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A Riemann-Hilbert Correspondence in Positive

Characteristic

BHARGAV BHATT AND JACOB LURIE

We explain a version of the Riemann-Hilbert correspondence for
p-torsion étale sheaves on an arbitrary Fp-scheme.
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1. Introduction

Let p be a prime number, which we regard as fixed throughout this paper.
Our starting point is the following theorem of Katz (see [10, Proposition
4.1.1]):

Theorem 1.0.1 (Katz). Let k be a perfect field of characteristic p and let k

be an algebraic closure of k. Then the construction V — (V&¥, F)Gal(k/k) .
duces an equivalence from the category of finite-dimensional Fp-vector spaces
V with a continuous action of Gal(k/k) to the category of finite-dimensional
k-vector spaces M equipped with a Frobenius-semilinear automorphism @y .

The equivalence of Theorem 1.0.1 can be extended to infinite-dimensional
vector spaces; in this case, we must add the requirement that M is locally
finite in the sense that each element x € M belongs to a finite-dimensional
pnr-stable subspace. Our primary goal in this paper is to prove the following
more general result; see Theorem 7.4.1 for a more precise formulation that
also describes constructible sheaves.

Theorem 1.0.2. Let R be a commutative Fp-algebra. Then there is a fully
faithful embedding of abelian categories

p-torsion étale sheaves| RH R-modules M equipped with a
on Spec(R) Frobenius-semilinear automorphism @y |

Moreover, the essential image of RH consists of those pairs (M, ¢pr) that
satisfy the following condition: every element x € M satisfies an equation of
the form

e+ a4+ +age =0
for some coefficients a1,...,a, € R.

We also establish various extensions of Theorem 1.0.2. For instance,
the theorem readily extends from the affine scheme Spec(R) to arbitrary
F-schemes, as we summarize next; see Theorem 10.2.7 for a more precise
formulation that also identifies constructible sheaves.

Theorem 1.0.3. Let X be an Fj,-scheme. Then there is a fully faithful
embedding of abelian categories

{ p-torsion étale } RH, quasi-coherent O x-modules F equipped with
sheaves on X a Frobenius-semilinear automorphism or |~

The essential image consists of those pairs (F,pr) that Zariski locally on
X satisfy the condition appearing in Theorem 1.0.2.
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Let Mod}' denote the category whose objects are pairs (M, @), where
M is an R-module and @) is a Frobenius semilinear endomorphism of M;
we will refer to such pairs as Frobenius modules over R. The functor RH
appearing in Theorem 1.0.2 may be viewed as an exact and fully faithful
embedding of the abelian category of p-torsion étale sheaves on Spec(R)
into the abelian category Modg. This functor also induces a bijection on
Ext-groups, and thus passes to the derived category to give the following
result; we refer to Theorem 12.1.5 for a more precise formulation that also
identifies the constructible derived category.

Theorem 1.0.4. Let R be an F,-algebra, and let Dgt(Spec(R),Fp) be the
bounded derived category of p-torsion étale sheaves on Spec(R). Then the
functor in Theorem 1.0.2 lifts to a t-exact and fully faithful embedding of
triangulated categories

RH : D%(Spec(R), F,) — D°(ModkY)

whose essential image comprises those compleres K € DY(Mods) with the
property that each Frobenius module H'(K) satisfies the conditions in The-
orem 1.0.2.

Theorem 1.0.2 also admits an analog describing p™-torsion étale sheaves
on Spec(R) in terms of suitably defined Frobenius modules over the ring
W, (R) of length n Witt vectors of R; see Theorem 9.6.1.

1.1. Outline

The first half of this paper is devoted to the proof of Theorem 1.0.2. Note
that Theorem 1.0.2 supplies a description of the category of (p-torsion) étale
sheaves on Spec(R) as quasi-coherent sheaves on Spec(R) with additional
structure, and can therefore be viewed as a positive-characteristic analogue
of the Riemann-Hilbert correspondence. We will emphasize this perspective
by referring to the functor RH appearing in Theorem 1.0.2 as the Riemann-
Hilbert functor. It is not so easy to describe this functor directly. Instead, we
begin in §2 by constructing a functor in the opposite direction. Let Mod}j;{r
denote the category of Frobenius modules over R introduced above. If M
is an R-module and M denotes the associated quasi-coherent sheaf on the
étale site of Spec(R), then every Frobenius-semilinear automorphism ¢p; of
M determines an automorphism of M , which we will also denote by ¢p.
We let Sol(M) denote subsheaf of pys-fixed points in M: that is, the kernel
of the map id —py : M — M, formed in the category Shv (Spec(R), Fp)
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of p-torsion étale sheaves on Spec(R). The construction (M, par) — Sol(M)
determines a functor

Sol : Mod}} — Shvg (Spec(R), F)),

which we will refer to as the solution functor (Construction 2.3.1).

We will say that a Frobenius module (M, ¢ys) is perfect if the map
pur is invertible. In §6, we will show that, when restricted to category
ModpRerf of perfect Frobenius modules, the solution functor Sol has a left
adjoint (Theorem 6.1.1). This left adjoint is the Riemann-Hilbert functor
RH : Shvei(Spec(R), Fp) — Modffzerf appearing in the statement Theorem
1.0.2. The existence of the functor RH is not evident: to construct it, we will
need to develop a theory of compactly supported direct images in the setting
of (perfect) Frobenius modules; this is the subject of §5. We also prove in
§6 that the functor RH is exact (Proposition 6.4.1). This is easy to see in
the case where R is an algebraically closed field: in this case, the category
Shvgi (Spec(R), F)p) is equivalent to the category of vector spaces over Fy,
where every exact sequence is split. We handle the general case by reducing
to the case of an algebraically closed field, using a theory of base change for
perfect Frobenius modules (which we study in §3) and its compatibility with
the Riemann-Hilbert correspondence (which we prove as Proposition 6.2.2).

We will complete the proof of Theorem 1.0.2 in §7 by showing that the
Riemann-Hilbert functor RH is fully faithful and characterizing its essen-
tial image. The full-faithfulness is actually fairly easy, once we know that
the functor RH is exact: it essentially follows from the exactness of the
Artin-Schreier sequence 0 — F, — R — R — 0 in the category of étale
sheaves Shve (Spec(R),F,) (see Proposition 7.2.1). To understand the es-
sential image of the Riemann-Hilbert functor, it will be convenient to con-
sider first the functor RH® obtained by restricting RH to the subcategory
Shvg, (Spec(R),F),) C Shve(Spec(R),Fy) of constructible étale sheaves on
Spec(R). The functor RH® takes values in the subcategory Mod! C ModpRerf
of holonomic Frobenius modules (Definition 4.1.1), which we study in §4.
Theorem 1.0.2 will then follow by combining the following two assertions:

e The functor RH® : Shv§, (Spec(R), Fp) — Modl! is an equivalence of
categories (Theorem 7.4.1): that is, every holonomic Frobenius module
M the form RH(.%#), for some constructible étale sheaf .# on Spec(R).
We will prove this using formal arguments to reduce to the case where
R is a field, in which case the desired result follows from Theorem 1.0.1
(which we reprove here as Proposition 7.3.1).
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e A perfect Frobenius module M can be written as a filtered colimit
of holonomic Frobenius modules if and only if every element x € M
satisfies an equation ¢,z + algoﬁjlx + -+ 4 apz = 0 for some coeffi-
cients aq,...,a, € R (Theorem 4.2.9). We will refer to such Frobenius
modules as algebraic.

In the second half of this paper, we consider several refinements of The-
orem 1.0.2:

o Let (M,pn) and (N, pn) be Frobenius modules over R. If M and N
are perfect, then they can also be regarded as Frobenius modules over
the perfection RY/P™ (Proposition 3.4.3). In this case, we can regard
the tensor product M ®pip= N as a (perfect) Frobenius module over
R, with Frobenius endomorphism given by @y — ¢y (2) @ on(y). In
68, we show that the Riemann-Hilbert functor RH of Theorem 1.0.2 is
compatible with tensor products, in the sense that there are canonical
isomorphisms

RH(? ®Fp g) ~ RH(?) ®R1/p°° RH(%)

(Corollary 8.4.2). Our proof relies on the vanishing of the Tor-groups
Torfl/pm (M,N) for n > 0 when M and N are algebraic Frobenius
modules, which we establish as Theorem 8.3.1.

e In §9, we prove a generalization of Theorem 1.0.2 where the category
Shvei (Spec(R), F)p) of p-torsion étale sheaves is replaced by the larger
category Shvg(Spec(R),Z/p"Z) of p"-torsion étale sheaves, for some
integer n > 0. In this case, we must also replace the category ModFR\r of
Frobenius modules over R by the larger category Modar,n (R) of Frobe-
nius modules over W, (R); here W,,(R) denotes the ring of n-truncated
Witt vectors of R (see Theorem 9.6.1).

e In §10, we prove a generalization of Theorem 1.0.2 where the affine
scheme Spec(R) is replaced by an arbitrary F,-scheme X (Theorem
10.2.7). We also show that the Riemann-Hilbert correspondence is
compatible with the formation of (higher) direct images along proper
morphisms f : X — Y of finite presentation (Theorem 10.5.5). As
an application, we reprove a special case of the proper base change
theorem in étale cohomology (namely, the case of p-torsion sheaves on
F,-schemes; see Corollary 10.6.2).

e In §12, we study the derived category D(R[F]) of Frobenius modules
over R. The equivalence of abelian categories RH® : Shv§, (Spec(R),
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F,) ~ Mod}}{’l extends to an equivalence of triangulated categories
D{(Spec(R),Fy) ~ Dy, (R[F]),

where D} |(R[F]) € D(R[F]) denotes the full subcategory spanned
by the cohomologically bounded chain complexes with holonomic co-
homology and D%(Spec(R),F),) is the constructible derived category
of Spec(R); see Corollary 12.1.7. We also construct a duality functor
D : Db (R[F]) — D(R[F])°, and show that it is a fully faithful em-
bedding (Theorem 12.5.4). Combining this duality functor with our
Riemann-Hilbert correspondence, we obtain a second embedding from
the constructible derived category D%(Spec(R), F),) to the derived cat-
egory D(R[F1]). Using this construction, we recover the contravariant
Riemann-Hilbert correspondence of [6] (in a strong form, which does
not require the Fj-algebra R to be regular or even Noetherian; see
Theorem 11.4.4), whose statement we review in §11 (see also §1.3).

These sections are more or less independent of one another, and can be
read in any order (except that §12 depends on §11). One can also develop a
theory which incorporates several of these refinements simultaneously (for
example, one can compare derived categories of Z/p™Z-sheaves on an ar-
bitrary Fp-scheme X with derived categories of quasi-coherent Frobenius
modules over the Witt sheaf W, (Ox)); we leave such extensions to the
reader.

1.2. The Work of Bockle-Pink

In the case where the R is Noetherian, Theorem 1.0.2 is essentially due
to Bockle and Pink. Let us briefly summarize some of their work. Assume
that R is Noetherian, and let Modgfg denote the full category of Frobenius
modules (M, ps) which are finitely generated as modules over R. In [4],
Bockle and Pink construct an equivalence of abelian categories

Shv§, (Spec(R), Fy) ~ Mody g, /Nil,

where Nil is the full subcategory of Mod%ﬁfg spanned by those Frobenius
modules (M, ) where @)y is nilpotent, and ModJFifg /Nil denotes the Serre
quotient (Bockle and Pink denote this Serre quotient by Crys(R) and refer
to it as the category of crystals on Spec(R)). From the perspective of [4], the
main innovation of this paper is to realize the category Crys(R) concretely
as a full subcategory Mod%, rather than abstractly as a Serre quotient.
To achieve this, we note that every Frobenius module (M, pys) admits a
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perfection M'/P~ | given as an abelian group by the direct limit

lig (M 25 M 25 M 25 M — - );

we will study this construction in detail in §3.2. This construction annihilates
every Frobenius module (M, p,r) for which ¢ps is nilpotent, and therefore
determines a functor

Crys(R) = Modl g, /Nil — ModJ .

This functor is fully faithful, and its essential image is the subcategory
Mod¥%! C Modt of holonomic Frobenius modules that we study in §4.
The resulting identification of Crys(R) with Mod! carries the equivalence
Shvg, (Spec(R),F,) ~ Crys(R) to the Riemann-Hilbert equivalence RH® :
Shv§, (Spec(R), F,) ~ Mod¥! of Theorem 7.4.1.

One advantage of our approach is that it does not require the ring R
to be Noetherian. Beware that if R is not Noetherian, then the subcat-

egory Modgfg C Mod} is not abelian, and the formalism of Serre quo-

tients is not available. Nevertheless, we will see that the category Mod}}{’1 of

holonomic Frobenius modules is still a well-behaved abelian subcategory of
1\/[0d}%r (Corollary 4.3.3). Note that the extra generality afforded by allowing
non-Noetherian rings can quite useful in practice: one of the main themes
of the present paper is that the theory is often clarified by replacing an
F,-algebra R by its perfection RYP™ | which is almost never Noetherian.

Our realization of crystals as holonomic Frobenius modules also has
the advantage of essentially trivializing the passage to derived categories
in §12.1 (see Theorem 12.1.5). The corresponding statement in [4] requires
more categorical preliminaries (largely to deal with the derived category
of the Serre quotient category Crys(R) in a useful fashion), and does not
describe the constructible derived category D2(Spec(R),F,) as explicitly as
Corollary 12.1.7.

Remark 1.2.1. When R is not Noetherian, we cannot realize the category
Mod¥! as a Serre quotient of the category Mod]F,{fg. Nevertheless, it is still
possible to realize the holonomic derived category DY (R[F]) as a Verdier
quotient of the triangulated category of complexes of Frobenius modules
which are finitely generated and projective over R; see Remark 12.4.5.

1.3. The Work of Emerton-Kisin

The Riemann-Hilbert correspondence of Theorem 1.0.2 is also closely related
to the work of Emerton and Kisin (see [6]). In the case where R is a smooth
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algebra over a field k of characteristic p, Emerton and Kisin construct an
equivalence of triangulated categories

RSolgk : ngu(R[F])Op ~ D(Spec(R), F)),

where Dllc’gu(R[F |) denotes the full subcategory of D(R[F]) spanned by the
cohomologically bounded chain complexes whose cohomology groups finitely
generated unit Frobenius modules (see Definition 11.1.3). This differs from
our Riemann-Hilbert equivalence Sol : Mod! ~ Shv¢, (Spec(R), F,) in two
important respects:

e The functor Sol : Mod¥! ~ Shv¢, (Spec(R), F,) is an equivalence of
abelian categories (though it can be extended to an equivalence of
suitable derived categories, see Corollary 12.1.7). However, the func-
tor RSolgk is well-defined only at the level of derived categories: in
other words, it is not t-exact. Gabber has identified the image of the
abelian category of finitely generated unit Frobenius modules under
the equivalence RSolgk with a certain category of perverse Fy-sheaves
inside D?(Spec(R),F,) (see [8]).

e The equivalence Sol : Mod!! ~ Shv¢, (Spec(R), F,) is a covariant func-
tor, while RSolgk is contravariant.

Example 1.3.1. To illustrate the contrast between the Riemann-Hilbert
correspondence of Theorem 1.0.2 and the Riemann-Hilbert correspondence
of [6] in more concrete terms, let us consider an arbitrary F,-algebra R. A
choice of non-zero divisor ¢ € R determines closed and open immersions

i: Spec(R/tR) — Spec(R) j : Spec(R[t™!]) < Spec(R),
so that the constant sheaf F), on Spec(R) fits into an exact sequence
(1) 0= jFp, = Fp, = i.Fp = 0.

Then the functor RH of Theorem 1.0.2 carries the étale sheaves Fp, jiF,,
and i,F, to the Frobenius modules R/P~ (tR)'/P~ and (R/tR)'/P™, re-

spectively, and the exact sequence (1) to the short exact sequence
0 — (tR)Y*™ — RYP™ — (R/tR)/P™ — 0.

of Frobenius modules.

On the other hand, if R is a smooth algebra over a field k£ of charac-
teristic p, then the contravariant functor RSolgk from [6] carries the étale
sheaves F,, jiF,, and i,F, to the chain complexes of (finitely generated
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unit) Frobenius modules R, R[t~!], and (R[t!]/R)[—1], respectively (up to
a cohomological shift of dim(R): see Remark 11.4.5). In other words, RSolgk
carries exact sequence (1) into the distinguished triangle (R[t™1]/R)[—1] —
R — R[t™!] in the derived category D?gu(ModIF{), obtained by “rotating”
the exact sequence

0—-R— Rt —=R[t/R—=0

in the category of Frobenius modules.

In §12, we will show that the functor RSolgk fits into a commutative
diagram of triangulated categories

Do (R[F))

RSOlEK
D, (RIF])°P D¢(Spec(R); Fy),

where RSol is a derived version of our solution functor Sol, and ID denotes a
certain duality functor on the derived category of Frobenius modules. Using
the fact that RSol is an equivalence of categories (which follows easily from
Theorem 1.0.2 and its proof) and that D is an equivalence of categories
(which we prove as Theorem 12.5.4), we give a new proof of the assertion
that RSolgk is an equivalence of categories. Moreover, our argument does not
require the assumption that R is a smooth algebra over a field: we allow R to
be an arbitrary F,-algebra, with the caveat that the triangulated category
D?gu(R[F ]) must be suitably defined (if R is not a regular Noetherian ring,

then the criteria for membership in the subcategory D?gu(R[F 1) € D(R[F))
must be imposed at the derived level, rather than at the level of individual

cohomology groups; see Definition 11.3.4).

Remark 1.3.2. Let R be a commutative F-algebra, let X = Spec(R) de-
note the associated affine scheme, and let px : X — X denote the absolute
Frobenius map. A Frobenius module over R can be identified with a quasi-
coherent sheaf £ on X equipped with a map ¢¢g : £ — x4 &, or equivalently
with a map g : ¢ & — £. In this paper, we will be primarily concerned
with the class of perfect Frobenius modules, characterized by the require-
ment that the map ¢¢ is an isomorphism. By contrast, the book [6] is mainly
concerned with the class of unit Frobenius modules, characterized by the re-
quirement that the map ¢ is an isomorphism. Note that the direct image
functor px. is always exact (since px is affine morphism), but the exactness
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of the pullback functor ¢% requires some strong hypotheses on R (for exam-

ple, that R is a regular Noetherian ring). Consequently, the category ModpRerf
of perfect Frobenius modules is always abelian, but the category of finitely
generated unit Frobenius modules is well-behaved only in special cases.

1.4. Other Related Works

Extensions of the contravariant Riemann-Hilbert correspondence of [6] to
singular schemes have also been explored in the papers of Blickle-Bockle
[2, 3], Schedlmeier [14], and Ohkawa [13]. Under mild finiteness conditions on
R, the papers [2, 3] develop a theory of “Cartier” modules: these are coherent
sheaves £ on X = Spec(R) equipped with a map Cg : px. & — €. Passing to
a quotient by a naturally defined subcategory of nilpotent objects yields the
category Crysc,,(R) of Cartier crystals on R. For X smooth over a perfect
field, the category Crysc,,(R) is identified in [2] with the category of finitely
generated unit Frobenius modules (and thus with the category of perverse
F,-sheaves on Spec(R)¢ via [6] and [8]). Roughly speaking, the smoothness
of R ensures that ¢' £ ~ ¢* 5®w}{p, so a Cartier module Cg : px. & — &
gives by adjunction a map « : & ®w)_(l — % (& ®w;(1) whose unitalization
(see Construction 11.2.2) yields the desired finitely generated unit Frobenius
module. For R not necessarily regular, even though finitely generated unit
Frobenius modules may be badly behaved, the abelian category Crysc,,(R)
is shown to have good behaviour in [2, 3]; see also [8]. Using this, the paper
[14] shows that, given an embedding X < Spec(P) with P smooth over a
perfect field, a suitably defined derived category of Crysc,,(R) is equivalent
to the full subcategory of D?gu(P [F]) spanned by complexes supported on
X. Combining this with the Riemann-Hilbert correspondence from [6] for P
and a suitable analogue of Kashiwara’s theorem, one obtains a description
of the constructible derived category D%(Spec(R),F,) in terms of Cartier
crystals on R ([13, 14]).

Remark 1.4.1. The most important example of a Cartier module is the co-
herent dualizing sheaf wx for X = Spec(R), where we take C,,, : ox.wx —
wx to be the Grothendieck dual of the unit map Ox — ¢x.Ox. In the
case where X is a smooth scheme over a perfect field k, this map can also
be described in terms of the Cartier operator on the de Rham complex of
X, which motivates the terminology.

In summary, the papers [2, 3, 13, 14] extend the Riemann-Hilbert cor-
respondence of [6] to algebras of finite type over a field by developing the
theory of Cartier modules and reducing to the smooth case. In contrast, the
discussion in §11 gives an intrinsic extension of the Riemann-Hilbert corre-
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spondence of [6] to all F,-algebras R, which is described using Frobenius
modules (that is, quasi-coherent sheaves with a map & — ¢x« E). The pre-
sentation via Cartier crystals gives a module-theoretic description of per-
verse F,-sheaves on Spec(R)¢ (which has an important precursor in [8]),
while the presentation in §11 works entirely in the derived category and
thus avoids discussion of the abelian category of perverse sheaves.
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2. Overview

Our goal in this section is to give a precise formulation of Theorem 1.0.2. We
begin by introducing two of the principal objects of interest in this paper:
the category Mod%r of Frobenius modules over a commutative F,-algebra
R (Definition 2.1.1) and the category Shve(Spec(R),F,) of p-torsion étale
sheaves on Spec(R) (Definition 2.2.2). The Riemann-Hilbert correspondence
of Theorem 1.0.2 is a fully faithful embedding of categories

RH : Shvg;(Spec(R), F,) — Modly .

It will take a bit of work to construct this functor (this is the main objective
of §6). In this section, we consider instead the solution sheaf functor Sol :
Mod!Y — Shvg (Spec(R), F), which is left inverse to the Riemann-Hilbert
functor RH and admits a very simple description (Definition 2.3.3). We
then formulate a variant of Theorem 1.0.2, which asserts that the functor
Sol becomes an equivalence when restricted to a certain full subcategory
Modi{%g C Mod!¥ (Theorem 2.4.3).

2.1. Frobenius Modules

We begin by introducing some definitions.

Definition 2.1.1. Let R be a commutative F-algebra. A Frobenius module
over R is an R-module M equipped with an additive map ¢ps : M — M
satisfying the identity ¢pr(Az) = APy (z) for x € M, X € R.
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Let (M, @) and (N, ¢n) be Frobenius modules over R. A morphism of
Frobenius modules from (M, ppr) to (N, ¢ ) is an R-module homomorphism
p: M — N for which the diagram

M- N

e o

ML N

commutes. We let Mod%r denote the category whose objects are Frobenius
modules (M, ¢pr) and whose morphisms are morphisms of Frobenius mod-
ules. We will refer to Mod% as the category of Frobenius modules over R.

Notation 2.1.2. Let M and N be Frobenius modules over a commutative
F)-algebra R. We let Hom!¥ (M, N) denote the set of Frobenius module
morphisms from (M, ¢pr) to (N, ¢n).

Remark 2.1.3. Let (M, @ys) be a Frobenius module over a commutative
F,-algebra R. We will often abuse terminology by simply referring to M as
a Frobenius module over R: in this case, we are implicitly asserting that M
is equipped with a Frobenius-semilinear map @y : M — M.

Example 2.1.4. Let R be a commutative F,-algebra. Then we can regard
R as a Frobenius module over itself, via the Frobenius map

¢vr:R—R wr(A) = AP

More generally, the same comment applies to an ideal I C R.

It will sometimes be helpful to identify Frobenius modules over a com-
mutative F,-algebra R with modules over a certain (noncommutative) en-
largement of R.

Notation 2.1.5. Let R be an Fj-algebra. We let R[F] denote the noncom-
mutative ring whose elements are finite sums ano c, ™, with multiplica-
tion given by

O enmF™O ) =33 ed?)FE.

m>0 n>0 k>0 i+j=k

We will identify R with the subring of R[F| consisting of those sums
ano c, F'™ for which the coefficients ¢; vanish for ¢ > 0. Unwinding the

definitions, we see that the category Mod}j;blr is equivalent to the category
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of left R[F]-modules. In particular, Mod}Y is an abelian category which
has enough projective objects and enough injective objects. Given objects
M,N e Mod, we let Ext}?i[F](M,N) denote the nth Ext-group of M and

N, computed in the abelian category Mod%\r.

We now consider the behavior of the category 1\/Iod}E,§r as the commutative
F,-algebra R varies.

Construction 2.1.6 (Extension of Scalars). Let f : A — B be a homo-
morphism of commutative F,-algebras. If M is a Frobenius module over A,
then we can regard the tensor product B® 4 M as a Frobenius module over
B, with Frobenius map given by

YBo M (b ® ) = @ pp ().

The construction M — B®4 M determines a functor from Mod{ to ModY,
which we will denote by f7,. and refer to as extension of scalars along f.

Remark 2.1.7 (Restriction of Scalars). In the situation of Construction
2.1.6, the extension of scalars fji (M) = B ®4 M is characterized by the
following universal property: for every Frobenius module N over B, compo-
sition with the map M — B ® 4 M induces a bijection

HOHlB[F](B ®a M,N) — HOIHA[F](M,N).

In other words, we can regard the functor fg, as a left adjoint to the forgetful
functor Mod%r — Modgr. We will denote this forgetful functor by f, and refer
to it as restriction of scalars along f.

Warning 2.1.8. Let f : A — B be a homomorphism of commutative F-
algebras. Then f extends to a homomorphism of noncommutative rings f7 :
A[F] — BJF], where A[F]| and B[F| are defined as in Notation 2.1.5. The
content of Construction 2.1.6 and Remark 2.1.7 is that, for every Frobenius
module M over A, the canonical map

B®AM—>B[F] ®A[F]M

is an isomorphism. This relies on the fact that A[F] is freely generated as a
left A-module by the elements { F"},,>0. Beware that A[F] is usually not free
when regarded as a right A-module (so the analogous compatibility would
fail if we were to study right modules over A[F], rather than left modules).
In fact, following Notation 3.1.1, the ring A[F| identifies with @©,>¢A- F™ as
a left A-module, and with @,>¢F" - AYP" as a right A-module. In particular,
the latter is free over A only under strong conditions (such as regularity).
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Remark 2.1.9. Let f : A — B be a homomorphism of commutative F-
algebras, and suppose that the multiplication map m : B®4 B — B is an
isomorphism (this condition is satisfied, for example, if f is surjective, or if
f exhibits B as a localization of A). Then, for any Frobenius module M over
B, the counit map v : fi, f«(M) — M is also an isomorphism: note that the
domain of v can be identified with the tensor product B s M ~ (BR4B)®p
M. It follows that the restriction of scalars functor f, : Mods — Mod is
fully faithful.

2.2. Etale Sheaves

For the reader’s convenience, we briefly review the theory of étale sheaves.
We consider here only the case of affine schemes (we will discuss sheaves on
more general schemes in §10).

Notation 2.2.1. Let R be a commutative ring. We let CA]gf.t@t denote the
category whose objects are étale R-algebras, and whose morphisms are R-
algebra homomorphisms.

Definition 2.2.2. Let R and A be commutative rings, and let Mod, denote
the category of A-modules. An étale sheaf of A-modules on Spec(R) is a
functor

F : CAlgSt — Mody
which satisfies the following pair of conditions:

e For every faithfully flat map v : A — B in CAlg%, the sequence

F (u)

0— g(A) g(B) Z (u®id)—.Z (id @u)

F(B®a B)

is exact.
e For every finite collection of étale R-algebras {A;};cs, the map

Z(]14) - [[7(4)
el el
is an isomorphism.

We let Shvg (Spec(R), A) denote the category whose objects are étale sheaves
of A-modules on Spec(R) (where morphisms are given by natural transfor-
mations).
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Remark 2.2.3. In this paper, we will be concerned almost exclusively with
the case where A is the finite field F,,. The only exception is in §9, where we
take A = Z/p"Z for some integer n > 0.

Example 2.2.4 (Constant Sheaves). Let R be a commutative ring and let
M be a module over a commutative ring A. We let M € Shvg (Spec(R), A)
denote the functor which associates to each étale R-algebra A the set M (A)
of locally constant M-valued functions on Spec(A). We will refer to M as
the constant sheaf with value M.

Example 2.2.5 (Quasi-Coherent Sheaves). Let R be an F-algebra. For
every R-module M, the construction (A € CAlg®) — A ®p M determines
an étale sheaf of F,-modules on M, which we denote by M (see [15, Tag
03DX]). Note that if M is a Frobenius module over R, then ¢); determines
a map of étale sheaves @y : M — M ; this map is Fp-linear, but not R-linear
in general.
Notation 2.2.6. Let R and A be commutative rings. If % and ¢ are étale
sheaves of A-modules on Spec(R), we let Homp (.#,%) denote the abelian
group of morphisms from .# to ¢ in the category Shv¢(Spec(R), A) (empha-
sizing the idea that .% and ¢ can be regarded as modules over the constant
sheaf A).

Note that Shvg (Spec(R), A) is an abelian category with enough injective
objects, so that we can consider Ext-groups in Shvg (Spec(R), A). We denote
these Ext-groups by Ext} (.#,%) for n > 0.

Remark 2.2.7 (Functoriality). Let f : A — B be a homomorphism of
commutative rings. Then f induces a base change functor

CAlg® — CAlg% A A'®4 B.
Precomposition with this functor determines a pushforward functor
fs« = Shve (Spec(B), A) — Shvg (Spec(A), A),
given concretely by the formula (f, .#)(A") = .Z (A’ x4 B). The functor f,
admits a left adjoint f* : Shve(Spec(A4), A) — Shvg,(Spec(B), A), which we
refer to as pullback along f.

2.3. The Solution Functor

Construction 2.3.1. Let R be a commutative F-algebra and let M be a
Frobenius module over R. For every étale R-algebra A, we regard the tensor
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product A®pr M as a Frobenius module over A (see Construction 2.1.6). We
define

Sol(M)(A) ={x € (ARr M) : pag,m(z) = x}.
The construction A — Sol(M)(A) determines a functor CAlg® — Modp,,
which we will refer to as the solution sheaf of M.

Proposition 2.3.2. Let R be a commutative Fy-algebra and let M be a
Frobenius module over R. Then Sol(M) is an étale sheaf of Fp-modules on
Spec(R).

Proof. Let M denote the quasi-coherent sheaf associated to M (Example
2.2.5). It follows immediately from the definition that Sol(M) can be de-
scribed as the kernel of the map

(id —@ar) : M — M.
Since M is an étale sheaf of F,-modules on Spec(R), the functor Sol(M)
has the same property. O
Definition 2.3.3. Let R be a commutative Fp-algebra. We will regard the
construction

(M € Mod}}) + (Sol(M) € Shve (Spec(R), F)))
as a functor Sol : Mod}y — Shv;(Spec(R),F,). We will refer to Sol as the
solution functor.
Remark 2.3.4. The solution functor Sol : Mod! — Shvg (Spec(R), F)) is
left exact. However, it is usually not right exact.
2.4. The Riemann-Hilbert Correspondence

We now introduce a class of Frobenius modules on which the solution functor
of Definition 2.3.3 is particularly well-behaved.

Definition 2.4.1. Let R be a commutative Fp-algebra and let M be a
Frobenius module over R. We will say that M is algebraic if it satisfies the
following conditions:

(a) The map pps : M — M is an isomorphism of abelian groups.
(b) Every element x € M satisfies an equation of the form

Phi() + arghr @) + -+ ape =0

for some coefficients a; € R.
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We let Modj‘f%lg denote the full subcategory of Modfl:zlr spanned by the algebraic
Frobenius modules over R.

Remark 2.4.2. Let R be a commutative Fj-algebra and let M be a Frobe-
nius module over R. Then condition (b) of Definition 2.4.1 is equivalent to
the following:

(b') For every finitely generated R-submodule My C M, the Frobenius
submodule of M generated by My is also finitely generated as an R-
module.

To see that (b) implies ('), suppose that My C M is the R-submodule gen-
erated by finitely many elements {z; };c;. Then condition (b) guarantees that
the R-submodule generated by {¢%,(z;)}icr k<n is stable under the action
of @y for some n > 0; this is clearly the smallest ¢ps-stable submodule of
M which contains M.

Conversely, suppose that (') is satisfied and let x be an element of M.
Applying condition (V') to the submodule My = Rz C M, we see that the
sum Yy ;- Rgoﬂ“w(x) C M is generated by finitely many elements, and is
therefore contained in > o4, Rk (z) for some integer n. It follows that
@7 () can be written as a linear combination a;¢ly; (z) + -+ + apx for
some coefficients a1, as,...,a, € R.

We can now formulate the main result of this paper:

Theorem 2.4.3. Let R be a commutative Fy-algebra. Then the solution

sheaf functor Sol : Mod;lg — Shvg(Spec(R),Fy) is an equivalence of cate-
gories.

Note that Theorem 2.4.3 immediately implies Theorem 1.0.2: assum-
ing Theorem 2.4.3, the Riemann-Hilbert functor RH can be defined as the
composition

Shvei (Spec(R), F)p) Sl Mod%g < ModT .
We will give a different (but ultimately equivalent) definition of the functor

RH in §6: the construction of this functor is one of the key ingredients in
our proof of Theorem 2.4.3, which we present in §7.

3. The Category of Frobenius Modules

Let R be a commutative F,-algebra. Our goal in this section is to estab-
lish some elementary properties of the abelian category ModFR\r of Frobenius
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modules over R. We begin in §3.1 by studying the forgetful functor from
l\/[od}‘.?;ir to the category of R-modules. The main observation is that the ring
R admits a very simple resolution

0— R[F] =5 RF] > R—0

in the category of left modules over the noncommutative ring R[F] appearing
in Notation 2.1.5. This allows us to reduce calculations of Ext-groups in the
category Mod%r to calculations of Ext-groups in the category Modpg: see
Construction 3.1.7.

In §3.2, we restrict our attention to the class of perfect Frobenius mod-
ules: that is, Frobenius modules M for which the map ¢y : M — M is
bijective (Definition 3.2.1). The collection of Frobenius modules with this
property form a category which we denote by Mod%erf. Our main result is
that the inclusion functor Modlj,’%erf < Mod!Y admits an exact left adjoint
M — M'YP™ given informally by “inverting the Frobenius” (Proposition
3.2.7).

Let f : A — B be a homomorphism of commutative F,-algebras. In
§2.1, we observed that extension of scalars along f determines a functor
fii s Mod!f — Mod!}. Beware that this construction does not carry perfect
Frobenius modules to perfect Frobenius modules. To remedy this, we intro-
duce in §3.3 another functor f° : 1\/Iodgerf o 1\/Iod%,erf7 given concretely by
the formula fo(M) = (f,M)"/P~. The functors f© and f; are generally
different, but they agree when the ring homomorphism f is étale (Corollary
3.4.7). The proof of this fact will require some elementary facts about perfect
rings of characteristic p, which we review in §3.4.

3.1. Comparison of R[F]-Modules with R-Modules

Throughout this section, we fix a commutative Fj-algebra R.

Notation 3.1.1. Let Modpr denote the abelian category of R-modules. For
each n > 0, restriction of scalars along the nth power of the Frobenius map
wr : R — R determines a forgetful functor from Modpg to itself, which we
will denote by M s M/P",

Let M be an R-module. Then there is a canonical isomorphism of abelian
groups M ~ M'Y?". For each element z € M, we will denote the image of
x under this isomorphism by z!/P". The action of R on M'/P" can then be
described by the formula \(z'/P") = (A\P"z)1/P" for A € R and = € M.



A Riemann-Hilbert Correspondence in Positive Characteristic 91

Construction 3.1.2. Let N be an R-module. We let NT denote the R-
module given by the product [[,~o N 1/P" We identify elements of NT with
the collection of all sequences (zg, 21, Z2,...) in N, where the action of R is
given by

Mzo, 1, T2, . ..) = (Axp, NPy, )\p2$2, cl).

We regard NT as an Frobenius module over R, with endomorphism ¢p+ :
Nt — NT given by

ont(To,T1, T2, -+ ) = (T1, T2, T3, ).

Lemma 3.1.3. Let M be a Frobenius module over R, let N be an arbitrary
R-module, and let v: NT — N be the R-module homomorphism given by

v(xo, 1, T2, ...) = Tp.

Then composition with v induces a bijection Hom: (M, NT) — Hompg (M, N).

Proof. For every R-module homomorphism f : M — N, define f*: M —
NT by the formula f+(z) = (f(2), f(prm (), f(93,(2)),...). An elementary
calculation shows that the construction f ~ fT determines an inverse to
the map Hom®} (M, NT) — Hompg(M, N) given by composition with v. [

Remark 3.1.4. It follows from Lemma 3.1.3 that we can regard the con-
struction N — NT as a right adjoint to the forgetful functor Mod%r — Modg.

Remark 3.1.5. Using the equivalence of Notation 2.1.5, we can identify
the forgetful map Mod} — Modg with the functor given by restriction of
scalars along the ring homomorphism R — R[F]. The right adjoint to this
restriction of scalars functor is given by M — Hompg(R[F|, M), which we
can identify with M using the canonical left R-module basis of R[F] given

by {Fn}nZO-

Remark 3.1.6. Let M be a Frobenius module over R and let N be an ar-
bitrary R-module. Then the identification Hom gz (M, NT) ~ Hompg(M, N)
of Lemma 3.1.3 extends to an isomorphism of graded abelian groups

Exct pye (M, NT) 2 Exti(M, N).

