R(m× n,F) � R(sm× sn,F).

(3) Define

ϕ(A⊗ Js) = Js ⊗A, A ∈ Mm×n.

We show that ϕ is an isomorphism.

ϕ
[
(A⊗ Js) + (B ⊗ Js)

]
= ϕ

[
(A+B)⊗ Js

]
= Js ⊗ (A+B)

= ϕ[A⊗ Js] + ϕ[B ⊗ Js],

and
ϕ
[
(A⊗ Js)

�

(B ⊗ Js)
]

= ϕ
[(
A⊗ Js ⊗ 1Tt/n

)
(B ⊗ Js ⊗ 1t/p)

]
= ϕ

[(
A⊗ 1Tt/n ⊗ Js

)
(B ⊗ 1t/p ⊗ Js)

]
= ϕ

[((
A⊗ 1Tt/n

)
(B ⊗ 1t/p)

)
⊗ Js)

]
= Js ⊗

((
A⊗ 1Tt/n

)
(B ⊗ 1t/p)

)
=

(
Js ⊗A⊗ 1Tt/n

)
(Js ⊗B ⊗ 1t/p))

= ϕ(A)

�

ϕ(B).

Hence ϕ is a ring homomorphism.
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To see ϕ is an isomorphism, one sees easily that ϕ is one-to-one and

onto. Hence, we have only to show that ϕ−1 is also an homomorphism.

We have

ϕ−1
[
(Js ⊗A) + (Js ⊗B)

]
= ϕ−1

[
Js ⊗ (A+B)

]
= (A+B)⊗ Js = ϕ−1[Js ⊗A] + ϕ−1[Js ⊗B],

and

ϕ−1
[
(Js ⊗A)

�

(Js ⊗B)
]

= ϕ−1
[(
Js ⊗A⊗ 1Tt/n

)
(Js ⊗B ⊗ 1t/p)

]
= ϕ−1

[
J2
s ⊗

(
A⊗ 1Tt/n

)
(B ⊗ 1t/p)

]
=

((
A⊗ 1Tt/n

)
(B ⊗ 1t/p)

)
⊗ Js

=
(
A⊗ 1Tt/n ⊗ Js

)
(B ⊗ 1t/p ⊗ Js)

= ϕ−1(A)
�

ϕ−1(B).

Hence ϕ−1 is also a ring homomorphism. We conclude that ϕ is a ring

isomorphism.

Remark 30. It is easy to verify that the results of Theorem 29 are also

true for R

�

(m× n,F), Rw� (m× n,F), and Rw

�

(m× n,F).

The following theorem is fundamental for R(m× n,F) isomorphism.

Theorem 31. Consider the ring R(m × n,R). Let t = lcm(m,n), r =

gcd(m,n), a = m/r, b = n/r, and Mr ∈ Or be an orthogonal matrix, i.e.,

MT
r = M−1

r . Then ϕ : Mm×n → Mm×n, defined by

A �→ (Mr ⊗ Ia)A
(
MT

r ⊗ Ib
)
, A ∈ Mm×n,(60)

is a ring automorphism.

Proof. First, we show ϕ is a ring homomorphism. It is obvious that

ϕ(A+B) = ϕ(A) + ϕ(B), A,B ∈ Mm×n.

We prove

ϕ(A

�

B) = ϕ(A)

�

ϕ(B), A ∈ Mm×n.(61)
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Note that
ϕ(A

�

B) =
[
(Mr ⊗ Ia)A

] � [
B
(
MT

r ⊗ Ib
)]

= (Mr ⊗ Ia)[A

�

B]
(
MT

r ⊗ Ib
)

= (Mr ⊗ Ia)AΨn×mB
(
MT

r ⊗ Ib
)
,

and

ϕ(A)

�

ϕ(B) =
[
(Mr ⊗ Ia)A(MT

r ⊗ Ib)
]
Ψn×m

[
(Mr ⊗ Ia)B

(
MT

r ⊗ Ib
)]

= (Mr ⊗ Ia)A(MT
r ⊗ Ib)Ψn×m(Mr ⊗ Ia)B

(
MT

r ⊗ Ib
)
.

Hence, to prove (61), it is enough to show

(MT
r ⊗ Ib)Ψn×m(Mr ⊗ Ia) = Ψn×m.(62)

(MT
r ⊗ Ib)Ψn×m(Mr ⊗ Ia)

= (MT
r ⊗ Ib ⊗ 1Ta )(Mr ⊗ Ia ⊗ 1b)

= Ir ⊗ (Ib ⊗ 1Ta )(Ia ⊗ 1b)

= (Ir ⊗ Ib ⊗ 1Ta )(Ir ⊗ Ia ⊗ 1b)

= (In ⊗ 1Ta )(Im ⊗ 1b)

= Ψn×m.

Next, we show that ϕ is a ring isomorphism. It is enough to show that
ϕ−1 exists and is also a ring homomorphism. Define φ : Mm×n → Mm×n by

A �→
(
MT

r ⊗ Ia
)
A(Mr ⊗ Ib), A ∈ Mm×n.

Then it is obvious that φ is also a ring homomorphism. Moreover, φ =
ϕ−1.

Remark 32.

(i) When m = n, Theorem 31 becomes the following: (Mn×n,×,+) is a
ring. Let Mn ∈ GL(n,R) be an orthogonal matrix. Then φ : Mn×n →
Mn×n, defined by

φ : A �→ MnAMT
n ,

is a ring automorphism. This is a well known fact.
(ii) From the proof of Theorem 31 it is obvious that if the r is replaced by

any s > 1 and s|r, the theorem remains true.

Remark 33. Theorem 31 can be extended to other rings.

(i) Similar argument as for Theorem 31 shows that ϕ is also an automor-
phism for Rw� (m× n,R).
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(ii) Define φ : Mm×n → Mm×n by A �→ (Ia ⊗ Mr)A(Ib ⊗ MT
r ). Then a

similar argument shows that φ is an automorphism for both R

�

(m×
n,R) and Rw

�

(m× n,R).

(iii) When the complex case is considered, i.e., F = C. We have only to
replaceMr ∈ Or byMr ∈ Ur andMT

r byMH
r . Then a similar argument

shows that:

ϕ is an automorphism for both R � (m× n,C) and Rw� (m× n,C);

φ is an automorphism for both R

�

(m× n,C) and Rw

�

(m× n,C).

The following is an obvious isomorphism.

Proposition 34. (i) Let F = R. Then the transpose A �→ AT as a map-
ping ϕT : Mm×n → Mn×m is an isomorphism. That is,

R(m× n,R) ∼= R(n×m,R).(63)

(ii) Let F = C. Then the conjugate transpose A �→ AH as a mapping
ϕH : Mm×n → Mn×m is an isomorphism. That is,

R(m× n,C) ∼= R(n×m,C).(64)

Remark 35. Proposition 34 can obviously be extended to R

�

(m × n,F),
Rw� (m× n,F), and Rw

�

(m× n,F).

5. Group action of STP semi-group on R
∞

5.1. Dimension-free Euclidian space

This subsection presents a brief review for dimension-free Euclidian space,
which provides a state space for dimension-varying dynamic systems. The
dimension-varying linear (control) systems have been investigated in [9, 10,
12], the dimension-varying non-linear (control) systems have been investi-
gated in [17].

Recall that the dimension-free Euclidian space is constructed by R∞ =⋃∞
n=1R

n.

Definition 36 ([17]). Assume x, y ∈ R∞, which are specified as x ∈ Rm

and y ∈ Rn, and lcm(m,n) = t. Then the addition (subtraction) of x and y
is defined by

x± y := (x⊗ 1t/m)± (y ⊗ 1t/n) ∈ R
t.(65)



22 Daizhan Cheng

With the addition (subtraction), defined by (65) and conventional scalar
product, R∞ becomes a pseudo-vector space, which satisfies all the require-
ments of a vector space except that x− y = 0 does not imply x = y [1].

