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Improved Fourier restriction estimates in higher
dimensions
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†

We consider Guth’s approach to the Fourier restriction problem via
polynomial partitioning. By writing out his induction argument as
a recursive algorithm and introducing new geometric information,
known as the polynomial Wolff axioms, we obtain improved bounds
for the restriction conjecture, particularly in high dimensions. Con-
sequences for the Kakeya conjecture are also considered.
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1. Introduction

We consider the Fourier transform defined, initially on integrable functions,

by

f̂(ξ) :=

∫
Rn

f(x) e−i〈x,ξ〉dx.

Letting σ denote the surface measure on a truncated piece of the paraboloid,

Stein’s restriction conjecture [30] asserts that the a priori estimate

(Rp) ‖f̂ ‖Lp′(dσ) � Cn,p‖f‖Lp′(Rn)

holds for all p > 2n
n−1 , where 1/p+ 1/p′ = 1. This was proved by Fefferman

and Stein in two dimensions [10], but remains open in higher dimensions

despite extensive study; see, for example, [1, 2, 6, 8, 9, 11, 12, 23, 27, 32, 34,

35, 36, 37, 38, 39, 43] and the references therein.

The strongest partial results are based on the polynomial partitioning

method, introduced to the problem by Guth [11, 12]. In this article further
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progress is obtained by augmenting the method with additional geometric
inequalities recently established in work of Katz and the second author [18].

Our results are most easily compared with the previous literature in the
high dimensional context. If the restriction conjecture were true, (Rp) would
hold for

p > 2 + 2n−1 +O(n−2),

and so we consider λ � 2 for which we can confirm that (Rp) holds in the
range

(1) p > 2 + λn−1 +O(n−2).

A consequence of the work of Tomas [38] is that λ can be taken to be 4.
Although many refinements were made since (including the work of Tao [34]
which removed the O(n−2)-term with λ = 4), the linear coefficient was not
improved for some thirty-five years when Bourgain and Guth [6] showed
that it can be lowered to 3. Most recently, Guth [12] proved that λ can be
taken to be 8/3. We improve this as follows:

Theorem 1.1. (Rp) holds in the range (1) with λ = 4/(5− 2
√
3).

We also obtain concrete improvements on the range of exponents for (Rp)
in all dimensions n � 3 except n = 3, 6, 8, 10 or 12. In these exceptional cases
the current best results are due to Wang [39] when n = 3 and Guth [12] when
n = 6, 8, 10 or 12. The current state-of-the-art for the restriction problem in
various low dimensions is tabulated below in Figure 1.

The proof of Theorem 1.1 relies on geometric information coming from
a recent result in [18]. This geometric information, which we will refer to
as the polynomial Wolff axioms, bounds the number of direction-separated
line segments that can be contained in the neighbourhood of a real algebraic
variety.

The present analysis extends that previously performed by Guth [11]
in R3, who proved and applied the polynomial Wolff axiom for a two dimen-
sional variety. Guth’s induction argument [11] can be combined with later
developments from [12] and thereby directly extended to higher dimensions,
using a single application of the (n − 1)-dimensional polynomial Wolff ax-
ioms (see, for example, [9] or [18]), however this yields weaker results than
those obtained here. We will take advantage of the polynomial Wolff axioms
more often.

By combining the arguments of this article with results from [13], one
may also establish a version of Theorem 1.1 for general positively-curved
surfaces, including the unit sphere. It is also possible that the methods
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could be applied to study other oscillatory integral operators, such as those
arising in the study of Bochner–Riesz multipliers, but this has not been
fully explored. Finally, by a standard argument relating the restriction and
Kakeya conjectures, Theorem 1.1 implies estimates for the Kakeya maximal
function. This bound is new with n = 9, however it does not improve the
dimension estimate for Kakeya sets due to Katz–Tao [20]. Perhaps of more
interest is the fact that these estimates provide an asymptotic improvement
over the classical Wolff bound [41] via a very different approach to that used
in [20].

The article is organised as follows:

• A number of reductions are performed in the sequel. Following [6,
11, 12], the problem is reduced to establishing the so-called k-broad
estimates for the extension operator.

• After setting up some notational conventions in Section 3, a sketch of
the proof of the main theorem is provided in Section 4.

• In Sections 5–7, the basics of broad norms, polynomial partitioning
and the wave packet decomposition are recalled.

• In Section 8, we show how the polynomial Wolff axiom theorem can
be used to improve certain estimates for averaged norms at different
scales.

• In Section 9, Guth’s polynomial partitioning argument from [11, 12]
is reformulated as a recursive algorithm.

• In Section 10, the new estimates are combined with the recursive al-
gorithm to improve the range of estimates for the restriction problem.

• The final section contains a discussion of restriction to other hyper-
surfaces, some remarks on the numerology, and possible directions in
which the argument could be strengthened. Finally, the application to
the Kakeya problem is described.