This isomorphism can be described explicitly by choosing a projective reso-
lution

e PP P> M
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in the abelian category ModIF{. Note that each P, is also projective when
regarded as an R-module (this follows from the observation that the al-
gebra R[F] of Notation 2.1.5 is free as a left R-module), so that both
Ext}*%[F](M, NT) and Ext}(M, N) can be computed as the cohomology of

the cochain complex of abelian groups Hom gp)(Px, N ") ~ Homp(P;, N).

Construction 3.1.7. Let N be a Frobenius module over R. Then the
construction (z € N) — (z,on(2), 3 (2), ) determines a morphism of
Frobenius modules « : N — NT (which is a unit map for the adjunction of
Remark 3.1.4). Note that u is a monomorphism which fits into a short exact
sequence of Frobenius modules

0— N4 NF& (NPt 0,
where « is given by the formula
a(z0, 1,22, ..) = (pn(T0) — 21, 0N (1) — 2, on (T2) — 73, .. ).

It follows that for any other Frobenius module M over R, we have a short
exact sequence of abelian groups

0 — HomF (M, N) — Homp(M, N) 25 Homp(M, N/P),

where § is given by the formula 8(f)(z) = on(f(@))? — f(on ().
Moreover, if M is a projective object of 1\/Iod}f;r , then 3 is surjective. More
generally, Remark 3.1.6 supplies a long exact sequence of abelian groups

s = Bxtyy (M, NYP) = Bxthy (M, N) — Ext}(M, N)
— Ext’y (M, NY?) — ... .
Remark 3.1.8. Let R be a commutative Fj-algebra and let M be a Frobe-
nius module over R. It follows from Construction 3.1.7 that if M has pro-

jective (injective) dimension < n as a module over R, then it has projective
(injective) dimension < n + 1 as a module over R[F.

3.2. Perfect Frobenius Modules

Let R be a commutative Fj-algebra, which we regard as fixed throughout
this section.
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Definition 3.2.1. Let M be a Frobenius module over R. We will say that
M is perfect if the map pp; : M — M is an isomorphism of abelian groups.
We let Mod%erf denote the full subcategory of Modgr spanned by the perfect
Frobenius modules over R.

Remark 3.2.2. The full subcategory Mod%erf C Modl;;r is closed under
limits, colimits, and extensions. In particular, Modffzerf is an abelian category,
and the inclusion functor Mod?™ < Mod!} is exact.

Notation 3.2.3. Let M be a Frobenius module over R. We let M1/P™
denote the colimit of the sequence

M 2My AV 22 apt/et

We will refer to M/P™ as the perfection of M.

Example 3.2.4. Let us regard R as a Frobenius module over itself as in
Example 2.1.4. Then R'/P” is the perfection of R in the sense of commutative
algebra: that is, it is an initial object in the category of R-algebras in which
every element admits a unique pth root.

Example 3.2.5. Let R[F] be as in Notation 2.1.5, which we regard as a
Frobenius module over R. We will denote the perfection of R[F] by
RYP~[F*!]. Unwinding the definitions, we can identify elements of
R'/P™ [F*1] with expressions of the form Y nez cnF™ where the coefficients

¢n € RYP™ vanish for all but finitely many integers n.

Remark 3.2.6. The set R'/P™[F*!] has the structure of an associative ring,
with multiplication given by the formula

Y enF™O G FY =3 (3 ad?)Fk.

meZ neZ kE€Z it+j=k

This ring can be obtained from the associative ring R[F] by formally ad-
joining an inverse of the element F'. It follows that the equivalence of Modlf.{gr
with the category of left R[F]-modules restricts to an equivalence of Mod];zerf
with the category of left RY/P™[F*!]-modules. In particular, ModpRerf is an
abelian category which has enough projective objects and enough injective
objects.

In the situation of Notation 3.2.3, the perfection M'/P™ inherits the
structure of a Frobenius module. Moreover, it enjoys the following universal

property:
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Proposition 3.2.7. The inclusion functor ¢ : Mod%erf < Mod¥¥ admits a
left adjoint, which carries a Frobenius module M to its perfection M/P~ .

Proof. Under the equivalence of Remark 3.2.6, a left adjoint to ¢ corresponds
to the functor of extension of scalars along the map R[F] — RYP~[F*!],
which is given by M — MY/P~, O

Remark 3.2.8. The perfection functor M — MY/P~ is exact. It follows
that the inclusion functor 1\/Iod%erf < Mod carries injective objects to
injective objects. In particular, if M and N are perfect Frobenius module

over R, then the canonical map Exty d,;;rf(M ,IN) — Exty, d%r(M ,N) is an

isomorphism. We will denote either of these Ext-groups by Ext*R[ F](M ,IN).

For the purpose of comparing Frobenius modules with étale sheaves,
there is no harm in restricting our considerations to perfect Frobenius mod-
ules:

Proposition 3.2.9. Let f : M — N be a morphism of Frobenius modules
over R. If the induced map M'/P~ — NP~ s an isomorphism of perfect
Frobenius modules, then the induced map Sol(M) — Sol(N) is an isomor-
phism of étale sheaves.

Proof. Factoring f as a composition M — im(f) — N, we can reduce to
proving Proposition 3.2.9 in the special case where f is assumed to be either
surjective or injective. Suppose first that f is injective. Our hypothesis that
f induces an isomorphism MYP™ — N/P™ guarantees that the perfection
(N/M)Y/P™ vanishes: that is, the Frobenius map ¢ /0 1s locally nilpotent. Tt
follows that for any étale R-algebra A, the Frobenius map ¢ 4¢ ,(v/ar) is also
locally nilpotent, and therefore has no nonzero fixed points. It follows that
the étale sheaf Sol(NN/M) vanishes. Since the solution functor is left exact
(Remark 2.3.4), we have an exact sequence of étale sheaves 0 — Sol(M) —
Sol(N') — Sol(N/M), which proves that Sol(f) is an isomorphism.

We now treat the case where f is surjective. We wish to prove that f
induces an isomorphism Sol(M)(A) — Sol(IV)(A) for every étale R-algebra
A. Replacing M and N by A®r M and A®pr N (which does not injure our
assumption that f induces an equivalence of perfections: see Proposition
3.3.2), we can reduce to the case A = R. We have a commutative diagram
of short exact sequence

f

0 — ker(f) M N 0
lid —@Prer(f) |d—pn |id—pnN

0 — > ker(f) M-t N 0
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which gives a short exact sequence
ker(id —(pker(f)) — Sol(M)(R) — Sol(N)(R) — coker(id —cpker(f)).

It will therefore suffice to show that the map id —@yer(y) is an isomorphism.
This is clear: our assumption that f induces an equivalence of perfections
guarantees that @y (r) is locally nilpotent, so that id —pye(y) has an inverse
given by the infinite sum > -, goﬁer( N O

3.3. Restriction and Extension of Scalars

Let f : A — B be a homomorphism of commutative F-algebras and let M
be a Frobenius module over B. Then M is perfect as a Frobenius module over
B if and only if it is perfect when regarded as a Frobenius module over A.
In particular, the restriction of scalars functor f. : Mods — Mod!f carries
1\/[0d%erf into Modierf. We will abuse notation by denoting the induced map
1\/Iod1]}erf — 1\/Iodf'f]rf also by f, so that we have a commutative diagram o

Mod2™ — = Mod%

s

Mod5™ — Mody .

Remark 3.3.1. Let f : A — B be a homomorphism of commutative F-
algebras and let M be a Frobenius module over B. Then the canonical map
uw: M — MYP” induces a map fi(u) : f.(M) — fo(MYP~) of Frobe-
nius modules over A whose target is perfect. It follows that f.(u) extends
uniquely to a map v : f,(M)V/P~ — f,(M/P™). Moreover, the map v is an
isomorphism: this follows by inspecting the construction of the perfection
given in §3.2. Put more informally, the formation of the perfection M/P~
does not depend on whether we regard M as a Frobenius module over B or
over A (or over Fp).

In the situation of Remark 3.3.1, the extension of scalars functor fp, :
Modir — MOdFBr usually does not carry perfect Frobenius modules to perfect
Frobenius modules. However, we do have the following:

Proposition 3.3.2. Let f : A — B be a homomorphism of commutative
F,-algebras. Then the forgetful functor Mod%erf — Modgerf admits a left



96 Bhargav Bhatt and Jacob Lurie

adjoint f°. Moreover, the diagram of categories

()~

Mod!¥ Modierf
I B
Modbr Sl ModPet

B B

commutes up to canonical isomorphism. More precisely, for every object
M € Mod'}, the canonical map fO(MYP™) — (f£.M)'/P™ is an equivalence.

Proof. Defining f°¢ by the formula f°(M) = (ffM )1/P it follows imme-
diately from the definitions that f° is left adjoint to the forgetful functor
fa Mod%erf — Modierf. The desired commutativity follows from the com-
mutativity of the diagram o above (by passing to left adjoints). O

In the situation of Proposition 3.3.2, the functors
fie : Mody — Modl}  f°: Mod%™ — Mod%™

are right exact, but generally not left exact (unless B is flat over A). We
can therefore consider their left derived functors.

Construction 3.3.3. Let f : A — B be a homomorphism of F,-algebras.
The abelian category 1\/Iodf—*4‘r has enough projective objects, so that the ex-
tension of scalars functor f3 : Modf — Mod!r has left derived functors
Lo fs : Mody — Mod!¥ for n > 0. More concretely, for M € Mod'y, we
can describe L, fii M as the nth homology of the chain complex f{ (Ps),
where P, is a projective resolution of M in the abelian category Modir.
Note that P, is then also a projective resolution of M in the category Mod 4
of A-modules, and that the chain complex ff.(Ps) can be identified with
B ®4 P.. It follows that for n > 0, we have canonical B-module isomor-
phisms Ly, f; M = Tor: (M, B). We can summarize the situation as follows:

(¥) If f: A — B is a homomorphism of Fj-algebras and M is a Frobenius
module over A, then the Tor-groups Tor (M, B) can be regarded as
Frobenius modules over B. Moreover, the construction

Mod!f — Mod¥ M — Tor’ (M, B)

can be identified with the nth left derived functor of the construction
M — fr.M.
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Variant 3.3.4. In the situation of Construction, the abelian category
Modlzerf also has enough projective objects, so we can consider the left de-
rived functors L, f° of the functor f° : Modierf — Mod%erf. Note that if M
is a perfect Frobenius module over A and P, is a projective resolut}on of
PP

M in the category Mod{ of all Frobenius modules over A, then is

a projective resolution of MY/P~ ~ M in the category Modzerf of perfect
Frobenius modules over A. We can therefore identify (L, f®)(M) with the
nth homology group of the chain complex fQP*1 P ( fl:frP*)l/ P Using

the exactness of the functor N — NP~ we obtain isomorphisms
(Lnf*)(M) = (L fi) (M)"/P™ = Tory (M, B)'/P~.
3.4. Perfect Rings

Let R be a commutative Fj-algebra. Recall that R is said to be perfect if
the Frobenius homomorphism ¢gr : R — R is an isomorphism.

Remark 3.4.1. A commutative Fj-algebra R is perfect if and only if it
is perfect when regarded as a Frobenius module over itself, in the sense of
Definition 3.2.1.

Example 3.4.2. Let R be any commutative F-algebra. Then the perfection
RYP™ of Example 3.2.4 is a perfect F,-algebra.

Let R be an F-algebra. If M is a perfect Frobenius module over R, then
M admits the structure of a module over RY/P™. More precisely, we have
the following result, whose proof is left to the reader:

Proposition 3.4.3. Let R be an algebra over Fj,. Then the restriction of

f f . . .
scalars functor Modpy,), — Mody™ is an equivalence of categories.

Remark 3.4.4. Let R be a Noetherian F-algebra of finite Krull dimension
d, and suppose that the Frobenius map ¢r : R — RY/? exhibits RY? as a
finite module over R. Then the abelian category of all RY/P~-modules has
global dimension < 2d+1 (see [1, Remark 11.33]). It follows from Proposition
3.4.3 and Construction 3.1.7 that the category Mod%erf has global dimension
< 2d+2.

Proposition 3.4.5. Let f : A — B be a homomorphism of perfect F,-
algebras. Then the extension of scalars functor ff, : Mod? — Mod%r carries
Modlzerf into Mod%erf.
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Proof. Let M be a perfect Frobenius module over A. Then the maps
yp:B—B pa:A— A om:M—M

are isomorphisms, so the induced map ppg,ar: B®a M — B®4 M is also
an isomorphism. O

Warning 3.4.6. In the proof of Proposition 3.4.5, it is not enough to assume
that M and B are perfect. For example, the tensor product F,, [x]l/ P~ QF, (2]

F,[z]'/P” is not a perfect ring.
Corollary 3.4.7. Let f : A — B be an étale morphism of F,-algebras. Then
the extension of scalars functor fii : Modlf — Mod¥y carries 1\/Iodf'f’]rf into
Modperf

" -

Proof. Let M be a perfect Frobenius module over A. Then we can also
regard M as a Frobenius module over AP~ Since f is étale, the diagram
of commutative rings

A B

|

Al/p> . gl/p™

is a pushout square (see, for example, [15, Tag 0EBS]). It follows that we
can identify fi M with the tensor product B 1/P™ @ 41/m M, which is perfect
by Proposition 3.4.5. O

3.5. Exactness Properties of f°

Our final goal in this section is to establish the following fundamental ex-
actness property for pullbacks of algebraic Frobenius modules:

Theorem 3.5.1. Let f : A — B be a homomorphism of commutative F,,-
algebras and let M be an algebraic Frobenius module over A. Then the abelian
groups Tor2 (M, B)'/*~ wanish for n > 0.

Before giving the proof of Theorem 3.5.1, let us collect some conse-
quences:

Corollary 3.5.2. Let f : A — B be a homomorphism of commutative Fy-
algebras and suppose we are given an exact sequence 0 — M' — M —
M" — 0 in Modierf. If M" is algebraic, then the sequence 0 — f°M' —
feM — f°M"” — 0 is also exact.
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Proof. Variant 3.3.4 supplies an exact sequence
Tor{ (M", B)'/P™ — f°M' — f°M — f°M" — 0,
where the first term vanishes by virtue of Theorem 3.5.1. O

Corollary 3.5.3. Let f : A — B be a morphism of Fp-algebras and suppose
we are giwen objects M € Mody, N ¢ Modg. If M is algebraic and N is
perfect, then the canonical map Eth[F](M, N) — ExtE[F}(fQM, N) is an
isomorphism.

Proof. Let P, be a projective resolution of M in the category Modzerf. Then
Theorem 3.5.1 guarantees that f°P; is a projective resolution of f®M in the
category Mod%erf, so that both Ext) (M, N) and Extpp (f°M,N) can be
identified with the cohomology of the cochain complex Hom4(p (Py,N) ~
HOI’IIB[F](fQP*,N). ]

We now turn to the proof of Theorem 3.5.1. The main ingredient is the
following observation from [1]:

Lemma 3.5.4. Let A be a perfect Fy-algebra containing an element a, and
let T = (a,a/?,a'/?",...) denote the kernel of the map A — (A/(a))'/P~.
Then the elements a*/?" € I determine an A-module isomorphism of I with
the direct limit of the diagram

al-1/p al/p—1/p% al/p?-1/p3 al/p3—1/p*

A

Proof. Unwinding the definitions, we must show that if an element x € A
satisfies the equation za/P" = 0 for some m > 0, then we have za/P"~1/?" =
0 for some n > m. We now compute

zal/P" T L (p=1)/p 1P (p=2) /P
(za/P" ) /Py (=D /pg(p=2) P

= 0.

O

Proof of Theorem 3.5.1. Let f : A — B be a homomorphism of commuta-
tive F-algebras and let M be an algebraic Frobenius module over A; we wish
to show that the groups Tor: (M, B)'/P vanish for n > 0. Writing B as a
filtered direct limit of finitely generated A-algebras, we can assume that B is
finitely presented over A: that is, we can write B ~ Alx1, ..., x|/ for some
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finitely generated ideal I C A[zy,...,z]. Set N = (A[zy, ... ,a:k]®AM)1/p°°.
Using the flatness of A[zy,...,z;] over A, we obtain isomorphisms

Tor (M, B)Y/P™ ~ Tordr= (N, g1/~

Moreover, N is an algebraic Frobenius module over Az, ...,z (see Corol-
lary 4.2.8). We may therefore replace A by Alx1,...,z;] (and M by N) and
thereby reduce to the case where f is surjective.

Proceeding by induction on the number of generators of I, we can reduce
to the case where I = (a) is a principal ideal. Since M is perfect, we can
regard M as a module over the perfection AYP™ g0 that we have canonical
isomorphisms Tor2 (M, B)/P™ ~ Tor,f‘l/poo (M, BY?™). We have an exact
sequence

0 — IV/P™ 5 AYP™  BI/P™ 50

in the category of modules over AYP™ where IY/P~ is flat over AP~ by
virtue of Lemma 3.5.4. It follows that the groups Tor/ (M, B)'/P™ vanish
for n > 2, and Tor{ (M, B)Y/?~ can be identified with the kernel of the map

p:M®Al/p°° Il/pm —)M@Al/poo 141/1)Oo ~ M.

We will complete the proof by showing that p is injective Using the descrip-
tion of I'/P~ supplied by Lemma 3.5.4, we see that the injectivity of p can
be reformulated as follows:

(*) Let x be an element of M which satisfies the equation a'/?" z = 0, for

some integer m. Then a'/P"~1/P" z = 0 for some m’ > m.

To prove (x), we use our assumption that M is algebraic to write
Pir(z) = el (@) + oo+ onz

for some coefficients ¢, ..., ¢, € A. We then compute

o ()

n
— Z ap"/p"”rl Ci(/??/[_z (.T})
=1

O (a /P ) = gt/

n
= e @ )
=1

= 0.
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Using the bijectivity of ¢y, it follows that a'/P"" z = 0, which immediately
implies (). O

Remark 3.5.5. The reasoning used to prove Theorem 3.5.1 can also be
used to show the following result (see [1]): if B <~ A — C is a diagram
of perfect rings, then Torf4(B, C) = 0 for i > 0. Indeed, as in the proof of
Theorem 3.5.1, one reduces to the case B = A/I, where I = J, f'/?" A is
the radical of an ideal generated by a single element f € A. In this case, the
presentation given in Lemma 3.5.4 and the perfectness of C imply that [ is
a flat A-module, and that I ® 4 C' ~ J, where J =, /P C C is also an
ideal. The desired claim follows immediately.

4. Holonomic Frobenius Modules

Let R be a commutative Fp-algebra and let Modgr denote the category of
Frobenius modules over R. In this section, we consider a full subcategory
Mod¥! C Mod}y whose objects we refer to as holonomic Frobenius mod-
ules. Roughly speaking, the class of holonomic Frobenius modules can be
regarded as a characteristic p analogue of the class of (regular) holonomic
D-modules on complex analytic varieties. We will later show that the cat-
egory Mod}ﬁz01 can be characterized as the essential image of the category
Shvg, (Spec(R), F)) of constructible étale sheaves under the Riemann-Hilbert

equivalence
RH : Shve; (Spec(R), Fp)) =~ Mod® C Mod%

of Theorem 1.0.2 (see Theorem 7.4.1). Our goal in this section is to lay the
groundwork by establishing the basic formal properties of Modlﬁ’l.

We begin in §4.1 by defining the class of holonomic Frobenius modules
(Definition 4.1.1) and verifying some elementary closure properties. In §4.2,
we show that every holonomic Frobenius module is algebraic (Proposition
4.2.1) and that, conversely, every algebraic Frobenius module can be realized
as a filtered colimit of holonomic Frobenius modules (Theorem 4.2.9). This
result will allow us to reduce certain questions about algebraic modules to
the case of holonomic modules, which enjoy good finiteness properties. For
example, we prove in §4.3 that if R is Noetherian, then the category Mod%?l
is also Noetherian (Proposition 4.3.1). In §4.4 we associate to each holonomic
Frobenius module M a constructible subset supp(M) C Spec(R) which we
refer to as the support of M. We will see later that the support supp(M)
exerts strong control over the behavior of M: for example, it is empty if and
only if M ~ 0 (Proposition 5.3.3).
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4.1. Holonomicity

Definition 4.1.1. Let R be a commutative Fj-algebra and let M be a
Frobenius module over R. We will say that M is holonomic if there exists
an isomorphism M ~ M(} / pm, where My € Mod%r is finitely presented as an
R-module. We let Mod"' denote the full subcategory of ModpRerf spanned
by the holonomic Frobenius modules over R.

Proposition 4.1.2. Let f : A — B be a homomorphism of Fy-algebras. If
M e Modierf is holonomic, then f°M € l\/[odeerf s holonomic.

Proof. Without loss of generality we may assume that M = M&/ P¥ for
some My € Mod! which is finitely presented as an A-module. Then f°M ~
(B®a Mg)l/pw, and B ®4 My is finitely presented as a B-module. O

We also have the following converse of Proposition 4.1.2, whose proof we
leave to the reader:

Proposition 4.1.3. Let R be an Fp-algebra and let M be a holonomic
Frobenius module over R. Then there exists an inclusion v : R — R where
R' is finitely generated over ¥y, and an isomorphism M ~ (°M’', where M’
s a holonomic Frobenius module over R'.

Remark 4.1.4. Let R be a commutative F)-algebra and suppose we are
given objects M, N € ModpRerf, where M is holonomic. Then we can choose
an isomorphism M =~ MO1 /P” for some My € Mod%r which is finitely pre-
sented as an R-module. Using Construction 3.1.7 (and the observation that
on : N — NP is an isomorphism), we obtain a long exact sequence

Ext e (M, N) — Extp (Mo, N) L Ext’y (Mo, N) — Ext*RJ[r}](M, N),

where v is the map given by vy(f) = f — (p]_\,l ofopum,.

Proposition 4.1.5. Let R be an F-algebra and let M be a Frobenius module
over R which is holonomic. Then M 1is a compact object of the category
Mod%erf: that is, the functor N + Hom (M, N) commutes with filtered
colimits.

Proof. Choose an isomorphism M ~ MO1 /P™ for some My € ModIF{ which is
finitely presented as an R-module, and observe that the exact sequence of
Remark 4.1.4 depends functorially on N. O
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4.2. Comparison with Algebraic Frobenius Modules

Our next goal is to compare the theory of holonomic Frobenius modules
(introduced in Definition 4.1.1) with the theory of algebraic Frobenius (in-
troduced in Definition 2.4.1). Our starting point is the following:

Proposition 4.2.1. Let R be a commutative Fp-algebra and let M be a
holonomic Frobenius module over R. Then M 1is algebraic.

Proof. Let z be an element of M. Using Proposition 4.1.3, we can choose
a finitely generated subalgebra R’ C R and an isomorphism M ~ (R Qp/
M")Y/P~ for some M’ € Mod%!. Enlarging R’ if necessary, we may assume
that x is the image of some element 2’ € M’. Since M’ is holonomic, we can
write M’ = Mél/ P¥ for some Mg e Mod%r, which is finitely presented as an
R'-module. We can then write 2’ = ¢,/ (y) for some y € M’ which lifts to
an element yo € M. Since M| is a Noetherian R’-module, the submodule
generated by the elements {d]\‘% (yo) In>0 is finitely generated. It follows that

yo satisfies an equation @i, (y) + alc’o%l(y) + -+ apy = 0 for some ele-
ments a; € R', so that x satisfies the equation ¢}, (x) + a{kcp’x/l_l(:c) +
a%kx =0. O

Corollary 4.2.2. Let R be a commutative Fy-algebra. Then the collection
of holonomic Frobenius modules over R is closed under finite direct sums
and cokernels.

Remark 4.2.3. We will see later that the collection of holonomic Frobenius
modules is also closed under the formation of kernels and extensions; in
particular, it is an abelian subcategory of Mod%r (Corollary 4.3.3).

Proof of Corollary 4.2.2. Closure under finite direct sums is obvious. Let
u : M — N be a morphism in Mod}ﬁ)l. Then we can choose isomorphisms
M ~ Mol/poo and N ~ Nol/poo for some objects My, Ny € ModP}%r which
are finitely presented as R-modules. Let x1,...,x; be a set of generators
for My as an R-module. Let us abuse notation by writing u(x;) for the
image of z; under the composite map My — M = N. Then we can
choose some integer n > 0 for which each u(x;) has the form ¢, (y;) for
some y; which lifts to an element §, € Np. Since N is holonomic, it is
algebraic (Proposition 4.2.1). It follows that each y; satisfies some equa-

tion gojdv"'(yi) + clﬂiap%_l(yi) + - 4cgiyi = 0in N ~ Nol/px, so that
cp?l\}:re(?i)—i-c]iisoﬁi\};lﬂ@i)—k‘ . -+C§i7i<,0]v0 (7;) = 0in Ny for e > 0. In particu-
lar, the elements {¢%; (7;)} generate a Frobenius submodule Nj € Ny which
is finitely generated as an R-module. Then Ny/N/ is finitely presented as
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an R-module. Using evident isomorphism coker(u) =~ (No/Nj)'/?™, we con-
clude that coker(u) is holonomic. O

Our next goal is to establish a converse to Proposition 4.2.1, which as-
serts that every algebraic Frobenius module can be “built from” holonomic
Frobenius modules (Theorem 4.2.9). First, we need some general facts about
algebraicity.

Proposition 4.2.4. Let R be an Fy-algebra. Then Mod'j,%g 1 a localizing
subcategory of Mod%erf. That is:

(a) Given a short exact sequence 0 — M’ — M — M" — 0 of perfect
Frobenius modules over R, M is algebraic if and only if M' and M"
are algebraic.

(b) The collection of algebraic Frobenius modules is closed under (possibly
infinite) direct sums.

Proof. The “only if” direction of (a) follows immediately from the defini-
tions. To prove the reverse direction, suppose we are given an exact sequence
0— M % M — M"” — 0 where M’ and M" are algebraic. Let z be an
element of M. Since M" is algebraic, we deduce that there is an equation
of the form @7, (2) + a19s; ' (z) + -+ + amz = a(y) for some a; € R and
some y € M'. Since M’ is algebraic, we obtain an equation of the form
O (y) + b1t H(y) + -+ buy = 0 for some b; € R. Tt follows that

LA ORT

0<i<m,0<j<n

with the convention that ag = by = 1. Allowing z to vary, we deduce that
M is algebraic.

To prove (b), we observe that the general case immediately reduces to
the case of a finite direct sum, which follows from (a). O

Proposition 4.2.5. Let R be a commutative F-algebra, let M be a perfect
Frobenius module over R, and let x € M be an element. The following
conditions are equivalent:

(1) There exists a map of Frobenius modules f : M' — M, where M' is
holonomic, and an element ' € M’ satisfying f(2') = x.

(2) There exists an algebraic Frobenius submodule My C M which con-
tains x.
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(3) The element x satisfies an equation
Phr(n) + a1l (@) + o+ ane

for some coefficients ay,...,a, € R.

Proof. We first show that (1) implies (2). Let f : M" — M be a morphism of
Frobenius modules. If M’ is holonomic, then it is also algebraic (Proposition
4.2.1). Consequently, if there exists an element 2’ € M’ satisfying f(2') = =,
then x belongs to the submodule im(f) C M, which is algebraic by virtue
of Proposition 4.2.4.

The implication (2) = (3) is immediate from the definitions. We will
complete the proof by showing that (3) = (1). Assume that x satisfies an
equation %, () +a1¢’y; H(z)+ - -+ayz = 0. Let N denote the free R-module

on a basis {yo, ..., Yn—1}, which we regard as a Frobenius module over R by
setting
Yi+1 ifi<n—1
on(yi) = o
—Q1Yn—1 — A2Yp—2 — - — apyo ifi=mn—1.

Then the construction y; — ¢’ (z) determines a map of Frobenius modules
fo: N — M. Since M is perfect, we can extend fo to amap f: NP~ — M.
It follows immediately from the construction that N/~ is holonomic and
that = belongs to the image of f. O

Corollary 4.2.6. Let R be a commutative Fp-algebra and let M be an
algebraic Frobenius module over R. Then there exists an epimorphism of
Frobenius modules @ M, — M, where each M, is holonomic.

Corollary 4.2.7. Let R be a commutative Fy,-algebra and let M be a perfect
Frobenius module over R. Then there exists a largest Frobenius submodule
My € M which is algebraic. Moreover, an element x € M belongs to My if
and only if it satisfies an equation

ohr(@) + a1y (@) + -+ anw

for some coefficients a1,...,a, € R.

Proof. Let My be the sum of all algebraic Frobenius submodules of M.
It follows from Proposition 4.2.4 that My is also algebraic, so that each
element z € M satisfies an equation ¢}, (z)+a1¢; H(x)+- - +ana for some
coefficients ay, ..., a, € R. The reverse implication follows from Proposition
4.2.5. O
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Corollary 4.2.8. Let f : A — B be a homomorphism of commutative Fp-
algebras and let M be an algebraic Frobenius module over A. Then f°(M)
is an algebraic Frobenius module over B.

Proof. Applying Corollary 4.2.7, we deduce that there is a largest algebraic
submodule N C f°(M), and that N contains the image of the map

M — fo(M) ~ (B ®4 M)'/P~

Since N is a B-submodule of f(M) which is stable under the automorphism
90]73( My 1t follows that N = f°(M). .

Theorem 4.2.9. Let R be a commutative Fp-algebra. Then the inclusion
functor Mod}}%"l — 1\/[0d?%lg extends to an equivalence of categories
Ind(Mod!¥") ~ Mod3%#.

Proof. Tt follows from Proposition 4.1.5 that the inclusion Mod#! < Mod?™
extends to a fully faithful embedding ¢ : Ind(Mod%") — Mod%erf. Since every
holonomic Frobenius module is algebraic (Proposition 4.2.1) and the collec-
tion of algebraic Frobenius modules is closed under filtered colimits, the
essential image of ¢ is contained in the full subcategory Modj,‘%lg C Mod%erf.
To complete the proof, it will suffice to verify the reverse inclusion. Let M
be an algebraic Frobenius module; we wish to show that M can be written
as a filtered colimit @Ma, where each M, is holonomic. Using Corollary
4.2.6, we can choose an epimorphism p : @,c; Mo — M for some set I,
where each M, is holonomic. The kernel ker(p) is then algebraic (Proposi—
tion 4.2.4), so we can apply Corollary 4.2.6 again to choose an epimorphism
P Dpes M é — ker(p), where each M /’3 is holonomic. We can identify p
with a system of maps {p[, 5 : Mj — Ma}aer,pes. Using Proposition 4.1.5,
we see that for each 8 € J there are only finitely many « € I for which p/, 8
is nonzero. It follows that we can write M as a filtered colimit of Frobe-
nius modules of the form coker(Psc 5, Mg — Doer, Ma) where Iy C I and
Jo C Jy are finite. Each of these Frobenius modules is holonomic by virtue
of Corollary 4.2.2. O

Let f : A — B be a morphism of commutative F)-algebras. In general,
the restriction of scalars functor f, : Mod — Mod!{ does not preserve
holonomicity. However, we do have the following;:

Proposition 4.2.10. Let f : A — B be an F),-algebra homomorphism which
is finite and of finite presentation. Then the restriction of scalars functor
Mody — Mod!¥ carries Mod! into Mod¥' and Mod%lg into Modzlg.
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Proof. Because restriction of scalars commutes with filtered colimits, it will
suffice to show that if M € Modk is a holonomic Frobenius module over
B, then it is also a holonomic Frobenius module over A (Theorem 4.2.9).

Write M = Mé/ P* for some My € Modgr which is finitely presented as a
B-module. We now complete the proof by observing that our assumption on
f guarantees that My is also finitely presented as an A-module. O

Warning 4.2.11. The finite presentation hypothesis in Proposition 4.2.10
cannot be relaxed to finite generation. For example, take A =F,[z1, x2, 3, ...]
to be a polynomial ring on countably many generators, and let B= A/(x1, x2,
x3,...) = F), be its residue field at the origin. Then B is holonomic when
regarded as a Frobenius module over itself, but not when regarded as a
Frobenius module over A; one can see this directly, but a quick proof is
provided by Theorem 4.4.4 (note that Spec(B) is not a constructible subset
of Spec(A)).

4.3. The Noetherian Case

Recall that an object X of an abelian category A is said to be Noetherian
if the collection of subobjects of X satisfies the ascending chain condition.
A Grothendieck abelian category A is said to be locally Noetherian if every
object of A can be written as a union of Noetherian subobjects.

Proposition 4.3.1. Let R be a Noetherian Fp-algebra. Then the abelian cat-

egory Mod'j,‘%g 1s locally Noetherian. Moreover, an object ofMod?%g 1s Noethe-
rian if and only if it is holonomic.

Proof. We first show that every holonomic R-module M is a Noetherian
object of the abelian category Mod%erf. Write M = MS/ P for some M €
Mod}%r which is finitely generated as an R-module. Replacing My by its image
in M, we can assume without loss of generality that My is a submodule of
M. For any subobject M’ C M in the abelian category Mod%g7 let M) =
M’ N My. Note that for any x € M’, we have %, (x) € My for n > 0. It

follows that M’ = {x € M : (3n)[p},(x) € M)} ~ Mél/poo. Consequently,
the construction M’ — M/, determines an monomorphism from the partially
ordered set of subobjects of M (in the abelian category Mod%erf) to the
partially ordered set of subobjects of Mj (in the abelian category Modg).
Since My is a Noetherian R-module, the latter partially ordered set satisfies
the ascending chain condition, so the former does as well.

Now suppose that M is an arbitrary algebraic Frobenius module over R.
Using Corollary 4.2.6, we can choose an epimorphism of Frobenius modules
D act Mo — M, where each M, is holonomic. For every finite subset Iy C I,
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let Mj, denote the image of the composite map

@Mac—)@Ma—)M.

a€ly acl

Then M = | 1, M1,, and the first part of the proof shows that each My,
is Noetherian. This proves that the category Mod?%lg is locally Noetherian.

It follows that every Noetherian object of Modj,)%g is compact, and therefore
arises as a direct summand of a holonomic Frobenius module by virtue of
Theorem 4.2.9. Since the collection of holonomic Frobenius modules is closed
under passage to direct summands, it follows that Modlj}?l is precisely the

collection of Noetherian objects of Mod%g. O

Remark 4.3.2. Let R be a Noetherian Fj-algebra and let M be a holo-
nomic Frobenius module over R. Then, for every integer k, the construc-
tion N — Ext’f%[F](M, N) commutes with filtered direct limits when re-
stricted to perfect Frobenius modules over R. This follows from the ex-
act sequence of Remark 4.1.4 (together with the fact that the construc-
tion N — Exth(Mp, N) commutes with filtered colimits, whenever My is a
finitely generated R-module).

Corollary 4.3.3. Let R be a commutative F,-algebra. Then Mod¥! is an

abelian subcategory of ModpRerf which is closed under the formation of ker-
nels, cokernels, and extensions.

Proof. Closure under the formation of cokernels was established in Corollary
4.2.2. We next show that it is closed under kernels. Let v : M — N be a
morphism of holonomic Frobenius modules over R; we wish to show that the
kernel ker(u) is holonomic. Using a direct limit argument, we can write u =
f°(up) for some map f : Ry — R where Ry is a finitely generated F-algebra
and some ug : My — Ny in Mod%%l. Since Ry is Noetherian, Proposition
4.3.1 guarantees that My is a Noetherian object of Modlﬁz}. It follows that
ker(up) € My is also a Noetherian object of Mod?{f’l. Corollary 3.5.2 supplies
an isomorphism ker(u) ~ f°ker(up), so that ker(u) is a holonomic Frobenius
module over R by virtue of Proposition 4.1.2.

We now prove closure under extensions. Suppose that we are given a
short exact sequence of Frobenius modules over R,

0—-M —-M-—M"—0,

where M’" and M" are holonomic; we wish to show that M is also holonomic.
Using Proposition 4.1.3, we can write M’ = f°M/ and M" = f°M], where
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f : Rg — R is the inclusion of a finitely generated subring and the Frobenius
modules M) and M{/ are holonomic over Ry. The preceding exact sequence
is then classified by an element

1 € Extpp (M", M') =~ Extp, (Mg, R @g, Mp).

Applying Remark 4.3.2, we can arrange (after enlarging Ry if necessary)
that n can be lifted to an element 7y € Ext}%o i (Mg, M), which classifies a
short exact sequence

0 — M) — My — Mj — 0,

of Frobenius modules over Ry. Since Ry is Noetherian, we can regard M)
and M/ as Noetherian objects of the category 1\/Iod%eorf (Proposition 4.3.1). Tt

follows that My is also a Noetherian object of the abelian category Mod%irf,
and is therefore a holonomic Frobenius module over Ry (Proposition 4.3.1).
Applying Proposition 4.1.2, we deduce that M ~ f°Mj is a holonomic
Frobenius module over R. O

4.4. The Support of a Holonomic Frobenius Module

Definition 4.4.1. Let R be a commutative Fj-algebra and let M be a
perfect Frobenius module over R. For each point x € Spec(R), we let k(z)
denote the residue field of R at x, and we let f; : R — k(z) denote the
canonical map. We let supp(M) denote the set {x € Spec(R) : fS(M) # 0}.
We will refer to supp(M) as the support of M.

Remark 4.4.2. Let R be an F,-algebra, let M € Mod%erf, and let x be
a point of Spec(R), corresponding to a prime ideal p C R. The following
conditions are equivalent:

(1) The point x belongs to the support of M.