Definition 37 ([17]). Assume x, y ∈ R∞, which are specified as x ∈ Rm

and y ∈ Rn, and lcm(m,n) = t.

(i) The inner product of x, y is defined by

〈x, y〉V :=
1

t
x�·y =

1

t
(x⊗ 1t/m)T (y ⊗ 1t/n).(66)

(ii) The norm of x is defined by

‖x‖V :=
√

‖〈x, x〉V‖.(67)

(iii) The distance of x and y is defined by

dV(x, y) := ‖x− y‖V .(68)

With the distance, defined by (68), R∞ becomes a topological space with
the distance deduced topology. (But it is not Hausdorff.)

x and y are said to be equivalent, if x−y = 0 (or equivalently, dV(x, y) =
0), denoted by x ↔ y. Define

Ω := R
∞/ ↔ .(69)

Denote by

x̄ := {y ∈ R
∞ | y ↔ x}.

x̄± ȳ := x± y, x̄, ȳ ∈ Ω.(70)

Then (70) is properly defined. Moreover, with this addition (subtraction) and
conventional scalar product, Ω becomes a vector space. Moreover, define⎧⎪⎨

⎪⎩
〈x̄, ȳ〉V := 〈x, y〉V , x ∈ x̄, y ∈ ȳ,

‖x̄‖V := ‖x‖V , x ∈ x̄,

dV(x̄, ȳ) := dV(x, y), x ∈ x̄, y ∈ ȳ.

(71)

The inner product, norm, and distance on Ω are all properly defined, which
turn Ω a (Hausdorff) topological vector space [27].
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Recall that M :=
⋃∞

m=1

⋃∞
n=1Mm×n is the set of matrices, which acts

on R∞ by x �→ A��x ∈ R∞ as defined by (3), (or x �→ A�◦x ∈ R∞ as
defined by (5)). Hereafter, for statement ease, only the first type of action
is considered. In fact, almost all the arguments are also applicable to the
second type action.

The action (3) (as well as (5)) is called a group action, which means
(M,�) is a monoid, and the action satisfies the following properties:

(A�B)��x = A��(B��x);(72)

and

E��x = x,(73)

where E = 1 ∈ M is the identity.
Using action (3), a dynamic system can be defined as

x(t+ 1) = A(t)��x(t), x(0) = x0 ∈ R
∞,(74)

which is called a semi-group system (or S-system) [31].
Moreover, it is also a dynamic system, that is, R∞ is a topological space,

and for a fixed A, x �→ A��x (as a mapping: R∞ → R∞) is continuous [36].
The only inferior is: the state space R∞ is not Hausdorff. To overcome this,
we turn to quotient space as follows.

Let A,B ∈ M. A,B are said to be equivalent, denoted by A ∼ B, if
there exist identity matrices Im and In, such that

A⊗ Im = B ⊗ In.

Denote by

〈A〉 := {B ∈ M | B ∼ A},
and the set of equivalence classes is denoted by

Σ := M/ ∼ .(75)

Then the action of M on R∞ can be transferred to the action of Σ on Ω by

< A > ��x̄ := 〈A��x〉, A ∈ 〈A〉, x ∈ x̄.(76)

The dynamic system (71) can also be transferred to Ω as

x̄(t+ 1) = 〈A(t)〉��x̄(t), x̄(0) ∈ Ω, 〈A(t)〉 ∈ Σ,(77)
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which surely needs to be well posed, that can be proved easily.

Now (77) is a dynamic system over a vector space Σ, which is also a

Hausdorff space [17]. A detailed argument can be found in [11, 17].

5.2. DK-STP based group action of matrices on R∞

In previous subsection one sees that unlike classical linear system over Rn, to

construct dynamic systems over R∞, we need both MM-STP and MV-STP.

Fortunately, when DK-STP is used, we go back to the classical situation,

where one operator

�

is enough for both matrix-matrix product and matrix-

vector product. This is an advantage of DK-STP.

Consider the following dynamic system

x(t+ 1) = A(t)
�

x(t), x(0) = x0 ∈ R
∞, A(t) ∈ M.(78)

According to Proposition 18, it is clear that (78) is an S-system. To see

it is also a dynamic system, we have to estimate the norm of A ∈ M with

respect to DK-STP.

Definition 38. Let A ∈ Mm×n ⊂ M. The DK-norm of A, denoted by

‖A‖ � , is defined by

‖A‖ � = sup
0�=x∈R∞

‖A �

x‖V
‖x‖V

.(79)

This norm can be calculated as follows.

Proposition 39. The DK-norm of A, defined by (79) is

‖A‖ � :=

√√√√ 1

m

m∑
j=1

‖Rowj(A)‖2V .(80)

Proof. Denote by

y = (y1, . . . , ym)T = A

�

x.

Using Schwarz inequality, we have

yj = RowT
j (A)�· x ≤ ‖Rowj(A)‖V‖x‖V , j ∈ [1,m].
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Hence

‖y‖V ≤ 1√
m

√√√√ m∑
j=1

[
‖Rowj(A)‖V

]2‖x‖2V
=

√√√√ 1

m

m∑
j=1

[
‖Rowj(A)‖V

]2‖x‖V .
That is,

‖A‖ � ≤

√√√√ 1

m

m∑
j=1

‖Rowj(A)‖2V .

Note that when x = 1n the equality reaches, which implies that

‖A‖ � ≥

√√√√ 1

m

m∑
j=1

‖Rowj(A)‖2V .

We conclude that (79) satisfies (80).

Proposition 39 ensures that (78) is a dynamic system.
To compare the DK-STP based dynamic system with MV-STP based

dynamic system, we recall the following.

Definition 40 ([11]). Consider the MV-STP based dynamic system (74)
and assume A(t) = A. A matrix A ∈ M, specified by A ∈ Mm×n, is a
(dimension) bounded operator if for any x0 ∈ R∞ there exist a T0 > 0 and an
Euclidian space Rn, depending on x0, such that the trajectory x(t, x0) ∈ Rn

for t ≥ T0. Otherwise, A ∈ Mm×n is a (dimension) unbounded operator.

The following proposition shows how to judge if a matrix is bounded or
not.

Proposition 41 ([11]). Consider S-system (74) with constant A(t) = A ∈
Mm×n. If m|n, A is (dimension) bounded. Otherwise, A is (dimension)
unbounded. Moreover, if A is (dimension) unbounded, then

lim
n→∞

dim
(
x(t, x0)

)
= ∞.

Unlike MV-STP based dynamic system, if we consider the DK-STP
based system (78) with A(t) = A, then the following proposition is obvi-
ous.
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Proposition 42. Consider the DK-STP based system (78) with A(t) = A.
Assume A ∈ Mm×n, then the trajectory x(t, x0) ∈ Rm, t ≥ 1. That is, Rm

is its invariant subspace.

Proof. For any x(0) = x0 ∈ R∞, it follows from definition that x(1) ∈ Rm

and all x(t), t ≥ 1 remains in Rm.

Proposition 42 ensures that under operator

�

any A ∈ M is a dimension
bounded operator for system (78).

Remark 43. (i) Consider an S-system

x(t+ 1) = A(t) � x(t), x(0) = x0 ∈ R
∞, A(t) ∈ M.(81)

Similar arguments show that for A ∈ M (80) remains true. Hence (81)
is also a dynamic system.

(ii) For weighted DK STPs, the corresponding S-systems can be con-
structed as

x(t+ 1) = A(t)

�

wx(t), x(0) = x0 ∈ R
∞, A(t) ∈ M,(82)

and

x(t+ 1) = A(t) � wx(t), x(0) = x0 ∈ R
∞, A(t) ∈ M(83)

respectively. It is easy to verify that both (82) and (83) are dynamic
systems.