2. Reduction to k-broad estimates

Restriction estimates are typically proven via duality, with the adjoint op-
erator E defined by

Eg(x) :=

∫
|ξ|�1

g(ξ) ei(x1ξ1+...+xn−1ξn−1+xn|ξ|2)dξ.

Noting that now ξ ∈ Rn−1 (and x ∈ Rn as before), this is often referred to
as the extension operator. It follows that the estimate (Rp) for a given value
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of p is equivalent to the inequality

‖Eg‖Lp(Rn) � Cn,p‖g‖Lp(Rn−1).

Moreover, by a now standard ε-removal argument (see [33]) and factorisation
theory (see [2] or [7, Lemma 1]), this holds for all p in an open range if and
only if for all ε > 0 and all R � 1 the local estimates

(R∗
p) ‖Eg‖Lp(BR) � Cn,p,εR

ε‖g‖L∞(Rn−1)

hold in the same range. Here BR denotes an arbitrary ball of radius R in Rn.
Rather than attempt to prove (R∗

p) directly, it is useful to work with a
class of weaker inequalities known as k-broad estimates. These inequalities
were introduced by Guth [11, 12] and were inspired by the earlier multilinear
restriction theory developed in [1]. The k-broad estimates take the form

(BLp
k) ‖Eg‖BLp

k(BR) � Cn,p,εR
ε‖g‖L∞(Rn−1),

where the expression on the left-hand side is known as a k-broad norm. The
precise definition of the k-broad norm is a little complicated and is deferred
until Section 5. We remark, however, that the key advantage of working with
‖Eg‖BLp

k(BR) rather than ‖Eg‖Lp(BR) is that the former expression is very
small whenever the mass of Eg is concentrated near a (k − 1)-dimensional
set (see Lemma 8.2 below for a precise statement of this property).

The main result of this article is the following theorem.

Theorem 2.1. Let 2 � k � n− 1 and

p � pn(k) := 2 +
8(2n− 1)

n(5n+ 2k − 9) + k(k − 3) + 4
.(2)

Then (BLp
k) holds for all ε > 0 and R � 1.

When n = 3 and k = 2 this corresponds to the main result from [11]
and stronger estimates are now known in this case [39]. In all other dimen-
sions n � 4, Theorem 2.1 offers an improvement over what was previously
known. When n = 4 and k = 3, the range (2) extends that given by [9,
Theorem 3.2].1 When n � 5, Theorem 2.1 strengthens a (corollary of a)

1In [9] it is shown that the n = 4 and k = 3 case of Theorem 2.1 would follow from
a strengthened version of the polynomial Wolff axiom theorem from [18] involving
a polynomial dependence on the degree. For the purposes of this article, no such
explicit dependence on the degree is required, and therefore the 3-broad inequality
in R

4 is established in a larger range than that stated in [9].
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theorem of Guth [12] which showed that the inequality (BLp
k) holds when-

ever p � 2 + 4
n+k−2 ;

2 observe that the range (2) in Theorem 2.1 is strictly

larger than this.

Unfortunately, since the k-broad estimates are weaker than the corre-

sponding linear estimates, it is difficult to pass directly from an inequality

of the form (BLp
k) to one of the form (R∗

p). Nevertheless, a mechanism devel-

oped by Bourgain and Guth [6] allows this passage under certain constraints

on the exponent p. In particular, the following proposition is a consequence

of the method developed in [6], as observed in [12, Proposition 9.1].

Proposition 2.2 (Bourgain–Guth [6], Guth [12]). Let n � 3 and

2 +
4

2n− k
� p � 2 +

2

k − 2
.

Then (BLp
k) implies (R∗

p).

The original method of Bourgain–Guth [6] was developed to convert

certain multilinear inequalities of Bennett–Carbery–Tao [1] into linear esti-

mates. It was later observed by Guth [12] that the method of [6] does not

require the full strength of the k-linear theory, but may instead take k-broad

estimates as its input (which appear to be somewhat easier to prove3).

Theorem 1.1 follows as a direct consequence of Theorem 2.1 and Propo-

sition 2.2. When applying Proposition 2.2, the upper bound on p is unim-

portant. However the lower bound,

(3) p � 2 +
4

2n− k
,

is a limiting factor in the arguments, along with the condition (2) on the

exponents in the k-broad inequality. In order to improve the state-of-the-art

for the restriction conjecture one must choose an optimal k so that neither

of these two conditions is overly restrictive. For instance, if n = 5 and k = 3,

then

2 +
4

10− 3
� p5(3) = 2 +

12

19
;

2In [12], strengthened versions of (BLp
k) are established with L2 rather than L∞

norms appearing on the right-hand side, and so our estimates are stronger in one
sense and weaker in another.

3See [13, Section 6.2] for a detailed discussion of the relationship between k-broad
and k-linear inequalities.
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Figure 1: The current state-of-the-art for the restriction problem in low
dimensions. New results are highlighted and in most cases are deduced by
combining Theorem 2.1 with Proposition 2.2.

