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We explain a version of the Riemann-Hilbert correspondence for
p-torsion étale sheaves on an arbitrary Fp-scheme.
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1. Introduction

Let p be a prime number, which we regard as fixed throughout this paper.
Our starting point is the following theorem of Katz (see [10, Proposition
4.1.1]):

Theorem 1.0.1 (Katz). Let k be a perfect field of characteristic p and let k

be an algebraic closure of k. Then the construction V �→ (V ⊗Fp
k)Gal(k/k) in-

duces an equivalence from the category of finite-dimensional Fp-vector spaces
V with a continuous action of Gal(k/k) to the category of finite-dimensional
k-vector spaces M equipped with a Frobenius-semilinear automorphism ϕM .

The equivalence of Theorem 1.0.1 can be extended to infinite-dimensional
vector spaces; in this case, we must add the requirement that M is locally
finite in the sense that each element x ∈ M belongs to a finite-dimensional
ϕM -stable subspace. Our primary goal in this paper is to prove the following
more general result; see Theorem 7.4.1 for a more precise formulation that
also describes constructible sheaves.

Theorem 1.0.2. Let R be a commutative Fp-algebra. Then there is a fully
faithful embedding of abelian categories{
p-torsion étale sheaves

on Spec(R)

}
RH−−→

{
R-modules M equipped with a

Frobenius-semilinear automorphism ϕM

}
.

Moreover, the essential image of RH consists of those pairs (M,ϕM ) that
satisfy the following condition: every element x ∈ M satisfies an equation of
the form

ϕn
Mx+ a1ϕ

n−1
M x+ · · ·+ anx = 0

for some coefficients a1, . . . , an ∈ R.

We also establish various extensions of Theorem 1.0.2. For instance,
the theorem readily extends from the affine scheme Spec(R) to arbitrary
Fp-schemes, as we summarize next; see Theorem 10.2.7 for a more precise
formulation that also identifies constructible sheaves.

Theorem 1.0.3. Let X be an Fp-scheme. Then there is a fully faithful
embedding of abelian categories{

p-torsion étale
sheaves on X

}
RH−−→

{
quasi-coherent OX-modules F equipped with
a Frobenius-semilinear automorphism ϕF

}
.

The essential image consists of those pairs (F , ϕF ) that Zariski locally on
X satisfy the condition appearing in Theorem 1.0.2.
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Let ModFrR denote the category whose objects are pairs (M,ϕM ), where
M is an R-module and ϕM is a Frobenius semilinear endomorphism of M ;
we will refer to such pairs as Frobenius modules over R. The functor RH
appearing in Theorem 1.0.2 may be viewed as an exact and fully faithful
embedding of the abelian category of p-torsion étale sheaves on Spec(R)
into the abelian category ModFrR . This functor also induces a bijection on
Ext-groups, and thus passes to the derived category to give the following
result; we refer to Theorem 12.1.5 for a more precise formulation that also
identifies the constructible derived category.

Theorem 1.0.4. Let R be an Fp-algebra, and let Db
ét(Spec(R),Fp) be the

bounded derived category of p-torsion étale sheaves on Spec(R). Then the
functor in Theorem 1.0.2 lifts to a t-exact and fully faithful embedding of
triangulated categories

RH : Db
ét(Spec(R),Fp) → Db(ModFrR )

whose essential image comprises those complexes K ∈ Db(ModFrR ) with the
property that each Frobenius module H i(K) satisfies the conditions in The-
orem 1.0.2.

Theorem 1.0.2 also admits an analog describing pn-torsion étale sheaves
on Spec(R) in terms of suitably defined Frobenius modules over the ring
Wn(R) of length n Witt vectors of R; see Theorem 9.6.1.

1.1. Outline

The first half of this paper is devoted to the proof of Theorem 1.0.2. Note
that Theorem 1.0.2 supplies a description of the category of (p-torsion) étale
sheaves on Spec(R) as quasi-coherent sheaves on Spec(R) with additional
structure, and can therefore be viewed as a positive-characteristic analogue
of the Riemann-Hilbert correspondence. We will emphasize this perspective
by referring to the functor RH appearing in Theorem 1.0.2 as the Riemann-
Hilbert functor. It is not so easy to describe this functor directly. Instead, we
begin in §2 by constructing a functor in the opposite direction. Let ModFrR
denote the category of Frobenius modules over R introduced above. If M
is an R-module and M̃ denotes the associated quasi-coherent sheaf on the
étale site of Spec(R), then every Frobenius-semilinear automorphism ϕM of

M determines an automorphism of M̃ , which we will also denote by ϕM .
We let Sol(M) denote subsheaf of ϕM -fixed points in M̃ : that is, the kernel

of the map id−ϕM : M̃ → M̃ , formed in the category Shvét(Spec(R),Fp)
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of p-torsion étale sheaves on Spec(R). The construction (M,ϕM ) �→ Sol(M)
determines a functor

Sol : ModFrR → Shvét(Spec(R),Fp),

which we will refer to as the solution functor (Construction 2.3.1).

We will say that a Frobenius module (M,ϕM ) is perfect if the map
ϕM is invertible. In §6, we will show that, when restricted to category
ModperfR of perfect Frobenius modules, the solution functor Sol has a left
adjoint (Theorem 6.1.1). This left adjoint is the Riemann-Hilbert functor

RH : Shvét(Spec(R),Fp) → ModperfR appearing in the statement Theorem
1.0.2. The existence of the functor RH is not evident: to construct it, we will
need to develop a theory of compactly supported direct images in the setting
of (perfect) Frobenius modules; this is the subject of §5. We also prove in
§6 that the functor RH is exact (Proposition 6.4.1). This is easy to see in
the case where R is an algebraically closed field: in this case, the category
Shvét(Spec(R),Fp) is equivalent to the category of vector spaces over Fp,
where every exact sequence is split. We handle the general case by reducing
to the case of an algebraically closed field, using a theory of base change for
perfect Frobenius modules (which we study in §3) and its compatibility with
the Riemann-Hilbert correspondence (which we prove as Proposition 6.2.2).

We will complete the proof of Theorem 1.0.2 in §7 by showing that the
Riemann-Hilbert functor RH is fully faithful and characterizing its essen-
tial image. The full-faithfulness is actually fairly easy, once we know that
the functor RH is exact: it essentially follows from the exactness of the
Artin-Schreier sequence 0 → Fp → R̃ → R̃ → 0 in the category of étale

sheaves Shvét(Spec(R),Fp) (see Proposition 7.2.1). To understand the es-
sential image of the Riemann-Hilbert functor, it will be convenient to con-
sider first the functor RHc obtained by restricting RH to the subcategory
Shvcét(Spec(R),Fp) ⊆ Shvét(Spec(R),Fp) of constructible étale sheaves on

Spec(R). The functor RHc takes values in the subcategory ModholR ⊆ ModperfR

of holonomic Frobenius modules (Definition 4.1.1), which we study in §4.
Theorem 1.0.2 will then follow by combining the following two assertions:

• The functor RHc : Shvcét(Spec(R),Fp) → ModholR is an equivalence of
categories (Theorem 7.4.1): that is, every holonomic Frobenius module
M the form RH(F ), for some constructible étale sheaf F on Spec(R).
We will prove this using formal arguments to reduce to the case where
R is a field, in which case the desired result follows from Theorem 1.0.1
(which we reprove here as Proposition 7.3.1).
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• A perfect Frobenius module M can be written as a filtered colimit

of holonomic Frobenius modules if and only if every element x ∈ M

satisfies an equation ϕn
Mx+ a1ϕ

n−1
M x+ · · · + anx = 0 for some coeffi-

cients a1, . . . , an ∈ R (Theorem 4.2.9). We will refer to such Frobenius

modules as algebraic.

In the second half of this paper, we consider several refinements of The-

orem 1.0.2:

• Let (M,ϕM ) and (N,ϕN ) be Frobenius modules over R. If M and N

are perfect, then they can also be regarded as Frobenius modules over

the perfection R1/p∞
(Proposition 3.4.3). In this case, we can regard

the tensor product M ⊗R1/p∞ N as a (perfect) Frobenius module over

R, with Frobenius endomorphism given by x⊗y �→ ϕM (x)⊗ϕN (y). In

§8, we show that the Riemann-Hilbert functor RH of Theorem 1.0.2 is

compatible with tensor products, in the sense that there are canonical

isomorphisms

RH(F ⊗Fp
G ) � RH(F )⊗R1/p∞ RH(G )

(Corollary 8.4.2). Our proof relies on the vanishing of the Tor-groups

TorR
1/p∞

n (M,N) for n > 0 when M and N are algebraic Frobenius

modules, which we establish as Theorem 8.3.1.

• In §9, we prove a generalization of Theorem 1.0.2 where the category

Shvét(Spec(R),Fp) of p-torsion étale sheaves is replaced by the larger

category Shvét(Spec(R),Z/pnZ) of pn-torsion étale sheaves, for some

integer n ≥ 0. In this case, we must also replace the category ModFrR of

Frobenius modules over R by the larger category ModFrWn(R) of Frobe-

nius modules over Wn(R); here Wn(R) denotes the ring of n-truncated

Witt vectors of R (see Theorem 9.6.1).

• In §10, we prove a generalization of Theorem 1.0.2 where the affine

scheme Spec(R) is replaced by an arbitrary Fp-scheme X (Theorem

10.2.7). We also show that the Riemann-Hilbert correspondence is

compatible with the formation of (higher) direct images along proper

morphisms f : X → Y of finite presentation (Theorem 10.5.5). As

an application, we reprove a special case of the proper base change

theorem in étale cohomology (namely, the case of p-torsion sheaves on

Fp-schemes; see Corollary 10.6.2).

• In §12, we study the derived category D(R[F ]) of Frobenius modules

over R. The equivalence of abelian categories RHc : Shvcét(Spec(R),
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Fp) � ModholR extends to an equivalence of triangulated categories

Db
c(Spec(R),Fp) � Db

hol(R[F ]),

where Db
hol(R[F ]) ⊆ D(R[F ]) denotes the full subcategory spanned

by the cohomologically bounded chain complexes with holonomic co-
homology and Db

c(Spec(R),Fp) is the constructible derived category
of Spec(R); see Corollary 12.1.7. We also construct a duality functor
D : Db

hol(R[F ]) → D(R[F ])op, and show that it is a fully faithful em-
bedding (Theorem 12.5.4). Combining this duality functor with our
Riemann-Hilbert correspondence, we obtain a second embedding from
the constructible derived category Db

c(Spec(R),Fp) to the derived cat-
egory D(R[F ]). Using this construction, we recover the contravariant
Riemann-Hilbert correspondence of [6] (in a strong form, which does
not require the Fp-algebra R to be regular or even Noetherian; see
Theorem 11.4.4), whose statement we review in §11 (see also §1.3).

These sections are more or less independent of one another, and can be
read in any order (except that §12 depends on §11). One can also develop a
theory which incorporates several of these refinements simultaneously (for
example, one can compare derived categories of Z/pnZ-sheaves on an ar-
bitrary Fp-scheme X with derived categories of quasi-coherent Frobenius
modules over the Witt sheaf Wn(OX)); we leave such extensions to the
reader.

1.2. The Work of Böckle-Pink

In the case where the R is Noetherian, Theorem 1.0.2 is essentially due
to Böckle and Pink. Let us briefly summarize some of their work. Assume
that R is Noetherian, and let ModFrR,fg denote the full category of Frobenius
modules (M,ϕM ) which are finitely generated as modules over R. In [4],
Böckle and Pink construct an equivalence of abelian categories

Shvcét(Spec(R),Fp) � ModFrR,fg /Nil,

where Nil is the full subcategory of ModFrR,fg spanned by those Frobenius

modules (M,ϕM ) where ϕM is nilpotent, and ModFrR,fg /Nil denotes the Serre
quotient (Böckle and Pink denote this Serre quotient by Crys(R) and refer
to it as the category of crystals on Spec(R)). From the perspective of [4], the
main innovation of this paper is to realize the category Crys(R) concretely
as a full subcategory ModFrR , rather than abstractly as a Serre quotient.
To achieve this, we note that every Frobenius module (M,ϕM ) admits a
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perfection M1/p∞
, given as an abelian group by the direct limit

lim−→(M
ϕM−−→ M

ϕM−−→ M
ϕM−−→ M → · · · );

we will study this construction in detail in §3.2. This construction annihilates
every Frobenius module (M,ϕM ) for which ϕM is nilpotent, and therefore
determines a functor

Crys(R) = ModFrR,fg /Nil → ModFrR .

This functor is fully faithful, and its essential image is the subcategory
ModholR ⊆ ModFrR of holonomic Frobenius modules that we study in §4.
The resulting identification of Crys(R) with ModholR carries the equivalence
Shvcét(Spec(R),Fp) � Crys(R) to the Riemann-Hilbert equivalence RHc :
Shvcét(Spec(R),Fp) � ModholR of Theorem 7.4.1.

One advantage of our approach is that it does not require the ring R
to be Noetherian. Beware that if R is not Noetherian, then the subcat-
egory ModFrR,fg ⊆ ModFrR is not abelian, and the formalism of Serre quo-

tients is not available. Nevertheless, we will see that the category ModholR of
holonomic Frobenius modules is still a well-behaved abelian subcategory of
ModFrR (Corollary 4.3.3). Note that the extra generality afforded by allowing
non-Noetherian rings can quite useful in practice: one of the main themes
of the present paper is that the theory is often clarified by replacing an
Fp-algebra R by its perfection R1/p∞

, which is almost never Noetherian.
Our realization of crystals as holonomic Frobenius modules also has

the advantage of essentially trivializing the passage to derived categories
in §12.1 (see Theorem 12.1.5). The corresponding statement in [4] requires
more categorical preliminaries (largely to deal with the derived category
of the Serre quotient category Crys(R) in a useful fashion), and does not
describe the constructible derived category Db

c(Spec(R),Fp) as explicitly as
Corollary 12.1.7.

Remark 1.2.1. When R is not Noetherian, we cannot realize the category
ModholR as a Serre quotient of the category ModFrR,fg. Nevertheless, it is still

possible to realize the holonomic derived category Db
hol(R[F ]) as a Verdier

quotient of the triangulated category of complexes of Frobenius modules
which are finitely generated and projective over R; see Remark 12.4.5.

1.3. The Work of Emerton-Kisin

The Riemann-Hilbert correspondence of Theorem 1.0.2 is also closely related
to the work of Emerton and Kisin (see [6]). In the case where R is a smooth
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algebra over a field k of characteristic p, Emerton and Kisin construct an
equivalence of triangulated categories

RSolEK : Db
fgu(R[F ])op � Db

c(Spec(R),Fp),

where Db
fgu(R[F ]) denotes the full subcategory of D(R[F ]) spanned by the

cohomologically bounded chain complexes whose cohomology groups finitely
generated unit Frobenius modules (see Definition 11.1.3). This differs from
our Riemann-Hilbert equivalence Sol : ModholR � Shvcét(Spec(R),Fp) in two
important respects:

• The functor Sol : ModholR � Shvcét(Spec(R),Fp) is an equivalence of
abelian categories (though it can be extended to an equivalence of
suitable derived categories, see Corollary 12.1.7). However, the func-
tor RSolEK is well-defined only at the level of derived categories: in
other words, it is not t-exact. Gabber has identified the image of the
abelian category of finitely generated unit Frobenius modules under
the equivalence RSolEK with a certain category of perverse Fp-sheaves
inside Db

c(Spec(R),Fp) (see [8]).
• The equivalence Sol : ModholR � Shvcét(Spec(R),Fp) is a covariant func-
tor, while RSolEK is contravariant.

Example 1.3.1. To illustrate the contrast between the Riemann-Hilbert
correspondence of Theorem 1.0.2 and the Riemann-Hilbert correspondence
of [6] in more concrete terms, let us consider an arbitrary Fp-algebra R. A
choice of non-zero divisor t ∈ R determines closed and open immersions

i : Spec(R/tR) ↪→ Spec(R) j : Spec(R[t−1]) ↪→ Spec(R),

so that the constant sheaf Fp on Spec(R) fits into an exact sequence

(1) 0 → j!Fp → Fp → i∗Fp → 0.

Then the functor RH of Theorem 1.0.2 carries the étale sheaves Fp, j!Fp,

and i∗Fp to the Frobenius modules R1/p∞
, (tR)1/p

∞
, and (R/tR)1/p

∞
, re-

spectively, and the exact sequence (1) to the short exact sequence

0 → (tR)1/p
∞ → R1/p∞ → (R/tR)1/p

∞ → 0.

of Frobenius modules.
On the other hand, if R is a smooth algebra over a field k of charac-

teristic p, then the contravariant functor RSolEK from [6] carries the étale
sheaves Fp, j!Fp, and i∗Fp to the chain complexes of (finitely generated
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unit) Frobenius modules R, R[t−1], and (R[t−1]/R)[−1], respectively (up to
a cohomological shift of dim(R): see Remark 11.4.5). In other words, RSolEK
carries exact sequence (1) into the distinguished triangle (R[t−1]/R)[−1] →
R → R[t−1] in the derived category Db

fgu(ModFrR ), obtained by “rotating”
the exact sequence

0 → R → R[t−1] → R[t−1]/R → 0

in the category of Frobenius modules.

In §12, we will show that the functor RSolEK fits into a commutative
diagram of triangulated categories

Db
hol(R[F ])

D

��������������
RSol

���������������

Db
fgu(R[F ])op

RSolEK �� Db
c(Spec(R);Fp),

where RSol is a derived version of our solution functor Sol, and D denotes a
certain duality functor on the derived category of Frobenius modules. Using
the fact that RSol is an equivalence of categories (which follows easily from
Theorem 1.0.2 and its proof) and that D is an equivalence of categories
(which we prove as Theorem 12.5.4), we give a new proof of the assertion
that RSolEK is an equivalence of categories. Moreover, our argument does not
require the assumption that R is a smooth algebra over a field: we allow R to
be an arbitrary Fp-algebra, with the caveat that the triangulated category
Db

fgu(R[F ]) must be suitably defined (if R is not a regular Noetherian ring,

then the criteria for membership in the subcategory Db
fgu(R[F ]) ⊆ D(R[F ])

must be imposed at the derived level, rather than at the level of individual
cohomology groups; see Definition 11.3.4).

Remark 1.3.2. Let R be a commutative Fp-algebra, let X = Spec(R) de-
note the associated affine scheme, and let ϕX : X → X denote the absolute
Frobenius map. A Frobenius module over R can be identified with a quasi-
coherent sheaf E on X equipped with a map ϕE : E → ϕX∗ E , or equivalently
with a map ψE : ϕ∗

X E → E . In this paper, we will be primarily concerned
with the class of perfect Frobenius modules, characterized by the require-
ment that the map ϕE is an isomorphism. By contrast, the book [6] is mainly
concerned with the class of unit Frobenius modules, characterized by the re-
quirement that the map ψE is an isomorphism. Note that the direct image
functor ϕX∗ is always exact (since ϕX is affine morphism), but the exactness
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of the pullback functor ϕ∗
X requires some strong hypotheses on R (for exam-

ple, that R is a regular Noetherian ring). Consequently, the category ModperfR
of perfect Frobenius modules is always abelian, but the category of finitely
generated unit Frobenius modules is well-behaved only in special cases.

1.4. Other Related Works

Extensions of the contravariant Riemann-Hilbert correspondence of [6] to
singular schemes have also been explored in the papers of Blickle-Böckle
[2, 3], Schedlmeier [14], and Ohkawa [13]. Under mild finiteness conditions on
R, the papers [2, 3] develop a theory of “Cartier” modules: these are coherent
sheaves E on X = Spec(R) equipped with a map CE : ϕX∗ E → E . Passing to
a quotient by a naturally defined subcategory of nilpotent objects yields the
category CrysCart(R) of Cartier crystals on R. For X smooth over a perfect
field, the category CrysCart(R) is identified in [2] with the category of finitely
generated unit Frobenius modules (and thus with the category of perverse
Fp-sheaves on Spec(R)ét via [6] and [8]). Roughly speaking, the smoothness

of R ensures that ϕ! E � ϕ∗ E ⊗ω1−p
X , so a Cartier module CE : ϕX∗ E → E

gives by adjunction a map α : E ⊗ω−1
X → ϕ∗

X(E ⊗ω−1
X ) whose unitalization

(see Construction 11.2.2) yields the desired finitely generated unit Frobenius
module. For R not necessarily regular, even though finitely generated unit
Frobenius modules may be badly behaved, the abelian category CrysCart(R)
is shown to have good behaviour in [2, 3]; see also [8]. Using this, the paper
[14] shows that, given an embedding X ↪→ Spec(P ) with P smooth over a
perfect field, a suitably defined derived category of CrysCart(R) is equivalent
to the full subcategory of Db

fgu(P [F ]) spanned by complexes supported on
X. Combining this with the Riemann-Hilbert correspondence from [6] for P
and a suitable analogue of Kashiwara’s theorem, one obtains a description
of the constructible derived category Db

c(Spec(R),Fp) in terms of Cartier
crystals on R ([13, 14]).

Remark 1.4.1. The most important example of a Cartier module is the co-
herent dualizing sheaf ωX for X = Spec(R), where we take CωX

: ϕX∗ωX →
ωX to be the Grothendieck dual of the unit map OX → ϕX∗OX . In the
case where X is a smooth scheme over a perfect field k, this map can also
be described in terms of the Cartier operator on the de Rham complex of
X, which motivates the terminology.

In summary, the papers [2, 3, 13, 14] extend the Riemann-Hilbert cor-
respondence of [6] to algebras of finite type over a field by developing the
theory of Cartier modules and reducing to the smooth case. In contrast, the
discussion in §11 gives an intrinsic extension of the Riemann-Hilbert corre-
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spondence of [6] to all Fp-algebras R, which is described using Frobenius
modules (that is, quasi-coherent sheaves with a map E → ϕX∗ E). The pre-
sentation via Cartier crystals gives a module-theoretic description of per-
verse Fp-sheaves on Spec(R)ét (which has an important precursor in [8]),
while the presentation in §11 works entirely in the derived category and
thus avoids discussion of the abelian category of perverse sheaves.
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2. Overview

Our goal in this section is to give a precise formulation of Theorem 1.0.2. We
begin by introducing two of the principal objects of interest in this paper:
the category ModFrR of Frobenius modules over a commutative Fp-algebra
R (Definition 2.1.1) and the category Shvét(Spec(R),Fp) of p-torsion étale
sheaves on Spec(R) (Definition 2.2.2). The Riemann-Hilbert correspondence
of Theorem 1.0.2 is a fully faithful embedding of categories

RH : Shvét(Spec(R),Fp) → ModFrR .

It will take a bit of work to construct this functor (this is the main objective
of §6). In this section, we consider instead the solution sheaf functor Sol :
ModFrR → Shvét(Spec(R),Fp), which is left inverse to the Riemann-Hilbert
functor RH and admits a very simple description (Definition 2.3.3). We
then formulate a variant of Theorem 1.0.2, which asserts that the functor
Sol becomes an equivalence when restricted to a certain full subcategory
ModalgR ⊆ ModFrR (Theorem 2.4.3).

2.1. Frobenius Modules

We begin by introducing some definitions.

Definition 2.1.1. Let R be a commutative Fp-algebra. A Frobenius module
over R is an R-module M equipped with an additive map ϕM : M → M
satisfying the identity ϕM (λx) = λpϕM (x) for x ∈ M , λ ∈ R.
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Let (M,ϕM ) and (N,ϕN ) be Frobenius modules over R. A morphism of
Frobenius modules from (M,ϕM ) to (N,ϕN ) is an R-module homomorphism
ρ : M → N for which the diagram

M
ρ ��

ϕM

��

N

ϕN

��
M

ρ �� N

commutes. We let ModFrR denote the category whose objects are Frobenius
modules (M,ϕM ) and whose morphisms are morphisms of Frobenius mod-
ules. We will refer to ModFrR as the category of Frobenius modules over R.

Notation 2.1.2. Let M and N be Frobenius modules over a commutative
Fp-algebra R. We let HomFr

R (M,N) denote the set of Frobenius module
morphisms from (M,ϕM ) to (N,ϕN ).

Remark 2.1.3. Let (M,ϕM ) be a Frobenius module over a commutative
Fp-algebra R. We will often abuse terminology by simply referring to M as
a Frobenius module over R: in this case, we are implicitly asserting that M
is equipped with a Frobenius-semilinear map ϕM : M → M .

Example 2.1.4. Let R be a commutative Fp-algebra. Then we can regard
R as a Frobenius module over itself, via the Frobenius map

ϕR : R → R ϕR(λ) = λp.

More generally, the same comment applies to an ideal I ⊆ R.

It will sometimes be helpful to identify Frobenius modules over a com-
mutative Fp-algebra R with modules over a certain (noncommutative) en-
largement of R.

Notation 2.1.5. Let R be an Fp-algebra. We let R[F ] denote the noncom-
mutative ring whose elements are finite sums

∑
n≥0 cnF

n, with multiplica-
tion given by

(
∑
m≥0

cmFm)(
∑
n≥0

c′nF
n) =

∑
k≥0

(
∑

i+j=k

cic
′pi

j )F k.

We will identify R with the subring of R[F ] consisting of those sums∑
n≥0 cnF

n for which the coefficients ci vanish for i > 0. Unwinding the

definitions, we see that the category ModFrR is equivalent to the category
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of left R[F ]-modules. In particular, ModFrR is an abelian category which
has enough projective objects and enough injective objects. Given objects
M,N ∈ ModFrR , we let ExtnR[F ](M,N) denote the nth Ext-group of M and

N , computed in the abelian category ModFrR .

We now consider the behavior of the category ModFrR as the commutative
Fp-algebra R varies.

Construction 2.1.6 (Extension of Scalars). Let f : A → B be a homo-
morphism of commutative Fp-algebras. If M is a Frobenius module over A,
then we can regard the tensor product B⊗A M as a Frobenius module over
B, with Frobenius map given by

ϕB⊗AM (b⊗ x) = bp ⊗ ϕM (x).

The construction M �→ B⊗AM determines a functor from ModFrA to ModFrB ,
which we will denote by f∗

Fr and refer to as extension of scalars along f .

Remark 2.1.7 (Restriction of Scalars). In the situation of Construction
2.1.6, the extension of scalars f∗

Fr(M) = B ⊗A M is characterized by the
following universal property: for every Frobenius module N over B, compo-
sition with the map M → B ⊗A M induces a bijection

HomB[F ](B ⊗A M,N) → HomA[F ](M,N).

In other words, we can regard the functor f∗
Fr as a left adjoint to the forgetful

functor ModFrB → ModFrA . We will denote this forgetful functor by f∗ and refer
to it as restriction of scalars along f .

Warning 2.1.8. Let f : A → B be a homomorphism of commutative Fp-
algebras. Then f extends to a homomorphism of noncommutative rings f+ :
A[F ] → B[F ], where A[F ] and B[F ] are defined as in Notation 2.1.5. The
content of Construction 2.1.6 and Remark 2.1.7 is that, for every Frobenius
module M over A, the canonical map

B ⊗A M → B[F ]⊗A[F ] M

is an isomorphism. This relies on the fact that A[F ] is freely generated as a
left A-module by the elements {Fn}n≥0. Beware that A[F ] is usually not free
when regarded as a right A-module (so the analogous compatibility would
fail if we were to study right modules over A[F ], rather than left modules).
In fact, following Notation 3.1.1, the ring A[F ] identifies with ⊕n≥0A ·Fn as
a left A-module, and with ⊕n≥0F

n ·A1/pn

as a right A-module. In particular,
the latter is free over A only under strong conditions (such as regularity).
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Remark 2.1.9. Let f : A → B be a homomorphism of commutative Fp-

algebras, and suppose that the multiplication map m : B ⊗A B → B is an

isomorphism (this condition is satisfied, for example, if f is surjective, or if

f exhibits B as a localization of A). Then, for any Frobenius module M over

B, the counit map v : f∗
Frf∗(M) → M is also an isomorphism: note that the

domain of v can be identified with the tensor product B⊗AM � (B⊗AB)⊗B

M . It follows that the restriction of scalars functor f∗ : ModFrB → ModFrA is

fully faithful.

2.2. Étale Sheaves

For the reader’s convenience, we briefly review the theory of étale sheaves.

We consider here only the case of affine schemes (we will discuss sheaves on

more general schemes in §10).

Notation 2.2.1. Let R be a commutative ring. We let CAlgétR denote the

category whose objects are étale R-algebras, and whose morphisms are R-

algebra homomorphisms.

Definition 2.2.2. Let R and Λ be commutative rings, and let ModΛ denote

the category of Λ-modules. An étale sheaf of Λ-modules on Spec(R) is a

functor

F : CAlgétR → ModΛ

which satisfies the following pair of conditions:

• For every faithfully flat map u : A → B in CAlgétR , the sequence

0 → F (A)
F (u)−−−→ F (B)

F (u⊗id)−F (id⊗u)−−−−−−−−−−−−→ F (B ⊗A B)

is exact.

• For every finite collection of étale R-algebras {Ai}i∈I , the map

F (
∏
i∈I

Ai) →
∏
i∈I

F (Ai)

is an isomorphism.

We let Shvét(Spec(R),Λ) denote the category whose objects are étale sheaves

of Λ-modules on Spec(R) (where morphisms are given by natural transfor-

mations).
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Remark 2.2.3. In this paper, we will be concerned almost exclusively with
the case where Λ is the finite field Fp. The only exception is in §9, where we
take Λ = Z/pnZ for some integer n ≥ 0.

Example 2.2.4 (Constant Sheaves). Let R be a commutative ring and let
M be a module over a commutative ring Λ. We let M ∈ Shvét(Spec(R),Λ)
denote the functor which associates to each étale R-algebra A the set M(A)
of locally constant M -valued functions on Spec(A). We will refer to M as
the constant sheaf with value M .

Example 2.2.5 (Quasi-Coherent Sheaves). Let R be an Fp-algebra. For
every R-module M , the construction (A ∈ CAlgétR) �→ A ⊗R M determines

an étale sheaf of Fp-modules on M , which we denote by M̃ (see [15, Tag
03DX]). Note that if M is a Frobenius module over R, then ϕM determines

a map of étale sheaves ϕ̃M : M̃ → M̃ ; this map is Fp-linear, but not R-linear
in general.

Notation 2.2.6. Let R and Λ be commutative rings. If F and G are étale
sheaves of Λ-modules on Spec(R), we let HomΛ(F ,G ) denote the abelian
group of morphisms from F to G in the category Shvét(Spec(R),Λ) (empha-
sizing the idea that F and G can be regarded as modules over the constant
sheaf Λ).

Note that Shvét(Spec(R),Λ) is an abelian category with enough injective
objects, so that we can consider Ext-groups in Shvét(Spec(R),Λ). We denote
these Ext-groups by ExtnΛ(F ,G ) for n ≥ 0.

Remark 2.2.7 (Functoriality). Let f : A → B be a homomorphism of
commutative rings. Then f induces a base change functor

CAlgétA → CAlgétB A′ �→ A′ ⊗A B.

Precomposition with this functor determines a pushforward functor

f∗ : Shvét(Spec(B),Λ) → Shvét(Spec(A),Λ),

given concretely by the formula (f∗ F )(A′) = F (A′ ×A B). The functor f∗
admits a left adjoint f∗ : Shvét(Spec(A),Λ) → Shvét(Spec(B),Λ), which we
refer to as pullback along f .

2.3. The Solution Functor

Construction 2.3.1. Let R be a commutative Fp-algebra and let M be a
Frobenius module over R. For every étale R-algebra A, we regard the tensor
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product A⊗RM as a Frobenius module over A (see Construction 2.1.6). We
define

Sol(M)(A) = {x ∈ (A⊗R M) : ϕA⊗RM (x) = x}.
The construction A �→ Sol(M)(A) determines a functor CAlgétR → ModFp

,
which we will refer to as the solution sheaf of M .

Proposition 2.3.2. Let R be a commutative Fp-algebra and let M be a
Frobenius module over R. Then Sol(M) is an étale sheaf of Fp-modules on
Spec(R).

Proof. Let M̃ denote the quasi-coherent sheaf associated to M (Example
2.2.5). It follows immediately from the definition that Sol(M) can be de-
scribed as the kernel of the map

(id−ϕ̃M ) : M̃ → M̃.

Since M̃ is an étale sheaf of Fp-modules on Spec(R), the functor Sol(M)
has the same property.

Definition 2.3.3. Let R be a commutative Fp-algebra. We will regard the
construction

(M ∈ ModFrR ) �→ (Sol(M) ∈ Shvét(Spec(R),Fp))

as a functor Sol : ModFrR → Shvét(Spec(R),Fp). We will refer to Sol as the
solution functor.

Remark 2.3.4. The solution functor Sol : ModFrR → Shvét(Spec(R),Fp) is
left exact. However, it is usually not right exact.

2.4. The Riemann-Hilbert Correspondence

We now introduce a class of Frobenius modules on which the solution functor
of Definition 2.3.3 is particularly well-behaved.

Definition 2.4.1. Let R be a commutative Fp-algebra and let M be a
Frobenius module over R. We will say that M is algebraic if it satisfies the
following conditions:

(a) The map ϕM : M → M is an isomorphism of abelian groups.
(b) Every element x ∈ M satisfies an equation of the form

ϕn
M (x) + a1ϕ

n−1
M (x) + · · ·+ anx = 0

for some coefficients ai ∈ R.
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We let ModalgR denote the full subcategory of ModFrR spanned by the algebraic
Frobenius modules over R.

Remark 2.4.2. Let R be a commutative Fp-algebra and let M be a Frobe-
nius module over R. Then condition (b) of Definition 2.4.1 is equivalent to
the following:

(b′) For every finitely generated R-submodule M0 ⊆ M , the Frobenius
submodule of M generated by M0 is also finitely generated as an R-
module.

To see that (b) implies (b′), suppose that M0 ⊆ M is the R-submodule gen-
erated by finitely many elements {xi}i∈I . Then condition (b) guarantees that
the R-submodule generated by {ϕk

M (xi)}i∈I,k≤n is stable under the action
of ϕM for some n 
 0; this is clearly the smallest ϕM -stable submodule of
M which contains M0.

Conversely, suppose that (b′) is satisfied and let x be an element of M .
Applying condition (b′) to the submodule M0 = Rx ⊆ M , we see that the
sum

∑
k≥0Rϕk

M (x) ⊆ M is generated by finitely many elements, and is

therefore contained in
∑

0≤k<nRϕk
M (x) for some integer n. It follows that

ϕn
M (x) can be written as a linear combination a1ϕ

n−1
M (x) + · · · + anx for

some coefficients a1, a2, . . . , an ∈ R.

We can now formulate the main result of this paper:

Theorem 2.4.3. Let R be a commutative Fp-algebra. Then the solution

sheaf functor Sol : ModalgR → Shvét(Spec(R),Fp) is an equivalence of cate-
gories.

Note that Theorem 2.4.3 immediately implies Theorem 1.0.2: assum-
ing Theorem 2.4.3, the Riemann-Hilbert functor RH can be defined as the
composition

Shvét(Spec(R),Fp)
Sol−1

−−−→ ModalgR ↪→ ModFrR .

We will give a different (but ultimately equivalent) definition of the functor
RH in §6: the construction of this functor is one of the key ingredients in
our proof of Theorem 2.4.3, which we present in §7.

3. The Category of Frobenius Modules

Let R be a commutative Fp-algebra. Our goal in this section is to estab-
lish some elementary properties of the abelian category ModFrR of Frobenius
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modules over R. We begin in §3.1 by studying the forgetful functor from

ModFrR to the category of R-modules. The main observation is that the ring

R admits a very simple resolution

0 → R[F ]
F−1−−−→ R[F ] → R → 0

in the category of left modules over the noncommutative ring R[F ] appearing

in Notation 2.1.5. This allows us to reduce calculations of Ext-groups in the

category ModFrR to calculations of Ext-groups in the category ModR: see

Construction 3.1.7.

In §3.2, we restrict our attention to the class of perfect Frobenius mod-

ules: that is, Frobenius modules M for which the map ϕM : M → M is

bijective (Definition 3.2.1). The collection of Frobenius modules with this

property form a category which we denote by ModperfR . Our main result is

that the inclusion functor ModperfR ↪→ ModFrR admits an exact left adjoint

M → M1/p∞
, given informally by “inverting the Frobenius” (Proposition

3.2.7).

Let f : A → B be a homomorphism of commutative Fp-algebras. In

§2.1, we observed that extension of scalars along f determines a functor

f∗
Fr : ModFrA → ModFrB . Beware that this construction does not carry perfect

Frobenius modules to perfect Frobenius modules. To remedy this, we intro-

duce in §3.3 another functor f� : ModperfA → ModperfB , given concretely by

the formula f�(M) = (f∗
FrM)1/p

∞
. The functors f� and f∗

Fr are generally

different, but they agree when the ring homomorphism f is étale (Corollary

3.4.7). The proof of this fact will require some elementary facts about perfect

rings of characteristic p, which we review in §3.4.

3.1. Comparison of R[F ]-Modules with R-Modules

Throughout this section, we fix a commutative Fp-algebra R.

Notation 3.1.1. Let ModR denote the abelian category of R-modules. For

each n ≥ 0, restriction of scalars along the nth power of the Frobenius map

ϕR : R → R determines a forgetful functor from ModR to itself, which we

will denote by M �→ M1/pn

.

LetM be an R-module. Then there is a canonical isomorphism of abelian

groups M � M1/pn

. For each element x ∈ M , we will denote the image of

x under this isomorphism by x1/p
n

. The action of R on M1/pn

can then be

described by the formula λ(x1/p
n

) = (λpn

x)1/p
n

, for λ ∈ R and x ∈ M .
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Construction 3.1.2. Let N be an R-module. We let N † denote the R-
module given by the product

∏
n≥0N

1/pn

. We identify elements of N † with
the collection of all sequences (x0, x1, x2, . . .) in N , where the action of R is
given by

λ(x0, x1, x2, . . .) = (λx0, λ
px1, λ

p2

x2, . . .).

We regard N † as an Frobenius module over R, with endomorphism ϕN† :
N † → N † given by

ϕN†(x0, x1, x2, · · · ) = (x1, x2, x3, · · · ).

Lemma 3.1.3. Let M be a Frobenius module over R, let N be an arbitrary
R-module, and let v : N † → N be the R-module homomorphism given by

v(x0, x1, x2, . . .) = x0.

Then composition with v induces a bijection HomFr
R (M,N †) → HomR(M,N).

Proof. For every R-module homomorphism f : M → N , define f+ : M →
N † by the formula f+(x) = (f(x), f(ϕM (x)), f(ϕ2

M (x)), . . .). An elementary
calculation shows that the construction f �→ f+ determines an inverse to
the map HomFr

R (M,N †) → HomR(M,N) given by composition with v.

Remark 3.1.4. It follows from Lemma 3.1.3 that we can regard the con-
structionN �→ N † as a right adjoint to the forgetful functor ModFrR → ModR.

Remark 3.1.5. Using the equivalence of Notation 2.1.5, we can identify
the forgetful map ModFrR → ModR with the functor given by restriction of
scalars along the ring homomorphism R → R[F ]. The right adjoint to this
restriction of scalars functor is given by M �→ HomR(R[F ],M), which we
can identify with M † using the canonical left R-module basis of R[F ] given
by {Fn}n≥0.

Remark 3.1.6. Let M be a Frobenius module over R and let N be an ar-
bitrary R-module. Then the identification HomR[F ](M,N †) � HomR(M,N)
of Lemma 3.1.3 extends to an isomorphism of graded abelian groups

Ext∗R[F ](M,N †) � Ext∗R(M,N).

This isomorphism can be described explicitly by choosing a projective reso-
lution

· · · → P2 → P1 → P0 → M
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in the abelian category ModFrR . Note that each Pn is also projective when

regarded as an R-module (this follows from the observation that the al-

gebra R[F ] of Notation 2.1.5 is free as a left R-module), so that both

Ext∗R[F ](M,N †) and Ext∗R(M,N) can be computed as the cohomology of

the cochain complex of abelian groups HomR[F ](P∗, N †) � HomR(P∗, N).

Construction 3.1.7. Let N be a Frobenius module over R. Then the

construction (x ∈ N) �→ (x, ϕN (x), ϕ2
N (x), · · · ) determines a morphism of

Frobenius modules u : N → N † (which is a unit map for the adjunction of

Remark 3.1.4). Note that u is a monomorphism which fits into a short exact

sequence of Frobenius modules

0 → N
u−→ N † α−→ (N1/p)† → 0,

where α is given by the formula

α(x0, x1, x2, . . .) = (ϕN (x0)− x1, ϕN (x1)− x2, ϕN (x2)− x3, . . .).