(2) There exists a field k and an R-algebra homomorphism f : R — &
such that ker(f) =p and f°M # 0.

(3) For every field k and every map f : R — x with ker(f) = p, we have
feM #0.

To see this, we note that any map f : R — x with ker(f) = p factors

uniquely as a composition R f—z> k(z) & Kk, so that we have a canonical
isomorphism

FOM = KMPT @,y fO(M).
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Remark 4.4.3. Let f : A — B be an F,-algebra homomorphism and let
M e Modierf. Then supp(f°M) is the inverse image of supp(M) under the
map Spec(B) — Spec(A) determined by f (this follows immediately from
Remark 4.4.2).

The support supp(M) of Definition 4.4.1 is well-behaved when M is
holonomic:

Theorem 4.4.4. Let R be a commutative Fy-algebra and let M be a holo-
nomic Frobenius module over R. Then supp(M) is a constructible subset of
Spec(R).

Proof. Using a direct limit argument, we can choose a finitely generated
subring R’ C R and an isomorphism M ~ (R ®p M')'/P~ for some M’ €
Mod%f,’ . Replacing R by R’ and M by M’, we can reduce to the case where
R is Noetherian. By general nonsense, it will suffice to prove the following:

(a) If z € Spec(R) belongs to the support of M, then there exists an open
subset U C {z} which is contained in supp(M).

(b) If x € Spec(R) does not belong to the support M, then there exists
an open subset U C {x} which is disjoint from supp(M).

Let p € R be the prime ideal determined by the point z. Using Remark
4.4.3, we can replace R by R/p and thereby reduce to the case where R is
an integral domain and x is the generic point of Spec(R).

Write M = M&/ pw, where My is finitely generated as an R-module.
Let K denote the fraction field of R. Then V = KY/P™ @p M, is a finite-
dimensional vector space over K1/P™ equipped with a Frobenius-semilinear
endomorphism ¢y : V — V. Then {J, ker(¢}) is a K'/P~-subspace of V,
which admits a basis {v;}1<;<x. Replacing R by a localization R[t™!] for
some nonzero element ¢ € R, we can assume that each v; can be lifted to an
element of RYP™ ®@p My, and therefore also to an element v; € R’ @ p M for
some subalgebra R’ C RYP™ which is finitely generated over R. Note that
the inclusion R < R’ induces a homeomorphism Spec(R’) — Spec(R). We
may therefore replace R by R’ (and My by R’ ® g M) and thereby reduce
to the case where each v; belongs to My. Replacing R by a localization if
necessary, we may further assume that each v; is annihilated by some power
of par,. Then the set {U; }1<;<) generates a Frobenius submodule M{j C M)
whose perfection vanishes. We may therefore replace My by My/M| and
thereby reduce to the case where the map ¢y is injective.

Let us identify ¢pz, with an R-linear map S : Mél) — My, where Mél)
is obtained from My by extension of scalars along the Frobenius map ¢pg :
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R — R. Note that the induced map Bxie= : K/P~ ®p Mél) — KYP™ @p
My can be identified with ¢y and is therefore a monomorphism. Since the
domain and codomain of S/, are vector spaces of the same dimension
over K1/~ it follows that Bi/m> is an isomorphism. Replacing R by a
localization R[t™!] if necessary, we can assume that My is a free module of
finite rank r and that £ is an isomorphism. In this case, it is easy to see that
supp(M) = Spec(R) ?f r=0 from which assertions (a) and (b) follow
1] if r =0,
immediately. O

5. Compactly Supported Direct Images

Let f: A — B be a morphism of commutative rings. Then the direct image
functor f, : Shvg(Spec(B),F),) — Shvg(Spec(A), F,) admits a left adjoint,
which we denote by f* : Shvg(Spec(A), F),) — Shvg(Spec(B), F,) and refer
to as pullback along f. In the special case where f is étale, the pullback
functor can be described concretely by the formula (f*.%)(B') = % (B’). In
particular, f* preserves inverse limits. It follows (either by the adjoint func-
tor theorem, or by direct construction) that the functor f* admits a further
left adjoint, which we denote by f : Shvg(Spec(B), A) — Shvg (Spec(A), A)
and refer to as the compactly supported direct image functor.

Now suppose that f : A — B is a homomorphism of commutative F-
algebras. Under the Riemann-Hilbert correspondence of Theorem 1.0.2, the
pullback functor f* : Shve(Spec(A),F,) — Shvg(Spec(B),F,) on étale
sheaves corresponds to the extension of scalars functor f° : Modi’glg — Moda]_gg
on algebraic Frobenius modules (see Proposition 6.2.2). One consequence of
this is that, if the morphism f is étale, the functor f° : Modi‘lg — Moda]_gg
must also admit a left adjoint. Our goal in this section is to give a direct
proof of this statement, which does not appeal to the Riemann-Hilbert corre-
spondence (in fact, the work of this section will be needed in §6 to construct
the Riemann-Hilbert functor).

We begin in §5.1 by introducing a notion of compactly supported direct
image in the setting of Frobenius modules (Definition 5.1.2). From the defi-
nition, it will be immediately clear that if f : A — B is an étale morphism of
commutative F,-algebras, then the formation of compactly supported direct
images supplies a partially defined functor fi : Modf’ﬁllg — Mod%g . Our main
result, which we prove in §5.4, is that this functor is actually total: that is,
compactly supported direct images of algebraic modules always exist (The-
orem 5.4.1). The strategy of proof is to use the structure theory of étale
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morphisms to reduce to the case where B is a localization A[t~!], which
we handle in §5.2. In this case, compactly supported direct images of holo-
nomic Frobenius modules admit a very simple characterization (Proposition
5.2.2) which makes them easy to construct explicitly. In §5.3, we apply this
characterization prove an analogue of Kashiwara’s theorem for Frobenius
modules: the datum of a holonomic Frobenius module over a quotient ring
R/(t) is equivalent to the datum of a holonomic Frobenius module over R
whose support is contained in the vanishing locus of ¢ (Theorem 5.3.1).

5.1. Definitions

We begin by introducing some terminology.

Definition 5.1.1. Let f : A — B be an étale morphism of F,-algebras. Let
M be a perfect Frobenius module over B and let M be a perfect Frobenius
module over A. We will say that a morphism v : M — f°M exhibits M as a
weak compactly supported direct image of M if, for every perfect Frobenius
module N over A, the composite map

Hom 4)(M, N) = Hompp(f°M, f*N) =% Hompr) (M, fN)

is a bijection.

Let f : A — B be an étale morphism of F,-algebras and let M be a
perfect Frobenius module over B. It follows immediately from the definition
that if there exists a morphism w : M — f®M which exhibits M as a weak
compactly supported direct image of M, then the Frobenius module M (and
the morphism u) are determined up to canonical isomorphism. In general,
such a module need not exist. The main result of this section (Theorem
5.4.1) asserts that every algebraic Frobenius module M over B admits a weak
compactly supported direct image M. Moreover, we will have the following
additional properties:

(a) The module M is also algebraic (as a Frobenius module over A).
(b) For every perfect Frobenius module N over A, the canonical map

is an isomorphism for all integers n, rather than merely for n = 0.
(¢) The Frobenius module M remains a weak compactly supported direct
image of M after any extension of scalars. More precisely, for any
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pushout diagram of commutative rings

the induced map ¢"(u) : ¢°(M) — ¢”°(f°(M)) ~ f°(g°(M)) exhibits

g°(M) as a weak compactly supported direct image of ¢’°(M).

Our proof for the existence of weak compactly supported direct images
will proceed by a somewhat complicated induction on the structure of the
étale morphism f : A — B. In order to carry out the details, it will be
important to strengthen our inductive hypothesis: that is, we need to show
not only that weak compactly supported direct images exist, but also that
they have the properties listed above. For this reason, it will be convenient to
introduce a more complicated version of Definition 5.1.1 which incorporates
properties (a), (b), and (¢) automatically.

Definition 5.1.2. Let f : A — B be an étale morphism of F-algebras.
Suppose we are given algebraic Frobenius modules M € Modi‘glg and M €

Modillg. We will say that a morphism w : M — f°M ezhibits M as a
compactly supported direct image of M if the following condition is satisfied:

(%) For every pushout diagram of commutative rings

A—1L.pB
bl
A/_/>B/

and every object N € Modie,rf, the composite map

EXtZ, [F] (QIQM7 N) — EXt*B,[F] (flog/OM7 f/ON)
~ EXt*B/[F] (ngOM, f/ON)
— EXt*B’[F] (gO]\4'7 floN).

is an isomorphism.

Remark 5.1.3. Let f: A— Bandu: M — f°M Dbe as in Definition 5.1.2.
If f exhibits M as a compactly supported direct image of M, then it also
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exhibits M as a weak compactly supported direct image of M. In fact, the
converse holds as well (assuming that M is algebraic): this follows from the
uniqueness of weak compactly supported direct images, once we have shown
that compactly supported direct images exist (Theorem 5.4.1).

Notation 5.1.4. Let f : A — B be an étale morphism of F-algebras and
let M € Mod‘gg. If there exists an object M € 1\/[0de4lg and a morphism
u: M — f°M which exhibits M as a compactly supported direct image of
M, then we will denote M by fiM. In this case, we will say that fiM exists.

Note that, in this event, the Frobenius module fiM depends functorially
on M.

5.2. Extension by Zero

Our next goal is to prove the existence of compactly supported direct images
in the case of an elementary open immersion

Spec(A[t™1]) < Spec(A)

(Proposition 5.2.4). In this case, Definition 5.1.2 can be formulated more
simply, at least for holonomic Frobenius modules.

Definition 5.2.1. Let A be a commutative F,-algebra containing an ele-
ment ¢ and let M be a holonomic Frobenius module over A[t~1]. An extension
by zero of M is a holonomic Frobenius module M over A such that M[t~!]
is isomorphic to M and (M /tM)Y/P™ ~ 0.

Proposition 5.2.2. Let A be an Fj-algebra containing an element t, and
let f: A— Alt™1] be the canonical map. Suppose we are giwen holonomic
Frobenius modules M € Modljfﬁ,l] and M € Mod'¥®" together with a map

u: M — f°M ~ M[t~1]. The following conditions are equivalent:

(a) The morphism u exhibits M as a compactly supported direct image of
M, in the sense of Definition 5.1.2.

(b) The morphism u exhibits M as an extension by zero of M : that is, u
is an isomorphism and the Frobenius module (M /tM)'/P™ vanishes.

The proof of Proposition 5.2.2 will require an elementary fact from com-
mutative algebra:

Lemma 5.2.3. Let M and N be modules over a commutative ring A, and
let v be an element of Ext’y(M,N) for some n > 0. Suppose that M is
Noetherian. If v is annihilated by some power of an element t € A, then
there exists d > 0 such that the image of v vanishes in Ext’y (t?M, N).
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Proof. Let My C M be the submodule consisting of those elements which
are annihilated by some power of ¢t. Since M is Noetherian, we can choose
an integer k£ > 0 such that M is annihilated by t*. For each d > k, the

d
kernel of the surjection M Y 440 is annihilated by t*, so there exists a
dotted arrow as indicated in the diagram

7
ltd // ltdk
Ve

tIM — M.

It follows that the restriction map Ext (M, N) — Ext’4(t?M, N) factors
through the map t4=% : Ext” (M, N) — Ext" (M, N). It therefore suffices to
choose d large enough that t %y = 0. O

Proof of Proposition 5.2.2. Assume first that (a) is satisfied. Applying con-
dition (*) of Definition 5.1.2 in the case A’ = A[t™!], we deduce that u
is an isomorphism. Applying condition (%) of Definition 5.1.2 in the case
A’ = A/(t), we deduce that (M /tM)/P~ ~ 0.

We now prove the converse. Assume that u is an isomorphism and that
(H/tﬂ)l/ P ~ 0, and suppose we are given a pushout diagram of F,-
algebras

AL ap
b,k
AL

and an object N € Mod"™. To verify condition () of Definition 5.1.2, it
will suffice to show that the canonical map

0 : Eth—l’[F} (9/0H7 N) — EXt*A’[t*IHF] (f/09/0H7 f/ON)

is an isomorphism. Replacing A by A’ and M by ¢’°M, we can reduce to
the case A = A’. Let Q € Modierf denote the image of the unit map N —
f°N ~ N[t~!], so that we have short exact sequences

0K—-N-Q—-0 0-Q—N[t']—K —o.
In order to show that the composite map
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is an isomorphism, it will suffice to show that the groups Extjl[ Fl (M, K) and
Exty (M, K') vanish. This is a special case of the following:

(%) If M € Mod'¥ satisfies (M /tM)/** ~ 0 and N € Mod%™ satisfies
N[t™1] ~ 0, then Ext)py (M, N) vanishes.

Write M = TP~ for some Frobenius module T € Modly in A which is
finitely presented as an A-module. Using our assumption that (M /tM)Y/P~ ~
0, we deduce that ¢7'T" C T for m > 0. By a direct limit argument, we can
assume that 7'~ A ® 4, Tj for some finitely generated subalgebra Ag C A
which contains ¢ and some Ty € Mod%U which is finitely presented as an
Ap-module, and that Tp satisfies @i T C ¢Tp. Using Corollary 3.5.3, we can
replace A by Ay and T by Ty, and thereby reduce to proving (x) in the
special case where A is Noetherian.
Using Remark 4.1.4, we obtain a long exact sequence

Exty (M, N) = Ext}y(T, N) =% Ext (T, N) — Bxt’ji (M, N),
where U is the endomorphism of Ext% (T, N) given by U(y) = go&l oy o Q.
To prove (%), it will suffice to show that the map 1 — U is an isomorphism of
Ext* (T, N) with itself. In fact, we will show that U is locally nilpotent (so
that 1 — U has an inverse given by the formal infinite sum 1+U +U2 +-- ).

Fix an element v € ExtX (T, N); we wish to show that U™(y) ~ 0 for
m > 0. Since A is Noetherian and T is a finitely generated A-module, the
construction S +— Extg (T, S) commutes with filtered colimits. In particular,
there exists a finitely generated A-submodule Ny C N such that v can be
lifted to an element vy € Ext” (T, Ny). Using our assumption that N[t~1] ~
0, we deduce that Ny is annihilated by t¢ for ¢ > 0. It follows that the image
of 4o in Extk (t¢T, Ny) vanishes for ¢ > ¢ (Lemma 5.2.3). We now observe
that for m > 0, the map 7 factors through t“T, so that v o ¢ =0 and
therefore U™ (y) = 0 as desired. O

Proposition 5.2.4. Let A be an Fj,-algebra containing an element t, and
let f: A — A[t™'] be the canonical map. Then every algebraic Frobenius
module M over A[t™'] admits a compactly supported direct image along f.

Proof. Using Theorem 4.2.9, we can reduce to the case where M is holo-
nomic. Write M = MOI/ poo, where My € Modir[t,l] is finitely presented as
an A[t~!]-module. Then we can choose an isomorphism « : Mg ~ M[t™!]
for some finitely presented object My € Mod 4. Then ¢y, determines an A-
module homomorphism p : My — M [til]l/ P Since M is finitely presented
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as an A-module, we can assume that p factors as a composition
R _1 n —_ _
Mo — M”22 B[t 1VP

for some integer n. Multiplying the isomorphism « by a suitable power of ¢,

we can arrange that n > 0. Set M = M(l)/ P Then a induces an isomorphism
M ~ M[t™1] and @57 is locally nilpotent on M /tM, so that « exhibits M
as an extension by zero of M, which is also a compactly supported direct
image of M by virtue of Proposition 5.2.2. OJ

5.3. Kashiwara’s Theorem

Let X be a smooth algebraic variety over the field C of complex numbers,
and let Y C X be a smooth subvariety of X. A theorem of Kashiwara (see
[9, §1.6]) asserts that the category of algebraic D-modules on Y is equivalent
to the category of algebraic D-modules on X which vanish over the open
set X — Y. In this section, we prove the following analogue for (holonomic)
Frobenius modules:

Theorem 5.3.1. Let M be a holonomic Frobenius module over a commu-
tative Fp-algebra A, and let I C A be an ideal. The following conditions are
equivalent:

e The support supp(M) is contained in the vanishing locus Spec(A/I) C
Spec(A).

o The submodule IM C M wvanishes: that is, M has the structure of a
Frobenius module over A/I.

Remark 5.3.2. If the equivalent conditions of Theorem 5.3.1 are satisfied,
then M is also holonomic when regarded as a Frobenius module over A/I.
Conversely, if the ideal [ is finitely generated, then any holonomic Frobenius
module over A/I is a holonomic Frobenius module over A which satisfies
the conditions of Theorem 5.3.1 (see Proposition 4.2.10). In other words,
the category Modf}{’/ll can be identified with the full subcategory of Mod}}f’l
spanned by objects set-theoretically supported on Spec(A/I) C Spec(A).
Beware that this is generally not true if I is not finitely generated (Warning
4.2.11).

We begin by treating the following special case of Theorem 5.3.1 (which
is the only case we will actually need):

Proposition 5.3.3. Let M be a holonomic Frobenius module over a com-
mutative Fp-algebra A. Then M ~ 0 if and only if the support supp(M) is
empty.
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Proof. The “only if” direction is obvious. To prove the converse, let us as-
sume that supp(M) = 0; we wish to prove that M ~ 0. Using Proposition
4.1.3, we can choose a finitely generated subring A’ C A and an equivalence
M ~ (A®a M")Y/P~ for some M’ € Modb!. Set Z = supp(M’) C Spec(A’).
Then Z is constructible (Theorem 4.4.4). Using Remark 4.4.3, we deduce
that the image of the map Spec(A) — Spec(A’) is disjoint from Z. Enlarging
A’ if necessary, we can arrange that Z = (). We may therefore replace A by
A’ and M by M’, and thereby reduce to the case where A is Noetherian.
Proceeding by Noetherian induction, we may assume that for every
nonzero ideal I C A, we have (M/IM)'/P™ ~ 0. We may assume that A # 0
(otherwise, there is nothing to prove). If A is not reduced, then taking I to
be the nilradical of A we deduce that M = MYP~ ~ (M/IM)Y/?*~ ~ 0.
We may therefore assume that A is reduced. Using Proposition 5.2.2, we
deduce that M is the compactly supported direct image of M[z~!] for ev-
ery nonzero element x € A. It will therefore suffice to show that we can
choose a nonzero element x € A such that M[z~!] ~ 0. Since A is reduced
and Noetherian, we can choose a non-zero divisor + € A such that A[t~1]
is an integral domain. Replacing A by A[t~!], we can assume that A is an
integral domain. Write M = MO1 /P for some My € ModY" which is finitely
presented as an A-module. Let K be the fraction field of A. Since the sup-
port supp(M) does not contain the generic point of Spec(A), the Frobenius
module (K ® 4 My)'/P” vanishes. Using the finite generation of My, we con-
clude that the Frobenius endomorphism of K ® 4 Mj is nilpotent. It follows
that there exists a nonzero element x € A for which the Frobenius map
@M [x-1] is nilpotent, so that M[z~1] ~ Mo[z=1]V/P™ ~ 0 as desired. O

Proof of Theorem 5.3.1. Let M be a holonomic Frobenius module over a
commutative F-algebra A and let I C A be an ideal. It follows immediately
from the definitions that if M is annihilated by I, then the support supp(M )
is contained in the vanishing locus of I. Conversely, suppose that supp(M) C
Spec(A/I); we wish to show that M is annihilated by each element z € I.
Note that the inclusion supp(M) C Spec(A/I) guarantees that the support
of M[z~1] is empty, where we regard M [z~!] as a holonomic Frobenius mod-
ule over A[z~!]. Applying Proposition 5.3.3, we conclude that M[z~!] ~ 0.

Choose an isomorphism M ~ M& / pw, where Mj is a Frobenius module
over A which is finitely presented as an A-module. Let N denote the image
of the map My — M, so that N C M is a Frobenius submodule which is
finitely generated over A. The vanishing of M[z~!] guarantees that ¥ N = 0

for some k > 0. Applying ¢, /*, we conclude that 2o NYP" = 0 for all n > 0.
As M = lim NP" it follows that 2" M =0 for all n > 0 (here we regard
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M as a Frobenius module over the perfection A/ P™). For n > 0, this implies
xM = 0, as desired. O

5.4. Existence of Compactly Supported Direct Images

Our goal in this section is to prove the following:

Theorem 5.4.1. Let f : A — B be an étale morphism of Fp,-algebras. Then,
for every object M € Modrﬁ;g, there exists a compactly supported direct image
M e Modz1g (see Notation 5.1.4). Moreover, the functor fi : Mod"gg —
Modi“llg s exact.

Remark 5.4.2. In the situation of Theorem 5.4.1, the right exactness of
the functor f : Mod%lg — Moleg is automatic (since fi is left adjoint to
the functor f° : Modi}lg — Mod%lg, which is exact by virtue of Corollary
3.5.2). Moreover, since the functor f° : Modilg — ModaB}g preserves filtered

colimits, the functor fi preserves compact objects: that is, it carries Mod%?l
into Mod"}! (see Theorem 4.2.9).

The proof of Theorem 5.4.1 will require some preliminaries. We begin
with some elementary remarks, whose proofs follow immediately from our
definitions.

Lemma 5.4.3. Suppose we are given a pushout diagram of F,-algebras

A—f>B

bl

A ——-=p

where f is étale. If M € Modaég and v : M — f°M is a morphism in
Modzlg which exhibits M as a compactly supported direct image of M, then
the induced map g°M — g°f°M ~ f°g"°M ezhibits ¢°M as a compactly
supported direct image of g°M .

In particular, if fiM exists, then f/(g°M) exists (and is canonically iso-
morphic to g'°(fiM)).
Lemma 5.4.4. Let f : A - B and g : B — C be étale morphisms of
F,-algebras. Suppose we are given an objects Mc € Modalg, a morphism
u: Mp — g°Mcg in Modalg, and a morphism v : Mas — f°Mp in Modjlg.
Assume that u exhibits Mp as a compactly supported direct image of Mc.
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Then v exhibits M4 as a compactly supported direct image of Mp if and
only if the composite map

My > f°Mp EAON g°f°Mc

exhibits M 4 as a compactly supported direct image of M¢.

In particular, if @M ezists, then fi(gtM) exists if and only if (go f)1iM
exists (and, in this case, they are canonically isomorphic).
Lemma 5.4.5. Let f : A — B be an étale morphism of F,-algebras and
suppose we are given an exact sequence 0 — M’ = M — M” — 0 in
the abelian category Mod%];g. Suppose that fiM' and fiM exist, and that the
canonical map fi(u) : M’ — fiM is a monomorphism. Then fiM" exists,
and is given by coker(fi(u)).
Lemma 5.4.6. Let f : A — B be a faithfully flat étale morphism of F,,-

algebras and let M € Modgerf. Then M is algebraic if and only if f°M is
algebraic.

Proof. The “only if” direction follows from Corollary 4.2.8. Conversely, sup-
pose that f°M is algebraic. Choose an element x € M. For each n > 0, let
M (n) denote the A-submodule of M generated by the elements {% (2)} k<,
so we have inclusions of A-submodules

{0} = M(0) C M(1) C M(2)C---C M.

Using Corollary 3.4.7, we can identify f°M with B ® 4 M, so that each
B® 4 M (n) can be identified with the B-submodule M’(n) C f®M generated
by {@’]“3®AM(1 ®x) }k<n- Since f®M is algebraic, there exists an integer n such
that M’(n) = M'(n + 1). The faithful flatness of B over A then guarantees
that M(n) = M(n+ 1), so that x satisfies an equation of the form ¢, (x) +
algoﬁ/[_l(a:)—l—--'+anx:0. O
Lemma 5.4.7. Suppose we are given a pushout square of étale morphisms
between F,-algebras

A—f>B
b
A/—/>B/

where the vertical maps are faithfully flat. Let M € Mod;}g. If fl(g°M)
exists, then fiM exists.

Proof. Use faithfully flat descent together with Lemma 5.4.6. O
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Lemma 5.4.8. Let A be an F-algebra containing an elementt, let f : A —

1
Ay

and a morphismw : fiM — N in Modzlg. If f°(u) is a monomorphism, then
u 1§ a monomorphism.

Proof. Set K = ker(u). Then fiM/K is algebraic (Proposition 4.2.4), so
Corollary 3.5.2 implies that the map (K/tK)Y/P™ — ((fM)/t(fiM))/P is
a monomorphism. Invoking Proposition 5.2.2, we deduce that the natural
map fif°K — K is an equivalence. Since f°K ~ ker(f°u) ~ 0, we conclude
that K ~ 0 so that u is a monomorphism as desired. O

A[t™1] be the canonical map, and suppose we are given objects M € Mo

Proof of Theorem 5.4.1. Let us say that an étale ring homomorphism f :
A — B is good if the functor f : Mod%lg — Modi‘lg is well-defined and exact.
Our proof now proceeds in several steps:

(i) Every localization f : A — A[t~!] is good. The existence of f; follows
from Proposition 5.2.4, and the exactness of fi follows from Remark
5.4.2 and Lemma 5.4.8.

(13) Let f: A — B and g : B — C be étale ring homorphisms. If f and g
are good, then (go f) : A — C is good. This follows immediately from
Lemma 5.4.4.

(13i) Let f : A — B be an étale Fp-algebra homomorphism and suppose
we are given elements tg,t; € B which generate the unit ideal. Set
By = Blty'], B1 = Blt;'], and Boy = B[ty ', t;!]. If the induced maps
fo: A— By and f; : A — By are good, then fi exists. To prove this,
choose any object M € Mod™®, and define

Mo = M[ty'] € Mod® M = MI[t'] € Mod}®
Moy = Mty ", 7] € Mod3¥ .

We have a commutative diagram

B—%*. B,

lgl go1 lh

By —— Bn1
which yields a short exact sequence
0 — gouMor = gorMo ® guMy — M — 0

in Modaég. Using our assumptions that fp and f; are good (which
also implies that the induced map fo1 : A — By is good, using (i)
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and (i47)) together with Lemma 5.4.4, we deduce that fi(go11Mo1) and
filgor Mo @ g11 M) exist. By virtue of Lemma 5.4.5, to prove the exis-
tence of fiM, it will suffice to show that fiu is a monomorphism. In
fact, we claim that the composite map

frgonMoq LN filgo Mo & g1 My) — figo Mo

is a monomorphism. Using Lemma 5.4.4 and our assumption that f
is exact, we are reduced to showing that the map hMy — My is a
monomorphism in Modalf , which is a special case of Lemma 5.4.8.
Let f: A — B be as in (4i7). Then f is good. To prove this, we must
show that for every short exact sequence 0 — M’ — M — M" — 0
in Mod%lg, the induced map fiM’' — fiM is a monomorphism. Define
My, My, and My, as above, and define M/, My, M{,, M{, M/, and
M, similarly. We then have a diagram of short exact sequences

0 — fouM}, — fo M} & fuM] HM’ 0
I | k
0 — fouMor — foMo @ fu M hHM 0

Using the exactness of the functors for, f11, and fo11, the snake lemma
yields an exact sequence

0 — ker(y) = fouM{, & foM} & fuMy.

It will therefore suffice to show that p is a monomorphism, which was
established in the proof of (7i7).

Let f : A — B be an étale Fp-algebra homomorphism, and suppose
that the unit ideal of B is generated by elements {t; € B}i<i<y for
which each of the induced maps A — B[t;l] is good. Then f is good.
This follows from (ii¢) and (iv), using induction on n.

Suppose we are given a pushout square of étale maps

A—f>B

Lk

A ——= P,

where the vertical maps are faithfully flat. If f’ is good, then f is good.
This follows from Lemma 5.4.7.
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We now wish to prove that every étale morphism f : A — B is good. For
each point x € Spec(A), let k() denote the residue field of A at = and let
d(z) denote the dimension dimy . (k(2)®4B). Set d(B) = supgegpec(a) ().
We proceed by induction on d(B). If d = 0, then B ~ 0 and there is nothing
to prove. To carry out the inductive step, we note that since f is étale, the
induced map Spec(B) — Spec(A) has open image. The complement of this
image can be written as the vanishing locus of an ideal I = (ay,...,a,) C A.

Then I generates the unit ideal of B. By virtue of (v), to prove that f is

good, it will suffice to show that each of the composite maps A — Ala; 1 TN

Bla; '] is good. Using (i) and (i7), we are reduced to showing that the maps
fi: A[a;l} — B[a;l] are good. Replacing f by f;, we may reduce to the
case where f is faithfully flat. Form a pushout square

A—1 . p

7,

B Be,B.

By virtue of (vi), we can replace f by f’ and thereby reduce to the case where
B splits as a direct product A x B'. We then have d(B’) = d(B) —1 < d(B),
so our inductive hypothesis implies that the map A — B’ is good. From
this, we immediately deduce that f is also good. O

6. The Riemann-Hilbert Functor
Let R be a commutative F,-algebra. In §2, we defined the solution functor
Sol : Modjy — Shve; (Spec(R), F))

and asserted that it becomes an equivalence of categories when restricted
to the category Mod%g C Modlj;f of algebraic Frobenius modules (Theorem
2.4.3). We will prove this by defining a functor RH : Shvg(Spec(R), Fp) —
1\/[0d‘rj‘%lg7 which we will refer to as the Riemann-Hilbert functor, and then
showing that it is an inverse to the solution functor. Our goal in this sec-
tion is to construct the Riemann-Hilbert functor and to establish its basic
properties. Our principal results can be summarized as follows:

(a) When restricted to perfect Frobenius modules, the solution functor
Sol : 1\/Iod11);;rf — Shvgi(Spec(R), Fp) admits a left adjoint (Theorem
6.1.1). We will take this left adjoint as a definition of the Riemann-
Hilbert functor.
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(b) The Riemann-Hilbert functor RH : Shve (Spec(R), Fp,) — Mod%erf de-
pends functorially on R, in the sense that it is compatible with pullback
(Proposition 6.2.2). We also show that it compatible with compactly
supported direct images along étale morphisms (Proposition 6.2.3),
and direct images along morphisms which are finite and of finite pre-
sentation (Theorem 6.5.1).

(¢) The Riemann-Hilbert functor RH : Shvg(Spec(R),F,) — ModpRerf
carries constructible étale sheaves on Spec(R) to holonomic Frobenius
modules over R (Theorem 6.3.1).

(d) The Riemann-Hilbert functor RH : Shvgi(Spec(R),Fp) — Mod%erf is
exact (Proposition 6.4.1).

In §7, we will apply these results to show that RH is an inverse of the
solution functor (once we restrict our attention to algebraic Frobenius mod-
ules), and thereby obtain a proof of Theorem 1.0.2.

6.1. Existence of the Riemann-Hilbert Functor

Our starting point is the following:

Theorem 6.1.1. Let R be a commutative Fy-algebra. Then the solution
functor Sol : Mod%erf — Shve(Spec(R), F,) admits a left adjoint

RH : Shv(Spec(R),F)) — MOd%erf :

Moreover, for every p-torsion étale sheaf # € Shvg(Spec(R),F)), the Frobe-
nius module RH(.F) is algebraic.

Warning 6.1.2. In the statement of Theorem 6.1.1, it is important to re-
striction the solution functor Sol to the category of perfect Frobenius mod-
ules. The defining property of the Riemann-Hilbert functor RH is that we
have bijections

Hompg, (F, Sol(M)) ~ Hompp) (RH(F), M)
for # € Shve(Spec(R),F,) and M a perfect Frobenius module over R. One

does not generally have such a bijection when M is not perfect.

To prove Theorem 6.1.1, it will be convenient to introduce a temporary
bit of terminology. Let R be a commutative Fp-algebra, and suppose we are
given a p-torsion étale sheaf .#. A Riemann-Hilbert associate of F is an
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object of ModpRerf which corepresents the functor

Mod%erf — Set M — Homp, (., Sol(M)).

If % is a perfect Frobenius module over R which admits a Riemann-Hilbert
associate, we will denote that associate by RH(.%); note that it is well-
defined up to unique isomorphism and depends functorially on .#. Theo-
rem 6.1.1 can then be reformulated as the statement that every étale sheaf
F € Shvg (Spec(R),F,) admits an algebraic Riemann-Hilbert associate.
The proof of this assertion is based on three simple observations:

Proposition 6.1.3. Let R be a commutative Fp,-algebra. Then the perfection
RPt s a Riemann-Hilbert associate of the constant sheaf F,.

Proof. For every perfect Frobenius module M over R, we have canonical
bijections

12

Hom ey (RP, M) =~ Hompg|(R, M)
{zx e M :py(z) =2}
Sol(M)(R)

Homp, (Fp, Sol(M)).

1R

12

1

O

Proposition 6.1.4. Let R be a commutative Fy,-algebra, and suppose we are
given some diagram of étale sheaves {.7 o} having a colimit F = lim %, in
the category Shv g (Spec(R), F,). Suppose that each F o admits a Riemann-
Hilbert associate RH(F,). Then % admits a Riemann-Hilbert associate,
given by lignRH(ya) (where the colimit is formed in the category Mod%erf).

Proof. For any perfect Frobenius module M, we have canonical bijections
Hompjp)(lim RH(.F o), M) =~ lim Hompp)(RH(.F o), M)
(e

67

~ l'&nHom&(ﬁa,Sol(M))
~ Homp, (#, Sol(M)).

O

Proposition 6.1.5. Let f : A — B be an étale morphism of commutative
F,-algebras and let .F be a p-torsion étale sheaf on Spec(B). Suppose that
F admits a Riemann-Hilbert associate RH(.%) which is algebraic. Then the
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compactly supported direct image fiRH(%) is a Riemann-Hilbert associate
of fi F € Shvg(Spec(A),Fp).

Proof. Let M be a perfect Frobenius module over A. It follows immediately
from the definitions that the solution sheaf Sol(f°M) € Shve(Spec(B), Fp)
can be identified with the pullback f* Sol(M). We therefore obtain canonical
bijections

12

Hom p) (fiRH(F), M) Homp(p) (RH(.F), f°M)

Homp, (F, Sol(f°M))
Homp (F, f* Sol(M))

p

~ Homp, (fi #,Sol(M)).

12

12

O

Proof of Theorem 6.1.1. Let R be a commutative Fj-algebra and let .# be
a p-torsion étale sheaf on Spec(R); we wish to show that .# admits an
algebraic Riemann-Hilbert associate. For every étale ring homomorphism
j: R — R and element n € #(R’), we can identify n with a map of étale
sheaves u, : jiF, — #. Amalgamating these, we obtain an epimorphism
u: F' — F in the category Shvg(Spec(R),F,), where Z' is a direct
sum of étale sheaves of the form jF,, (where j varies over étale morphisms
R — R’). Repeating this argument for ker(u), we can construct an exact

sequence
v

F'L F L F 0,

where " is also a direct sum of sheaves of the form ;F,. By virtue of
Proposition 6.1.4, it will suffice to show that each of the sheaves jiF, admits
an algebraic Riemann-Hilbert associate. Using Proposition 6.1.5, we are re-
duced to showing that if R’ is an étale R-algebra, then the constant sheaf
F, € Shvg(Spec(R'),Fp) admits an algebraic Riemann-Hilbert associate.
This follows from Proposition 6.1.3. O

6.2. Functoriality

We now study the behavior of the Riemann-Hilbert functor
RH : Shve(Spec(R), Fp) — Mod%erf

as the commutative F,-algebra R varies. We begin with a simple observation:
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Proposition 6.2.1. Let f : A — B be a homomorphism of commutative
F,-algebras. Then the diagram of categories

Mod%erf fa Mod%erf

lSol lSol

Shv z(Spec(B), F,) —> Shv ¢ (Spec(A), F,)

commutes up to canonical isomorphism.

Proof. Let M be a perfect Frobenius module over B, let A’ be an étale
A-algebra, and set B’ = A’ ® 4 B. We then have canonical bijections

(f. Sol(M))(4) =~ Sol(M)(B)

{xre B ®@pM:opg,m(r) =1}
{re A @aM:pag,m(x)=1}
Sol(f. M)(A").

12

12

1

O

Proposition 6.2.2. Let f : A — B be an Fy-algebra homomorphism. Then
the diagram of categories

Shv ¢ (Spec(A), Fyp) L> Shv ¢ (Spec(B), Fp)

o o

Mod%erf ! Mod%erf

commutes up to canonical isomorphism.

Proof. This follows immediately from Proposition 6.2.1 by passing to left
adjoints. 0

In the situation of Proposition 6.2.2, the vertical maps carry étale sheaves
to algebraic Frobenius modules, so we also have a commutative diagram

Shvee(Spec(A), F,) —= Shve:(Spec(B), F,)

o o

Mod? ! Mod3®
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In the case where f : A — B is étale, the horizontal maps in this diagram
admit left adjoints (Theorem 5.4.1). We therefore obtain a natural transfor-
mation fioRH — RHof; in the category of functors from Shve; (Spec(B), F))

1
to Mod’®.

Proposition 6.2.3. Let f : A — B be an étale morphism of F,-algebras.
Then the Beck-Chevalley transformation fi o RH — RHof described above
is an isomorphism. In other words, the diagram of categories

Shv(Spec(A), Fp) <2 Shve(Spec(B), F,)

e o

Modillg Mod%g

commutes up to canonical isomorphism.

Proof. This is a translation of Proposition 6.1.5 (or, more precisely, of its
proof). O

Remark 6.2.4. We can also formulate Proposition 6.2.3 in terms of solution
sheaves: it follows from the commutativity of the diagram

Modgerf Ie MOd%erf

lSol lSol

Shveq (Spec(A), F,) —L > Shva, (Spec(B), F,)

when f: A — B is an étale morphism of Fp-algebras, which in turn follows
immediately from the definitions (and was invoked in the proof of Proposi-
tion 6.1.5).