Theorem 2.1 and Proposition 2.2 therefore imply that the restriction in-
equality holds for p > 2 + 12

19 when n = 5. Other low dimensional cases can
also be analysed directly and some examples can be found in Figure 1 above.

In high dimensions, to derive the λ coefficient featured in Theorem 1.1,
we write k = νn+O(1) for some 0 < ν < 1, so that, asymptotically,

(4) pn(k) = 2 +
16

5 + 2ν + ν2
n−1 +O(n−2).

On the other hand, with k = νn+O(1), the condition (3) can be rewritten
as

(5) p � 2 +
4

2− ν
n−1 +O(n−2).

The linear coefficients in (4) and (5) are then equal when ν is the positive
solution of the quadratic equation

x2 + 6x− 3 = 0.

Plugging this solution back into (5) yields (Rp) in the range

p > 2 + λn−1 +O(n−2)

4This is deduced by combining Theorem 2.1 with a more sophisticated version
of Proposition 2.2: see Remark 11.1 below.
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with λ = 4
2−ν = 4

5−2
√
3
.

It remains to prove Theorem 2.1, which will be the focus of the remainder
of the article.

3. Notational conventions

From now on, we work with smooth, bounded functions f , g or h that map
from the unit ball Bn−1 of Rn−1 to the complex numbers, and we sometimes
write x ∈ Rn as x = (x′, xn) where x′ ∈ Rn−1. We call an n-dimensional
ball Br of radius r an r-ball and an (n−1)-dimensional ball θ of radius r−1/2

an r−1/2-cap. We call a cylinder of length r and radius r1/2 an r-tube. The
δ-neighbourhood of a set E will be denoted by NδE.

The arguments will involve the admissible parameters n, p and ε and
the constants in the estimates will be allowed to depend on these quantities.
Given positive numbers A,B � 0 and a list of objects L, the notation
A �L B, B �L A or A = OL(B) signifies that A � CLB where CL is a
constant which depends only on the objects in the list and the admissible
parameters. We write A ∼L B when both A �L B and B �L A. We will
also write A � B or B � A to denote that A � C−1B for some choice of
C � 1 which can be taken to be as large as desired provided it is admissible.

The cardinality of a finite set A is denoted by #A. A set A′ is said to
be a refinement of A if A′ ⊆ A and #A′ � #A. In many cases it will be
convenient to pass to a refinement of a set A, by which we mean that the
original set A is replaced with some refinement.

4. Overview

4.1. The polynomial Wolff axioms

The key new geometric ingredient is the following theorem, which amounts to
a confirmation of the Kakeya conjecture in a very specialised ‘algebraic’ situ-
ation. It follows by combining [18, Theorem 1.1] with Wongkew’s lemma [44],
the latter of which bounds the measure of a neighbourhood of a real algebraic
variety over a ball.

Theorem 4.1 (Polynomial Wolff axioms [18]). Let δ > 0 and c, r � 1.
Let Z ⊆ Rn denote an m-dimensional algebraic variety and let T denote a
collection of r-tubes contained in a ball of radius 2r. If the central axes of
the tubes point in r−1/2-separated directions, then

#
{
T ∈ T : T ⊆ Ncr1/2Z

}
�degZ,δ c

n−mr
m−1

2
+δ.
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This theorem was proven for n = 3 by Guth [11] who later conjectured
the general statement in [12] (see also [15]). The n = 4 case was solved by
Zahl before a proof in general dimensions was given in [18]. Theorem 4.1 is
referred to as the polynomial Wolff axioms since the result can be interpreted
as a verification that families of direction-separated tubes satisfy a natural
polynomial generalisation of the classical (linear) Wolff axiom introduced
in [41] (see [15] for further details).

4.2. A brief description of the proof

The proof of Theorem 2.1 extends an argument of Guth [11] in R3, by
combining it with the later developments in higher dimensions from [12].
Both the articles [11] and [12] give comprehensive and highly readable in-
troductory overviews of the core arguments; readers unfamiliar with these
topics are encouraged to consult these sources for a detailed description of
the main ideas. In high dimensions some complications arise which are not
present in R3. For this reason, the proof given in Sections 5–10 is structured
somewhat differently from the proofs presented in [11, 12]. These differences
are highlighted and explained in the following subsection.

The key ingredients of the proof of Theorem 2.1 are as follows:

Wave packet decomposition. The first step of the argument is to em-
ploy the standard technique of decomposing the input function f as a sum of
localised pieces called wave packets. In particular, fixing a large scale R � 1,
one decomposes the domain Bn−1 as a union of R−1/2-balls denoted by θ
and referred to as R−1/2-caps. The function is then written as a sum of
pieces f =

∑
(θ,v) fθ,v where each fθ,v has support in the cap θ and the

inverse Fourier transform of fθ,v is concentrated in an R1/2-ball centred
at v ∈ Rn−1. There are two key properties of this decomposition:

• Orthogonality: Given any collection of wave packets W one has

(6)
∥∥∥ ∑
(θ,v)∈W

fθ,v

∥∥∥2
2
∼

∑
(θ,v)∈W

‖fθ,v‖22.