It follows that for any other Frobenius module M over R, we have a short

exact sequence of abelian groups

0 → HomFr
R (M,N) → HomR(M,N)

β−→ HomR(M,N1/p),

where β is given by the formula β(f)(x) = ϕN (f(x))1/p − f(ϕM (x))1/p.

Moreover, if M is a projective object of ModFrR , then β is surjective. More

generally, Remark 3.1.6 supplies a long exact sequence of abelian groups

· · · → Ext∗−1
R (M,N1/p) → Ext∗R[F ](M,N) → Ext∗R(M,N)

→ Ext∗R(M,N1/p) → · · · .

Remark 3.1.8. Let R be a commutative Fp-algebra and let M be a Frobe-

nius module over R. It follows from Construction 3.1.7 that if M has pro-

jective (injective) dimension ≤ n as a module over R, then it has projective

(injective) dimension ≤ n+ 1 as a module over R[F ].

3.2. Perfect Frobenius Modules

Let R be a commutative Fp-algebra, which we regard as fixed throughout

this section.
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Definition 3.2.1. Let M be a Frobenius module over R. We will say that
M is perfect if the map ϕM : M → M is an isomorphism of abelian groups.
We let ModperfR denote the full subcategory of ModFrR spanned by the perfect
Frobenius modules over R.

Remark 3.2.2. The full subcategory ModperfR ⊆ ModFrR is closed under

limits, colimits, and extensions. In particular, ModperfR is an abelian category,

and the inclusion functor ModperfR ↪→ ModFrR is exact.

Notation 3.2.3. Let M be a Frobenius module over R. We let M1/p∞

denote the colimit of the sequence

M
ϕM−−→ M1/p ϕM−−→ M1/p2 → · · ·

We will refer to M1/p∞
as the perfection of M .

Example 3.2.4. Let us regard R as a Frobenius module over itself as in
Example 2.1.4. ThenR1/p∞

is the perfection ofR in the sense of commutative
algebra: that is, it is an initial object in the category of R-algebras in which
every element admits a unique pth root.

Example 3.2.5. Let R[F ] be as in Notation 2.1.5, which we regard as a
Frobenius module over R. We will denote the perfection of R[F ] by
R1/p∞

[F±1]. Unwinding the definitions, we can identify elements of
R1/p∞

[F±1] with expressions of the form
∑

n∈Z cnF
n where the coefficients

cn ∈ R1/p∞
vanish for all but finitely many integers n.

Remark 3.2.6. The set R1/p∞
[F±1] has the structure of an associative ring,

with multiplication given by the formula

(
∑
m∈Z

cmFm)(
∑
n∈Z

c′nF
n) =

∑
k∈Z

(
∑

i+j=k

cic
′pi

j )F k.

This ring can be obtained from the associative ring R[F ] by formally ad-
joining an inverse of the element F . It follows that the equivalence of ModFrR
with the category of left R[F ]-modules restricts to an equivalence of ModperfR

with the category of left R1/p∞
[F±1]-modules. In particular, ModperfR is an

abelian category which has enough projective objects and enough injective
objects.

In the situation of Notation 3.2.3, the perfection M1/p∞
inherits the

structure of a Frobenius module. Moreover, it enjoys the following universal
property:
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Proposition 3.2.7. The inclusion functor ι : ModperfR ↪→ ModFrR admits a
left adjoint, which carries a Frobenius module M to its perfection M1/p∞

.

Proof. Under the equivalence of Remark 3.2.6, a left adjoint to ι corresponds
to the functor of extension of scalars along the map R[F ] → R1/p∞

[F±1],
which is given by M �→ M1/p∞

.

Remark 3.2.8. The perfection functor M �→ M1/p∞
is exact. It follows

that the inclusion functor ModperfR ↪→ ModFrR carries injective objects to
injective objects. In particular, if M and N are perfect Frobenius module
over R, then the canonical map Ext∗

Modperf
R

(M,N) → Ext∗ModFr
R
(M,N) is an

isomorphism. We will denote either of these Ext-groups by Ext∗R[F ](M,N).

For the purpose of comparing Frobenius modules with étale sheaves,
there is no harm in restricting our considerations to perfect Frobenius mod-
ules:

Proposition 3.2.9. Let f : M → N be a morphism of Frobenius modules
over R. If the induced map M1/p∞ → N1/p∞

is an isomorphism of perfect
Frobenius modules, then the induced map Sol(M) → Sol(N) is an isomor-
phism of étale sheaves.

Proof. Factoring f as a composition M → im(f) → N , we can reduce to
proving Proposition 3.2.9 in the special case where f is assumed to be either
surjective or injective. Suppose first that f is injective. Our hypothesis that
f induces an isomorphism M1/p∞ → N1/p∞

guarantees that the perfection
(N/M)1/p

∞
vanishes: that is, the Frobenius map ϕN/M is locally nilpotent. It

follows that for any étale R-algebra A, the Frobenius map ϕA⊗R(N/M) is also
locally nilpotent, and therefore has no nonzero fixed points. It follows that
the étale sheaf Sol(N/M) vanishes. Since the solution functor is left exact
(Remark 2.3.4), we have an exact sequence of étale sheaves 0 → Sol(M) →
Sol(N) → Sol(N/M), which proves that Sol(f) is an isomorphism.

We now treat the case where f is surjective. We wish to prove that f
induces an isomorphism Sol(M)(A) → Sol(N)(A) for every étale R-algebra
A. Replacing M and N by A⊗R M and A⊗R N (which does not injure our
assumption that f induces an equivalence of perfections: see Proposition
3.3.2), we can reduce to the case A = R. We have a commutative diagram
of short exact sequence

0 �� ker(f)

id−ϕker(f)

��

�� M
f ��

id−ϕM

��

N

id−ϕN

��

�� 0

0 �� ker(f) �� M
f �� N �� 0
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which gives a short exact sequence

ker(id−ϕker(f)) → Sol(M)(R) → Sol(N)(R) → coker(id−ϕker(f)).

It will therefore suffice to show that the map id−ϕker(f) is an isomorphism.

This is clear: our assumption that f induces an equivalence of perfections

guarantees that ϕker(f) is locally nilpotent, so that id−ϕker(f) has an inverse

given by the infinite sum
∑

n≥0 ϕ
n
ker(f).

3.3. Restriction and Extension of Scalars

Let f : A → B be a homomorphism of commutative Fp-algebras and let M

be a Frobenius module over B. ThenM is perfect as a Frobenius module over

B if and only if it is perfect when regarded as a Frobenius module over A.

In particular, the restriction of scalars functor f∗ : ModFrB → ModFrA carries

ModperfB into ModperfA . We will abuse notation by denoting the induced map

ModperfB → ModperfA also by f∗, so that we have a commutative diagram σ:

ModperfB
��

f∗
��

ModFrB

f∗
��

ModperfA
�� ModFrA .

Remark 3.3.1. Let f : A → B be a homomorphism of commutative Fp-

algebras and let M be a Frobenius module over B. Then the canonical map

u : M → M1/p∞
induces a map f∗(u) : f∗(M) → f∗(M1/p∞

) of Frobe-

nius modules over A whose target is perfect. It follows that f∗(u) extends

uniquely to a map v : f∗(M)1/p
∞ → f∗(M1/p∞

). Moreover, the map v is an

isomorphism: this follows by inspecting the construction of the perfection

given in §3.2. Put more informally, the formation of the perfection M1/p∞

does not depend on whether we regard M as a Frobenius module over B or

over A (or over Fp).

In the situation of Remark 3.3.1, the extension of scalars functor f∗
Fr :

ModFrA → ModFrB usually does not carry perfect Frobenius modules to perfect

Frobenius modules. However, we do have the following:

Proposition 3.3.2. Let f : A → B be a homomorphism of commutative

Fp-algebras. Then the forgetful functor ModperfB → ModperfA admits a left
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adjoint f�. Moreover, the diagram of categories

ModFrA
(−)1/p

∞

��

f∗
Fr

��

ModperfA

f�

��

ModFrB
(−)1/p

∞

�� ModperfB

commutes up to canonical isomorphism. More precisely, for every object
M ∈ ModFrA , the canonical map f�(M1/p∞

) → (f∗
FrM)1/p

∞
is an equivalence.

Proof. Defining f� by the formula f�(M) = (f∗
FrM)1/p

∞
, it follows imme-

diately from the definitions that f� is left adjoint to the forgetful functor
f∗ : ModperfB → ModperfA . The desired commutativity follows from the com-
mutativity of the diagram σ above (by passing to left adjoints).

In the situation of Proposition 3.3.2, the functors

f∗
Fr : ModFrA → ModFrB f� : ModperfA → ModperfB

are right exact, but generally not left exact (unless B is flat over A). We
can therefore consider their left derived functors.

Construction 3.3.3. Let f : A → B be a homomorphism of Fp-algebras.
The abelian category ModFrA has enough projective objects, so that the ex-
tension of scalars functor f∗

Fr : ModFrA → ModFrB has left derived functors
Lnf

∗
Fr : ModFrA → ModFrB for n ≥ 0. More concretely, for M ∈ ModFrA , we

can describe Lnf
∗
FrM as the nth homology of the chain complex f∗

Fr(P∗),
where P∗ is a projective resolution of M in the abelian category ModFrA .
Note that P∗ is then also a projective resolution of M in the category ModA
of A-modules, and that the chain complex f∗

Fr(P∗) can be identified with
B ⊗A P∗. It follows that for n ≥ 0, we have canonical B-module isomor-
phisms Lnf

∗
FrM = TorAn (M,B). We can summarize the situation as follows:

(∗) If f : A → B is a homomorphism of Fp-algebras and M is a Frobenius
module over A, then the Tor-groups TorAn (M,B) can be regarded as
Frobenius modules over B. Moreover, the construction

ModFrA → ModFrB M �→ TorAn (M,B)

can be identified with the nth left derived functor of the construction
M �→ f∗

FrM .
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Variant 3.3.4. In the situation of Construction, the abelian category

ModperfA also has enough projective objects, so we can consider the left de-

rived functors Lnf
� of the functor f� : ModperfA → ModperfB . Note that if M

is a perfect Frobenius module over A and P∗ is a projective resolution of

M in the category ModFrA of all Frobenius modules over A, then P
1/p∞

∗ is

a projective resolution of M1/p∞ � M in the category ModperfA of perfect

Frobenius modules over A. We can therefore identify (Lnf
�)(M) with the

nth homology group of the chain complex f�P 1/p∞

∗ � (f∗
FrP∗)1/p

∞
. Using

the exactness of the functor N �→ N1/p∞
, we obtain isomorphisms

(Lnf
�)(M) � (Lnf

∗
Fr)(M)1/p

∞ � TorAn (M,B)1/p
∞
.

3.4. Perfect Rings

Let R be a commutative Fp-algebra. Recall that R is said to be perfect if

the Frobenius homomorphism ϕR : R → R is an isomorphism.

Remark 3.4.1. A commutative Fp-algebra R is perfect if and only if it

is perfect when regarded as a Frobenius module over itself, in the sense of

Definition 3.2.1.

Example 3.4.2. LetR be any commutative Fp-algebra. Then the perfection

R1/p∞
of Example 3.2.4 is a perfect Fp-algebra.

Let R be an Fp-algebra. If M is a perfect Frobenius module over R, then

M admits the structure of a module over R1/p∞
. More precisely, we have

the following result, whose proof is left to the reader:

Proposition 3.4.3. Let R be an algebra over Fp. Then the restriction of

scalars functor Modperf
R1/p∞ → ModperfR is an equivalence of categories.

Remark 3.4.4. Let R be a Noetherian Fp-algebra of finite Krull dimension

d, and suppose that the Frobenius map ϕR : R → R1/p exhibits R1/p as a

finite module over R. Then the abelian category of all R1/p∞
-modules has

global dimension≤ 2d+1 (see [1, Remark 11.33]). It follows from Proposition

3.4.3 and Construction 3.1.7 that the category ModperfR has global dimension

≤ 2d+ 2.

Proposition 3.4.5. Let f : A → B be a homomorphism of perfect Fp-

algebras. Then the extension of scalars functor f∗
Fr : ModFrA → ModFrB carries

ModperfA into ModperfB .
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Proof. Let M be a perfect Frobenius module over A. Then the maps

ϕB : B → B ϕA : A → A ϕM : M → M

are isomorphisms, so the induced map ϕB⊗AM : B⊗A M → B⊗A M is also
an isomorphism.

Warning 3.4.6. In the proof of Proposition 3.4.5, it is not enough to assume
that M and B are perfect. For example, the tensor product Fp[x]

1/p∞ ⊗Fp[x]

Fp[x]
1/p∞

is not a perfect ring.

Corollary 3.4.7. Let f : A → B be an étale morphism of Fp-algebras. Then

the extension of scalars functor f∗
Fr : ModFrA → ModFrB carries ModperfA into

ModperfB .

Proof. Let M be a perfect Frobenius module over A. Then we can also
regard M as a Frobenius module over A1/p∞

. Since f is étale, the diagram
of commutative rings

A ��

��

B

��
A1/p∞ �� B1/p∞

is a pushout square (see, for example, [15, Tag 0EBS]). It follows that we
can identify f∗

FrM with the tensor product B1/p∞ ⊗A1/p∞ M , which is perfect
by Proposition 3.4.5.

3.5. Exactness Properties of f�

Our final goal in this section is to establish the following fundamental ex-
actness property for pullbacks of algebraic Frobenius modules:

Theorem 3.5.1. Let f : A → B be a homomorphism of commutative Fp-
algebras and let M be an algebraic Frobenius module over A. Then the abelian
groups TorAn (M,B)1/p

∞
vanish for n > 0.

Before giving the proof of Theorem 3.5.1, let us collect some conse-
quences:

Corollary 3.5.2. Let f : A → B be a homomorphism of commutative Fp-
algebras and suppose we are given an exact sequence 0 → M ′ → M →
M ′′ → 0 in ModperfA . If M ′′ is algebraic, then the sequence 0 → f�M ′ →
f�M → f�M ′′ → 0 is also exact.
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Proof. Variant 3.3.4 supplies an exact sequence

TorA1 (M
′′, B)1/p

∞ → f�M ′ → f�M → f�M ′′ → 0,

where the first term vanishes by virtue of Theorem 3.5.1.

Corollary 3.5.3. Let f : A → B be a morphism of Fp-algebras and suppose
we are given objects M ∈ ModFrA , N ∈ ModFrB . If M is algebraic and N is
perfect, then the canonical map Ext∗A[F ](M,N) → Ext∗B[F ](f

�M,N) is an
isomorphism.

Proof. Let P∗ be a projective resolution of M in the category ModperfA . Then
Theorem 3.5.1 guarantees that f�P∗ is a projective resolution of f�M in the
category ModperfB , so that both Ext∗A[F ](M,N) and Ext∗B[F ](f

�M,N) can be

identified with the cohomology of the cochain complex HomA[F ](P∗, N) �
HomB[F ](f

�P∗, N).

We now turn to the proof of Theorem 3.5.1. The main ingredient is the
following observation from [1]:

Lemma 3.5.4. Let A be a perfect Fp-algebra containing an element a, and
let I = (a, a1/p, a1/p

2

, . . .) denote the kernel of the map A → (A/(a))1/p
∞
.

Then the elements a1/p
n ∈ I determine an A-module isomorphism of I with

the direct limit of the diagram

A
a1−1/p

−−−−→ A
a1/p−1/p2

−−−−−−→ A
a1/p2−1/p3

−−−−−−→ A
a1/p3−1/p4

−−−−−−→ · · ·

Proof. Unwinding the definitions, we must show that if an element x ∈ A
satisfies the equation xa1/p

m

= 0 for somem ≥ 0, then we have xa1/p
m−1/pn

=
0 for some n 
 m. We now compute

xa1/p
m−1/pm+1

= x1/px(p−1)/pa1/p
m+1

a(p−2)/pm+1

= (xa1/p
m

)1/px(p−1)/pa(p−2)/pm+1

= 0.

Proof of Theorem 3.5.1. Let f : A → B be a homomorphism of commuta-
tive Fp-algebras and letM be an algebraic Frobenius module over A; we wish
to show that the groups TorAn (M,B)1/p

∞
vanish for n > 0. Writing B as a

filtered direct limit of finitely generated A-algebras, we can assume that B is
finitely presented over A: that is, we can write B � A[x1, . . . , xk]/I for some
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finitely generated ideal I ⊆ A[x1, . . . , xk]. SetN = (A[x1, . . . , xk]⊗AM)1/p
∞
.

Using the flatness of A[x1, . . . , xk] over A, we obtain isomorphisms

TorA∗ (M,B)1/p
∞ � Tor

A[x1,...,xk]
∗ (N,B)1/p

∞
.

Moreover, N is an algebraic Frobenius module over A[x1, . . . , xk] (see Corol-
lary 4.2.8). We may therefore replace A by A[x1, . . . , xk] (and M by N) and
thereby reduce to the case where f is surjective.

Proceeding by induction on the number of generators of I, we can reduce
to the case where I = (a) is a principal ideal. Since M is perfect, we can
regard M as a module over the perfection A1/p∞

, so that we have canonical
isomorphisms TorA∗ (M,B)1/p

∞ � TorA
1/p∞

∗ (M,B1/p∞
). We have an exact

sequence

0 → I1/p
∞ → A1/p∞ → B1/p∞ → 0

in the category of modules over A1/p∞
, where I1/p

∞
is flat over A1/p∞

by
virtue of Lemma 3.5.4. It follows that the groups TorAn (M,B)1/p

∞
vanish

for n ≥ 2, and TorA1 (M,B)1/p
∞

can be identified with the kernel of the map

ρ : M ⊗A1/p∞ I1/p
∞ → M ⊗A1/p∞ A1/p∞ � M.

We will complete the proof by showing that ρ is injective Using the descrip-
tion of I1/p

∞
supplied by Lemma 3.5.4, we see that the injectivity of ρ can

be reformulated as follows:

(∗) Let x be an element of M which satisfies the equation a1/p
m

x = 0, for

some integer m. Then a1/p
m−1/pm′

x = 0 for some m′ 
 m.

To prove (∗), we use our assumption that M is algebraic to write

ϕn
M (x) = c1ϕ

n−1
M (x) + · · ·+ cnx

for some coefficients c1, . . . , cn ∈ A. We then compute

ϕn
M (a1/p

m+1

x) = ap
n/pm+1

ϕn
M (x)

=

n∑
i=1

ap
n/pm+1

ciϕ
n−i
M (x)

=

n∑
i=1

ciϕ
n−i
M (ap

i−1/pm

x)

= 0.
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Using the bijectivity of ϕM , it follows that a1/p
m+1

x = 0, which immediately
implies (∗).
Remark 3.5.5. The reasoning used to prove Theorem 3.5.1 can also be
used to show the following result (see [1]): if B ← A → C is a diagram
of perfect rings, then ToriA(B,C) = 0 for i > 0. Indeed, as in the proof of
Theorem 3.5.1, one reduces to the case B = A/I, where I =

⋃
n f

1/pn

A is
the radical of an ideal generated by a single element f ∈ A. In this case, the
presentation given in Lemma 3.5.4 and the perfectness of C imply that I is
a flat A-module, and that I ⊗AC � J , where J =

⋃
n f

1/pn

C ⊆ C is also an
ideal. The desired claim follows immediately.

4. Holonomic Frobenius Modules

Let R be a commutative Fp-algebra and let ModFrR denote the category of
Frobenius modules over R. In this section, we consider a full subcategory
ModholR ⊆ ModFrR whose objects we refer to as holonomic Frobenius mod-
ules. Roughly speaking, the class of holonomic Frobenius modules can be
regarded as a characteristic p analogue of the class of (regular) holonomic
D-modules on complex analytic varieties. We will later show that the cat-
egory ModholR can be characterized as the essential image of the category
Shvcét(Spec(R),Fp) of constructible étale sheaves under the Riemann-Hilbert
equivalence

RH : Shvét(Spec(R),Fp) � ModalgR ⊆ ModFrR

of Theorem 1.0.2 (see Theorem 7.4.1). Our goal in this section is to lay the
groundwork by establishing the basic formal properties of ModholR .

We begin in §4.1 by defining the class of holonomic Frobenius modules
(Definition 4.1.1) and verifying some elementary closure properties. In §4.2,
we show that every holonomic Frobenius module is algebraic (Proposition
4.2.1) and that, conversely, every algebraic Frobenius module can be realized
as a filtered colimit of holonomic Frobenius modules (Theorem 4.2.9). This
result will allow us to reduce certain questions about algebraic modules to
the case of holonomic modules, which enjoy good finiteness properties. For
example, we prove in §4.3 that if R is Noetherian, then the category ModholR

is also Noetherian (Proposition 4.3.1). In §4.4 we associate to each holonomic
Frobenius module M a constructible subset supp(M) ⊆ Spec(R) which we
refer to as the support of M . We will see later that the support supp(M)
exerts strong control over the behavior of M : for example, it is empty if and
only if M � 0 (Proposition 5.3.3).
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4.1. Holonomicity

Definition 4.1.1. Let R be a commutative Fp-algebra and let M be a

Frobenius module over R. We will say that M is holonomic if there exists

an isomorphism M � M
1/p∞

0 , where M0 ∈ ModFrR is finitely presented as an

R-module. We let ModholR denote the full subcategory of ModperfR spanned

by the holonomic Frobenius modules over R.

Proposition 4.1.2. Let f : A → B be a homomorphism of Fp-algebras. If

M ∈ ModperfA is holonomic, then f�M ∈ ModperfB is holonomic.

Proof. Without loss of generality we may assume that M = M
1/p∞

0 for

some M0 ∈ ModFrA which is finitely presented as an A-module. Then f�M �
(B ⊗A M0)

1/p∞
, and B ⊗A M0 is finitely presented as a B-module.

We also have the following converse of Proposition 4.1.2, whose proof we

leave to the reader:

Proposition 4.1.3. Let R be an Fp-algebra and let M be a holonomic

Frobenius module over R. Then there exists an inclusion ι : R′ ↪→ R where

R′ is finitely generated over Fp and an isomorphism M � ι�M ′, where M ′

is a holonomic Frobenius module over R′.

Remark 4.1.4. Let R be a commutative Fp-algebra and suppose we are

given objects M,N ∈ ModperfR , where M is holonomic. Then we can choose

an isomorphism M � M
1/p∞

0 for some M0 ∈ ModFrR which is finitely pre-

sented as an R-module. Using Construction 3.1.7 (and the observation that

ϕN : N → N1/p is an isomorphism), we obtain a long exact sequence

Ext∗R[F ](M,N) → Ext∗R(M0, N)
γ−→ Ext∗R(M0, N) → Ext∗+1

R[F ](M,N),

where γ is the map given by γ(f) = f − ϕ−1
N ◦ f ◦ ϕM0

.

Proposition 4.1.5. Let R be an Fp-algebra and let M be a Frobenius module

over R which is holonomic. Then M is a compact object of the category

ModperfR : that is, the functor N �→ HomFr
R (M,N) commutes with filtered

colimits.

Proof. Choose an isomorphism M � M
1/p∞

0 for some M0 ∈ ModFrR which is

finitely presented as an R-module, and observe that the exact sequence of

Remark 4.1.4 depends functorially on N .
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4.2. Comparison with Algebraic Frobenius Modules

Our next goal is to compare the theory of holonomic Frobenius modules
(introduced in Definition 4.1.1) with the theory of algebraic Frobenius (in-
troduced in Definition 2.4.1). Our starting point is the following:

Proposition 4.2.1. Let R be a commutative Fp-algebra and let M be a
holonomic Frobenius module over R. Then M is algebraic.

Proof. Let x be an element of M . Using Proposition 4.1.3, we can choose
a finitely generated subalgebra R′ ⊆ R and an isomorphism M � (R ⊗R′

M ′)1/p
∞

for some M ′ ∈ ModholR′ . Enlarging R′ if necessary, we may assume
that x is the image of some element x′ ∈ M ′. Since M ′ is holonomic, we can

write M ′ = M
′ 1/p∞

0 for some M ′
0 ∈ ModFrR′ which is finitely presented as an

R′-module. We can then write x′ = ϕ−k
M ′(y) for some y ∈ M ′ which lifts to

an element y0 ∈ M ′
0. Since M ′

0 is a Noetherian R′-module, the submodule
generated by the elements {ϕn

M ′
0
(y0)}n≥0 is finitely generated. It follows that

y0 satisfies an equation ϕn
M ′

0
(y) + a1ϕ

n−1
M ′

0
(y) + · · · + any = 0 for some ele-

ments ai ∈ R′, so that x satisfies the equation ϕn
M (x) + ap

k

1 ϕn−1
M (x) + · · ·+

ap
k

n x = 0.

Corollary 4.2.2. Let R be a commutative Fp-algebra. Then the collection
of holonomic Frobenius modules over R is closed under finite direct sums
and cokernels.

Remark 4.2.3. We will see later that the collection of holonomic Frobenius
modules is also closed under the formation of kernels and extensions; in
particular, it is an abelian subcategory of ModFrR (Corollary 4.3.3).

Proof of Corollary 4.2.2. Closure under finite direct sums is obvious. Let
u : M → N be a morphism in ModholR . Then we can choose isomorphisms

M � M
1/p∞

0 and N � N
1/p∞

0 for some objects M0, N0 ∈ ModFrR which
are finitely presented as R-modules. Let x1, . . . , xk be a set of generators
for M0 as an R-module. Let us abuse notation by writing u(xi) for the
image of xi under the composite map M0 → M

u−→ N . Then we can
choose some integer n 
 0 for which each u(xi) has the form ϕ−n

N (yi) for
some yi which lifts to an element yi ∈ N0. Since N is holonomic, it is
algebraic (Proposition 4.2.1). It follows that each yi satisfies some equa-

tion ϕdi

N (yi) + c1,iϕ
di−1
N (yi) + · · · + cdi,iyi = 0 in N � N

1/p∞

0 , so that

ϕdi+e
N0

(yi)+cp
e

1,iϕ
di−1+e
N0

(yi)+· · ·+cp
e

di,i
ϕN0

(yi) = 0 in N0 for e 
 0. In particu-

lar, the elements {ϕa
N0

(yi)} generate a Frobenius submodule N ′
0 ⊆ N0 which

is finitely generated as an R-module. Then N0/N
′
0 is finitely presented as
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an R-module. Using evident isomorphism coker(u) � (N0/N
′
0)

1/p∞
, we con-

clude that coker(u) is holonomic.

Our next goal is to establish a converse to Proposition 4.2.1, which as-

serts that every algebraic Frobenius module can be “built from” holonomic

Frobenius modules (Theorem 4.2.9). First, we need some general facts about

algebraicity.

Proposition 4.2.4. Let R be an Fp-algebra. Then ModalgR is a localizing

subcategory of ModperfR . That is:

(a) Given a short exact sequence 0 → M ′ → M → M ′′ → 0 of perfect

Frobenius modules over R, M is algebraic if and only if M ′ and M ′′

are algebraic.

(b) The collection of algebraic Frobenius modules is closed under (possibly

infinite) direct sums.

Proof. The “only if” direction of (a) follows immediately from the defini-

tions. To prove the reverse direction, suppose we are given an exact sequence

0 → M ′ α−→ M → M ′′ → 0 where M ′ and M ′′ are algebraic. Let x be an

element of M . Since M ′′ is algebraic, we deduce that there is an equation

of the form ϕm
M (x) + a1ϕ

n−1
M (x) + · · · + amx = α(y) for some ai ∈ R and

some y ∈ M ′. Since M ′ is algebraic, we obtain an equation of the form

ϕn
M ′(y) + b1ϕ

m−1
M ′ (y) + · · ·+ bny = 0 for some bj ∈ R. It follows that∑

0≤i≤m,0≤j≤n

aib
pi

j ϕi+j
M (x) = 0

with the convention that a0 = b0 = 1. Allowing x to vary, we deduce that

M is algebraic.

To prove (b), we observe that the general case immediately reduces to

the case of a finite direct sum, which follows from (a).

Proposition 4.2.5. Let R be a commutative Fp-algebra, let M be a perfect

Frobenius module over R, and let x ∈ M be an element. The following

conditions are equivalent:

(1) There exists a map of Frobenius modules f : M ′ → M , where M ′ is
holonomic, and an element x′ ∈ M ′ satisfying f(x′) = x.

(2) There exists an algebraic Frobenius submodule M0 ⊆ M which con-

tains x.
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(3) The element x satisfies an equation

ϕn
M (x) + a1ϕ

n−1
M (x) + · · ·+ anx

for some coefficients a1, . . . , an ∈ R.

Proof. We first show that (1) implies (2). Let f : M ′ → M be a morphism of
Frobenius modules. If M ′ is holonomic, then it is also algebraic (Proposition
4.2.1). Consequently, if there exists an element x′ ∈ M ′ satisfying f(x′) = x,
then x belongs to the submodule im(f) ⊆ M , which is algebraic by virtue
of Proposition 4.2.4.

The implication (2) ⇒ (3) is immediate from the definitions. We will
complete the proof by showing that (3) ⇒ (1). Assume that x satisfies an
equation ϕn

M (x)+a1ϕ
n−1
M (x)+· · ·+anx = 0. Let N denote the free R-module

on a basis {y0, . . . , yn−1}, which we regard as a Frobenius module over R by
setting

ϕN (yi) =

{
yi+1 if i < n− 1

−a1yn−1 − a2yn−2 − · · · − any0 if i = n− 1.

Then the construction yi �→ ϕi
M (x) determines a map of Frobenius modules

f0 : N → M . Since M is perfect, we can extend f0 to a map f : N1/p∞ → M .
It follows immediately from the construction that N1/p∞

is holonomic and
that x belongs to the image of f .

Corollary 4.2.6. Let R be a commutative Fp-algebra and let M be an
algebraic Frobenius module over R. Then there exists an epimorphism of
Frobenius modules

⊕
Mα → M , where each Mα is holonomic.

Corollary 4.2.7. Let R be a commutative Fp-algebra and let M be a perfect
Frobenius module over R. Then there exists a largest Frobenius submodule
M0 ⊆ M which is algebraic. Moreover, an element x ∈ M belongs to M0 if
and only if it satisfies an equation

ϕn
M (x) + a1ϕ

n−1
M (x) + · · ·+ anx

for some coefficients a1, . . . , an ∈ R.

Proof. Let M0 be the sum of all algebraic Frobenius submodules of M .
It follows from Proposition 4.2.4 that M0 is also algebraic, so that each
element x ∈ M0 satisfies an equation ϕn

M (x)+a1ϕ
n−1
M (x)+· · ·+anx for some

coefficients a1, . . . , an ∈ R. The reverse implication follows from Proposition
4.2.5.
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Corollary 4.2.8. Let f : A → B be a homomorphism of commutative Fp-
algebras and let M be an algebraic Frobenius module over A. Then f�(M)
is an algebraic Frobenius module over B.

Proof. Applying Corollary 4.2.7, we deduce that there is a largest algebraic
submodule N ⊆ f�(M), and that N contains the image of the map

M → f�(M) � (B ⊗A M)1/p
∞
.

Since N is a B-submodule of f�(M) which is stable under the automorphism
ϕ−1
f�(M), it follows that N = f�(M).

Theorem 4.2.9. Let R be a commutative Fp-algebra. Then the inclusion

functor ModholR ↪→ ModalgR extends to an equivalence of categories

Ind(ModholR ) � ModalgR .

Proof. It follows from Proposition 4.1.5 that the inclusion ModholR ↪→ ModperfR

extends to a fully faithful embedding ι : Ind(ModholR ) → ModperfR . Since every
holonomic Frobenius module is algebraic (Proposition 4.2.1) and the collec-
tion of algebraic Frobenius modules is closed under filtered colimits, the
essential image of ι is contained in the full subcategory ModalgR ⊆ ModperfR .
To complete the proof, it will suffice to verify the reverse inclusion. Let M
be an algebraic Frobenius module; we wish to show that M can be written
as a filtered colimit lim−→Mα, where each Mα is holonomic. Using Corollary
4.2.6, we can choose an epimorphism ρ :

⊕
α∈I Mα → M for some set I,

where each Mα is holonomic. The kernel ker(ρ) is then algebraic (Proposi-
tion 4.2.4), so we can apply Corollary 4.2.6 again to choose an epimorphism
ρ′ :

⊕
β∈J M

′
β → ker(ρ), where each M ′

β is holonomic. We can identify ρ′

with a system of maps {ρ′α,β : M ′
β → Mα}α∈I,β∈J . Using Proposition 4.1.5,

we see that for each β ∈ J there are only finitely many α ∈ I for which ρ′α,β
is nonzero. It follows that we can write M as a filtered colimit of Frobe-
nius modules of the form coker(

⊕
β∈J0

M ′
β →

⊕
α∈I0 Mα) where I0 ⊆ I and

J0 ⊆ J0 are finite. Each of these Frobenius modules is holonomic by virtue
of Corollary 4.2.2.

Let f : A → B be a morphism of commutative Fp-algebras. In general,
the restriction of scalars functor f∗ : ModFrB → ModFrA does not preserve
holonomicity. However, we do have the following:

Proposition 4.2.10. Let f : A → B be an Fp-algebra homomorphism which
is finite and of finite presentation. Then the restriction of scalars functor
ModFrB → ModFrA carries ModholB into ModholA and ModalgB into ModalgA .
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Proof. Because restriction of scalars commutes with filtered colimits, it will
suffice to show that if M ∈ ModFrB is a holonomic Frobenius module over
B, then it is also a holonomic Frobenius module over A (Theorem 4.2.9).

Write M = M
1/p∞

0 for some M0 ∈ ModFrB which is finitely presented as a
B-module. We now complete the proof by observing that our assumption on
f guarantees that M0 is also finitely presented as an A-module.

Warning 4.2.11. The finite presentation hypothesis in Proposition 4.2.10
cannot be relaxed to finite generation. For example, takeA=Fp[x1, x2, x3, ...]
to be a polynomial ring on countably many generators, and letB=A/(x1, x2,
x3, ...) = Fp be its residue field at the origin. Then B is holonomic when
regarded as a Frobenius module over itself, but not when regarded as a
Frobenius module over A; one can see this directly, but a quick proof is
provided by Theorem 4.4.4 (note that Spec(B) is not a constructible subset
of Spec(A)).

4.3. The Noetherian Case

Recall that an object X of an abelian category A is said to be Noetherian
if the collection of subobjects of X satisfies the ascending chain condition.
A Grothendieck abelian category A is said to be locally Noetherian if every
object of A can be written as a union of Noetherian subobjects.

Proposition 4.3.1. Let R be a Noetherian Fp-algebra. Then the abelian cat-

egory ModalgR is locally Noetherian. Moreover, an object of ModalgR is Noethe-
rian if and only if it is holonomic.

Proof. We first show that every holonomic R-module M is a Noetherian

object of the abelian category ModperfR . Write M = M
1/p∞

0 for some M0 ∈
ModFrR which is finitely generated as an R-module. ReplacingM0 by its image
in M , we can assume without loss of generality that M0 is a submodule of
M . For any subobject M ′ ⊆ M in the abelian category ModalgR , let M ′

0 =
M ′ ∩ M0. Note that for any x ∈ M ′, we have ϕn

M (x) ∈ M0 for n 
 0. It

follows that M ′ = {x ∈ M : (∃n)[ϕn
M (x) ∈ M ′

0]} � M
′ 1/p∞

0 . Consequently,
the construction M ′ �→ M ′

0 determines an monomorphism from the partially

ordered set of subobjects of M (in the abelian category ModperfR ) to the
partially ordered set of subobjects of M0 (in the abelian category ModR).
Since M0 is a Noetherian R-module, the latter partially ordered set satisfies
the ascending chain condition, so the former does as well.

Now suppose that M is an arbitrary algebraic Frobenius module over R.
Using Corollary 4.2.6, we can choose an epimorphism of Frobenius modules⊕

α∈I Mα → M , where each Mα is holonomic. For every finite subset I0 ⊆ I,
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let MI0 denote the image of the composite map⊕
α∈I0

Mα ↪→
⊕
α∈I

Mα → M.

Then M =
⋃

I0
MI0 , and the first part of the proof shows that each MI0

is Noetherian. This proves that the category ModalgR is locally Noetherian.

It follows that every Noetherian object of ModalgR is compact, and therefore
arises as a direct summand of a holonomic Frobenius module by virtue of
Theorem 4.2.9. Since the collection of holonomic Frobenius modules is closed
under passage to direct summands, it follows that ModholR is precisely the

collection of Noetherian objects of ModalgR .

Remark 4.3.2. Let R be a Noetherian Fp-algebra and let M be a holo-
nomic Frobenius module over R. Then, for every integer k, the construc-
tion N �→ ExtkR[F ](M,N) commutes with filtered direct limits when re-
stricted to perfect Frobenius modules over R. This follows from the ex-
act sequence of Remark 4.1.4 (together with the fact that the construc-
tion N �→ ExtkR(M0, N) commutes with filtered colimits, whenever M0 is a
finitely generated R-module).

Corollary 4.3.3. Let R be a commutative Fp-algebra. Then ModholR is an

abelian subcategory of ModperfR which is closed under the formation of ker-
nels, cokernels, and extensions.

Proof. Closure under the formation of cokernels was established in Corollary
4.2.2. We next show that it is closed under kernels. Let u : M → N be a
morphism of holonomic Frobenius modules over R; we wish to show that the
kernel ker(u) is holonomic. Using a direct limit argument, we can write u =
f�(u0) for some map f : R0 → R where R0 is a finitely generated Fp-algebra
and some u0 : M0 → N0 in ModholR0

. Since R0 is Noetherian, Proposition

4.3.1 guarantees that M0 is a Noetherian object of ModholR0
. It follows that

ker(u0) ⊆ M0 is also a Noetherian object of ModholR0
. Corollary 3.5.2 supplies

an isomorphism ker(u) � f� ker(u0), so that ker(u) is a holonomic Frobenius
module over R by virtue of Proposition 4.1.2.

We now prove closure under extensions. Suppose that we are given a
short exact sequence of Frobenius modules over R,

0 → M ′ → M → M ′′ → 0,

where M ′ and M ′′ are holonomic; we wish to show that M is also holonomic.
Using Proposition 4.1.3, we can write M ′ = f�M ′

0 and M ′′ = f�M ′′
0 , where
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f : R0 ↪→ R is the inclusion of a finitely generated subring and the Frobenius
modules M ′

0 and M ′′
0 are holonomic over R0. The preceding exact sequence

is then classified by an element

η ∈ Ext1R[F ](M
′′,M ′) � Ext1R0[F ](M

′′
0 , R⊗R0

M ′
0).

Applying Remark 4.3.2, we can arrange (after enlarging R0 if necessary)
that η can be lifted to an element η0 ∈ Ext1R0[F ](M

′′
0 ,M

′
0), which classifies a

short exact sequence

0 → M ′
0 → M0 → M ′′

0 → 0,

of Frobenius modules over R0. Since R0 is Noetherian, we can regard M ′
0

andM ′′
0 as Noetherian objects of the category ModperfR0

(Proposition 4.3.1). It

follows that M0 is also a Noetherian object of the abelian category ModperfR0
,

and is therefore a holonomic Frobenius module over R0 (Proposition 4.3.1).
Applying Proposition 4.1.2, we deduce that M � f�M0 is a holonomic
Frobenius module over R.

4.4. The Support of a Holonomic Frobenius Module

Definition 4.4.1. Let R be a commutative Fp-algebra and let M be a
perfect Frobenius module over R. For each point x ∈ Spec(R), we let κ(x)
denote the residue field of R at x, and we let fx : R → κ(x) denote the
canonical map. We let supp(M) denote the set {x ∈ Spec(R) : f�

x(M) �= 0}.
We will refer to supp(M) as the support of M .

Remark 4.4.2. Let R be an Fp-algebra, let M ∈ ModperfR , and let x be
a point of Spec(R), corresponding to a prime ideal p ⊆ R. The following
conditions are equivalent:

(1) The point x belongs to the support of M .
(2) There exists a field κ and an R-algebra homomorphism f : R → κ

such that ker(f) = p and f�M �= 0.
(3) For every field κ and every map f : R → κ with ker(f) = p, we have

f�M �= 0.