Definition 44. Assume A ∈ Mm×n. The restriction of A on Rm is denoted
by ΠA, called the square restriction of A. Precisely speaking, A|Rm = ΠA,
that is,

A

�

x = ΠAx, ∀x ∈ R
m.(84)

Proposition 45. For each A ∈ Mm×n, there exists a unique ΠA ∈ Mm×m,
such that (84) holds.

Proof. By the linearity, A|Rm is uniquely determined by its action on a basis
of Rm. Consider

A

�

δim := ξi, i ∈ [1,m].

Then we have

A

�

Im = [ξ1, . . . , ξm] := Ξ.
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Using Proposition 20, we have that

A

�

x = A

�

(Imx) = (A

�

Im)x = Ξx.

It follows that Ξ is the unique ΠA, satisfying (84). We, therefore, have

(85) ΠA = A

�

Im = AΨn×m.

Remark 46. Similar argument shows that

(i) (For Right DK-SPT:) Assume A ∈ Mm×n. The restriction of A on Rm,
called the right square restriction of A and denoted by

Π

A, satisfying

A � x =

Π

Ax, ∀x ∈ R
m,(86)

is

Π

A = AΦn×m.(87)

(ii) (For Left Weighted DK-SPT:) Assume A ∈ Mm×n. The restriction of
A on Rm, called the left weighted square restriction of A and denoted
by Πw

A, satisfying

A

�

wx = Πw
Ax, ∀x ∈ R

m,(88)

is

Πw
A = AΨw

n×m.(89)

(iii) (For Right Weighted DK-SPT:) Assume A ∈ Mm×n. The restriction
of A on Rm, called the right weighted square restriction of A and
denoted by

Πw
A, satisfying

A � wx =

Πw
Ax, ∀x ∈ R

m,(90)

is

Πw
A = AΦw

n×m.(91)

Example 47. Given

A =

⎡
⎣1 2 −1 4
3 1 0 −2
5 −2 4 −1

⎤
⎦



28 Daizhan Cheng

(i) Using (85), we have

Ψ4×3 =

⎡
⎢⎢⎣
3 0 0
1 2 0
0 2 1
0 0 3

⎤
⎥⎥⎦ ,

and

ΠA = A

�

I3 = AΨ4×3 =

⎡
⎣ 5 2 11
10 2 −6
13 4 1

⎤
⎦ .

Let x = (2,−1, 3)T . Then a numerical computation shows that

A

�

x = ΠAx = (41, 0, 25)T .

(ii) Consider the right DK-STP, then

Φ4×3 =

⎡
⎢⎢⎣
1 1 1
1 1 1
1 1 1
1 1 1

⎤
⎥⎥⎦ ,

and

Π

A = AΦ4×3 =

⎡
⎣6 6 6
2 2 2
6 6 6

⎤
⎦ .

(iii) Consider a weighted left DK-STP by using normal distribution for
weights. From Example 5 we have

W3 = [0.4602, 0.5, 0.4602]T ,

W4 = [0.4207, 0.4602, 0.4603, 0.4207]T .

Then

Ψw
4×3 =

⎡
⎢⎢⎣
0.6355 0 0
0.1936 0.4221 0

0 0.4221 0.1936
0 0 0.6355

⎤
⎥⎥⎦ ,

and

Πw
A = AΨw

4×3 =

⎡
⎣1.0227 0.4221 2.3484
2.1001 0.4221 −1.2710
2.7902 0.8443 0.1389

⎤
⎦ .
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(iv) Considering a weighted right DK-STP by using the same weights as
in (iii), we have

Φw
4×3 =

⎡
⎢⎢⎣
0.1936 0.2301 0.2118
0.1936 0.1936 0.2301
0.2301 0.1936 0.1936
0.2118 0.2301 0.1936

⎤
⎥⎥⎦ ,

and

Πw
A = AΦw

4×3 =

⎡
⎣1.1979 1.3441 1.2528
0.3509 0.4237 0.4782
1.2894 1.3076 1.1795

⎤
⎦ .

5.3. Generalized Cayley-Hamilton theorem

The following result is called the generalized Cayley-Hamilton theorem,
which extends Cayley-Hamilton theorem to arbitrary matrices.

Theorem 48 (Generalized Cayley-Hamilton Theorem). Let A ∈ Mm×n

and r = min(m,n). Set

Π(A) :=

{
ΠA, r = m,

ΠAT , r = n,

and denote by p(x) = xr + pr−1x
r−1 + · · ·+ p0 the characteristic polynomial

of Π(A). Then

A<r+1> + pr−1A
<r> + · · ·+ p0A = 0.(92)

Proof. First, assume m ≤ n. By definition and using (85), we have

Πm
A + pm−1Π

m−1
A + · · ·+ p0Im

= (AΨ(n,m))
m + pm−1(AΨ(n,m))

m−1 + · · ·+ p0Im

= A<m>Ψ(n,m) + pm−1A
<m−1>Ψ(n,m) + · · ·+ p0Im = 0.

Multiplying A on right side yields

A<m+1> + pm−1A
<m> + · · ·+ p0A = 0,

which verifies (92).
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Next, assume n < m. Similar argument leads to(
AT

)<n+1>
+ pn−1

(
AT

)<n>
+ · · ·+ p0A

T = 0.

Taking transpose on both sides yields (92).

Remark 49. (i) From the proof one sees easily that: using the charac-
teristic function of ΠA we can have a (92) with r = m and using the
characteristic function of ΠAT we can have another (92) with r = n.
Both of them are correct, but we prefer to choose the lower order one.

(ii) To see this is a generalization of classical Cayley-Hamilton Theorem,
it is clear that when m = n (92) degenerates to

An+1 + pn−1A
n + · · ·+ p0A = 0.(93)

Deleting A yields the classical Cayley-Hamilton Theorem. (Even if
A is singular, it still can be deleted from (92). Because selecting a
nonsingular sequence {An} and let limn→∞An = A proves the required
equality.)

(iii) We may define a formal identity Im×n ∈ R(m× n,F), which satisfies

Im×n

�

A = A

�

Im×n = A, ∀A ∈ Mm×n.(94)

Then (92) can be written as

A<r> + pr−1A
<r−1> + · · ·+ p0Im×n = 0.(95)

But remember that here Im×n is not a matrix, so (95) is only a con-
venient formal expression.

(iv) Let p(x) = xr + pr−1x
r−1 + · · ·+ p0 be any annihilating polynomial of

ΠA or ΠAT . Then (92) remain available. Note that now in general r �=
min(m,n). Particularly, we are interested in the minimum annihilating
polynomial.

Remark 50. Similar results are all correct for right DK-STP, weighted left
DK-STP, and weighted right DK-STP. For instance, we consider the right
DK-STP. We have Generalized Cayley-Hamilton Theorem for right DK-STP
as follows: Let A ∈ Mm×n and r = min(m,n). Set

Π

(A) :=

{ Π

A, r = m,

Π

AT , r = n,
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and denote by q(x) = xr + qr−1x
r−1 + · · ·+ q0 the characteristic polynomial

of

Π

(A). Then

A(r+1) + pr−1A
(r) + · · ·+ p0A = 0.(96)

We give a numerical example.

Example 51. Using MatLab, a randomly chosen matrix A ∈ M3×4 is

A =

⎡
⎣0.9572 0.1419 0.7922 0.0357
0.4854 0.4218 0.9595 0.8491
0.8003 0.9157 0.6557 0.9340

⎤
⎦ .

(i) (Generalized Cayley-Hamilton Formula Based on (Left) DK-STP)
We have

ΠA = AΨ4×3 =

⎡
⎣3.0134 1.8682 0.8993
1.8779 2.7625 3.5069
3.3166 3.1430 3.4577

⎤
⎦ .

The characteristic function of ΠA is

f(x) = x3 − ax2 + bx− c,

where

a = 9.2336, b = 10.7830, c = 2.2366.