• Spatial concentration: On the ball B(0, R), the function Efθ,v is
essentially supported on an R-tube Tθ,v with direction governed by θ
and position governed by v.

More precisely, the direction of Tθ,v is given by the normal direction to
the paraboloid at the point (ξθ, |ξθ|2), where ξθ is the centre of θ. Thus,
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Ef =
∑

(θ,v)Efθ,v can be thought of as a sum of oscillating, normalised
characteristic functions of tubes, which point in many different directions.
Understanding the incidence geometry of these tubes is a key consideration
in the restriction problem.

Polynomial partitioning. A useful tool for studying the incidence-geo-
metric problems arising from the wave packet decomposition is the polyno-
mial partitioning method. This method was introduced by Guth and Katz
in their resolution of the Erdős distance conjecture [14] and was first ap-
plied to the restriction problem by Guth in [12] (the latter work also in-
corporated a refinement to the original partitioning method of [14] due to
Solymosi and Tao [29]). The basic idea is a divide-and-conquer-style ar-
gument: one begins by finding a polynomial P of low degree which par-
titions the mass of ‖Ef‖BLp

k(BR) into equal size pieces. More precisely, let
Z(P ) := {z ∈ Rn : P (z) = 0} denote the zero set of P and cell(P ) the
set of connected components of Rn \ Z(P ). These connected components
are referred to as cells. The polynomial P can then be chosen so that the
‖Ef‖BLp

k(O
′) are (essentially) equal as O′ varies over cell(P ). Due to geo-

metric (and underlying uncertainty principle) considerations, one actually
works with a ‘blurred out’ version of the variety Z(P ) given by the R1/2-
neighbourhood W := NR1/2Z(P ) and referred to as the wall. Defining the
collection of slightly shrunken cells O := {O′ \ W : O′ ∈ cell(P )}, the fol-
lowing simple, yet vital, geometric property holds:

Whenever Tθ,v enters a shrunken cell O = O′ \W,

the core line necessarily enters the original cell O′.
(7)

Unlike the original cells, collectively the O ∈ O may only account for a
small proportion of the mass of ‖Ef‖BLp

k(BR). There are two cases to consider:

Cellular case. The mass of ‖Ef‖BLp
k(BR) concentrates on the O ∈ O in the

sense that

‖Ef‖pBLp
k(BR) �

∑
O∈O

‖Ef‖pBLp
k(O).

In this situation, one defines fO :=
∑

(θ,v)∈TO
fθ,v where TO denotes the

collection of wave packets (θ, v) for which Tθ,v ∩ O 
= ∅. By the spatial
concentration property of the wave packets

‖Ef‖pBLp
k(BR) �

∑
O∈O

‖EfO‖pBLp
k(O).
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The key observation here is that each (θ, v) can only belong to a small
number (in particular, degP + 1) of the sets TO. This is due to (7) and the
fact that, by the fundamental theorem of algebra (or Bézout’s theorem), the
core line of a tube Tθ,v can only enter degP + 1 cells from cell(P ). This
observation can be interpreted as saying the sets TO are ‘almost disjoint’
which implies, via (6), that the fO are ‘almost orthogonal’. Consequently,
one can pass to the cells and analyse them individually. This forms the basis
of a recursive procedure.5

Algebraic case. The mass of ‖Ef‖BLp
k(BR) concentrates on the wall in the

sense that

‖Ef‖pBLp
k(BR) � ‖Ef‖pBLp

k(W ).

Here it suffices to consider only those wave packets (θ, v) for which Tθ,v∩W 
=
∅. A tube Tθ,v can intersect W in one of two ways: either tangentially or
transversally. The analysis is further divided into two subcases depending
on whether the main contribution to ‖Ef‖pBLp

k(BR) arises from tangential or

transverse wave packets.
In the transversal subcase the tubes can be thought of as passing directly

through the wall. This situation can be treated in a manner similar to the
cellular case, this time using a continuum version of Bézout’s theorem to
show that any given tube can intersect W transversally in relatively few
places.

It remains to study the tangential subcase. Here the Tθ,v can be thought
of as being contained in W and making a small angle with tangent spaces
at nearby points of the variety Z(P ).

Dimensional reduction. The polynomial partitioning argument
sketched above can be interpreted as a dimensional reduction. If either the
cellular or the transverse algebraic case holds, then one can obtain accept-
able estimates for ‖Ef‖BLp

k(BR). Thus, it suffices to consider the situation
where the wave packets of f are all tangent to some variety of dimension
n − 1. By iterating this dimensional reduction procedure,6 it becomes im-

5This part of the argument is fairly delicate and the almost orthogonal property
needs to be precisely quantified in terms of degP . For the purposes of this sketch,
the full details are omitted.