To see this, we note that any map f : R → κ with ker(f) = p factors

uniquely as a composition R
fx−→ κ(x)

ι−→ κ, so that we have a canonical
isomorphism

f�M � κ1/p
∞ ⊗κ(x)1/p∞ f�

x(M).
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Remark 4.4.3. Let f : A → B be an Fp-algebra homomorphism and let

M ∈ ModperfA . Then supp(f�M) is the inverse image of supp(M) under the
map Spec(B) → Spec(A) determined by f (this follows immediately from
Remark 4.4.2).

The support supp(M) of Definition 4.4.1 is well-behaved when M is
holonomic:

Theorem 4.4.4. Let R be a commutative Fp-algebra and let M be a holo-
nomic Frobenius module over R. Then supp(M) is a constructible subset of
Spec(R).

Proof. Using a direct limit argument, we can choose a finitely generated
subring R′ ⊆ R and an isomorphism M � (R ⊗R′ M ′)1/p

∞
for some M ′ ∈

ModholR′ . Replacing R by R′ and M by M ′, we can reduce to the case where
R is Noetherian. By general nonsense, it will suffice to prove the following:

(a) If x ∈ Spec(R) belongs to the support of M , then there exists an open
subset U ⊆ {x} which is contained in supp(M).

(b) If x ∈ Spec(R) does not belong to the support M , then there exists
an open subset U ⊆ {x} which is disjoint from supp(M).

Let p ⊆ R be the prime ideal determined by the point x. Using Remark
4.4.3, we can replace R by R/p and thereby reduce to the case where R is
an integral domain and x is the generic point of Spec(R).

Write M = M
1/p∞

0 , where M0 is finitely generated as an R-module.
Let K denote the fraction field of R. Then V = K1/p∞ ⊗R M0 is a finite-
dimensional vector space over K1/p∞

, equipped with a Frobenius-semilinear
endomorphism ϕV : V → V . Then

⋃
n ker(ϕ

n
V ) is a K1/p∞

-subspace of V ,
which admits a basis {vi}1≤i≤k. Replacing R by a localization R[t−1] for
some nonzero element t ∈ R, we can assume that each vi can be lifted to an
element of R1/p∞ ⊗RM0, and therefore also to an element vi ∈ R′⊗RM0 for
some subalgebra R′ ⊆ R1/p∞

which is finitely generated over R. Note that
the inclusion R ↪→ R′ induces a homeomorphism Spec(R′) → Spec(R). We
may therefore replace R by R′ (and M0 by R′ ⊗R M0) and thereby reduce
to the case where each vi belongs to M0. Replacing R by a localization if
necessary, we may further assume that each vi is annihilated by some power
of ϕM0

. Then the set {vi}1≤i≤k generates a Frobenius submodule M ′
0 ⊆ M0

whose perfection vanishes. We may therefore replace M0 by M0/M
′
0 and

thereby reduce to the case where the map ϕV is injective.

Let us identify ϕM0
with an R-linear map β : M

(1)
0 → M0, where M

(1)
0

is obtained from M0 by extension of scalars along the Frobenius map ϕR :
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R → R. Note that the induced map βK1/p∞ : K1/p∞ ⊗R M
(1)
0 → K1/p∞ ⊗R

M0 can be identified with ϕV and is therefore a monomorphism. Since the
domain and codomain of βK1/p∞ are vector spaces of the same dimension
over K1/p∞

, it follows that βK1/p∞ is an isomorphism. Replacing R by a
localization R[t−1] if necessary, we can assume that M0 is a free module of
finite rank r and that β is an isomorphism. In this case, it is easy to see that

supp(M) =

{
Spec(R) if r > 0

∅ if r = 0,
from which assertions (a) and (b) follow

immediately.

5. Compactly Supported Direct Images

Let f : A → B be a morphism of commutative rings. Then the direct image
functor f∗ : Shvét(Spec(B),Fp) → Shvét(Spec(A),Fp) admits a left adjoint,
which we denote by f∗ : Shvét(Spec(A),Fp) → Shvét(Spec(B),Fp) and refer
to as pullback along f . In the special case where f is étale, the pullback
functor can be described concretely by the formula (f∗ F )(B′) = F (B′). In
particular, f∗ preserves inverse limits. It follows (either by the adjoint func-
tor theorem, or by direct construction) that the functor f∗ admits a further
left adjoint, which we denote by f! : Shvét(Spec(B),Λ) → Shvét(Spec(A),Λ)
and refer to as the compactly supported direct image functor.

Now suppose that f : A → B is a homomorphism of commutative Fp-
algebras. Under the Riemann-Hilbert correspondence of Theorem 1.0.2, the
pullback functor f∗ : Shvét(Spec(A),Fp) → Shvét(Spec(B),Fp) on étale

sheaves corresponds to the extension of scalars functor f� : ModalgA → ModalgB

on algebraic Frobenius modules (see Proposition 6.2.2). One consequence of

this is that, if the morphism f is étale, the functor f� : ModalgA → ModalgB

must also admit a left adjoint. Our goal in this section is to give a direct
proof of this statement, which does not appeal to the Riemann-Hilbert corre-
spondence (in fact, the work of this section will be needed in §6 to construct
the Riemann-Hilbert functor).

We begin in §5.1 by introducing a notion of compactly supported direct
image in the setting of Frobenius modules (Definition 5.1.2). From the defi-
nition, it will be immediately clear that if f : A → B is an étale morphism of
commutative Fp-algebras, then the formation of compactly supported direct

images supplies a partially defined functor f! : ModalgA → ModalgB . Our main
result, which we prove in §5.4, is that this functor is actually total: that is,
compactly supported direct images of algebraic modules always exist (The-
orem 5.4.1). The strategy of proof is to use the structure theory of étale
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morphisms to reduce to the case where B is a localization A[t−1], which
we handle in §5.2. In this case, compactly supported direct images of holo-
nomic Frobenius modules admit a very simple characterization (Proposition

5.2.2) which makes them easy to construct explicitly. In §5.3, we apply this
characterization prove an analogue of Kashiwara’s theorem for Frobenius
modules: the datum of a holonomic Frobenius module over a quotient ring
R/(t) is equivalent to the datum of a holonomic Frobenius module over R
whose support is contained in the vanishing locus of t (Theorem 5.3.1).

5.1. Definitions

We begin by introducing some terminology.

Definition 5.1.1. Let f : A → B be an étale morphism of Fp-algebras. Let

M be a perfect Frobenius module over B and let M be a perfect Frobenius
module over A. We will say that a morphism u : M → f�M exhibits M as a
weak compactly supported direct image of M if, for every perfect Frobenius
module N over A, the composite map

HomA[F ](M,N) → HomB[F ](f
�M, f�N)

◦u−→ HomB[F ](M, f�N)

is a bijection.

Let f : A → B be an étale morphism of Fp-algebras and let M be a
perfect Frobenius module over B. It follows immediately from the definition
that if there exists a morphism u : M → f�M which exhibits M as a weak
compactly supported direct image of M , then the Frobenius module M (and
the morphism u) are determined up to canonical isomorphism. In general,
such a module need not exist. The main result of this section (Theorem
5.4.1) asserts that every algebraic Frobenius moduleM over B admits a weak

compactly supported direct image M . Moreover, we will have the following
additional properties:

(a) The module M is also algebraic (as a Frobenius module over A).
(b) For every perfect Frobenius module N over A, the canonical map

ExtnA[F ](M,N) → ExtnB[F ](M, f�N)

is an isomorphism for all integers n, rather than merely for n = 0.
(c) The Frobenius module M remains a weak compactly supported direct

image of M after any extension of scalars. More precisely, for any
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pushout diagram of commutative rings

A
f ��

g′

��

B

g
��

A′ f ′
�� B′,

the induced map g′�(u) : g′�(M) → g′�(f�(M)) � f ′�(g�(M)) exhibits
g�(M) as a weak compactly supported direct image of g′�(M).

Our proof for the existence of weak compactly supported direct images
will proceed by a somewhat complicated induction on the structure of the
étale morphism f : A → B. In order to carry out the details, it will be
important to strengthen our inductive hypothesis: that is, we need to show
not only that weak compactly supported direct images exist, but also that
they have the properties listed above. For this reason, it will be convenient to
introduce a more complicated version of Definition 5.1.1 which incorporates
properties (a), (b), and (c) automatically.

Definition 5.1.2. Let f : A → B be an étale morphism of Fp-algebras.

Suppose we are given algebraic Frobenius modules M ∈ ModalgB and M ∈
ModalgA . We will say that a morphism u : M → f�M exhibits M as a
compactly supported direct image of M if the following condition is satisfied:

(∗) For every pushout diagram of commutative rings

A
f ��

g′

��

B

g
��

A′ f ′
�� B′

and every object N ∈ ModperfA′ , the composite map

Ext∗A′[F ](g
′�M,N) → Ext∗B′[F ](f

′�g′�M, f ′�N)

� Ext∗B′[F ](g
�f�M, f ′�N)

→ Ext∗B′[F ](g
�M, f ′�N).

is an isomorphism.

Remark 5.1.3. Let f : A → B and u : M → f�M be as in Definition 5.1.2.
If f exhibits M as a compactly supported direct image of M , then it also
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exhibits M as a weak compactly supported direct image of M . In fact, the
converse holds as well (assuming that M is algebraic): this follows from the
uniqueness of weak compactly supported direct images, once we have shown
that compactly supported direct images exist (Theorem 5.4.1).

Notation 5.1.4. Let f : A → B be an étale morphism of Fp-algebras and

let M ∈ ModalgB . If there exists an object M ∈ ModalgA and a morphism
u : M → f�M which exhibits M as a compactly supported direct image of
M , then we will denote M by f!M . In this case, we will say that f!M exists.
Note that, in this event, the Frobenius module f!M depends functorially
on M .

5.2. Extension by Zero

Our next goal is to prove the existence of compactly supported direct images
in the case of an elementary open immersion

Spec(A[t−1]) ↪→ Spec(A)

(Proposition 5.2.4). In this case, Definition 5.1.2 can be formulated more
simply, at least for holonomic Frobenius modules.

Definition 5.2.1. Let A be a commutative Fp-algebra containing an ele-
ment t and letM be a holonomic Frobenius module over A[t−1]. An extension
by zero of M is a holonomic Frobenius module M over A such that M [t−1]
is isomorphic to M and (M/tM)1/p

∞ � 0.

Proposition 5.2.2. Let A be an Fp-algebra containing an element t, and
let f : A → A[t−1] be the canonical map. Suppose we are given holonomic
Frobenius modules M ∈ ModholA[t−1] and M ∈ ModholA together with a map

u : M → f�M � M [t−1]. The following conditions are equivalent:

(a) The morphism u exhibits M as a compactly supported direct image of
M , in the sense of Definition 5.1.2.

(b) The morphism u exhibits M as an extension by zero of M : that is, u
is an isomorphism and the Frobenius module (M/tM)1/p

∞
vanishes.

The proof of Proposition 5.2.2 will require an elementary fact from com-
mutative algebra:

Lemma 5.2.3. Let M and N be modules over a commutative ring A, and
let γ be an element of ExtnA(M,N) for some n ≥ 0. Suppose that M is
Noetherian. If γ is annihilated by some power of an element t ∈ A, then
there exists d ≥ 0 such that the image of γ vanishes in ExtnA(t

dM,N).
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Proof. Let M0 ⊆ M be the submodule consisting of those elements which
are annihilated by some power of t. Since M is Noetherian, we can choose
an integer k 
 0 such that M0 is annihilated by tk. For each d ≥ k, the

kernel of the surjection M
td−→ tdM is annihilated by tk, so there exists a

dotted arrow as indicated in the diagram

M
tk ��

td
��

M

td−k

��
tdM ��

���
�

�
�

M.

It follows that the restriction map ExtnA(M,N) → ExtnA(t
dM,N) factors

through the map td−k : ExtnA(M,N) → ExtnA(M,N). It therefore suffices to
choose d large enough that td−kγ = 0.

Proof of Proposition 5.2.2. Assume first that (a) is satisfied. Applying con-
dition (∗) of Definition 5.1.2 in the case A′ = A[t−1], we deduce that u
is an isomorphism. Applying condition (∗) of Definition 5.1.2 in the case
A′ = A/(t), we deduce that (M/tM)1/p

∞ � 0.
We now prove the converse. Assume that u is an isomorphism and that

(M/tM)1/p
∞ � 0, and suppose we are given a pushout diagram of Fp-

algebras

A
f ��

g′

��

A[t−1]

g

��
A′ f ′

�� A′[t−1]

and an object N ∈ ModperfA′ . To verify condition (∗) of Definition 5.1.2, it
will suffice to show that the canonical map

θ : Ext∗A′[F ](g
′�M,N) → Ext∗A′[t−1][F ](f

′�g′�M, f ′�N)

is an isomorphism. Replacing A by A′ and M by g′�M , we can reduce to
the case A = A′. Let Q ∈ ModperfA denote the image of the unit map N →
f�N � N [t−1], so that we have short exact sequences

0 → K → N → Q → 0 0 → Q → N [t−1] → K ′ → 0.

In order to show that the composite map

Ext∗A[F ](M,N) → Ext∗A[F ](M,Q) → Ext∗A[F ](M,N [t−1])
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is an isomorphism, it will suffice to show that the groups Ext∗A[F ](M,K) and

Ext∗A[F ](M,K ′) vanish. This is a special case of the following:

(∗) If M ∈ ModholA satisfies (M/tM)1/p
∞ � 0 and N ∈ ModperfA satisfies

N [t−1] � 0, then Ext∗A[F ](M,N) vanishes.

Write M = T 1/p∞
for some Frobenius module T ∈ ModFrA in A which is

finitely presented as anA-module. Using our assumption that (M/tM)1/p
∞ �

0, we deduce that ϕm
T T ⊆ tT for m 
 0. By a direct limit argument, we can

assume that T � A ⊗A0
T0 for some finitely generated subalgebra A0 ⊆ A

which contains t and some T0 ∈ ModFrA0
which is finitely presented as an

A0-module, and that T0 satisfies ϕm
T0
T0 ⊆ tT0. Using Corollary 3.5.3, we can

replace A by A0 and T by T0, and thereby reduce to proving (∗) in the
special case where A is Noetherian.

Using Remark 4.1.4, we obtain a long exact sequence

Ext∗A[F ](M,N) → Ext∗A(T,N)
id−U−−−→ Ext∗A(T,N) → Ext∗+1

A[F ](M,N),

where U is the endomorphism of Ext∗A(T,N) given by U(γ) = ϕ−1
N ◦ γ ◦ϕT .

To prove (∗), it will suffice to show that the map 1−U is an isomorphism of
Ext∗A(T,N) with itself. In fact, we will show that U is locally nilpotent (so
that 1−U has an inverse given by the formal infinite sum 1+U +U2+ · · · ).

Fix an element γ ∈ ExtkA(T,N); we wish to show that Um(γ) � 0 for
m 
 0. Since A is Noetherian and T is a finitely generated A-module, the
construction S �→ ExtkA(T, S) commutes with filtered colimits. In particular,
there exists a finitely generated A-submodule N0 ⊆ N such that γ can be
lifted to an element γ0 ∈ ExtkA(T,N0). Using our assumption that N [t−1] �
0, we deduce that N0 is annihilated by tc for c 
 0. It follows that the image
of γ0 in ExtkA(t

c′T,N0) vanishes for c
′ 
 c (Lemma 5.2.3). We now observe

that for m 
 0, the map ϕm
T factors through tc

′
T , so that γ ◦ ϕm

T = 0 and
therefore Um(γ) = 0 as desired.

Proposition 5.2.4. Let A be an Fp-algebra containing an element t, and
let f : A → A[t−1] be the canonical map. Then every algebraic Frobenius
module M over A[t−1] admits a compactly supported direct image along f .

Proof. Using Theorem 4.2.9, we can reduce to the case where M is holo-

nomic. Write M = M
1/p∞

0 , where M0 ∈ ModFrA[t−1] is finitely presented as

an A[t−1]-module. Then we can choose an isomorphism α : M0 � M0[t
−1]

for some finitely presented object M0 ∈ ModA. Then ϕM0
determines an A-

module homomorphism ρ : M0 → M0[t
−1]1/p. Since M0 is finitely presented
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as an A-module, we can assume that ρ factors as a composition

M0 → M
1/p
0

tn−→ M0[t
−1]1/p

for some integer n. Multiplying the isomorphism α by a suitable power of t,

we can arrange that n > 0. SetM = M
1/p∞

0 . Then α induces an isomorphism
M � M [t−1] and ϕM is locally nilpotent on M/tM , so that α exhibits M
as an extension by zero of M , which is also a compactly supported direct
image of M by virtue of Proposition 5.2.2.

5.3. Kashiwara’s Theorem

Let X be a smooth algebraic variety over the field C of complex numbers,
and let Y ⊆ X be a smooth subvariety of X. A theorem of Kashiwara (see
[9, §1.6]) asserts that the category of algebraic D-modules on Y is equivalent
to the category of algebraic D-modules on X which vanish over the open
set X − Y . In this section, we prove the following analogue for (holonomic)
Frobenius modules:

Theorem 5.3.1. Let M be a holonomic Frobenius module over a commu-
tative Fp-algebra A, and let I ⊆ A be an ideal. The following conditions are
equivalent:

• The support supp(M) is contained in the vanishing locus Spec(A/I) ⊆
Spec(A).

• The submodule IM ⊆ M vanishes: that is, M has the structure of a
Frobenius module over A/I.

Remark 5.3.2. If the equivalent conditions of Theorem 5.3.1 are satisfied,
then M is also holonomic when regarded as a Frobenius module over A/I.
Conversely, if the ideal I is finitely generated, then any holonomic Frobenius
module over A/I is a holonomic Frobenius module over A which satisfies
the conditions of Theorem 5.3.1 (see Proposition 4.2.10). In other words,
the category ModholA/I can be identified with the full subcategory of ModholA

spanned by objects set-theoretically supported on Spec(A/I) ⊆ Spec(A).
Beware that this is generally not true if I is not finitely generated (Warning
4.2.11).

We begin by treating the following special case of Theorem 5.3.1 (which
is the only case we will actually need):

Proposition 5.3.3. Let M be a holonomic Frobenius module over a com-
mutative Fp-algebra A. Then M � 0 if and only if the support supp(M) is
empty.
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Proof. The “only if” direction is obvious. To prove the converse, let us as-
sume that supp(M) = ∅; we wish to prove that M � 0. Using Proposition
4.1.3, we can choose a finitely generated subring A′ ⊆ A and an equivalence
M � (A⊗A′ M ′)1/p

∞
for some M ′ ∈ ModholA′ . Set Z = supp(M ′) ⊆ Spec(A′).

Then Z is constructible (Theorem 4.4.4). Using Remark 4.4.3, we deduce
that the image of the map Spec(A) → Spec(A′) is disjoint from Z. Enlarging
A′ if necessary, we can arrange that Z = ∅. We may therefore replace A by
A′ and M by M ′, and thereby reduce to the case where A is Noetherian.

Proceeding by Noetherian induction, we may assume that for every
nonzero ideal I ⊆ A, we have (M/IM)1/p

∞ � 0. We may assume that A �= 0
(otherwise, there is nothing to prove). If A is not reduced, then taking I to
be the nilradical of A we deduce that M = M1/p∞ � (M/IM)1/p

∞ � 0.
We may therefore assume that A is reduced. Using Proposition 5.2.2, we
deduce that M is the compactly supported direct image of M [x−1] for ev-
ery nonzero element x ∈ A. It will therefore suffice to show that we can
choose a nonzero element x ∈ A such that M [x−1] � 0. Since A is reduced
and Noetherian, we can choose a non-zero divisor t ∈ A such that A[t−1]
is an integral domain. Replacing A by A[t−1], we can assume that A is an

integral domain. Write M = M
1/p∞

0 for some M0 ∈ ModFrA which is finitely
presented as an A-module. Let K be the fraction field of A. Since the sup-
port supp(M) does not contain the generic point of Spec(A), the Frobenius
module (K⊗AM0)

1/p∞
vanishes. Using the finite generation of M0, we con-

clude that the Frobenius endomorphism of K ⊗A M0 is nilpotent. It follows
that there exists a nonzero element x ∈ A for which the Frobenius map
ϕM0[x−1] is nilpotent, so that M [x−1] � M0[x

−1]1/p
∞ � 0 as desired.

Proof of Theorem 5.3.1. Let M be a holonomic Frobenius module over a
commutative Fp-algebra A and let I ⊆ A be an ideal. It follows immediately
from the definitions that if M is annihilated by I, then the support supp(M)
is contained in the vanishing locus of I. Conversely, suppose that supp(M) ⊆
Spec(A/I); we wish to show that M is annihilated by each element x ∈ I.
Note that the inclusion supp(M) ⊆ Spec(A/I) guarantees that the support
of M [x−1] is empty, where we regard M [x−1] as a holonomic Frobenius mod-
ule over A[x−1]. Applying Proposition 5.3.3, we conclude that M [x−1] � 0.

Choose an isomorphism M � M
1/p∞

0 , where M0 is a Frobenius module
over A which is finitely presented as an A-module. Let N denote the image
of the map M0 → M , so that N ⊆ M is a Frobenius submodule which is
finitely generated over A. The vanishing of M [x−1] guarantees that xkN = 0

for some k 
 0. Applying ϕ−n
M , we conclude that x

k

pn N1/pn

= 0 for all n ≥ 0.

As M = lim−→n
N1/pn

, it follows that x
k

pn M = 0 for all n ≥ 0 (here we regard
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M as a Frobenius module over the perfection A1/p∞
). For n 
 0, this implies

xM = 0, as desired.

5.4. Existence of Compactly Supported Direct Images

Our goal in this section is to prove the following:

Theorem 5.4.1. Let f : A → B be an étale morphism of Fp-algebras. Then,

for every object M ∈ ModalgB , there exists a compactly supported direct image

f!M ∈ ModalgA (see Notation 5.1.4). Moreover, the functor f! : ModalgB →
ModalgA is exact.

Remark 5.4.2. In the situation of Theorem 5.4.1, the right exactness of
the functor f! : ModalgB → ModalgA is automatic (since f! is left adjoint to

the functor f� : ModalgA → ModalgB , which is exact by virtue of Corollary

3.5.2). Moreover, since the functor f� : ModalgA → ModalgB preserves filtered
colimits, the functor f! preserves compact objects: that is, it carries ModholB

into ModholA (see Theorem 4.2.9).

The proof of Theorem 5.4.1 will require some preliminaries. We begin
with some elementary remarks, whose proofs follow immediately from our
definitions.

Lemma 5.4.3. Suppose we are given a pushout diagram of Fp-algebras

A
f ��

g′

��

B

g
��

A′ f ′
�� B′

where f is étale. If M ∈ ModalgB and u : M → f�M is a morphism in

ModalgA which exhibits M as a compactly supported direct image of M , then
the induced map g�M → g�f�M � f ′�g′�M exhibits g′�M as a compactly
supported direct image of g�M .

In particular, if f!M exists, then f ′
! (g

�M) exists (and is canonically iso-
morphic to g′�(f!M)).

Lemma 5.4.4. Let f : A → B and g : B → C be étale morphisms of
Fp-algebras. Suppose we are given an objects MC ∈ ModalgC , a morphism

u : MB → g�MC in ModalgB , and a morphism v : MA → f�MB in ModalgA .
Assume that u exhibits MB as a compactly supported direct image of MC .
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Then v exhibits MA as a compactly supported direct image of MB if and
only if the composite map

MA
v−→ f�MB

g�(u)−−−→ g�f�MC

exhibits MA as a compactly supported direct image of MC .
In particular, if g!M exists, then f!(g!M) exists if and only if (g ◦ f)!M

exists (and, in this case, they are canonically isomorphic).

Lemma 5.4.5. Let f : A → B be an étale morphism of Fp-algebras and

suppose we are given an exact sequence 0 → M ′ u−→ M → M ′′ → 0 in
the abelian category ModalgB . Suppose that f!M

′ and f!M exist, and that the
canonical map f!(u) : f!M

′ → f!M is a monomorphism. Then f!M
′′ exists,

and is given by coker(f!(u)).

Lemma 5.4.6. Let f : A → B be a faithfully flat étale morphism of Fp-

algebras and let M ∈ ModperfA . Then M is algebraic if and only if f�M is
algebraic.

Proof. The “only if” direction follows from Corollary 4.2.8. Conversely, sup-
pose that f�M is algebraic. Choose an element x ∈ M . For each n ≥ 0, let
M(n) denote the A-submodule ofM generated by the elements {ϕk

M (x)}k<n,
so we have inclusions of A-submodules

{0} = M(0) ⊆ M(1) ⊆ M(2) ⊆ · · · ⊆ M.

Using Corollary 3.4.7, we can identify f�M with B ⊗A M , so that each
B⊗AM(n) can be identified with the B-submoduleM ′(n) ⊆ f�M generated
by {ϕk

B⊗AM (1⊗x)}k<n. Since f
�M is algebraic, there exists an integer n such

that M ′(n) = M ′(n+ 1). The faithful flatness of B over A then guarantees
that M(n) = M(n+1), so that x satisfies an equation of the form ϕn

M (x)+
a1ϕ

n−1
M (x) + · · ·+ anx = 0.

Lemma 5.4.7. Suppose we are given a pushout square of étale morphisms
between Fp-algebras

A
f ��

��

B

g
��

A′ f ′
�� B′,

where the vertical maps are faithfully flat. Let M ∈ ModalgB . If f ′
! (g

�M)
exists, then f!M exists.

Proof. Use faithfully flat descent together with Lemma 5.4.6.
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Lemma 5.4.8. Let A be an Fp-algebra containing an element t, let f : A →
A[t−1] be the canonical map, and suppose we are given objects M ∈ ModalgA[t−1]

and a morphism u : f!M → N in ModalgA . If f�(u) is a monomorphism, then
u is a monomorphism.

Proof. Set K = ker(u). Then f!M/K is algebraic (Proposition 4.2.4), so
Corollary 3.5.2 implies that the map (K/tK)1/p

∞ → ((f!M)/t(f!M))1/p
∞

is
a monomorphism. Invoking Proposition 5.2.2, we deduce that the natural
map f!f

�K → K is an equivalence. Since f�K � ker(f�u) � 0, we conclude
that K � 0 so that u is a monomorphism as desired.

Proof of Theorem 5.4.1. Let us say that an étale ring homomorphism f :
A → B is good if the functor f! : ModalgB → ModalgA is well-defined and exact.
Our proof now proceeds in several steps:

(i) Every localization f : A → A[t−1] is good. The existence of f! follows
from Proposition 5.2.4, and the exactness of f! follows from Remark
5.4.2 and Lemma 5.4.8.

(ii) Let f : A → B and g : B → C be étale ring homorphisms. If f and g
are good, then (g ◦ f) : A → C is good. This follows immediately from
Lemma 5.4.4.

(iii) Let f : A → B be an étale Fp-algebra homomorphism and suppose
we are given elements t0, t1 ∈ B which generate the unit ideal. Set
B0 = B[t−1

0 ], B1 = B[t−1
1 ], and B01 = B[t−1

0 , t−1
1 ]. If the induced maps

f0 : A → B0 and f1 : A → B1 are good, then f! exists. To prove this,
choose any object M ∈ ModalgB , and define

M0 = M [t−1
0 ] ∈ ModalgB0

M1 = M [t−1
1 ] ∈ ModalgB1

M01 = M [t−1
0 , t−1

1 ] ∈ ModalgB01
.

We have a commutative diagram

B
g0 ��

g1
��

g01

����
��

��
��

B0

h
��

B1
�� B01

which yields a short exact sequence

0 → g01!M01
u−→ g0!M0 ⊕ g1!M1 → M → 0

in ModalgB . Using our assumptions that f0 and f1 are good (which
also implies that the induced map f01 : A → B01 is good, using (ii)
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and (iii)) together with Lemma 5.4.4, we deduce that f!(g01!M01) and
f!(g0!M0 ⊕ g1!M1) exist. By virtue of Lemma 5.4.5, to prove the exis-
tence of f!M , it will suffice to show that f!u is a monomorphism. In
fact, we claim that the composite map

f!g01!M01
f!u−−→ f!(g0!M0 ⊕ g1!M1) → f!g0!M0

is a monomorphism. Using Lemma 5.4.4 and our assumption that f0!
is exact, we are reduced to showing that the map h!M01 → M0 is a
monomorphism in ModalgB0

, which is a special case of Lemma 5.4.8.
(iv) Let f : A → B be as in (iii). Then f is good. To prove this, we must

show that for every short exact sequence 0 → M ′ → M → M ′′ → 0
in ModalgB , the induced map f!M

′ → f!M is a monomorphism. Define
M0, M1, and M01 as above, and define M ′

0, M
′
1, M

′
01, M

′′
0 , M

′′
1 , and

M ′′
01 similarly. We then have a diagram of short exact sequences

0 �� f01!M
′
01

α

��

�� f0!M
′
0 ⊕ f1!M

′
1

β

��

�� f!M
′

γ

��

�� 0

0 �� f01!M01
�� f0!M0 ⊕ f1!M1

�� f!M �� 0

Using the exactness of the functors f0!, f1!, and f01!, the snake lemma
yields an exact sequence

0 → ker(γ) → f01!M
′′
01

ρ−→ f0!M
′′
0 ⊕ f1!M

′′
1 .

It will therefore suffice to show that ρ is a monomorphism, which was
established in the proof of (iii).

(v) Let f : A → B be an étale Fp-algebra homomorphism, and suppose
that the unit ideal of B is generated by elements {ti ∈ B}1≤i≤n for
which each of the induced maps A → B[t−1

i ] is good. Then f is good.
This follows from (iii) and (iv), using induction on n.

(vi) Suppose we are given a pushout square of étale maps

A
f ��

��

B

g
��

A′ f ′
�� B′,

where the vertical maps are faithfully flat. If f ′ is good, then f is good.
This follows from Lemma 5.4.7.
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We now wish to prove that every étale morphism f : A → B is good. For
each point x ∈ Spec(A), let κ(x) denote the residue field of A at x and let
d(x) denote the dimension dimκ(x)(κ(x)⊗AB). Set d(B) = supx∈Spec(A) d(x).
We proceed by induction on d(B). If d = 0, then B � 0 and there is nothing
to prove. To carry out the inductive step, we note that since f is étale, the
induced map Spec(B) → Spec(A) has open image. The complement of this
image can be written as the vanishing locus of an ideal I = (a1, . . . , an) ⊆ A.
Then I generates the unit ideal of B. By virtue of (v), to prove that f is

good, it will suffice to show that each of the composite maps A → A[a−1
i ]

fi−→
B[a−1

i ] is good. Using (i) and (ii), we are reduced to showing that the maps
fi : A[a−1

i ] → B[a−1
i ] are good. Replacing f by fi, we may reduce to the

case where f is faithfully flat. Form a pushout square

A
f ��

f
��

B

��
B

f ′
�� B ⊗A B.

By virtue of (vi), we can replace f by f ′ and thereby reduce to the case where
B splits as a direct product A×B′. We then have d(B′) = d(B)−1 < d(B),
so our inductive hypothesis implies that the map A → B′ is good. From
this, we immediately deduce that f is also good.

6. The Riemann-Hilbert Functor

Let R be a commutative Fp-algebra. In §2, we defined the solution functor

Sol : ModFrR → Shvét(Spec(R),Fp)

and asserted that it becomes an equivalence of categories when restricted
to the category ModalgR ⊆ ModFrR of algebraic Frobenius modules (Theorem
2.4.3). We will prove this by defining a functor RH : Shvét(Spec(R),Fp) →
ModalgR , which we will refer to as the Riemann-Hilbert functor, and then
showing that it is an inverse to the solution functor. Our goal in this sec-
tion is to construct the Riemann-Hilbert functor and to establish its basic
properties. Our principal results can be summarized as follows:

(a) When restricted to perfect Frobenius modules, the solution functor

Sol : ModperfR → Shvét(Spec(R),Fp) admits a left adjoint (Theorem
6.1.1). We will take this left adjoint as a definition of the Riemann-
Hilbert functor.
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(b) The Riemann-Hilbert functor RH : Shvét(Spec(R),Fp) → ModperfR de-

pends functorially on R, in the sense that it is compatible with pullback

(Proposition 6.2.2). We also show that it compatible with compactly

supported direct images along étale morphisms (Proposition 6.2.3),

and direct images along morphisms which are finite and of finite pre-

sentation (Theorem 6.5.1).

(c) The Riemann-Hilbert functor RH : Shvét(Spec(R),Fp) → ModperfR

carries constructible étale sheaves on Spec(R) to holonomic Frobenius

modules over R (Theorem 6.3.1).

(d) The Riemann-Hilbert functor RH : Shvét(Spec(R),Fp) → ModperfR is

exact (Proposition 6.4.1).

In §7, we will apply these results to show that RH is an inverse of the

solution functor (once we restrict our attention to algebraic Frobenius mod-

ules), and thereby obtain a proof of Theorem 1.0.2.

6.1. Existence of the Riemann-Hilbert Functor

Our starting point is the following:

Theorem 6.1.1. Let R be a commutative Fp-algebra. Then the solution

functor Sol : ModperfR → Shvét(Spec(R),Fp) admits a left adjoint

RH : Shvét(Spec(R),Fp) → ModperfR .

Moreover, for every p-torsion étale sheaf F ∈ Shvét(Spec(R),Fp), the Frobe-

nius module RH(F ) is algebraic.

Warning 6.1.2. In the statement of Theorem 6.1.1, it is important to re-

striction the solution functor Sol to the category of perfect Frobenius mod-

ules. The defining property of the Riemann-Hilbert functor RH is that we

have bijections

HomFp
(F , Sol(M)) � HomR[F ](RH(F ),M)

for F ∈ Shvét(Spec(R),Fp) and M a perfect Frobenius module over R. One

does not generally have such a bijection when M is not perfect.

To prove Theorem 6.1.1, it will be convenient to introduce a temporary

bit of terminology. Let R be a commutative Fp-algebra, and suppose we are

given a p-torsion étale sheaf F . A Riemann-Hilbert associate of F is an
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object of ModperfR which corepresents the functor

ModperfR → Set M �→ HomFp
(F , Sol(M)).

If F is a perfect Frobenius module over R which admits a Riemann-Hilbert
associate, we will denote that associate by RH(F ); note that it is well-
defined up to unique isomorphism and depends functorially on F . Theo-
rem 6.1.1 can then be reformulated as the statement that every étale sheaf
F ∈ Shvét(Spec(R),Fp) admits an algebraic Riemann-Hilbert associate.
The proof of this assertion is based on three simple observations:

Proposition 6.1.3. Let R be a commutative Fp-algebra. Then the perfection
Rperf is a Riemann-Hilbert associate of the constant sheaf Fp.

Proof. For every perfect Frobenius module M over R, we have canonical
bijections

HomR[F ](R
perf ,M) � HomR[F ](R,M)

� {x ∈ M : ϕM (x) = x}
� Sol(M)(R)

� HomFp
(Fp, Sol(M)).

Proposition 6.1.4. Let R be a commutative Fp-algebra, and suppose we are
given some diagram of étale sheaves {Fα} having a colimit F = lim−→Fα in
the category Shvét(Spec(R),Fp). Suppose that each Fα admits a Riemann-
Hilbert associate RH(Fα). Then F admits a Riemann-Hilbert associate,

given by lim−→RH(Fα) (where the colimit is formed in the category ModperfR ).

Proof. For any perfect Frobenius module M , we have canonical bijections

HomR[F ](lim−→
α

RH(Fα),M) � lim←−
α

HomR[F ](RH(Fα),M)

� lim←−
α

HomFp
(Fα, Sol(M))

� HomFp
(F , Sol(M)).

Proposition 6.1.5. Let f : A → B be an étale morphism of commutative
Fp-algebras and let F be a p-torsion étale sheaf on Spec(B). Suppose that
F admits a Riemann-Hilbert associate RH(F ) which is algebraic. Then the
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compactly supported direct image f!RH(F ) is a Riemann-Hilbert associate
of f! F ∈ Shvét(Spec(A),Fp).

Proof. Let M be a perfect Frobenius module over A. It follows immediately
from the definitions that the solution sheaf Sol(f�M) ∈ Shvét(Spec(B),Fp)
can be identified with the pullback f∗ Sol(M). We therefore obtain canonical
bijections

HomA[F ](f!RH(F ),M) � HomB[F ](RH(F ), f�M)

� HomFp
(F , Sol(f�M))

� HomFp
(F , f∗ Sol(M))

� HomFp
(f! F , Sol(M)).

Proof of Theorem 6.1.1. Let R be a commutative Fp-algebra and let F be
a p-torsion étale sheaf on Spec(R); we wish to show that F admits an
algebraic Riemann-Hilbert associate. For every étale ring homomorphism
j : R → R′ and element η ∈ F (R′), we can identify η with a map of étale
sheaves uη : j!Fp → F . Amalgamating these, we obtain an epimorphism

u : F ′ → F in the category Shvét(Spec(R),Fp), where F ′ is a direct
sum of étale sheaves of the form j!Fp (where j varies over étale morphisms

R → R′). Repeating this argument for ker(u), we can construct an exact
sequence

F ′′ v−→ F ′ u−→ F → 0,

where F ′′ is also a direct sum of sheaves of the form j!Fp. By virtue of
Proposition 6.1.4, it will suffice to show that each of the sheaves j!Fp admits
an algebraic Riemann-Hilbert associate. Using Proposition 6.1.5, we are re-
duced to showing that if R′ is an étale R-algebra, then the constant sheaf
Fp ∈ Shvét(Spec(R

′),Fp) admits an algebraic Riemann-Hilbert associate.
This follows from Proposition 6.1.3.

6.2. Functoriality

We now study the behavior of the Riemann-Hilbert functor

RH : Shvét(Spec(R),Fp) → ModperfR

as the commutative Fp-algebra R varies. We begin with a simple observation:



A Riemann-Hilbert Correspondence in Positive Characteristic 127

Proposition 6.2.1. Let f : A → B be a homomorphism of commutative
Fp-algebras. Then the diagram of categories

ModperfB

f∗ ��

Sol

��

ModperfA

Sol

��
Shvét(Spec(B),Fp)

f∗ �� Shvét(Spec(A),Fp)

commutes up to canonical isomorphism.

Proof. Let M be a perfect Frobenius module over B, let A′ be an étale
A-algebra, and set B′ = A′ ⊗A B. We then have canonical bijections

(f∗ Sol(M))(A′) � Sol(M)(B′)

� {x ∈ B′ ⊗B M : ϕB′⊗BM (x) = x}
� {x ∈ A′ ⊗A M : ϕA′⊗AM (x) = x}
� Sol(f∗M)(A′).

Proposition 6.2.2. Let f : A → B be an Fp-algebra homomorphism. Then
the diagram of categories

Shvét(Spec(A),Fp)
f∗

��

RH
��

Shvét(Spec(B),Fp)

RH
��

ModperfA

f�
�� ModperfB

commutes up to canonical isomorphism.

Proof. This follows immediately from Proposition 6.2.1 by passing to left
adjoints.

In the situation of Proposition 6.2.2, the vertical maps carry étale sheaves
to algebraic Frobenius modules, so we also have a commutative diagram

Shvét(Spec(A),Fp)
f∗

��

RH
��

Shvét(Spec(B),Fp)

RH
��

ModalgA

f�
�� ModalgB .
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In the case where f : A → B is étale, the horizontal maps in this diagram
admit left adjoints (Theorem 5.4.1). We therefore obtain a natural transfor-
mation f!◦RH → RH ◦f! in the category of functors from Shvét(Spec(B),Fp)

to ModalgA .

Proposition 6.2.3. Let f : A → B be an étale morphism of Fp-algebras.
Then the Beck-Chevalley transformation f! ◦ RH → RH ◦f! described above
is an isomorphism. In other words, the diagram of categories

Shvét(Spec(A),Fp)

RH
��

Shvét(Spec(B),Fp)

RH
��

f!��

ModalgA ModalgB

f!��

commutes up to canonical isomorphism.

Proof. This is a translation of Proposition 6.1.5 (or, more precisely, of its
proof).

Remark 6.2.4. We can also formulate Proposition 6.2.3 in terms of solution
sheaves: it follows from the commutativity of the diagram

ModperfA

f�
��

Sol

��

ModperfB

Sol

��
Shvét(Spec(A),Fp)

f∗
�� Shvét(Spec(B),Fp)

when f : A → B is an étale morphism of Fp-algebras, which in turn follows
immediately from the definitions (and was invoked in the proof of Proposi-
tion 6.1.5).