Then it is ready to calculate that

f(A) = A<4> − aA<3> + bA<2> − cA = 0.

(ii) (Generalized Cayley-Hamilton Formula Based on Right DK-STP)
We have

Π

A = AΦ4×3 =

⎡
⎣1.9270 1.9270 1.9270
2.7158 2.7158 2.7158
3.3057 3.3057 3.3057

⎤
⎦

The characteristic function of

Π

A is

g(x) = x3 − ax2 + bx− c,

where

a = 7.9485, b = 0, c = 0.

Then it is ready to calculate that

g(A) = A(4) − aA(3) = 0.
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Definition 52. Let A ∈ Mm×n.

(i) The Π-determinant of A is defined by

Det(A) :=

{
det(ΠA), m ≤ n,

det(ΠAT ), m > n.
(97)

(ii) A is said to be Π-invertible, if Det(A) �= 0.

Proposition 53. The Π-determinant Det has following properties.

(i) Det is a generalization of det. That is,

Det(A) = det(A), A ∈ Mn×n.(98)

(ii)

Det(A
�

B) = Det(A)Det(B), A,B ∈ M.(99)

(iii) If Det(A) �= 0, then A is of full rank. That is, if A ∈ Mm×n, then

Det(A) �= 0 ⇒ rank(A) = min(m,n).(100)

The converse is not true.

Proof. (i) Since for a square matrix A we have ΠA = A, the conclusion
follows.

(ii) Let A ∈ Mm×n. Since ΠA = AΨn×m. If rank(A) < min(m,n), then
ΠA is singular. Hence, Det(A) = 0. (100) is verified.
The following counterexample shows that the converse is not true.
Consider

A =

[
1 −2 1
1 0 0

]
,

which is of full rank. But

ΠA = AΨ3,2 = A

⎡
⎣2 0
1 1
0 2

⎤
⎦ =

[
0 0
2 0

]
,

which is singular.
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Theorem 54. Assume A ∈ Mm×n is Π-invertible, then there exists a
unique B ∈ Mm×n, (specified by B1 for m ≤ n and B2 for m > n) called
the Π-inverse of A, such that{

B1

�

A

�

Im = Im, m ≤ n,

In

�

A

�

B2 = In, m > n.
(101)

Proof. First, assume m ≤ n:

Let xm+pm−1x
m−1+ · · ·+p0 be the characteristic function of ΠA. Since

A is Π-invertible, p0 �= 0. Then

(AΨn×m)m + pm−1(AΨn×m)m−1 + · · ·+ p0Im

= A<m>Ψn×m + pm−1A
<m−1>Ψn×m + · · ·

+ p1AΨn×m + p0Im

=
[(
A<m> + pm−1A

<m−1> + · · ·+ p1A
)]
Ψn×m + p0Im

=
{[

A<m−1> + pm−1A
<m−2> + · · ·+ p2A

] �

A

+ p1(Ψm×nΨn×m)−1Ψm×nΨn×mA
}
Ψn×m + p0Im

=
{[

A<m−1> + pm−1A
<m−2> + · · ·+ p2A

+ p1(Ψm×nΨn×m)−1Ψm×n

]
Ψn×mA

}
Ψn×m + p0Im.

Set

B1 := A(−1) = − 1

p0

[
A<m−1> + pm−1A

<m−2> + · · ·+ p2A(102)

+ p1(Ψm×nΨn×m)−1Ψm×n

]
,

which is called the Π-inverse of A. Then we have

(B1

�

A)Ψn×m = B

�

A

�

Im = Im.

Next, assume m > n:

Let the characteristic function of ΠAT be xn+qn−1x
n−1+ · · ·+q0. Using

the previous proof, we have that

BT
2

�

AT �

In = In.

That is

In

�

A

�

B = In,
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where

BT
2 :=

(
AT

)(−1)
= − 1

q0

[(
AT

)<n−1>
+ qn−1

(
AT

)<n−2>

+ · · ·+ q2
(
AT

)
+ q1(Ψn×mΨm×n)

−1Ψn×m

]
.

That is,

B2 := (A)(−1) = − 1

q0

[
A<n−1> + qn−1A

<n−2> + · · ·(103)

+ q2A+ q1Ψm×n(Ψn×mΨm×n)
−1

]
.

Remark 55. If we use formal identity, then B1 and B2 can be expressed as

B1 := A(−1) = − 1

p0

[
A<m−1> + pm−1A

<m−2> + · · ·+ p2A+ p1Im×n

]
,

(104)

and

B2 := (A)(−1) = − 1

q0

[
A<n−1> + qn−1A

<n−2> + · · ·+ q2A+ q1In×m

]
.

(105)

Moreover, (101) can be expressed in more elegant form as{
A

�

B1

�

Im = B1

�

A

�

Im = Im, m ≤ n,

In

�

B2

�

A = In

�

A

�

B2 = In, m > n.
(106)

Remark 56. The formal identity Im×n is considered as the identity of the
ring R(m×n,F). Precisely speaking, the identity of semi-group (Mm×n,

�

).
We do not consider it as a member in group (Mm×n,+), because it may
causes some trouble.

As a convention, we define

ΠIm×n
:= Im.(107)

To express dimension-free eigenvectors, we set

C
∞ :=

∞⋃
n=1

C
n.
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Definition 57. Let A ∈ Mm×n be a real or complex matrix.

(i) λ ∈ C is called a Π-eigenvalue of A, if{
Det(A− λIm×n) = 0, m ≤ n,

Det(AT − λIn×m) = 0, n ≤ m.
(108)

The set of eigenvalues is denoted by σ(A).
(ii) Let λ ∈ σ(A). 0 �= x ∈ C∞ is called an eigenvector w.r.t. eigenvalue λ,

if {
A

�

x = λx, m ≤ n,

AT �

x = λx, n ≤ m.
(109)

The following result is an immediate consequence of the above defini-
tion.

Proposition 58. Let A ∈ Mm×n be a real or complex matrix.

(i) λ ∈ C is a Π-eigenvalue of A, if and only if, λ is an eigenvalue of
Π(A).

(ii) x ∈ C∞ is a Π-eigenvector of A w.r.t. λ, if and only if, x is an eigen-
vector of Π(A) w.r.t. λ. Hence 0 �= x ∈ Cr and r = min(m,n).

Remark 59. Corresponding to right DK-SPT, left weighted DK-SPT, and
right weighted DK-SPT, the

Π

-eigenvalues and

Π

-eigenvectors, Πw-eigen-
values and Πw-eigenvectors, and

Π

w-eigenvalues and

Π

w-eigenvectors can
also be defined. Moreover, the Proposition 58 remains true for each cases.

5.4. DK-STP
based continuous-time systems

This subsection considers DK-STP based continuous-time dynamic systems,
which is defined as

ẋ(t) = A

�

x(t), x(t), x(0) = x0 ∈ R
∞, A ∈ M.(110)

A straightforward computation verified its solution.

Proposition 60. The solution of (110) is

x(t) = x0 +

∞∑
i=1

ti

i!
A<i> �

x0.(111)
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It is natural to define an “exponential” function as

Exp(A) := Im×n +

∞∑
i=1

1

i!
A<i>.(112)

Since Im×n is a formal identity, we consider Exp(A) as a linear operator
as

Exp(A) : R∞ → R
∞.

Though Exp is very similar to an exponential function, but precisely speak-
ing, it is not an exponential function from Mm×n to Mm×n. Hence, we
denote it by Exp, but not exp.

Using this notation, the solution of (110) can be expressed as

x(t) = Exp(At)

�

x0.(113)

Assume A ∈ Mm×n, then no matter what is the dimension of x0, we
have x1 := x(1) ∈ Rm. Hence the solution (111) can be expressed as fol-
lows:

x(t) = x0 +

∞∑
i=1

ti

i!
A<i> �

x0 = x0 + x1 +

∞∑
i=2

ti

i!
Πi−1

A x1,(114)

where x1 = A

�

x0 ∈ Rm.
Decompose

x1 = ξ0 + η0,

where

ξ0 ∈ Span
{
Col(ΠA)

}
, η0 ∈ Span⊥

{
Col(ΠA)

}
.