6.3. Constructible Sheaves

Let R be a commutative ring. Recall (see [15, Tag 05BE]) that a sheaf .7 €
Shvei (Spec(R), F)) is said to be constructible if there is finite stratification

@:XogXlg---an:Spec(R),

where each open stratum X,,, — X,,_1 is a constructible subset of Spec(R)
and admits an étale surjection Uy, — (X, — X;n—1) such that the restric-
tion .Z |y, is isomorphic to a constant sheaf V, for some finite-dimensional
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vector space V over F,,. We let Shv§, (Spec(R),F,) denote the full subcate-
gory of Shv;(Spec(R), F)) spanned by the constructible sheaves. Note that
Shvg, (Spec(R), F,) is closed under the formation of kernels and cokernels in
Shv¢i (Spec(R), F)p); in particular, it is an abelian category.

Theorem 6.1.1 admits the following refinement:

Theorem 6.3.1. Let R be a commutative F-algebra. Then the Riemann-

Hilbert functor RH : Shvg(Spec(R),F),) — Mod%erf carries constructible
étale sheaves to holonomic Frobenius modules over R.

Notation 6.3.2. For every F-algebra R, we let RH® : Shv, (Spec(R),F),) —
Mod¥! denote the restriction of the Riemann-Hilbert functor RH to con-
structible sheaves.

For the proof of Theorem 6.3.1, we will need a few standard facts about
constructible sheaves, which we assert here without proof:

Proposition 6.3.3. Let f : A — B be an étale ring homomorphism. Then
the functor fi : Shvg(Spec(B),F,) — Shve(Spec(A),F,) carries constructi-
ble sheaves to constructible sheaves.

Proof. This is contained in [15, Tag 03S8]. O

Proposition 6.3.4. Let A be a commutative ring and let F €
Shv¢,(Spec(A),F,). Then there exists an étale morphism f : A — B and
an epimorphism fiF, — % in the abelian category Shvs(Spec(A),Fp).

Proof. This follows from [15, Tag 09YT]. O

Proof of Theorem 6.3.1. Let R be a commutative Fj-algebra and let .7 be
a constructible p-torsion étale sheaf on Spec(R). We wish to show that the
Frobenius module RH(.%#) is holonomic. We first apply Proposition 6.3.4 to
choose an epimorphism v : #' — .Z, where .#’ has the form fiF, for some
étale morphism f : A — B. Then .’ is constructible, so ker(u) is also con-
structible. Applying Proposition 6.3.4 again, we can choose an epimorphism
v F" — ker(u), where .F” has the form g/F, for some étale morphism
g: A — C. We then have an exact sequence

F' S F 5 F —0.

The Riemann-Hilbert functor RH is right exact (since it is a left adjoint),
so we obtain an exact sequence of Frobenius modules

RH(#") - RH(Z') — RH(Z) — 0.
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Since the collection of holonomic Frobenius modules over R is closed un-
der the formation of cokernels (Corollary 4.2.2), it will suffice to show that
RH(#") and RH(Z") are holonomic. Using Propositions 6.2.3 and 6.1.3, we
obtain isomorphisms RH(.#') ~ fiBP*"f and RH(.Z#") ~ ¢CP°f. The desired
holonomicity now follows from Remark 5.4.2. O

We close this section by recording (without proof) a few more elemen-
tary facts about constructible sheaves which will be needed in the proof of
Theorem 1.0.2. First, we have the following duals to Propositions 6.3.3 and
6.3.4:

Proposition 6.3.5. Let f : A — B be a ring homomorphism which is finite
and of finite presentation. Then the direct image functor f, : Shvg(Spec(B),
F,) — Shvg(Spec(A),F,) carries constructible sheaves to constructible
sheaves.

Proof. See [7, §1, Lemma 4.11]. O

Proposition 6.3.6. Let A be a commutative ring and let F €
Shv§,(Spec(A),Fy). Then there exists a ring homomorphism f : A — B
which is finite and of finite presentation and a monomorphism F — f.F,
in the category Shv e (Spec(A), Fp). o

Proof. See [7, §1, Proposition 4.12]. O

Proposition 6.3.7. Let R be a commutative ring. Then the inclusion func-
tor Shv§,(Spec(R),F,) — Shvg(Spec(R),F),) extends to an equivalence of
categories Ind(Shvy,(Spec(R), F)p)) =~ Shv(Spec(R), F)p).

Proof. See [15, Tag 03SA]. O
6.4. Exactness of the Riemann-Hilbert Functor

Proposition 6.4.1. Let R be a commutative Fy-algebra. Then the Riemann-
Hilbert functor RH : Shv g (Spec(R),Fp) — l\/IodpRerf is exact.

Proof. Since the Riemann-Hilbert functor RH is defined as the left adjoint to
the solution functor, it is automatically right exact. It will therefore suffice
to show that if u : % — ¢ is a monomorphism of p-torsion étale sheaves
on Spec(R), then the induced map RH(u) : RH(.#) — RH(¥) is also a
monomorphism. Using Proposition 6.3.7, we can reduce to the case where
F and ¥ are constructible, so that the Frobenius modules RH(.%#) and
RH(¥) are holonomic (Theorem 6.3.1). It follows that the kernel of the map
RH(u) is also holonomic (Corollary 4.3.3). By virtue of Proposition 5.3.3,
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to show that RH(u) is a monomorphism, it will suffice to show that the
support supp(ker(RH(u))) is empty. Fix a point = € Spec(R); we will show
that = ¢ supp(ker(RH(u))) C Spec(R). Let k be an algebraic closure of the
residue field of R at the point z and let f : R — k be the canonical map;
we wish to show that f°(ker(RH(u))) vanishes. Since the functor f° is exact
on algebraic Frobenius modules (Corollary 3.5.2) and compatible with the
Riemann-Hilbert functor (Proposition 6.2.2), we have

f%(ker(RH(u))) ~ ker(f*(RH(u))) ~ ker(RH(f*(u))).

We can therefore replace R by x and thereby reduce to the case where R
is an algebraically closed field. In this case, the category Shve;(Spec(R), F))
is equivalent to the category of vector spaces over F,,. It follows that every
exact sequence in the category Shve(Spec(R),F,) is split, so the exactness
of the Riemann-Hilbert functor RH is automatic. O

Corollary 6.4.2. Let R be a commutative Fp,-algebra. Then the solution
functor Sol : 1\/Iod%e]rf — Shv(Spec(R),F,) carries injective objects of the
abelian category ModpRerf to injective objects of the abelian category

Shv ¢ (Spec(R), Fy).

6.5. Comparison of Finite Direct Images

Let f : A — B be a homomorphism of commutative Fj-algebras, so that
Proposition 6.2.2 supplies a commutative diagram of categories

Shve (Spec(A), Fp) . Shv¢ (Spec(B), F))

e o

Modierf f Mod%erf )

Note that the horizontal maps in this diagram admit right adjoints
Fo: Mod®™ — Mod®™  f, : Shvg (Spec(B), Fp) — Shve(Spec(A), Fy).

By general nonsense, we obtain a Beck-Chevalley transformation RHof, —
f« o RH in the category of functors from Shve(Spec(B),F,) to Mody™.
In general, this map need not be an isomorphism: for example, if BPf =
(f«oRH)(F)) is not algebraic when regarded as a Frobenius module over A,
then it cannot belong to the essential image of the Riemann-Hilbert functor
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RH : Shvg (Spec(A), Fp) — Modzerf. However, under some mild finiteness
hypotheses, this phenomenon does not arise:

Theorem 6.5.1. Let f : A — B be a morphism of commutative F,-algebras
which is finite and of finite presentation. Then, for every p-torsion étale
sheaf .# on Spec(B), the canonical map ez : RH(f..#) — fo(RH(F)) is
an isomorphism of Frobenius modules over A. Consequently, the diagram of
categories

Shv ¢ (Spec(A), Fp) P Shv¢(Spec(B), Fp)

o o

perf perf
Mod’, Mod;

commutes (up to canonical isomorphism).

Remark 6.5.2. In §10, we will prove a more general version of Theorem
6.5.1, which applies in the situation of a morphism f : X — Y of F)-schemes
which is proper and of finite presentation (Corollary 10.5.6).

Proof of Theorem 6.5.1. The functors

RH : Shv (Spec(A), Fp) — Mod%™  RH : Shvg(Spec(B), F,)) — Modb™

[« : Shve (Spec(B), Fp) — Shvg (Spec(A), Fp) fe : Mod2™ — ModB™

all commute with filtered colimits. Consequently, to show that the map ez
is an equivalence for every object .# € Shvg(Spec(B),F,), it will suffice to
show that €z is an equivalence when the sheaf .# is constructible (Propo-
sition 6.3.7). In this case, the direct image f..# € Shvg (Spec(A4),F)) is
constructible (Proposition 6.3.5). Applying Theorem 6.3.1, we deduce that
RH(#) and RH(f..#) are holonomic. It follows from Proposition 4.2.10
that f. RH(%) is also holonomic. Applying Corollary 4.3.3, we deduce that
ker(e#) and coker(es) are holonomic. By virtue of Propositions 5.3.3 and
4.2.4, to show that €z is an isomorphism, it will suffice to show that ¢g°(e#)
is an isomorphism for every map g : A — x where k is an algebraically
closed field. Using Proposition 6.2.2 (and the fact that pushforward of étale
sheaves along finite morphisms commutes with base change), we can replace
A by k and thereby reduce to the case where A is an algebraically closed
field. In this case, B is a finite-dimensional algebra over x. Writing B as a
product of local rings, we can assume that B is local with residue field k.
Then the constructible sheaf .# € Shv§ (Spec(B),F)) has the form V for
some finite-dimensional vector space V' over F,,. Choosing a basis for V', we
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can reduce to the case where V' = F,. Using Proposition 6.1.3, we see that
e can be identified with the canonical map AYP™ — BY/P™ which is an
isomorphism since the radical of B is nilpotent. O

7. The Riemann-Hilbert Correspondence

Let R be a commutative Fj-algebra. Our goal in this section is to prove
Theorem 1.0.2 by showing that the Riemann-Hilbert functor

RH : Shvg (Spec(R), Fp) — Mod®

is an equivalence of categories. Let us outline the strategy we will use. Our
first objective (which is achieved in §7.2) is to show that the Riemann-
Hilbert functor is fully faithful: that is, that the unit map .# — Sol(RH(.%#))
is an isomorphism for any p-torsion étale sheaf .# on Spec(R) (see Propo-
sition 7.2.1). One obstacle to proving this is that the solution functor Sol :
Mod%erf — Shve (Spec(R), F)p) is not exact. However, we show in §7.1 that
it is almost exact: more precisely, it has only one derived functor, which can
be explicitly described (Proposition 7.1.1).

The rest of this section is devoted to showing that every algebraic Frobe-
nius module M over R belongs to the essential image of the Riemann-Hilbert
functor. To prove this, we may assume without loss of generality that M is
holonomic. In this case, we prove something stronger: the Frobenius module
M can be realized as RH(.% ), where .7 is a constructible p-torsion étale sheaf
on Spec(R) (Theorem 7.4.1). In the case where R is a field, this assertion is
classical; we give a proof in §7.3 for the reader’s convenience (Proposition
7.3.1). The general case is treated in §7.4, using a dévissage which reduces
to the case where R is a field.

7.1. Derived Solution Functors
Let R be a commutative Fj-algebra. The solution functor
Sol : 1\/[0df;zerf — Shvg; (Spec(R), F))

of Construction 2.3.1 is left exact (Remark 2.3.4), but is usually not exact.
Since the category Mod]}){erf has enough injective objects (Remark 3.2.6),
we can consider its right derived functors. For each n > 0, we let Sol” :
1\/[0d1;—€erf — Shvgi (Spec(R), Fp) denote the nth right derived functor of Sol.
These derived functors admit a simple explicit description:
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Proposition 7.1.1. Let R be a commutative Fp-algebra and let M be a
perfect Frobenius module over R. Then we have a canonical short exact se-
quence

0 — Sol(M) — M 2722, 3T - Sol' (M) — 0
and the sheaves Sol™(M) vanish for n > 2.

Here M denotes the quasi-coherent sheaf associated to the R-module M
(see Example 2.2.5). We will deduce Proposition 7.1.1 from the following:

Lemma 7.1.2. Let R be a commutative Fp-algebra. If M is an injective

‘ ~ id—@y ‘
object of Mod%erf, then the sequence 0 — Sol(M) — M ETEMO M = 0 s
ezact in the category of abelian presheaves on the category CAlgél.

Proof. Choose an étale morphism f : R — A. We then have a diagram of
exact sequences

Sol(M)(A) — > Ext{ (A, A @ M)

M —— Exty 1 (A[F], A®g M)

id—¢

M —=— ExtYy 1 (A[F], A®r M)

To complete the proof, it will suffice to show that the group Exth[ Fl (A, A®p

M) ~ Exth[F](Al/poo,A ®pr M) vanishes. Using Theorem 5.4.1, we obtain
an isomorphism

EXtL[F] (Al/poo y A ®R M) ~ EXt}%[F] (f[Al/poc 5 M),

where the right hand side vanishes by virtue of our assumption that M is
injective. U
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Proof of Proposition 7.1.1. Let M be a perfect Frobenius module over a
commutative Fj-algebra R, and choose an injective resolution 0 — M —

Q" — Q' — --- in the abelian category ModpRerf. Using Lemma, 7.1.2, we
obtain a short exact sequence of cochain complexes

0= Sol(Q*) — Q* =% §* 0.

Since the construction N N is exact, the chain complex @* is an acyclic
resolution of M. The associated long exact sequence now supplies the desired
isomorphisms. O
Corollary 7.1.3. Let R be a commutative Fp-algebra. Then the functor
Sol™ : Mod%erf — Shv(Spec(R),Fp) commutes with filtered colimits for
each n > 0.

Corollary 7.1.4. Let R be a commutative Fp-algebra, let & be a p-torsion
étale sheaf on Spec(R), and let M be a perfect Frobenius module over R.
Then we have canonical short exact sequences

0— Extg (F,S0l(M)) = Extlhm (RH(F), M) — Extg ' (F, Sol' (M)) = 0.

Proof. Since the solution functor Sol : Mod%erf — Shve(Spec(R), F,) car-
ries injective objects of Mod%erf to injective objects of Shvgi(Spec(R),Fp)
(Corollary 6.4.2), we have a Grothendieck spectral sequence

Exty, (7, Sol’ (M) = Extyl, (RH(F), M).

The existence of the desired short exact sequences now follows from the
vanishing of the groups Sol’(M) for ¢ > 2 (Proposition 7.1.1). O

7.2. Full Faithfulness of the Riemann-Hilbert Functor

We are now ready to prove a weak version of Theorem 1.0.2.

Proposition 7.2.1. Let R be a commutative Fp-algebra and let F be a p-
torsion étale sheaf on Spec(R). Then the unit map vz : % — Sol(RH(.%))
is an isomorphism and the sheaf Sol*(RH(.Z)) vanishes.

We first treat a special case of Proposition 7.2.1:

Lemma 7.2.2. Let R be a commutative Fp-algebra. Then the unit map w :
F, — Sol(RH(F})) is an isomorphism and the sheaf Sol'(RH(F,)) vanishes.
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Proof. Without loss of generality, we may assume that R is perfect. Using
Propositions 6.1.3 and 7.1.1, we see that Lemma 7.2.2 is equivalent to the
exactness of the Artin-Schreier sequence

O—>&—>§idl>§—>0

in the category Shvg(Spec(R),F)). O

Proof of Proposition 7.2.1. Using Corollary 7.1.3 and Proposition 6.3.7, we
can reduce to the case where the sheaf .# is constructible. Using Proposition
6.3.6, we can choose an exact sequence of constructible sheaves

0> F -9 - — 0,

where ¥ = f.F, for some F,-algebra homomorphism f : R — A which
is finite and of finite presentation. Using Proposition 6.4.1 and Proposition
7.1.1, we obtain a commutative diagram

0 0

(%4

F —Z>Sol(RH(.%))
@ 7 > Sol(RH(¥))
A %> Sol(RH(.2))

0

0 —— Sol}(RH(.%))

Sol'(RH(%))

whose columns are exact. It follows from Lemma 7.2.2, Theorem 6.5.1, and
Proposition 6.2.1 that ug is an isomorphism and Sol' (RH(%)) vanishes. In-
specting the diagram, we deduce that w4 is a monomorphism. Applying the
same argument to S, we see that u_ is also monomorphism, so a diagram
chase shows that u g is an epimorphism. Applying the same argument to 7,
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we conclude that u g is also an epimorphism. The commutativity of the di-
agram shows that é ou , vanishes, so that § = 0. Since § is an epimorphism,
we conclude that Sol'(RH(.%)) ~ 0. O

It follows from Proposition 7.2.1 that the Riemann-Hilbert functor is
fully faithful, even at the “derived” level:

Corollary 7.2.3. Let R be a commutative Fp-algebra. Then the Riemann-
Hilbert functor RH : Shvg(Spec(R),F)) — Mod%erf s fully faithful. More-
over, for every pair of objects F,9 € Shvg(Spec(R),Fy), the induced map
Exty (F,9) = Extyp(RH(F), RH(Y)) is an isomorphism.

Proof. Combine Proposition 7.2.1 with Corollary 7.1.4. OJ
7.3. The Case of a Field

It follows from Corollary 7.2.3 that, for any commutative F-algebra R, the
functor

RH : Shv§, (Spec(R), Fp) — Mod!

of Notation 6.3.2 is fully faithful. We now show that it is an equivalence
in the special case where R is a field, which is essentially a restatement of
Theorem 1.0.1:

Proposition 7.3.1. [10, Proposition 4.1.1] Let k be a field of characteristic
p. Then the functor RH® : Shv¢,(Spec(k),F,) — Mod! is an equivalence of
categories.

We begin by treating the case where « is algebraically closed (compare
[5, §III, Lemma 3.3]):

Lemma 7.3.2. Let k be an algebraically closed field of characteristic p.
Then the functor RH® : ShvS,(Spec(x), F,) — Mod® is an equivalence of
categories.

Proof. Using Corollary 7.2.3 and Proposition 6.4.1, we see that RH® is a fully
faithful embedding whose essential image C C Mod™! is an abelian subcat-
egory which is closed under extensions. We wish to show that C contains
every object M € ModEOI. Applying Proposition 4.3.1, we see that M is a
Noetherian object of the abelian category Modzlg. Consequently, there ex-
ists a subobject M’ C M (in the abelian category Mod®#) which is maximal
among those subobjects which belong to C. It follows from the maximality
of M’ (and the stability of C under extensions) that the quotient M /M’
does not contain any nonzero subobjects which belong to C. Replacing M
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by M/M’', we can reduce to the case where M does not have any nonzero
subobjects which belong to C.

Suppose that M is nonzero. Choose a nonzero element x € M. Since M
is algebraic, the element x satisfies an equation

o (z) + /\1<p§(4_1(x) + -+ Az =0

for some coefficients A1, Ao, ..., A, € k. We may assume that x has been cho-
sen so that n is as small as possible; this guarantees that the set {x, o (),
..,(pﬁ[l(x)} is linearly independent over k, and therefore A\, # 0. Since
x # 0, we must have n > 0.
Note that

n—2 n-—2

F)y =" + X T A

is a separable polynomial of degree p™ > 1, and therefore has p™ distinct
roots in the field x. Consequently, there exists a nonzero element a € x such
that f(a) = 0. Let

2

y = az+ (a” +ar)pa(z) + -+ (@ +ap"_2)\713"7 + o ad—1) @l ).

Since the elements {¢%,(x)}o<i<n are linearly independent and a # 0, y is
a nonzero element of M. An explicit calculation gives

y—ouly) = az+ Y aghy(a)+ (@h — F(@)gh (@)
0<i<n
= a4+ Meum(@) + - + Al (7))
= 0.

It follows that y generates a nonzero Frobenius submodule of M which is
isomorphic to x ~ RH(F,,), contradicting our assumption that A does not
contain any nonzero subobjects which belong to C. O

Proof of Proposition 7.3.1. Let k be an arbitrary field of characteristic p. As
in the proof of Lemma 7.3.2, we see that the functor RH® : Shv§, (Spec(k),
F, — ModgOl is a fully faithful embedding whose essential image C C
ModgOl is an abelian category which is closed under extensions. We wish
to show that C contains every object M € Modg‘)l. Let ¥ be an algebraic
closure of k. Lemma 7.3.2 shows that (§ @, M)'/?~ € Mod2 belongs to
the essential image of the functor RH® : Shvé — Modl°!. Using a direct
limit argument, we see that there exists a finite algebraic extension ' of x
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such that M’ = (k' ®, M)'/?~ belongs to the essential image of the functor
RH® : Shv¢, — Mod2!. By restriction of scalars, we can regard M’ as an
object of Mod};Ol (Proposition 4.2.10), and the resulting object belongs to
the subcategory C (Theorem 6.5.1). We have an evident monomorphism
M — M’ in the abelian category Mod};‘)l. Applying the same argument to
the quotient M /M’, we can choose a monomorphism M /M’ < M" for some
M" € C. It follows that M can be identified with the kernel of the composite
map M’ — M/M' — M" and therefore belongs to C (since C is an abelian
subcategory of Mod™!). O

7.4. Proof of the Main Theorem

We now generalize Proposition 7.3.1 to the case of an arbitrary F-algebra:

Theorem 7.4.1. Let R be a commutative F-algebra. Then the Riemann-
Hilbert functor RHC : Shv,(Spec(R),F,,) — Mod¥! (see Notation 6.3.2) is
an equivalence of categories.

Before giving the proof of Theorem 7.4.1, let us collect some of its conse-
quences. First, we note that it immediately implies the results of this paper:

Proof of Theorem 1.0.2 from Theorem 7.4.1. Let R be an F-algebra. It fol-
lows from Theorem 7.4.1 that the functor RH® = RH [ghye, (spec(r),F,) 1S @
fully faithful embedding, those essential image consists of compact objects of
1\/[od§’%erf (see Proposition 4.1.5). Moreover, the functor RH preserves filtered
colimits (by virtue of the fact that it is left adjoint to the solution functor).
Using Proposition 6.3.7, we deduce that RH is a fully faithful embedding
whose essential image consists of those perfect Frobenius modules which can
be realized as filtered colimits of holonomic Frobenius modules. By virtue
of Theorem 4.2.9, this essential image is exactly 1\/Iodé;%g . O

Proof of Theorem 2.4.3 from Theorem 7.4.1. Let R be an F-algebra. Then
Sol : Mod?{lg — Shve (Spec(R), F)) is right adjoint to the Riemann-Hilbert
functor RH : Shv¢(Spec(R),Fp) — Mod%lg. Since the latter is an equiva-
lence of categories, the former must also be an equivalence of categories. [

Corollary 7.4.2. Let f : A — B be a homomorphism of F,-algebras and
let M be an algebraic A-module. Then the comparison map f*(Sol(M)) —
Sol(f°M) is an isomorphism in Shvg(Spec(B),Fp).

Proof. Combine Theorem 2.4.3 with Proposition 6.2.2. O
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Corollary 7.4.3. Let A — B be a homomorphism of commutative Fp-
algebras which is étale and faithfully flat, and let M be a perfect Frobenius
module over A. If f(M) = B®4 M is a holonomic Frobenius module over
B, then M is a holonomic Frobenius module over A.

Proof. Tt follows from Lemma 5.4.6 that M is algebraic. Consequently, to
show that M is holonomic, it will suffice (by virtue of Theorems 1.0.2 and
7.4.1) to show that Sol(M) is a constructible sheaf. This follows from Remark
6.2.4, since constructibility of étale sheaves can be tested locally with respect
to the étale topology. O

Corollary 7.4.4. Let R be a commutative Fy-algebra and let M be an
algebraic Frobenius module over R. Then Sol'(M) ~ 0 fori > 0.

Proof. By virtue of Theorem 1.0.2 we can write M = RH(.%#) for some .# €
Shvei (Spec(R), Fp). In this case, the desired result follows from Proposition
7.2.1. O

Proof of Theorem 7.4.1. Let R be a commutative F,-algebra. As in the
proof of Lemma 7.3.2, we see that the functor RH® is a fully faithful embed-
ding whose essential image C C Modlj}%01 is an abelian subcategory which
is closed under extensions. We wish to show that C contains every ob-
ject M € Mod}ﬁ’l. Using a direct limit argument, we can choose an F-
algebra homomorphism ¢ : Ry — R and an equivalence M =~ (°M; for some
My € Mod}ﬁ;’l, where Ry is finitely generated over F,,. By virtue of Proposi-
tion 6.2.2, it will suffice to show that M, belongs to the essential image of
the functor RH® : Shv, — Mod}ﬁ(’}. We may therefore replace R by Ry (and
M by Mp) and thereby reduce to the case where R is Noetherian.

Applying Proposition 4.3.1, we see that M is a Noetherian object of the
abelian category Mod%g. Consequently, there exists a subobject M/ C M
(in the abelian category Mod?%lg) which is maximal among those subobjects
which belong to C. It follows from the maximality of M’ (and the stability of
C under extensions) that the quotient M/M’ does not contain any nonzero
subobjects which belong to C. Replacing M by M /M’ we can reduce to the
case where M does not have any nonzero subobjects which belong to C.

Let K C Spec(R) be the closure of the support supp(M ). Then K is the
vanishing locus of a radical ideal I C Spec(R). Using Theorem 5.3.1, we see
that M can be regarded as a holonomic Frobenius module over the quotient
ring R/I. Using Theorem 6.5.1, we can replace A by A/I and thereby reduce
to the case where R is reduced and K = Spec(R).

If R ~ 0, then M =~ 0 and there is nothing to prove. Otherwise,
R contains a minimal prime ideal p. Since R is reduced, the localization
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R, is a field. Applying Proposition 7.3.1, we deduce that M, belongs to
the essential image of the functor RH® : Shvpp — Modlll?‘;l. It follows by
a direct limit argument that there exists some element ¢t € R — p for
which the localization M[t™!] belongs to the essential image of the functor
RH® : Shv%[t,l] — Mod}gﬁ,l]. Let f : R — R[t™!] be the localization map,
and set M’ = f,M[t~!]; using Proposition 6.2.3, we deduce that M’ belongs
to the essential image of the Riemann-Hilbert functor RH® : Shv$, — Mod !,
Note that Lemma 5.4.8 guarantees that the counit map M’ = fif*M — M
is a monomorphism, so we must have M’ ~ 0. It follows that the localization
M[t~!] vanishes, so that the prime ideal p cannot belong to the support of
M. Using the constructibility of supp(M) (Theorem 4.4.4), we deduce that
there exists an open neighborhood of p which does not intersection supp(M),
contradicting the equality K = Spec(R). O

8. Tensor Products

Let A be a commutative ring and let Shv; (Spec(A), F,) denote the category
of p-torsion étale sheaves on Spec(A). This category is equipped with a tensor
product functor

®r, : Shvgi(Spec(A), Fp,) x Shvg(Spec(A), F,) — Shvg (Spec(A), Fp)

which carries a pair of étale sheaves (%,¥) to the sheafification of the
presheaf

(B € CAlgY) — Z(B) ®r, 9(B).

In the case where A is an F-algebra, Theorem 2.4.3 supplies an equivalence
of categories

Sol : Mod®® — Shvg,(Spec(A), F,)

Our goal this section is to promote the solution functor Sol to an equivalence
of symmetric monoidal categories: that is, to show that it is compatible with
tensor products.

We begin in §8.1 by studying an analogous tensor product operation on
the category Mod!y of Frobenius modules over A. In fact, there are two such
operations (which are closely related):

e If M and N are Frobenius modules over A, then the tensor product
M ®4 N inherits the structure of a Frobenius module over A (Con-
struction 8.1.1).



142 Bhargav Bhatt and Jacob Lurie

o If M and N are perfect Frobenius modules over A, then they can
also be regarded as modules of the perfection AYP™; in this case,
the tensor product M ® 410 N inherits the structure of a perfect
Frobenius module over A (Remark 8.1.5).

Like the usual tensor product on the category of A-modules, the tensor
product on Frobenius modules is right exact but generally not left exact.
One can partially remedy this failure of exactness by studying left derived
functors of the tensor product: in §8.2, we show that these agree with the
usual Tor-functors of commutative algebra (Proposition 8.2.1). The central
result of this section asserts that if we restrict our attention to algebraic
Frobenius modules, then these Tor-groups automatically vanish (when com-
puted relative to the perfection AY/P™: see Theorem 8.3.1). We prove this
statement in §8.3, and apply it in §8.4 to show that the Riemann-Hilbert
correspondence is compatible with tensor products (Theorem 8.4.1).

8.1. Tensor Products of Frobenius Modules

We begin with some general remarks.

Construction 8.1.1. Let A be a commutative F)-algebra. If M and N are
Frobenius modules over A, then we regard the tensor product M ® 4 N as a
Frobenius module over A, with Frobenius map

¢M®AN:M®AN—>M®AN

given by the formula pys N (@ y) = par(x) ® pn(y). Note that the com-
mutativity and associativity isomorphisms

M®sgN~N®sa M (M@AN)®a P~M®a(N®aP)

are isomorphisms of Frobenius modules, and therefore endow Modlj‘r with
the structure of a symmetric monoidal category.

Example 8.1.2 (Tensor Products of Free Modules). Let A be a commuta-
tive Fp-algebra and let M and N be Frobenius modules over A which are
freely generated (as left A[F]-modules) by elements z € M and y € N. Then
the tensor product M ® 4 N is freely generated by the elements F"'z ® y and
x ® F"y (which coincide when n = 0).

Remark 8.1.3 (Compatibility with Extension of Scalars). Let f: A — B
be a homomorphism of commutative F,-algebras, and let f5, : Modﬂr —
Mod! be the functor of extension of scalars along f (given by M + B M).
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Then ff, is a symmetric monoidal functor: in particular, we have canonical
isomorphisms fi.(M ®a N) ~ (fizM) @B (fiN).

Remark 8.1.4. Let A be an F-algebra. If M and N are Frobenius modules
over A, then we have a canonical isomorphism

(M @4 N)YP™ 0 MYPT @ 410 NPT

In particular, if A, M, and N are perfect, then the tensor product M ® 4 N
is also perfect.

Remark 8.1.5. Let A be a perfect F,-algebra. It follows from Remark 8.1.4
that the full subcategory MOdierf C Mod} is closed under tensor products,
and therefore inherits the structure of a symmetric monoidal category (with
tensor product ®4).

More generally, if A is an arbitrary F,-algebra, then the restriction-
of-scalars functor 6 : Modief/ioo — Modgerf is an equivalence of categories
(Proposition 3.4.3). It follows that there is an essentially unique symmet-
ric monoidal structure on the category Modierf for which the functor 6
is symmetric monoidal. We will denote the underlying tensor product by
(M,N) — M® g1/ N (note that if M and N are perfect Frobenius modules
over A, then they can be regarded as modules over AP~ in an essentially
unique way).

Warning 8.1.6. Let A be a commutative F,-algebra. Then the inclusion
functor Mod%erf < Mod!} is usually not a symmetric monoidal functor,
if we regard Modir as equipped with the symmetric monoidal structure of
Construction 8.1.1 (given by tensor product over A) and Modgerf with the
symmetric monoidal structure of Remark 8.1.5 (given by tensor product
over A/ P™). However, it has a symmetric monoidal left adjoint, given by
the perfection construction M s M1/P~ (note that Remark 8.1.4 supplies
an isomorphism (M @4 N)/P~ o~ M @ 410~ N in the case where M and N
are perfect).

Remark 8.1.7 (Compatibility with Extension of Scalars). Let f: A — B
be a homomorphism of commutative F,-algebras, and let f° : Modierf —
Mod%erf be the functor of Proposition 3.3.2. Then f° is symmetric monoidal
with respect to the tensor products described in Remark 8.1.5: in particular,
if M and N are perfect Frobenius modules over A, then we have a canonical
isomorphism f®(M ® gi/p= N) =~ (f°M) @pgiwe~ (f°N). This follows from
Remark 8.1.3, applied to the map f1/P~ : A1/P~ — B1/p™,
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8.2. Derived Tensor Products

Let A be an F,-algebra and let M be a Frobenius module over A. Then
the construction N — M ®4 N determines a right exact functor from
the abelian category Modg’r to itself. Since the abelian category Modg’r has
enough projective objects (it is equivalent to the category of left modules
over the noncommutative ring A[F| of Notation 2.1.5), the construction
N — M ®4 N admits left derived functors, which we will temporarily de-
note by N — T, (M, N). More concretely, we define T, (M, N) to be the kth
homology group of the chain complex

---—>M®AP2—>M®AP1—>M®AP0—>O,

where -+ - P, - P, - Py - N — 0 is a projective resolution of N in
the category Modgr (it follows from elementary homological algebra that the
Frobenius modules T, (M, N) are independent of the choice of resolution, up
to canonical isomorphism).

Proposition 8.2.1. Let A be an Fy-algebra. For every pair of Frobenius
modules M and N over A, we have canonical A-module isomorphisms
Tord(M,N) = T, (M, N).

Proof. Since A[F] is free as a left A-module, every projective left A[F]-
module is also projective when viewed as a left A-module. Consequently,
if P, is a resolution of N by projective left A[F]-modules, then it is also
a resolution of N by projective A-modules, so the homology groups of the
chain complex M ®4 P, can be identified with Tord(M, N). O

We can formulate Proposition 8.2.1 more informally as follows: if M and
N are Frobenius modules over A, then the Tor-groups TorZ (M, N) inherit
the structure of Frobenius modules over A.

Remark 8.2.2. Our description of the Frobenius structure on the Tor-
groups Torf(M ,N) is a priori asymmetric in M and N, since it depends on
taking the left derived functors of the construction M ®4 . However, one
can give a more symmetric description as follows. Let C denote the category
whose objects are triples (A, M, N), where A is an associative ring, M is
a right module over A, and N is a left module over A. For each integer
k, the construction (A, M, N) +~ Torji(M, N) can be regarded as a functor
from C to the category of abelian groups. In the special case where A is
a commutative F,-algebra and M, N € Modﬂr, we can regard the triple
(pa,onm,¢N) as a morphism from (A, M, N) to itself in the category C, and
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therefore induces a map of abelian groups ¢ : Tori (M, N) — Tori (M, N).
It is easy to check that ¢ corresponds to the Frobenius map on Ty (M, N)
under the isomorphism of Proposition 8.2.1.

Proposition 8.2.3. Let A be a perfect Fp-algebra. If M and N are perfect
Frobenius modules over A, then the Tor-groups Torf(M, N) are also perfect
Frobenius modules over A.

Proof. This follows immediately from the description of the Frobenius struc-
ture on TorZ (M, N) given in Remark 8.2.2. Alternatively, we can show that
each Torf (M, N) is perfect using induction on k. When k = 0, the desired
result follows from Remark 8.1.4. For & > 0, we can choose a short exact
sequence 0 — N’ — P — N — 0, where P is a free module over AP~ [F+1]
(see Example 3.2.5). Then N’ is also a perfect Frobenius module over A.
Moreover, since A is perfect, the ring A/P~ [F*1] is free as a left A-module,
so the groups TorZ (M, P) vanish for * > 0. We therefore have a short exact
sequence

0 — Tori (M, N) — Tory (M, N') — Tory (M, P)

which exhibits Torj?(M , ') as the kernel of a map between perfect Frobenius
modules, so that Tor,‘;‘(M , N) is itself perfect. O

Variant 8.2.4. Let A be an arbitrary F,-algebra, and let M and N be per-
fect Frobenius modules over A. Then we can regard M and N as Frobenius
modules over A/~ in an essentially unique way (Proposition 3.4.3). Using
Proposition 8.2.3, we can regard the Tor-groups Torf”poc (M, N) as perfect
Frobenius modules over A/P™ and therefore also (by restriction of scalars)

as perfect Frobenius modules over A.

Proposition 8.2.5. Let A be an F,-algebra and let M and N be Frobenius

modules over A. Then the canonical map Tor (M, N) — TorA""™ (M/P™
Nl/pm) induces an isomorphism of Frobenius modules

px : Tord (M, N)/P~ ~ Torfl/pw (MY/P™ NPT,

Proof. Let us regard M as fixed. We will show that for every Frobenius
module N and every nonnegative integer k, the map

pi « Torp (M, N)Y/P™ — Torj?l/poc (MY/P= NP

is an isomorphism. The proof proceeds by induction on k. When & = 0,
the desired result is the content of Remark 8.1.4. Assume that k£ > 0, and
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choose a short exact sequence of Frobenius modules 0 - N' — P — N — 0
where P is a free left module over A[F]. Then P'/?~ is a free left mod-
ule over AYPT[F*!] and is therefore also free as an A/~ -module. It fol-
lows that the groups Tori (M, P) and Torj?l/poc (MY/P~= pl/P™) both van-
ish. Consequently, the map p; fits into a commutative diagram of exact
sequences

Tor{ (M, N)/»™ — L5 s Tord™™ (MY/P™  N1/P™)

Torl (M, N')/»~ 2 g™ (AH/e™ | N71/p™)

Tor{ | (M, P)V/P™ s Tor' 7™ (M2~ p1/p™),

The maps p’ and p” are isomorphisms by our inductive hypothesis, so that
pr is an isomorphism as well. O

Remark 8.2.6 (Compatibility with Extension of Scalars). Let f: A — B
be a homomorphism of F-algebras. Then the extension of scalars functor

fi s Mod!F — Mod%r

is right exact, having left derived functors N — TorZ(B, N). Let M be a
Frobenius module over B. Then we can regard the functors {Torﬁ(M ,®) k>0
the left derived functor of the construction N — M ®p (fiN). Since the
functor ff, : 1\/Iod1F4\’r — Mod};;r carries projective objects to projective objects,
we have a Grothendieck spectral sequence (in the abelian category Mod'y)

Tor? (M, Tor (B, N)) = Torl, ,(M, N).