6.3. Constructible Sheaves

Let R be a commutative ring. Recall (see [15, Tag 05BE]) that a sheaf F ∈
Shvét(Spec(R),Fp) is said to be constructible if there is finite stratification

∅ = X0 ⊆ X1 ⊆ · · · ⊆ Xn = Spec(R),

where each open stratum Xm −Xm−1 is a constructible subset of Spec(R)
and admits an étale surjection Um → (Xm − Xm−1) such that the restric-
tion F |Um

is isomorphic to a constant sheaf V , for some finite-dimensional
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vector space V over Fp. We let Shvcét(Spec(R),Fp) denote the full subcate-
gory of Shvét(Spec(R),Fp) spanned by the constructible sheaves. Note that
Shvcét(Spec(R),Fp) is closed under the formation of kernels and cokernels in
Shvét(Spec(R),Fp); in particular, it is an abelian category.

Theorem 6.1.1 admits the following refinement:

Theorem 6.3.1. Let R be a commutative Fp-algebra. Then the Riemann-

Hilbert functor RH : Shvét(Spec(R),Fp) → ModperfR carries constructible
étale sheaves to holonomic Frobenius modules over R.

Notation 6.3.2. For every Fp-algebraR, we let RHc : Shvcét(Spec(R),Fp)→
ModholR denote the restriction of the Riemann-Hilbert functor RH to con-
structible sheaves.

For the proof of Theorem 6.3.1, we will need a few standard facts about
constructible sheaves, which we assert here without proof:

Proposition 6.3.3. Let f : A → B be an étale ring homomorphism. Then
the functor f! : Shvét(Spec(B),Fp) → Shvét(Spec(A),Fp) carries constructi-
ble sheaves to constructible sheaves.

Proof. This is contained in [15, Tag 03S8].

Proposition 6.3.4. Let A be a commutative ring and let F ∈
Shvcét(Spec(A),Fp). Then there exists an étale morphism f : A → B and
an epimorphism f!Fp → F in the abelian category Shvét(Spec(A),Fp).

Proof. This follows from [15, Tag 09YT].

Proof of Theorem 6.3.1. Let R be a commutative Fp-algebra and let F be
a constructible p-torsion étale sheaf on Spec(R). We wish to show that the
Frobenius module RH(F ) is holonomic. We first apply Proposition 6.3.4 to
choose an epimorphism u : F ′ → F , where F ′ has the form f!Fp for some

étale morphism f : A → B. Then F ′ is constructible, so ker(u) is also con-
structible. Applying Proposition 6.3.4 again, we can choose an epimorphism
v : F ′′ → ker(u), where F ′′ has the form g!Fp for some étale morphism
g : A → C. We then have an exact sequence

F ′′ v−→ F ′ u−→ F → 0.

The Riemann-Hilbert functor RH is right exact (since it is a left adjoint),
so we obtain an exact sequence of Frobenius modules

RH(F ′′) → RH(F ′) → RH(F ) → 0.



130 Bhargav Bhatt and Jacob Lurie

Since the collection of holonomic Frobenius modules over R is closed un-
der the formation of cokernels (Corollary 4.2.2), it will suffice to show that
RH(F ′′) and RH(F ′) are holonomic. Using Propositions 6.2.3 and 6.1.3, we
obtain isomorphisms RH(F ′) � f!B

perf and RH(F ′′) � g!C
perf . The desired

holonomicity now follows from Remark 5.4.2.

We close this section by recording (without proof) a few more elemen-
tary facts about constructible sheaves which will be needed in the proof of
Theorem 1.0.2. First, we have the following duals to Propositions 6.3.3 and
6.3.4:

Proposition 6.3.5. Let f : A → B be a ring homomorphism which is finite
and of finite presentation. Then the direct image functor f∗ : Shvét(Spec(B),
Fp) → Shvét(Spec(A),Fp) carries constructible sheaves to constructible
sheaves.

Proof. See [7, §1, Lemma 4.11].

Proposition 6.3.6. Let A be a commutative ring and let F ∈
Shvcét(Spec(A),Fp). Then there exists a ring homomorphism f : A → B
which is finite and of finite presentation and a monomorphism F → f∗Fp

in the category Shvét(Spec(A),Fp).

Proof. See [7, §1, Proposition 4.12].

Proposition 6.3.7. Let R be a commutative ring. Then the inclusion func-
tor Shvcét(Spec(R),Fp) ↪→ Shvét(Spec(R),Fp) extends to an equivalence of
categories Ind(Shvcét(Spec(R),Fp)) � Shvét(Spec(R),Fp).

Proof. See [15, Tag 03SA].

6.4. Exactness of the Riemann-Hilbert Functor

Proposition 6.4.1. Let R be a commutative Fp-algebra. Then the Riemann-

Hilbert functor RH : Shvét(Spec(R),Fp) → ModperfR is exact.

Proof. Since the Riemann-Hilbert functor RH is defined as the left adjoint to
the solution functor, it is automatically right exact. It will therefore suffice
to show that if u : F → G is a monomorphism of p-torsion étale sheaves
on Spec(R), then the induced map RH(u) : RH(F ) → RH(G ) is also a
monomorphism. Using Proposition 6.3.7, we can reduce to the case where
F and G are constructible, so that the Frobenius modules RH(F ) and
RH(G ) are holonomic (Theorem 6.3.1). It follows that the kernel of the map
RH(u) is also holonomic (Corollary 4.3.3). By virtue of Proposition 5.3.3,
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to show that RH(u) is a monomorphism, it will suffice to show that the
support supp(ker(RH(u))) is empty. Fix a point x ∈ Spec(R); we will show
that x /∈ supp(ker(RH(u))) ⊆ Spec(R). Let κ be an algebraic closure of the
residue field of R at the point x and let f : R → κ be the canonical map;
we wish to show that f�(ker(RH(u))) vanishes. Since the functor f� is exact
on algebraic Frobenius modules (Corollary 3.5.2) and compatible with the
Riemann-Hilbert functor (Proposition 6.2.2), we have

f�(ker(RH(u))) � ker(f�(RH(u))) � ker(RH(f∗(u))).

We can therefore replace R by κ and thereby reduce to the case where R
is an algebraically closed field. In this case, the category Shvét(Spec(R),Fp)
is equivalent to the category of vector spaces over Fp. It follows that every
exact sequence in the category Shvét(Spec(R),Fp) is split, so the exactness
of the Riemann-Hilbert functor RH is automatic.

Corollary 6.4.2. Let R be a commutative Fp-algebra. Then the solution

functor Sol : ModperfR → Shvét(Spec(R),Fp) carries injective objects of the

abelian category ModperfR to injective objects of the abelian category
Shvét(Spec(R),Fp).

6.5. Comparison of Finite Direct Images

Let f : A → B be a homomorphism of commutative Fp-algebras, so that
Proposition 6.2.2 supplies a commutative diagram of categories

Shvét(Spec(A),Fp)
f∗

��

RH
��

Shvét(Spec(B),Fp)

RH
��

ModperfA

f�
�� ModperfB .

Note that the horizontal maps in this diagram admit right adjoints

f∗ : ModperfB → ModperfA f∗ : Shvét(Spec(B),Fp) → Shvét(Spec(A),Fp).

By general nonsense, we obtain a Beck-Chevalley transformation RH ◦f∗ →
f∗ ◦ RH in the category of functors from Shvét(Spec(B),Fp) to ModperfA .
In general, this map need not be an isomorphism: for example, if Bperf =
(f∗ ◦RH)(Fp) is not algebraic when regarded as a Frobenius module over A,
then it cannot belong to the essential image of the Riemann-Hilbert functor
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RH : Shvét(Spec(A),Fp) → ModperfA . However, under some mild finiteness
hypotheses, this phenomenon does not arise:

Theorem 6.5.1. Let f : A → B be a morphism of commutative Fp-algebras
which is finite and of finite presentation. Then, for every p-torsion étale
sheaf F on Spec(B), the canonical map εF : RH(f∗ F ) → f∗(RH(F )) is
an isomorphism of Frobenius modules over A. Consequently, the diagram of
categories

Shvét(Spec(A),Fp)

RH
��

Shvét(Spec(B),Fp)

RH
��

f∗��

ModperfA ModperfB

f∗��

commutes (up to canonical isomorphism).

Remark 6.5.2. In §10, we will prove a more general version of Theorem
6.5.1, which applies in the situation of a morphism f : X → Y of Fp-schemes
which is proper and of finite presentation (Corollary 10.5.6).

Proof of Theorem 6.5.1. The functors

RH : Shvét(Spec(A),Fp) → ModperfA RH : Shvét(Spec(B),Fp) → ModperfB

f∗ : Shvét(Spec(B),Fp) → Shvét(Spec(A),Fp) f∗ : ModperfB → ModperfA

all commute with filtered colimits. Consequently, to show that the map εF
is an equivalence for every object F ∈ Shvét(Spec(B),Fp), it will suffice to
show that εF is an equivalence when the sheaf F is constructible (Propo-
sition 6.3.7). In this case, the direct image f∗ F ∈ Shvét(Spec(A),Fp) is
constructible (Proposition 6.3.5). Applying Theorem 6.3.1, we deduce that
RH(F ) and RH(f∗ F ) are holonomic. It follows from Proposition 4.2.10
that f∗RH(F ) is also holonomic. Applying Corollary 4.3.3, we deduce that
ker(εF ) and coker(εF ) are holonomic. By virtue of Propositions 5.3.3 and
4.2.4, to show that εF is an isomorphism, it will suffice to show that g�(εF )
is an isomorphism for every map g : A → κ where κ is an algebraically
closed field. Using Proposition 6.2.2 (and the fact that pushforward of étale
sheaves along finite morphisms commutes with base change), we can replace
A by κ and thereby reduce to the case where A is an algebraically closed
field. In this case, B is a finite-dimensional algebra over κ. Writing B as a
product of local rings, we can assume that B is local with residue field κ.
Then the constructible sheaf F ∈ Shvcét(Spec(B),Fp) has the form V for
some finite-dimensional vector space V over Fp. Choosing a basis for V , we
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can reduce to the case where V = Fp. Using Proposition 6.1.3, we see that
εF can be identified with the canonical map A1/p∞ → B1/p∞

, which is an
isomorphism since the radical of B is nilpotent.

7. The Riemann-Hilbert Correspondence

Let R be a commutative Fp-algebra. Our goal in this section is to prove
Theorem 1.0.2 by showing that the Riemann-Hilbert functor

RH : Shvét(Spec(R),Fp) → ModalgR

is an equivalence of categories. Let us outline the strategy we will use. Our
first objective (which is achieved in §7.2) is to show that the Riemann-
Hilbert functor is fully faithful: that is, that the unit map F → Sol(RH(F ))
is an isomorphism for any p-torsion étale sheaf F on Spec(R) (see Propo-
sition 7.2.1). One obstacle to proving this is that the solution functor Sol :

ModperfR → Shvét(Spec(R),Fp) is not exact. However, we show in §7.1 that
it is almost exact: more precisely, it has only one derived functor, which can
be explicitly described (Proposition 7.1.1).

The rest of this section is devoted to showing that every algebraic Frobe-
nius moduleM over R belongs to the essential image of the Riemann-Hilbert
functor. To prove this, we may assume without loss of generality that M is
holonomic. In this case, we prove something stronger: the Frobenius module
M can be realized as RH(F ), where F is a constructible p-torsion étale sheaf
on Spec(R) (Theorem 7.4.1). In the case where R is a field, this assertion is
classical; we give a proof in §7.3 for the reader’s convenience (Proposition
7.3.1). The general case is treated in §7.4, using a dévissage which reduces
to the case where R is a field.

7.1. Derived Solution Functors

Let R be a commutative Fp-algebra. The solution functor

Sol : ModperfR → Shvét(Spec(R),Fp)

of Construction 2.3.1 is left exact (Remark 2.3.4), but is usually not exact.

Since the category ModperfR has enough injective objects (Remark 3.2.6),
we can consider its right derived functors. For each n ≥ 0, we let Soln :
ModperfR → Shvét(Spec(R),Fp) denote the nth right derived functor of Sol.
These derived functors admit a simple explicit description:
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Proposition 7.1.1. Let R be a commutative Fp-algebra and let M be a

perfect Frobenius module over R. Then we have a canonical short exact se-
quence

0 → Sol(M) → M̃
id−ϕ̃M−−−−→ M̃ → Sol1(M) → 0

and the sheaves Soln(M) vanish for n ≥ 2.

Here M̃ denotes the quasi-coherent sheaf associated to the R-module M

(see Example 2.2.5). We will deduce Proposition 7.1.1 from the following:

Lemma 7.1.2. Let R be a commutative Fp-algebra. If M is an injective

object of ModperfR , then the sequence 0 → Sol(M) → M̃
id−ϕ̃M−−−−→ M̃ → 0 is

exact in the category of abelian presheaves on the category CAlgétR.

Proof. Choose an étale morphism f : R → A. We then have a diagram of

exact sequences

0

��

0

��
Sol(M)(A)

∼ ��

��

Ext0A[F ](A,A⊗R M)

��
M̃

∼ ��

id−ϕ
��

Ext0A[F ](A[F ], A⊗R M)

��
M̃

∼ �� Ext0A[F ](A[F ], A⊗R M)

��
Ext1A[F ](A,A⊗R M).

To complete the proof, it will suffice to show that the group Ext1A[F ](A,A⊗R

M) � Ext1A[F ](A
1/p∞

, A ⊗R M) vanishes. Using Theorem 5.4.1, we obtain
an isomorphism

Ext1A[F ](A
1/p∞

, A⊗R M) � Ext1R[F ](f!A
1/p∞

,M),

where the right hand side vanishes by virtue of our assumption that M is
injective.
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Proof of Proposition 7.1.1. Let M be a perfect Frobenius module over a
commutative Fp-algebra R, and choose an injective resolution 0 → M →
Q0 → Q1 → · · · in the abelian category ModperfR . Using Lemma 7.1.2, we
obtain a short exact sequence of cochain complexes

0 → Sol(Q∗) → Q̃∗ id−ϕ−−−→ Q̃∗ → 0.

Since the construction N �→ Ñ is exact, the chain complex Q̃∗ is an acyclic
resolution of M̃ . The associated long exact sequence now supplies the desired
isomorphisms.

Corollary 7.1.3. Let R be a commutative Fp-algebra. Then the functor

Soln : ModperfR → Shvét(Spec(R),Fp) commutes with filtered colimits for
each n ≥ 0.

Corollary 7.1.4. Let R be a commutative Fp-algebra, let F be a p-torsion
étale sheaf on Spec(R), and let M be a perfect Frobenius module over R.
Then we have canonical short exact sequences

0→ ExtnFp
(F , Sol(M))→ ExtnR[F ](RH(F ),M)→ Extn−1

Fp
(F , Sol1(M))→ 0.

Proof. Since the solution functor Sol : ModperfR → Shvét(Spec(R),Fp) car-

ries injective objects of ModperfR to injective objects of Shvét(Spec(R),Fp)
(Corollary 6.4.2), we have a Grothendieck spectral sequence

ExtsFp
(F , Solt(M)) ⇒ Exts+t

R[F ](RH(F ),M).

The existence of the desired short exact sequences now follows from the
vanishing of the groups Solt(M) for t ≥ 2 (Proposition 7.1.1).

7.2. Full Faithfulness of the Riemann-Hilbert Functor

We are now ready to prove a weak version of Theorem 1.0.2.

Proposition 7.2.1. Let R be a commutative Fp-algebra and let F be a p-
torsion étale sheaf on Spec(R). Then the unit map uF : F → Sol(RH(F ))
is an isomorphism and the sheaf Sol1(RH(F )) vanishes.

We first treat a special case of Proposition 7.2.1:

Lemma 7.2.2. Let R be a commutative Fp-algebra. Then the unit map u :
Fp → Sol(RH(Fp)) is an isomorphism and the sheaf Sol1(RH(Fp)) vanishes.
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Proof. Without loss of generality, we may assume that R is perfect. Using
Propositions 6.1.3 and 7.1.1, we see that Lemma 7.2.2 is equivalent to the
exactness of the Artin-Schreier sequence

0 → Fp → R̃
id−ϕ−−−→ R̃ → 0

in the category Shvét(Spec(R),Fp).

Proof of Proposition 7.2.1. Using Corollary 7.1.3 and Proposition 6.3.7, we
can reduce to the case where the sheaf F is constructible. Using Proposition
6.3.6, we can choose an exact sequence of constructible sheaves

0 → F → G → H → 0,

where G = f∗Fp for some Fp-algebra homomorphism f : R → A which
is finite and of finite presentation. Using Proposition 6.4.1 and Proposition
7.1.1, we obtain a commutative diagram

0

��

0

��
F

uF ��

��

Sol(RH(F ))

��
G

uG ��

��

Sol(RH(G ))

��
H

uH ��

��

Sol(RH(H ))

δ
��

0 �� Sol1(RH(F ))

��
Sol1(RH(G ))

whose columns are exact. It follows from Lemma 7.2.2, Theorem 6.5.1, and
Proposition 6.2.1 that uG is an isomorphism and Sol1(RH(G )) vanishes. In-
specting the diagram, we deduce that uF is a monomorphism. Applying the
same argument to H , we see that uH is also monomorphism, so a diagram
chase shows that uF is an epimorphism. Applying the same argument to H ,
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we conclude that uH is also an epimorphism. The commutativity of the di-
agram shows that δ ◦uH vanishes, so that δ = 0. Since δ is an epimorphism,
we conclude that Sol1(RH(F )) � 0.

It follows from Proposition 7.2.1 that the Riemann-Hilbert functor is
fully faithful, even at the “derived” level:

Corollary 7.2.3. Let R be a commutative Fp-algebra. Then the Riemann-

Hilbert functor RH : Shvét(Spec(R),Fp) → ModperfR is fully faithful. More-
over, for every pair of objects F ,G ∈ Shvét(Spec(R),Fp), the induced map
Ext∗Fp

(F ,G ) → Ext∗R[F ](RH(F ),RH(G )) is an isomorphism.

Proof. Combine Proposition 7.2.1 with Corollary 7.1.4.

7.3. The Case of a Field

It follows from Corollary 7.2.3 that, for any commutative Fp-algebra R, the
functor

RHc : Shvcét(Spec(R),Fp) → ModholR

of Notation 6.3.2 is fully faithful. We now show that it is an equivalence
in the special case where R is a field, which is essentially a restatement of
Theorem 1.0.1:

Proposition 7.3.1. [10, Proposition 4.1.1] Let κ be a field of characteristic
p. Then the functor RHc : Shvcét(Spec(κ),Fp) → Modholκ is an equivalence of
categories.

We begin by treating the case where κ is algebraically closed (compare
[5, §III, Lemma 3.3]):

Lemma 7.3.2. Let κ be an algebraically closed field of characteristic p.
Then the functor RHc : Shvcét(Spec(κ),Fp) → Modholκ is an equivalence of
categories.

Proof. Using Corollary 7.2.3 and Proposition 6.4.1, we see that RHc is a fully
faithful embedding whose essential image C ⊆ Modholκ is an abelian subcat-
egory which is closed under extensions. We wish to show that C contains
every object M ∈ Modholκ . Applying Proposition 4.3.1, we see that M is a
Noetherian object of the abelian category Modalgκ . Consequently, there ex-
ists a subobject M ′ ⊆ M (in the abelian category Modalgκ ) which is maximal
among those subobjects which belong to C. It follows from the maximality
of M ′ (and the stability of C under extensions) that the quotient M/M ′

does not contain any nonzero subobjects which belong to C. Replacing M
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by M/M ′, we can reduce to the case where M does not have any nonzero
subobjects which belong to C.

Suppose that M is nonzero. Choose a nonzero element x ∈ M . Since M
is algebraic, the element x satisfies an equation

ϕn
M (x) + λ1ϕ

n−1
M (x) + · · ·+ λnx = 0

for some coefficients λ1, λ2, . . . , λn ∈ κ. We may assume that x has been cho-
sen so that n is as small as possible; this guarantees that the set {x, ϕM (x),
. . . , ϕn−1

M (x)} is linearly independent over κ, and therefore λn �= 0. Since
x �= 0, we must have n > 0.

Note that

f(t) = tp
n

+ λpn−1

1 tp
n−1

+ λpn−2

2 tp
n−2

+ · · ·+ λnx

is a separable polynomial of degree pn > 1, and therefore has pn distinct
roots in the field κ. Consequently, there exists a nonzero element a ∈ κ such
that f(a) = 0. Let

y = ax+(ap+aλ1)ϕM (x)+ · · ·+(ap
n−1

+ap
n−2

λpn−2

1 + · · ·+aλn−1)ϕ
n−1
M (x).

Since the elements {ϕi
M (x)}0≤i<n are linearly independent and a �= 0, y is

a nonzero element of M . An explicit calculation gives

y − ϕM (y) = ax+
∑

0<i<n

aλiϕ
i
M (x) + (aλn − f(a))ϕn

M (x)

= a(x+ λ1ϕM (x) + · · ·+ λnϕ
n
M (x))

= 0.

It follows that y generates a nonzero Frobenius submodule of M which is
isomorphic to κ � RH(Fp), contradicting our assumption that M does not
contain any nonzero subobjects which belong to C.
Proof of Proposition 7.3.1. Let κ be an arbitrary field of characteristic p. As
in the proof of Lemma 7.3.2, we see that the functor RHc : Shvcét(Spec(κ),
Fp) → Modholκ is a fully faithful embedding whose essential image C ⊆
Modholκ is an abelian category which is closed under extensions. We wish
to show that C contains every object M ∈ Modholκ . Let κ be an algebraic
closure of κ. Lemma 7.3.2 shows that (κ ⊗κ M)1/p

∞ ∈ Modholκ belongs to
the essential image of the functor RHc : Shvcκ → Modholκ . Using a direct
limit argument, we see that there exists a finite algebraic extension κ′ of κ
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such that M ′ = (κ′ ⊗κ M)1/p
∞

belongs to the essential image of the functor

RHc : Shvcκ′ → Modholκ′ . By restriction of scalars, we can regard M ′ as an

object of Modholκ (Proposition 4.2.10), and the resulting object belongs to

the subcategory C (Theorem 6.5.1). We have an evident monomorphism

M → M ′ in the abelian category Modholκ . Applying the same argument to

the quotient M/M ′, we can choose a monomorphism M/M ′ ↪→ M ′′ for some

M ′′ ∈ C. It follows that M can be identified with the kernel of the composite

map M ′ → M/M ′ ↪→ M ′′, and therefore belongs to C (since C is an abelian

subcategory of Modholκ ).

7.4. Proof of the Main Theorem

We now generalize Proposition 7.3.1 to the case of an arbitrary Fp-algebra:

Theorem 7.4.1. Let R be a commutative Fp-algebra. Then the Riemann-

Hilbert functor RHc : Shvcét(Spec(R),Fp) → ModholR (see Notation 6.3.2) is

an equivalence of categories.

Before giving the proof of Theorem 7.4.1, let us collect some of its conse-

quences. First, we note that it immediately implies the results of this paper:

Proof of Theorem 1.0.2 from Theorem 7.4.1. Let R be an Fp-algebra. It fol-

lows from Theorem 7.4.1 that the functor RHc = RH |Shvc
ét(Spec(R),Fp) is a

fully faithful embedding, those essential image consists of compact objects of

ModperfR (see Proposition 4.1.5). Moreover, the functor RH preserves filtered

colimits (by virtue of the fact that it is left adjoint to the solution functor).

Using Proposition 6.3.7, we deduce that RH is a fully faithful embedding

whose essential image consists of those perfect Frobenius modules which can

be realized as filtered colimits of holonomic Frobenius modules. By virtue

of Theorem 4.2.9, this essential image is exactly ModalgR .

Proof of Theorem 2.4.3 from Theorem 7.4.1. Let R be an Fp-algebra. Then

Sol : ModalgR → Shvét(Spec(R),Fp) is right adjoint to the Riemann-Hilbert

functor RH : Shvét(Spec(R),Fp) → ModalgR . Since the latter is an equiva-

lence of categories, the former must also be an equivalence of categories.

Corollary 7.4.2. Let f : A → B be a homomorphism of Fp-algebras and

let M be an algebraic A-module. Then the comparison map f∗(Sol(M)) →
Sol(f�M) is an isomorphism in Shvét(Spec(B),Fp).

Proof. Combine Theorem 2.4.3 with Proposition 6.2.2.
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Corollary 7.4.3. Let A → B be a homomorphism of commutative Fp-
algebras which is étale and faithfully flat, and let M be a perfect Frobenius
module over A. If f�(M) = B ⊗A M is a holonomic Frobenius module over
B, then M is a holonomic Frobenius module over A.

Proof. It follows from Lemma 5.4.6 that M is algebraic. Consequently, to
show that M is holonomic, it will suffice (by virtue of Theorems 1.0.2 and
7.4.1) to show that Sol(M) is a constructible sheaf. This follows from Remark
6.2.4, since constructibility of étale sheaves can be tested locally with respect
to the étale topology.

Corollary 7.4.4. Let R be a commutative Fp-algebra and let M be an
algebraic Frobenius module over R. Then Soli(M) � 0 for i > 0.

Proof. By virtue of Theorem 1.0.2 we can write M = RH(F ) for some F ∈
Shvét(Spec(R),Fp). In this case, the desired result follows from Proposition
7.2.1.

Proof of Theorem 7.4.1. Let R be a commutative Fp-algebra. As in the
proof of Lemma 7.3.2, we see that the functor RHc is a fully faithful embed-
ding whose essential image C ⊆ ModholR is an abelian subcategory which
is closed under extensions. We wish to show that C contains every ob-
ject M ∈ ModholR . Using a direct limit argument, we can choose an Fp-
algebra homomorphism ι : R0 → R and an equivalence M � ι�M0 for some
M0 ∈ ModholR0

, where R0 is finitely generated over Fp. By virtue of Proposi-
tion 6.2.2, it will suffice to show that M0 belongs to the essential image of
the functor RHc : ShvcR0

→ ModholR0
. We may therefore replace R by R0 (and

M by M0) and thereby reduce to the case where R is Noetherian.
Applying Proposition 4.3.1, we see that M is a Noetherian object of the

abelian category ModalgR . Consequently, there exists a subobject M ′ ⊆ M

(in the abelian category ModalgR ) which is maximal among those subobjects
which belong to C. It follows from the maximality of M ′ (and the stability of
C under extensions) that the quotient M/M ′ does not contain any nonzero
subobjects which belong to C. Replacing M by M/M ′, we can reduce to the
case where M does not have any nonzero subobjects which belong to C.

Let K ⊆ Spec(R) be the closure of the support supp(M). Then K is the
vanishing locus of a radical ideal I ⊆ Spec(R). Using Theorem 5.3.1, we see
that M can be regarded as a holonomic Frobenius module over the quotient
ring R/I. Using Theorem 6.5.1, we can replace A by A/I and thereby reduce
to the case where R is reduced and K = Spec(R).

If R � 0, then M � 0 and there is nothing to prove. Otherwise,
R contains a minimal prime ideal p. Since R is reduced, the localization
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Rp is a field. Applying Proposition 7.3.1, we deduce that Mp belongs to

the essential image of the functor RHc : ShvcRp
→ ModholRp

. It follows by
a direct limit argument that there exists some element t ∈ R − p for
which the localization M [t−1] belongs to the essential image of the functor

RHc : ShvcR[t−1] → ModholR[t−1]. Let f : R → R[t−1] be the localization map,

and set M ′ = f!M [t−1]; using Proposition 6.2.3, we deduce that M ′ belongs
to the essential image of the Riemann-Hilbert functor RHc : ShvcR → ModholR .

Note that Lemma 5.4.8 guarantees that the counit map M ′ = f!f
∗M → M

is a monomorphism, so we must have M ′ � 0. It follows that the localization

M [t−1] vanishes, so that the prime ideal p cannot belong to the support of
M . Using the constructibility of supp(M) (Theorem 4.4.4), we deduce that

there exists an open neighborhood of p which does not intersection supp(M),
contradicting the equality K = Spec(R).

8. Tensor Products

Let A be a commutative ring and let Shvét(Spec(A),Fp) denote the category
of p-torsion étale sheaves on Spec(A). This category is equipped with a tensor

product functor

⊗Fp
: Shvét(Spec(A),Fp)× Shvét(Spec(A),Fp) → Shvét(Spec(A),Fp)

which carries a pair of étale sheaves (F ,G ) to the sheafification of the
presheaf

(B ∈ CAlgétA) �→ F (B)⊗Fp
G (B).

In the case where A is an Fp-algebra, Theorem 2.4.3 supplies an equivalence

of categories

Sol : ModalgA → Shvét(Spec(A),Fp)

Our goal this section is to promote the solution functor Sol to an equivalence
of symmetric monoidal categories: that is, to show that it is compatible with

tensor products.

We begin in §8.1 by studying an analogous tensor product operation on

the category ModFrA of Frobenius modules over A. In fact, there are two such
operations (which are closely related):

• If M and N are Frobenius modules over A, then the tensor product

M ⊗A N inherits the structure of a Frobenius module over A (Con-
struction 8.1.1).
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• If M and N are perfect Frobenius modules over A, then they can
also be regarded as modules of the perfection A1/p∞

; in this case,
the tensor product M ⊗A1/p∞ N inherits the structure of a perfect
Frobenius module over A (Remark 8.1.5).

Like the usual tensor product on the category of A-modules, the tensor
product on Frobenius modules is right exact but generally not left exact.
One can partially remedy this failure of exactness by studying left derived
functors of the tensor product: in §8.2, we show that these agree with the
usual Tor-functors of commutative algebra (Proposition 8.2.1). The central
result of this section asserts that if we restrict our attention to algebraic
Frobenius modules, then these Tor-groups automatically vanish (when com-
puted relative to the perfection A1/p∞

; see Theorem 8.3.1). We prove this
statement in §8.3, and apply it in §8.4 to show that the Riemann-Hilbert
correspondence is compatible with tensor products (Theorem 8.4.1).

8.1. Tensor Products of Frobenius Modules

We begin with some general remarks.

Construction 8.1.1. Let A be a commutative Fp-algebra. If M and N are
Frobenius modules over A, then we regard the tensor product M ⊗A N as a
Frobenius module over A, with Frobenius map

ϕM⊗AN : M ⊗A N → M ⊗A N

given by the formula ϕM⊗AN (x⊗ y) = ϕM (x)⊗ ϕN (y). Note that the com-
mutativity and associativity isomorphisms

M ⊗A N � N ⊗A M (M ⊗A N)⊗A P � M ⊗A (N ⊗A P )

are isomorphisms of Frobenius modules, and therefore endow ModFrA with
the structure of a symmetric monoidal category.

Example 8.1.2 (Tensor Products of Free Modules). Let A be a commuta-
tive Fp-algebra and let M and N be Frobenius modules over A which are
freely generated (as left A[F ]-modules) by elements x ∈ M and y ∈ N . Then
the tensor product M ⊗AN is freely generated by the elements Fnx⊗y and
x⊗ Fny (which coincide when n = 0).

Remark 8.1.3 (Compatibility with Extension of Scalars). Let f : A → B
be a homomorphism of commutative Fp-algebras, and let f∗

Fr : ModFrA →
ModFrB be the functor of extension of scalars along f (given byM �→ B⊗AM).
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Then f∗
Fr is a symmetric monoidal functor: in particular, we have canonical

isomorphisms f∗
Fr(M ⊗A N) � (f∗

FrM)⊗B (f∗
FrN).

Remark 8.1.4. Let A be an Fp-algebra. If M and N are Frobenius modules
over A, then we have a canonical isomorphism

(M ⊗A N)1/p
∞ � M1/p∞ ⊗A1/p∞ N1/p∞

.

In particular, if A, M , and N are perfect, then the tensor product M ⊗A N
is also perfect.

Remark 8.1.5. Let A be a perfect Fp-algebra. It follows from Remark 8.1.4

that the full subcategory ModperfA ⊆ ModFrA is closed under tensor products,
and therefore inherits the structure of a symmetric monoidal category (with
tensor product ⊗A).

More generally, if A is an arbitrary Fp-algebra, then the restriction-

of-scalars functor θ : Modperf
A1/p∞ → ModperfA is an equivalence of categories

(Proposition 3.4.3). It follows that there is an essentially unique symmet-

ric monoidal structure on the category ModperfA for which the functor θ
is symmetric monoidal. We will denote the underlying tensor product by
(M,N) �→ M⊗A1/p∞ N (note that if M and N are perfect Frobenius modules
over A, then they can be regarded as modules over A1/p∞

in an essentially
unique way).

Warning 8.1.6. Let A be a commutative Fp-algebra. Then the inclusion

functor ModperfA ↪→ ModFrA is usually not a symmetric monoidal functor,
if we regard ModFrA as equipped with the symmetric monoidal structure of

Construction 8.1.1 (given by tensor product over A) and ModperfA with the
symmetric monoidal structure of Remark 8.1.5 (given by tensor product
over A1/p∞

). However, it has a symmetric monoidal left adjoint, given by
the perfection construction M �→ M1/p∞

(note that Remark 8.1.4 supplies
an isomorphism (M ⊗A N)1/p

∞ � M ⊗A1/p∞ N in the case where M and N
are perfect).

Remark 8.1.7 (Compatibility with Extension of Scalars). Let f : A → B

be a homomorphism of commutative Fp-algebras, and let f� : ModperfA →
ModperfB be the functor of Proposition 3.3.2. Then f� is symmetric monoidal
with respect to the tensor products described in Remark 8.1.5: in particular,
if M and N are perfect Frobenius modules over A, then we have a canonical
isomorphism f�(M ⊗A1/p∞ N) � (f�M) ⊗B1/p∞ (f�N). This follows from
Remark 8.1.3, applied to the map f1/p∞

: A1/p∞ → B1/p∞
.
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8.2. Derived Tensor Products

Let A be an Fp-algebra and let M be a Frobenius module over A. Then
the construction N �→ M ⊗A N determines a right exact functor from
the abelian category ModFrA to itself. Since the abelian category ModFrA has
enough projective objects (it is equivalent to the category of left modules
over the noncommutative ring A[F ] of Notation 2.1.5), the construction
N �→ M ⊗A N admits left derived functors, which we will temporarily de-
note by N �→ T∗(M,N). More concretely, we define Tk(M,N) to be the kth
homology group of the chain complex

· · · → M ⊗A P2 → M ⊗A P1 → M ⊗A P0 → 0,

where · · · → P2 → P1 → P0 → N → 0 is a projective resolution of N in
the category ModFrA (it follows from elementary homological algebra that the
Frobenius modules T∗(M,N) are independent of the choice of resolution, up
to canonical isomorphism).

Proposition 8.2.1. Let A be an Fp-algebra. For every pair of Frobenius
modules M and N over A, we have canonical A-module isomorphisms
TorA∗ (M,N)

∼−→ T∗(M,N).

Proof. Since A[F ] is free as a left A-module, every projective left A[F ]-
module is also projective when viewed as a left A-module. Consequently,
if P∗ is a resolution of N by projective left A[F ]-modules, then it is also
a resolution of N by projective A-modules, so the homology groups of the
chain complex M ⊗A P∗ can be identified with TorA∗ (M,N).

We can formulate Proposition 8.2.1 more informally as follows: if M and
N are Frobenius modules over A, then the Tor-groups TorA∗ (M,N) inherit
the structure of Frobenius modules over A.

Remark 8.2.2. Our description of the Frobenius structure on the Tor-
groups TorA∗ (M,N) is a priori asymmetric in M and N , since it depends on
taking the left derived functors of the construction M ⊗A •. However, one
can give a more symmetric description as follows. Let C denote the category
whose objects are triples (A,M,N), where A is an associative ring, M is
a right module over A, and N is a left module over A. For each integer
k, the construction (A,M,N) �→ TorAk (M,N) can be regarded as a functor
from C to the category of abelian groups. In the special case where A is
a commutative Fp-algebra and M,N ∈ ModFrA , we can regard the triple
(ϕA, ϕM , ϕN ) as a morphism from (A,M,N) to itself in the category C, and
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therefore induces a map of abelian groups ϕ : TorAk (M,N) → TorAk (M,N).
It is easy to check that ϕ corresponds to the Frobenius map on Tk(M,N)
under the isomorphism of Proposition 8.2.1.

Proposition 8.2.3. Let A be a perfect Fp-algebra. If M and N are perfect
Frobenius modules over A, then the Tor-groups TorA∗ (M,N) are also perfect
Frobenius modules over A.

Proof. This follows immediately from the description of the Frobenius struc-
ture on TorA∗ (M,N) given in Remark 8.2.2. Alternatively, we can show that
each TorAk (M,N) is perfect using induction on k. When k = 0, the desired
result follows from Remark 8.1.4. For k > 0, we can choose a short exact
sequence 0 → N ′ → P → N → 0, where P is a free module over A1/p∞

[F±1]
(see Example 3.2.5). Then N ′ is also a perfect Frobenius module over A.
Moreover, since A is perfect, the ring A1/p∞

[F±1] is free as a left A-module,
so the groups TorA∗ (M,P ) vanish for ∗ > 0. We therefore have a short exact
sequence

0 → TorAk (M,N) → TorAk−1(M,N ′) → TorAk−1(M,P )

which exhibits TorAk (M,N) as the kernel of a map between perfect Frobenius
modules, so that TorAk (M,N) is itself perfect.

Variant 8.2.4. Let A be an arbitrary Fp-algebra, and let M and N be per-
fect Frobenius modules over A. Then we can regard M and N as Frobenius
modules over A1/p∞

in an essentially unique way (Proposition 3.4.3). Using

Proposition 8.2.3, we can regard the Tor-groups TorA
1/p∞

∗ (M,N) as perfect
Frobenius modules over A1/p∞

, and therefore also (by restriction of scalars)
as perfect Frobenius modules over A.

Proposition 8.2.5. Let A be an Fp-algebra and let M and N be Frobenius

modules over A. Then the canonical map TorA∗ (M,N) → TorA
1/p∞

∗ (M1/p∞
,

N1/p∞
) induces an isomorphism of Frobenius modules

ρ∗ : Tor
A
∗ (M,N)1/p

∞ � TorA
1/p∞

∗ (M1/p∞
, N1/p∞

).

Proof. Let us regard M as fixed. We will show that for every Frobenius
module N and every nonnegative integer k, the map

ρk : TorAk (M,N)1/p
∞ → TorA

1/p∞

k (M1/p∞
, N1/p∞

)

is an isomorphism. The proof proceeds by induction on k. When k = 0,
the desired result is the content of Remark 8.1.4. Assume that k > 0, and
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choose a short exact sequence of Frobenius modules 0 → N ′ → P → N → 0

where P is a free left module over A[F ]. Then P 1/p∞
is a free left mod-

ule over A1/p∞
[F±1], and is therefore also free as an A1/p∞

-module. It fol-

lows that the groups TorAk (M,P ) and TorA
1/p∞

k (M1/p∞
, P 1/p∞

) both van-

ish. Consequently, the map ρk fits into a commutative diagram of exact

sequences

0

��

0

��

TorAk (M,N)1/p
∞ ρk ��

��

TorA
1/p∞

k (M1/p∞
, N1/p∞

)

��

TorAk−1(M,N ′)1/p
∞ ρ′

��

��

TorA
1/p∞

k−1 (M1/p∞
, N ′ 1/p∞

)

��

TorAk−1(M,P )1/p
∞ ρ′′

�� TorA
1/p∞

k−1 (M1/p∞
, P 1/p∞

).

The maps ρ′ and ρ′′ are isomorphisms by our inductive hypothesis, so that

ρk is an isomorphism as well.

Remark 8.2.6 (Compatibility with Extension of Scalars). Let f : A → B

be a homomorphism of Fp-algebras. Then the extension of scalars functor

f∗
Fr : ModFrA → ModFrB

is right exact, having left derived functors N �→ TorA∗ (B,N). Let M be a

Frobenius module over B. Then we can regard the functors {TorAk (M, •)}k≥0

the left derived functor of the construction N �→ M ⊗B (f∗
FrN). Since the

functor f∗
Fr : ModFrA → ModFrB carries projective objects to projective objects,

we have a Grothendieck spectral sequence (in the abelian category ModFrA )

TorBs (M,TorAt (B,N)) ⇒ TorAs+t(M,N).

IfM and N are perfect, then we can apply the same reasoning to the induced

map A1/p∞ → B1/p∞
to obtain a Grothendieck spectral sequence

TorB
1/p∞

s (M,TorA
1/p∞

t (B1/p∞
, N)) ⇒ TorA

1/p∞

s+t (M,N).
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8.3. Tensor Products of Holonomic Modules

Our next goal is to prove the following variant of Theorem 3.5.1:

Theorem 8.3.1. Let A be an Fp-algebra and let M and N be algebraic
Frobenius modules over A. Then:

(1) The tensor product M ⊗A1/p∞ N is algebraic.