6A number of serious complications arise in implementing this iteration scheme
and, in particular, in dealing with the transverse algebraic case. This part of the
argument requires what are known as transverse equidistribution estimates : these
inequalities are briefly mentioned below, see the introductory discussion in [12] for
further details.
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portant to understand what can be said when the wave packets of f are all

tangent to some variety of dimension m for any value 0 � m � n− 1.

Key estimates in the tangential case. The reduction to tangential

situations, as outlined above, can be exploited in a number of ways:

• Vanishing property of the k-broad norms: The definition of the
k-broad norms implies that if the wave packets of f are all tangential

to a variety of dimension m < k, then ‖Ef‖BLp
k(BR) essentially van-

ishes. Thus, one need only consider tangency properties with respect

to varieties of dimension at least k. Using this fact alone, one may
prove k-broad estimates in the range p > 2k

k−1 corresponding to the

Bennett–Carbery–Tao multilinear restriction theorem [1].7

• Transverse equidistribution estimates: These inequalities were

introduced by Guth [12] and heavily exploit the curvature properties
of the paraboloid, allowing for k-broad estimates beyond the p > 2k

k−1
range. The basic idea behind the transverse equidistribution estimates
is recalled below in Section 8.3.

• The polynomial Wolff axioms: Given a family T of R-tubes lying
in the R1/2-neighbourhood of a variety, the polynomial Wolff axioms

limit the number of different directions in which the T ∈ T can lie.
Thus, if the wave packets of f are all tangent to some low dimensional

variety, then f must be supported on very few caps θ (since the caps θ
correspond to the directions of the tubes Tθ,v). The small support of f

can be exploited via Hölder’s inequality to obtain favourable k-broad
estimates.

4.3. Induction versus recursion

When applying the polynomial Wolff axioms to the restriction problem in
high dimensions, a number of complications arise which are not present in

the R3 case treated in [11]. The root of these complications lies in the fact
that, in contrast with R3 where one only need consider tangency conditions

with respect to 2-surfaces, in higher dimensions one must consider tangency
conditions with respect to surfaces of many different dimensions.

The core argument sketched in the previous subsection can be imple-

mented as either an induction or a recursion argument. The original articles

7Indeed, this follows by applying the argument of [12] but ignoring gains coming
from transverse equidistribution (see the following bulletpoint).
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[11] and [12] make heavy use of mathematical induction (inducting on a num-

ber of quantities including the choice of scale R); this has the advantage of

yielding a clean and concise argument, but unfortunately useful structural

properties are potentially hidden. From the perspective of a recursive al-

gorithm one may gain a more detailed understanding of the argument at

each stage of the iterative process; this is the approach taken in the present

article.

There is certainly a precedent for the recursive approach: for instance, in

the fourth section of [6], Bourgain and Guth reformulate their key induction-

on-scale argument as a recursive procedure to allow for the use of additional

information coming from X-ray transform estimates (see also [22, 37] for

an elaboration of this argument). Similarly, in a recent article of Wang [39],

the induction-on-scale procedure of [11] was rewritten as a recursion; this

permitted a more detailed analysis of the underlying geometry of the exten-

sion operator and led to the current best known bounds for the restriction

conjecture in R3.

When written in the form of a recursive algorithm, the polynomial par-

titioning argument of [12] can be interpreted as a structural statement. Fol-

lowing the discussion in the previous subsection, one may think of the input

function f as being broken into many different pieces where, roughly, each

piece is made up of wave packets tangential to a low dimensional variety

at some scale (there may be other pieces which do not have this property,

but they arise from the cellular or transverse algebraic cases and satisfy

favourable estimates). Thus, the structural statement allows one to focus on

estimating the ‘tangential’ pieces {ftang} of the function. This ‘tangential

reduction’ is then exploited via the key estimates described in the previous

subsection.

In high dimensional cases, however, the ftang tend to enjoy further struc-

tural properties which one could potentially utilise in order to improve the

range of estimates guaranteed by Theorem 2.1. Indeed, typically a given

ftang is not only tangent to a single variety Z at a single scale r, but it

satisfies certain tangency conditions with respect to a whole sequence of

scales rm < · · · < rn and a corresponding sequence of varieties Zm, . . . ,Zn

with dimZi = i for m � i � n. These ‘nested’ conditions could poten-

tially lead to further gains for the restriction exponent. To carry out such

a programme, however, one would have to effectively analyse properties of

the ftang across many distinct scales rm < · · · < rn; this situation lends

itself more naturally to a recursive algorithm, rather than an inductive ar-

gument.
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5. Broad norms

Here we recall the definition and basic properties of the k-broad norms
from [11] and [12]. For a detailed motivation of this definition and its relation
to the multilinear restriction theory of [1] the reader is referred to [12] and
[13, Section 6.2].