If M and N are perfect, then we can apply the same reasoning to the induced
map AP~ — BYP™ to obtain a Grothendieck spectral sequence

Al/p™

TorsBl/poo (M, Torf‘l/px (BYP* N)) = Toryy;, (M,N).
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8.3. Tensor Products of Holonomic Modules

Our next goal is to prove the following variant of Theorem 3.5.1:

Theorem 8.3.1. Let A be an Fp-algebra and let M and N be algebraic
Frobenius modules over A. Then:

(1) The tensor product M & 410~ N is algebraic.
(2) The Tor-groups TorX"™" (M, N) vanish for x > 0.
(3) If M and N are holonomic, then M ® 410 N is holonomic.

The proof of Theorem 8.3.1 will require some preliminaries.

Lemma 8.3.2. Let A be a Noetherian F,-algebra, and let M and N be
holonomic Frobenius modules over A. Then:

(1) The Tor-groups Torj?l/poo (M, N) are also holonomic Frobenius modules
over A.

(2) Let f: A— B be any homomorphism of commutative rings. Then the
canonical map

£ TorA""™ (M, N) — TorB""™ (f°M, f°N)

18 an isomorphism.

Proof. Since M and N are holonomic, we can write M = M&/pm and N =
Né/ poo, where My, Ny € Modi’r are finitely generated as A-modules. The
assumption that A is Noetherian guarantees that the Tor-groups Tor,?(Mg,
Np) is finitely generated as an A-module. Using the isomorphisms
Torj;‘l/poc (Mg/poo,N&/pw) ~ Tor{}(My, No)*/P~ of Proposition 8.2.5, we con-
clude that each Tor,fl/poo (M, N) is holonomic. This proves (1).

We now prove (2). Let f : A — B be a homomorphism of commuta-
tive rings. Let P, and Q). be resolutions of M and N by projective objects
of Modierf. Then P, and Q, are also resolutions of M and N by projec-
tive AP~ _modules. It follows that the homology groups of the complexes
f°Py and f°Q, can be identified with the groups Torfl/poo (BY/?™ M) and
Tor""™ (BY/P™ N'), which vanish for * > 0 by virtue of Theorem 3.5.1. In
other words, we can regard f°P, and f°Q. as projective resolutions of f*M
and f°N, respectively. It follows that Tor? v (f°M, f°N) can be identified
with the homology of the tensor product complex

(fop*) ®Bl/p°° (fOQ*) = Bl/pw ®A1/P°° (P* ®Al/p"° Q*)



148 Bhargav Bhatt and Jacob Lurie

We therefore have a convergent spectral sequence
EZ, = Torfl/poc (Bl/poc,Torfl/poo (M,N)) = TorSB;;poo (f°M, f°N).

To prove assertion (2), it will suffice to show that the groups EZ, vanish for
s > 0, which follows from assertion (1) and Theorem 3.5.1. O

Proof of Theorem 8.3.1. Let M and N be algebraic Frobenius modules over
an Fp-algebra A; we wish to prove that the tensor product M & 4i/p> N is
algebraic and that the Tor-groups Torfl/poc (M, N) vanish for * > 0. Using
Theorem 4.2.9, we can write M as a filtered colimit of holonomic Frobenius
modules and thereby reduce to the case where M is holonomic. Similarly, we
can assume that N is holonomic. Applying Proposition 4.1.3, we can assume
that M = °M’ and N = (°N’, where ¢ : A’ < A is the inclusion of a finitely
generated subalgebra and M', N’ € Modljl‘ﬂ. In this case, Lemma 8.3.2 sup-
plies isomorphisms Torfl/poo (M,N) ~° Torf,l/poc (M’',N'). We may there-
fore replace A by A’, and thereby reduce to the case where A is Noetherian.
It now follows from Lemma 8.3.2 that the Tor-groups Tor?l/pm (M, N) are
holonomic for each s > 0; we wish to show that they vanish for s > 0. By
virtue of Proposition 5.3.3, it will suffice to show that f¢ Tor?l/p (M,N)~0
for every homomorphism f : A — k, where k is a field. Applying Lemma
8.3.2 again, we can reduce to the case where A = k, in which case the
vanishing is automatic. O

8.4. Compatibility with the Riemann-Hilbert Correspondence

Let A be a commutative F-algebra and let Sol : Mod®™ — Shv (Spec(A),
F,) be the solution sheaf functor (Construction 9.3.1), given by the formula

Sol(M)(B) ={x € (B®a M) : opg,m(x) =z}

Note that if z € Sol(M)(B) and y € Sol(/N)(B), then the tensor x ®y can be
regarded as an element of Sol(M ® 410> N )(B). This observation determines
a bilinear map

Sol(M)(B) x Sol(N)(B) — Sol(M © 41,s~ N)(B)

which depends functorially on B, and therefore gives rise to a map of sheaves
SO](M) ®Fp SOI(N) — SOI(M ®A1/p<>° N)
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Theorem 8.4.1. Let A be a commutative Fy,-algebra and suppose that M
and N are algebraic A-modules. Then the comparison map

6 : Sol(M) @, Sol(N) — Sol(M ® 41/0> N)

is an isomorphism in the category Shvs(Spec(A), Fp).

Proof. Tt will suffice to show that for every algebraically closed field x and
every homomorphism f : A — &, the pullback f*(#) is an isomorphism in
Shv€®. Since M, N, and M ® 410 N are algebraic (Theorem 8.3.1), we can
identify f*(#) with the tautological map

Sol(f°M) ®g, Sol(f*N) — Sol(f*M @, f°N).

We may therefore replace A by x and thereby reduce to the case where A is
an algebraically closed field. In this case, Theorem 2.4.3 implies that Modillg
is equivalent to the category of vector spaces over F,. Consequently, the
Frobenius modules M and N can be decomposed as a direct sum of copies

of AYP™ = g, and the desired result is obvious. O

Corollary 8.4.2. Let A be a commutative Fp-algebra. Then the Riemann-

Hilbert functor RH : Shvg(Spec(A),Fp,) — Mod%erf admits the structure
of a symmetric monoidal functor (where the symmetric monoidal structure
on Shv¢(Spec(A),F)) is given by the usual tensor product of sheaves, and

perf

the symmetric monoidal structure on Mod’,™" is given by the tensor product

®q1/0 of Remark 8.1.5).

Proof. 1t follows from Theorem 8.4.1 that the lax symmetric monoidal func-
tor Sol : Modleerf — Shvg(Spec(A), F,) is symmetric monoidal when re-
stricted to Modfglg Combining this observation with Theorem 2.4.3, we see
that the functor Sol|,, due is an equivalence of symmetric monoidal cate-
gories. We conclude by observmg that the functor RH can be obtained by
composing an inverse of SOHModj}g with the inclusion functor Modalg —

erf
Mod5™. O
9. The p"-Torsion Case

Let R be a commutative F-algebra. Theorem 1.0.2 supplies a fully faithful
embedding from the category Shv(Spec(R), F,) p-torsion étale sheaves on
Spec(R) to the category of Frobenius modules over R. Our goal in this sec-
tion is to prove a generalization of Theorem 1.0.2, which gives an analogous
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realization for the category Shv(Spec(R),Z/p"Z) of Z/p"Z-torsion étale
sheaves, for any nonnegative integer n. Our first step will be to introduce an
analogous enlargement of the category Modf.{fr of Frobenius module over R.
In §9.1, we define a notion of Frobenius module over W,,(R), where W,,(R)
is the ring of length n Witt vectors over R (Definition 9.1.1). The collection
of such Frobenius modules can be organized into a category Modgﬁn( R)- In
§9.2, we study the dependence of this category on the Fp-algebra R (empha-
sizing in particular the effect of replacing R by its perfection RY/P™ which
makes Witt vectors much more pleasant to work with). In §9.3, we introduce
a solution functor

Sol : ModFmﬁn(R) — Shvgi (Spec(R), Z/p"Z)

connecting Frobenius modules over W,,(R) to p™-torsion étale sheaves (which
reduces to Construction 2.3.1 in the case n = 1). Like its p-torsion coun-
terpart, this solution functor is not exact. However, we show in §9.4 that it
is almost exact when restricted to perfect Frobenius modules, in the sense
that it has only one nonvanishing derived functor (Proposition 9.4.1). We
apply this result in §9.6 to show that the functor Sol restricts to an equiv-
alence of categories Mod?,%,g"(R) o~ Shvg(Spec(R),Z/p"Z) (Theorem 9.6.1).

Here Mod?,:,gn (R)

algebraic Frobenius modules over Wy, (R), which we introduce in §9.5 (Defi-
nition 9.5.2).

denotes the full subcategory of Mod%n( R) spanned by the

9.1. Frobenius Modules over the Witt Vectors

We begin by extending some of the notions introduced in §3. Let R be a
commutative Fj-algebra. For every nonnegative integer n, we let W, (R)
denote the ring of length n Witt vectors of R. The Frobenius map ¢r : R —
R induces a ring homomorphism F' : W, (R) — W, (R), which we will refer
to as the Witt vector Frobenius.

Definition 9.1.1. Let R be a commutative F-algebra and let n > 0 be an
integer. A Frobenius module over Wy (R) is an W, (R)-module M equipped
with an additive map ¢y @ M — M satisfying the identity ¢ (Ax) =
F(N)em(x) for x € M, A € W,(R). We will say that a Frobenius module
M is perfect if the map oy : M — M is an isomorphism of abelian groups.

Let (M, pp) and (N, @n) be Frobenius modules over W, (R). A mor-
phism of Frobenius modules from (M, ppr) to (N, ¢n) is an W, (R)-module
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homomorphism p : M — N for which the diagram

ML N

o o

M~ M

commutes. We let Mod%ﬂ (R) denote the category whose objects are Frobe-
nius modules (M, ppr) over Wy, (R), and whose morphisms are morphisms

of Frobenius modules. We let Mod%j;rf(R) denote the full subcategory of

Mod%}n (r) Spanned by the perfect Frobenius modules over W, (R).

Remark 9.1.2. In the special case n = 1, Definition 9.1.1 reduces to Def-
initions 2.1.1 and 3.2.1. In particular, we have an equivalence of categories
Mod%}l( R) =~ Mod!, which restricts to an equivalence Mod%‘;fi B~ ModpRerf.

Remark 9.1.3. Let R be a commutative ring in which p = 0 and let n > 0.
Then Mod%}n (r) can be identified with the category of left modules over the

noncommutative ring W, (R)[F] whose elements are finite sums >, ¢;F",
where each coefficient ¢; belongs to W,,(R), with multiplication given by

O aFYO ) =Y (Y Fi(c;))F*.

i>0 §>0 k>0 i+j=k

In particular, Modl‘j&n (R) is an abelian category with enough projective ob-
jects and enough injective objects.

Remark 9.1.4. In the situation of Definition 9.1.1, the full subcategory

erf Fr
Mod%n(R) g MOde(R)

£
(r) 18
an abelian category, and the inclusion functor Mod%ﬁif( R Modﬁl}n( R) is
exact.

is closed under limits, colimits, and extensions. In particular, Modgﬁr

Remark 9.1.5. For each n > 0, we can identify Mod%ﬂil( R) with the full

subcategory of Modaﬂn( R) spanned by those objects (M, ¢ps) where M is
annihilated by the kernel of the restriction map W,(R) — W,_1(R). We
therefore obtain (exact) fully faithful embeddings

MOdFr ~ Modl{;[l;l (R) — Mod%z(R) — Modg[l}B(R) — -
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Similarly, we have fully faithful embeddings

perf _, perf perf perf
Modp ™ = Modyy, gy = Modyy, gy = Mody, /gy = -
Remark 9.1.6. In the situation of Definition 9.1.1, the inclusion
Mod%i:f( R < Mod%ﬁy( ) admits a left adjoint. Concretely, this left adjoint
carries a Frobenius module M to the direct limit of the sequence

-1 —2
M 225 M M

here MF™" denotes the W,,(R)-module obtained from M by restriction of
scalars along the ring homomorphism F* : W,,(R) — W, (R). We will denote
this direct limit by M/P™ and refer to it as the perfection of M. Note that
when n = 1, this agrees with the construction of Notation 3.2.3.

Example 9.1.7. Let R be a commutative Fj-algebra. For each n > 0, we
can regard M = W, (R) as a Frobenius module over itself by taking ¢y to be
the Witt vector Frobenius map F' : W, (R) — W, (R). Then the perfection
M?'/?~ can be identified with W,,(R'/P™).

9.2. Functoriality

If f: A— Bisahomomorphism of Fj-algebras, then there is an evident
forgetful functor Modaﬁn( B) — Modaﬁn( 4)- This functor admits a left adjoint

I Mod%n( a4 Modaﬁn( B given by extension of scalars along the ev-
ident ring homomorphism W, (A)[F] — W, (B)[F]. Since the natural map
Wi (B)@w, 4y Wn(A)[F] — W, (B)[F] is an isomorphism, we have canonical
isomorphisms fi. M >~ W, (B) ®y, 4y M in the category of Wy, (B)-modules.

Remark 9.2.1. Let f : A — B be a homomorphism of commutative F-
algebras and let M be a Frobenius module over W,,(B). Then M is perfect
as a Frobenius module over W,,(B) if and only if it is perfect when regarded
as a Frobenius module over W, (A). Moreover, the perfection M/P~ does
not depend on whether we regard M as a Frobenius module over W,,(B) or
over Wy, (A). It follows that the diagram of forgetful functors

erf T
Modsvn(B) — ModEVn(B)

| |

erf '
Modl;vn( a Modgvn( 4

commutes (up to canonical isomorphism).
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The following result is a formal consequence of Remark 9.2.1:

Proposition 9.2.2. Let f : A — B be a homomorphism of commutative
F,-algebras. Then the forgetful functor Mod%irf(B) — Modl";rfm) admits a

left adjoint f°. Moreover, the diagram of categories

Fr (*)1/poo erf
ModW” (4) — MOdII;Vn(A)

lfﬂ l)“

Fr (=) /e rf
Mode(B) — Mod%ﬁn(B)

commutes up to canonical isomorphism. More precisely, for every object
M € ModY, the canonical map fo(MY/P~) — (!)"liirM)l/poo s an equivalence.

Proposition 9.2.3. Let R be a commutative F-algebra. For eachn > 0, the
restriction of scalars functor Moda(;:f(Rl/DOO) — Mod%(;:f(R) s an equivalence
of categories.

Proof. Let f: R — RYP™ be the tautological map. Since the restriction of
scalars functor is evidently conservative, it suffices to observe that for each

object M € MOdIIj;,i 1) the unit map

M — f(M) = (Wo(RYP™) @y, gy M)"/P™
is an isomorphism of (perfect) Frobenius modules over W,,(R). ]

Corollary 9.2.4. Let R be an Fy-algebra and let 0 < m < n. Then the
essential image of the tautological map Modl’;rf( R < Mod%rf( R consists of
those perfect Frobenius modules over W, (R) which are annihilated by p™.

Proof. By virtue of Proposition 9.2.3, we can assume without loss of gener-
ality that R is perfect. In this case, the desired result follows from Remark
9.1.5, since the kernel of the restriction map W, (R) — Wy, (R) is the prin-
cipal ideal (p™). O

Proposition 9.2.5. Let f : A — B be a homomorphism of perfect F,-
algebras. Then the extension of scalars functor fp, : Modgl}"(A) — Mod%n(B)

carries perfect Frobenius modules over Wy, (A) to perfect Frobenius modules
over Wy(B).
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Proof. Let M be a perfect Frobenius module over A. Then the maps
Fp: Wy(B) - W,(B) Fa:W,(A) — Wy,(A) om M — M
are isomorphisms, so the induced map
Pt Wa(B) ®@w, 4y M — Wa(B) @w, a) M

is also an isomorphism. O

Corollary 9.2.6. Let f : A — B be an étale morphism of Fj,-algebras.
Then the extension of scalars functor ff, : Modsr[,n( ) Modgr[,n( B) carries

rf . rf
Mod%ﬁn (4 into Mod%ﬁn (B)-

Proof. Let M be a perfect Frobenius module over A. Then we can also
regard M as a Frobenius module over AP~ Since f is étale, the diagram
of commutative rings

Wi (A) Wa(B)

l l

Wi (AVPT) —— W, (BY/P7)

is a pushout square by the result [16, 2.4] of van der Kallen. It follows that
we can identify fi M with the tensor product Wn(Bl/poo) Qw, (a/e=y M,
which is perfect by Proposition 9.2.5. U

9.3. The Solution Functor

We now adapt Construction 2.3.1 to the setting of Frobenius modules over
the Witt vectors.

Construction 9.3.1. Let R be a commutative F-algebra and let M ]oe a
Frobenius module over W, (R). We let Sol(M) denote the functor CAlg% —
Modz,»z given by the formula

Sol(M)(R') = {z € (Wn(R') Qw,(r) M) : oW, (R)@w, M (T) = T}

We will refer to Sol(M) as the solution sheaf of M.

Remark 9.3.2. In the situation of Construction 9.3.1, suppose that the
action of W, (R) on M factors through the restriction map W,(R) — R,
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so that M can be regarded as a Frobenius module over R (if M is perfect,
this is equivalent to the requirement that pM = 0, by virtue of Corollary
9.2.4). Then the functor Sol(M ) of Construction 9.3.1 agrees with the functor
Sol(M) of Construction 2.3.1: this follows from the fact that the diagram of
commutative rings

Wy (R) — Wy (R')

L

R R

is a pushout square, for any étale R-algebra R'.

Our first goal is to show that the functor Sol(M) of Construction 9.3.1
is actually a sheaf with respect to the étale topology on Spec(R). To prove
this, it will be convenient to consider the following variant of Example 2.2.5:

Notation 9.3.3. Let R be a commutative Fj,-algebra and let M be a module
over Wy, (R). We let M € Shve (Spec(R), Z/p"Z) denote the sheaf given by
the formula M(R') = W, (R) ®w, (r) M. Note that, when M is annihilated
by the kernel of the restriction map W, (R) — R (so that M can be regarded
as an R-module), this agrees with the sheaf of Z/pZ-modules introduced in
Example 2.2.5.

Remark 9.3.4. Let R be a commutative Fp-algebra. Then the construc-
tion R’ — W, (R’) induces an equivalence from the category of étale R-
algebras to the category of étale W, (R)-algebras. In particular, the category
of étale sheaves on Spec(R) is equivalent to the category of étale sheaves on
Spec(Wy,(R)). If M is a module over W, (R), then it determines a quasi-
coherent sheaf on Spec(W,(R)), which corresponds (under the preceding

equivalence) to the functor M : CAlg'lé.{@t — Modg,nz of Notation 9.3.3. In
particular, the functor M is always a sheaf with respect to the étale topology
on CAlg%.

Remark 9.3.5. In the situation of Notation 9.3.3, suppose that R is perfect
and that M is flat as a module over Z/p"Z. Then, for each R € CAlg%t,
the abelian group M (R') is also flat as a Z/p"Z-module. In particular, the
sheaf M is flat over Z /L.

If M is a Frobenius module over W,,(R), then the Frobenius map ¢js de-

termines an endomorphism of the associated étale sheaf M. By construction,
we have an exact sequence of presheaves

0 — Sol(M) — M 4=, 7,
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It follows that Sol(M) is always a sheaf with respect to the étale topology.
We may therefore regard the construction M +— Sol(M) as a functor from
the category of Frobenius modules over W, (R) to the category of p"-torsion
sheaves on Spec(R). We will denote this functor by

Sol : ModW (r) — Shve(Spec(R),Z/p"Z)

and refer to it as the solution sheaf functor.

Proposition 9.3.6. Let R be a commutative F,-algebra and let M be an
perf
de(R)'

~ id—pum
) 1

— M S M 5 0 in the category of abelian

injective object of the abelian category Mo Then we have a short

ezact sequence 0 — Sol(M
presheaves on CAlgSt.

The proof of Proposition 9.3.6 is based on the following;:

Lemma 9.3.7. Let R be an F,-algebra and let M be an injective object of

the abelian category Modperf( r)- Then M is free when regarded as a module

over Z/p"Z.

Proof. Choose a collection of elements {x;};c; of M, whose images form a
basis for M /pM as a vector space over Fj,. Then the elements x; determine
a map of Z/p"Z-modules f : @,.; Z/p"Z — M. The map f is surjective by
virtue of Nakayama’s lemma; we will complete the proof by showing that
it is injective. Assume otherwise: then there exists some nonzero element
¢ € ker(f), which we can identify with a collection of elements {c¢;}icr of
Z/p"Z (almost all of which vanish). Let us assume that ¢ has been chosen
so that the ideal (¢;);er € Z/p"Z is as large as possible. Since the elements
x; have images in M /pM which are linearly independent over F,, we must
have (¢;)ier # Z/p"Z. 1t follows that we can write ¢ = pb for some element
b e P,c;Z/p"Z. Then pf(b b) = f(¢) = 0, so there is a unique map of
(perfect) Frobenius modules g : RYP™ [F#1] — M satisfying g(1) = f(b).

Let W, (RY?™)[F*!] denote the perfection of the Frobenius module
W, (R)[F]. Note that multiplication by p"~! induces a monomorphism

RYPT[FH] = W, (RYP™)[FH.

Invoking our assumption that M is injective, we conclude that g factors as a
n—1

composition RY/P™[FE] L w, (RY/P™)[F+] 2y M. Since f is surjective,

we can write h(1) = f(@) for some element a € @,.; Z/p"Z. We then have

-,

Fb—p"7a) = f(b) — p" 1 f(@) = g(1) — p" " h(1) = 0
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so that b— p" 1@ belongs to ker(f). However, the ideal generated by the coef-
ficients of b—p"~ 14 is strictly larger than the ideal (¢;);cs, which contradicts

our choice of ¢. O

Proof of Proposition 9.3.6. Let M be an injective object of the abelian cat-

egory Mod%i:f( R); We wish to show that the map

id—@M:M%M

is a epimorphism of Z/p™Z-valued presheaves. We proceed by induction on
n. The case n = 0 is vacuous and the case n = 1 follows from Lemma 7.1.2,
so we may assume that n > 2. For each k > 0, let M [pk] denote the kernel
of the map p¥ : M — M. Write n = i + j, for some positive integers i and
j. Since M is injective, Lemma 9.3.7 implies that we have a short exact
sequence of (perfect) Frobenius modules

0— Mpi] — M 25 Mp] — .

Applying the construction N — N , we obtain a commutative diagram of
short exact sequences

—_— — —_—

0—— Mpi| —> M "= M[pi] —=0

lid —Pumpi) |id—pum lid —PMpd)]

0 — M[pi] —> M~ M[pi] —0

in the category of presheaves of abelian groups on CAlg%. Since M is an

injective object of Mod{j{;rf( R the submodules M [p'] and M[p?] are injective

objects of Modgsir(fR) and Modsﬁj R)’ respectively (this follows from Corollary

9.2.4, since the inclusion functors Mod%ir(fR) — Mod%i:f( R < MOdE;j R are
exact). Applying our inductive hypothesis, we deduce that the outer vertical
maps in the preceding diagram are epimorphisms, so that the middle vertical

map is also an epimorphism (by the snake lemma). O
9.4. Derived Solution Functors

For every commutative F-algebra R and every integer n > 0, the solution

functor Sol : Mod%zf( R Shvei (Spec(R), Z/p™Z) is left exact, and therefore
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admits right derived functors

Sol™ : Mod}y™ ) — Shvi (Spec(R), Z/p"Z)
for m > 0. These functors are described by the following generalization of
Proposition 7.1.1:

Proposition 9.4.1. Let R be a commutative Fp-algebra and let M be a
perfect Frobenius module over Wy (R). Then we have a canonical short exact
sequence

0 — Sol®(M) — M =9, AT — Sol' (M) — 0,
and the sheaves Sol™ (M) vanish for m > 2.

Proof. Choose an injective resolution 0 — M — Q° — Q' — --- in the
abelian category Mods‘irf( R)" Using Proposition 9.3.6, we obtain a short exact

sequence of cochain complexes
* Ax dd—p =y
0—Sol(Q") - Q" —= Q@ — 0.

Since the construction N N is exact, the chain complex @* is an acyclic
resolution of M. The associated long exact sequence now supplies the desired
isomorphisms. O

Remark 9.4.2. Let R be a commutative F,-algebra and let M be a perfect
Frobenius module over W, (R). Then M can also be regarded as a perfect
Frobenius module over W,,,(R) for m > n. The étale sheaf Sol’(M) depends
a priori on whether we choose to regard M as an object of the abelian cate-

gory Modairf( R) (in which case Sol*(M) is defined as sheaf of Z /p"Z-modules

on Spec(R)), or as an object of the larger abelian category Modgﬁrf( R) (in
which case Sol’(M) is defined as a sheaf of Z/p™Z-modules on Spec(R)).
However, Proposition 9.4.1 shows that the resulting étale sheaves are canon-
ically isomorphic.

We will also need a generalization of Corollary 6.4.2:

Proposition 9.4.3. Let R be a commutative Fj-algebra and let Q) be an
injective object of Mod&‘:ﬁrf(R). Then Sol(Q) is an injective object of

Shv ¢ (Spec(R),Z/p"Z).

The proof of Proposition 9.4.3 will require the following:
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Lemma 9.4.4. Let R be a commutative Fp-algebra, let M be a W, (R)-
module which is flat over Z/p"Z, and let F € Shvg(Spec(R),Fp). Then the
canonical map

—_—~ —

Extg (F, Mp]) = Extyuz(F, M)
1s bijective.
Proof. Suppose we are given an extension 0 — M — % — Z — 0 in the

abelian category Shvg(Spec(R),Z/p"Z). We wish to show that there exists
a commutative diagram of short exact sequences

0 Mip] @’ F 0
0 M @ F 0

)

where ¢’ is annihilated by p, and that the extension class of the upper exact
sequence is uniquely determined. The uniqueness is clear: note that if such a
diagram exists, then it induces an isomorphism ¥’ ~ ¢[p| = ker(p : 4 — 4).
To prove existence, it will suffice to show that the composite map ¥[p] —
¥ — F is an epimorphism. To prove this, we note that the commutative
diagram

0 an % pY 0
L, 1]
0 F F 0 0

yields a long exact sequence
M — % | 9[p] — coker(¥[p] — F) — coker(¥ — F),

where the last term vanishes (since the map ¥ — % is an epimorphism).
We are therefore reduced to showing that the canonical map M — ¢ /9 p
is an epimorphism. Since .# is annihilated by p, the map p : ¢4 — ¢ induces
a monomorphism v : ¢4 / ¥4[p| — M. It will therefore suffice to show that the
image of v is contained in the image of the map p : M — M. This follows
from Remark 9.3.5, since im(v) is annihilated by p"~1. O

Proof of Proposition 9.4.3. Let @ be an injective object of Modgﬁrf(m. We
wish to show that Sol(Q) is an injective object of Shve(Spec(R),Z/p"Z):

that is, that the group Extlz /pnz(ﬁ‘\ ,S0l(Q)) vanishes for every sheaf .# €
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Shve (Spec(R),Z/p"Z). Since the collection of those objects .# for which
the group Exty, pnz(F,50l(Q)) vanishes is closed under extensions, we may

assume without loss of generality that .% is annihilated by p.
By virtue of Proposition 9.3.6, we have short exact sequences of étale
sheaves

0 — Sol(Q[p]) — Qp] 2= Olp] —

0= Sol(Q) = Q 17%%. 5 0

which supply a commutative diagram of long exact sequences

Extg, (7, Qlp])

Extz/p 7(Z, Q)

id —pqp) id—¢pq

Ext%_p(ff, Qlp]) Eth/p 72(7,Q)

Exth, (F,Sol(Q[p]) — = Exty, . ,(F,50l(Q))

Extp, (7, Qlp)) Exty)pnz (7 Q)

id =g id —pq

Exth (7, Q[p]) Exth (7. Q).

The map « is obviously an isomorphism, and -y is an isomorphism by virtue
of Lemma 9.4.4. It follows that § is also an isomorphism. We are there-
fore reduced to proving that the group Ext%;p (Z,S0l(Q[p])) vanishes. In
fact, we claim that Sol(Q[p]) is an injective object of the abelian category
Shvei (Spec(R), F)p): this is a special case of Corollary 6.4.2, since Q[p] is an
injective object of the abelian category Mod%erf. O

9.5. Algebraic Frobenius Modules over W,,(R)

Let R be a commutative F,-algebra and let M be a perfect Frobenius module
over W, (R). We let M[p] and M /pM denote the kernel and cokernel of the
map p : M — M. Then M|[p] and M/pM are perfect Frobenius modules
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over W, (R) which are annihilated by p, and can therefore be identified with
perfect Frobenius modules over R (Corollary 9.2.4).

Proposition 9.5.1. Let R be a commutative Fy-algebra and let M be a per-
fect Frobenius module over Wy, (R). The following conditions are equivalent:

(1) The quotient M /pM € Mod%erf is algebraic, in the sense of Definition
2.4.1.

(2) The submodule M|p] € Mod%erf is algebraic, in the sense of Definition
2.4.1.

(3) Every element x € M satisfies an equation of the form

hi(@) +areh (@) + - +a =0

for some coefficients a; € W, (R).

Definition 9.5.2. Let R be a commutative Fj-algebra and let M be a
perfect Frobenius module over W,,(R). We will say that M is algebraic if
it satisfies the equivalent conditions of Proposition 9.5.1. We let Mode‘;[l,g (R)

perf

W (R) spanned by the algebraic Frobenius

denote the full subcategory of Mod
modules over W, (R).

Remark 9.5.3. In the situation of Definition 9.5.2, an object M € MOdII};n(R)
is algebraic if and only if it is algebraic when viewed as a Frobenius module
over Wy, (R), for any m > n.

Remark 9.5.4. In the situation of Definition 9.5.2, let M be a perfect
Frobenius module over W, (R) which is annihilated by p. Then M can be
regarded as a perfect Frobenius module over R (Corollary 9.2.4). Moreover,
M is algebraic in the sense of Definition 9.5.2 if and only if it is algebraic in
the sense of Definition 2.4.1.

Proof of Proposition 9.5.1. The implication (3) = (2) is obvious. We now
show that (2) = (1). Assume that M is a perfect Frobenius module over
Wy(R) and that the p-torsion submodule Mp] is algebraic (as a perfect
Frobenius module over R). For each integer ¢ > 0, we have a short exact
sequence

0 — (M[p] Np'M)/(M[p] N p" M) = p"M/p" T M = p MM — 0

Since the collection of algebraic objects of Mod%erf is closed under the for-
mation of subobjects and quotient objects (Proposition 4.2.4), condition (2)
guarantees that each (M|[p] Np'M)/(M[p] N p*t1M) is algebraic. Since the
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collection of algebraic objects of Mod%erf is closed under extensions (Propo-
sition 4.2.4), it follows by descending induction on i that each p’M/piTtM
is algebraic. Taking ¢ = 0, we deduce that (1) is satisfied.

We now complete the proof by showing that (1) implies (3). We proceed
by induction on n, the case n = 0 being trivial. Assume that n > 0 and let z
be an element of M having image T € M /pM. Condition (1) guarantees that
we can find an element i = F™+a; F™ '+ - 4@, 1 F+a,, € R[F] such that
7(z) = 0. Lift & to an element g = F™ + a1 F™ ' + -+ 4+ a,, € W, (R)[F],
so that u(z) € pM. Note that pM/p?M is a quotient of M/pM, and is
therefore algebraic by virtue of Proposition 4.2.4. The Frobenius module pM
is annihilated by p"~!, and can therefore be regarded as a perfect Frobenius
module over W,,_1(R) by virtue of Corollary 9.2.4. Applying our inductive
hypothesis, we deduce that there exists an expression v = F™ + b F™ ~1 4
o F by 1 F+byyy € Wy (R)[F] such that v(u(x)) = 0, so that = is annihilated
by v € Wy (R)[F]. O

We have the following generalization of Proposition 4.2.4:

Proposition 9.5.5. Let R be a commutative F,-algebra and let n > 0. Then
Modz;:,%l(R) is a localizing subcategory of Modi’;if(R). That 1s:

(a) Given a short eract sequence 0 — M’ — M — M" — 0 of perfect
Frobenius modules over R, M is algebraic if and only if M' and M"
are algebraic.

(b) The collection of algebraic Frobenius modules over W, (R) is closed
under (possibly infinite) direct sums.

Proof. We will prove (a); assertion (b) is immediate from the definitions.
Suppose we are given an exact sequence 0 — M’ — M — M"” — 0 of
perfect Frobenius modules over W, (R). Then we also have an exact se-
quence M'/pM' — M/pM — M" /pM" — 0. If M'/pM’ is algebraic, then
Proposition 4.2.4 implies that M /pM is algebraic if and only if M"/pM" is
algebraic. Using characterization (1) of Proposition 9.5.1, we conclude that
if M’ is algebraic, then M is algebraic if and only if M” is algebraic. Apply-
ing the same argument to the exact sequence 0 — M'[p] — M|[p] — M"[p]
(and using characterization (2) of Proposition 9.5.1), we deduce that if M”
is algebraic, then M is algebraic if and only if M’ is algebraic. O

Proposition 9.5.6. Let R be a commutative F),-algebra, let n > 0, and let
M be an algebraic Frobenius module over Wy (R). Then the étale sheaves

Sol'(M) € Shv(Spec(R), Z/p"Z) vanish for i # 0.

Proof. We prove the following assertion by induction on m:
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(*m) Let M be an algebraic Frobenius module over W), (R) which is annihi-
lated by p™. Then Sol*(M) = 0.

Note that assertion (x) is trivial, and assertion (%,) implies Proposition
9.5.6. It will therefore suffice to show that (*,) implies (#;,+1). Note that if
M is an algebraic Frobenius module which is annihilated by p”™*!, then the
short exact sequence 0 — M[p] — M — pM — 0 yields an exact sequence
of sheaves Sol’(M([p]) — Sol’(M) — Sol'(pM). Here pM and M|p] are also
algebraic (Proposition 9.5.5), and pM is annihilated by p™. Our inductive
hypothesis then guarantees that Sol‘(pM) = 0. To complete the proof, it will
suffice to show that Sol’(M[p]) = 0. To prove this, we can replace W, (R) by
R (Remark 9.4.2), in which case the desired result follows from Corollary
7.4.4. O

9.6. The Riemann-Hilbert Correspondence for Z/p™Z-Sheaves

We can now formulate the main result of this section:

Theorem 9.6.1 (Riemann-Hilbert Correspondence). Let R be a commu-
tative F,-algebra and let n > 0. Then the functor Sol : Modl‘i;if(R) —
Shv(Spec(R),Z/p"Z) induces an equivalence of categories Mod{a,%,gn(R) —

Shv(Spec(R),Z/p"Z).
We will deduce Theorem 9.6.1 from the following comparison result:

Proposition 9.6.2. Let R be a commutative Fp-algebra and let M and N
be perfect Frobenius modules over W, (R). Assume that M is algebraic and
that Sol*(N) ~ 0. Then the canonical map

Ext}y, ()| (M, N) = Ext}, Jpnz(S0l(M), Sol(N))

s an isomorphism for i > 0.

Proof of Theorem 9.6.1 from Proposition 9.6.2. We first claim that the com-
posite functor

< Mod™ . 2% Shve, (Spec(R), Z/p"Z)

al
MOde" R

(R)

is fully faithful. Let M and N be algebraic Frobenius modules over W,,(R);
we wish to show that the canonical map

Homyy, (g)(F)(M, N) — Hom&(Sol(M),Sol(N))
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is an isomorphism. This is a special case of Proposition 9.6.2, since Sol! (N) ~
0 by virtue of Proposition 9.5.6.

Let C C Shvgi(Spec(R),Z/p"Z) denote the full subcategory spanned by
those sheaves of the form Sol(M), where M is an algebraic Frobenius module
over W, (R). To complete the proof of Theorem 9.6.1, it will suffice to show
that every object of Shve (Spec(R), Z/p"Z) belongs to C. Note that Theorem
2.4.3 guarantees C contains every sheaf of Z/pZ-modules on Spec(R). We
will complete the proof by showing that C is closed under the formation of
extensions. Suppose we are given a short exact sequence of étale sheaves

09 -7 7" =0,

where .%’ and .#” belong to C; we wish to show that .%# also belongs to C.
Without loss of generality, we may assume that .#’ = Sol(M’) and .#" =
Sol(M") for some algebraic Frobenius modules M’ and M” over W, (R).
In this case, the preceding exact sequence is classified by an element 7 €
Extlz/pnz(Sol(M”),Sol(M’)). Invoking Proposition 9.6.2 again, we deduce

that n can be lifted (uniquely) to an element 77 € ExtIl/Vn(R)[F](M”,M’),
which classifies a short exact sequence of Frobenius modules 0 — M’ —
M — M"” — 0. Proposition 9.5.5 guarantees that M is algebraic, so that
Z =~ Sol(M) also belongs to the category C. O

We now turn to the proof of Proposition 9.6.2. We begin with some
special cases.

Lemma 9.6.3. Let R be an F,-algebra and let M be an algebraic Frobenius

module over R, and let N be any object of Mod&‘zf(m. Then the canonical
map

¢ : Homyy, (r)(r)(M, N) — Homg ,n7z(Sol(M), Sol(NV))
is an isomorphism.