Then there exists a ξ ∈ Rm such that

ΠAξ = ξ0.

If ΠA is nonsingular, then

ξ = Π−1
A ξ0 = Π−1

A x1.

Then (114) becomes

x(t) = x0 +

∞∑
i=1

ti

i!
A<n> �

x0(115)
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= x0 + x1 +

∞∑
i=2

ti

i!
Πi

Aξ

= x0 +
[
x1 − ξ −ΠAξ + exp(ΠAt)ξ

]
.

Note that (115) is a closed-form (or finite term) solution.

Remark 61. Similarly, we can define

(i) (for right DK-STP)

ẋ(t) = A � x(t), x(t), x(0) = x0 ∈ R
∞, A ∈ M;(116)

(ii) (for left weighted DK-STP)

ẋ(t) = A

�

wx(t), x(t), x(0) = x0 ∈ R
∞, A ∈ M;(117)

(iii) (for right weighted DK-STP)

ẋ(t) = A � wx(t), x(t), x(0) = x0 ∈ R
∞, A ∈ M.(118)

The arguments for DK-STP based dynamic system (110) remain avail-
able for (116)–(118).

To save space, hereafter we will note mention such extensions any more.
But the extensions are all available for the rest of this paper.

6. STP-based
general linear algebra

We refer to [23, 39] for the concepts and basic properties of Lie algebra.

Definition 62 ([3]). A vector space V with a binary operator, called Lie
bracket, is a Lie algebra, if

(i) (Bi-linearity)

[ax+ by, z] = a[x, z] + b[y, z], x, y, z ∈ V, a, b ∈ F.(119)

(ii) (Skew-symmetry)

[x, y] = −[y, x], x, y ∈ V.(120)

(iii) (Jacobi Identity)[
[x, y], z

]
+

[
[y, z], x

]
+

[
[z, x], y

]
= 0, x, y, z ∈ V.(121)
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Remark 63 ([3]). Consider Mn×n, and define

[A,B] = AB −BA, A,B ∈ Mn×n.(122)

Then (Mn×n, [·, ·]) is a Lie algebra, called the general linear algebra, and
denoted by gl(n,F). Its corresponding Lie group is the general linear group
GL(n,F).

In the following one will see that the DK-STP can extend the Lie al-
gebraic structure from the set of square matrices Mn×n to non-square case
Mm×n. Its corresponding Lie group will also be constructed later.

Definition 64. Consider Mm×n. Using

�

, a Lie bracket over Mm×n is
defined as

[A,B] � := A
�

B −B

�

A, A,B ∈ Mm×n.(123)

Remark 65. If m = n, then (123) is degenerated to (122). Hence, (123) is
an extension of (122) to non-square case.

Proposition 66. Mm×n with Lie bracket defined by (123) is a Lie algebra,
called the STP general linear algebra, denoted by gl(m× n,F).

Proof. It can be verified by a straightforward computation.

Definition 67 ([23]). Let V be a vector space with a bracket [·, ·] : V → V ,
and L = (V, [·, ·]) be a Lie algebra. H ⊂ V be its subspace.

(i) If H = (H, [·, ·]) is also a Lie algebra, H is called a Lie subalgebra
of L.

(ii) If H ⊂ L is a Lie subalgebra, H is called an ideal, if

[x,H] ⊂ H, ∀x ∈ V.(124)

Example 68. Consider gl(m× n,F). Assume r = gcd(m,n) and s|r.

(i) Denote by

Ds :=
{
A1+̇ · · · +̇As | Ai ∈ Mm/s×n/s, i ∈ [1, s]

}
,(125)

and define

Ds :=
(
Ds, [·, ·] �

)
(126)

Then Ds is a Lie subalgebra of gl(m× n,F).
Using Proposition 11, this claim is obvious.
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(ii) As a special case of (i), we define

Is := Is ⊗Mm/s×n/s ⊂ Ds.(127)

Then it is easy to verify that Is is a Lie subalgebra of Ds.
(iii) Let 1 = r0 < r1 < · · · < rt = r with ri|ri+1. Then Irt ⊂ Irt−1

⊂ · · · ⊂
Ir0 is a set of nested Lie subalgebra.

Let L be a Lie algebra. Denote its center as

Z(L) :=
{
z ∈ L | [z, x] = 0, ∀x ∈ L

}
.

It is easy to verify that when m �= n:

Z
(
gl(m× n,F)

)
= {0}.

This fact implies that R(m × n,F) does not have identity when m �= n,
because if there is an identity, e �= 0, then e ∈ Z(gl(m× n,F)), which leads
to a contradiction.

Definition 69. Let Li = (Vi, [·, ·]i), i = 1, 2 be two Lie algebras.

1. If there exists a mapping ϕ : V1 → V2, such that

(i)

(128) ϕ(x1 +1 x2) = ϕ(x1) +2 ϕ(x2), x1, x2 ∈ V1;

(ii)

(129) ϕ[x1, x2]1 =
[
ϕ(x1), ϕ(x2)

]
2
, x1, x2 ∈ V1;

Then L1 is homomorphic to L2, and ϕ is a homomorphism.

2. If ϕ : V1 �→ V2 is a one-to one and onto homomorphism, and ϕ−1 :
V2 �→ V1 is also a homomorphism, then ϕ is called an isomorphism.

The following proposition can be verified by definition immediately.

Proposition 70. Consider R(m× n,F).

(i) If H ⊂ R is a sub-ring of R(m×n,F), then (H, [·, ·] � ) is a sub-algebra
of gl(m× n,F).

(ii) If π : R(m × n,F) → R(m × n,F) is a ring isomorphism, then π :
gl(m× n,F) → gl(m× n,F) is also a Lie algebra isomorphism.
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Since the STP general linear algebra can clearly expressed into matrix
form, many properties can be easily verified via matrix form expression. As
an example, we consider its Killing form.

Definition 71 ([23]). Let L be a Lie algebra.

(i) For a fixed A ∈ L the linear mapping adA : L → L, defined by

adA : X �→ [A,X], X ∈ L,(130)

is called the adjoint mapping of A.
(ii) A bilinear form on L, defined by

(X,Y ) := trace(adXadY ), X, Y ∈ L,(131)

is called the Killing form of L.
Proposition 72. Consider gl(m× n,F). Then

(X,Y ) = trace
{[

In ⊗ (XΨn×m)−
(
XTΨm×n

)
⊗ Im

]
(132) [

In ⊗ (YΨn×m)−
(
Y TΨm×n)

)
⊗ In

]}
,

X, Y ∈ gl(m× n,F).

Proof. Assume Z ∈ Mm×n, and both pair (A,Z) and pair (Z,B) satisfy
dimension matching condition. Using column stacking form, we have [5]

Vc(AZ) = (In ⊗A)Vc(Z),

Vc(ZB) =
(
BT ⊗ Im

)
Vc(Z).

(133)

Let A,B ∈ Mm×n. Using (133), we have

Vc(A

�

X) = Vc(AΨn×mX) =
[
In ⊗ (AΨn×m)

]
Vc(X).

and

Vc(X

�

A) = Vc(XΨn×mA) =
[
Ψm×nA

T )⊗ Im
]
Vc(X).

It follows that

Vc(adAX) =
{[

In ⊗ (AΨn×m)
]
−

[
(AΨn×m)T ⊗ Im

]}
Vc(X).

=
{[

In ⊗ (AΨn×m)
]
−

[(
Ψm×nA

T
)
⊗ Im

]}
Vc(X).

Hence

adA =
[
In ⊗ (AΨn×m)

]
−

[(
ATΨ(m,n)

)
⊗ Im

]
.