Fix some large R � 1 and a ball BR ⊂ Rn. Decompose the unit ball Bn−1

into finitely-overlapping balls τ of radius K−1, where K is a large constant
satisfying 1 � K � R. These (n − 1)-dimensional balls are referred to as
K−1-caps. Given a function f , supported on Bn−1, we write f =

∑
τ fτ

where fτ := fψτ for (ψτ )τ a partition of unity subordinate to the caps τ .
Let G : Bn−1 → Sn−1 denote the Gauss map associated to the paraboloid,
given explicitly by

(8) G(ξ) :=
1

(1 + 4|ξ|2)1/2
(
− 2ξ, 1

)
.

Given a pair of non-zero vectors v, v′ ∈ Rn, let ∠(v, v′) denote the (unsigned)
angle between them. If V ⊆ Rn is a linear subspace, then let ∠(G(τ), V )
denote the minimum of ∠(v, v′) over all pairs of non-zero vectors v ∈ V
and v′ ∈ G(τ).

The spatial ball BR is also decomposed into relatively small balls BK2 of
radius K2. In particular, fix BK2 a collection of finitely-overlapping K2-balls
which are centred in and cover BR. Then, for BK2 ∈ BK2 , define

(9) μEf (BK2) := min
V1,...,VA∈Gr(k−1,n)

(
max

τ :∠(G(τ),Va)>K−1

for 1�a�A

‖Efτ‖pLp(BK2)

)
;

here Gr(k − 1, n) is the Grassmannian manifold of all (k − 1)-dimensional
subspaces in Rn. For U ⊆ Rn the k-broad norm over U can then be defined
as

(10) ‖Ef‖BLp
k,A(U) :=

( ∑
BK2∈BK2

|BK2 ∩ U |
|BK2 | μEf (BK2)

)1/p

.

With this definition, the inequality (BLp
k) from Section 2 is understood to

hold for ‖Ef‖BLp
k(U) := ‖Ef‖BLp

k,A(U) for some choice of A ∼ 1.

Before continuing it is perhaps useful to clarify the relative sizes of the
parameters. Given any p and ε, when proving a broad norm estimate (BLp

k)
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it is always assumed that K and A are large but admissible (that is, they
depend only on n, p and ε). The parameter K must be chosen large in order
for Proposition 2.2 to hold (see [12] and [6]) whilst the parameter A must be
chosen large in order to facilitate multiple applications of Lemma 5.2 and
Lemma 5.3, as described below. Nevertheless, it is always possible to make
admissible choices of K and A. The parameter R, on the other hand, is an
arbitrarily large number which will be, in general, non-admissible.

As mentioned in Section 2, the key advantage of working with k-broad
norms rather than the classical Lp-norms is that, roughly, they vanish when-
ever the mass of Ef is concentrated around a set of dimension less than k.
This property is fundamental to the proof of Theorem 2.1, but to make it
precise requires a number of preliminary definitions and therefore the details
are postponed until Lemma 8.2 below.

5.1. Basic properties

It is easy to see that ‖Ef‖BLp
k,A(U) is not a norm in any traditional sense.

Nevertheless, as noted in [12], it does satisfy weak variants of certain key
properties of Lp-norms.

Lemma 5.1 (Finite subadditivity). Let U1, U2 ⊆ Rn, 1 � p < ∞, and
A ∈ N. Then

‖Ef‖pBLp
k,A(U1∪U2)

� ‖Ef‖pBLp
k,A(U1)

+ ‖Ef‖pBLp
k,A(U2)

holds for all integrable f : Bn−1 → C.

This is an immediate consequence of the definition of the k-broad norms.
A slightly less trivial observation is that ‖Ef‖BLp

k,A(U) also satisfies weak
versions of the triangle and logarithmic convexity inequalities.

Lemma 5.2 (Triangle inequality). Let U ⊆ Rn, 1 � p < ∞ and A ∈ N.
Then

‖E(f1 + f2)‖BLp
k,2A(U) � ‖Ef1‖BLp

k,A(U) + ‖Ef2‖BLp
k,A(U)

holds for all integrable f1, f2 : B
n−1 → C.

Lemma 5.3 (Logarithmic convexity). Let U ⊆ Rn, 1 � p, p0, p1 < ∞ and
A ∈ N. Suppose that 0 � α � 1 satisfies

1

p
=

1− α

p0
+

α

p1
.
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Then

‖Ef‖BLp
k,2A(U) � ‖Ef‖1−α

BL
p0
k,A(U)

‖Ef‖αBL
p1
k,A(U)

holds for all integrable f : Bn−1 → C.

The proofs of these estimates are entirely elementary and can be found

in [12]. The parameter A appears in the definition of the k-broad norm to

allow for these weak triangle and logarithmic convexity inequalities.