Proof. Since the functor Sol is left exact, we have an isomorphism
Sol(N)[p] ~ Sol(N{p]). Since M and Sol(M) are annihilated by p, we can
identify # with the canonical map

Hompgp (M, N(p]) — Homp, (Sol(M), Sol(Np])).

We may therefore replace N by N|[p|] and thereby reduce to the case n = 1.
Using Theorem 2.4.3, we can choose an isomorphism M ~ RH(.%) for some
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object .# € Shvg(Spec(R),F,). In this case, we 0 has a left inverse, given
by the map

Homg, (Sol(RH(:#)), Sol(N)) — Homp, (#, Sol(N))

given by precomposition with the unit map v : % — Sol(RH(.#)). This map
is an isomorphism by virtue of Proposition 7.2.1. O

Lemma 9.6.4. Let R be an Fj-algebra and let M be an algebraic Frobe-
nius module over R. Let N be any perfect Frobenius module over W, (R). If
Sol' (V) ~ 0, then the canonical map

Extiy. (M, N) = Extyy 05 (Sol(M), Sol(N))

is an isomorphism for i > 0.

Proof. Choose an injective resolution 0 - N — Q° — Q' — .- in the

abelian category Mods‘zf( R)" Our hypothesis that Soll(N ) vanishes guaran-

tees that the complex 0 — Sol(N) — Sol(Q?) — Sol(Q!) — --- is exact in
the abelian category Shvg(Spec(R),Z/p"Z) (Proposition 9.4.1). Moreover,
each Sol(Q") is an injective object of Shvei(Spec(R),Z/p"Z) (Proposition
9.4.3). It will therefore suffice to show that the canonical map

Homyy, gy (M, Q") — Homg,/,n7(Sol(M), Sol(Q"))

is a quasi-isomorphism of chain complexes. In fact, this map is an isomor-
phism of chain complexes: this is a special case of Lemma 9.6.3. O

Proof of Proposition 9.6.2. Let N be a perfect Frobenius module over
W, (R), and suppose that Sol'(N) ~ 0. Let us say that an object M €

Mod?®8

W () 18 good if the canonical map

pi: Extiy oy (M, N) = Extyy 07 (Sol(M), Sol(N))

is an isomorphism for ¢ > 0. It follows from Lemma 9.6.4 that if M €
Mod%l/‘g (R) is annihilated by p, then M is good. We wish to show that every

object of Mod;l,i( R) is good. For this, it will suffice to establish the following:
(x) Let 0 = M’ — M — M"” — 0 be a short exact sequence of algebraic

Frobenius modules over W,,(R). If M’ and M" are good, then M is
also good.
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To prove (*), we note that the vanishing of Sol'(M’) (Proposition 9.5.6)
guarantees the exactness of the sequence 0 — Sol(M') — Sol(M) —
Sol(M") — 0. It follows that each p; fits into a commutative diagram of
exact sequences

/

(M, N) 2= Exti=L  (Sol(M?), Sol(N))

i—1
Ext W, Z/p"Z

(R)[F]

1

Extly e (M, N) s Extl, Sz (Sol(M"), Sol(N))
Extly, gy (M N) — > Extl, 1z (SOl(M), Sol(N))

i Pi i
EXtW"(R) [F} (M/, N) —_— Eth/an(SOI(M/), SOI(N))

(M",N) 225 BxtiHL - (Sol(M"), Sol(N)).

i+1
Ext W, 7/

(R)[F]
Our hypothesis that M’ and M” are good guarantees that the maps p,_,,
pi, p;, and pf/_ | are isomorphisms, so that p; is also an isomorphism. O

10. Globalization

For any commutative Fj-algebra R, the Riemann-Hilbert correspondence
of Theorem 1.0.2 supplies a description of the category of p-torsion étale
sheaves on the affine F)-scheme X = Spec(R) in terms of Frobenius mod-
ules over R. Our goal in this section is to extend the Riemann-Hilbert cor-
respondence to the case of an arbitrary Fj-scheme X. We begin in §10.1 by
introducing the notion of a Frobenius sheaf on X: that is, a quasi-coherent
sheaf £ on X equipped with a Frobenius-semilinear endomorphism g (Def-
inition 10.1.2). The collection of Frobenius sheaves on X forms a category,
which we will denote by QCohg(r. In §10.2 we construct an equivalence RH
from the category Shve(X; F,) of p-torsion étale sheaves on X to a full sub-
category QCohigg C QCoh (Theorem 10.2.7 and Notation 10.2.10). This is
essentially a formal exercise (given the earlier results of this paper): roughly
speaking, the Riemann-Hilbert functor RH is constructed by amalgamating
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the equivalences Shvg(U;F)) ~ QCoh?]lg where U ranges over affine open
subsets of X. Consequently, any local question about the functor RH can
be reduced to the affine case: we use this observation in §10.3 to argue that
the Riemann-Hilbert correspondence is compatible with the formation of
pullbacks along an arbitrary morphism of Fj-schemes f : X — Y (Vari-
ant 10.3.12). However, we do encounter a genuinely new global phenomenon:
the Riemann-Hilbert correspondence is also compatible with direct images
(and higher direct images) along a morphism f : X — Y which is proper
and of finite presentation (Theorem 10.5.5). We prove this in §10.5 using a
global characterization for holonomic Frobenius sheaves (Theorem 10.4.1),
which we establish in §10.4. In §10.6, we apply these ideas to give a proof of
the proper base change theorem in étale cohomology (in the special case of
p-torsion sheaves on F,-schemes; see Corollary 10.6.2).

Remark 10.0.1. Throughout this section, we confine our study of Frobe-
nius sheaves on X to the case where X is an F-scheme. However, the results
of this section can be extended to more general geometric objects, such as
algebraic spaces over F),. Similarly, the results can also be extended to have
“coefficients in Z/p™” in the sense of §9. We leave such extensions to the
reader.

10.1. Frobenius Sheaves on a Scheme

We begin by introducing some terminology.

Notation 10.1.1. For any scheme X, we let QCohy denote the category
of quasi-coherent sheaves on X. If X is an F-scheme, we let px : X — X
denote the absolute Frobenius morphism from X to itself.

Definition 10.1.2. Let X be an Fj,-scheme. A Frobenius sheaf on X is a
pair (€, ¢g), where & is a quasi-coherent sheaf on X and ¢g¢ : &€ = px. € is
a morphism of quasi-coherent sheaves. If (£, pg) and (F, ¢ ) are Frobenius
sheaves on X, then we will say that a Ox-module map f : £ — F is a
morphism of Frobenius sheaves if the diagram

e 1 . F

lﬂﬁs lsof
(f)

PX x
@X*g H‘PX*-F

commutes. We let QCohE(r denote the category whose objects are Frobenius
sheaves on X and whose morphisms are morphisms of Frobenius sheaves.
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We will generally abuse terminology by identifying a Frobenius sheaf
(€, p¢e) with its underlying quasi-coherent sheaf £, and simply referring to
& as a Frobenius sheaf on X.

Example 10.1.3. Let X = Spec(R) be an affine F,-scheme. Then the
global sections functor £ — I'(X,€) induces an equivalence of categories
QCoh’f — Modiy.

Remark 10.1.4. Let X be an F,-scheme. Then the category QCohE(r is
abelian. Moreover, the forgetful functor QCOh? — QCohy is exact.

Variant 10.1.5. Let X be an F),-scheme. Using the adjointness of the func-
tors px. and %, we can obtain a slightly different description of the cate-
gory QCoh!y of Frobenius sheaves:

e The objects of QCohk can be identified with pairs (&, 1¢), where £
is a quasi-coherent sheaf on X and ¢ : ¢ & — £ is a morphism of
quasi-coherent sheaves.

e A morphism from (£, ¢) to (F,1x) in the category QCohk is a mor-
phism of quasi-coherent sheaves f : &€ — F for which the diagram

< ox(f) Y.

X
lT/ﬂs lw;
eI o F

cominutes.

In what follows, we will regard quasi-coherent sheaves on a scheme X as
sheaves on the étale site of X (see Example 2.2.5). Given a quasi-coherent
sheaf £ € QCohy and an étale morphism f : U — X, we let £(U) denote
the abelian group of global sections I'(U, f* £). Note that if U = Spec(R) is
affine, then £(U) has the structure of an R-module; if X is an Fp-scheme
and £ is a Frobenius sheaf, then £(U) inherits the structure of a Frobenius
module over R.

Proposition 10.1.6. Let X be an F,-scheme and let £ be a Frobenius sheaf
on X. The following conditions are equivalent:

(1) For every étale morphism f : U — X where U ~ Spec(R) is affine,
the group of sections E(U) is perfect (respectively algebraic, holonomic)
when regarded as a Frobenius module over R.

(2) For every open subset U C X where U ~ Spec(R) is affine, the group of
sections £ is perfect (respectively algebraic, holonomic) when regarded
as a Frobenius module over R.
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(3) There exists an étale covering {U, — X} where each U, =~ Spec(R,)
is affine, and each E(U,,) is perfect (respectively algebraic, holonomic)
when regarded as a Frobenius module over R.,.

Proof. The implications (1) = (2) = (3) are obvious. The implication (3) =
(1) follows from Corollary 3.4.7 (respectively Lemma 5.4.6, Corollary 7.4.3).
]

Definition 10.1.7. Let X be an F)-scheme and let £ be a Frobenius sheaf
on X. We will say that £ is perfect (respectively algebraic, holonomic) if it
satisfies the equivalent conditions of Proposition 10.1.6. We let QCohg(erf (re-
spectively QCohf;ég, QCohl)l(Ol) denote the full subcategory of QCOhE}r spanned
by those Frobenius sheaves which are perfect (respectively algebraic, holo-
nomic), so that we have inclusions

QCoh%¥' € QCoh%¥E C QCohY™ C QCohY .

Example 10.1.8. Let X = Spec(R) be an affine F)-scheme. Then a Frobe-
nius sheaf £ € QCohY is perfect (respectively algebraic, holonomic) if and
only if I'(X, &) is perfect (respectively algebraic, holonomic) when regarded
as a Frobenius module over R.

Remark 10.1.9. Let X be an F)-scheme. Then the subcategories
QCoh"' C QCoh%® C QCoh%™ C QCohY

are closed under the formation of kernels, cokernels, and extensions. In par-
ticular, they are abelian subcategories of QCohg(r. Moreover, the subcate-
gories QCohiég C QCohg}erf C QCohy are closed under (possibly infinite)
direct sums (and therefore under all colimits). To prove these assertions, we
can work locally and thereby reduce to the case where X is affine: in this
case, the desired results follow from Remark 3.2.2, Proposition 4.2.4, and
Corollary 4.3.3.

Remark 10.1.10 (Descent). Let X be an Fp-scheme. Then the theory of
Frobenius sheaves satisfies effective descent with respect to the étale topol-
ogy on X, and is therefore determined (in some sense) by its behavior when
X is affine. In other words, the construction (U — X) — QCoh}F determines
a stack on the étale site of X. The same remark applies to the subcategories
QCoh}[}OI, QCohalg, and QCohzerf (by virtue of Proposition 10.1.6).
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Remark 10.1.11 (Perfection). Let X be an Fp-scheme and let £ be a
Frobenius sheaf on X. We let £/~ denote the direct limit of the diagram

RN RN

Then we have a canonical isomorphism EYP™ ~ oy, € /™ which endows
EV/P™ with the structure of a perfect Frobenius sheaf on X. Moreover, the
canonical map u : £ — EVPT g g morphism of Frobenius sheaves with
the following universal property: for any perfect Frobenius sheaf F on X,
composition with u induces a bijection

Hom gy ppers (EYPT F) = Homgcope (€, F).

In other words, we can regard the construction £ — & /P~ as a left adjoint to
the inclusion functor QCohg(erf C QCohE}r. Note that the perfection functor
£ — EYPT is exact (since filtered direct limits in QCohy are exact; see [15,
Tag 077K]).

10.2. The Riemann-Hilbert Correspondence

We now extend the Riemann-Hilbert correspondence of Theorem 1.0.2 to
the case of a general Fj-scheme.

Notation 10.2.1. For any scheme X, we let Shve; (X, F)) denote the abelian
category of p-torsion sheaves on the étale site of X. If X is an Fj-scheme,
then we have a forgetful functor QCohy — Shve (X, F,) which carries a
sheaf of Ox-modules to its underlying sheaf of F,-modules. We will gener-
ally abuse notation by not distinguishing between a quasi-coherent sheaf &
and its image under this functor. Moreover, we will also abuse notation by
identify £ with its direct image ¢ x.« & under the absolute Frobenius map
px : X = X: note that there is a canonical isomorphism & ~ px, & in the
category Shve (X, F)), though this isomorphism is not O x-linear.

Construction 10.2.2 (The Solution Functor). Let X be an Fj-scheme and
let (£, ¢g) be a Frobenius sheaf on X. We let Sol(€) denote the kernel of
the map (id —gpg) : € — &, formed in the abelian category Shvg (X, F,).
The construction (£, pg) + Sol(€) determines a functor Sol : QCohl —
Shve: (X, F)p), which we will refer to as the solution functor.

Remark 10.2.3. In the special case where X = Spec(R) is affine, the
solution functor of Construction 10.2.2 agrees with the solution functor of
Construction 2.3.1. More precisely, for any Frobenius sheaf £ on X, we have a
canonical isomorphism Sol(€) ~ Sol(I'(X, £)) in the category Shve (X, F)).
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Remark 10.2.4. Construction 10.2.2 is local with respect to the étale topol-
ogy. More precisely, if f : U — X is an étale morphism of Fj-schemes, then
we have a canonical isomorphism f*Sol(€) ~ Sol(f* &) for every Frobenius
sheaf £ on X.

Remark 10.2.5. Let X be an Fj-scheme and let £ be a Frobenius sheaf
on X. Then the canonical map & — £/P~ induces an isomorphism of étale
sheaves Sol(€) — Sol(E'/P™). To prove this, we can reduce to the case where
X is affine, in which case the desired result follows from Proposition 3.2.9.

Remark 10.2.6. Let X be an F)-scheme and let £ be an algebraic Frobe-
nius sheaf on X. Then the sequence

0 Sol(&) = & 4% ¢ 0

is exact (in the abelian category Shvg(X,F))). To prove this, we can work
locally on X and thereby reduce to the case where X is affine, in which case
the desired result follows from Propositions 7.1.1 and 7.2.1.

Theorem 10.2.7. Let X be an Fy-scheme. Then the solution functor Sol
nduces equivalences of abelian categories

QCoh%¥® ~ Shvgy(X,F,)  QCohi' — Shv,(X,F,).

Here Shv,(X,F,) denotes the full subcategory of Shve(X,Fy) spanned by
those p-torsion étale sheaves F which are locally constructible (that is, for
which the restriction F |y € Shvg(U,Fp) is constructible for each affine
open subset U C X ).

Remark 10.2.8. If the scheme X is quasi-compact and quasi-separated,
then a sheaf .# € Shvg (X, F),) belongs to the subcategory Shvg (X, F,)
if and only if it is constructible: that is, if and only if it becomes locally
constant along some constructible stratification of X.

Proof of Theorem 10.2.7. Since the constructions
(U C X) > QCohP', QCoh¥E, Shvy (U, F), Shvs, (U, F)

satisfy effective descent with respect to the Zariski topology (or even the
étale topology), we can reduce to the case where X = Spec(R) is affine. In
this case, the desired equivalences follow from Theorems 1.0.2 and 7.4.1. [

Corollary 10.2.9. Let X be an F,-scheme which is quasi-compact and
quasi-separated. Then the inclusion functor QCohI}(‘?1 — QCohf;ég extends to
an equivalence of categories Ind(QCoh}}})l) ~ QCOh;}g.
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Proof. By virtue of Theorem 10.2.7, it will suffice to show that the in-
clusion functor Shvg (X, F,) — Shvg(X,F,) extends to an equivalence
Ind(Shvg, (X, F)p)) ~ Shvg (X, F)p), which follows from [15, Tag 03SA]. O

Notation 10.2.10. Let X be an F,-scheme. We let RH : Shvg (X, F),) —
QCOh%g denote an inverse of the solution functor. We will refer to RH as
the Riemann-Hilbert functor.

Remark 10.2.11. Let X be an Fj-scheme and let .# € Shv¢ (X, F),) be a
p-torsion étale sheaf on X. Then the Frobenius sheaf RH(.%) is characterized
by the following universal property: for every perfect Frobenius sheaf £ on
X, the canonical map

Homygpeert (RH(F), €) — Homp, (Sol(RH(.7)), Sol(€))
~ Homp, (F, Sol(€))

is a bijection. To prove this, we can reduce to the case where X is affine,
in which case the desired result follows from the properties of the Riemann-
Hilbert functor given in Theorem 6.1.1.

We can summarize the situation as follows: when regarded as a functor
from Shve (X, Fp) to QCohg(erf, the Riemann-Hilbert functor of Notation

10.2.10 is left adjoint to the solution functor Sol : QCohE(erlc — Shvei (X, F)).
10.3. Functoriality

We now consider the behavior of Frobenius sheaves as the Fj,-scheme X
varies.

Construction 10.3.1 (Pullback of Frobenius Sheaves). Let f : X — Y
be a morphism of F,-schemes, so that we have a commutative diagram of
schemes

Xty

Px Py

x-—toy

and therefore a canonical isomorphism f* o ¢y ~ ¢% o f* in the category of
functors from QCohy to QCohy.

Let £ be a Frobenius sheaf on Y, and let ¥¢ : ¢, € — £ be as in Variant
10.1.5. We let ¢+ ¢ denote the composite map

PRI E [y € T [E.
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The construction (€,1g) — (f*&,1s-¢) determines a functor QCoh}f —
QCohE(r. We will denote this functor also by f*, and refer to it as the functor
of pullback along f.

Remark 10.3.2. In the special case where X and Y are affine, the pullback
functor of Construction 10.3.1 agrees with the extension of scalars functor
of Construction 2.1.6.

Under some mild assumptions, the pullback functor f* of Construction
10.3.1 admits a right adjoint:

Proposition 10.3.3. Let f : X — Y be a morphism of schemes which is
quasi-compact and quasi-separated. Then the pullback functor f* : QCOh?)r —
QCOhE}r admits a right adjoint fy : QCohg(lr — QCOh3F/r. Moreover, the func-
tor f. is compatible with the usual direct image functor on quasi-coherent
sheaves: that is, the diagram

QCohfr T~ QCon*

L,

QCohy —> QCohy

commutes up to canonical isomorphism.

Proof. The assumption that f is quasi-compact and quasi-separated guaran-
tees that the pullback functor f*: QCohy — QCohy admits a right adjoint
fx : QCohy — QCohy-. If £ is a Frobenius sheaf on X, we can equip the
direct image f, £ with the structure of a Frobenius sheaf on Y by defining
¢, ¢ to be the composition

F &L fiox £~ oy L E.

We leave it to the reader to verify that the construction (&, ¢g) = (f« €, ¢y, )
determines a functor from QCohE(r to QCohxF/r which is right adjoint to the
pullback functor of Construction 10.3.1. O

Remark 10.3.4. In the situation of Proposition 10.3.3, if £ € QCOhE(r has
the property that ¢g is an isomorphism, then ¢y, ¢ is also an isomorphism.

In other words, the direct image functor f, carries QCohE’(erf into QCohpYerf.
The pullback functor of Construction 10.3.1 generally does not carry

perfect Frobenius sheaves to perfect Frobenius sheaves. To remedy this, we
consider the following variant:
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Construction 10.3.5. Let f : X — Y be a morphism of F,-schemes.
We define a functor f° : QCohg’,erlc — QCohE’(erf by the formula f°(€) =
(fr &P,

Remark 10.3.6. If f : X — Y is a quasi-compact, quasi-separated mor-
phism of Fj-schemes, then the functor f¢ : QCOh%’,erf — QCohg’frf is left
adjoint to the direct image functor f : QCohg’frf — QCohI;,erf.

Remark 10.3.7. In the situation where X and Y are affine, the functor f° :
QCohg),erlc — QCoh%erf agrees (using the identification of Example 10.1.3)
with the functor described in Proposition 3.3.2.

In some cases, there is no difference between the functors f* and f°:

Proposition 10.3.8. Let f : X — Y be a morphism of Fj,-schemes. As-
sume either that f is étale, or that both X and Y are perfect (that is, the
Frobenius maps px : X — X and ¢y : Y — Y are isomorphisms). Then
the pullback functor f* : QCohgr — QCohg(r carries QCohI;,erf into QCth)(erf.
Consequently, the functors f* and f° coincide on QCohg,erf.

Proof. The assertion is local on both X and Y, and therefore follows from
Corollary 3.4.7 (in the case where f is étale) and Proposition 3.4.5 (in the
case where X and Y are perfect). O

Proposition 10.3.9. Let f : X — Y be a morphism of F,-schemes and let
& be an algebraic Frobenius sheaf on' Y. Then f¢ & is an algebraic Frobenius
sheaf on X. If € is holonomic, then f° & is also holonomic.

Proof. Both assertions are local on X and Y. We may therefore assume that
X and Y are affine, in which case the desired results follow from Corollary
4.2.8 and Proposition 4.1.2. O

Proposition 10.3.10. Let X be an F,-scheme and let Xxrerf denote the
perfection of X (so that Oxper = O%pw). Then the canonical map f :
Xrerf X induces an equivalence of categories f, QCohgfrfrf — QCohg’(erf.

Proof. The assertion is local on X and we may therefore assume that X is
affine, in which case the desired conclusion follows from Proposition 3.4.3.
O

We now consider behavior of direct and inverse image functors under
the Riemann-Hilbert correspondence. We first observe that any morphism
of schemes f : X — Y induces a left exact functor f. : Shve (X, F),) —
Shvg (Y, Fp), which is compatible with the direct image functor on quasi-
coherent sheaves when f is quasi-compact and quasi-separated. We therefore
obtain the following:
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Proposition 10.3.11. Let f : X — Y be a morphism of F,,-schemes which
18 quasi-compact and quasi-separated. Then the diagram of functors

QCohf % Shy 4(X, F))

P P’

QCohf 2% Shy (Y, F))

commutes (up to canonical isomorphism).

Variant 10.3.12. Let f : X — Y be any morphism of F,-schemes. Then
the diagram of functors

Shve (Y, Fp) —L > Shve (X, F,)

o o

QCoh™ — L - QConte

commutes (up to canonical isomorphism). In the case where f is quasi-
compact and quasi-separated, this follows formally from Proposition 10.3.11
(by passing to left adjoints; see Remark 10.2.11). The general case can be
handled by working locally on X and Y (which reduces us to the situation
of Proposition 6.2.2).

Construction 10.3.13 (Etale Compactly Supported Direct Images). Let
f X — Y be an étale morphism of F,-schemes. Then the functor f* :
Shve (Y, Fp) — Shvg (X, F,) admits a left adjoint fi : Shvg (X, F,) —
Shv¢ (Y, F)p). Using Theorem 10.2.7, we deduce that there is an essentially
unique functor fi : QCohiég — QCohg"/lg for which the diagram

Shve (X, Fp) — > QCoh'%e

C

Shve (Y, Fp) —5> QCoh .

commutes up to isomorphism. We will refer to fi as the functor of compactly
supported direct image along f.

Example 10.3.14. In the situation of Construction 10.3.13, if X and Y are
étale, then fi : QCohiég — Q(]ohi‘,lg agrees with the functor constructed in
Section 5.
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In the situation of Construction 10.3.13, the functor f; : QCohiég —
QCohil,lg can be characterized a left adjoint to the pullback functor f* ~
re: QvCohi)”/lg — QCohiﬁg . However, it has a slightly stronger property:

Proposition 10.3.15. Let f : X — Y be an étale morphism of F),-schemes
and let £ be an algebraic Frobenius sheaf on X. Then, for any perfect Frobe-
nius sheaf F on'Y, the canonical map
0 : Homgeopeers (f1 €, F) = Homgepeers (fFi1 €, f° F)
— HOmQCOh;;rf (8, f* .F)

is a bijection.

Proof. By virtue of Theorem 10.2.7, we can assume that &€ = RH(&) for some
p-torsion étale sheaf & on X. In this case, the map 6 fits into a commutative
diagram

I—IOInQCohE;,erf (f' RH(éﬁ)? ‘F) —9> I—IOInQCoh‘}’(erf (RH(£)7 f* ‘F)

| |

Homp, (f1 &, Sol(F)) Homp, (&, Sol(f* F))

where the bottom horizontal map is an isomorphism because the formation
of solution sheaves is local for the étale topology, and the vertical maps are
isomorphisms by virtue of Remark 10.2.11. O

Example 10.3.16. Let j : U — X be a quasi-compact open immersion
of F,-schemes. Then the functor j : QCohaUlg — QCohiég can be described
explicitly as follows: if Z C O xperr denotes the (necessarily quasi-coherent)
radical ideal sheaf defining (X — U)P®™, then the Frobenius automorphism
of O xverr endows Z with the structure of a holonomic Frobenius module on
X, and we have jfL 1g((’)Upcrf) ~ 7. More generally, for any F € QCohalg7 we

have jM8(j°E) ~ T ® E.
10.4. Holonomic Frobenius Sheaves

Recall that a Frobenius module M over a commutative F,-algebra R is

holonomic if and only if there exists an isomorphism M =~ M&/ pm, where
My € ModIF{’r is finitely presented as an R-module. We now show that holo-
nomic Frobenius sheaves admit an analogous characterization:
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Theorem 10.4.1. Let X be a Noetherian Fy-scheme and let £ be a Frobe-
nius sheaf on X. The following conditions are equivalent:

(1) There exists a Frobenius subsheaf Eg C & such that £y is coherent
as an Ox-module and the inclusion £y — £ induces an isomorphism
g ~¢
o =c N
(2) There exists an isomorphism £ ~ Eé/p for some &y € Q(]ohg(erf which

is coherent as a O x-module.
(3) The Frobenius sheaf £ is holonomic.

The proof of Theorem 10.4.1 will require some preliminaries.

Remark 10.4.2. Let X and & be as in Theorem 10.4.1, and suppose that
we are given Frobenius subsheaves £y C £; C £. If the inclusion £y — &
induces an isomorphism 5(1]/ PT o &, then the inclusion £; — & has the
same property. This follows immediately from the exactness of the perfection
construction F — F1/P7

Lemma 10.4.3. Let X be an F),-scheme, let € be a Frobenius sheaf on X,
and let £y C € be a quasi-coherent Ox-submodule of £. Then there exists a
smallest Frobenius subsheaf &' C € which contains Eg.

Proof. Take & to be the image of the composite map

* ¢"L
Bn>0(%)" Eo = Dnzo(%) € — €.

O

Remark 10.4.4. In the situation of Lemma 10.4.3, the construction £ —
&' is compatible with pullbacks along flat morphisms; in particular, it is
compatible with restrictions to open sets.

Lemma 10.4.5. Let X be a Noetherian F,-scheme, let £ be an algebraic
Frobenius sheaf on X, and let £y C & be a coherent Ox-submodule of £.
Then the Frobenius subsheaf &' C & of Lemma 10.4.3 is also coherent as a
O x -module.

Proof. By virtue of Remark 10.4.4, we can assume without loss of generality
that X = Spec(R) is affine. In this case, the desired result follows from
Remark 2.4.2. ]

Proof of Theorem 10.4.1. The implications (1) = (2) = (3) are obvious.
We will prove that (3) implies (1). Let £ be a holonomic Frobenius sheaf on
X. Choose a finite cover {U;} of X by affine open sets U; ~ Spec(R;), and
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set M; = E(U;). Then each M; is a holonomic Frobenius module over R;. We
can therefore choose isomorphisms M; ~ Nil/ poo, where each N, € ModPR\ri
is finitely generated as a module over R;. Replacing each N; with its image
in M;, we can assume that IN; corresponds to a Frobenius-stable subsheaf
Fi C E|y,. Applying [15, Tag 01PF], we can find choose a coherent subsheaf
Fi C & satisfying F; |y = Fi. Let F denote the smallest Frobenius subsheaf
of £ which contains each F; (Lemma 10.4.3). It follows from Lemma 10.4.5
that F is coherent as a Ox-module. We claim that the inclusion F — &
induces an isomorphism F 1/~ ~ €. To prove this, it suffices to show that
each restriction & |y, is the perfection of F |y,. This follows from Remark
10.4.2, since F |y, contains F; by construction. O

Remark 10.4.6. Theorem 10.4.1 can be generalized to the non-Noetherian
case. If X is an F)-scheme which is quasi-compact and quasi-separated and
£ is a holonomic Frobenius sheaf on X, then there exists an isomorphism
&~ 8(1)/ pw, where &g € QCohE}r is locally finitely presented as a O x-module.
To prove this, we first apply Theorem 10.2.7 to choose an isomorphism
& = RH(Z) for some constructible p-torsion étale sheaf .# on X. Using a
Noetherian approximation argument, we can choose a map f: X — Y and
an isomorphism .# ~ f*.Z' where Y is a Noetherian F)-scheme and .Z' is
a constructible p-torsion étale sheaf on Y. Applying Lemma 10.4.1, we can
choose an isomorphism RH(.#’) ~ 561/ P” for some &) € QCohl which is
coherent as an Oy-module. Then

€ ~RH(F) ~ RH(f* #') ~ [*(RH(F")) = [*(,P7) = (" €)1 /P~,
where f* & is locally finitely presented as a O x-module.
10.5. Proper Direct Images

In §6.5, we proved that the Riemann-Hilbert equivalence Sol : Mod‘}ig ~
Shvei (Spec(R), F)p) is compatible with direct images along ring homomor-
phisms which are finite and of finite presentation (Theorem 6.5.1). In this
section, we prove a generalization of this result: the global Riemann-Hilbert
correspondence of Theorem 10.2.7 is compatible with direct images along
morphisms of Fp-schemes f : X — Y which are proper and of finite presen-
tation. In the global setting, there is more to the story, since neither of the
direct image functors

fe : QCohl} — QCohfF  f.: Shvg (X, F,) — Shv (Y, F)p)
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is necessarily exact. In this case, we also have a comparison result for higher
direct images (see Theorem 10.5.5 below).

We begin with some general remarks. Let f : X — Y be a quasi-compact
and quasi-separated morphism of schemes. Then we have higher direct image
functors R'f, : QCohy — QCohy (see [15, Tag 01XJ]). These functors are
equipped with canonical isomorphisms ¢y o Rif.~Rif,o ©x,x, and there-
fore carry (perfect) Frobenius sheaves on X to (perfect) Frobenius sheaves
on Y. The central observation is the following:

Theorem 10.5.1. Let f : X — Y be a morphism of F,-schemes which is
proper and of finite presentation. If £ is an algebraic Frobenius sheaf on X,
then the higher direct images R'f, € are algebraic Frobenius sheaves on'Y .

We begin by studying the Noetherian case.

Lemma 10.5.2. Let f : X — Y be a proper morphism of Noetherian F,-
schemes. If £ is a holonomic Frobenius sheaf on X, then the higher direct
images R f, £ are holonomic Frobenius sheaves on 'Y .

Proof. Invoking Theorem 10.4.1, we can write & = Sé/pm, where &j is a

Frobenius sheaf on X which is coherent as an O x-module. It follows from the
direct image theorem [15, Tag 0203] that the higher direct images R’ f. &g
are coherent Oy-modules. Since the functors R f+« commute with filtered
direct limits, we have canonical isomorphisms

Rif, €~ Rif,(EYP7) ~ (Rif, £0)/P™.
Applying Theorem 10.4.1 again, we see that each R'f, £ is holonomic. [

Lemma 10.5.3. Let R be a commutative Fy-algebra, let f : X — Spec(R)
be a morphism of schemes which is proper and of finite presentation, and
let € be an holonomic Frobenius sheaf on X. Then, for every integer i, the
cohomology group H (X, E) is an algebraic Frobenius module over R.

Remark 10.5.4. In the situation of Lemma 10.5.3, one can say more: the
cohomology groups H'(X, &) are actually holonomic Frobenius modules over
R (see Corollary 10.6.3 below).

Proof of Lemma 10.5.3. Applying Theorem 10.2.7, we can choose an iso-
morphism £ ~ RH(.#) for some constructible sheaf .# € Shvg (X, F)). Us-
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ing Noetherian approximation [15, Tags 01ZM and 081F], we can choose a
finitely generated Fj-subalgebra Ry C R and a pullback diagram of schemes

X i X,

o

Spec(R) — Spec(Ry),

where fj is proper. Enlarging Ry if necessary, we can further arrange that
F = 7" Fy, where F( is a constructible p-torsion étale sheaf on Xy (see
[7, §1, Proposition 4.17]). Set £9 = RH(#y), so that £ ~ 7° & (see Variant
10.3.12).

Write R as a filtered direct limit of finitely generated subrings R, C R
containing Ry. For each index «, set X, = Spec(Ra) Xgpec(r,) X0, let mq :
Xo — Xo be the projection onto the second factor, and set £, = 75 £g. Then
each &, is a holonomic Frobenius sheaf on X, (Proposition 10.3.9). Invoking
Lemma 10.5.2, we see that the cohomology group H?(X,, &, ) is a holonomic
Frobenius module over Ry, so that the tensor product R/P~ @ pr= Eals a
holonomic Frobenius module over R (Proposition 4.1.2). We now compute

H(X.8) =~ lmH'(Xa,Ea)
~ Rl/poo ®R1/p> thi(Xa’ga)
~ hﬂRl/pm @ gu/eee H'(Xa: Ea)-

Since the collection of holonomic Frobenius modu}es over R is closed under
direct limits (Proposition 4.2.4), it follows that H'(X, &) is algebraic. O

Proof of Theorem 10.5.1. Let f : X — Y be a morphism of F,-schemes
which is proper and of finite presentation, and let £ be an algebraic Frobenius
sheaf on X. We wish to show that each higher direct image R'f, & is an
algebraic Frobenius sheaf on Y. This assertion is local on Y, so we may
assume without loss of generality that Y = Spec(R) is affine. In this case, X
is quasi-compact and quasi-separated, so Corollary 10.2.9 guarantees that
we can write &£ as a filtered direct limit @5a, where each &, is holonomic.
Since the functor £ — H*(X, £) commutes with filtered direct limits and the
collection of algebraic R-modules is closed under direct limits (Proposition
4.2.4), we may replace £ by £, and thereby reduce to the case where &£ is
holonomic. In this case, the desired result follows from Lemma 10.5.3. [

We now apply Theorem 10.5.1 to the study of our Riemann-Hilbert
correspondence.



A Riemann-Hilbert Correspondence in Positive Characteristic =~ 181

Theorem 10.5.5. Let f : X — Y be a morphism of Fp-schemes which
18 proper and of finite presentation. For every algebraic Frobenius sheaf £
on X, we have canonical isomorphisms Sol(R'f. ) ~ R'f.Sol(€) in the
category Shv (Y, Fp).

Proof. Since £ is algebraic, we have an exact sequence

0— Sol(&) — € 4775 ¢ 4

in the category of étale sheaves on X (Remark 10.2.6). This gives rise to a
long exact sequence of higher direct images

R, & M8 RiClf € 5 RIf,SOI(E) — RS, € 7% Rif, €
which gives rise to short exact sequence of étale sheaves
0—.F — R'f.Sol(€) = Sol(R'f. £) — 0,

where .# denotes the cokernel of the map (id —p) : R f, & — RTUf. £ Tt
will therefore suffice to show that the map (id —p) : R f, & = R~1f, £ is
an epimorphism of étale sheaves on Y. This follows from Remark 10.2.6, since
the Frobenius sheaf R*~!f, £ is algebraic by virtue of Theorem 10.5.1. [

Corollary 10.5.6. Let f : X — Y be a morphism of F,-schemes which is
proper and of finite presentation. Then, for any p-torsion étale sheaf F on
X, we have canonical isomorphisms RH(R'f, ) ~ R'f, RH(.%).

Proof. Using Theorem 10.5.5, we a canonical isomorphism
R'f. 7 ~ R'f, Sol(RH(F)) ~ Sol(R' f. RH(F)),
which is adjoint to a comparison map v : RH(R'f, .#) — R'f. RH(.Z) (Re-
mark 10.2.11). Since the Frobenius sheaf R’ f, RH(.%) is algebraic (Theorem
10.5.1), the map ~ is an isomorphism. [
10.6. Application: The Proper Base Change Theorem

Suppose we are given a pullback diagram of schemes o:

X’L])X

'

y' 4.y,
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For every étale sheaf % on X and every integer n > 0, we have a natural
comparison map « : g*R" f, % — R"f.¢"* .7 in the category of étale sheaves
on Y'. The proper base change theorem in étale cohomology asserts that, if
the morphism f is proper and .% is a torsion sheaf, then the map « is an
isomorphism [15, Tag 095S]. Our goal in this section is to show that, in
special case where o is a diagram of F,-schemes and .% is a p-torsion sheaf,
the proper base change theorem can be deduced from the results of this
paper in an essentially formal way.

We begin with some general remarks. Let o be as above, and suppose
that the morphisms f and f’ are quasi-compact and quasi-separated. In this
case, we can associate to every quasi-coherent sheaf £ on X a comparison
map

ﬂ anf*gg)Rnf, />k

in the category QCohy- of quasi-coherent sheaves on Y’. Moreover, if o is a
diagram of F,-schemes and £ is a Frobenius sheaf on X, then /3 is a morphism
of Frobenius sheaves. If, in addition, the Frobenius sheaf £ is perfect, then
the perfection of 8 supplies a comparison map v : ¢°R"f, £ — R"f.¢’° € in
the category QCOh?ﬁrf.