(2) The Tor-groups TorA
1/p∞

∗ (M,N) vanish for ∗ > 0.
(3) If M and N are holonomic, then M ⊗A1/p∞ N is holonomic.

The proof of Theorem 8.3.1 will require some preliminaries.

Lemma 8.3.2. Let A be a Noetherian Fp-algebra, and let M and N be
holonomic Frobenius modules over A. Then:

(1) The Tor-groups TorA
1/p∞

∗ (M,N) are also holonomic Frobenius modules
over A.

(2) Let f : A → B be any homomorphism of commutative rings. Then the
canonical map

f�TorA
1/p∞

∗ (M,N) → TorB
1/p∞

∗ (f�M, f�N)

is an isomorphism.

Proof. Since M and N are holonomic, we can write M = M
1/p∞

0 and N =

N
1/p∞

0 , where M0, N0 ∈ ModFrA are finitely generated as A-modules. The
assumption that A is Noetherian guarantees that the Tor-groups TorAk (M0,
N0) is finitely generated as an A-module. Using the isomorphisms

TorA
1/p∞

k (M
1/p∞

0 , N
1/p∞

0 ) � TorAk (M0, N0)
1/p∞

of Proposition 8.2.5, we con-

clude that each TorA
1/p∞

k (M,N) is holonomic. This proves (1).

We now prove (2). Let f : A → B be a homomorphism of commuta-
tive rings. Let P∗ and Q∗ be resolutions of M and N by projective objects
of ModperfA . Then P∗ and Q∗ are also resolutions of M and N by projec-
tive A1/p∞

-modules. It follows that the homology groups of the complexes
f�P∗ and f�Q∗ can be identified with the groups TorA

1/p∞

∗ (B1/p∞
,M) and

TorA
1/p∞

∗ (B1/p∞
, N), which vanish for ∗ > 0 by virtue of Theorem 3.5.1. In

other words, we can regard f�P∗ and f�Q∗ as projective resolutions of f�M
and f�N , respectively. It follows that TorB

1/p∞

∗ (f�M, f�N) can be identified
with the homology of the tensor product complex

(f�P∗)⊗B1/p∞ (f�Q∗) � B1/p∞ ⊗A1/p∞ (P∗ ⊗A1/p∞ Q∗).
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We therefore have a convergent spectral sequence

E2
s,t = TorA

1/p∞

s (B1/p∞
,TorA

1/p∞

t (M,N)) ⇒ TorB
1/p∞

s+t (f�M, f�N).

To prove assertion (2), it will suffice to show that the groups E2
s,t vanish for

s > 0, which follows from assertion (1) and Theorem 3.5.1.

Proof of Theorem 8.3.1. Let M and N be algebraic Frobenius modules over

an Fp-algebra A; we wish to prove that the tensor product M ⊗A1/p∞ N is

algebraic and that the Tor-groups TorA
1/p∞

∗ (M,N) vanish for ∗ > 0. Using

Theorem 4.2.9, we can write M as a filtered colimit of holonomic Frobenius

modules and thereby reduce to the case where M is holonomic. Similarly, we

can assume that N is holonomic. Applying Proposition 4.1.3, we can assume

that M = ι�M ′ and N = ι�N ′, where ι : A′ ↪→ A is the inclusion of a finitely

generated subalgebra and M ′, N ′ ∈ ModholA . In this case, Lemma 8.3.2 sup-

plies isomorphisms TorA
1/p∞

∗ (M,N) � ι�TorA
′ 1/p∞

∗ (M ′, N ′). We may there-

fore replace A by A′, and thereby reduce to the case where A is Noetherian.

It now follows from Lemma 8.3.2 that the Tor-groups TorA
1/p∞

s (M,N) are

holonomic for each s ≥ 0; we wish to show that they vanish for s > 0. By

virtue of Proposition 5.3.3, it will suffice to show that f�TorA
1/p∞

s (M,N) � 0

for every homomorphism f : A → κ, where κ is a field. Applying Lemma

8.3.2 again, we can reduce to the case where A = κ, in which case the

vanishing is automatic.

8.4. Compatibility with the Riemann-Hilbert Correspondence

Let A be a commutative Fp-algebra and let Sol : ModperfA → Shvét(Spec(A),

Fp) be the solution sheaf functor (Construction 9.3.1), given by the formula

Sol(M)(B) = {x ∈ (B ⊗A M) : ϕB⊗AM (x) = x}.

Note that if x ∈ Sol(M)(B) and y ∈ Sol(N)(B), then the tensor x⊗y can be

regarded as an element of Sol(M⊗A1/p∞ N)(B). This observation determines

a bilinear map

Sol(M)(B)× Sol(N)(B) → Sol(M ⊗A1/p∞ N)(B)

which depends functorially on B, and therefore gives rise to a map of sheaves

Sol(M)⊗Fp
Sol(N) → Sol(M ⊗A1/p∞ N).
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Theorem 8.4.1. Let A be a commutative Fp-algebra and suppose that M
and N are algebraic A-modules. Then the comparison map

θ : Sol(M)⊗Fp
Sol(N) → Sol(M ⊗A1/p∞ N)

is an isomorphism in the category Shvét(Spec(A),Fp).

Proof. It will suffice to show that for every algebraically closed field κ and
every homomorphism f : A → κ, the pullback f∗(θ) is an isomorphism in
Shvétκ . Since M , N , and M ⊗A1/p∞ N are algebraic (Theorem 8.3.1), we can
identify f∗(θ) with the tautological map

Sol(f�M)⊗Fp
Sol(f�N) → Sol(f�M ⊗κ f

�N).

We may therefore replace A by κ and thereby reduce to the case where A is
an algebraically closed field. In this case, Theorem 2.4.3 implies that ModalgA

is equivalent to the category of vector spaces over Fp. Consequently, the
Frobenius modules M and N can be decomposed as a direct sum of copies
of A1/p∞

= κ, and the desired result is obvious.

Corollary 8.4.2. Let A be a commutative Fp-algebra. Then the Riemann-

Hilbert functor RH : Shvét(Spec(A),Fp) → ModperfA admits the structure
of a symmetric monoidal functor (where the symmetric monoidal structure
on Shvét(Spec(A),Fp) is given by the usual tensor product of sheaves, and

the symmetric monoidal structure on ModperfA is given by the tensor product
⊗A1/p∞ of Remark 8.1.5).

Proof. It follows from Theorem 8.4.1 that the lax symmetric monoidal func-
tor Sol : ModperfA → Shvét(Spec(A),Fp) is symmetric monoidal when re-

stricted to ModalgA . Combining this observation with Theorem 2.4.3, we see
that the functor Sol |Modalg

A
is an equivalence of symmetric monoidal cate-

gories. We conclude by observing that the functor RH can be obtained by
composing an inverse of Sol |Modalg

A
with the inclusion functor ModalgA ↪→

ModperfA .

9. The pn-Torsion Case

Let R be a commutative Fp-algebra. Theorem 1.0.2 supplies a fully faithful
embedding from the category Shvét(Spec(R),Fp) p-torsion étale sheaves on
Spec(R) to the category of Frobenius modules over R. Our goal in this sec-
tion is to prove a generalization of Theorem 1.0.2, which gives an analogous
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realization for the category Shvét(Spec(R),Z/pnZ) of Z/pnZ-torsion étale

sheaves, for any nonnegative integer n. Our first step will be to introduce an

analogous enlargement of the category ModFrR of Frobenius module over R.

In §9.1, we define a notion of Frobenius module over Wn(R), where Wn(R)

is the ring of length n Witt vectors over R (Definition 9.1.1). The collection

of such Frobenius modules can be organized into a category ModFrWn(R). In

§9.2, we study the dependence of this category on the Fp-algebra R (empha-

sizing in particular the effect of replacing R by its perfection R1/p∞
, which

makes Witt vectors much more pleasant to work with). In §9.3, we introduce
a solution functor

Sol : ModFrWn(R) → Shvét(Spec(R),Z/pnZ)

connecting Frobenius modules overWn(R) to pn-torsion étale sheaves (which

reduces to Construction 2.3.1 in the case n = 1). Like its p-torsion coun-

terpart, this solution functor is not exact. However, we show in §9.4 that it

is almost exact when restricted to perfect Frobenius modules, in the sense

that it has only one nonvanishing derived functor (Proposition 9.4.1). We

apply this result in §9.6 to show that the functor Sol restricts to an equiv-

alence of categories ModalgWn(R) � Shvét(Spec(R),Z/pnZ) (Theorem 9.6.1).

Here ModalgWn(R) denotes the full subcategory of ModFrWn(R) spanned by the

algebraic Frobenius modules over Wn(R), which we introduce in §9.5 (Defi-

nition 9.5.2).

9.1. Frobenius Modules over the Witt Vectors

We begin by extending some of the notions introduced in §3. Let R be a

commutative Fp-algebra. For every nonnegative integer n, we let Wn(R)

denote the ring of length n Witt vectors of R. The Frobenius map ϕR : R →
R induces a ring homomorphism F : Wn(R) → Wn(R), which we will refer

to as the Witt vector Frobenius.

Definition 9.1.1. Let R be a commutative Fp-algebra and let n ≥ 0 be an

integer. A Frobenius module over Wn(R) is an Wn(R)-module M equipped

with an additive map ϕM : M → M satisfying the identity ϕM (λx) =

F (λ)ϕM (x) for x ∈ M , λ ∈ Wn(R). We will say that a Frobenius module

M is perfect if the map ϕM : M → M is an isomorphism of abelian groups.

Let (M,ϕM ) and (N,ϕN ) be Frobenius modules over Wn(R). A mor-

phism of Frobenius modules from (M,ϕM ) to (N,ϕN ) is an Wn(R)-module
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homomorphism ρ : M → N for which the diagram

M
ρ ��

ϕM

��

N

ϕN

��
M

ρ �� M ′

commutes. We let ModFrWn(R) denote the category whose objects are Frobe-

nius modules (M,ϕM ) over Wn(R), and whose morphisms are morphisms

of Frobenius modules. We let ModperfWn(R) denote the full subcategory of

ModFrWn(R) spanned by the perfect Frobenius modules over Wn(R).

Remark 9.1.2. In the special case n = 1, Definition 9.1.1 reduces to Def-
initions 2.1.1 and 3.2.1. In particular, we have an equivalence of categories
ModFrW1(R) � ModFrR , which restricts to an equivalence ModperfW1(R) � ModperfR .

Remark 9.1.3. Let R be a commutative ring in which p = 0 and let n ≥ 0.
Then ModFrWn(R) can be identified with the category of left modules over the

noncommutative ring Wn(R)[F ] whose elements are finite sums
∑

i≥0 ciF
i,

where each coefficient ci belongs to Wn(R), with multiplication given by

(
∑
i≥0

ciF
i)(

∑
j≥0

c′jF
j) =

∑
k≥0

(
∑

i+j=k

ciF
i(cj))F

k.

In particular, ModFrWn(R) is an abelian category with enough projective ob-
jects and enough injective objects.

Remark 9.1.4. In the situation of Definition 9.1.1, the full subcategory

ModperfWn(R) ⊆ ModFrWn(R)

is closed under limits, colimits, and extensions. In particular, ModperfWn(R) is

an abelian category, and the inclusion functor ModperfWn(R) ↪→ ModFrWn(R) is
exact.

Remark 9.1.5. For each n > 0, we can identify ModFrWn−1(R) with the full

subcategory of ModFrWn(R) spanned by those objects (M,ϕM ) where M is

annihilated by the kernel of the restriction map Wn(R) → Wn−1(R). We
therefore obtain (exact) fully faithful embeddings

ModFrR � ModFrW1(R) ↪→ ModFrW2(R) ↪→ ModFrW3(R) ↪→ · · ·
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Similarly, we have fully faithful embeddings

ModperfR � ModperfW1(R) ↪→ ModperfW2(R) ↪→ ModperfW3(R) ↪→ · · ·

Remark 9.1.6. In the situation of Definition 9.1.1, the inclusion
ModperfWn(R) ↪→ ModFrWn(R) admits a left adjoint. Concretely, this left adjoint

carries a Frobenius module M to the direct limit of the sequence

M
ϕM−−→ MF−1 ϕM−−→ MF−2 → · · · ;

here MF−k

denotes the Wn(R)-module obtained from M by restriction of
scalars along the ring homomorphism F k : Wn(R) → Wn(R). We will denote
this direct limit by M1/p∞

and refer to it as the perfection of M . Note that
when n = 1, this agrees with the construction of Notation 3.2.3.

Example 9.1.7. Let R be a commutative Fp-algebra. For each n ≥ 0, we
can regardM = Wn(R) as a Frobenius module over itself by taking ϕM to be
the Witt vector Frobenius map F : Wn(R) → Wn(R). Then the perfection
M1/p∞

can be identified with Wn(R
1/p∞

).

9.2. Functoriality

If f : A → B is a homomorphism of Fp-algebras, then there is an evident
forgetful functor ModFrWn(B) → ModFrWn(A). This functor admits a left adjoint

f∗
Fr : ModFrWn(A) → ModFrWn(B), given by extension of scalars along the ev-

ident ring homomorphism Wn(A)[F ] → Wn(B)[F ]. Since the natural map
Wn(B)⊗Wn(A)Wn(A)[F ] → Wn(B)[F ] is an isomorphism, we have canonical
isomorphisms f∗

FrM � Wn(B)⊗Wn(A)M in the category of Wn(B)-modules.

Remark 9.2.1. Let f : A → B be a homomorphism of commutative Fp-
algebras and let M be a Frobenius module over Wn(B). Then M is perfect
as a Frobenius module over Wn(B) if and only if it is perfect when regarded
as a Frobenius module over Wn(A). Moreover, the perfection M1/p∞

does
not depend on whether we regard M as a Frobenius module over Wn(B) or
over Wn(A). It follows that the diagram of forgetful functors

ModperfWn(B)
��

��

ModFrWn(B)

��
ModperfWn(A)

�� ModFrWn(A)

commutes (up to canonical isomorphism).
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The following result is a formal consequence of Remark 9.2.1:

Proposition 9.2.2. Let f : A → B be a homomorphism of commutative

Fp-algebras. Then the forgetful functor ModperfWn(B) → ModperfWn(A) admits a

left adjoint f�. Moreover, the diagram of categories

ModFrWn(A)

(−)1/p
∞

��

f∗
Fr

��

ModperfWn(A)

f�

��

ModFrWn(B)

(−)1/p
∞

�� ModperfWn(B)

commutes up to canonical isomorphism. More precisely, for every object

M ∈ ModFrA , the canonical map f�(M1/p∞
) → (f∗

FrM)1/p
∞
is an equivalence.

Proposition 9.2.3. Let R be a commutative Fp-algebra. For each n ≥ 0, the

restriction of scalars functor Modperf
Wn(R1/p∞ )

→ ModperfWn(R) is an equivalence

of categories.

Proof. Let f : R → R1/p∞
be the tautological map. Since the restriction of

scalars functor is evidently conservative, it suffices to observe that for each

object M ∈ ModperfWn(R), the unit map

M → f�(M) = (Wn(R
1/p∞

)⊗Wn(R) M)1/p
∞

is an isomorphism of (perfect) Frobenius modules over Wn(R).

Corollary 9.2.4. Let R be an Fp-algebra and let 0 ≤ m ≤ n. Then the

essential image of the tautological map ModperfWm(R) ↪→ ModperfWn(R) consists of

those perfect Frobenius modules over Wn(R) which are annihilated by pm.

Proof. By virtue of Proposition 9.2.3, we can assume without loss of gener-

ality that R is perfect. In this case, the desired result follows from Remark

9.1.5, since the kernel of the restriction map Wn(R) → Wm(R) is the prin-

cipal ideal (pm).

Proposition 9.2.5. Let f : A → B be a homomorphism of perfect Fp-

algebras. Then the extension of scalars functor f∗
Fr : ModFrWn(A) → ModFrWn(B)

carries perfect Frobenius modules over Wn(A) to perfect Frobenius modules

over Wn(B).
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Proof. Let M be a perfect Frobenius module over A. Then the maps

FB : Wn(B) → Wn(B) FA : Wn(A) → Wn(A) ϕM : M → M

are isomorphisms, so the induced map

ϕf∗
FrM : Wn(B)⊗Wn(A) M → Wn(B)⊗Wn(A) M

is also an isomorphism.

Corollary 9.2.6. Let f : A → B be an étale morphism of Fp-algebras.
Then the extension of scalars functor f∗

Fr : ModFrWn(A) → ModFrWn(B) carries

ModperfWn(A) into ModperfWn(B).

Proof. Let M be a perfect Frobenius module over A. Then we can also
regard M as a Frobenius module over A1/p∞

. Since f is étale, the diagram
of commutative rings

Wn(A) ��

��

Wn(B)

��
Wn(A

1/p∞
) �� Wn(B

1/p∞
)

is a pushout square by the result [16, 2.4] of van der Kallen. It follows that
we can identify f∗

FrM with the tensor product Wn(B
1/p∞

) ⊗Wn(A1/p∞ ) M ,
which is perfect by Proposition 9.2.5.

9.3. The Solution Functor

We now adapt Construction 2.3.1 to the setting of Frobenius modules over
the Witt vectors.

Construction 9.3.1. Let R be a commutative Fp-algebra and let M be a
Frobenius module over Wn(R). We let Sol(M) denote the functor CAlgétR →
ModZ/pnZ given by the formula

Sol(M)(R′) = {x ∈ (Wn(R
′)⊗Wn(R) M) : ϕWn(R′)⊗Wn(R)M (x) = x}.

We will refer to Sol(M) as the solution sheaf of M .

Remark 9.3.2. In the situation of Construction 9.3.1, suppose that the
action of Wn(R) on M factors through the restriction map Wn(R) → R,
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so that M can be regarded as a Frobenius module over R (if M is perfect,
this is equivalent to the requirement that pM = 0, by virtue of Corollary
9.2.4). Then the functor Sol(M) of Construction 9.3.1 agrees with the functor
Sol(M) of Construction 2.3.1: this follows from the fact that the diagram of
commutative rings

Wn(R) ��

��

Wn(R
′)

��
R �� R′

is a pushout square, for any étale R-algebra R′.

Our first goal is to show that the functor Sol(M) of Construction 9.3.1
is actually a sheaf with respect to the étale topology on Spec(R). To prove
this, it will be convenient to consider the following variant of Example 2.2.5:

Notation 9.3.3. Let R be a commutative Fp-algebra and letM be a module

over Wn(R). We let M̃ ∈ Shvét(Spec(R),Z/pnZ) denote the sheaf given by

the formula M̃(R′) = Wn(R
′)⊗Wn(R) M . Note that, when M is annihilated

by the kernel of the restriction map Wn(R) → R (so that M can be regarded
as an R-module), this agrees with the sheaf of Z/pZ-modules introduced in
Example 2.2.5.

Remark 9.3.4. Let R be a commutative Fp-algebra. Then the construc-
tion R′ �→ Wn(R

′) induces an equivalence from the category of étale R-
algebras to the category of étale Wn(R)-algebras. In particular, the category
of étale sheaves on Spec(R) is equivalent to the category of étale sheaves on
Spec(Wn(R)). If M is a module over Wn(R), then it determines a quasi-
coherent sheaf on Spec(Wn(R)), which corresponds (under the preceding

equivalence) to the functor M̃ : CAlgétR → ModZ/pnZ of Notation 9.3.3. In

particular, the functor M̃ is always a sheaf with respect to the étale topology
on CAlgétR .

Remark 9.3.5. In the situation of Notation 9.3.3, suppose that R is perfect
and that M is flat as a module over Z/pnZ. Then, for each R′ ∈ CAlgétR ,

the abelian group M̃(R′) is also flat as a Z/pnZ-module. In particular, the

sheaf M̃ is flat over Z/pnZ.

If M is a Frobenius module over Wn(R), then the Frobenius map ϕM de-

termines an endomorphism of the associated étale sheaf M̃ . By construction,
we have an exact sequence of presheaves

0 → Sol(M) → M̃
id−ϕM−−−−→ M̃.
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It follows that Sol(M) is always a sheaf with respect to the étale topology.
We may therefore regard the construction M �→ Sol(M) as a functor from
the category of Frobenius modules over Wn(R) to the category of pn-torsion
sheaves on Spec(R). We will denote this functor by

Sol : ModFrWn(R) → Shvét(Spec(R),Z/pnZ)

and refer to it as the solution sheaf functor.

Proposition 9.3.6. Let R be a commutative Fp-algebra and let M be an

injective object of the abelian category ModperfWn(R). Then we have a short

exact sequence 0 → Sol(M) → M̃
id−ϕM−−−−→ M̃ → 0 in the category of abelian

presheaves on CAlgétR.

The proof of Proposition 9.3.6 is based on the following:

Lemma 9.3.7. Let R be an Fp-algebra and let M be an injective object of

the abelian category ModperfWn(R). Then M is free when regarded as a module

over Z/pnZ.

Proof. Choose a collection of elements {xi}i∈I of M , whose images form a
basis for M/pM as a vector space over Fp. Then the elements xi determine
a map of Z/pnZ-modules f :

⊕
i∈I Z/p

nZ → M . The map f is surjective by
virtue of Nakayama’s lemma; we will complete the proof by showing that
it is injective. Assume otherwise: then there exists some nonzero element
�c ∈ ker(f), which we can identify with a collection of elements {ci}i∈I of
Z/pnZ (almost all of which vanish). Let us assume that �c has been chosen
so that the ideal (ci)i∈I ⊆ Z/pnZ is as large as possible. Since the elements
xi have images in M/pM which are linearly independent over Fp, we must

have (ci)i∈I �= Z/pnZ. It follows that we can write �c = p�b for some element
�b ∈

⊕
i∈I Z/p

nZ. Then pf(�b) = f(�c) = 0, so there is a unique map of

(perfect) Frobenius modules g : R1/p∞
[F±1] → M satisfying g(1) = f(�b).

Let Wn(R
1/p∞

)[F±1] denote the perfection of the Frobenius module
Wn(R)[F ]. Note that multiplication by pn−1 induces a monomorphism

R1/p∞
[F±1] → Wn(R

1/p∞
)[F±1].

Invoking our assumption that M is injective, we conclude that g factors as a

composition R1/p∞
[F±1]

pn−1

−−−→ Wn(R
1/p∞

)[F±1]
h−→ M . Since f is surjective,

we can write h(1) = f(�a) for some element �a ∈
⊕

i∈I Z/p
nZ. We then have

f(�b− pn−1�a) = f(�b)− pn−1f(�a) = g(1)− pn−1h(1) = 0,
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so that�b−pn−1�a belongs to ker(f). However, the ideal generated by the coef-
ficients of �b−pn−1�a is strictly larger than the ideal (ci)i∈I , which contradicts
our choice of �c.

Proof of Proposition 9.3.6. Let M be an injective object of the abelian cat-
egory ModperfWn(R); we wish to show that the map

id−ϕM : M̃ → M̃

is a epimorphism of Z/pnZ-valued presheaves. We proceed by induction on
n. The case n = 0 is vacuous and the case n = 1 follows from Lemma 7.1.2,
so we may assume that n ≥ 2. For each k ≥ 0, let M [pk] denote the kernel
of the map pk : M → M . Write n = i + j, for some positive integers i and
j. Since M is injective, Lemma 9.3.7 implies that we have a short exact
sequence of (perfect) Frobenius modules

0 → M [pi] → M
pi

−→ M [pj ] → 0.

Applying the construction N �→ Ñ , we obtain a commutative diagram of
short exact sequences

0 �� M̃ [pi] ��

id−ϕM[pi]

��

M̃

id−ϕM

��

pi

�� M̃ [pj ]

id−ϕM[pj ]

��

�� 0

0 �� M̃ [pi] �� M̃
pi

�� M̃ [pj ] �� 0

in the category of presheaves of abelian groups on CAlgétR . Since M is an

injective object of ModperfWn(R), the submodules M [pi] and M [pj ] are injective

objects of ModperfWi(R) and ModperfWj(R), respectively (this follows from Corollary

9.2.4, since the inclusion functors ModperfWi(R) ↪→ ModperfWn(R) ←↩ ModperfWj(R) are

exact). Applying our inductive hypothesis, we deduce that the outer vertical
maps in the preceding diagram are epimorphisms, so that the middle vertical
map is also an epimorphism (by the snake lemma).

9.4. Derived Solution Functors

For every commutative Fp-algebra R and every integer n ≥ 0, the solution

functor Sol : ModperfWn(R) → Shvét(Spec(R),Z/pnZ) is left exact, and therefore
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admits right derived functors

Solm : ModperfWn(R) → Shvét(Spec(R),Z/pnZ)

for m ≥ 0. These functors are described by the following generalization of

Proposition 7.1.1:

Proposition 9.4.1. Let R be a commutative Fp-algebra and let M be a

perfect Frobenius module over Wn(R). Then we have a canonical short exact

sequence

0 → Sol0(M) → M̃
id−ϕM−−−−→ M̃ → Sol1(M) → 0,

and the sheaves Solm(M) vanish for m ≥ 2.

Proof. Choose an injective resolution 0 → M → Q0 → Q1 → · · · in the

abelian category ModperfWn(R). Using Proposition 9.3.6, we obtain a short exact

sequence of cochain complexes

0 → Sol(Q∗) → Q̃∗ id−ϕ−−−→ Q̃∗ → 0.

Since the construction N �→ Ñ is exact, the chain complex Q̃∗ is an acyclic

resolution of M̃ . The associated long exact sequence now supplies the desired

isomorphisms.

Remark 9.4.2. Let R be a commutative Fp-algebra and let M be a perfect

Frobenius module over Wn(R). Then M can also be regarded as a perfect

Frobenius module over Wm(R) for m ≥ n. The étale sheaf Soli(M) depends

a priori on whether we choose to regard M as an object of the abelian cate-

gory ModperfWn(R) (in which case Soli(M) is defined as sheaf of Z/pnZ-modules

on Spec(R)), or as an object of the larger abelian category ModperfWm(R) (in

which case Soli(M) is defined as a sheaf of Z/pmZ-modules on Spec(R)).

However, Proposition 9.4.1 shows that the resulting étale sheaves are canon-

ically isomorphic.

We will also need a generalization of Corollary 6.4.2:

Proposition 9.4.3. Let R be a commutative Fp-algebra and let Q be an

injective object of ModperfWn(R). Then Sol(Q) is an injective object of

Shvét(Spec(R),Z/pnZ).

The proof of Proposition 9.4.3 will require the following:
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Lemma 9.4.4. Let R be a commutative Fp-algebra, let M be a Wn(R)-
module which is flat over Z/pnZ, and let F ∈ Shvét(Spec(R),Fp). Then the
canonical map

Ext1Fp
(F , M̃ [p]) → Ext1Z/pnZ(F , M̃)

is bijective.

Proof. Suppose we are given an extension 0 → M̃ → G → F → 0 in the
abelian category Shvét(Spec(R),Z/pnZ). We wish to show that there exists
a commutative diagram of short exact sequences

0 �� M̃ [p] ��

��

G ′

��

�� F ��

id

��

0

0 �� M̃ �� G �� F �� 0,

where G ′ is annihilated by p, and that the extension class of the upper exact
sequence is uniquely determined. The uniqueness is clear: note that if such a
diagram exists, then it induces an isomorphism G ′ � G [p] = ker(p : G → G ).
To prove existence, it will suffice to show that the composite map G [p] →
G → F is an epimorphism. To prove this, we note that the commutative
diagram

0 �� G [p] ��

��

G ��

��

pG ��

��

0

0 �� F
id �� F �� 0 �� 0

yields a long exact sequence

M̃ → G /G [p] → coker(G [p] → F ) → coker(G → F ),

where the last term vanishes (since the map G → F is an epimorphism).

We are therefore reduced to showing that the canonical map M̃ → G /G [p]
is an epimorphism. Since F is annihilated by p, the map p : G → G induces
a monomorphism v : G /G [p] → M̃ . It will therefore suffice to show that the

image of v is contained in the image of the map p : M̃ → M̃ . This follows
from Remark 9.3.5, since im(v) is annihilated by pn−1.

Proof of Proposition 9.4.3. Let Q be an injective object of ModperfWn(R). We

wish to show that Sol(Q) is an injective object of Shvét(Spec(R),Z/pnZ):
that is, that the group Ext1Z/pnZ(F , Sol(Q)) vanishes for every sheaf F ∈
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Shvét(Spec(R),Z/pnZ). Since the collection of those objects F for which
the group Ext1Z/pnZ(F , Sol(Q)) vanishes is closed under extensions, we may

assume without loss of generality that F is annihilated by p.
By virtue of Proposition 9.3.6, we have short exact sequences of étale

sheaves

0 → Sol(Q[p]) → Q̃[p]
id−ϕQ[p]−−−−−→ Q̃[p] → 0

0 → Sol(Q) → Q̃
id−ϕQ−−−−→ Q̃ → 0

which supply a commutative diagram of long exact sequences

Ext0Fp
(F , Q̃[p])

id−ϕQ[p]

��

α �� Ext0Z/pnZ(F , Q̃)

id−ϕQ

��

Ext0Fp
(F , Q̃[p])

��

α �� Ext0Z/pnZ(F , Q̃)

��
Ext1Fp

(F , Sol(Q[p]))
β ��

��

Ext1Z/pnZ(F , Sol(Q))

��

Ext1Fp
(F , Q̃[p])

id−ϕQ[p]

��

γ �� Ext1Z/pnZ(F , Q̃)

id−ϕQ

��

Ext1Fp
(F , Q̃[p])

γ �� Ext1Z/pnZ(F , Q̃).

The map α is obviously an isomorphism, and γ is an isomorphism by virtue
of Lemma 9.4.4. It follows that β is also an isomorphism. We are there-
fore reduced to proving that the group Ext1Fp

(F , Sol(Q[p])) vanishes. In

fact, we claim that Sol(Q[p]) is an injective object of the abelian category
Shvét(Spec(R),Fp): this is a special case of Corollary 6.4.2, since Q[p] is an

injective object of the abelian category ModperfR .

9.5. Algebraic Frobenius Modules over Wn(R)

Let R be a commutative Fp-algebra and letM be a perfect Frobenius module
over Wn(R). We let M [p] and M/pM denote the kernel and cokernel of the
map p : M → M . Then M [p] and M/pM are perfect Frobenius modules
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over Wn(R) which are annihilated by p, and can therefore be identified with
perfect Frobenius modules over R (Corollary 9.2.4).

Proposition 9.5.1. Let R be a commutative Fp-algebra and let M be a per-
fect Frobenius module over Wn(R). The following conditions are equivalent:

(1) The quotient M/pM ∈ ModperfR is algebraic, in the sense of Definition
2.4.1.

(2) The submodule M [p] ∈ ModperfR is algebraic, in the sense of Definition
2.4.1.

(3) Every element x ∈ M satisfies an equation of the form

ϕk
M (x) + a1ϕ

k−1
M (x) + · · ·+ akx = 0

for some coefficients ai ∈ Wn(R).

Definition 9.5.2. Let R be a commutative Fp-algebra and let M be a
perfect Frobenius module over Wn(R). We will say that M is algebraic if

it satisfies the equivalent conditions of Proposition 9.5.1. We let ModalgWn(R)

denote the full subcategory of ModperfWn(R) spanned by the algebraic Frobenius

modules over Wn(R).

Remark 9.5.3. In the situation of Definition 9.5.2, an objectM ∈ ModFrWn(R)

is algebraic if and only if it is algebraic when viewed as a Frobenius module
over Wm(R), for any m ≥ n.

Remark 9.5.4. In the situation of Definition 9.5.2, let M be a perfect
Frobenius module over Wn(R) which is annihilated by p. Then M can be
regarded as a perfect Frobenius module over R (Corollary 9.2.4). Moreover,
M is algebraic in the sense of Definition 9.5.2 if and only if it is algebraic in
the sense of Definition 2.4.1.

Proof of Proposition 9.5.1. The implication (3) ⇒ (2) is obvious. We now
show that (2) ⇒ (1). Assume that M is a perfect Frobenius module over
Wn(R) and that the p-torsion submodule M [p] is algebraic (as a perfect
Frobenius module over R). For each integer i ≥ 0, we have a short exact
sequence

0 → (M [p] ∩ piM)/(M [p] ∩ pi+1M) → piM/pi+1M
p−→ pi+1M/pi+2M → 0

Since the collection of algebraic objects of ModperfR is closed under the for-
mation of subobjects and quotient objects (Proposition 4.2.4), condition (2)
guarantees that each (M [p] ∩ piM)/(M [p] ∩ pi+1M) is algebraic. Since the
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collection of algebraic objects of ModperfR is closed under extensions (Propo-
sition 4.2.4), it follows by descending induction on i that each piM/pi+1M
is algebraic. Taking i = 0, we deduce that (1) is satisfied.

We now complete the proof by showing that (1) implies (3). We proceed
by induction on n, the case n = 0 being trivial. Assume that n > 0 and let x
be an element of M having image x ∈ M/pM . Condition (1) guarantees that
we can find an element μ = Fm+a1F

m−1+· · ·+am−1F+am ∈ R[F ] such that
μ(x) = 0. Lift μ to an element μ = Fm + a1F

m−1 + · · · + am ∈ Wn(R)[F ],
so that μ(x) ∈ pM . Note that pM/p2M is a quotient of M/pM , and is
therefore algebraic by virtue of Proposition 4.2.4. The Frobenius module pM
is annihilated by pn−1, and can therefore be regarded as a perfect Frobenius
module over Wn−1(R) by virtue of Corollary 9.2.4. Applying our inductive
hypothesis, we deduce that there exists an expression ν = Fm′

+ b1F
m′−1 +

· · ·+bm′−1F+bm′ ∈ Wn(R)[F ] such that ν(μ(x)) = 0, so that x is annihilated
by νμ ∈ Wn(R)[F ].

We have the following generalization of Proposition 4.2.4:

Proposition 9.5.5. Let R be a commutative Fp-algebra and let n ≥ 0. Then

ModalgWn(R) is a localizing subcategory of ModperfWn(R). That is:

(a) Given a short exact sequence 0 → M ′ → M → M ′′ → 0 of perfect
Frobenius modules over R, M is algebraic if and only if M ′ and M ′′

are algebraic.
(b) The collection of algebraic Frobenius modules over Wn(R) is closed

under (possibly infinite) direct sums.

Proof. We will prove (a); assertion (b) is immediate from the definitions.
Suppose we are given an exact sequence 0 → M ′ → M → M ′′ → 0 of
perfect Frobenius modules over Wn(R). Then we also have an exact se-
quence M ′/pM ′ → M/pM → M ′′/pM ′′ → 0. If M ′/pM ′ is algebraic, then
Proposition 4.2.4 implies that M/pM is algebraic if and only if M ′′/pM ′′ is
algebraic. Using characterization (1) of Proposition 9.5.1, we conclude that
if M ′ is algebraic, then M is algebraic if and only if M ′′ is algebraic. Apply-
ing the same argument to the exact sequence 0 → M ′[p] → M [p] → M ′′[p]
(and using characterization (2) of Proposition 9.5.1), we deduce that if M ′′

is algebraic, then M is algebraic if and only if M ′ is algebraic.

Proposition 9.5.6. Let R be a commutative Fp-algebra, let n ≥ 0, and let
M be an algebraic Frobenius module over Wn(R). Then the étale sheaves
Soli(M) ∈ Shvét(Spec(R),Z/pnZ) vanish for i �= 0.

Proof. We prove the following assertion by induction on m:
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(∗m) Let M be an algebraic Frobenius module over Wn(R) which is annihi-
lated by pm. Then Soli(M) = 0.

Note that assertion (∗0) is trivial, and assertion (∗n) implies Proposition
9.5.6. It will therefore suffice to show that (∗m) implies (∗m+1). Note that if
M is an algebraic Frobenius module which is annihilated by pm+1, then the
short exact sequence 0 → M [p] → M → pM → 0 yields an exact sequence
of sheaves Soli(M [p]) → Soli(M) → Soli(pM). Here pM and M [p] are also
algebraic (Proposition 9.5.5), and pM is annihilated by pm. Our inductive
hypothesis then guarantees that Soli(pM) = 0. To complete the proof, it will
suffice to show that Soli(M [p]) = 0. To prove this, we can replace Wn(R) by
R (Remark 9.4.2), in which case the desired result follows from Corollary
7.4.4.

9.6. The Riemann-Hilbert Correspondence for Z/pnZ-Sheaves

We can now formulate the main result of this section:

Theorem 9.6.1 (Riemann-Hilbert Correspondence). Let R be a commu-

tative Fp-algebra and let n ≥ 0. Then the functor Sol : ModperfWn(R) →
Shvét(Spec(R),Z/pnZ) induces an equivalence of categories ModalgWn(R) →
Shvét(Spec(R),Z/pnZ).

We will deduce Theorem 9.6.1 from the following comparison result:

Proposition 9.6.2. Let R be a commutative Fp-algebra and let M and N
be perfect Frobenius modules over Wn(R). Assume that M is algebraic and
that Sol1(N) � 0. Then the canonical map

ExtiWn(R)[F ](M,N) → ExtiZ/pnZ(Sol(M), Sol(N))

is an isomorphism for i ≥ 0.

Proof of Theorem 9.6.1 from Proposition 9.6.2. We first claim that the com-
posite functor

ModalgWn(R) ↪→ ModperfWn(R)

Sol−−→ Shvét(Spec(R),Z/pnZ)

is fully faithful. Let M and N be algebraic Frobenius modules over Wn(R);
we wish to show that the canonical map

HomWn(R)[F ](M,N) → HomFp
(Sol(M), Sol(N))
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is an isomorphism. This is a special case of Proposition 9.6.2, since Sol1(N) �
0 by virtue of Proposition 9.5.6.

Let C ⊆ Shvét(Spec(R),Z/pnZ) denote the full subcategory spanned by

those sheaves of the form Sol(M), whereM is an algebraic Frobenius module

over Wn(R). To complete the proof of Theorem 9.6.1, it will suffice to show

that every object of Shvét(Spec(R),Z/pnZ) belongs to C. Note that Theorem

2.4.3 guarantees C contains every sheaf of Z/pZ-modules on Spec(R). We

will complete the proof by showing that C is closed under the formation of

extensions. Suppose we are given a short exact sequence of étale sheaves

0 → F ′ → F → F ′′ → 0,

where F ′ and F ′′ belong to C; we wish to show that F also belongs to C.
Without loss of generality, we may assume that F ′ = Sol(M ′) and F ′′ =
Sol(M ′′) for some algebraic Frobenius modules M ′ and M ′′ over Wn(R).

In this case, the preceding exact sequence is classified by an element η ∈
Ext1Z/pnZ(Sol(M

′′), Sol(M ′)). Invoking Proposition 9.6.2 again, we deduce

that η can be lifted (uniquely) to an element η ∈ Ext1Wn(R)[F ](M
′′,M ′),

which classifies a short exact sequence of Frobenius modules 0 → M ′ →
M → M ′′ → 0. Proposition 9.5.5 guarantees that M is algebraic, so that

F � Sol(M) also belongs to the category C.

We now turn to the proof of Proposition 9.6.2. We begin with some

special cases.

Lemma 9.6.3. Let R be an Fp-algebra and let M be an algebraic Frobenius

module over R, and let N be any object of ModperfWn(R). Then the canonical

map

θ : HomWn(R)[F ](M,N) → HomZ/pnZ(Sol(M), Sol(N))

is an isomorphism.

Proof. Since the functor Sol is left exact, we have an isomorphism

Sol(N)[p] � Sol(N [p]). Since M and Sol(M) are annihilated by p, we can

identify θ with the canonical map

HomR[F ](M,N [p]) → HomFp
(Sol(M), Sol(N [p])).

We may therefore replace N by N [p] and thereby reduce to the case n = 1.

Using Theorem 2.4.3, we can choose an isomorphism M � RH(F ) for some
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object F ∈ Shvét(Spec(R),Fp). In this case, we θ has a left inverse, given
by the map

HomFp
(Sol(RH(F )), Sol(N)) → HomFp

(F , Sol(N))

given by precomposition with the unit map u : F → Sol(RH(F )). This map
is an isomorphism by virtue of Proposition 7.2.1.