5.2. Linear versus k-broad estimates

Any k-broad estimate is weaker than the corresponding linear estimate. For

instance, assuming that the local extension estimate (R∗
p) holds, given ε > 0

and 1 � r � R, it follows that

‖Ef‖BLp
k,A(Br) �

( ∑
τ :K−1−cap

∑
BK2∈BK2

BK2∩Br 
=∅

‖Efτ‖pLp(BK2 )

)1/p

� KO(1)rε‖f‖∞;

sinceK is just a constant (in particular, it is chosen independently ofR � 1),

this implies (BLp
k).

From the preceding observation, Lp estimates for the extension operator

translate into k-broad inequalities. In view of this, it is useful to briefly

recall some standard L2 estimates for the extension operator. Plancherel’s

theorem implies the familiar conservation of energy identity

(11)

∫
Rn−1

|Ef(x′, xn)|2 dx′ = (2π)n−1‖f‖22

and one may integrate in the xn variable and take square roots to conclude

that

‖Ef‖L2(Br) � r1/2‖f‖2

for any r-ball Br. Arguing as above, one immediately arrives at the k-broad

variant

(12) ‖Ef‖BL2
k,A(Br) � r1/2‖f‖2,

valid for all r � 1.
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6. Polynomial partitioning

6.1. Basic partitioning

In this section the relevant algebraic and topological ingredients for the proof
of Theorem 2.1 are reviewed. In particular, the key polynomial partitioning
theorem is stated, which is adapted from previous works of Guth [11, 12] on
the restriction conjecture.

Definition 6.1. Given any collection of polynomials P1, . . . , Pn−m : Rn → R

the common zero set

Z(P1, . . . , Pn−m) :=
{
x ∈ R

n : P1(x) = · · · = Pn−m(x) = 0
}

will be referred to as a variety.8 Given a variety Z = Z(P1, . . . , Pn−m), define
its (maximum) degree to be the number

degZ := max{degP1, . . . , degPn−m}.

It will often be convenient to work with varieties which satisfy the ad-
ditional property that

(13)

n−m∧
j=1

∇Pj(z) 
= 0 for all z ∈ Z = Z(P1, . . . , Pn−m).

In this case the zero set forms a smooth m-dimensional submanifold of Rn

with a (classical) tangent space TzZ at every point z ∈ Z. A variety Z which
satisfies (13) is said to be anm-dimensional transverse complete intersection.

Of particular interest is the case of hypersurfaces, where m = n − 1.
Given a polynomial P : Rn → R consider the collection cell(P ) of connected
components of Rn \Z(P ). As in Section 4, each O ∈ cell(P ) is referred to as
a cell cut out by the variety Z(P ) and the cells are thought of as partitioning
the ambient euclidean space into a finite collection of disjoint regions.

Theorem 6.2 (Guth [11]). Fix d ∈ N and suppose F ∈ L1(Rn) is non-
negative. Then there exists a polynomial P : Rn → R of degree at most d
such that:

i) #cell(P ) ∼ dn;
ii) The integrals

∫
O F for O ∈ cell(P ) are all equal.

8The ideal generated by the Pj is not required to be irreducible.
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This theorem is based on an earlier discrete partitioning result which

played a central role in the resolution of the Erdős distance conjecture [14].

The proof is essentially topological, involving the polynomial ham sandwich

theorem of Stone–Tukey [31], which is itself a consequence of the Borsuk–

Ulam theorem.

Under the hypotheses of Theorem 6.2, it trivially follows that

(14)

∫
Rn

F =
∑

O∈cell(P )

∫
O
F = #cell(P )

∫
O∗

F for any O∗ ∈ cell(P ).

In view of the forthcoming applications of the polynomial partitioning the-

orem, precise equality is not required in (14), but merely comparability. By

relaxing the inequality, one may, for instance, ensure that Z(P ) is given by

a finite union of transverse complete intersections: see Theorem 5.5 of [12].

Furthermore, often one may freely pass to some refinement of the collection

of cells which satisfy additional properties. This observation naturally lends

itself to pigeonholing arguments, and two examples along these lines are

discussed presently.

Passing to shrunken cells. It will be necessary to work with a ‘blurred

out’ version of the variety Z(P ) given by the neighbourhoodNr1/2+δ◦Z(P ) for
different choices of r > 0 and small parameter δ◦ > 0. The set Nr1/2+δ◦Z(P )

is referred to as the wall. A simple pigeonholing argument shows that at

least one of two cases hold:

Cellular case. One may pass to a refinement of cell(P ) such that if O
denotes the collection of r1/2+δ◦-shrunken cells

(15) O :=
{
O′ \Nr1/2+δ◦Z(P ) : O′ ∈ cell(P )

}
,

then the mass of F is essentially evenly distributed across these shrunken

cells: ∫
O
F ∼ d−n

∫
Rn

F for all O ∈ O.