Proposition 10.6.1. Suppose we are given a pullback diagram of F,-
schemes

x-Y.ox

b

y' 2.y,

where [ is proper and of finite presentation. Then, for any algebraic Frobe-
nius sheaf £ on X, the comparison maps v : ¢°R"fo & — R"f.g°E are
isomorphisms.

Proof. The assertion is local on Y and Y’; we may therefore assume without
loss of generality that Y = Spec(R) and Y’ = Spec(S) are affine. In this
case, we wish to show that the canonical map S'/P~ @piwe H*(X,&) —
H*(X', ¢° €) is an isomorphism. Choose a finite covering {U;} of X by affine
open subsets and let {U/} denote the open covering of X’ given by U/ =
g ~U;. Let C* denote the Cech complex of {U;} with coefficients in the sheaf
&, so that we can identify H*(X, &) with the cohomology of the cochain
complex C*. Note that for any affine open subset U C X having inverse
image U’ C X', we have a canonical isomorphism (¢"* £)(U’) = SYP @ pajpoe
E(U), so that Sl/p Qpiwe C* is the Cech complex of the open covering
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{U!} with coefficients in the sheaf ¢’*E£. We can therefore identify v with
the canonical map

SUP™ @ ppe HY(C*) — HY(SYP™ @ pajpee C*).

For every affine open subset U C X with inverse image U’ C X', Remark
3.5.5 supplies isomorphisms

O (WU ifm=0

Torf"™ Sl/pm,(’)l/poo U)) =
" ( X @) 0 otherwise.

It follows that the canonical maps

Torf"™ (SVP™ £(U)) — Torf?/ C Oy, W)

are isomorphisms. Our assumption that £ is algebraic guarantees that £(U)
is an algebraic Frobenius module over Ox (U), so that the groups

Torl¥" O (O™ U7, ()

vanish for £ > 0. We therefore also have Torﬁl/poo (SY/P~ £(U)) ~ 0 for k >
0. Allowing U to vary, we conclude that the tensor product S¥/P™ @ g1/ C*
is equivalent to the left derived tensor product S1/P~ ®IL%1 spee C*. We therefore
have a convergent spectral sequence

ESt: Tor®"™ (S0 HI(C*)) = H S (RVP™ ®g1j= CF),

in which ~ appears as an edge map. To show that « is an isomorphism, it
suffices to show that the groups Eg’t vanish for s > 0. This follows from
Theorem 3.5.1, since each HY(C*) ~ H!(X,€) is an algebraic Frobenius
module over R by virtue of Proposition 10.5.1. O

Corollary 10.6.2 (Proper Base Change). Suppose we are given a pullback
diagram of F,-schemes

x2ox
|
vy Lo,
where f is proper and of finite presentation. Then, for every p-torsion étale

sheaf F on X, the comparison map « : g*R"f. F — R"f.¢* F is an
isomorphism
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Proof. Using Corollary 10.5.6, we can identify the image of o under the
Riemann-Hilbert correspondence RH : Shvg (Y, Fp) — QCohgﬁrf with the
comparison map v : ¢°R" f, RH(F) — R" f.¢'° RH(F) of Proposition 10.6.1.
Since RH(.%) is algebraic, the map ~ is an isomorphism, so that « is also
an isomorphism. O

We can use Proposition 10.6.1 to show that Lemma 10.5.2 holds in the
non-Noetherian case:

Corollary 10.6.3. Let f : X — Y be a morphism of F,-schemes which is
proper and of finite presentation. If £ is a holonomic Frobenius sheaf on X,
then the higher direct images R" fx € are holonomic Frobenius sheaves on'Y .

Proof of Corollary 10.6.3. The assertion is local on Y, so we may assume
without loss of generality that Y = Spec(R) is affine. Proceeding as in the
proof of Lemma 10.5.3, we can choose a pullback diagram

X i Xo

L

Spec(R) s Spec(Rp)

where fo is proper, Ry C R is a finitely generated F,-subalgebra, and
E ~ 7 & for some holonomic Frobenius module £y on Xjy. Lemma 10.5.2
guarantees that R" fo. £ is holonomic, so that 7/° R" fo. £g is also holonomic
(Proposition 4.1.2). Proposition 10.6.1 supplies an isomorphism

v TR fou Eg — R"fm®Eg ~ R"f, E,

so that R"f, £ is holonomic as well. O

Corollary 10.6.4. Let f : X — Y be a morphism of F,-schemes which
is proper and of finite presentation. Then the higher direct image func-
tors R" f, : Shvg(X,Fp) = Shv (Y, Fy) carry constructible sheaves to con-
structible sheaves.

Proof. Combine Corollary 10.6.3 with Theorem 10.2.7 and Corollary 10.5.6.
O

Remark 10.6.5. Let f : R — S be a morphism of Fj-algebras, let X
be an R-scheme which is proper and of finite presentation, and set Xg =
X Xgpec(r) Spec(S). In this situation, we have a comparison map

ﬁ : H*(X, Ox) Rpr S — H*(Xs,OXs).
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In general, this map need not be an isomorphism, even if X is assumed
to be smooth and projective over R (see Example 10.6.6). However, the
domain and codomain of S can be regarded as Frobenius modules over S,
and Proposition 10.6.1 implies that 5/P™ is an isomorphism: in other words,
every element of ker(f) or coker(f) is annihilated by some power of the
Frobenius. In other words, the proper base change theorem holds in the
setting of coherent cohomology, provided that we work “up to perfection.”

Example 10.6.6. Let k be a field of characteristic p and set R = k[t]. Let
G — Spec(R) be a finite flat group scheme with generic fibre p,, and special
fibre cy,. For each k > 2, we can approximate the stack BG — Spec(R) by a
smooth projective R-scheme X with geometrically connected fibres, i.e., the
O-cohomology of the generic fibre X, agrees with that of B(u,) in degrees
< k, while that for the special fibre X agrees with that of B(cy,) in degrees
< k; an explicit example is provided when p = k = 2 by degenerating a
“classical” Enriques surface X, to a “supersingular” Enriques surface X.
Assume now that k = 2 for simplicity. As p,, is linearly reductive, it follows
that H'(X,,Ox,) = 0 for i € {1,2}. On the other hand, H'(X,,Ox,) # 0
for i = 1,2. Now consider the R-module H!(X,Ox). Since H*(X;,O0x.) =
0, it is easy to see that H'(X,Ox) is t-torsionfree. But H*(X,Ox)[{] =
H'(X,,0x,) = 0, so it follows that H'(X,Ox) = 0. On the other hand,
H'(X,,0x.) # 0, so we have constructed an example where the base change
map

HY(X,0x)®rk — HY (X,,0x.)

is not an isomorphism.
11. The Contravariant Riemann-Hilbert Correspondence

Let R be a smooth algebra over a field k of characteristic p. In [6], Emerton
and Kisin construct an equivalence of triangulated categories

RSolgx : Df,,(R[F]) ~ D’(Spec(R),F,),

where ngu(R[F]) denotes the full subcategory of D(R[F]) spanned by the
cohomologically bounded chain complexes whose cohomology groups finitely
generated unit Frobenius modules and D%(Spec(R),F,) the constructible
derived category of Spec(R): that is, the full subcategory of the derived
category of Shve(Spec(R), F},) spanned by those chain complexes which are
cohomologically bounded with constructible cohomology.
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Our goal in this section is to review (and generalize) the construction of
the functor RSolgk. We begin in §11.1 by reviewing the notion of a finitely
generated unit Frobenius module over a commutative F-algebra R (Defini-
tion 11.1.3), following [12] and [6]. The collection of finitely generated unit
modules is always closed under the formation of cokernels and extensions
(Propositions 11.1.4 and 11.1.5). In §11.2 we show that, when R is a regu-
lar Noetherian F-algebra, it is also closed under the formation of kernels
(Proposition 11.2.1). In this case, we let ngu(R[F |) denote the full subcat-
egory of the derived category D(R[F]) spanned by those cochain complexes
M = M* whose cohomology groups H"(M) are locally finitely generated
unit Frobenius modules which vanish for all but finitely many values of n.
In §11.3, we show that there is a sensible way to define the definition of
the subcategory Dé’gu(R[F]) C D(R[F]) for an arbitrary Fp-algebra R, by
restricting our attention to cochain complexes which satisfy suitable “de-
rived” versions of the requirements defining finitely generated unit modules
(see Definition 11.3.4 and Proposition 11.3.9). In §11.4 we define a solution

functor RSolgxk : D?gu (Mod¥)°P — D(Shve; (Spec(R), F,)) and assert that it

restricts to an equivalence of categories D?gu(Mole{)Op ~ D%(Spec(R), F))
(Theorem 11.4.4). Taking R to be a smooth algebra of finite type over a
field k, this recovers the main result of [6] in the case of the affine scheme
X = Spec(R). However, our equivalence is a bit more general, since we allow
R to be an arbitrary F)-algebra. The proof of Theorem 11.4.4 will be given
in §12 by comparing the functor RSolgk with the solution functor Sol of
Construction 2.3.1 (and its derived functors).

11.1. Finitely Generated Unit Frobenius Modules

We now introduce the class of finitely generated unit Frobenius modules,
following [6].

Notation 11.1.1. Let R be a commutative F,-algebra and let M be an R-
module. We let ¢ M denote the R-module obtained from M by extending
scalars along the Frobenius homomorphism ¢ : R — R. If M is a Frobenius
module over R, then the Frobenius map ¢y : M — M'Y/P determines an
R-module homomorphism ¢ M — M, which we will denote by ;.

Remark 11.1.2. In the situation of Notation 11.1.1, we can regard ¢ M as
a Frobenius module over R (Construction 2.1.6), and ), is a morphism of
Frobenius modules over R. Moreover, the morphism ,; induces an isomor-
phism of perfections (ap}}M)l/pm — MYP~ . To prove this, we can extend
scalars to the perfection RY/P™ and thereby reduce to the case where R is
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perfect. In this case, the morphism v, coincides with (the Frobenius pull-
back of) the map ¢y : M — MYP which is evidently an isomorphism of
perfections.

Definition 11.1.3. Let R be a commutative F,-algebra and let M be a
Frobenius module over R. We will say that M is finitely generated unit if it
satisfies the following pair of conditions:

(a) The module M is finitely generated as a left module over the noncom-
mutative ring R[F] of Notation 2.1.5.
(b) The map vps : ¢ ;M — M of Notation 11.1.1 is an isomorphism.

We now record some easy closure properties of the class finitely generated
unit Frobenius modules.

Proposition 11.1.4. Let R be a commutative F,-algebra and let f : M —
N be a morphism of Frobenius modules over R. If M and N are finitely
generated unit, then the cokernel coker(f) is finitely generated unit.

Proof. Since N is finitely generated as a left module over R[F'], the quotient
coker(f) is also finitely generated as a left module over R[F]. We have a
commutative diagram of exact sequences

e T e N o (coker(f) —> 0
le ldm l";z}coker(f)
M—t N coker(f) ——0.

Since 1) and ¢y are isomorphisms, it follows that Ycoker(s) is also an iso-
morphism. O

Proposition 11.1.5. Let R be a commutative Fp-algebra and suppose we
are given an ezact sequence of Frobenius modules 0 — M’ — M — M" — 0.
If M and M" are finitely generated unit, then M 1is finitely generated unit.

Proof. Since the collection of finitely generated left R[F]-modules is closed
under extensions, the module M is finitely generated over R[F']. It will there-
fore suffice to show that the map ¢y : M — M is an isomorphism. Let
K denote the kernel of the map ¢5M — ¢}, M". The morphism )/ fits into
a commutative diagram of exact sequences

0— K ——¢pM — o M" ——0

b

0 M’ M M" 0.
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Note that the map ¢ factors as a composition ¢}, M’ ENFER M’ where g
is surjective. Since M’ is finitely generated unit, the map 1, is an isomor-
phism. It follows that f is also an isomorphism. Applying the five lemma to
the preceding diagram, we conclude that i, is also an isomorphism. O

11.2. Existence of Kernels

Our next goal is to prove a counterpart of Proposition 11.1.4 for kernels
of morphisms between finitely generated unit Frobenius modules. This will
require a stronger assumption on R:

Proposition 11.2.1. Let R be a regular Noetherian Fy-algebra and let f :
M — N be a morphism of Frobenius modules over R. If M and N are
finitely generated unit, then K = ker(f) is also finitely generated unit.

The proof of Proposition 11.2.1 is essentially contained in [12] (see also
[6]). We include a proof here for the convenience of the reader, and because
the proof uses an auxiliary construction which will play a central role in §12.

Construction 11.2.2 (Unitalization). Let R be a commutative Fp-algebra
and let M be an R-module equipped with an R-linear map aps : M — @R M.
We let M™ denote the direct limit of the diagram

M Ly g N EROM, 2 g PROM By
We will refer to M" as the unitalization of the pair (M, a ). Note that there

is a canonical isomorphism M" ~ @R M*", whose inverse endows M" with
the structure of a Frobenius module over R.

Example 11.2.3. Let R be a commutative Fp-algebra and let M be a
Frobenius module over R for which the map v : oM — M of Notation
11.1.1 is an isomorphism. Then the unitalization of the pair (M, w&l) can
be identified with M.

Remark 11.2.4 (Functoriality). Let R be a commutative Fp-algebra and
suppose we are given a commutative diagram of R-modules

f

M N
*l or(f) *l
OrM —— R N.

Then f induces a map of unitalizations f“: M* — N". Moreover:
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e The cokernel of f* can be identified with the unitalization of coker( f)
(with respect to the induced map acoer(f) : coker(f) — coker(p} f) =~
o coker(f)).

e If the Frobenius map ¢r : R — R is flat (for example, if R is regu-
lar and Noetherian), then the kernel of f* can be identified with the
unitalization of ker(f) (with respect to the map ker(f) — ker(¢pf) ~

¢ ker(f)).

Let R be a commutative F,-algebra and let R[F] denote the noncom-
mutative ring of Notation 2.1.5. For any R-module M, we have a canonical
isomorphism

RF|I@QR M ~M @ peM ©pEM S --- .

Suppose that M is equipped with a map ay : M — @R M. Then the con-
struction x — (2, —ap(x)) determines an R-linear map M — M @ ¢ M C
R[F] ®g M, which extends to an R[F]-linear map o : R[F| @g M —
R[F] ®r M. A simple calculation shows that the map o' is a monomor-
phism with cokernel M™. We therefore obtain the following:

Proposition 11.2.5. Let R be a commutative F,-algebra and let M be
an R-module equipped with an R-linear map ¢pr : M — @pM. Then the
preceding construction determines an exact sequence of Frobenius modules
0— R[F|®r M — R[F]®r M — M" — 0.

Corollary 11.2.6. Let R be a commutative F,-algebra and let M be a
finitely generated R-module equipped with an R-linear map opy : M — oM.
Then the unitalization M™ is a finitely generated unit Frobenius module.

Proof. Condition (a) of Definition 11.1.3 follows from Proposition 11.2.5,
and condition (b) is immediate from the construction. O

We will be primarily interested in the following special case of Construc-
tion 11.2.2:

Construction 11.2.7. Let R be a commutative F)-algebra and let M be a
Frobenius module over R, which we regard as an R-module equipped with
an R-linear map ¢y : oM — M (Notation 11.1.1). Suppose that M is
finitely generated and projective as an R-module, with R-linear dual MV =
Homp (M, R). Then the dual of ¢/ is an R-linear map ¢y, : MY — @5 M".
We let D(M) denote the unitalization of the pair (MY, 4y,).

Example 11.2.8. Let R be a commutative Fj-algebra and let M be a
Frobenius module over R. Suppose that M is a projective R-module of finite
rank and that the map ¥y : oM — M is an isomorphism. In this case,
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the Frobenius module D(M) of Construction 11.2.7 can be identified with
the R-linear dual MV, endowed with the Frobenius structure characterized
by the formula 1y = (1,) ! (Example 11.2.3).

Proposition 11.2.9. Let R be a commutative F,-algebra and let M be a
Frobenius module over R which is finitely generated and projective as an
R-module. Then D(M) has projective dimension <1 as a left R[F|-module.

Proof. Use the exact sequence 0 — R[F]@r M"Y — R[F|@r M"Y — D(M) —
0 supplied by Proposition 11.2.5. O

Remark 11.2.10. In the situation of Construction 11.2.7, the R-module
D(M) is presented as a filtered direct limit of projective R-modules of finite
rank, and is therefore flat over R.

In the case where R is a smooth algebra over a field k£, Emerton and
Kisin prove a converse to Corollary 11.2.6: every finitely generated unit
Frobenius module arises as the unitalization of a finitely generated R-module
M, equipped with some map aps : M — ¢}, M. The proof given in [6] applies
more generally whenever R is a regular Noetherian Fp-algebra (Corollary
11.2.12). We begin with an observation which is valid for any F,-algebra R:

Proposition 11.2.11. Let R be a commutative Fp-algebra and let M be a
finitely generated unit Frobenius module over R. Then there exists a Frobe-
nius module N over R which is finitely generated and free as an R-module
and a surjective map of Frobenius modules f : D(N) — M (here D(N) is
the Frobenius module given by Construction 11.2.7).

Proof. Choose a finite collection of elements {x;};c; of M which generate M
as a left R[F]-module. Invoking the assumption that the map ¥y : M —
M is an isomorphism, we conclude that M is generated as an R-module
by the elements F ka:j for £k > 0 and j € I. We may therefore choose some
integer n > 0 such that each x; belongs to the R-submodule of M generated
by the elements {Fkxj }jeri<k<n- Replacing the set {z;};er by the finite set
{Fkxi}ig,kn, we can reduce to the case n = 1: that is, we can arrange that
there are relations x; = Zjel a; jom(xj) for some coefficients a; j € R. Let
N = R’ be the free R-module on generators y for i € I, and equip N with
the structure of a Frobenius module by setting oy (y,’) = Zjel ajﬂ-y;-/. Using
Proposition 11.2.5 (or by inspection), we see that ID(N) can be identified with
the left R[F|-module generated by symbols {y; }icr, subject to the relations
Yi = jerGijFag. It follows that there is a unique morphism of Frobenius
modules f : D(N) — M satisfying f(y;) = x;. Since the elements x; generate
M as an R[F]-module, the morphism f is surjective. O
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Proof of Proposition 11.2.1. Let R be a regular Noetherian F-algebra and
let f: M — N be a morphism of finitely generated unit Frobenius modules
over R. We wish to show that the kernel K = ker(f) is also finitely generated
unit. The regularity of R guarantees that the Frobenius morphism ¢p : R —
R is flat. It follows that we can identify the pullback @3 K with the kernel of
the induced map @5 (f) : M — @i N. We therefore have a commutative
diagram of short exact sequences

0 prK oM T e N
le lw}\l le
0 K M—1 N

Since 1p; and ¥y are isomorphisms, it follows that ¥ is also an isomor-
phism.

We now complete the proof by showing that K is finitely generated
as a left R[F]-module. Using Proposition 11.2.11, we can choose a finitely
generated projective R-module My, a map ayy, : Mo — @i Mp, and a sur-
jection of Frobenius modules g : My — M. It follows that the induced map
ker(g o f) — K is also surjective. We may therefore replace f by go f and
thereby reduce to the case M = M{. Let fo denote the composition of f
with the tautological map My — MY ~ M. Applying Remark 11.2.4 to the
commutative diagram

fo N

[ b

SOEMO - SOENv

we deduce that the kernel of f can be identified with the unitalization of
ker(fp). Since R is Noetherian, the kernel ker(fy) is finitely generated as an
R-module, so that ker(f) is finitely generated as an R[F]-module by virtue
of Proposition 11.2.5. O

Corollary 11.2.12 ([6]). Let R be a reqular Noetherian Fy-algebra and let
M be a finitely generated unit Frobenius module over R. Then there exists an
isomorphism M ~ M, where My is a finitely generated R-module equipped
with a map o : Mo — R M.

Proof. Using Proposition 11.2.11, we can choose a surjection of Frobenius
modules f: N* — M, where N is a free R-module of finite rank equipped
with a map ay : N — ¢@RrN. As in the proof of Proposition 11.2.1, we
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can write ker(f) ~ K", where K denotes the kernel of the composite map

N = N* L A oand ag : K — @R K is the restriction of ay. Applying
Remark 11.2.4 to the diagram

K N
-k
PRK YR,

we deduce that M ~ coker(K* — N") can be identified with the unital-
ization of the quotient N/K (with respect to the map ay/x : N/K —
¢R(N/K) induced by ay). O

11.3. Finitely Generated Unit Complexes

Our next goal is to introduce an analogue of Definition 11.1.3 for cochain
complexes M = M* of Frobenius modules over a commutative Fj-algebra
R. When R is a regular Noetherian F,-algebra, the collection of finitely
generated unit Frobenius modules span an abelian subcategory of Mod%
which is closed under extensions (Propositions 11.1.4, 11.1.5, and 11.2.1), so
we obtain a sensible finiteness condition on cochain complexes by requiring
that the cohomology groups H™(M) are finitely generated unit. However, to
get a theory which works well for arbitrary F,-algebras, we must abandon
the idea of having a finiteness condition that can be tested at the level
of individual cohomology groups: instead, we will require that the entire
cochain complex M* satisfies suitable analogues of conditions (a) and (b) of
Definition 11.1.3, when regarded as an object of a suitable derived category.

Notation 11.3.1. For every associative ring A, we let D(A) denote the
derived category of the abelian category of left A-modules. We will be par-
ticularly interested in the case where A = R[F] for some commutative F,,-
algebra R; in this case, we refer to D(R[F]) as the derived category of Frobe-
nius modules over R. We will generally abuse notation by identifying Mod%lr
with its essential image in D(R[F]) (by regarding every Frobenius module
over R as a chain complex concentrated in degree zero).

Remark 11.3.2. Let R be a commutative Fj-algebra and let M be an
object of D(R[F]). We will generally abuse notation by identifying M with
its image under the forgetful functor D(R[F]) — D(R). Note that we have
a canonical map M — M'Y? in D(R) (where MY/? denotes the image of M
under the functor D(R) — D(R) given by restriction of scalars along the
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Frobenius). We will denote this map by ¢y and refer to it as the Frobenius
morphism of M.

Remark 11.3.3 (Comparison with D(R)). Let R be a commutative F)-
algebra. Recall that the forgetful functor Mod%r — Modg has an exact right
adjoint, given by the functor M +— MT of Construction 3.1.2. Passing to
derived categories, we see that the forgetful functor D(R[F]) — D(R) also
has a right adjoint, given by applying the functor M +— MT levelwise. For
any cochain complex N = N*® of Frobenius modules over R, Construction
3.1.7 produces a short exact sequence of cochain complexes 0 — N® —
Nt — (N*)V/PT — 0, which we can regard as a distinguished triangle in the
derived category D(R[F]). It follows that for any object M € D(R[F]), we
have a long exact sequence

-+ = Homp(g) (M, NY/P[-1]) — Hom p gy (M, N)
— HOIHD(R)(M,N) — e,

which specializes to the exact sequence of Construction 3.1.7 in the special
case where M and N are concentrated in a single degree.

We now introduce a “derived” analogue of Definition 11.1.3:

Definition 11.3.4. Let R be a commutative Fj-algebra and let M be an
object of D(R[F]). We will say that M is derived finitely generated unit if it
satisfies the following pair of conditions:

(a) The module M is a compact object of the triangulated category
D(R[F]): that is, it is quasi-isomorphic to a bounded chain complex
of finitely generated projective left R[F]-modules.

(b) The Frobenius map ¢ : M — M'/? induces an isomorphism R'/P @k
M — M in the derived category D(R).

We let D?gu(R[F ]) denote the full subcategory of D(R[F]) spanned by the

derived finitely generated unit objects.

Remark 11.3.5. Let R be a commutative Fj-algebra. Then D?gu(R[F D)isa
triangulated subcategory of D(R[F]). In other words, for any distinguished
triangle M’ — M — M" — M'[1] in D(R[F)), if any two of the objects M,
M', and M" are derived finitely generated unit, then so it the third.

Example 11.3.6. Let R be a commutative Fj-algebra and let M be a
Frobenius module over R which is finitely generated and projective as an R-
module. Then the Frobenius module (M) of Construction 11.2.7 belongs to

D%’gu(R[F ]). Condition (b) of Definition 11.3.4 follows from Corollary 11.2.6
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(note that the derived pullback RY/? @% D(M) agrees with ¢%D(M), since
D(M) is flat over R by virtue of Remark 11.2.10). Condition (a) of Definition
11.3.4 follows from the exact sequence 0 — R[F|®@r MY — R[F|@r MY —
D(M) — 0 of Proposition 11.2.5.

We now study the relationship between the collection of derived finitely
generated unit objects of D(R[F]) and the collection of finitely generated
unit objects of Mod?{. We begin with a simple observation which is valid for
any F,-algebra R:

Proposition 11.3.7. Let R be a commutative F,-algebra and let M be a

nonzero object of D?gu(R[F]). Then:

(1) There exists a largest integer n for which the Frobenius module H™ (M)
18 NoONZero.

(2) For the integer n of (1), the Frobenius module H*(M) is finitely gen-
erated unit.

Proof. Without loss of generality, we can assume that M is a bounded
cochain complex of finitely generated projective left R[F]-modules. Assertion
(1) is immediate. To prove (2), we first note that we can arrange (replacing
M by a quasi-isomorphic complex if necessary) that M™ = 0 for m > n;
in this case, we have H"(M) = coker(M™ ! — M™), which guarantees that
H™(M) is finitely generated as a left R[F]-module. The spectral sequence

Tor®(RYP? HY(M)) = H'~*(RY? @& M)

supplies an isomorphism H™(RYP @% M) ~ % H"(M), so that condition (b)
of Definition 11.1.3 follows from condition (b) of Definition 11.3.4. O

Corollary 11.3.8. Let R be a commutative Fy-algebra and let M be a
nonzero object of D?gu(R[F]), and let n be an integer for which the coho-
mology groups H™ (M) vanish for m > n. Then there exists an object N €
Mod%\r which is finitely generated and projective as an R-module and a map
f:D(N)[—n| = M in D(R[F)]) for which the induced map D(N) — H" (M)
18 surjective.

Proof. Applying Proposition 11.3.7, we conclude that H"(M) a finitely gen-
erated unit. Using Proposition 11.2.11, we can choose an object N € 1\/Iod1j;blr
which is finitely generated and projective as an R-module and a surjection of
Frobenius modules g : D(N) — H"(M). It follows from Proposition 11.2.9
that the map Homp(g(p))(D(N)[-n], M) — Hompp(D(N), H"(M)) is sur-
jective, so we can lift gy to a morphism g : D(N)[—n] — M in the derived
category D(R[F]). O
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When the Fp-algebra R is sufficiently nice, there is a very close relation-
ship between Definitions 11.1.3 and 11.3.4:

Proposition 11.3.9. Let R be a regular Noetherian Fy-algebra. Then an
object M € D(R[F]) belongs to ngu(R[F]) if and only if it satisfies the
following conditions:

(1) For every integer m, the cohomology group H"(M) is a finitely gener-
ated unit Frobenius module (in the sense of Definition 11.1.3).
(2) The cohomology groups H™(M) vanish for n < 0 and for n > 0.

The proof of Proposition 11.3.9 will require a few preliminary remarks.
We begin with a standard observation (see for example [11, 5.94]):

Lemma 11.3.10. Let R be a regular Noetherian ring and let M be a
finitely generated R-module. Then M has finite projective dimension as an
R-module.

Remark 11.3.11. In the situation of Lemma 11.3.10, it is not necessarily
true that every R-module has finite projective dimension: this holds if and
only if R has finite Krull dimension.

Proof of Lemma 11.3.10. We  define finitely = generated R-modules
{M(n)}n>0 by recursion as follows: set M(0) = M, and for n > 0 let M (n)
denote the kernel of some surjection R¥ — M (n — 1). For each n > 0, let
U(n) C Spec(R) denote the set of prime ideals p C R for which the local-
ization M (n), is a projective R-module. Then U(n) is an open subset of
Spec(R): more precisely, it is the largest open subset on which the coher-
ent sheaf associated to M(n) is locally free. Note that a point p belongs to
U(n) if and only if the localization M, has projective dimension < n as an
R,-module. Since R is regular, the set U(n) contains every prime ideal of
height < n. We therefore have |J,,~,U(n) = Spec(R). Since the spectrum
Spec(R) is quasi-compact, we must have U(n) = Spec(R) for some n > 0,
which guarantees that M has projective dimension < n. O

Lemma 11.3.12. Let R be a regular Noetherian F,-algebra and let M be a
finitely generated unit Frobenius module over R. Then M has finite projective
dimension as a left R[F|-module.

Proof. Using Corollary 11.2.12, we can assume that M is the unitalization
Mg, where My is a finitely generated R-module equipped with a map « :
My — @R My. Invoking Lemma 11.3.10, we deduce that there exists an
integer n > 0 such that M has finite projective dimension < n as an R-
module. Note that R[F] is isomorphic to the direct sum @,,~, R/?" as a
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right R-module, and is therefore flat over R since the Frobenius map g is
flat. It follows that the tensor product R[F|®pr My has projective dimension
< n as a left R[F]-module. Using the exact sequence 0 — R[F] ®pr My —
R[F) ®r My — M§ — 0 of Proposition 11.2.5, we see that M{ ~ M has
projective dimension < n + 1 as a left R[F]-module. O

Proof of Proposition 11.5.9. Let R be a commutative F,-algebra and let
M € D(R[F]). We first show that if M satisfies conditions (1) and (2),
then M is derived finitely generated unit. Since ngu(R[F]) is a triangulated
subcategory of D(R[F]), we may assume without loss of generality that M is
a finitely generated unit Frobenius module, regarded as a cochain complex
concentrated in a single degree. Then the map ¥ : M — M is an
isomorphism. Since R is a regular Noetherian F,-algebra, the Frobenius
morphism ¢r : R — R is flat; we may therefore identify @3 M with the
derived pullback RYP @k M. Tt follows that M satisfies condition (b) of
Definition 11.3.4. We now verify (a). Using Lemma 11.3.12, we see that
there exists an integer n > 1 that M has projective dimension < n as a
left module over R[F]. We proceed by induction on n. Assume first that
n > 1. Using Proposition 11.2.11, we can choose a short exact sequence of
Frobenius modules

0—-K—->DN)—-M-—=0

where N € ModIF{’r is finitely generated and projective as an R-module. Since
D(N) has projective dimension < 1 over R[F] (Proposition 11.2.9), it follows
that K has projective dimension < n — 1 as a left module over R[F]. Using
Proposition 11.2.1, we deduce that K is a finitely generated unit Frobenius
module. Applying our inductive hypothesis, we conclude that K belongs to
D?gu(R[F]). Since D(N) also belongs to Dé’gu(R[F]) (Example 11.3.6), we
conclude that M belongs to D?gu(R[F ]) as desired.

We now treat the case where M has projective dimension < 1 over R[F].
Choose an exact sequence of Frobenius modules 0 - Q@ — P —- M — 0,
where P is a finitely generated free left R[F]-module. Our assumption that
M has projective dimension < 1 guarantees that @ is a projective R[F]-
module. Consequently, to verify condition (a) of Definition 11.3.4, it will
suffice to show that @ is finitely generated as an R[F]-module. Equivalently,
it will suffice to show that the module M is finitely presented as an R[F]-
module. This follows from the exact sequence 0 — K — D(N) - M —
0 above, since D(N) is a finitely presented left R[F]-module (Proposition
11.2.5) and K is a finitely generated left R[F]-module (Proposition 11.2.1).

We now prove the converse. Suppose that M is an object of D?gu(R[F )E
we wish to show that M satisfies conditions (1) and (2). Condition (2) is
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obvious (since M is quasi-isomorphic to a bounded chain complex of pro-
jective left modules over R[F|). Suppose that condition (1) fails: then there
exists some largest integer n such that H”(M) is not a finitely generated unit

Frobenius module. Form a distinguished triangle M’ ERG VNG VN M'[1],
where f induces an isomorphism H¥(M’) — H¥(M) for k < n, and the
groups H¥(M') vanish for k& > n. Then M” satisfies conditions (1) and
(2), and therefore belongs to D?gu(R[F ]). It follows that M’ also belongs to
D%’gu(R[F ]). This contradicts Proposition 11.3.7, since the top cohomology
group H"(M') ~ H"(M) is not a finitely generated unit Frobenius mod-

ule. O
11.4. The Emerton-Kisin Correspondence

We now introduce a variant of Construction 2.3.1.

Construction 11.4.1. Let R be a commutative Fj-algebra and let M be
a Frobenius module over R. We define a functor

Solgk (M) : CAlgSt — Modp,

by the formula Solgk (M )(A) = Hompgz(M, A). It is not difficult to see that
the functor Solgk (M) is a sheaf for the étale topology, which is contravari-
antly functorial in M. We can therefore regard the functor M — Solgk (M)
as a functor of abelian categories Solgx : (Modif)°P — Shve (Spec(R), F)).
We will refer to Solgk as the Emerton-Kisin solution functor.

Example 11.4.2. Let R be a commutative Fp-algebra. Then the Emerton-
Kisin solution functor Solgk carries the Frobenius module R[Fl to the struc-
ture sheaf of Spec(R): that is, to the quasi-coherent sheaf R of Example
2.2.5.

Construction 11.4.3. Let R be a commutative F,-algebra. We let
D~ (R[F]) denote the subcategory of D(R[F]) spanned by those cochain
complexes M which are cohomologically bounded above: that is, which sat-
isfy H"(M) ~ 0 for n > 0. Note that D~ (R[F]) contains the subcategory
D, (R[F]) C D(R[F)) of Definition 11.3.4.

Let D¢t (Spec(R),F)) denote the derived category of the abelian cate-
gory Shvei (Spec(R), F)). It follows immediately from the definitions that the
Emerton-Kisin solution functor Solgk : (Mod}})°P — Shv (Spec(R), F)) is
left exact. It therefore admits a right derived functor

RSolgk : D™ (R[F])°® — D¢ (Spec(R),Fp).
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We can now formulate the main result:

Theorem 11.4.4. Let R be a commutative F,-algebra. Then the functor
RSolgk : D™ (R[F])°® = Dg(Spec(R),F)) induces a fully faithful embedding

Df,(RIF])™ = Da(Spec(R), Fyp),

whose essential image is the subcategory DY(Spec(R),F,) C D4(Spec(R),
F,) spanned by those complexes of sheaves which are cohomologically bounded
with constructible cohomology sheaves.

Remark 11.4.5. In the special case where R is a smooth algebra of finite
type over a field k, Theorem 11.4.4 essentially follows from Theorem 11.3
of [6], applied to the affine scheme X = Spec(R). Beware that the functor
RSolgk is not quite the same as the functor appearing in [6]: they differ by
a cohomological shift by the dimension of X. Of course, this is an issue of
normalization and has no effect on the conclusion of Theorem 11.4.4.

We will give a proof of Theorem 11.4.4 in §12 by developing a theory of
duality for Frobenius modules, which will allow us to relate RSolgk to the
solution functor Sol studied earlier in this paper (see §12.6).

12. Duality for Frobenius Modules

Let R be a commutative F,-algebra. Our goal in this section is to prove
Theorem 11.4.4 by showing that the functor

RSolgk : Dby, (R[F])°® — Db(Spec(R); F,)

is an equivalence of triangulated categories. Our strategy is to construct a
commutative diagram of triangulated categories o

/Dgol (R[F])\\
D RSol
D?gu(R[F])Op RSolex DIC’(SpeC(R); F,),

where DP | (R[F]) is the holonomic derived category of Frobenius modules,
RSol is a derived version of the solution functor of Construction 2.3.1, and
D is a form of R-linear duality.

We begin in §12.1 with a general discussion of the derived category
of Frobenius modules D(R[F]); in particular, we define the subcategory
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Db | (R[F)), the functor RSol, and show that it is an equivalence of categories
(Corollary 12.1.7). This is essentially a formal consequence of the analogous
equivalence at the level of abelian categories (Theorem 7.4.1), since we have
already shown that the Riemann-Hilbert correspondence is compatible with
the formation of Ext-groups (Corollary 7.2.3).

Most of this section is devoted to the study of the duality functor D. In
§12.3, we introduce the notion of a weak dual for an object of the derived cat-
egory D(R[F]) (Definition 12.3.4). The weak dual of an object M € D(R[F)])
depends functorially on M, provided that it exists: in other words, the for-
mation of weak duals determines a partially defined (contravariant) functor
from the derived category D(R[F]) to itself. We have already met this func-
tor in a special case: if M is a Frobenius module which is finitely generated
and projective as an R-module, then the weak dual of M coincides with the
Frobenius module D(M) given by Construction 11.2.7. This follows from
a universal property of Construction 11.2.7, which we establish in §12.2
(Proposition 12.2.1). In §12.5, we exploit this fact to show that every ob-
ject of D! (R[F]) admits a weak dual (Proposition 12.5.1); the proof uses
a characterization of the holonomic derived category which we establish in
§12.4 (Theorem 12.4.1). It follows that the construction M +— D(M) deter-
mines a functor D(M) : D} (R[F]) — D(R[F])°P, which we prove to be
fully faithful with essential image D?gu(R[F ) (Theorem 12.5.4). In §12.6 we
show that the diagram o commutes (up to canonical isomorphism), thereby
completing the proof of Theorem 11.4.4.