Lemma 9.6.4. Let R be an Fp-algebra and let M be an algebraic Frobe-
nius module over R. Let N be any perfect Frobenius module over Wn(R). If
Sol1(N) � 0, then the canonical map

ExtiWn(R)[F ](M,N) → ExtiZ/pnZ(Sol(M), Sol(N))

is an isomorphism for i ≥ 0.

Proof. Choose an injective resolution 0 → N → Q0 → Q1 → · · · in the
abelian category ModperfWn(R). Our hypothesis that Sol1(N) vanishes guaran-

tees that the complex 0 → Sol(N) → Sol(Q0) → Sol(Q1) → · · · is exact in
the abelian category Shvét(Spec(R),Z/pnZ) (Proposition 9.4.1). Moreover,
each Sol(Qi) is an injective object of Shvét(Spec(R),Z/pnZ) (Proposition
9.4.3). It will therefore suffice to show that the canonical map

HomWn(R)[F ](M,Q∗) → HomZ/pnZ(Sol(M), Sol(Q∗))

is a quasi-isomorphism of chain complexes. In fact, this map is an isomor-
phism of chain complexes: this is a special case of Lemma 9.6.3.

Proof of Proposition 9.6.2. Let N be a perfect Frobenius module over
Wn(R), and suppose that Sol1(N) � 0. Let us say that an object M ∈
ModalgWn(R) is good if the canonical map

ρi : Ext
i
Wn(R)[F ](M,N) → ExtiZ/pnZ(Sol(M), Sol(N))

is an isomorphism for i ≥ 0. It follows from Lemma 9.6.4 that if M ∈
ModalgWn(R) is annihilated by p, then M is good. We wish to show that every

object of ModalgWn(R) is good. For this, it will suffice to establish the following:

(∗) Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of algebraic
Frobenius modules over Wn(R). If M ′ and M ′′ are good, then M is
also good.
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To prove (∗), we note that the vanishing of Sol1(M ′) (Proposition 9.5.6)
guarantees the exactness of the sequence 0 → Sol(M ′) → Sol(M) →
Sol(M ′′) → 0. It follows that each ρi fits into a commutative diagram of
exact sequences

Exti−1
Wn(R)[F ](M

′, N)
ρ′
i−1 ��

��

Exti−1
Z/pnZ(Sol(M

′), Sol(N))

��
ExtiWn(R)[F ](M

′′, N)
ρ′′
i ��

��

ExtiZ/pnZ(Sol(M
′′), Sol(N))

��
ExtiWn(R)[F ](M,N)

ρi ��

��

ExtiZ/pnZ(Sol(M), Sol(N))

��
ExtiWn(R)[F ](M

′, N)
ρ′
i ��

��

ExtiZ/pnZ(Sol(M
′), Sol(N))

��
Exti+1

Wn(R)[F ](M
′′, N)

ρ′′
i+1 �� Exti+1

Z/pnZ(Sol(M
′′), Sol(N)).

Our hypothesis that M ′ and M ′′ are good guarantees that the maps ρ′i−1,
ρ′′i , ρ

′
i, and ρ′′i+1 are isomorphisms, so that ρi is also an isomorphism.

10. Globalization

For any commutative Fp-algebra R, the Riemann-Hilbert correspondence
of Theorem 1.0.2 supplies a description of the category of p-torsion étale
sheaves on the affine Fp-scheme X = Spec(R) in terms of Frobenius mod-
ules over R. Our goal in this section is to extend the Riemann-Hilbert cor-
respondence to the case of an arbitrary Fp-scheme X. We begin in §10.1 by
introducing the notion of a Frobenius sheaf on X: that is, a quasi-coherent
sheaf E on X equipped with a Frobenius-semilinear endomorphism ϕE (Def-
inition 10.1.2). The collection of Frobenius sheaves on X forms a category,
which we will denote by QCohFrX . In §10.2 we construct an equivalence RH
from the category Shvét(X;Fp) of p-torsion étale sheaves on X to a full sub-

category QCohalgX ⊆ QCohFrX (Theorem 10.2.7 and Notation 10.2.10). This is
essentially a formal exercise (given the earlier results of this paper): roughly
speaking, the Riemann-Hilbert functor RH is constructed by amalgamating
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the equivalences Shvét(U ;Fp) � QCohalgU where U ranges over affine open
subsets of X. Consequently, any local question about the functor RH can
be reduced to the affine case: we use this observation in §10.3 to argue that
the Riemann-Hilbert correspondence is compatible with the formation of
pullbacks along an arbitrary morphism of Fp-schemes f : X → Y (Vari-
ant 10.3.12). However, we do encounter a genuinely new global phenomenon:
the Riemann-Hilbert correspondence is also compatible with direct images
(and higher direct images) along a morphism f : X → Y which is proper
and of finite presentation (Theorem 10.5.5). We prove this in §10.5 using a
global characterization for holonomic Frobenius sheaves (Theorem 10.4.1),
which we establish in §10.4. In §10.6, we apply these ideas to give a proof of
the proper base change theorem in étale cohomology (in the special case of
p-torsion sheaves on Fp-schemes; see Corollary 10.6.2).

Remark 10.0.1. Throughout this section, we confine our study of Frobe-
nius sheaves on X to the case where X is an Fp-scheme. However, the results
of this section can be extended to more general geometric objects, such as
algebraic spaces over Fp. Similarly, the results can also be extended to have
“coefficients in Z/pn” in the sense of §9. We leave such extensions to the
reader.

10.1. Frobenius Sheaves on a Scheme

We begin by introducing some terminology.

Notation 10.1.1. For any scheme X, we let QCohX denote the category
of quasi-coherent sheaves on X. If X is an Fp-scheme, we let ϕX : X → X
denote the absolute Frobenius morphism from X to itself.

Definition 10.1.2. Let X be an Fp-scheme. A Frobenius sheaf on X is a
pair (E , ϕE), where E is a quasi-coherent sheaf on X and ϕE : E → ϕX∗ E is
a morphism of quasi-coherent sheaves. If (E , ϕE) and (F , ϕF ) are Frobenius
sheaves on X, then we will say that a OX -module map f : E → F is a
morphism of Frobenius sheaves if the diagram

E f ��

ϕE

��

F
ϕF

��
ϕX∗ E

ϕX∗(f)�� ϕX∗F

commutes. We let QCohFrX denote the category whose objects are Frobenius
sheaves on X and whose morphisms are morphisms of Frobenius sheaves.
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We will generally abuse terminology by identifying a Frobenius sheaf
(E , ϕE) with its underlying quasi-coherent sheaf E , and simply referring to
E as a Frobenius sheaf on X.

Example 10.1.3. Let X = Spec(R) be an affine Fp-scheme. Then the
global sections functor E �→ Γ(X, E) induces an equivalence of categories
QCohFrX → ModFrR .

Remark 10.1.4. Let X be an Fp-scheme. Then the category QCohFrX is
abelian. Moreover, the forgetful functor QCohFrX → QCohX is exact.

Variant 10.1.5. Let X be an Fp-scheme. Using the adjointness of the func-
tors ϕX∗ and ϕ∗

X , we can obtain a slightly different description of the cate-
gory QCohFrX of Frobenius sheaves:

• The objects of QCohFrX can be identified with pairs (E , ψE), where E
is a quasi-coherent sheaf on X and ψE : ϕ∗

X E → E is a morphism of
quasi-coherent sheaves.

• A morphism from (E , ψE) to (F , ψF ) in the category QCohFrX is a mor-
phism of quasi-coherent sheaves f : E → F for which the diagram

ϕ∗
X E ϕ∗

X(f) ��

ψE
��

ϕ∗
X F

ψF
��

E f �� F

commutes.

In what follows, we will regard quasi-coherent sheaves on a scheme X as
sheaves on the étale site of X (see Example 2.2.5). Given a quasi-coherent
sheaf E ∈ QCohX and an étale morphism f : U → X, we let E(U) denote
the abelian group of global sections Γ(U, f∗ E). Note that if U = Spec(R) is
affine, then E(U) has the structure of an R-module; if X is an Fp-scheme
and E is a Frobenius sheaf, then E(U) inherits the structure of a Frobenius
module over R.

Proposition 10.1.6. Let X be an Fp-scheme and let E be a Frobenius sheaf
on X. The following conditions are equivalent:

(1) For every étale morphism f : U → X where U � Spec(R) is affine,
the group of sections E(U) is perfect (respectively algebraic, holonomic)
when regarded as a Frobenius module over R.

(2) For every open subset U ⊆ X where U � Spec(R) is affine, the group of
sections E is perfect (respectively algebraic, holonomic) when regarded
as a Frobenius module over R.
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(3) There exists an étale covering {Uα → X} where each Uα � Spec(Rα)

is affine, and each E(Uα) is perfect (respectively algebraic, holonomic)

when regarded as a Frobenius module over Rα.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious. The implication (3) ⇒
(1) follows from Corollary 3.4.7 (respectively Lemma 5.4.6, Corollary 7.4.3).

Definition 10.1.7. Let X be an Fp-scheme and let E be a Frobenius sheaf

on X. We will say that E is perfect (respectively algebraic, holonomic) if it

satisfies the equivalent conditions of Proposition 10.1.6. We let QCohperfX (re-

spectively QCohalgX , QCohholX ) denote the full subcategory of QCohFrX spanned

by those Frobenius sheaves which are perfect (respectively algebraic, holo-

nomic), so that we have inclusions

QCohholX ⊆ QCohalgX ⊆ QCohperfX ⊆ QCohFrX .

Example 10.1.8. Let X = Spec(R) be an affine Fp-scheme. Then a Frobe-

nius sheaf E ∈ QCohFrX is perfect (respectively algebraic, holonomic) if and

only if Γ(X, E) is perfect (respectively algebraic, holonomic) when regarded

as a Frobenius module over R.

Remark 10.1.9. Let X be an Fp-scheme. Then the subcategories

QCohholX ⊆ QCohalgX ⊆ QCohperfX ⊆ QCohFrX

are closed under the formation of kernels, cokernels, and extensions. In par-

ticular, they are abelian subcategories of QCohFrX . Moreover, the subcate-

gories QCohalgX ⊆ QCohperfX ⊆ QCohX are closed under (possibly infinite)

direct sums (and therefore under all colimits). To prove these assertions, we

can work locally and thereby reduce to the case where X is affine: in this

case, the desired results follow from Remark 3.2.2, Proposition 4.2.4, and

Corollary 4.3.3.

Remark 10.1.10 (Descent). Let X be an Fp-scheme. Then the theory of

Frobenius sheaves satisfies effective descent with respect to the étale topol-

ogy on X, and is therefore determined (in some sense) by its behavior when

X is affine. In other words, the construction (U → X) �→ QCohFrU determines

a stack on the étale site of X. The same remark applies to the subcategories

QCohholU , QCohalgU , and QCohperfU (by virtue of Proposition 10.1.6).
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Remark 10.1.11 (Perfection). Let X be an Fp-scheme and let E be a

Frobenius sheaf on X. We let E1/p∞
denote the direct limit of the diagram

E ϕE−→ ϕX∗ E
ϕX∗(ϕE)−−−−−→ ϕ2

X∗ E → · · ·

Then we have a canonical isomorphism E1/p∞ � ϕX∗ E1/p∞
which endows

E1/p∞
with the structure of a perfect Frobenius sheaf on X. Moreover, the

canonical map u : E → E1/p∞
is a morphism of Frobenius sheaves with

the following universal property: for any perfect Frobenius sheaf F on X,
composition with u induces a bijection

HomQCohperf
X

(E1/p∞
,F) → HomQCohFr

X
(E ,F).

In other words, we can regard the construction E �→ E1/p∞
as a left adjoint to

the inclusion functor QCohperfX ⊆ QCohFrX . Note that the perfection functor

E �→ E1/p∞
is exact (since filtered direct limits in QCohX are exact; see [15,

Tag 077K]).

10.2. The Riemann-Hilbert Correspondence

We now extend the Riemann-Hilbert correspondence of Theorem 1.0.2 to
the case of a general Fp-scheme.

Notation 10.2.1. For any schemeX, we let Shvét(X,Fp) denote the abelian
category of p-torsion sheaves on the étale site of X. If X is an Fp-scheme,
then we have a forgetful functor QCohX → Shvét(X,Fp) which carries a
sheaf of OX -modules to its underlying sheaf of Fp-modules. We will gener-
ally abuse notation by not distinguishing between a quasi-coherent sheaf E
and its image under this functor. Moreover, we will also abuse notation by
identify E with its direct image ϕX∗ E under the absolute Frobenius map
ϕX : X → X: note that there is a canonical isomorphism E � ϕX∗ E in the
category Shvét(X,Fp), though this isomorphism is not OX -linear.

Construction 10.2.2 (The Solution Functor). Let X be an Fp-scheme and
let (E , ϕE) be a Frobenius sheaf on X. We let Sol(E) denote the kernel of
the map (id−ϕE) : E → E , formed in the abelian category Shvét(X,Fp).
The construction (E , ϕE) �→ Sol(E) determines a functor Sol : QCohFrX →
Shvét(X,Fp), which we will refer to as the solution functor.

Remark 10.2.3. In the special case where X = Spec(R) is affine, the
solution functor of Construction 10.2.2 agrees with the solution functor of
Construction 2.3.1. More precisely, for any Frobenius sheaf E onX, we have a
canonical isomorphism Sol(E) � Sol(Γ(X, E)) in the category Shvét(X,Fp).
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Remark 10.2.4. Construction 10.2.2 is local with respect to the étale topol-
ogy. More precisely, if f : U → X is an étale morphism of Fp-schemes, then
we have a canonical isomorphism f∗ Sol(E) � Sol(f∗ E) for every Frobenius
sheaf E on X.

Remark 10.2.5. Let X be an Fp-scheme and let E be a Frobenius sheaf

on X. Then the canonical map E → E1/p∞
induces an isomorphism of étale

sheaves Sol(E) → Sol(E1/p∞
). To prove this, we can reduce to the case where

X is affine, in which case the desired result follows from Proposition 3.2.9.

Remark 10.2.6. Let X be an Fp-scheme and let E be an algebraic Frobe-
nius sheaf on X. Then the sequence

0 → Sol(E) → E id−ϕE−−−−→ E → 0

is exact (in the abelian category Shvét(X,Fp)). To prove this, we can work
locally on X and thereby reduce to the case where X is affine, in which case
the desired result follows from Propositions 7.1.1 and 7.2.1.

Theorem 10.2.7. Let X be an Fp-scheme. Then the solution functor Sol
induces equivalences of abelian categories

QCohalgX � Shvét(X,Fp) QCohholX → Shvcét(X,Fp).

Here Shvcét(X,Fp) denotes the full subcategory of Shvét(X,Fp) spanned by
those p-torsion étale sheaves F which are locally constructible (that is, for
which the restriction F |U ∈ Shvét(U,Fp) is constructible for each affine
open subset U ⊆ X).

Remark 10.2.8. If the scheme X is quasi-compact and quasi-separated,
then a sheaf F ∈ Shvét(X,Fp) belongs to the subcategory Shvcét(X,Fp)
if and only if it is constructible: that is, if and only if it becomes locally
constant along some constructible stratification of X.

Proof of Theorem 10.2.7. Since the constructions

(U ⊆ X) �→ QCohholU ,QCohalgU , Shvét(U,Fp), Shv
c
ét(U,Fp)

satisfy effective descent with respect to the Zariski topology (or even the
étale topology), we can reduce to the case where X = Spec(R) is affine. In
this case, the desired equivalences follow from Theorems 1.0.2 and 7.4.1.

Corollary 10.2.9. Let X be an Fp-scheme which is quasi-compact and

quasi-separated. Then the inclusion functor QCohholX ↪→ QCohalgX extends to

an equivalence of categories Ind(QCohholX ) � QCohalgX .
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Proof. By virtue of Theorem 10.2.7, it will suffice to show that the in-
clusion functor Shvcét(X,Fp) ↪→ Shvét(X,Fp) extends to an equivalence
Ind(Shvcét(X,Fp)) � Shvét(X,Fp), which follows from [15, Tag 03SA].

Notation 10.2.10. Let X be an Fp-scheme. We let RH : Shvét(X,Fp) →
QCohalgX denote an inverse of the solution functor. We will refer to RH as
the Riemann-Hilbert functor.

Remark 10.2.11. Let X be an Fp-scheme and let F ∈ Shvét(X,Fp) be a
p-torsion étale sheaf onX. Then the Frobenius sheaf RH(F ) is characterized
by the following universal property: for every perfect Frobenius sheaf E on
X, the canonical map

HomQCohperf
X

(RH(F ), E) → HomFp
(Sol(RH(F )), Sol(E))

� HomFp
(F , Sol(E))

is a bijection. To prove this, we can reduce to the case where X is affine,
in which case the desired result follows from the properties of the Riemann-
Hilbert functor given in Theorem 6.1.1.

We can summarize the situation as follows: when regarded as a functor
from Shvét(X,Fp) to QCohperfX , the Riemann-Hilbert functor of Notation

10.2.10 is left adjoint to the solution functor Sol : QCohperfX → Shvét(X,Fp).

10.3. Functoriality

We now consider the behavior of Frobenius sheaves as the Fp-scheme X
varies.

Construction 10.3.1 (Pullback of Frobenius Sheaves). Let f : X → Y
be a morphism of Fp-schemes, so that we have a commutative diagram of
schemes

X
f ��

ϕX

��

Y

ϕY

��
X

f �� Y

and therefore a canonical isomorphism f∗ ◦ϕ∗
Y � ϕ∗

X ◦ f∗ in the category of
functors from QCohY to QCohX .

Let E be a Frobenius sheaf on Y , and let ψE : ϕ∗
Y E → E be as in Variant

10.1.5. We let ψf∗ E denote the composite map

ϕ∗
Xf∗ E � f∗ϕ∗

Y E f∗ψE−−−→ f∗ E .
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The construction (E , ψE) �→ (f∗ E , ψf∗ E) determines a functor QCohFrY →
QCohFrX . We will denote this functor also by f∗, and refer to it as the functor
of pullback along f .

Remark 10.3.2. In the special case where X and Y are affine, the pullback
functor of Construction 10.3.1 agrees with the extension of scalars functor
of Construction 2.1.6.

Under some mild assumptions, the pullback functor f∗ of Construction
10.3.1 admits a right adjoint:

Proposition 10.3.3. Let f : X → Y be a morphism of schemes which is
quasi-compact and quasi-separated. Then the pullback functor f∗ : QCohFrY →
QCohFrX admits a right adjoint f∗ : QCohFrX → QCohFrY . Moreover, the func-
tor f∗ is compatible with the usual direct image functor on quasi-coherent
sheaves: that is, the diagram

QCohFrX
f∗ ��

��

QCohFrY

��
QCohX

f∗ �� QCohY

commutes up to canonical isomorphism.

Proof. The assumption that f is quasi-compact and quasi-separated guaran-
tees that the pullback functor f∗ : QCohY → QCohX admits a right adjoint
f∗ : QCohX → QCohY . If E is a Frobenius sheaf on X, we can equip the
direct image f∗ E with the structure of a Frobenius sheaf on Y by defining
ϕf∗ E to be the composition

f∗ E
f∗ϕE−−−→ f∗ϕX∗ E � ϕY ∗f∗ E .

We leave it to the reader to verify that the construction (E , ϕE) �→ (f∗ E , ϕf∗ E)
determines a functor from QCohFrX to QCohFrY which is right adjoint to the
pullback functor of Construction 10.3.1.

Remark 10.3.4. In the situation of Proposition 10.3.3, if E ∈ QCohFrX has
the property that ϕE is an isomorphism, then ϕf∗ E is also an isomorphism.

In other words, the direct image functor f∗ carries QCohperfX into QCohperfY .

The pullback functor of Construction 10.3.1 generally does not carry
perfect Frobenius sheaves to perfect Frobenius sheaves. To remedy this, we
consider the following variant:
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Construction 10.3.5. Let f : X → Y be a morphism of Fp-schemes.

We define a functor f� : QCohperfY → QCohperfX by the formula f�(E) =
(f∗ E)1/p∞

.

Remark 10.3.6. If f : X → Y is a quasi-compact, quasi-separated mor-
phism of Fp-schemes, then the functor f� : QCohperfY → QCohperfX is left

adjoint to the direct image functor f∗ : QCohperfX → QCohperfY .

Remark 10.3.7. In the situation where X and Y are affine, the functor f� :
QCohperfY → QCohperfX agrees (using the identification of Example 10.1.3)
with the functor described in Proposition 3.3.2.

In some cases, there is no difference between the functors f∗ and f�:

Proposition 10.3.8. Let f : X → Y be a morphism of Fp-schemes. As-
sume either that f is étale, or that both X and Y are perfect (that is, the
Frobenius maps ϕX : X → X and ϕY : Y → Y are isomorphisms). Then

the pullback functor f∗ : QCohFrY → QCohFrX carries QCohperfY into QCohperfX .

Consequently, the functors f∗ and f� coincide on QCohperfY .

Proof. The assertion is local on both X and Y , and therefore follows from
Corollary 3.4.7 (in the case where f is étale) and Proposition 3.4.5 (in the
case where X and Y are perfect).

Proposition 10.3.9. Let f : X → Y be a morphism of Fp-schemes and let
E be an algebraic Frobenius sheaf on Y . Then f� E is an algebraic Frobenius
sheaf on X. If E is holonomic, then f� E is also holonomic.

Proof. Both assertions are local on X and Y . We may therefore assume that
X and Y are affine, in which case the desired results follow from Corollary
4.2.8 and Proposition 4.1.2.

Proposition 10.3.10. Let X be an Fp-scheme and let Xperf denote the

perfection of X (so that OXperf = O1/p∞

X ). Then the canonical map f :

Xperf → X induces an equivalence of categories f∗ : QCohperfXperf → QCohperfX .

Proof. The assertion is local on X and we may therefore assume that X is
affine, in which case the desired conclusion follows from Proposition 3.4.3.

We now consider behavior of direct and inverse image functors under
the Riemann-Hilbert correspondence. We first observe that any morphism
of schemes f : X → Y induces a left exact functor f∗ : Shvét(X,Fp) →
Shvét(Y,Fp), which is compatible with the direct image functor on quasi-
coherent sheaves when f is quasi-compact and quasi-separated. We therefore
obtain the following:
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Proposition 10.3.11. Let f : X → Y be a morphism of Fp-schemes which
is quasi-compact and quasi-separated. Then the diagram of functors

QCohFrX
Sol ��

f∗
��

Shvét(X,Fp)

f∗

��
QCohFrY

Sol �� Shvét(Y,Fp)

commutes (up to canonical isomorphism).

Variant 10.3.12. Let f : X → Y be any morphism of Fp-schemes. Then
the diagram of functors

Shvét(Y,Fp)

RH
��

f∗
�� Shvét(X,Fp)

RH
��

QCohperfY

f�
�� QCohperfX

commutes (up to canonical isomorphism). In the case where f is quasi-
compact and quasi-separated, this follows formally from Proposition 10.3.11
(by passing to left adjoints; see Remark 10.2.11). The general case can be
handled by working locally on X and Y (which reduces us to the situation
of Proposition 6.2.2).

Construction 10.3.13 (Étale Compactly Supported Direct Images). Let
f : X → Y be an étale morphism of Fp-schemes. Then the functor f∗ :
Shvét(Y,Fp) → Shvét(X,Fp) admits a left adjoint f! : Shvét(X,Fp) →
Shvét(Y,Fp). Using Theorem 10.2.7, we deduce that there is an essentially

unique functor f! : QCohalgX → QCohalgY for which the diagram

Shvét(X,Fp)
RH ��

f!

��

QCohalgX

f!
��

Shvét(Y,Fp)
RH �� QCohalgY .

commutes up to isomorphism. We will refer to f! as the functor of compactly
supported direct image along f .

Example 10.3.14. In the situation of Construction 10.3.13, if X and Y are
étale, then f! : QCohalgX → QCohalgY agrees with the functor constructed in
Section 5.
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In the situation of Construction 10.3.13, the functor f! : QCohalgX →
QCohalgY can be characterized a left adjoint to the pullback functor f∗ �
f� : QCohalgY → QCohalgX . However, it has a slightly stronger property:

Proposition 10.3.15. Let f : X → Y be an étale morphism of Fp-schemes
and let E be an algebraic Frobenius sheaf on X. Then, for any perfect Frobe-
nius sheaf F on Y , the canonical map

θ : HomQCohperf
Y

(f! E ,F) → HomQCohperf
X

(f∗f! E , f�F)

→ HomQCohperf
X

(E , f∗F)

is a bijection.

Proof. By virtue of Theorem 10.2.7, we can assume that E = RH(E ) for some
p-torsion étale sheaf E on X. In this case, the map θ fits into a commutative
diagram

HomQCohperf
Y

(f!RH(E ),F)
θ ��

��

HomQCohperf
X

(RH(E ), f∗F)

��
HomFp

(f! E , Sol(F)) �� HomFp
(E , Sol(f∗F))

where the bottom horizontal map is an isomorphism because the formation
of solution sheaves is local for the étale topology, and the vertical maps are
isomorphisms by virtue of Remark 10.2.11.

Example 10.3.16. Let j : U → X be a quasi-compact open immersion
of Fp-schemes. Then the functor j! : QCohalgU → QCohalgX can be described
explicitly as follows: if I ⊆ OXperf denotes the (necessarily quasi-coherent)
radical ideal sheaf defining (X − U)perf , then the Frobenius automorphism
of OXperf endows I with the structure of a holonomic Frobenius module on
X, and we have jalg! (OUperf ) � I. More generally, for any E ∈ QCohalgX , we

have jalg! (j�E) � I ⊗ E.

10.4. Holonomic Frobenius Sheaves

Recall that a Frobenius module M over a commutative Fp-algebra R is

holonomic if and only if there exists an isomorphism M � M
1/p∞

0 , where
M0 ∈ ModFrR is finitely presented as an R-module. We now show that holo-
nomic Frobenius sheaves admit an analogous characterization:
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Theorem 10.4.1. Let X be a Noetherian Fp-scheme and let E be a Frobe-
nius sheaf on X. The following conditions are equivalent:

(1) There exists a Frobenius subsheaf E0 ⊆ E such that E0 is coherent
as an OX-module and the inclusion E0 ↪→ E induces an isomorphism

E1/p∞

0 � E.
(2) There exists an isomorphism E � E1/p∞

0 for some E0 ∈ QCohperfX which
is coherent as a OX-module.

(3) The Frobenius sheaf E is holonomic.

The proof of Theorem 10.4.1 will require some preliminaries.

Remark 10.4.2. Let X and E be as in Theorem 10.4.1, and suppose that
we are given Frobenius subsheaves E0 ⊆ E1 ⊆ E . If the inclusion E0 ↪→ E
induces an isomorphism E1/p∞

0 � E , then the inclusion E1 ↪→ E has the
same property. This follows immediately from the exactness of the perfection
construction F �→ F1/p∞

.

Lemma 10.4.3. Let X be an Fp-scheme, let E be a Frobenius sheaf on X,
and let E0 ⊆ E be a quasi-coherent OX-submodule of E. Then there exists a
smallest Frobenius subsheaf E ′ ⊆ E which contains E0.

Proof. Take E ′ to be the image of the composite map

⊕n≥0(ϕ
n
X)∗ E0 → ⊕n≥0(ϕ

n
X)∗ E ψn

E−−→ E .

Remark 10.4.4. In the situation of Lemma 10.4.3, the construction E0 �→
E ′ is compatible with pullbacks along flat morphisms; in particular, it is
compatible with restrictions to open sets.

Lemma 10.4.5. Let X be a Noetherian Fp-scheme, let E be an algebraic
Frobenius sheaf on X, and let E0 ⊆ E be a coherent OX-submodule of E.
Then the Frobenius subsheaf E ′ ⊆ E of Lemma 10.4.3 is also coherent as a
OX-module.

Proof. By virtue of Remark 10.4.4, we can assume without loss of generality
that X = Spec(R) is affine. In this case, the desired result follows from
Remark 2.4.2.

Proof of Theorem 10.4.1. The implications (1) ⇒ (2) ⇒ (3) are obvious.
We will prove that (3) implies (1). Let E be a holonomic Frobenius sheaf on
X. Choose a finite cover {Ui} of X by affine open sets Ui � Spec(Ri), and



178 Bhargav Bhatt and Jacob Lurie

set Mi = E(Ui). Then each Mi is a holonomic Frobenius module over Ri. We

can therefore choose isomorphisms Mi � N
1/p∞

i , where each Ni ∈ ModFrRi

is finitely generated as a module over Ri. Replacing each Ni with its image
in Mi, we can assume that Ni corresponds to a Frobenius-stable subsheaf
F i ⊆ E |Ui

. Applying [15, Tag 01PF], we can find choose a coherent subsheaf
F i ⊆ E satisfying F i |U = F i. Let F denote the smallest Frobenius subsheaf
of E which contains each F i (Lemma 10.4.3). It follows from Lemma 10.4.5
that F is coherent as a OX -module. We claim that the inclusion F ↪→ E
induces an isomorphism F1/p∞ � E . To prove this, it suffices to show that
each restriction E |Ui

is the perfection of F |Ui
. This follows from Remark

10.4.2, since F |Ui
contains F i by construction.

Remark 10.4.6. Theorem 10.4.1 can be generalized to the non-Noetherian
case. If X is an Fp-scheme which is quasi-compact and quasi-separated and
E is a holonomic Frobenius sheaf on X, then there exists an isomorphism

E � E1/p∞

0 , where E0 ∈ QCohFrX is locally finitely presented as a OX -module.
To prove this, we first apply Theorem 10.2.7 to choose an isomorphism
E = RH(F ) for some constructible p-torsion étale sheaf F on X. Using a
Noetherian approximation argument, we can choose a map f : X → Y and
an isomorphism F � f∗ F ′, where Y is a Noetherian Fp-scheme and F ′ is
a constructible p-torsion étale sheaf on Y . Applying Lemma 10.4.1, we can

choose an isomorphism RH(F ′) � E ′ 1/p∞

0 for some E ′
0 ∈ QCohFrY which is

coherent as an OY -module. Then

E � RH(F ) � RH(f∗ F ′) � f�(RH(F ′)) � f�(E ′ 1/p∞

0 ) � (f∗ E ′
0)

1/p∞
,

where f∗ E ′
0 is locally finitely presented as a OX -module.

10.5. Proper Direct Images

In §6.5, we proved that the Riemann-Hilbert equivalence Sol : ModalgR �
Shvét(Spec(R),Fp) is compatible with direct images along ring homomor-
phisms which are finite and of finite presentation (Theorem 6.5.1). In this
section, we prove a generalization of this result: the global Riemann-Hilbert
correspondence of Theorem 10.2.7 is compatible with direct images along
morphisms of Fp-schemes f : X → Y which are proper and of finite presen-
tation. In the global setting, there is more to the story, since neither of the
direct image functors

f∗ : QCohFrX → QCohFrY f∗ : Shvét(X,Fp) → Shvét(Y,Fp)
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is necessarily exact. In this case, we also have a comparison result for higher

direct images (see Theorem 10.5.5 below).

We begin with some general remarks. Let f : X → Y be a quasi-compact

and quasi-separated morphism of schemes. Then we have higher direct image

functors Rif∗ : QCohX → QCohY (see [15, Tag 01XJ]). These functors are

equipped with canonical isomorphisms ϕY,∗ ◦Rif∗ � Rif∗ ◦ϕX,∗, and there-

fore carry (perfect) Frobenius sheaves on X to (perfect) Frobenius sheaves

on Y . The central observation is the following:

Theorem 10.5.1. Let f : X → Y be a morphism of Fp-schemes which is

proper and of finite presentation. If E is an algebraic Frobenius sheaf on X,

then the higher direct images Rif∗ E are algebraic Frobenius sheaves on Y .

We begin by studying the Noetherian case.

Lemma 10.5.2. Let f : X → Y be a proper morphism of Noetherian Fp-

schemes. If E is a holonomic Frobenius sheaf on X, then the higher direct

images Rif∗ E are holonomic Frobenius sheaves on Y .

Proof. Invoking Theorem 10.4.1, we can write E = E1/p∞

0 , where E0 is a

Frobenius sheaf onX which is coherent as an OX -module. It follows from the

direct image theorem [15, Tag 02O3] that the higher direct images Rif∗ E0

are coherent OY -modules. Since the functors Rif∗ commute with filtered

direct limits, we have canonical isomorphisms

Rif∗ E � Rif∗(E1/p∞

0 ) � (Rif∗ E0)
1/p∞

.

Applying Theorem 10.4.1 again, we see that each Rif∗ E is holonomic.

Lemma 10.5.3. Let R be a commutative Fp-algebra, let f : X → Spec(R)

be a morphism of schemes which is proper and of finite presentation, and

let E be an holonomic Frobenius sheaf on X. Then, for every integer i, the

cohomology group Hi(X, E) is an algebraic Frobenius module over R.

Remark 10.5.4. In the situation of Lemma 10.5.3, one can say more: the

cohomology groups Hi(X, E) are actually holonomic Frobenius modules over

R (see Corollary 10.6.3 below).

Proof of Lemma 10.5.3. Applying Theorem 10.2.7, we can choose an iso-

morphism E � RH(F ) for some constructible sheaf F ∈ Shvcét(X,Fp). Us-
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ing Noetherian approximation [15, Tags 01ZM and 081F], we can choose a
finitely generated Fp-subalgebra R0 ⊆ R and a pullback diagram of schemes

X

f
��

π �� X0

f0
��

Spec(R) �� Spec(R0),

where f0 is proper. Enlarging R0 if necessary, we can further arrange that
F = π∗ F 0, where F 0 is a constructible p-torsion étale sheaf on X0 (see
[7, §1, Proposition 4.17]). Set E0 = RH(F 0), so that E � π� E0 (see Variant
10.3.12).

Write R as a filtered direct limit of finitely generated subrings Rα ⊆ R
containing R0. For each index α, set Xα = Spec(Rα) ×Spec(R0) X0, let πα :
Xα → X0 be the projection onto the second factor, and set Eα = π�

α E0. Then
each Eα is a holonomic Frobenius sheaf on Xα (Proposition 10.3.9). Invoking
Lemma 10.5.2, we see that the cohomology group Hi(Xα, Eα) is a holonomic
Frobenius module over Rα, so that the tensor product R1/p∞ ⊗R

1/p∞
α

Eα is a
holonomic Frobenius module over R (Proposition 4.1.2). We now compute

Hi(X, E) � lim−→Hi(Xα, Eα)

� R1/p∞ ⊗R1/p∞ lim−→Hi(Xα, Eα)

� lim−→R1/p∞ ⊗R1/p∞
α

Hi(Xα, Eα).

Since the collection of holonomic Frobenius modules over R is closed under
direct limits (Proposition 4.2.4), it follows that Hi(X, E) is algebraic.
Proof of Theorem 10.5.1. Let f : X → Y be a morphism of Fp-schemes
which is proper and of finite presentation, and let E be an algebraic Frobenius
sheaf on X. We wish to show that each higher direct image Rif∗ E is an
algebraic Frobenius sheaf on Y . This assertion is local on Y , so we may
assume without loss of generality that Y = Spec(R) is affine. In this case, X
is quasi-compact and quasi-separated, so Corollary 10.2.9 guarantees that
we can write E as a filtered direct limit lim−→Eα, where each Eα is holonomic.

Since the functor E �→ Hi(X, E) commutes with filtered direct limits and the
collection of algebraic R-modules is closed under direct limits (Proposition
4.2.4), we may replace E by Eα and thereby reduce to the case where E is
holonomic. In this case, the desired result follows from Lemma 10.5.3.

We now apply Theorem 10.5.1 to the study of our Riemann-Hilbert
correspondence.
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Theorem 10.5.5. Let f : X → Y be a morphism of Fp-schemes which
is proper and of finite presentation. For every algebraic Frobenius sheaf E
on X, we have canonical isomorphisms Sol(Rif∗ E) � Rif∗ Sol(E) in the
category Shvét(Y,Fp).

Proof. Since E is algebraic, we have an exact sequence

0 → Sol(E) → E id−ϕE−−−−→ E → 0

in the category of étale sheaves on X (Remark 10.2.6). This gives rise to a
long exact sequence of higher direct images

Ri−1f∗ E
id−ϕ−−−→ Ri−1f∗ E → Rif∗ Sol(E) → Rif∗ E

id−ϕ−−−→ Rif∗ E

which gives rise to short exact sequence of étale sheaves

0 → F → Rif∗ Sol(E) → Sol(Rif∗ E) → 0,

where F denotes the cokernel of the map (id−ϕ) : Ri−1f∗ E → Ri−1f∗ E . It
will therefore suffice to show that the map (id−ϕ) : Ri−1f∗ E → Ri−1f∗ E is
an epimorphism of étale sheaves on Y . This follows from Remark 10.2.6, since
the Frobenius sheaf Ri−1f∗ E is algebraic by virtue of Theorem 10.5.1.

Corollary 10.5.6. Let f : X → Y be a morphism of Fp-schemes which is
proper and of finite presentation. Then, for any p-torsion étale sheaf F on
X, we have canonical isomorphisms RH(Rif∗ F ) � Rif∗RH(F ).

Proof. Using Theorem 10.5.5, we a canonical isomorphism

Rif∗ F � Rif∗ Sol(RH(F )) � Sol(Rif∗RH(F )),

which is adjoint to a comparison map γ : RH(Rif∗ F ) → Rif∗RH(F ) (Re-
mark 10.2.11). Since the Frobenius sheaf Rif∗RH(F ) is algebraic (Theorem
10.5.1), the map γ is an isomorphism.

10.6. Application: The Proper Base Change Theorem

Suppose we are given a pullback diagram of schemes σ:

X ′ g′
��

f ′

��

X

f
��

Y ′ g �� Y.
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For every étale sheaf F on X and every integer n ≥ 0, we have a natural
comparison map α : g∗Rnf∗ F → Rnf ′

∗g
′∗ F in the category of étale sheaves

on Y ′. The proper base change theorem in étale cohomology asserts that, if
the morphism f is proper and F is a torsion sheaf, then the map α is an
isomorphism [15, Tag 095S]. Our goal in this section is to show that, in
special case where σ is a diagram of Fp-schemes and F is a p-torsion sheaf,
the proper base change theorem can be deduced from the results of this
paper in an essentially formal way.

We begin with some general remarks. Let σ be as above, and suppose
that the morphisms f and f ′ are quasi-compact and quasi-separated. In this
case, we can associate to every quasi-coherent sheaf E on X a comparison
map

β : g∗Rnf∗ E → Rnf ′
∗g

′∗ E

in the category QCohY of quasi-coherent sheaves on Y ′. Moreover, if σ is a
diagram of Fp-schemes and E is a Frobenius sheaf onX, then β is a morphism
of Frobenius sheaves. If, in addition, the Frobenius sheaf E is perfect, then
the perfection of β supplies a comparison map γ : g�Rnf∗ E → Rnf ′

∗g
′� E in

the category QCohperfY ′ .

Proposition 10.6.1. Suppose we are given a pullback diagram of Fp-
schemes

X ′ g′
��

f ′

��

X

f
��

Y ′ g �� Y,

where f is proper and of finite presentation. Then, for any algebraic Frobe-
nius sheaf E on X, the comparison maps γ : g�Rnf∗ E → Rnf ′

∗g
′� E are

isomorphisms.

Proof. The assertion is local on Y and Y ′; we may therefore assume without
loss of generality that Y = Spec(R) and Y ′ = Spec(S) are affine. In this
case, we wish to show that the canonical map S1/p∞ ⊗R1/p∞ H∗(X, E) →
H∗(X ′, g′� E) is an isomorphism. Choose a finite covering {Ui} of X by affine
open subsets and let {U ′

i} denote the open covering of X ′ given by U ′
i =

g′−1Ui. Let C
∗ denote the Čech complex of {Ui} with coefficients in the sheaf

E , so that we can identify H∗(X, E) with the cohomology of the cochain
complex C∗. Note that for any affine open subset U ⊆ X having inverse
image U ′ ⊆ X ′, we have a canonical isomorphism (g′� E)(U ′) = S1/p∞⊗R1/p∞

E(U), so that S1/p∞ ⊗R1/p∞ C∗ is the Čech complex of the open covering
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{U ′
i} with coefficients in the sheaf g′� E . We can therefore identify γ with

the canonical map

S1/p∞ ⊗R1/p∞ Hn(C∗) → Hn(S1/p∞ ⊗R1/p∞ C∗).

For every affine open subset U ⊆ X with inverse image U ′ ⊆ X ′, Remark
3.5.5 supplies isomorphisms

TorR
1/p∞

m (S1/p∞
,O1/p∞

X (U)) =

{
O1/p∞

X′ (U ′) if m = 0

0 otherwise.