(132) follows immediately.
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Example 73. Assume

A =

[
1 0 −1
0 1 1

]
; B =

[
0 1 0
−1 0 1

]
; C =

[
0 0 1
0 1 0

]
,

check the following properties:

(i)

(A,B) = (B,A).(134)

Ψ3×2 =
(
I3 ⊗ 1T2

)
(I2 ⊗ 13)

=

⎡
⎣2 0
1 1
0 2

⎤
⎦

adA =
[
I3 ⊗ (AΨ3×2)

]
−

[(
ATΨ3×2

)
⊗ I2

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −2 −1 0 0 0
1 1 0 −1 0 0
0 0 1 −2 −2 0
0 0 1 −2 0 −2
2 0 0 0 0 −2
0 2 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

adB =
[
I3 ⊗ (BΨ3×2)

]
−

[(
BTΨ3×2

)
⊗ I2

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 2 0
−2 2 0 1 0 2
−2 0 0 1 0 0
0 −2 −2 1 0 0
0 0 −1 0 −1 1
0 0 0 −1 −2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

adC =
[
I3 ⊗ (CΨ3×2)

]
−

[(
CTΨ3×2

)
⊗ I2

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 2 0 0 0 0
1 1 0 0 0 0
0 0 −1 2 −2 0
0 0 1 0 0 −2
−2 0 −1 0 0 2
0 −2 0 −1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

It is ready to verify that

(A,B) = (B,A) = 35.
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(ii)

(A+B,C) = (A,C) + (B,C).(135)

It is easy to calculate that

(A,C) = 5,

(B,C) = −11,

(A+B,C) = −6,

which verifies (133).

(iii)

(
adA(B), C

)
+

(
B, adA(C)

)
= 0.(136)

A straightforward computation shows

(adA(B), C) = −60,

(B, adA(C)) = 60.

The equation (136) is satisfied.

7. STP-based general linear group

Definition 74 ([39]). Consider a Linear algebra L = {V, [·, ·]}. Define

C(L) :=
{
x ∈ V | [x, y] = 0, ∀y ∈ V

}
,(137)

which is called the center of L.
It is obvious that the center of L is an ideal of L [39].

Example 75. (i) Consider gl(n,F). It is clear that

C
(
gl(n,F)

)
= {0}.(138)

(ii) Let M be an n-dimensional manifold. Consider the set of vector fields

on M , denoted by V (M). The Lie bracket of f(x), g(x) ∈ V (M) is
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defined as [25]2

[
f(x), g(x)

]
:=

∂g(x)

∂x
f(x)− ∂f(x)

∂x
g(x).(139)

Now assume f(x) ∈ C(V (x)). Taking g(x) = ∂
∂xi

and setting
[f(x), g(x)] = 0, a straightforward computation shows f(x) is inde-
pendent on xi, i ∈ [1, n]. Hence f(x) = [a1, a2, . . . , an] is a constant
vector. Next, setting g(x) = (0, . . . , 0︸ ︷︷ ︸

i−1

, xi, 0, . . . , 0︸ ︷︷ ︸
n−i

)T and calculating

[f(x), g(x)] yield ai = 0, i ∈ [1, n]. We conclude that

C
(
V (M)

)
= {0}.(140)

(iii) Consider gl(m× n,F). Without loss of generality we assume m < n.
Assume A ∈ C(gl(m× n,F)), then we have

[A,X] � = AΨn×mX −XΨn×mA = 0, ∀X ∈ Mm×n.

In vector form we have[
In ⊗ (AΨn×m − (Ψn×mA)T ⊗ Im

]
Vc(X) = 0, ∀X ∈ Mm×n.

We conclude that A ∈ C(gl(m× n,F)), if and only if,

In ⊗ (AΨn×m)−
(
ATΨm×n

)
⊗ Im = 0.(141)

Converting it into a linear system yields

Γm×nVr(A) = 0.(142)

Numerical calculation shows that (142) has no non-zero solution for
some small m and n. (Please refer to Appendix B for its numerical
form.) So we conclude that (a rigorous proof is expecting)

C
(
gl(m× n,F)

)
= {0}.(143)

2In fact the Lie bracket is defined by [3]

[
f(x), g(x)

]
= lim

t→∞

1

t

[(
Φ

f(x)
−t

)
∗g

(
Φ

f(x)
t (x)

)
− g(x)

]
.

(139) is its expression in a coordinate chart.
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Remark 76. (i) For a Lie algebra L, its center C(L) = {0} is a necessary
condition for the existence of its corresponding Lie group. Because it
is easy to check that each x ∈ C produces exp(x), which is an identity
of exp(L). |C(L)| > 1 forces exp(L) to be non-group.

(ii) What I am confusing is: why classical textbooks about Lie group and
Lie algebra did not mention non-zero center? Is it possible that because
only Lie group and Lie algebra of type (i) and (ii) of Example 75 have
been considered in these books? Or there is no non-zero center for
finite dimensional Lie algebras?

Definition 77. Consider Mm×n. Define a product ◦ : Mm×n ×Mm×n →
Mm×n by

A ◦B := A+B +A

�

B.(144)

Proposition 78. gm×n := (Mm×n, ◦) is a monoid.

Proof. Define

em×n := 0m×n.(145)

A straightforward computation shows that

em×n ◦A = A ◦ em×n = A, A ∈ Mm×n.(146)

Let e0 be another identity, then

e ◦ e0 = e = e0.

Hence e0 = e is the unique identity.
To see the associativity, we have

(A ◦B) ◦ C = (A+B +A

�

B) ◦ C
= (A+B +A

�

B) + C + (A+B +A

�

B)

�

C

= A+B + C +A

�

B +A

�

C +B

�

C +A

�

B

�

C

= A ◦ (B ◦ C).

Definition 79. A ∈ gm×n is invertible, if there exists B ∈ gm×n such that

A ◦B = B ◦A = em×n.

Then B is the inverse of A, denoted by B = A−1.
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Lemma 80. Consider A ∈ gm×n. If A is invertible, then A−1 is unique.

Proof. Assume both B and C are the inverse of A. By associativity, we have

B ◦A ◦ C = (B ◦A) ◦ C = em×n ◦ C = C.

We also have

B ◦A ◦ C = B ◦ (A ◦ C) = B ◦ em×n = B.

The conclusion follows.

Proposition 81. Let A ∈ Gm×n. Define

Em×n(A) :=

[
(In ⊗ (AΨn×m)) + Imn

In ⊗ (AΨn×m)− (ATΨ×n)⊗ Im.

]
(147)

(i) A is invertible, if and only if,

Em×n(A)x =

[
−Vc(A)
0mn

]
(148)

has unique solution x ∈ Fmn.
(ii) If x is the unique solution of (148), then

Vc

(
A−1

)
= x.(149)

Proof. It is clear that X is the inverse of A, if and only if,

(i) A ◦X = em×n, which leads to

A+X +A

�

X = 0.(150)

(ii) A ◦X = X ◦A, which leads to

A

�

X = X

�

A.(151)

Putting X into its vector form Vc(X) and using (133), we have

Vc(A) + Vc(X) +
(
In ⊗ (AΨn×m)

)
Vc(x) = −Vc(A),(152)

and [
In ⊗ (AΨn×m)− (Ψn×mA)T ⊗ Im

]
Vc(x) = 0.(153)

Putting them together yields (147) and (148).
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Remark 82. Because of Lemma 80, a necessary condition for x0 to be the
unique solution is rank(Em×n(A)) = mn. Moreover,

x0 =
(
ET

m×nEm×n

)−1
ET

m×n

[
Vc(A)
0mn

]
(154)

is the only solution.
So to verify if A is invertible, we can first solve x0, and then verify

whether x0 is the solution of (148).

Define

M0
m×n := {A ∈ gm×n | A is invertible}.(155)

Proposition 83. M0
m×n is an m× n dimensional manifold.