12.1. The Derived Riemann-Hilbert Correspondence

Our first goal is to extend the equivalence Sol : Mod®' — Shvy(Spec(R), F,)
of Theorem 7.4.1 to the level of derived categories. We begin by establishing
some notation.

Notation 12.1.1. Let R be a commutative Fj-algebra. We define subcat-
egories

Dhol(R[F]) - Dalg(R[F]) - Dperf(R[F]) - D(R[F])

as follows: an object M € D(R[F]) belongs to the subcategory Dpert(R[F])
(vespectively Daie(Mod}y), Dyoi(R[F])) if each cohomology group H(M) is
perfect (respectively algebraic, holonomic) when regarded as a Frobenius
module over R. It follows from Remark 3.2.2, Proposition 4.2.4, and Corol-
lary 4.3.3, we see that Dpes(R[F]), Dag(R[F]), and Dpei(R[F]) are trian-
gulated subcategories of D(R[F]).
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We let DT (R[F]) denote the full subcategory of D(R[F]) spanned by
those objects M which are (cohomologically) bounded below: that is, for
which the cohomology groups H?(M) vanish for i < 0. We let D?(R[F])
denote the full subcategory of D(R[F]) spanned by those objects which are
bounded above and below: that is, for which the cohomology groups H(M)
vanish both for ¢ < 0 and ¢ > 0. Similarly, we have full subcategories

D}TOI(R[F]) - D+

alg(R[F]) - D+

perf

(R[F]) € D(R[F])

Dflol(R[ ]) < Dalg(R[ ]) - Dperf(R[F]) < Db(R[F])
which are defined in the obvious way.

For any commutative F,-algebra R, the inclusion functor Modperf —
ModFr is exact, and therefore extends to a functor of derived categorles

(Modljgff) — D(RI[F)).
Proposition 12.1.2. Let R be a commutative Fp-algebra. Then the forgetful

functor D(Mod%erf) — D(R[F]) is a fully faithful embedding, whose essential
image is the full subcategory Dpert(R[F]) C D(R[F]).

Proof. The inclusion functor 1\/Iod%erf — ModFr has a left adjoint, given by
the perfection functor M — MYP™ of Notation 3.2.3. This functor is exact,
and therefore extends to a functor of derived categories F' : D(R[F]) —
D(Mod%erf) which is left adjoint to the forgetful functor. It now suffices to
observe that the counit map (F o G)(M) — M is an isomorphism for every
object M € D(Mod%™), and that the unit map N — (G o F)(N) is an iso-
morphism precisely when N belongs to the full subcategory Dpere(R[F]) C
D(R[F]) (since both of these assertions can be checked at the level of coho-
mology). O

We now wish to compare the derived categories of Notation 12.1.1 with
suitable derived categories of étale sheaves.

Notation 12.1.3. Let R be any commutative ring. We let D¢ (Spec(R), F )
denote the derived category of the abelian category Shv(Spec(R),F,) of
p-torsion étale sheaves on Spec(R). We define full subcategories

D!(Spec(R),F,) C D (Spec(R), F;,) € Dei(Spec(R), Fy)

as follows:

e An object .# € D¢ (Spec(R),F,) belongs to D, (Spec(R),F,) if and
only if the cohomology sheaves H"(.%#) vanish for n < 0.
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e An object F € Dg/(Spec(R),F,) belongs to D%(Spec(R),F,) if and
only if the cohomology sheaves H"(.%#) are constructible for all n and
vanish for |n| > 0.

If R is a commutative Fp-algebra, then the Riemann-Hilbert functor
RH : Shvg(Spec(R), F),) — Mod%erf - ModFR\’r is exact, and therefore extends
to a functor of derived categories

RH : Dg (Spec(R), Fp) — D(Mod2™) ~ Dpe¢(R[F)).

This functor is t-exact, and therefore restricts to a functor D (Spec(R),

F,) — D*(Mod%™) ~ D (R[F]). This restriction admits a right adjoint

RSol: D

(R[F]) ~ D* (Mod}y™) = D (Spec(R), Fy),

given by the total right derived functor of Sol : Mod%erf — Shve (Spec(R),
F,).

Remark 12.1.4. For every object M € D;erf(R[F ]), we have a hyperco-
homology spectral sequence Sol®(H!(M)) = H5T*(RSol(M)). Note that the
groups Sol®(H!(M)) vanish for s > 2 (Proposition 7.2.1 and Theorem 2.4.3,
or Proposition 9.4.1), so this spectral sequence degenerates to yield short
exact sequences

0 — Sol'(H"}(M)) — H" RSol(M) — Sol(H"(M)) — 0.

If M belongs to the subcategory D;Eg(R[F]) C D;erf(R[F]), then the sheaves

Sol'(H"~1(M)) vanish (Proposition 9.5.6); we therefore obtain isomorphisms
H*(RSol(M)) ~ Sol(H*(M)).

Theorem 12.1.5. Let R be a commutative Fy-algebra. Then the functor
RH : D;(Spec(R),Fp) — DT(R[F)]) is a fully faithful embedding, whose

essential image is the full subcategory D;rlg(R[F]) C DT (R[F)).

Proof. Since the Riemann-Hilbert functor RH : Shvg(Spec(R),F),) —
1\/[od113;rf is exact at the level of abelian categories, its extension to the level
of derived categories is t-exact: that is, we have canonical isomorphisms
H*(RH(.#)) ~ RH(H*(%)) for each .# € Dy (Spec(R),Fp). It follows from
Theorem 6.1.1 that the functor RH carries D; (Spec(R), F,) into D} (R[F)).

alg
Combining this observation with Remark 12.1.4, we obtain isomorphisms

H*((RSol o RH)(.F)) ~ Sol(H*(RH(Z))) ~ (Sol o RH)(H*(.%)).
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It follows from Proposition 7.2.1 that the unit map .# — (RSoloRH)(.%)
is an isomorphism: that is, the derived Riemann-Hilbert functor is fully
faithful. To complete the proof, it will suffice to show that for every object
M e D;rlg(R[F]), the counit map (RHoRSol)(M) — M is an isomorphism.
Applying Remark 12.1.4 again, we obtain isomorphisms

H*((RH o RSol)(M)) ~ RH(H*(RSol(M))) ~ (RH o Sol)(H* (M)),

so that the desired result follows from Theorem 2.4.3. O

Remark 12.1.6. If R is a Noetherian F-algebra of finite Krull dimension,
then one can show that the category of étale sheaves Shvg;(Spec(R), F)p) has
finite injective dimension. In this case, it is not hard to see that Theorem
12.1.5 can be extended to yield an equivalence RH : Dg;(Spec(R),F,) —
D(R[F]) of unbounded derived categories. We do not know if this holds in
general.

Combining Theorem 12.1.5 with Theorem 7.4.1, we obtain the following:

Corollary 12.1.7. Let R be a commutative Fp-algebra. Then the Riemann-
Hilbert functor RH : Shvg(Spec(R), F,) — Mod}y induces an equivalence of
triangulated categories D2(Spec(R),F,) — D (R[F]); an inverse equiva-
lence is given by applying the derived solution functor RSol.

Theorem 12.1.5 also implies that a slightly weaker version Proposition
12.1.2 holds for algebraic Frobenius modules:

Corollary 12.1.8. Let R be a commutative Fy-algebra. Then the inclusion
functor Mod?%g — Mod]F%r extends to a fully faithful embedding of derived

categories D (Mod®®) — DT(R[F)), whose essential image is the full sub-

category D;ﬁg(ModRr) C DY (R[F)).

Proof. Since the Riemann-Hilbert functor RH : Shvg(Spec(R),F,) —
Mod%lg is an equivalence of categories (Theorem 1.0.2), Corollary 12.1.8
is a reformulation of Theorem 12.1.5. O

12.2. Duality for R-Projective Frobenius Modules

Let R be a commutative Fj,-algebra and let M € Mod%r be finitely generated
and projective as an R-module. In §11.2, we introduced a Frobenius module
D(M), given by the direct limit of the sequence

MY Py ey SR 2y



A Riemann-Hilbert Correspondence in Positive Characteristic 203

As the notation suggests, we can think of D(M) as a kind of dual of M in
the setting of Frobenius modules. Our goal in this section is to make this
idea precise. We begin by observing that there is a canonical map

¢c:R— Mz MY — M &g D(M).

It is not hard to see that ¢ is a map of Frobenius modules (where we regard
the tensor product M ®pr D(M) as a Frobenius module via Construction
8.1.1). Moreover, it enjoys the following universal property:

Proposition 12.2.1. Let R be a commutative Fy-algebra and let M and N
be Frobenius modules over R, where M is finitely generated and projective as
an R-module. Then composition with the map ¢: R — M ®@r D(M) induces
isomorphisms Extiy pqm(D(M), N) — Extiy (R, M ®@r N).

Proof. Using Proposition 11.2.5 and Remark 11.3.3, we see that both sides
can be computed as the cohomology groups of the two-term chain complex

M®RNW>M®RN.

O

Remark 12.2.2. The abelian groups Ext'py  (D(M), N) ~ Extiym(R, M®g
N) of Proposition 12.2.1 vanish for n > 2.

We also have the following dual version of Proposition 12.2.1:

Proposition 12.2.3. Let R be a commutative F,-algebra and let M and N
be Frobenius modules over R, where M is finitely generated and projective as
an R-module. If N is perfect, then composition with the map ¢: R — M ®p
D(M) induces isomorphisms Extiym (M, N) — Extpm (R, N @r D(M)).

Proof. Using Remark 11.3.3, we can identify Ext}}[F](R, N ®@r D(M)) with
the direct limit of the diagram

where the transition maps are given by precomposition with the map s :
©prM — M of Notation 11.1.1. It will therefore suffice to show that each of
the transition maps Ext}[F](gog*M, N) — Ext}‘%[F](@gH)*M, N) is an iso-
morphism. This follows from the assumption that N is perfect, since the map
¥ar induces an isomorphism of perfections (k¥ M)Y/P™ — (npgﬂ)*M )L/p=
(Remark 11.1.2). O
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12.3. Weak Duality in D(R[F])

We now introduce some language to place Proposition 12.2.1 in a more
general context. First, we need a bit of notation.

Construction 12.3.1 (Derived Tensor Products). Let R be a commutative
F,-algebra. Then we can identify D(R[F]) with the category whose objects
are K-projective cochain complexes of left R[F]-modules (in the sense of
Spaltenstein, see [15, Tag 070G] for a summary), and whose morphisms
are homotopy classes of chain maps. Using Example 8.1.2, it is not hard
to show that if M*® and N*® are K-projective cochain complexes, then the
tensor product M® @ N*® is also K-projective (where we regard the tensor
product as a chain complex of left R[F]|-modules via Construction 8.1.1).
This construction gives rise to a functor

®f : D(R[F)) x D(RIF]) — D(RI[F])

which we will refer to as the derived tensor product.

Remark 12.3.2. Let R be a commutative Fj-algebra. Then the forgetful
functor D(R[F]) — D(R) is compatible with derived tensor products.

Remark 12.3.3. Let R be a commutative Fj-algebra and let M and N be
Frobenius modules over R, which we regard as objects of D(R[F]). Then we
have canonical isomorphisms H"(M ®% N) ~ Torf (M, N) in the category
of Frobenius modules. More generally, if M and N are arbitrary object of
D(R[FY]), we have a convergent spectral sequence

P Torf(H(M),HI(N)) = H*(M &% N).
i+j=t

Definition 12.3.4. Let R be a commutative F,-algebras and let M and M’
be objects of the derived category D(R[F]). We will say that a morphism
c: R — M ®% M exhibits M' as a weak dual of M if, for every object
N € D(R[F]), composition with ¢ induces a bijection

HomD(R[F])(M/, N) — HOIIlD(R[F])(R, M ®%2 N)

Proposition 12.3.5. Let R be a commutative F,-algebra and let M €
Mod%r be a projective R-module of finite rank. Then the map ¢ : R —
M ®@rD(M) of Proposition 12.2.1 exhibits D(M) as a weak dual of M.



A Riemann-Hilbert Correspondence in Positive Characteristic 205

Proof. We first observe that M ® r D(M) can be identified with the derived
tensor product M ®% D(M) (since both M and D(M) are flat R-modules).
We wish to show that, for every object N € D(R[F]), composition with ¢
induces an isomorphism Hom p g}y (D(M), N) — Homp(g(s)) (R, M®EN).
Using the fact that D(M) has finite projective dimension as an R[F|-module
(Proposition 11.2.9), we can reduce to the case where N is concentrated in a
single degree, in which case the desired result is a translation of Proposition
12.2.1. ]

Notation 12.3.6. Let R be a commutative F)-algebra and let M € D(R[F]).
It follows immediately from the definitions that if there exists a morphism
¢: R — M®%M' which exhibits M’ as a weak dual of M, then the object M’
(and the morphism c) are well-defined up to unique isomorphism (in the de-
rived category D(R[F1])). In this case, we will say that M is weakly dualizable
and denote its weak dual M’ by D(M). Note that, by virtue of Proposition
12.3.5, this notation is consistent with that of Construction 11.2.7.

Warning 12.3.7. In the situation Definition 12.3.4, the roles of M and M’
are not symmetric. A morphism ¢ : R — M ®% M’ which exhibits M’ as
a weak dual of M generally does not exhibit M as a weak dual of M’ (see
Example 12.3.10). This asymmetry already appeared in §12.2: note that in
the statement of Proposition 12.2.3 we required the Frobenius module N to
be perfect, but no corresponding hypothesis was needed in the statement of
Proposition 12.2.1.

Proposition 12.3.8. Let R be a commutative Fy-algebra and let ¢ : R —
M ®% M’ be a morphism in D(R[F]) which exhibits M’ as a weak dual of
M. Then the composite map

RS M@k M — MYP™ ok M’

exhibits M’ as a weak dual of the perfection MY/P™

We will deduce Proposition 12.3.8 from the following variant of Propo-
sition 3.2.9:

Lemma 12.3.9. Let R be a commutative Fp,-algebra and let f : M — M’ be
a morphism in D(R[F)) which induces an isomorphism MY/~ — M'1/P™
Then the induced map

Hom pgp)) (R, M) — Homp(g(py) (R, M)

s an isomorphism.
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Proof. Let N denote the cone of the morphism M — M’; we will show
that Hom p(gr)) (R, N[k]) vanishes for every integer k. By virtue of Remark
11.3.3, it will suffice to show that the map id —¢x : H*(N) — H*(N) is an
isomorphism. This is clear: the assumption that f induces an equivalence
MUYP™ ~ M'Y/P™ guarantees that N1/P~ vanishes, so that the action of ¢y
is locally nilpotent on H* (V). O

Proof of Proposition 12.3.8. Let ¢ : R— M®%M’ be a morphism in D(R[F])
which exhibits M’ as a weak dual of M, and let N be any object of D(R[F]).
Then the composite map

HomD(R[F})(Mlv N) — HOH]D(R[F])(R, M ®Ié N)
— HomD(R[F])(R, Ml/pw ®1€2 N)

is an isomorphism, since the left map is an isomorphism (by virtue of our
assumption that M’ is a weak dual of M) and the right map is an isomor-
phism (Lemma 12.3.9). Allowing N to vary, we deduce that M’ is also a
weak dual of M/P~. O

Example 12.3.10. Let R be a commutative F,-algebra. Then the canonical
isomorphism R ~ R®ﬁ R exhibits R as a weak dual of itself. It follows from
Proposition 12.3.8 that unit map u : R — RY/P™ ~ R1/P~ ®§R also exhibits
R as a weak dual of RY/P™ . However, u cannot exhibit RY/P~ as a weak dual
of R (unless R is perfect), since the weak dual of R is determined uniquely
up to isomorphism.

We conclude this section with another application of Lemma 12.3.9:

Proposition 12.3.11. Let R be a commutative Fp,-algebra and let ¢ : R —
M ®% M’ be a morphism in D(R[F]) which ezhibits M’ as a weak dual of
M. Then M’ belongs to ngu(R[F]).

Proof. From the isomorphism Hom pg(p)) (M, @) ~ Homp(g(p)) (R, M ®ke)
(and the compactness of R as an object of D(R[F])), we conclude that M’
is a compact object of D(R[F]). It will therefore suffice to show that the
canonical map 1 : RYP @k M’ — M’ is an isomorphism. Note that -
can be regarded as a morphism in D(R[F]); it will therefore suffice to show
that for each N € D(R[F]), composition with 15, induces an isomorphism

0 : HomD(R[F])(M',N) — HOHlD(R[F])(Rl/p ®é M/,N)
~ HOHlD(R[F])(M/,Nl/p).
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Invoking the universal property of M’, we can identify 6 with the natural
map Homp g (R, M ®k N) — Homprip) (R, M ®r NYP) (induced by
the Frobenius map oy : N — N 1/ P). This map is an isomorphism, since the
induced map M ®]L% N —>M ®}L% N/ induces an isomorphism of perfections
(Lemma 12.3.9). O

12.4. Presentations of Holonomic Complexes

Let R be a commutative Fy-algebra and let M be a Frobenius module over
R. By definition, M is holonomic if and only if there exists an isomorphism
M ~ M& /p x, where My € Modf;ir is finitely presented as an R-module. Our
goal in this section is to prove an analogous statement for objects of the
derived category D(R[F]):

Theorem 12.4.1. Let R be a commutative Fy-algebra and let M be an
object of D(R[F]). The following conditions are equivalent:

(1) The complex M belongs to the subcategory DY (R[F]) C D(R[F]): that
is, it is cohomologically bounded with holonomic cohomologies.

(2) There exists an isomorphism M ~ Mé/poo in the category D(RI[F)),
where My € D(R[F]) has the property that its image in D(R) is com-
pact.

The proof of Theorem 12.4.1 will require some preliminaries. We first
study condition (2) of Theorem 12.4.1. Note that an object M € D(RI[F))
has compact image in D(R) if and only if it is quasi-isomorphic to a bounded
cochain complex N* of finitely generated projective R-modules. We now
show that, in this situation, we can arrange that N* is also a cochain complex
of Frobenius modules:

Lemma 12.4.2. Let R be a commutative Fp-algebra and let M be an object
of the derived category D(R[F]). The following conditions are equivalent:

(1) The object M is isomorphic (in D(R[F])) to a bounded cochain com-
plex of Frobenius modules, each of which is projective of finite rank as
an R-module.

(2) The image of M in D(R) is compact: that is, it is isomorphic to a
bounded cochain complex of projective R-modules of finite rank.

Proof. The implication (1) = (2) is clear. Conversely, suppose that (2) is
satisfied; we will prove (1). Assume that, as an object of D(R), the com-
plex M is quasi-isomorphic to a finite cochain complex of finitely generated
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projective R-modules concentrated in degrees {a —n,a —n+1,...,a}. Re-
placing M by a shift if necessary, we can assume a = 0. We claim that, as
an object of D(R[F1]), the complex M is quasi-isomorphic to a finite cochain
complex of Frobenius modules, which are finitely generated and projective
over R, also concentrated in degrees {—n,—n + 1,...,0}. We proceed by
induction on n. If n = 0, then the cohomology groups H*(M) vanish for
i # 0 and HO(M) is a projective R-module of finite rank. In this case, the
desired result follows from the observation that M is isomorphic to H°(M)
as an object of D(R[F]). Let us therefore suppose that n > 0, and set
N = H(M). Then N is finitely presented as an R-module, so that N'/P~ is
a holonomic Frobenius module over R. Choose elements 1, zo, .. .,z which
generate N as an R-module. It follows from Proposition 4.2.1 that the image
of each x; in N'/P~ is annihilated by some element P; € R[F] of the form
Fmi cLiFmi_l + -+ + ¢m,,i- Replacing P; by F*P; for a > 0, we may
assume that P;(z;) = 0. Choose a cocycle T; € MY representing z;, so that
we can write P;(T;) = dy; for some elements y; € M 1. The elements T; and
y; determine a map of cochain complexes f : M’ — M, where M’ is the
two-term complex

.- = 0— R[F) B Pi),

RFIF 50— ---.
Note that M’ is isomorphic, as an object of D(R[F]), to the Frobenius
module K = @, R[F']/R[F|P;, which is projective of finite rank as an R-

module. Extend f to a distinguished triangle Q 2 M’ EN VRN Q[1] in
D(R[F]). Then, as an object of D(R), the complex @ is quasi-isomorphic to
a chain complex of finitely generated projective R-modules concentrated in
degrees {1 —n,...,0}. Applying our inductive hypothesis, we may assume
that each Q' is a projective R-module of finite rank and that Q' vanishes
unless —n < ¢ < 0. Then g determines a map of Frobenius modules Q° — K,
and M is quasi-isomorphic to the cochain complex of Frobenius modules

e 0 QQ MM T 5 S QP K50 -

O

Remark 12.4.3. Let R be a commutative F-algebra and let M € D(R[F))
be an object whose image in D(R) is compact. Then M is also compact as an
object of D(R[F): this follows immediately from Remark 11.3.3. However,
the converse is false: the Frobenius module R[F] is compact as an object of
D(R[F]), but its image in D(R) is not compact unless R ~ 0.
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We now apply Lemma 12.4.2 to give a simple characterization of the
holonomic derived category Db  (R[F)).

Lemma 12.4.4. Let R be a commutative Fp-algebra. Then DY (R[F)) is
the smallest triangulated subcategory of D(R[F]) which contains every object
of the form MY/P~  where M € Mod%r is finitely generated and projective
as an R-module.

Proof. Let C be a triangulated subcategory of D(R[F|) which contains every
object of the form MY?™ where M € Modf.%r is finitely generated and pro-
jective over R. We wish to show that C contains every object of D} | (R[F).
Using our assumption that C is a triangulated subcategory, we are reduced
to showing that C contains every holonomic Frobenius module N over R
(regarded as a chain complex concentrated in degree zero). Using Proposi-
tion 4.1.3, we can assume that N has the form (R ®pg, NP where Ry is
a finitely generated subring of R and N’ is a holonomic Frobenius module
over Ry. Choose a surjection A — Ry, where A is a polynomial ring over
F,. Then N’ is also holonomic when regarded as a Frobenius module over

A (Remark 5.3.2). Choose an isomorphism N’ ~ N(l)l/poo, where N{ is a
Frobenius module over A which is finitely generated as an A-module. Since
A is a regular Noetherian ring, the A-module N{j admits a finite resolution
by projective A-modules of finite rank. It follows from Lemma 12.4.2 that
N, admits a finite resolution

v Py Py P —Py— Nj—0

in the category of Frobenius modules over A, where each Py is projective
of finite rank as an A-module. Applying Corollary 3.5.2, we see that (R ®4
P.)l/poo is a finite resolution of N by objects of MOdIF{r which belong to C.
Since C is a triangulated subcategory of D(R[F]), we deduce that N also
belongs to C. O

Proof of Theorem 12.4.1. Let R be a commutative Fp-algebra and let C de-
note the full subcategory of D(R[F]) spanned by those objects which are
isomorphic to Mé/ P™ for some My € D(R[F]) having compact image in
D(R). We wish to show that C = D{_(R[F]). We first show that C is con-
tained in DY ,(R[F]). Let My € D(R[F]) have compact image in D(R); we
wish to show that 1\401/poo belongs to D? | (R[F]). Using Lemma 12.4.2, we
can assume that My is a bounded cochain complex consisting of Frobenius
modules which are finitely generated and projective over R. Since D? _ (R[F])
is a triangulated subcategory of D(R[F]), we can reduce to the case where
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My is a finitely generated projective R-module, concentrated in degree zero.
In this case, the inclusion is clear (since Mé/ P™ is a holonomic Frobenius
module over R).

We now show that D! (R[F]) is contained in C. By virtue of Lemma
12.4.4, it will suffice to show that C is a triangulated subcategory of D(R[F]).
It is clear that C contains zero objects of D(R[F]) and is closed under shifts;
it will therefore suffice to show that it contains the cone of any morphism f :
M — N where M and N belong to C. Write M = M&/pm and N = Né/pm,
where My and Ny are objects of D(R[F]) having compact image in D(R).
Using Lemma 12.4.2, we can further assume that My is a cochain complex
of Frobenius modules which are finitely generated and projective over R.
Note that IV can be identified with the homotopy colimit of the diagram

N £, NVp BN, NUP

Since My is a compact object of D(R[F]) (Remark 12.4.3), the composite

map My — M i> N factors through some map f’: My — Nol/pn for n > 0.
Then f is adjoint to a map f” : " Mo — Ny, where ¢’} My is the cochain
complex obtained from My by applying the pullback functor ¢'5* degreewise.
Note that %" My is also a bounded cochain complex of finitely generated
projective R-modules, and therefore has compact image in D(R). Let Cy
be a cone of f”. Using Remark 11.1.2 (and the exactness of the functor

K — Kl/poo), we see that the cone of f can be identified with C’é/pm, and
therefore belongs to C as desired. O

Remark 12.4.5. With a bit more effort, one can prove the following stron-
ger version of Theorem 12.4.1: the construction M — MYP™ induces an
equivalence of triangulated categories C /Co ~ D? | (R[F]), where C denotes
the triangulated subcategory of D(R[F]) spanned by those objects having
compact image in D(R), Co C C is the triangulated subcategory spanned by
those objects M € C satisfying M/~ ~ 0, and C /Cy denotes the Verdier
quotient of C by Cg. Since we will not need this fact, the proof is left to the
reader.

12.5. The Duality Functor

We now return to the study of the duality construction M +— D(M) of §12.3.

Proposition 12.5.1. Let R be a commutative Fp-algebra and let M be an
object of Db |(R[F]). Then M is weakly dualizable (in the sense of Notation
12.5.6).
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Proof. Using Theorem 12.4.1, we can assume M = MOI/ poo, where My €
D(R[F]) has compact image in D(R). By virtue of Lemma 12.4.2, we may
assume that My is a bounded cochain complex of finitely generated pro-
jective R-modules. Let My denote its R-linear dual (which we also regard
as a cochain complex of finitely generated projective R-modules) and let
D(Mp) denote the cochain complex of Frobenius modules obtained by ap-
plying Construction 11.2.2 termwise. Let ¢ denote the composite map

R — My ®pg Ma/ — My ®p ]D)(Mo).

A simple calculation shows that ¢ is a morphism of (cochain complexes of)
Frobenius modules. Note that the tensor product My®rD(My) is equivalent
to the derived tensor product My ®% D(My) (since both My and D(Mp) are
bounded cochain complexes of flat R-modules). We claim that ¢ exhibits
D(Mp) as a weak dual of My in the derived category D(R[F]). In other
words, we claim that for every object N € D(R[F]), composition with ¢
induces a bijection

HOHID(R[F])(D(MO), N) — HOHID(R[F])(R, M() ®é N)

To prove this, we can proceed by induction on the length of the cochain
complex My and thereby reduce to the case where My is concentrated in a
single degree, which follows from Proposition 12.3.5. Applying Proposition
12.3.8, we deduce that the composite map

RS My @k D(Mp) — My/P™ @k D(Mp) ~ M @k D(Mp)

exhibits D(My) as a weak dual of M, so that M is weakly dualizable as
desired. 0

Recall that a morphism ¢ : R — M ®k M’ which exhibits M’ as a weak
dual of M need not exhibit M as a weak dual of M’. However, holonomic
Frobenius complexes do enjoy the following weak form of biduality.

Notation 12.5.2. Let R be a commutative Fp-algebra. We let Dper(R[F)
denote the full subcategory of D(R[F]) spanned by those cochain complexes
M whose cohomology groups H*(M) are perfect Frobenius modules.

Proposition 12.5.3. Let R be a commutative F),-algebra and let M be an
object of Db (R[F]) with weak dual D(M). Then, for every object N €
Dyert(R[F)), composition with the canonical map ¢ : R — M ®% D(M)
duces an isomorphism

HomD(R[F})(Ma N) — HomD(R[F})(Rv N ®lé ]D)(M))
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Proof. Let us say that an object M € Dﬁol(R[F]) is good if, for every object
N € Dpert(R[F]), the canonical map Hompgip)) (M, N) — Hompg(p) (R,
N @k D(M)) is an isomorphism. We wish to show that every object of
M € Db (R[F]) is good. It is easy to see that the good objects of D? _ (R[F])
span a triangulated subcategory. By virtue of Lemma 12.4.4, it will suffice
to show that every object of the form Mg/pm is good, where My € Mod%1r
is finitely generated and projective as an R-module. In this case, for each
N € Dper(R[FY]), we have a commutative diagram

Hom pgipy) (M, N) —— Homp g (R, N @5 D(M))

| |

O
Hom p( )y (Mo, N) — Hom p(gp)) (R, N @ D(Mo));

here the right vertical map is bijective by virtue of Proposition 12.3.8, and
the left vertical map is bijective by virtue of our assumption that N is
perfect. It will therefore suffice to show that the map 0y is an isomorphism
for every perfect object N € Dpers(R[F]). Using the fact that My and R
admit finite resolutions by projective left R[F]-modules (Remark 12.4.3),
we can reduce to the situation where N is concentrated in a single degree.
In this case, the desired result follows from Proposition 12.2.3. O

We are now ready to prove the main result of this section:

Theorem 12.5.4. Let R be a commutative Fy,-algebra. Then the construc-
tion M +— D(M) induces an equivalence of categories DY (R[F]) —
D, (R[F])°P.

fgu
Proof. 1t follows from Propositions 12.5.1 and 12.3.11 that the duality func-
tor D : Dy (R[F]) — Dp, (R[F])°P is well-defined. We next claim that it is
fully faithful. Let M and N be objects of DJ_(R[F]); we wish to show that

the canonical map
0 : HomD(R[F})(My N) — HomD(R[F})(]D)(N)a ]D)(M))

Using the definition of D(NV), we can identify the codomain of  with the set
Homp(g(p) (R, N ®% D(M)). Under this identification, 6 corresponds to the
comparison map of Proposition 12.5.3, which is an isomorphism because N
is perfect.

Let C denote the essential image of the weak duality functor D :

Db (R[F]) — D?gu(R[F])Op, so that C is a triangulated subcategory of
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b
D fgu
b
D fgu

(R[F]). We will complete the proof by showing that every object N €
(R[F]) belongs to C. We will deduce this from the following assertion:

(¥) There exists a diagram
-+ N(2) - N(1) = N(0) = N(=1) = N(-=2) = --- = N

in the derived category D(R[F]), where each N(k) belongs to C and
each of the maps H"(N(k)) — H"(N) is an isomorphism for n > k
and a surjection for n = k.

Assume (x) for the moment. Then N can be identified with the homotopy
colimit of the diagram {N(k)}rez in the triangulated category D(R[F]).
Since N is a compact object of D(R[F]), it follows that the identity map
idy : N — N factors through N(k) for some integer k: that is, N is a
direct summand of N (k). Consequently, to prove that N belongs to C, it
will suffice to show that the category C is idempotent complete. Using the
equivalence D : DY (R[F]) — C°, we are reduced to proving that the
category D? | (R[F)) is idempotent complete, which is clear (since any direct
summand of a holonomic Frobenius module over R is itself holonomic; see
Corollary 4.2.2).

It remains to prove (). We will construct the objects N (k) by descending
induction on k, taking N(k) = 0 for k£ > 0. To carry out the induction, it
will suffice to prove the following:

(+") Let f: N(k+1) — N be a morphism in D(R[F]), where N(k+1) € C
and the induced map H"(N(k + 1)) — H"(N) is an isomorphism for
n > k41 and a surjection for n = k+ 1. Then the morphism f factors
as a composition N(k + 1) EiN N(k) EAN N, where N (k) € C and the
map H"(N(k)) — H™(NN) is an isomorphism for n > k and a surjection
for n = k.

To prove ('), let C denote the cone of f, so that C' belongs to D%’gu(R[F]) and
the cohomology groups H™(C') vanish for n > k. Using Corollary 11.3.8, we
can choose an object M € Mole%r which is finitely generated and projective
as an R-module and a map g : D(M)[—n] — C which induces a surjection
D(M) — H™(C). Invoking the octahedral axiom, we conclude that f factors
as a composition N (k+1) TN (k) EANy Y , where the cone of f’ is isomorphic
to D(M)[—k] (which guarantees that N (k) belongs to C) and the cone of f”
is isomorphic to the cone of g (and therefore has vanishing cohomology in
degrees > k). O
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12.6. Comparison of Solution Functors

We will deduce Theorem 11.4.4 from the following comparison result:

Theorem 12.6.1. Let R be a commutative Fy-algebra. Then the diagram
of categories

Dy (RIF))

Solex
Db (R[F])° 5 De(Spec(R), F,)

commutes up canonical isomorphism. Here RSol denotes the derived solution
functor of §12.1, D is the duality functor of Theorem 12.5.4, and RSolgk is
the derived Emerton-Kisin solution functor of Construction 11.4.5.

Proof of Theorem 11.4.4 from Theorem 12.6.1. Theorem 12.5.4 asserts that
the functor D : D} (R[F]) — ngu(R[F])Op is an equivalence of cate-
gories, and Corollary 12.1.7 asserts that the functor RSol : D? | (R[F]) —
Dgi(Spec(R), F,) is a fully faithful embedding whose essential image is the
constructible derived category D%(Spec(R),F,) C D¢ (Spec(R),F,). Using
the commutative diagram of Theorem 12.6.1, we deduce that RSolgk :
Df:’gu(R[F )" — D¢t (Spec(R),F)) is also a fully faithful embedding with
essential image D2(Spec(R),F,). O

The proof of Theorem 12.6.1 will require some auxiliary constructions.
We begin by introducing a slight modification of the derived solution functor
RSol.

Construction 12.6.2. Let R be a commutative Fy-algebra and let M =

M* be a cochain complex of Frobenius modules. We let M denote the as-
sociated cochain complex of quasi-coherent sheaves on Spec(R) (Example
2.2.5), so that the Frobenius morphism ¢); determines an endomorphism

of M, which we will denote by ¢5;. We let Sol'(M) denote the cochain
complex of étale sheaves on Spec(R) given by the shifted mapping cone
en(id —@q77)[—1]. It is clear that the construction M ~ Sol'(M) respects
quasi-isomorphisms and therefore determines a functor of derived categories
Sol' : D(R[F]) — Dg(Spec(R),F,). By construction, we have a distin-
guished triangle

Sol' (M) — M 2225, 37 — Sol' (M)[1],

depending functorially on M.
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Remark 12.6.3. In the special case where M* is a bounded below cochain
complex of injective objects of Mod%erf, we can identify RSol(M) with
the kernel (formed in the category of chain complexes of étale sheaves)
of the map id—pg; : M — M. We therefore obtain a canonical map
RSol(M) — Sol'(M), and Lemma 7.1.2 guarantees that this map is a quasi-
isomorphism (even at the level of presheaves). It follows that the functor
RSol : D;)rerf(R[F 1) = De¢i(Spec(R),F)) is canonically isomorphic to the
restriction Sol’ |D:e (R[F])"

rf

Construction 12.6.4. Let R be a commutative Fj-algebra and let P denote
the two-term cochain complex

---—>0—>R[F]I—_E+R[F]—>O—>~--,

which we regard as a projective representative for R in the derived category
D(R[F]). Let M’ be a bounded above cochain complex of projective left
R[F]-modules, let M be an arbitrary cochain complex of left R[F]-modules,
and suppose we are given a morphism of cochain complexes ¢: P - M ®pg
M', which represents a morphism ¢ from R to M ®IL% M’ in the derived
category D(R[F]). Note that we can identify RSolgk (M’) and Sol’' (M) with
the cochain complexes of étale sheaves given concretely by the formulae

RSolgk (M')(A) = Hompp(M', A)  Sol'(M)(A) = Hompgp) (P, M ®pg A).

It follows that ¢ determines a map of cochain complexes

RSolgk (M') = Hompgp)(M',e)
— HOIDR[F](M KRnr M/,M(X)R 0)
iE—) HOIHR[F](P,M®R O)

= Sol'(M).

Note that the chain homotopy class of this map depends only on the chain
homotopy class of €. We therefore obtain a morphism ~. : RSolgk(M’) —
Sol'(M) in the derived category Dgi(Spec(R),F,) which depends only the
map c: R — R — M ®% M’ in D(R[F)).

Proof of Theorem 12.6.1 . By virtue of Remark 12.6.3, it will suffice to show
that the functors

Sol', RSolgxk oD : DY (R[F]) — D¢ (Spec(R), F,)

are naturally isomorphic. Fix an object M € D! (R[F]) and let ¢ : R —
M @% D(M) be a morphism in D(R[F]) which exhibits D(M) as a weak
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dual of M. Applying Construction 12.6.4, we obtain a morphism -, :
(RSolgk oD)(M) — Sol'(M) in the derived category Det(Spec(R),F)). It is
not difficult to see that this morphism depends functorially on M, and there-
fore determines a natural transformation of functors « : RSolgg oD — Sol’.
To complete the proof, it will suffice to show that this natural transformation
is invertible: that is, 7. is a quasi-isomorphism for each M € D} (R[F)).
To prove this, we may assume without loss of generality that (M) is
represented by a bounded above cochain complex of projective left R[F]-
modules and that c is represented by a morphism of cochain complexes
¢: P — M®grD(M), so that 7, is represented by the map of cochain
complexes of étale sheaves

HOHIR[F](D<M)7.) — HomR[F](P,M KRR .)

appearing in Construction 12.6.4. We wish to show that this map is a
quasi-isomorphism of étale sheaves. In fact, we claim that it is already a
quasi-isomorphism of presheaves: that is, for every étale R-algebra A, the
map of complexes Hompp (D(M), A) — Hompp (P, M ®p A) is a quasi-
isomorphism. This is a special case of our assumption that ¢ exhibits (M)
as a weak dual of M. O
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