It follows that the canonical maps

TorR
1/p∞

k (S1/p∞
, E(U)) → Tor

O1/p∞
X (U)

k (O1/p∞

X′ (U ′), E(U))

are isomorphisms. Our assumption that E is algebraic guarantees that E(U)
is an algebraic Frobenius module over OX(U), so that the groups

Tor
O1/p∞

X (U)
k (O1/p∞

X′ (U ′), E(U))

vanish for k > 0. We therefore also have TorR
1/p∞

k (S1/p∞
, E(U)) � 0 for k >

0. Allowing U to vary, we conclude that the tensor product S1/p∞ ⊗R1/p∞ C∗

is equivalent to the left derived tensor product S1/p∞⊗L
R1/p∞C∗. We therefore

have a convergent spectral sequence

Es,t
2 : TorR

1/p∞

s (S1/p∞
,Ht(C∗)) ⇒ Ht−s(R1/p∞ ⊗S1/p∞ C∗),

in which γ appears as an edge map. To show that γ is an isomorphism, it
suffices to show that the groups Es,t

2 vanish for s > 0. This follows from
Theorem 3.5.1, since each Ht(C∗) � Ht(X, E) is an algebraic Frobenius
module over R by virtue of Proposition 10.5.1.

Corollary 10.6.2 (Proper Base Change). Suppose we are given a pullback
diagram of Fp-schemes

X ′ g′
��

f ′

��

X

f

��
Y ′ g �� Y,

where f is proper and of finite presentation. Then, for every p-torsion étale
sheaf F on X, the comparison map α : g∗Rnf∗ F → Rnf ′

∗g
′∗ F is an

isomorphism
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Proof. Using Corollary 10.5.6, we can identify the image of α under the
Riemann-Hilbert correspondence RH : Shvét(Y

′,Fp) → QCohperfY ′ with the
comparison map γ : g�Rnf∗RH(F )→Rnf ′

∗g
′�RH(F ) of Proposition 10.6.1.

Since RH(F ) is algebraic, the map γ is an isomorphism, so that α is also
an isomorphism.

We can use Proposition 10.6.1 to show that Lemma 10.5.2 holds in the
non-Noetherian case:

Corollary 10.6.3. Let f : X → Y be a morphism of Fp-schemes which is
proper and of finite presentation. If E is a holonomic Frobenius sheaf on X,
then the higher direct images Rnf∗ E are holonomic Frobenius sheaves on Y .

Proof of Corollary 10.6.3. The assertion is local on Y , so we may assume
without loss of generality that Y = Spec(R) is affine. Proceeding as in the
proof of Lemma 10.5.3, we can choose a pullback diagram

X

f
��

π �� X0

f0
��

Spec(R)
π′

�� Spec(R0)

where f0 is proper, R0 ⊆ R is a finitely generated Fp-subalgebra, and
E � π� E0 for some holonomic Frobenius module E0 on X0. Lemma 10.5.2
guarantees that Rnf0∗ E0 is holonomic, so that π′�Rnf0∗ E0 is also holonomic
(Proposition 4.1.2). Proposition 10.6.1 supplies an isomorphism

γ : π′�Rnf0∗ E0 → Rnf∗π
� E0 � Rnf∗ E ,

so that Rnf∗ E is holonomic as well.

Corollary 10.6.4. Let f : X → Y be a morphism of Fp-schemes which
is proper and of finite presentation. Then the higher direct image func-
tors Rnf∗ : Shvét(X,Fp) → Shvét(Y,Fp) carry constructible sheaves to con-
structible sheaves.

Proof. Combine Corollary 10.6.3 with Theorem 10.2.7 and Corollary 10.5.6.

Remark 10.6.5. Let f : R → S be a morphism of Fp-algebras, let X
be an R-scheme which is proper and of finite presentation, and set XS =
X ×Spec(R) Spec(S). In this situation, we have a comparison map

β : H∗(X,OX)⊗R S → H∗(XS ,OXS
).
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In general, this map need not be an isomorphism, even if X is assumed
to be smooth and projective over R (see Example 10.6.6). However, the
domain and codomain of β can be regarded as Frobenius modules over S,
and Proposition 10.6.1 implies that β1/p∞

is an isomorphism: in other words,
every element of ker(β) or coker(β) is annihilated by some power of the
Frobenius. In other words, the proper base change theorem holds in the
setting of coherent cohomology, provided that we work “up to perfection.”

Example 10.6.6. Let k be a field of characteristic p and set R = k�t�. Let
G → Spec(R) be a finite flat group scheme with generic fibre μp and special
fibre αp. For each k ≥ 2, we can approximate the stack BG → Spec(R) by a
smooth projective R-scheme X with geometrically connected fibres, i.e., the
O-cohomology of the generic fibre Xη agrees with that of B(μp) in degrees
≤ k, while that for the special fibre Xs agrees with that of B(αp) in degrees
≤ k; an explicit example is provided when p = k = 2 by degenerating a
“classical” Enriques surface Xη to a “supersingular” Enriques surface Xs.
Assume now that k = 2 for simplicity. As μp is linearly reductive, it follows
that H i(Xη,OXη

) = 0 for i ∈ {1, 2}. On the other hand, H i(Xs,OXs
) �= 0

for i = 1, 2. Now consider the R-module H1(X,OX). Since H0(Xs,OXs
) =

0, it is easy to see that H1(X,OX) is t-torsionfree. But H1(X,OX)[1t ] =
H1(Xη,OXη

) = 0, so it follows that H1(X,OX) = 0. On the other hand,
H1(Xs,OXs

) �= 0, so we have constructed an example where the base change
map

H1(X,OX)⊗R k → H1(Xs,OXs
)

is not an isomorphism.

11. The Contravariant Riemann-Hilbert Correspondence

Let R be a smooth algebra over a field k of characteristic p. In [6], Emerton
and Kisin construct an equivalence of triangulated categories

RSolEK : Db
fgu(R[F ])op � Db

c(Spec(R),Fp),

where Db
fgu(R[F ]) denotes the full subcategory of D(R[F ]) spanned by the

cohomologically bounded chain complexes whose cohomology groups finitely
generated unit Frobenius modules and Db

c(Spec(R),Fp) the constructible
derived category of Spec(R): that is, the full subcategory of the derived
category of Shvét(Spec(R), Fp) spanned by those chain complexes which are
cohomologically bounded with constructible cohomology.



186 Bhargav Bhatt and Jacob Lurie

Our goal in this section is to review (and generalize) the construction of
the functor RSolEK. We begin in §11.1 by reviewing the notion of a finitely
generated unit Frobenius module over a commutative Fp-algebra R (Defini-
tion 11.1.3), following [12] and [6]. The collection of finitely generated unit
modules is always closed under the formation of cokernels and extensions
(Propositions 11.1.4 and 11.1.5). In §11.2 we show that, when R is a regu-
lar Noetherian Fp-algebra, it is also closed under the formation of kernels
(Proposition 11.2.1). In this case, we let Db

fgu(R[F ]) denote the full subcat-
egory of the derived category D(R[F ]) spanned by those cochain complexes
M = M∗ whose cohomology groups Hn(M) are locally finitely generated
unit Frobenius modules which vanish for all but finitely many values of n.
In §11.3, we show that there is a sensible way to define the definition of
the subcategory Db

fgu(R[F ]) ⊆ D(R[F ]) for an arbitrary Fp-algebra R, by
restricting our attention to cochain complexes which satisfy suitable “de-
rived” versions of the requirements defining finitely generated unit modules
(see Definition 11.3.4 and Proposition 11.3.9). In §11.4 we define a solution
functor RSolEK : Db

fgu(ModFrR )op → D(Shvét(Spec(R),Fp)) and assert that it

restricts to an equivalence of categories Db
fgu(ModFrR )op � Db

c(Spec(R),Fp)
(Theorem 11.4.4). Taking R to be a smooth algebra of finite type over a
field k, this recovers the main result of [6] in the case of the affine scheme
X = Spec(R). However, our equivalence is a bit more general, since we allow
R to be an arbitrary Fp-algebra. The proof of Theorem 11.4.4 will be given
in §12 by comparing the functor RSolEK with the solution functor Sol of
Construction 2.3.1 (and its derived functors).

11.1. Finitely Generated Unit Frobenius Modules

We now introduce the class of finitely generated unit Frobenius modules,
following [6].

Notation 11.1.1. Let R be a commutative Fp-algebra and let M be an R-
module. We let ϕ∗

RM denote the R-module obtained from M by extending
scalars along the Frobenius homomorphism ϕR : R → R. If M is a Frobenius
module over R, then the Frobenius map ϕM : M → M1/p determines an
R-module homomorphism ϕ∗

RM → M , which we will denote by ψM .

Remark 11.1.2. In the situation of Notation 11.1.1, we can regard ϕ∗
RM as

a Frobenius module over R (Construction 2.1.6), and ψM is a morphism of
Frobenius modules over R. Moreover, the morphism ψM induces an isomor-
phism of perfections (ϕ∗

RM)1/p
∞ → M1/p∞

. To prove this, we can extend
scalars to the perfection R1/p∞

and thereby reduce to the case where R is
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perfect. In this case, the morphism ψM coincides with (the Frobenius pull-
back of) the map ϕM : M → M1/p, which is evidently an isomorphism of
perfections.

Definition 11.1.3. Let R be a commutative Fp-algebra and let M be a
Frobenius module over R. We will say that M is finitely generated unit if it
satisfies the following pair of conditions:

(a) The module M is finitely generated as a left module over the noncom-
mutative ring R[F ] of Notation 2.1.5.

(b) The map ψM : ϕ∗
RM → M of Notation 11.1.1 is an isomorphism.

We now record some easy closure properties of the class finitely generated
unit Frobenius modules.

Proposition 11.1.4. Let R be a commutative Fp-algebra and let f : M →
N be a morphism of Frobenius modules over R. If M and N are finitely
generated unit, then the cokernel coker(f) is finitely generated unit.

Proof. Since N is finitely generated as a left module over R[F ], the quotient
coker(f) is also finitely generated as a left module over R[F ]. We have a
commutative diagram of exact sequences

ϕ∗
RM

ψM

��

ϕ∗
R(f) �� ϕ∗

RN

ψN

��

�� ϕ∗
R(coker(f))

ψcoker(f)

��

�� 0

M
f �� N �� coker(f) �� 0.

Since ψM and ψN are isomorphisms, it follows that ψcoker(f) is also an iso-
morphism.

Proposition 11.1.5. Let R be a commutative Fp-algebra and suppose we
are given an exact sequence of Frobenius modules 0 → M ′ → M → M ′′ → 0.
If M ′ and M ′′ are finitely generated unit, then M is finitely generated unit.

Proof. Since the collection of finitely generated left R[F ]-modules is closed
under extensions, the moduleM is finitely generated over R[F ]. It will there-
fore suffice to show that the map ψM : ϕ∗

RM → M is an isomorphism. Let
K denote the kernel of the map ϕ∗

RM → ϕ∗
RM

′′. The morphism ψM fits into
a commutative diagram of exact sequences

0 �� K ��

f
��

ϕ∗
RM

��

ψM

��

ϕ∗
RM

′′ ��

ψM′′

��

0

0 �� M ′ �� M �� M ′′ �� 0.
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Note that the map ψM ′ factors as a composition ϕ∗
RM

′ g−→ K
f−→ M ′, where g

is surjective. Since M ′ is finitely generated unit, the map ψM ′ is an isomor-
phism. It follows that f is also an isomorphism. Applying the five lemma to
the preceding diagram, we conclude that ψM is also an isomorphism.

11.2. Existence of Kernels

Our next goal is to prove a counterpart of Proposition 11.1.4 for kernels
of morphisms between finitely generated unit Frobenius modules. This will
require a stronger assumption on R:

Proposition 11.2.1. Let R be a regular Noetherian Fp-algebra and let f :
M → N be a morphism of Frobenius modules over R. If M and N are
finitely generated unit, then K = ker(f) is also finitely generated unit.

The proof of Proposition 11.2.1 is essentially contained in [12] (see also
[6]). We include a proof here for the convenience of the reader, and because
the proof uses an auxiliary construction which will play a central role in §12.
Construction 11.2.2 (Unitalization). Let R be a commutative Fp-algebra
and letM be an R-module equipped with an R-linear map αM : M → ϕ∗

RM .
We let Mu denote the direct limit of the diagram

M
αM−−→ ϕ∗

RM
ϕ∗

RαM−−−−→ ϕ2∗
R M

ϕ2∗
R αM−−−−→ ϕ3∗

R M → · · ·

We will refer to Mu as the unitalization of the pair (M,αM ). Note that there
is a canonical isomorphism Mu � ϕ∗

RM
u, whose inverse endows Mu with

the structure of a Frobenius module over R.

Example 11.2.3. Let R be a commutative Fp-algebra and let M be a
Frobenius module over R for which the map ψM : ϕ∗

RM → M of Notation
11.1.1 is an isomorphism. Then the unitalization of the pair (M,ψ−1

M ) can
be identified with M .

Remark 11.2.4 (Functoriality). Let R be a commutative Fp-algebra and
suppose we are given a commutative diagram of R-modules

M
f ��

αM

��

N

αN

��
ϕ∗
RM

ϕ∗
R(f) �� ϕ∗

RN.

Then f induces a map of unitalizations fu : Mu → Nu. Moreover:
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• The cokernel of fu can be identified with the unitalization of coker(f)
(with respect to the induced map αcoker(f) : coker(f) → coker(ϕ∗

Rf) �
ϕ∗
R coker(f)).

• If the Frobenius map ϕR : R → R is flat (for example, if R is regu-
lar and Noetherian), then the kernel of fu can be identified with the
unitalization of ker(f) (with respect to the map ker(f) → ker(ϕ∗

Rf) �
ϕ∗
R ker(f)).

Let R be a commutative Fp-algebra and let R[F ] denote the noncom-
mutative ring of Notation 2.1.5. For any R-module M , we have a canonical
isomorphism

R[F ]⊗R M � M ⊕ ϕ∗
RM ⊕ ϕ2∗

R M ⊕ · · · .
Suppose that M is equipped with a map αM : M → ϕ∗

RM . Then the con-
struction x �→ (x,−αM (x)) determines an R-linear map M → M ⊕ϕ∗

RM ⊆
R[F ] ⊗R M , which extends to an R[F ]-linear map α′ : R[F ] ⊗R M →
R[F ] ⊗R M . A simple calculation shows that the map α′ is a monomor-
phism with cokernel Mu. We therefore obtain the following:

Proposition 11.2.5. Let R be a commutative Fp-algebra and let M be
an R-module equipped with an R-linear map ψM : M → ϕ∗

RM . Then the
preceding construction determines an exact sequence of Frobenius modules
0 → R[F ]⊗R M → R[F ]⊗R M → Mu → 0.

Corollary 11.2.6. Let R be a commutative Fp-algebra and let M be a
finitely generated R-module equipped with an R-linear map αM : M → ϕ∗

RM .
Then the unitalization Mu is a finitely generated unit Frobenius module.

Proof. Condition (a) of Definition 11.1.3 follows from Proposition 11.2.5,
and condition (b) is immediate from the construction.

We will be primarily interested in the following special case of Construc-
tion 11.2.2:

Construction 11.2.7. Let R be a commutative Fp-algebra and let M be a
Frobenius module over R, which we regard as an R-module equipped with
an R-linear map ψM : ϕ∗

RM → M (Notation 11.1.1). Suppose that M is
finitely generated and projective as an R-module, with R-linear dual M∨ =
HomR(M,R). Then the dual of ψM is an R-linear map ψ∨

M : M∨ → ϕ∗
RM

∨.
We let D(M) denote the unitalization of the pair (M∨, ψ∨

M ).

Example 11.2.8. Let R be a commutative Fp-algebra and let M be a
Frobenius module over R. Suppose that M is a projective R-module of finite
rank and that the map ψM : ϕ∗

RM → M is an isomorphism. In this case,
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the Frobenius module D(M) of Construction 11.2.7 can be identified with
the R-linear dual M∨, endowed with the Frobenius structure characterized
by the formula ψM∨ = (ψ∨

M )−1 (Example 11.2.3).

Proposition 11.2.9. Let R be a commutative Fp-algebra and let M be a
Frobenius module over R which is finitely generated and projective as an
R-module. Then D(M) has projective dimension ≤ 1 as a left R[F ]-module.

Proof. Use the exact sequence 0 → R[F ]⊗RM
∨ → R[F ]⊗RM

∨ → D(M) →
0 supplied by Proposition 11.2.5.

Remark 11.2.10. In the situation of Construction 11.2.7, the R-module
D(M) is presented as a filtered direct limit of projective R-modules of finite
rank, and is therefore flat over R.

In the case where R is a smooth algebra over a field k, Emerton and
Kisin prove a converse to Corollary 11.2.6: every finitely generated unit
Frobenius module arises as the unitalization of a finitely generated R-module
M , equipped with some map αM : M → ϕ∗

RM . The proof given in [6] applies
more generally whenever R is a regular Noetherian Fp-algebra (Corollary
11.2.12). We begin with an observation which is valid for any Fp-algebra R:

Proposition 11.2.11. Let R be a commutative Fp-algebra and let M be a
finitely generated unit Frobenius module over R. Then there exists a Frobe-
nius module N over R which is finitely generated and free as an R-module
and a surjective map of Frobenius modules f : D(N) → M (here D(N) is
the Frobenius module given by Construction 11.2.7).

Proof. Choose a finite collection of elements {xi}i∈I of M which generate M
as a left R[F ]-module. Invoking the assumption that the map ψM : ϕ∗

RM →
M is an isomorphism, we conclude that M is generated as an R-module
by the elements F kxj for k > 0 and j ∈ I. We may therefore choose some
integer n > 0 such that each xi belongs to the R-submodule of M generated
by the elements {F kxj}j∈I,1≤k≤n. Replacing the set {xi}i∈I by the finite set
{F kxi}i∈I,k<n, we can reduce to the case n = 1: that is, we can arrange that
there are relations xi =

∑
j∈I ai,jϕM (xj) for some coefficients ai,j ∈ R. Let

N = RI be the free R-module on generators y∨i for i ∈ I, and equip N with
the structure of a Frobenius module by setting ϕN (y∨i ) =

∑
j∈I aj,iy

∨
j . Using

Proposition 11.2.5 (or by inspection), we see that D(N) can be identified with
the left R[F ]-module generated by symbols {yi}i∈I , subject to the relations
yi =

∑
j∈I ai,jFxj . It follows that there is a unique morphism of Frobenius

modules f : D(N) → M satisfying f(yi) = xi. Since the elements xi generate
M as an R[F ]-module, the morphism f is surjective.
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Proof of Proposition 11.2.1. Let R be a regular Noetherian Fp-algebra and
let f : M → N be a morphism of finitely generated unit Frobenius modules
over R. We wish to show that the kernel K = ker(f) is also finitely generated
unit. The regularity of R guarantees that the Frobenius morphism ϕR : R →
R is flat. It follows that we can identify the pullback ϕ∗

RK with the kernel of
the induced map ϕ∗

R(f) : ϕ
∗
RM → ϕ∗

RN . We therefore have a commutative
diagram of short exact sequences

0 �� ϕ∗
RK

ψK

��

�� ϕ∗
RM

ψM

��

ϕ∗
R(f) �� ϕ∗

RN

ψN

��
0 �� K �� M

f �� N.

Since ψM and ψN are isomorphisms, it follows that ψK is also an isomor-
phism.

We now complete the proof by showing that K is finitely generated
as a left R[F ]-module. Using Proposition 11.2.11, we can choose a finitely
generated projective R-module M0, a map αM0

: M0 → ϕ∗
RM0, and a sur-

jection of Frobenius modules g : Mu
0 → M . It follows that the induced map

ker(g ◦ f) → K is also surjective. We may therefore replace f by g ◦ f and
thereby reduce to the case M = Mu

0 . Let f0 denote the composition of f
with the tautological map M0 → Mu

0 � M . Applying Remark 11.2.4 to the
commutative diagram

M0

αM0

��

f0 �� N

ψ−1
N

��
ϕ∗
RM0

�� ϕ∗
RN,

we deduce that the kernel of f can be identified with the unitalization of
ker(f0). Since R is Noetherian, the kernel ker(f0) is finitely generated as an
R-module, so that ker(f) is finitely generated as an R[F ]-module by virtue
of Proposition 11.2.5.

Corollary 11.2.12 ([6]). Let R be a regular Noetherian Fp-algebra and let
M be a finitely generated unit Frobenius module over R. Then there exists an
isomorphism M � Mu

0 , where M0 is a finitely generated R-module equipped
with a map α : M0 → ϕ∗

RM0.

Proof. Using Proposition 11.2.11, we can choose a surjection of Frobenius
modules f : Nu → M , where N is a free R-module of finite rank equipped
with a map αN : N → ϕ∗

RN . As in the proof of Proposition 11.2.1, we
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can write ker(f) � Ku, where K denotes the kernel of the composite map

N → Nu f−→ M and αK : K → ϕ∗
RK is the restriction of αN . Applying

Remark 11.2.4 to the diagram

K

αK

��

�� N

αN

��
ϕ∗
RK

�� ϕ∗
RN,

we deduce that M � coker(Ku → Nu) can be identified with the unital-
ization of the quotient N/K (with respect to the map αN/K : N/K →
ϕ∗
R(N/K) induced by αN ).

11.3. Finitely Generated Unit Complexes

Our next goal is to introduce an analogue of Definition 11.1.3 for cochain
complexes M = M∗ of Frobenius modules over a commutative Fp-algebra
R. When R is a regular Noetherian Fp-algebra, the collection of finitely
generated unit Frobenius modules span an abelian subcategory of ModFrR
which is closed under extensions (Propositions 11.1.4, 11.1.5, and 11.2.1), so
we obtain a sensible finiteness condition on cochain complexes by requiring
that the cohomology groups Hn(M) are finitely generated unit. However, to
get a theory which works well for arbitrary Fp-algebras, we must abandon
the idea of having a finiteness condition that can be tested at the level
of individual cohomology groups: instead, we will require that the entire
cochain complex M∗ satisfies suitable analogues of conditions (a) and (b) of
Definition 11.1.3, when regarded as an object of a suitable derived category.

Notation 11.3.1. For every associative ring A, we let D(A) denote the
derived category of the abelian category of left A-modules. We will be par-
ticularly interested in the case where A = R[F ] for some commutative Fp-
algebra R; in this case, we refer to D(R[F ]) as the derived category of Frobe-
nius modules over R. We will generally abuse notation by identifying ModFrR
with its essential image in D(R[F ]) (by regarding every Frobenius module
over R as a chain complex concentrated in degree zero).

Remark 11.3.2. Let R be a commutative Fp-algebra and let M be an
object of D(R[F ]). We will generally abuse notation by identifying M with
its image under the forgetful functor D(R[F ]) → D(R). Note that we have
a canonical map M → M1/p in D(R) (where M1/p denotes the image of M
under the functor D(R) → D(R) given by restriction of scalars along the
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Frobenius). We will denote this map by ϕM and refer to it as the Frobenius
morphism of M .

Remark 11.3.3 (Comparison with D(R)). Let R be a commutative Fp-
algebra. Recall that the forgetful functor ModFrR → ModR has an exact right
adjoint, given by the functor M �→ M † of Construction 3.1.2. Passing to
derived categories, we see that the forgetful functor D(R[F ]) → D(R) also
has a right adjoint, given by applying the functor M �→ M † levelwise. For
any cochain complex N = N• of Frobenius modules over R, Construction
3.1.7 produces a short exact sequence of cochain complexes 0 → N• →
N•† → (N•)1/p† → 0, which we can regard as a distinguished triangle in the
derived category D(R[F ]). It follows that for any object M ∈ D(R[F ]), we
have a long exact sequence

· · · → HomD(R)(M,N1/p[−1]) → HomD(R[F ])(M,N)

→ HomD(R)(M,N) → · · · ,

which specializes to the exact sequence of Construction 3.1.7 in the special
case where M and N are concentrated in a single degree.

We now introduce a “derived” analogue of Definition 11.1.3:

Definition 11.3.4. Let R be a commutative Fp-algebra and let M be an
object of D(R[F ]). We will say that M is derived finitely generated unit if it
satisfies the following pair of conditions:

(a) The module M is a compact object of the triangulated category
D(R[F ]): that is, it is quasi-isomorphic to a bounded chain complex
of finitely generated projective left R[F ]-modules.

(b) The Frobenius map ϕM : M → M1/p induces an isomorphism R1/p⊗L
R

M → M in the derived category D(R).

We let Db
fgu(R[F ]) denote the full subcategory of D(R[F ]) spanned by the

derived finitely generated unit objects.

Remark 11.3.5. Let R be a commutative Fp-algebra. Then Db
fgu(R[F ]) is a

triangulated subcategory of D(R[F ]). In other words, for any distinguished
triangle M ′ → M → M ′′ → M ′[1] in D(R[F ]), if any two of the objects M ,
M ′, and M ′′ are derived finitely generated unit, then so it the third.

Example 11.3.6. Let R be a commutative Fp-algebra and let M be a
Frobenius module over R which is finitely generated and projective as an R-
module. Then the Frobenius module D(M) of Construction 11.2.7 belongs to
Db

fgu(R[F ]). Condition (b) of Definition 11.3.4 follows from Corollary 11.2.6
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(note that the derived pullback R1/p ⊗L
R D(M) agrees with ϕ∗

RD(M), since
D(M) is flat over R by virtue of Remark 11.2.10). Condition (a) of Definition
11.3.4 follows from the exact sequence 0 → R[F ]⊗R M∨ → R[F ]⊗R M∨ →
D(M) → 0 of Proposition 11.2.5.

We now study the relationship between the collection of derived finitely
generated unit objects of D(R[F ]) and the collection of finitely generated
unit objects of ModFrR . We begin with a simple observation which is valid for
any Fp-algebra R:

Proposition 11.3.7. Let R be a commutative Fp-algebra and let M be a
nonzero object of Db

fgu(R[F ]). Then:

(1) There exists a largest integer n for which the Frobenius module Hn(M)
is nonzero.

(2) For the integer n of (1), the Frobenius module Hn(M) is finitely gen-
erated unit.

Proof. Without loss of generality, we can assume that M is a bounded
cochain complex of finitely generated projective left R[F ]-modules. Assertion
(1) is immediate. To prove (2), we first note that we can arrange (replacing
M by a quasi-isomorphic complex if necessary) that Mm = 0 for m > n;
in this case, we have Hn(M) = coker(Mn−1 → Mn), which guarantees that
Hn(M) is finitely generated as a left R[F ]-module. The spectral sequence

TorRs (R
1/p,Ht(M)) ⇒ Ht−s(R1/p ⊗L

R M)

supplies an isomorphism Hn(R1/p⊗L
RM) � ϕ∗

RH
n(M), so that condition (b)

of Definition 11.1.3 follows from condition (b) of Definition 11.3.4.

Corollary 11.3.8. Let R be a commutative Fp-algebra and let M be a
nonzero object of Db

fgu(R[F ]), and let n be an integer for which the coho-
mology groups Hm(M) vanish for m > n. Then there exists an object N ∈
ModFrR which is finitely generated and projective as an R-module and a map
f : D(N)[−n] → M in D(R[F ]) for which the induced map D(N) → Hn(M)
is surjective.

Proof. Applying Proposition 11.3.7, we conclude that Hn(M) a finitely gen-
erated unit. Using Proposition 11.2.11, we can choose an object N ∈ ModFrR
which is finitely generated and projective as an R-module and a surjection of
Frobenius modules g0 : D(N) → Hn(M). It follows from Proposition 11.2.9
that the map HomD(R[F ])(D(N)[−n],M) → HomR[F ](D(N),Hn(M)) is sur-
jective, so we can lift g0 to a morphism g : D(N)[−n] → M in the derived
category D(R[F ]).
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When the Fp-algebra R is sufficiently nice, there is a very close relation-
ship between Definitions 11.1.3 and 11.3.4:

Proposition 11.3.9. Let R be a regular Noetherian Fp-algebra. Then an
object M ∈ D(R[F ]) belongs to Db

fgu(R[F ]) if and only if it satisfies the
following conditions:

(1) For every integer n, the cohomology group Hn(M) is a finitely gener-
ated unit Frobenius module (in the sense of Definition 11.1.3).

(2) The cohomology groups Hn(M) vanish for n � 0 and for n 
 0.

The proof of Proposition 11.3.9 will require a few preliminary remarks.
We begin with a standard observation (see for example [11, 5.94]):

Lemma 11.3.10. Let R be a regular Noetherian ring and let M be a
finitely generated R-module. Then M has finite projective dimension as an
R-module.

Remark 11.3.11. In the situation of Lemma 11.3.10, it is not necessarily
true that every R-module has finite projective dimension: this holds if and
only if R has finite Krull dimension.

Proof of Lemma 11.3.10. We define finitely generated R-modules
{M(n)}n≥0 by recursion as follows: set M(0) = M , and for n > 0 let M(n)
denote the kernel of some surjection Rk → M(n − 1). For each n ≥ 0, let
U(n) ⊆ Spec(R) denote the set of prime ideals p ⊆ R for which the local-
ization M(n)p is a projective R-module. Then U(n) is an open subset of
Spec(R): more precisely, it is the largest open subset on which the coher-
ent sheaf associated to M(n) is locally free. Note that a point p belongs to
U(n) if and only if the localization Mp has projective dimension ≤ n as an
Rp-module. Since R is regular, the set U(n) contains every prime ideal of
height ≤ n. We therefore have

⋃
n≥0 U(n) = Spec(R). Since the spectrum

Spec(R) is quasi-compact, we must have U(n) = Spec(R) for some n 
 0,
which guarantees that M has projective dimension ≤ n.

Lemma 11.3.12. Let R be a regular Noetherian Fp-algebra and let M be a
finitely generated unit Frobenius module over R. Then M has finite projective
dimension as a left R[F ]-module.

Proof. Using Corollary 11.2.12, we can assume that M is the unitalization
Mu

0 , where M0 is a finitely generated R-module equipped with a map α :
M0 → ϕ∗

RM0. Invoking Lemma 11.3.10, we deduce that there exists an
integer n 
 0 such that M0 has finite projective dimension ≤ n as an R-
module. Note that R[F ] is isomorphic to the direct sum

⊕
m≥0R

1/pm

as a
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right R-module, and is therefore flat over R since the Frobenius map ϕR is
flat. It follows that the tensor product R[F ]⊗RM0 has projective dimension
≤ n as a left R[F ]-module. Using the exact sequence 0 → R[F ] ⊗R M0 →
R[F ] ⊗R M0 → Mu

0 → 0 of Proposition 11.2.5, we see that Mu
0 � M has

projective dimension ≤ n+ 1 as a left R[F ]-module.

Proof of Proposition 11.3.9. Let R be a commutative Fp-algebra and let
M ∈ D(R[F ]). We first show that if M satisfies conditions (1) and (2),
then M is derived finitely generated unit. Since Db

fgu(R[F ]) is a triangulated
subcategory of D(R[F ]), we may assume without loss of generality that M is
a finitely generated unit Frobenius module, regarded as a cochain complex
concentrated in a single degree. Then the map ψM : ϕ∗

RM → M is an
isomorphism. Since R is a regular Noetherian Fp-algebra, the Frobenius
morphism ϕR : R → R is flat; we may therefore identify ϕ∗

RM with the
derived pullback R1/p ⊗L

R M . It follows that M satisfies condition (b) of
Definition 11.3.4. We now verify (a). Using Lemma 11.3.12, we see that
there exists an integer n ≥ 1 that M has projective dimension ≤ n as a
left module over R[F ]. We proceed by induction on n. Assume first that
n > 1. Using Proposition 11.2.11, we can choose a short exact sequence of
Frobenius modules

0 → K → D(N) → M → 0

where N ∈ ModFrR is finitely generated and projective as an R-module. Since
D(N) has projective dimension ≤ 1 over R[F ] (Proposition 11.2.9), it follows
that K has projective dimension ≤ n− 1 as a left module over R[F ]. Using
Proposition 11.2.1, we deduce that K is a finitely generated unit Frobenius
module. Applying our inductive hypothesis, we conclude that K belongs to
Db

fgu(R[F ]). Since D(N) also belongs to Db
fgu(R[F ]) (Example 11.3.6), we

conclude that M belongs to Db
fgu(R[F ]) as desired.

We now treat the case where M has projective dimension ≤ 1 over R[F ].
Choose an exact sequence of Frobenius modules 0 → Q → P → M → 0,
where P is a finitely generated free left R[F ]-module. Our assumption that
M has projective dimension ≤ 1 guarantees that Q is a projective R[F ]-
module. Consequently, to verify condition (a) of Definition 11.3.4, it will
suffice to show that Q is finitely generated as an R[F ]-module. Equivalently,
it will suffice to show that the module M is finitely presented as an R[F ]-
module. This follows from the exact sequence 0 → K → D(N) → M →
0 above, since D(N) is a finitely presented left R[F ]-module (Proposition
11.2.5) and K is a finitely generated left R[F ]-module (Proposition 11.2.1).

We now prove the converse. Suppose that M is an object of Db
fgu(R[F ]);

we wish to show that M satisfies conditions (1) and (2). Condition (2) is
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obvious (since M is quasi-isomorphic to a bounded chain complex of pro-
jective left modules over R[F ]). Suppose that condition (1) fails: then there
exists some largest integer n such that Hn(M) is not a finitely generated unit

Frobenius module. Form a distinguished triangle M ′ f−→ M → M ′′ → M ′[1],
where f induces an isomorphism Hk(M ′) → Hk(M) for k ≤ n, and the
groups Hk(M ′) vanish for k > n. Then M ′′ satisfies conditions (1) and
(2), and therefore belongs to Db

fgu(R[F ]). It follows that M ′ also belongs to

Db
fgu(R[F ]). This contradicts Proposition 11.3.7, since the top cohomology

group Hn(M ′) � Hn(M) is not a finitely generated unit Frobenius mod-
ule.

11.4. The Emerton-Kisin Correspondence

We now introduce a variant of Construction 2.3.1.

Construction 11.4.1. Let R be a commutative Fp-algebra and let M be
a Frobenius module over R. We define a functor

SolEK(M) : CAlgétR → ModFp

by the formula SolEK(M)(A) = HomR[F ](M,A). It is not difficult to see that
the functor SolEK(M) is a sheaf for the étale topology, which is contravari-
antly functorial in M . We can therefore regard the functor M �→ SolEK(M)
as a functor of abelian categories SolEK : (ModFrR )op → Shvét(Spec(R),Fp).
We will refer to SolEK as the Emerton-Kisin solution functor.

Example 11.4.2. Let R be a commutative Fp-algebra. Then the Emerton-
Kisin solution functor SolEK carries the Frobenius module R[F ] to the struc-
ture sheaf of Spec(R): that is, to the quasi-coherent sheaf R̃ of Example
2.2.5.

Construction 11.4.3. Let R be a commutative Fp-algebra. We let
D−(R[F ]) denote the subcategory of D(R[F ]) spanned by those cochain
complexes M which are cohomologically bounded above: that is, which sat-
isfy Hn(M) � 0 for n 
 0. Note that D−(R[F ]) contains the subcategory
Db

fgu(R[F ]) ⊆ D(R[F ]) of Definition 11.3.4.
Let Dét(Spec(R),Fp) denote the derived category of the abelian cate-

gory Shvét(Spec(R),Fp). It follows immediately from the definitions that the
Emerton-Kisin solution functor SolEK : (ModFrR )op → Shvét(Spec(R),Fp) is
left exact. It therefore admits a right derived functor

RSolEK : D−(R[F ])op → Dét(Spec(R),Fp).
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We can now formulate the main result:

Theorem 11.4.4. Let R be a commutative Fp-algebra. Then the functor
RSolEK : D−(R[F ])op → Dét(Spec(R),Fp) induces a fully faithful embedding

Db
fgu(R[F ])op → Dét(Spec(R),Fp),

whose essential image is the subcategory Db
c(Spec(R),Fp) ⊆ Dét(Spec(R),

Fp) spanned by those complexes of sheaves which are cohomologically bounded
with constructible cohomology sheaves.

Remark 11.4.5. In the special case where R is a smooth algebra of finite
type over a field k, Theorem 11.4.4 essentially follows from Theorem 11.3
of [6], applied to the affine scheme X = Spec(R). Beware that the functor
RSolEK is not quite the same as the functor appearing in [6]: they differ by
a cohomological shift by the dimension of X. Of course, this is an issue of
normalization and has no effect on the conclusion of Theorem 11.4.4.

We will give a proof of Theorem 11.4.4 in §12 by developing a theory of
duality for Frobenius modules, which will allow us to relate RSolEK to the
solution functor Sol studied earlier in this paper (see §12.6).

12. Duality for Frobenius Modules

Let R be a commutative Fp-algebra. Our goal in this section is to prove
Theorem 11.4.4 by showing that the functor

RSolEK : Db
fgu(R[F ])op → Db

c(Spec(R);Fp)

is an equivalence of triangulated categories. Our strategy is to construct a
commutative diagram of triangulated categories σ:

Db
hol(R[F ])

D

��������������
RSol

���������������

Db
fgu(R[F ])op

RSolEK �� Db
c(Spec(R);Fp),

where Db
hol(R[F ]) is the holonomic derived category of Frobenius modules,

RSol is a derived version of the solution functor of Construction 2.3.1, and
D is a form of R-linear duality.

We begin in §12.1 with a general discussion of the derived category
of Frobenius modules D(R[F ]); in particular, we define the subcategory
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Db
hol(R[F ]), the functor RSol, and show that it is an equivalence of categories

(Corollary 12.1.7). This is essentially a formal consequence of the analogous
equivalence at the level of abelian categories (Theorem 7.4.1), since we have
already shown that the Riemann-Hilbert correspondence is compatible with
the formation of Ext-groups (Corollary 7.2.3).

Most of this section is devoted to the study of the duality functor D. In
§12.3, we introduce the notion of a weak dual for an object of the derived cat-
egory D(R[F ]) (Definition 12.3.4). The weak dual of an objectM ∈ D(R[F ])
depends functorially on M , provided that it exists: in other words, the for-
mation of weak duals determines a partially defined (contravariant) functor
from the derived category D(R[F ]) to itself. We have already met this func-
tor in a special case: if M is a Frobenius module which is finitely generated
and projective as an R-module, then the weak dual of M coincides with the
Frobenius module D(M) given by Construction 11.2.7. This follows from
a universal property of Construction 11.2.7, which we establish in §12.2
(Proposition 12.2.1). In §12.5, we exploit this fact to show that every ob-
ject of Db

hol(R[F ]) admits a weak dual (Proposition 12.5.1); the proof uses
a characterization of the holonomic derived category which we establish in
§12.4 (Theorem 12.4.1). It follows that the construction M �→ D(M) deter-
mines a functor D(M) : Db

hol(R[F ]) → D(R[F ])op, which we prove to be
fully faithful with essential image Db

fgu(R[F ]) (Theorem 12.5.4). In §12.6 we
show that the diagram σ commutes (up to canonical isomorphism), thereby
completing the proof of Theorem 11.4.4.

12.1. The Derived Riemann-Hilbert Correspondence

Our first goal is to extend the equivalence Sol : ModholR → Shvét(Spec(R),Fp)
of Theorem 7.4.1 to the level of derived categories. We begin by establishing
some notation.

Notation 12.1.1. Let R be a commutative Fp-algebra. We define subcat-
egories

Dhol(R[F ]) ⊆ Dalg(R[F ]) ⊆ Dperf(R[F ]) ⊆ D(R[F ])

as follows: an object M ∈ D(R[F ]) belongs to the subcategory Dperf(R[F ])
(respectively Dalg(ModFrR ), Dhol(R[F ])) if each cohomology group Hi(M) is
perfect (respectively algebraic, holonomic) when regarded as a Frobenius
module over R. It follows from Remark 3.2.2, Proposition 4.2.4, and Corol-
lary 4.3.3, we see that Dperf(R[F ]), Dalg(R[F ]), and Dhol(R[F ]) are trian-
gulated subcategories of D(R[F ]).
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We let D+(R[F ]) denote the full subcategory of D(R[F ]) spanned by
those objects M which are (cohomologically) bounded below: that is, for
which the cohomology groups Hi(M) vanish for i � 0. We let Db(R[F ])
denote the full subcategory of D(R[F ]) spanned by those objects which are
bounded above and below: that is, for which the cohomology groups Hi(M)
vanish both for i � 0 and i 
 0. Similarly, we have full subcategories

D+
hol(R[F ]) ⊆ D+

alg(R[F ]) ⊆ D+
perf(R[F ]) ⊆ D+(R[F ])

Db
hol(R[F ]) ⊆ Db

alg(R[F ]) ⊆ Db
perf(R[F ]) ⊆ Db(R[F ])

which are defined in the obvious way.