Proof. Let A0 ∈ M0
m×n. According to Remark 82, Em×n(A0) has full rank.

Then there exists an open neighborhood

UA0
⊂ M0

m×n ⊂ Mm×n
∼= R

mn.

The conclusion follows.

Define a mapping E0 : G(m× n,F) → M0
m×n as

E0(A) :=

∞∑
i=1

1

i!
A<i>, A ∈ Mm×n.(156)

Then we have the following result:

Proposition 84. The image E0(Mm×n) is a pathwise connected component
of M0

m×n.

Proof. Consider E0 at each neighborhood of A0 as A0 + X, then the Ja-
cobian matrix JE0

|A0
is the identity matrix. Hence, E0(Mm×n) is an mn

dimensional submanifold of Mm×n. To see it is pathwise connected. Let
X,Y ∈ E0(Mm×n), then there exist A,B ∈ Mm×n, such that E0(A) = X
and E0(B) = Y . Let P (t), t ∈ [0, 1] be a path in Mm×n such that P (0) = A,
P (1) = B. Then E0(P (t)) ⊂ E0(Mm×n) is a path connecting X,Y .

Define

g0m×n = E0(Mm×n).(157)

Then the following relationship is obvious.
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Proposition 85. (
g0m×n, ◦

)
<

(
M0

m×n, ◦
)

(158)

is a sub-group and a sub-manifold.

Finally, we define a mapping

π : A �→ A+ Im×n,

denote

π(gm×n) := gam×n,(159)

and set

π
(
g0m×n

)
:= GL(m× n,F).(160)

The product on GL(m× n,F) is defined naturally as

(Im×n +A) ◦ (Im×n +B) := Im×n +A+B +A

�

B.

Then the following result is easily verifiable.

Proposition 86.

(i)

π : g0m×n → GL(m× n,F)(161)

is a group isomorphism.
Hereafter, we may consider A = (ai,j) ∈ g0m×n as the coordinate of
Im×n +A ∈ GL(m× n,F).

(ii) Define

Exp(A) = Im×n +

n∑
i=1

1

i!
A<i>.(162)

Then

Exp
(
G(m× n)

)
= GL(m× n,F).

(iii)

Exp = π ◦E0.(163)

That is, the graph in Figure 2 is commutative.
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G(m× n,F)

g0m×n < (M0
m×n, ◦)

gm×n = (Mm×n, ◦)

GL(m× n,F)

gam×n = gm×n

⋃
Im×n

�

�

�
�

�
���

�
�

�
���

E0 Exp

π : A �→ A+ Im×n

π

π

↪→ ↪→

Figure 2: Mappings among (semi-)groups.

In the following we analyze GL(m× n). We have

Proposition 87. GL(m× n,R) is a Lie group.

Proof. First, since g0m×n is a pathwise connected mn-dimensional manifold,
π : g0m×n → GL(m× n,R) is a manifold homeomorphism, GL(m × n,R) is
also a pathwise connected mn-dimensional manifold.

Second, GL(m× n,R) is a group isomorphic to g0m×n. What remains to
verify is: the group operators are analytic.

(i) (A,B) �→ A ◦ B is analytic. Let A = Im×n + a and B = Im×n + b,
where a, b ∈ Mm×n. Then

A ◦B = Im×n + a+ b+ aΨn×mb.

It is obvious that

�

is analytic.
(ii) A �→ A−1 is analytic. Using the matrix expression (154), this is also

obvious.

Now we are ready to prove our main result.

Theorem 88. The Lie algebra of GL(m× n,R) is gl(m× n,R).

Proof. We have only to show that the algebra generated by left invariant
vector fields on GL(m× n,R) is isomorphic to gl(m× n,R). Note that the
left transition Lx : A → XA is:

Lx : Im×n + a �→ Im×n + x

�

a.
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Let V ∈ TIm×n
. It is well known that each left invariant vector fields V (x)

can be generated by

V (x) = (Lx)∗(V ).

Denote the set of left invariant vector fields by

gL :=
{
V (x) = (Lx)∗(V ) | x ∈ GL(m× n,R), V ∈ TIm×n

}
.

We have only to show that

gl(m× n,R) ∼= gL.(164)

Note that gL ⊂ T (GL(m×n,R)) are set of vector fields on tangent space of
the manifold GL(m× n,R). Hence the Lie bracket of f(x), g(x) ∈ gl is [25]

[
f(x), g(x)

]
F
=

∂g(x)

∂x
f(x)− ∂f(x)

∂x
g(x),

where subset F means the Lie bracket of vector fields. Hence to prove (164),
it is enough to show[

(Lx)∗A, (Lx)∗B
]
F
= (Lx)∗[A,B] � .(165)

Considering the product over gam×n and putting both sides of (165) into
column stacking form yield

Vc(LHS) = [Vc(x

�

A), Vc(x

�

B)]F

= [(Ψn×mA)T ⊗ Im)Vc(x), (Ψn×mB)T ⊗ Im)Vc(x)]F

=
[
((Ψn×mB)T ⊗ Im)((Ψn×mA)T ⊗ Im)

− ((Ψn×mA)T ⊗ Im)((Ψn×mB)T ⊗ Im)
]
Vc(x)

=
[
(BTΨm×nA

TΨm×n −ATΨm×nB
TΨm×n)⊗ Im

]
Vc(x),

Vc(RHS) = Vc(x

�

(A

�

B −B

�

A))

= [(Ψn×m(AΨn×mB −BΨn×mA))T ⊗ Im]Vc(x)

=
[
((Ψn×mB)T ⊗ Im)((Ψn×mA)T ⊗ Im)

− ((Ψn×mA)T ⊗ Im)((Ψn×mB)T ⊗ Im)
]
Vc(x)

=
[
(BTΨm×nA

TΨm×n −ATΨm×nB
TΨm×n)⊗ Im

]
Vc(x).

This proves (165).

Next, we consider the relation between sub-algebra and sub-group.
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Theorem 89 ([22]). Let g be the Lie algebra of a Lie group G and let h ⊂ g
be a subalgebra of g. Then there exists a unique connected Lie subgroup H,
which makes the following diagram commutative:

H

h

G

g
⊂

↪→

Exp Exp

�

�

� �

Figure 3: Subalgebra to subgroup.

Applying Theorem 89 to STP algebra and STP group, we have the
following result.

Corollary 90. Consider gl(m × n,R), assume 1 < k = lcm(m,n). Then
gl(m/k× n/k,R) is a subalgebra of gl(m× n,R). Hence GL(m/k× n/k,R)
is a Lie subgroup of GL(m× n,R).

It is also true for and s > 1 and s|k.
Finally, we consider the relationship of GL(m× n,F) and GL(m,F).

Theorem 91. Consider gl(m× n,F) and gl(m,F).

(i) Define ϕ : gl(m× n,F) → gl(m,F), defined by

ϕ(A) := ΠA.(166)

Then ϕ is a Lie algebra homomorphism, that is,

gl(m× n,F) � gl(m,F).(167)

(ii) Correspondingly, set

GL(m× n,F) := Exp
(
gl(m× n,F)

)
,

GL(m,F) := Exp
(
gl(m,F)

)
.

(168)

Then ϕ : GL(m × n,F) → GL(m,F) is a Lie group homomorphism,
that is,

GL(m× n,F) � GL(m,F).(169)
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Proof. (i) Define ϕ : gl(m× n,F) � gl(m,F) by ϕ : A �→ ΠA. Let A,B ∈
gl(m× n,F). Then

ϕ[A,B] � = ϕ(A

�

B −B

�

A)

= (AΨn×mB −BΨn×m)AΨn×m

= ϕ(A)ϕ(B)− ϕ(B)ϕ(A)

= [ϕ(A), ϕ(B)].

(ii) The proof is mimic to the proof of Theorem 3.7 of [21].

8. Concluding remarks

In this paper a new STP, called (left) DK-STP and denoted by

�

, has been

proposed. Using it, the corresponding ring, Lie algebra, and Lie group are
presented. The algebraic objects concerned in this paper can be described

as:

R(m× n,F)
�

−→ gl(m× n,F)
Exp−−→ GL(m× n,F).

The action of G(m × n,F) on dimension-free vector space R∞ is also
considered, which proposed discrete-time/continuous-time dynamic systems

as

G(m× n,F)

�

−→ R
∞ → S-system → dynamic system.

Meanwhile, by introducing the square restriction ΠA ∈ Nm×n of A ∈ Mm×n,
some interesting things have been obtained, including eigenvalue, eigenvec-

tor, determinant, invertibility, etc., for non-square matrices. Particularly, the
Cayley-Hamilton theory can also be extended to non-square matrices.

In addition, the right DK-STP, weighted (left) DK-STP, and weighted

right DK-STP are also briefly introduced. They have similar properties as
(left) DK-STP.

This paper may pave a road for further development of STP of matrices.

Though these new STPs shown many interesting properties, it can not be

used to replace existing STPs, because they have quite different properties,

which makes their functions different. Unlike existing STPs, application of
these new STPs is still waiting for exploring.

There are many related topics remain for further study. The following
are some of them.

(i) Understanding gl(m× n,F) and GL(m× n,F).
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The investigation of non-square general linear group and general linear
algebra is only a beginning. To reveal their more properties is theoreti-
cally important and interesting. Particularly, general “non-square” Lie
group and Lie algebra may be developed. Say, group representation of
nonlinear mapping ϕ : Rn → Rm, etc.

(ii) Dimension-varying (Control) System:
Consider a control system:{

ẋ(t) = Ax(t) +Bu(t), x(t) ∈ Rn, u(t) ∈ Rm,

y(t) = Cx(t), y(t) ∈ Rp.
(170)

If we allow dimension perturbation in u(t) and x(t). That is, x(t) may
disturbed to Rn±r or so. Then (170) can be considered as a nominal
model. This happens from time to time for nature systems or artificial
systems. For instance, the Internet changes its size, because of varying
number of users. In gene regularity network, the number of nodes are
changing because of the birth or death of cells. If we use dimension
keeping STP to the nominal model (170) as

{
ẋ(t) = A

�

[x(t) + ξ(t)] +B

�

u(t) + η(t)], x(t) ∈ Rn, u(t) ∈ Rm,

y(t) = C

�

[x(t) + ζ(t)], y(t) ∈ Rp, ξ(t), η(t), ζ(t) ∈ R∞,

(171)

where ξ(t), η(t), ζ(t) are disturbances of different dimensions.
Then the overall model does not need to adjust the dimensions of
nominal model to meet the perturbation. This is another reason to
name such SPT dimension keeping one. The properties of such systems
are worthy for further investigations.

(iii) Analytic Functions of Non-square Matrices.
Using DK-STP, the analytic functions of non-square matrices are prop-
erly defined. Their properties with applications need to be investigated.
Say, for non-square matrix A, using Taylor expansion with DK-STP
power A<n> to replace An, we can also prove Euler formula

e<iA> = cos < A > +i sin < A >, A ∈ Mm×n.

Appendix A

List of notations:
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1. R: set of real numbers.
2. C: set of complex numbers.
3. F: field (R, C, or other fields with characteristic 0).
4. Mm×n: the set of m× n real matrices, (could be over F if necessary).
5. AT : transpose of A.
6. ĀT : conjugate transpose of A.
7. Vc(A): column stacking form of A.
8. Vr(A): row stacking form of A.
9. lcm(a, b): least common multiple of a and b.

10. gcd(a, b): great common divisor of a and b.
11. Col(M) (Row(M)) is the set of columns (rows) of M .

Coli(M) (Rowi(M)) is the i-th column (row) of M .
12. 1� = (1, 1, . . . , 1)︸ ︷︷ ︸

�

T .

13. 1m×n ∈ Mm×n with all entries equal to 1.
14. 0� = (0, 0, . . . , 0︸ ︷︷ ︸

�

)T .

15. 0m×n ∈ Mm×n with all entries equal to 0.
16. In: Identity matrix.
17. Jn = 1

n1n×n.
18. Or: set of r-dimensional orthogonal matrices.
19. Ur: set of r-dimensional unitary matrices.
20. δin: the i-th column of the identity matrix In.
21. [m,n] = {m,m+ 1, . . . , n], m ≤ n.
22. +̇: matrix direct sum.
23. ⊗: Kronecker product.
24. �: (left) type 1 MM-STP.
25. �: (left) type 2 MM-STP.
26. ��: (left) type 1 MV-STP.
27. ��: (left) type 2 MV-STP.
28. �· : (left) VV-STP.
29. �: right type 1 MM-STP.
30. �r: right type 2 MM-STP.
31. ��: right type 1 MV-STP.
32. ��r: right type 2 MV-STP.
33. �∗ : right VV-STP.
34.

�

: left DK-STP.
35. � : right DK-STP.
36.

�

w: left weighted DK-STP.
37. � w: right weighted DK-STP.
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38. A<k> := A

� · · · � A︸ ︷︷ ︸
k

.

39. A(k) := A � · · · � A︸ ︷︷ ︸
k

.

40. A<k>w := A

�

w · · · � wA︸ ︷︷ ︸
k

.

41. A(k)w := A � w · · · � wA︸ ︷︷ ︸
k

.

42. Ψm×n: left bridge matrix of dimension m× n.

43. Φm×n: right bridge matrix of dimension m× n.

44. Ψw
m×n: left weighted bridge matrix of dimension m× n.

45. Φw
m×n: right weighted bridge matrix of dimension m× n.

46. ΠA := AΨn×m, A ∈ Mm×n.

47. Π(A) =

{
ΠA, m ≤ n,

ΠAT , m > n,
where A ∈ Mm×n.

48. G(m× n,F) = (Mm×n,

�

) is the semi-group.

49. Ga(m× n,F) = (Mm×n
⋃
{Im×n},

�

) is the monoid.

50. gl(n,F): general linear algebra, where F = R or F = C.

51. GL(n,F): general linear group, where F = R or F = C.

52. gl(m× n,F): NS-general linear algebra, where F = R or F = C.

53. GL(m× n,F): NS-general linear group, where F = R or F = C.

54. Im×n: identity of GL(m× n,F).

55. ∼: equivalence.

56. ∼I : I-equivalence of matrices.

57. ∼J : J-equivalence of matrices.

58. �: isomorphism of universal algebra (including semigroup, group, ring,

algebra etc.) [4].

59. ∼=: homomorphism of universal algebra.

60. Exp(A): exponential mapping for general (non-square) matrices.

Appendix B

The coefficient matrix Γ for equation 141

(i) m = 1, n = 2:

Γ1×2 =

⎡
⎢⎢⎣

0 1
−1 0
0 −1
1 0

⎤
⎥⎥⎦
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(ii) m = 2, n = 3:

Γ2×3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 1 2 0 0 0
−1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 −2 0 0
0 0 0 0 0 0
0 0 0 2 1 0
−2 0 0 0 1 2
0 0 0 0 0 0
−1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 −2 0 0
0 −2 0 0 0 0
0 0 0 0 0 0
2 0 0 0 −1 0
0 1 2 0 0 0
0 0 0 0 −2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −2 0 0 0 0
0 0 0 2 1 0
0 −1 0 0 0 2
0 0 0 0 0 0
0 0 0 0 −2 0
0 0 −2 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 −1
0 0 0 0 0 0
2 1 0 0 0 −2
0 1 2 0 0 0
0 0 0 0 0 0
0 0 −2 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 −1
0 0 0 2 1 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(iii) m = 2, n = 4:

Γ2×4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

−1 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 −1 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 −1

0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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