For any commutative Fp-algebra R, the inclusion functor ModperfR ↪→
ModFrR is exact, and therefore extends to a functor of derived categories

D(ModperfR ) → D(R[F ]).

Proposition 12.1.2. Let R be a commutative Fp-algebra. Then the forgetful

functor D(ModperfR ) → D(R[F ]) is a fully faithful embedding, whose essential
image is the full subcategory Dperf(R[F ]) ⊆ D(R[F ]).

Proof. The inclusion functor ModperfR ↪→ ModFrR has a left adjoint, given by
the perfection functor M �→ M1/p∞

of Notation 3.2.3. This functor is exact,
and therefore extends to a functor of derived categories F : D(R[F ]) →
D(ModperfR ) which is left adjoint to the forgetful functor. It now suffices to
observe that the counit map (F ◦G)(M) → M is an isomorphism for every

object M ∈ D(ModperfR ), and that the unit map N → (G ◦ F )(N) is an iso-
morphism precisely when N belongs to the full subcategory Dperf(R[F ]) ⊆
D(R[F ]) (since both of these assertions can be checked at the level of coho-
mology).

We now wish to compare the derived categories of Notation 12.1.1 with
suitable derived categories of étale sheaves.

Notation 12.1.3. Let R be any commutative ring. We let Dét(Spec(R),Fp)
denote the derived category of the abelian category Shvét(Spec(R),Fp) of
p-torsion étale sheaves on Spec(R). We define full subcategories

Db
c(Spec(R),Fp) ⊆ D+

ét(Spec(R),Fp) ⊆ Dét(Spec(R),Fp)

as follows:

• An object F ∈ Dét(Spec(R),Fp) belongs to D+
ét(Spec(R),Fp) if and

only if the cohomology sheaves Hn(F ) vanish for n � 0.
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• An object F ∈ Dét(Spec(R),Fp) belongs to Db
c(Spec(R),Fp) if and

only if the cohomology sheaves Hn(F ) are constructible for all n and
vanish for |n| 
 0.

If R is a commutative Fp-algebra, then the Riemann-Hilbert functor

RH : Shvét(Spec(R),Fp) → ModperfR ⊆ ModFrR is exact, and therefore extends
to a functor of derived categories

RH : Dét(Spec(R),Fp) → D(ModperfR ) � Dperf(R[F ]).

This functor is t-exact, and therefore restricts to a functor D+
ét(Spec(R),

Fp) → D+(ModperfR ) � D+
perf(R[F ]). This restriction admits a right adjoint

RSol : D+
perf(R[F ]) � D+(ModperfR ) → D+

ét(Spec(R),Fp),

given by the total right derived functor of Sol : ModperfR → Shvét(Spec(R),
Fp).

Remark 12.1.4. For every object M ∈ D+
perf(R[F ]), we have a hyperco-

homology spectral sequence Sols(Ht(M)) ⇒ Hs+t(RSol(M)). Note that the
groups Sols(Ht(M)) vanish for s ≥ 2 (Proposition 7.2.1 and Theorem 2.4.3,
or Proposition 9.4.1), so this spectral sequence degenerates to yield short
exact sequences

0 → Sol1(Hn−1(M)) → HnRSol(M) → Sol(Hn(M)) → 0.

If M belongs to the subcategory D+
alg(R[F ]) ⊆ D+

perf(R[F ]), then the sheaves

Sol1(Hn−1(M)) vanish (Proposition 9.5.6); we therefore obtain isomorphisms
H∗(RSol(M)) � Sol(H∗(M)).

Theorem 12.1.5. Let R be a commutative Fp-algebra. Then the functor
RH : D+

ét(Spec(R),Fp) → D+(R[F ]) is a fully faithful embedding, whose
essential image is the full subcategory D+

alg(R[F ]) ⊆ D+(R[F ]).

Proof. Since the Riemann-Hilbert functor RH : Shvét(Spec(R),Fp) →
ModperfR is exact at the level of abelian categories, its extension to the level
of derived categories is t-exact: that is, we have canonical isomorphisms
H∗(RH(F )) � RH(H∗(F )) for each F ∈ D+

ét(Spec(R),Fp). It follows from
Theorem 6.1.1 that the functor RH carriesD+

ét(Spec(R),Fp) intoD
+
alg(R[F ]).

Combining this observation with Remark 12.1.4, we obtain isomorphisms

H∗((RSol ◦RH)(F )) � Sol(H∗(RH(F ))) � (Sol ◦RH)(H∗(F )).
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It follows from Proposition 7.2.1 that the unit map F → (RSol ◦RH)(F )
is an isomorphism: that is, the derived Riemann-Hilbert functor is fully
faithful. To complete the proof, it will suffice to show that for every object
M ∈ D+

alg(R[F ]), the counit map (RH ◦RSol)(M) → M is an isomorphism.
Applying Remark 12.1.4 again, we obtain isomorphisms

H∗((RH ◦RSol)(M)) � RH(H∗(RSol(M))) � (RH ◦ Sol)(H∗(M)),

so that the desired result follows from Theorem 2.4.3.

Remark 12.1.6. If R is a Noetherian Fp-algebra of finite Krull dimension,
then one can show that the category of étale sheaves Shvét(Spec(R),Fp) has
finite injective dimension. In this case, it is not hard to see that Theorem
12.1.5 can be extended to yield an equivalence RH : Dét(Spec(R),Fp) →
D(R[F ]) of unbounded derived categories. We do not know if this holds in
general.

Combining Theorem 12.1.5 with Theorem 7.4.1, we obtain the following:

Corollary 12.1.7. Let R be a commutative Fp-algebra. Then the Riemann-
Hilbert functor RH : Shvét(Spec(R),Fp) → ModFrR induces an equivalence of
triangulated categories Db

c(Spec(R),Fp) → Db
hol(R[F ]); an inverse equiva-

lence is given by applying the derived solution functor RSol.

Theorem 12.1.5 also implies that a slightly weaker version Proposition
12.1.2 holds for algebraic Frobenius modules:

Corollary 12.1.8. Let R be a commutative Fp-algebra. Then the inclusion

functor ModalgR ↪→ ModFrR extends to a fully faithful embedding of derived

categories D+(ModalgR ) → D+(R[F ]), whose essential image is the full sub-
category D+

alg(ModFrR ) ⊆ D+(R[F ]).

Proof. Since the Riemann-Hilbert functor RH : Shvét(Spec(R),Fp) →
ModalgR is an equivalence of categories (Theorem 1.0.2), Corollary 12.1.8
is a reformulation of Theorem 12.1.5.

12.2. Duality for R-Projective Frobenius Modules

Let R be a commutative Fp-algebra and let M ∈ ModFrR be finitely generated
and projective as an R-module. In §11.2, we introduced a Frobenius module
D(M), given by the direct limit of the sequence

M∨ ψ∨
M−−→ ϕ∗

RM
∨ ϕ∗

Rψ∨
M−−−−→ ϕ2∗

R M∨ → · · · .
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As the notation suggests, we can think of D(M) as a kind of dual of M in
the setting of Frobenius modules. Our goal in this section is to make this
idea precise. We begin by observing that there is a canonical map

c : R → M ⊗R M∨ → M ⊗R D(M).

It is not hard to see that c is a map of Frobenius modules (where we regard
the tensor product M ⊗R D(M) as a Frobenius module via Construction
8.1.1). Moreover, it enjoys the following universal property:

Proposition 12.2.1. Let R be a commutative Fp-algebra and let M and N
be Frobenius modules over R, where M is finitely generated and projective as
an R-module. Then composition with the map c : R → M ⊗R D(M) induces
isomorphisms ExtnR[F ](D(M), N) → ExtnR[F ](R,M ⊗R N).

Proof. Using Proposition 11.2.5 and Remark 11.3.3, we see that both sides
can be computed as the cohomology groups of the two-term chain complex

M ⊗R N
id−ϕM⊗ϕN−−−−−−−→ M ⊗R N.

Remark 12.2.2. The abelian groups ExtnR[F ](D(M), N) � ExtnR[F ](R,M⊗R

N) of Proposition 12.2.1 vanish for n ≥ 2.

We also have the following dual version of Proposition 12.2.1:

Proposition 12.2.3. Let R be a commutative Fp-algebra and let M and N
be Frobenius modules over R, where M is finitely generated and projective as
an R-module. If N is perfect, then composition with the map c : R → M ⊗R

D(M) induces isomorphisms ExtnR[F ](M,N) → ExtnR[F ](R,N ⊗R D(M)).

Proof. Using Remark 11.3.3, we can identify Ext∗R[F ](R,N ⊗R D(M)) with
the direct limit of the diagram

Ext∗R[F ](M,N) → Ext∗R[F ](ϕ
∗
RM,N) → Ext∗R[F ](ϕ

2∗
R M,N) → · · · ,

where the transition maps are given by precomposition with the map ψM :
ϕ∗
RM → M of Notation 11.1.1. It will therefore suffice to show that each of

the transition maps Ext∗R[F ](ϕ
k∗
R M,N) → Ext∗R[F ](ϕ

(k+1)∗
R M,N) is an iso-

morphism. This follows from the assumption that N is perfect, since the map

ψM induces an isomorphism of perfections (ϕk∗
R M)1/p

∞ → (ϕ
(k+1)∗
R M)1/p

∞

(Remark 11.1.2).
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12.3. Weak Duality in D(R[F ])

We now introduce some language to place Proposition 12.2.1 in a more

general context. First, we need a bit of notation.

Construction 12.3.1 (Derived Tensor Products). Let R be a commutative

Fp-algebra. Then we can identify D(R[F ]) with the category whose objects

are K-projective cochain complexes of left R[F ]-modules (in the sense of

Spaltenstein, see [15, Tag 070G] for a summary), and whose morphisms

are homotopy classes of chain maps. Using Example 8.1.2, it is not hard

to show that if M• and N• are K-projective cochain complexes, then the

tensor product M• ⊗R N• is also K-projective (where we regard the tensor

product as a chain complex of left R[F ]-modules via Construction 8.1.1).

This construction gives rise to a functor

⊗L
R : D(R[F ])×D(R[F ]) → D(R[F ])

which we will refer to as the derived tensor product.

Remark 12.3.2. Let R be a commutative Fp-algebra. Then the forgetful

functor D(R[F ]) → D(R) is compatible with derived tensor products.

Remark 12.3.3. Let R be a commutative Fp-algebra and let M and N be

Frobenius modules over R, which we regard as objects of D(R[F ]). Then we

have canonical isomorphisms Hn(M ⊗L
R N) � TorR−n(M,N) in the category

of Frobenius modules. More generally, if M and N are arbitrary object of

D(R[F ]), we have a convergent spectral sequence⊕
i+j=t

TorRs (H
i(M),Hj(N)) ⇒ Ht−s(M ⊗L

R N).

Definition 12.3.4. Let R be a commutative Fp-algebras and let M and M ′

be objects of the derived category D(R[F ]). We will say that a morphism

c : R → M ⊗L
R M ′ exhibits M ′ as a weak dual of M if, for every object

N ∈ D(R[F ]), composition with c induces a bijection

HomD(R[F ])(M
′, N) → HomD(R[F ])(R,M ⊗L

R N).

Proposition 12.3.5. Let R be a commutative Fp-algebra and let M ∈
ModFrR be a projective R-module of finite rank. Then the map c : R →
M ⊗R D(M) of Proposition 12.2.1 exhibits D(M) as a weak dual of M .
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Proof. We first observe that M ⊗R D(M) can be identified with the derived
tensor product M ⊗L

R D(M) (since both M and D(M) are flat R-modules).
We wish to show that, for every object N ∈ D(R[F ]), composition with c
induces an isomorphism HomD(R[F ])(D(M), N) → HomD(R[F ])(R,M ⊗L

RN).
Using the fact that D(M) has finite projective dimension as an R[F ]-module
(Proposition 11.2.9), we can reduce to the case where N is concentrated in a
single degree, in which case the desired result is a translation of Proposition
12.2.1.

Notation 12.3.6. LetR be a commutative Fp-algebra and letM ∈D(R[F ]).
It follows immediately from the definitions that if there exists a morphism
c : R → M⊗L

RM
′ which exhibitsM ′ as a weak dual ofM , then the objectM ′

(and the morphism c) are well-defined up to unique isomorphism (in the de-
rived category D(R[F ])). In this case, we will say that M is weakly dualizable
and denote its weak dual M ′ by D(M). Note that, by virtue of Proposition
12.3.5, this notation is consistent with that of Construction 11.2.7.

Warning 12.3.7. In the situation Definition 12.3.4, the roles of M and M ′

are not symmetric. A morphism c : R → M ⊗L
R M ′ which exhibits M ′ as

a weak dual of M generally does not exhibit M as a weak dual of M ′ (see
Example 12.3.10). This asymmetry already appeared in §12.2: note that in
the statement of Proposition 12.2.3 we required the Frobenius module N to
be perfect, but no corresponding hypothesis was needed in the statement of
Proposition 12.2.1.

Proposition 12.3.8. Let R be a commutative Fp-algebra and let c : R →
M ⊗L

R M ′ be a morphism in D(R[F ]) which exhibits M ′ as a weak dual of
M . Then the composite map

R
c−→ M ⊗L

R M ′ → M1/p∞ ⊗L
R M ′

exhibits M ′ as a weak dual of the perfection M1/p∞
.

We will deduce Proposition 12.3.8 from the following variant of Propo-
sition 3.2.9:

Lemma 12.3.9. Let R be a commutative Fp-algebra and let f : M → M ′ be
a morphism in D(R[F ]) which induces an isomorphism M1/p∞ → M ′ 1/p∞

.
Then the induced map

HomD(R[F ])(R,M) → HomD(R[F ])(R,M ′)

is an isomorphism.
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Proof. Let N denote the cone of the morphism M → M ′; we will show
that HomD(R[F ])(R,N [k]) vanishes for every integer k. By virtue of Remark
11.3.3, it will suffice to show that the map id−ϕN : H∗(N) → H∗(N) is an
isomorphism. This is clear: the assumption that f induces an equivalence
M1/p∞ � M ′ 1/p∞

guarantees that N1/p∞
vanishes, so that the action of ϕN

is locally nilpotent on H∗(N).

Proof of Proposition 12.3.8. Let c : R→M⊗L
RM

′ be a morphism inD(R[F ])
which exhibits M ′ as a weak dual of M , and let N be any object of D(R[F ]).
Then the composite map

HomD(R[F ])(M
′, N) → HomD(R[F ])(R,M ⊗L

R N)

→ HomD(R[F ])(R,M1/p∞ ⊗L
R N)

is an isomorphism, since the left map is an isomorphism (by virtue of our
assumption that M ′ is a weak dual of M) and the right map is an isomor-
phism (Lemma 12.3.9). Allowing N to vary, we deduce that M ′ is also a
weak dual of M1/p∞

.

Example 12.3.10. Let R be a commutative Fp-algebra. Then the canonical
isomorphism R � R⊗L

RR exhibits R as a weak dual of itself. It follows from
Proposition 12.3.8 that unit map u : R → R1/p∞ � R1/p∞ ⊗L

RR also exhibits
R as a weak dual of R1/p∞

. However, u cannot exhibit R1/p∞
as a weak dual

of R (unless R is perfect), since the weak dual of R is determined uniquely
up to isomorphism.

We conclude this section with another application of Lemma 12.3.9:

Proposition 12.3.11. Let R be a commutative Fp-algebra and let c : R →
M ⊗L

R M ′ be a morphism in D(R[F ]) which exhibits M ′ as a weak dual of
M . Then M ′ belongs to Db

fgu(R[F ]).

Proof. From the isomorphism HomD(R[F ])(M
′, •) � HomD(R[F ])(R,M ⊗L

R •)
(and the compactness of R as an object of D(R[F ])), we conclude that M ′

is a compact object of D(R[F ]). It will therefore suffice to show that the
canonical map ψM ′ : R1/p ⊗L

R M ′ → M ′ is an isomorphism. Note that ψM ′

can be regarded as a morphism in D(R[F ]); it will therefore suffice to show
that for each N ∈ D(R[F ]), composition with ψM ′ induces an isomorphism

θ : HomD(R[F ])(M
′, N) → HomD(R[F ])(R

1/p ⊗L
R M ′, N)

� HomD(R[F ])(M
′, N1/p).
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Invoking the universal property of M ′, we can identify θ with the natural
map HomD(R[F ])(R,M ⊗L

R N) → HomD(R[F ])(R,M ⊗R N1/p) (induced by

the Frobenius map ϕN : N → N1/p). This map is an isomorphism, since the
induced map M ⊗L

RN → M ⊗L
RN1/p induces an isomorphism of perfections

(Lemma 12.3.9).

12.4. Presentations of Holonomic Complexes

Let R be a commutative Fp-algebra and let M be a Frobenius module over
R. By definition, M is holonomic if and only if there exists an isomorphism

M � M
1/p∞

0 , where M0 ∈ ModFrR is finitely presented as an R-module. Our
goal in this section is to prove an analogous statement for objects of the
derived category D(R[F ]):

Theorem 12.4.1. Let R be a commutative Fp-algebra and let M be an
object of D(R[F ]). The following conditions are equivalent:

(1) The complex M belongs to the subcategory Db
hol(R[F ]) ⊆ D(R[F ]): that

is, it is cohomologically bounded with holonomic cohomologies.

(2) There exists an isomorphism M � M
1/p∞

0 in the category D(R[F ]),
where M0 ∈ D(R[F ]) has the property that its image in D(R) is com-
pact.

The proof of Theorem 12.4.1 will require some preliminaries. We first
study condition (2) of Theorem 12.4.1. Note that an object M ∈ D(R[F ])
has compact image in D(R) if and only if it is quasi-isomorphic to a bounded
cochain complex N∗ of finitely generated projective R-modules. We now
show that, in this situation, we can arrange thatN∗ is also a cochain complex
of Frobenius modules:

Lemma 12.4.2. Let R be a commutative Fp-algebra and let M be an object
of the derived category D(R[F ]). The following conditions are equivalent:

(1) The object M is isomorphic (in D(R[F ])) to a bounded cochain com-
plex of Frobenius modules, each of which is projective of finite rank as
an R-module.

(2) The image of M in D(R) is compact: that is, it is isomorphic to a
bounded cochain complex of projective R-modules of finite rank.

Proof. The implication (1) ⇒ (2) is clear. Conversely, suppose that (2) is
satisfied; we will prove (1). Assume that, as an object of D(R), the com-
plex M is quasi-isomorphic to a finite cochain complex of finitely generated
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projective R-modules concentrated in degrees {a− n, a− n+ 1, . . . , a}. Re-
placing M by a shift if necessary, we can assume a = 0. We claim that, as
an object of D(R[F ]), the complex M is quasi-isomorphic to a finite cochain
complex of Frobenius modules, which are finitely generated and projective
over R, also concentrated in degrees {−n,−n + 1, . . . , 0}. We proceed by
induction on n. If n = 0, then the cohomology groups Hi(M) vanish for
i �= 0 and H0(M) is a projective R-module of finite rank. In this case, the
desired result follows from the observation that M is isomorphic to H0(M)
as an object of D(R[F ]). Let us therefore suppose that n > 0, and set
N = H0(M). Then N is finitely presented as an R-module, so that N1/p∞

is
a holonomic Frobenius module over R. Choose elements x1, x2, . . . , xk which
generate N as an R-module. It follows from Proposition 4.2.1 that the image
of each xi in N1/p∞

is annihilated by some element Pi ∈ R[F ] of the form
Fmi + c1,iF

mi−1 + · · · + cmi,i. Replacing Pi by F aPi for a 
 0, we may
assume that Pi(xi) = 0. Choose a cocycle xi ∈ M0 representing xi, so that
we can write Pi(xi) = dyi for some elements yi ∈ M−1. The elements xi and
yi determine a map of cochain complexes f : M ′ → M , where M ′ is the
two-term complex

· · · → 0 → R[F ]k
(P1,...,Pk)−−−−−−→ R[F ]k → 0 → · · · .

Note that M ′ is isomorphic, as an object of D(R[F ]), to the Frobenius
module K =

⊕
iR[F ]/R[F ]Pi, which is projective of finite rank as an R-

module. Extend f to a distinguished triangle Q
g−→ M ′ f−→ M → Q[1] in

D(R[F ]). Then, as an object of D(R), the complex Q is quasi-isomorphic to
a chain complex of finitely generated projective R-modules concentrated in
degrees {1 − n, . . . , 0}. Applying our inductive hypothesis, we may assume
that each Qi is a projective R-module of finite rank and that Qi vanishes
unless −n < i ≤ 0. Then g determines a map of Frobenius modules Q0 → K,
and M is quasi-isomorphic to the cochain complex of Frobenius modules

· · · → 0 → Q−n+1 → Q−n+2 → · · · → Q0 → K → 0 → · · ·

Remark 12.4.3. Let R be a commutative Fp-algebra and let M ∈ D(R[F ])
be an object whose image in D(R) is compact. ThenM is also compact as an
object of D(R[F ]): this follows immediately from Remark 11.3.3. However,
the converse is false: the Frobenius module R[F ] is compact as an object of
D(R[F ]), but its image in D(R) is not compact unless R � 0.
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We now apply Lemma 12.4.2 to give a simple characterization of the
holonomic derived category Db

hol(R[F ]).

Lemma 12.4.4. Let R be a commutative Fp-algebra. Then Db
hol(R[F ]) is

the smallest triangulated subcategory of D(R[F ]) which contains every object
of the form M1/p∞

, where M ∈ ModFrR is finitely generated and projective
as an R-module.

Proof. Let C be a triangulated subcategory of D(R[F ]) which contains every
object of the form M1/p∞

, where M ∈ ModFrR is finitely generated and pro-
jective over R. We wish to show that C contains every object of Db

hol(R[F ]).
Using our assumption that C is a triangulated subcategory, we are reduced
to showing that C contains every holonomic Frobenius module N over R
(regarded as a chain complex concentrated in degree zero). Using Proposi-
tion 4.1.3, we can assume that N has the form (R⊗R0

N ′)1/p
∞
, where R0 is

a finitely generated subring of R and N ′ is a holonomic Frobenius module
over R0. Choose a surjection A → R0, where A is a polynomial ring over
Fp. Then N ′ is also holonomic when regarded as a Frobenius module over

A (Remark 5.3.2). Choose an isomorphism N ′ � N
′ 1/p∞

0 , where N ′
0 is a

Frobenius module over A which is finitely generated as an A-module. Since
A is a regular Noetherian ring, the A-module N ′

0 admits a finite resolution
by projective A-modules of finite rank. It follows from Lemma 12.4.2 that
N ′

0 admits a finite resolution

· · · → P3 → P2 → P1 → P0 → N ′
0 → 0

in the category of Frobenius modules over A, where each Pk is projective
of finite rank as an A-module. Applying Corollary 3.5.2, we see that (R⊗A

P•)1/p
∞

is a finite resolution of N by objects of ModFrR which belong to C.
Since C is a triangulated subcategory of D(R[F ]), we deduce that N also
belongs to C.

Proof of Theorem 12.4.1. Let R be a commutative Fp-algebra and let C de-
note the full subcategory of D(R[F ]) spanned by those objects which are

isomorphic to M
1/p∞

0 , for some M0 ∈ D(R[F ]) having compact image in
D(R). We wish to show that C = Db

hol(R[F ]). We first show that C is con-
tained in Db

hol(R[F ]). Let M0 ∈ D(R[F ]) have compact image in D(R); we

wish to show that M
1/p∞

0 belongs to Db
hol(R[F ]). Using Lemma 12.4.2, we

can assume that M0 is a bounded cochain complex consisting of Frobenius
modules which are finitely generated and projective over R. SinceDb

hol(R[F ])
is a triangulated subcategory of D(R[F ]), we can reduce to the case where
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M0 is a finitely generated projective R-module, concentrated in degree zero.

In this case, the inclusion is clear (since M
1/p∞

0 is a holonomic Frobenius
module over R).

We now show that Db
hol(R[F ]) is contained in C. By virtue of Lemma

12.4.4, it will suffice to show that C is a triangulated subcategory ofD(R[F ]).
It is clear that C contains zero objects of D(R[F ]) and is closed under shifts;
it will therefore suffice to show that it contains the cone of any morphism f :

M → N where M and N belong to C. Write M = M
1/p∞

0 and N = N
1/p∞

0 ,
where M0 and N0 are objects of D(R[F ]) having compact image in D(R).
Using Lemma 12.4.2, we can further assume that M0 is a cochain complex
of Frobenius modules which are finitely generated and projective over R.
Note that N can be identified with the homotopy colimit of the diagram

N
ϕN−−→ N1/p ϕN−−→ N1/p2 → · · · .

Since M0 is a compact object of D(R[F ]) (Remark 12.4.3), the composite

map M0 → M
f−→ N factors through some map f ′ : M0 → N

1/pn

0 for n 
 0.
Then f ′ is adjoint to a map f ′′ : ϕn∗

R M0 → N0, where ϕn∗
R M0 is the cochain

complex obtained from M0 by applying the pullback functor ϕn∗
R degreewise.

Note that ϕn∗
R M0 is also a bounded cochain complex of finitely generated

projective R-modules, and therefore has compact image in D(R). Let C0

be a cone of f ′′. Using Remark 11.1.2 (and the exactness of the functor

K �→ K1/p∞
), we see that the cone of f can be identified with C

1/p∞

0 , and
therefore belongs to C as desired.

Remark 12.4.5. With a bit more effort, one can prove the following stron-
ger version of Theorem 12.4.1: the construction M �→ M1/p∞

induces an
equivalence of triangulated categories C / C0 � Db

hol(R[F ]), where C denotes
the triangulated subcategory of D(R[F ]) spanned by those objects having
compact image in D(R), C0 ⊆ C is the triangulated subcategory spanned by
those objects M ∈ C satisfying M1/p∞ � 0, and C / C0 denotes the Verdier
quotient of C by C0. Since we will not need this fact, the proof is left to the
reader.

12.5. The Duality Functor

We now return to the study of the duality construction M �→ D(M) of §12.3.
Proposition 12.5.1. Let R be a commutative Fp-algebra and let M be an
object of Db

hol(R[F ]). Then M is weakly dualizable (in the sense of Notation
12.3.6).
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Proof. Using Theorem 12.4.1, we can assume M = M
1/p∞

0 , where M0 ∈
D(R[F ]) has compact image in D(R). By virtue of Lemma 12.4.2, we may
assume that M0 is a bounded cochain complex of finitely generated pro-
jective R-modules. Let M∨

0 denote its R-linear dual (which we also regard
as a cochain complex of finitely generated projective R-modules) and let
D(M0) denote the cochain complex of Frobenius modules obtained by ap-
plying Construction 11.2.2 termwise. Let c denote the composite map

R → M0 ⊗R M∨
0 → M0 ⊗R D(M0).

A simple calculation shows that c is a morphism of (cochain complexes of)
Frobenius modules. Note that the tensor product M0⊗RD(M0) is equivalent
to the derived tensor product M0 ⊗L

R D(M0) (since both M0 and D(M0) are
bounded cochain complexes of flat R-modules). We claim that c exhibits
D(M0) as a weak dual of M0 in the derived category D(R[F ]). In other
words, we claim that for every object N ∈ D(R[F ]), composition with c
induces a bijection

HomD(R[F ])(D(M0), N) → HomD(R[F ])(R,M0 ⊗L
R N).

To prove this, we can proceed by induction on the length of the cochain
complex M0 and thereby reduce to the case where M0 is concentrated in a
single degree, which follows from Proposition 12.3.5. Applying Proposition
12.3.8, we deduce that the composite map

R
c−→ M0 ⊗L

R D(M0) → M
1/p∞

0 ⊗L
R D(M0) � M ⊗L

R D(M0)

exhibits D(M0) as a weak dual of M , so that M is weakly dualizable as
desired.

Recall that a morphism c : R → M ⊗L
R M ′ which exhibits M ′ as a weak

dual of M need not exhibit M as a weak dual of M ′. However, holonomic
Frobenius complexes do enjoy the following weak form of biduality.

Notation 12.5.2. Let R be a commutative Fp-algebra. We let Dperf(R[F ])
denote the full subcategory of D(R[F ]) spanned by those cochain complexes
M whose cohomology groups H∗(M) are perfect Frobenius modules.

Proposition 12.5.3. Let R be a commutative Fp-algebra and let M be an
object of Db

hol(R[F ]) with weak dual D(M). Then, for every object N ∈
Dperf(R[F ]), composition with the canonical map c : R → M ⊗L

R D(M)
induces an isomorphism

HomD(R[F ])(M,N) → HomD(R[F ])(R,N ⊗L
R D(M)).
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Proof. Let us say that an object M ∈ Db
hol(R[F ]) is good if, for every object

N ∈ Dperf(R[F ]), the canonical map HomD(R[F ])(M,N) → HomD(R[F ])(R,

N ⊗L
R D(M)) is an isomorphism. We wish to show that every object of

M ∈ Db
hol(R[F ]) is good. It is easy to see that the good objects of Db

hol(R[F ])
span a triangulated subcategory. By virtue of Lemma 12.4.4, it will suffice

to show that every object of the form M
1/p∞

0 is good, where M0 ∈ ModFrR
is finitely generated and projective as an R-module. In this case, for each
N ∈ Dperf(R[F ]), we have a commutative diagram

HomD(R[F ])(M,N) ��

��

HomD(R[F ])(R,N ⊗L
R D(M))

��
HomD(R[F ])(M0, N)

θN �� HomD(R[F ])(R,N ⊗L
R D(M0));

here the right vertical map is bijective by virtue of Proposition 12.3.8, and
the left vertical map is bijective by virtue of our assumption that N is
perfect. It will therefore suffice to show that the map θN is an isomorphism
for every perfect object N ∈ Dperf(R[F ]). Using the fact that M0 and R
admit finite resolutions by projective left R[F ]-modules (Remark 12.4.3),
we can reduce to the situation where N is concentrated in a single degree.
In this case, the desired result follows from Proposition 12.2.3.

We are now ready to prove the main result of this section:

Theorem 12.5.4. Let R be a commutative Fp-algebra. Then the construc-
tion M �→ D(M) induces an equivalence of categories Db

hol(R[F ]) →
Db

fgu(R[F ])op.

Proof. It follows from Propositions 12.5.1 and 12.3.11 that the duality func-
tor D : Db

hol(R[F ]) → Db
fgu(R[F ])op is well-defined. We next claim that it is

fully faithful. Let M and N be objects of Db
hol(R[F ]); we wish to show that

the canonical map

θ : HomD(R[F ])(M,N) → HomD(R[F ])(D(N),D(M)).

Using the definition of D(N), we can identify the codomain of θ with the set
HomD(R[F ])(R,N ⊗L

R D(M)). Under this identification, θ corresponds to the
comparison map of Proposition 12.5.3, which is an isomorphism because N
is perfect.

Let C denote the essential image of the weak duality functor D :
Db

hol(R[F ]) → Db
fgu(R[F ])op, so that C is a triangulated subcategory of
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Db
fgu(R[F ]). We will complete the proof by showing that every object N ∈

Db
fgu(R[F ]) belongs to C. We will deduce this from the following assertion:

(∗) There exists a diagram

· · · → N(2) → N(1) → N(0) → N(−1) → N(−2) → · · · → N

in the derived category D(R[F ]), where each N(k) belongs to C and
each of the maps Hn(N(k)) → Hn(N) is an isomorphism for n > k
and a surjection for n = k.

Assume (∗) for the moment. Then N can be identified with the homotopy
colimit of the diagram {N(k)}k∈Z in the triangulated category D(R[F ]).
Since N is a compact object of D(R[F ]), it follows that the identity map
idN : N → N factors through N(k) for some integer k: that is, N is a
direct summand of N(k). Consequently, to prove that N belongs to C, it
will suffice to show that the category C is idempotent complete. Using the
equivalence D : Db

hol(R[F ]) → Cop, we are reduced to proving that the
category Db

hol(R[F ]) is idempotent complete, which is clear (since any direct
summand of a holonomic Frobenius module over R is itself holonomic; see
Corollary 4.2.2).

It remains to prove (∗). We will construct the objectsN(k) by descending
induction on k, taking N(k) = 0 for k 
 0. To carry out the induction, it
will suffice to prove the following:

(∗′) Let f : N(k+1) → N be a morphism in D(R[F ]), where N(k+1) ∈ C
and the induced map Hn(N(k + 1)) → Hn(N) is an isomorphism for
n > k+1 and a surjection for n = k+1. Then the morphism f factors

as a composition N(k + 1)
f ′

−→ N(k)
f ′′

−→ N , where N(k) ∈ C and the
map Hn(N(k)) → Hn(N) is an isomorphism for n > k and a surjection
for n = k.

To prove (∗′), let C denote the cone of f , so that C belongs toDb
fgu(R[F ]) and

the cohomology groups Hn(C) vanish for n > k. Using Corollary 11.3.8, we
can choose an object M ∈ ModFrR which is finitely generated and projective
as an R-module and a map g : D(M)[−n] → C which induces a surjection
D(M) → Hn(C). Invoking the octahedral axiom, we conclude that f factors

as a compositionN(k+1)
f ′

−→ N(k)
f ′′

−→ N , where the cone of f ′ is isomorphic
to D(M)[−k] (which guarantees that N(k) belongs to C) and the cone of f ′′

is isomorphic to the cone of g (and therefore has vanishing cohomology in
degrees ≥ k).
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12.6. Comparison of Solution Functors

We will deduce Theorem 11.4.4 from the following comparison result:

Theorem 12.6.1. Let R be a commutative Fp-algebra. Then the diagram
of categories

Db
hol(R[F ])

RSol

���������������
D

��������������

Db
fgu(R[F ])op

RSolEK �� Dét(Spec(R),Fp)

commutes up canonical isomorphism. Here RSol denotes the derived solution
functor of §12.1, D is the duality functor of Theorem 12.5.4, and RSolEK is
the derived Emerton-Kisin solution functor of Construction 11.4.3.

Proof of Theorem 11.4.4 from Theorem 12.6.1. Theorem 12.5.4 asserts that
the functor D : Db

hol(R[F ]) → Db
fgu(R[F ])op is an equivalence of cate-

gories, and Corollary 12.1.7 asserts that the functor RSol : Db
hol(R[F ]) →

Dét(Spec(R),Fp) is a fully faithful embedding whose essential image is the
constructible derived category Db

c(Spec(R),Fp) ⊆ Dét(Spec(R),Fp). Using
the commutative diagram of Theorem 12.6.1, we deduce that RSolEK :
Db

fgu(R[F ])op → Dét(Spec(R),Fp) is also a fully faithful embedding with

essential image Db
c(Spec(R),Fp).

The proof of Theorem 12.6.1 will require some auxiliary constructions.
We begin by introducing a slight modification of the derived solution functor
RSol.

Construction 12.6.2. Let R be a commutative Fp-algebra and let M =

M∗ be a cochain complex of Frobenius modules. We let M̃ denote the as-
sociated cochain complex of quasi-coherent sheaves on Spec(R) (Example
2.2.5), so that the Frobenius morphism ϕM determines an endomorphism

of M̃ , which we will denote by ϕ
M̃
. We let Sol′(M) denote the cochain

complex of étale sheaves on Spec(R) given by the shifted mapping cone
cn(id−ϕ

M̃
)[−1]. It is clear that the construction M �→ Sol′(M) respects

quasi-isomorphisms and therefore determines a functor of derived categories
Sol′ : D(R[F ]) → Dét(Spec(R),Fp). By construction, we have a distin-
guished triangle

Sol′(M) → M̃
id−ϕM̃−−−−→ M̃ → Sol′(M)[1],

depending functorially on M .
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Remark 12.6.3. In the special case where M∗ is a bounded below cochain
complex of injective objects of ModperfR , we can identify RSol(M) with
the kernel (formed in the category of chain complexes of étale sheaves)

of the map id−ϕ
M̃

: M̃ → M̃ . We therefore obtain a canonical map
RSol(M) → Sol′(M), and Lemma 7.1.2 guarantees that this map is a quasi-
isomorphism (even at the level of presheaves). It follows that the functor
RSol : D+

perf(R[F ]) → Dét(Spec(R),Fp) is canonically isomorphic to the

restriction Sol′ |D+
perf(R[F ]).

Construction 12.6.4. LetR be a commutative Fp-algebra and let P denote
the two-term cochain complex

· · · → 0 → R[F ]
1−F−−−→ R[F ] → 0 → · · · ,

which we regard as a projective representative for R in the derived category
D(R[F ]). Let M ′ be a bounded above cochain complex of projective left
R[F ]-modules, let M be an arbitrary cochain complex of left R[F ]-modules,
and suppose we are given a morphism of cochain complexes c : P → M ⊗R

M ′, which represents a morphism c from R to M ⊗L
R M ′ in the derived

category D(R[F ]). Note that we can identify RSolEK(M
′) and Sol′(M) with

the cochain complexes of étale sheaves given concretely by the formulae

RSolEK(M
′)(A) = HomR[F ](M

′, A) Sol′(M)(A) = HomR[F ](P,M ⊗RA).

It follows that c determines a map of cochain complexes

RSolEK(M
′) = HomR[F ](M

′, •)
→ HomR[F ](M ⊗R M ′,M ⊗R •)
◦c−→ HomR[F ](P,M ⊗R •)
= Sol′(M).

Note that the chain homotopy class of this map depends only on the chain
homotopy class of c. We therefore obtain a morphism γc : RSolEK(M

′) →
Sol′(M) in the derived category Dét(Spec(R),Fp) which depends only the
map c : R → R → M ⊗L

R M ′ in D(R[F ]).

Proof of Theorem 12.6.1 . By virtue of Remark 12.6.3, it will suffice to show
that the functors

Sol′,RSolEK ◦D : Db
hol(R[F ]) → Dét(Spec(R),Fp)

are naturally isomorphic. Fix an object M ∈ Db
hol(R[F ]) and let c : R →

M ⊗L
R D(M) be a morphism in D(R[F ]) which exhibits D(M) as a weak
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dual of M . Applying Construction 12.6.4, we obtain a morphism γc :
(RSolEK ◦D)(M) → Sol′(M) in the derived category Dét(Spec(R),Fp). It is
not difficult to see that this morphism depends functorially on M , and there-
fore determines a natural transformation of functors γ : RSolEK ◦D → Sol′.
To complete the proof, it will suffice to show that this natural transformation
is invertible: that is, γc is a quasi-isomorphism for each M ∈ Db

hol(R[F ]).
To prove this, we may assume without loss of generality that D(M) is
represented by a bounded above cochain complex of projective left R[F ]-
modules and that c is represented by a morphism of cochain complexes
c : P → M ⊗R D(M), so that γc is represented by the map of cochain
complexes of étale sheaves

HomR[F ](D(M), •) → HomR[F ](P,M ⊗R •)

appearing in Construction 12.6.4. We wish to show that this map is a
quasi-isomorphism of étale sheaves. In fact, we claim that it is already a
quasi-isomorphism of presheaves: that is, for every étale R-algebra A, the
map of complexes HomR[F ](D(M), A) → HomR[F ](P,M ⊗R A) is a quasi-
isomorphism. This is a special case of our assumption that c exhibits D(M)
as a weak dual of M .
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Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995
Japanese edition by Takeuchi.

[10] N. M. Katz p-adic properties of modular schemes and modular forms,
pages 69–190. Lecture Notes in Mathematics, Vol. 350, 1973.

[11] T. Y. Lam. Lectures on Modules and Rings, Springer-Verlag New York,
1999.

[12] G. Lyubeznik. F -modules: applications to local cohomology and D-
modules in characteristic p > 0, J. Reine Angew. Math. 491 (1997),
65–130.

[13] S. Ohkawa. Riemann-Hilbert correspondence for unit F-crystals on em-
beddable algebraic varieties, arXiv:1601.01525.

[14] T. Schedlmeier. Cartier crystals and perverse constructible étale p-
torsion sheaves, arXiv:1603.07696.

[15] The Stacks Project.

[16] W. van der Kallen. Descent for the K-theory of polynomial rings, Math.
Z. 191:3 (1986), 405–415.

[17] J. L. Verdier. Des catégories dérivées des catégories abéliennes,
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