Algebraic case. The contribution to the integral from the wall dominates:∫
Rn

F �
∫
N

r1/2+δ◦Z(P )
F.
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Controlling the size of the cells. A simple but useful observation, ap-
pearing in [39], is that one may also apply a pigeonholing argument to yield
some natural control on the size of the cells. Here the analysis is localised
to a fixed r-ball Br and, in particular, it is assumed that suppF ⊂ Br. In
this situation one may, after passing to various refinements and relaxing the
equalities in (14), assume that each O ∈ cell(P ) has diameter at most r/d.
In the present article, this reduction is made more for convenience rather
than out of necessity and only a bound of r/2 is needed on the diameter of
the cells; the precise details of this argument are therefore omitted (see [39]
for further information).

6.2. Partitioning over lower dimensional sets

Theorem 6.2 alone is insufficient for the purposes of this article and a more
involved partitioning result, which is implicit in [12], will be used.

Theorem 6.3 (Guth [12]). Fix r � 1, d ∈ N and suppose F ∈ L1(Rn) is
non-negative and supported on Br∩Nr1/2+δ◦Z for some 0 < δ◦ � 1, where Z
is an m-dimensional transverse complete intersection of degree at most d.
At least one of the following cases holds:

Cellular case. There exists a polynomial P : Rn → R of degree O(d) with
the following properties:

i) #cell(P ) ∼ dm and each O ∈ cell(P ) has diameter at most r/2.
ii) One may pass to a refinement of cell(P ) such that if O is defined as in

(15), then ∫
O
F ∼ d−m

∫
Rn

F for all O ∈ O.

Algebraic case. There exists an (m − 1)-dimensional transverse complete
intersection Y of degree at most O(d) such that∫

Br∩Nr1/2+δ◦Z
F �

∫
Br∩Nr1/2+δ◦Y

F.

The choice of scales r and r1/2+δ◦ is not particularly special in the sense
that the theorem holds true in greater generality: the result is presented in
this specific case only in anticipation of later applications.

The statement of this theorem does not explicitly appear in [12], but it
can be easily deduced from the argument described in Section 8.1 of that
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article together with the simple pigeonholing arguments discussed earlier in
this subsection. The key difference between Theorem 6.3 and Theorem 6.2
is that in the latter one has the additional hypothesis that F is supported in
a r1/2+δ◦-neighbourhood of the m-dimensional variety Z. This allows one to
construct a partitioning polynomial which cuts out only O(dm) cells rather
than the O(dn) guaranteed by Theorem 6.2.

Theorem 6.3 is then applied to the relevant broad norm by taking

F =
∑

BK2∈BK2

μEf (BK2)
1

|BK2 |1BK2∩Br∩Nr1/2+δ◦Z

for some 0 < δ◦ � 1.

• If the cellular case holds, then it follows that

‖Ef‖pBLp
k,A(Br∩Nr1/2+δ◦Z)

� dm‖Ef‖pBLp
k,A(O) for all O ∈ O

where O is the collection of cells produced by the theorem.
• If the algebraic case holds, then it follows that

‖Ef‖pBLp
k,A(Br∩Nr1/2+δ◦Z)

� ‖Ef‖pBLp
k,A(Br∩Nr1/2+δ◦Y)

where Y is the variety produced by the theorem.

7. Wave packet decompositions

7.1. Definition and basic properties

Let r � 1 and cover the domain Bn−1 by a family Θr of finitely-overlapping
balls of radius r−1/2. As noted in Section 4, these (n− 1)-dimensional balls
are referred to as r−1/2-caps and ξθ is used to denote the centre of θ. Fix
(ψθ)θ∈Θr

a smooth partition of unity for Bn−1, subordinate to the cover Θr,
such that each function ξ �→ ψθ(ξθ + r−1/2ξ) is supported in [−π, π]n−1 and

‖∂α
xψθ‖L∞(Rn−1) �α r|α|/2 for all α ∈ N

n−1
0 .

Given our smooth, bounded input function f : Bn−1 → C, by performing
a Fourier series decomposition, we have

f · ψθ(ξ) =
(r1/2

2π

)n−1 ∑
v∈r1/2Zn−1

ei〈v,ξ〉(f · ψθ)
∧(v).
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Writing T[r] := Θr × r1/2Zn−1, this yields

(16) f =
∑

(θ,v)∈T[r]
fθ,v

where

fθ,v(ξ) :=
(r1/2
2π

)n−1
ei〈v,ξ〉(f · ψθ)

∧(v)ψ̃θ(ξ)

for ψ̃θ a bump function which is also adapted to θ ∈ Θr but which is equal

to 1 on the support of ψθ. The sum (16) is referred to as the wave packet

decomposition of f at scale r. The functions fθ,v and the pairs (θ, v) ∈ T[r]

will both be referred to as (scale r) wave packets.

The key properties of this decomposition are as follows:

Orthogonality between the wave packets. Recall that the ψθ have almost

disjoint supports. Combining this observation with Plancherel’s identity for

Fourier series, one concludes that∥∥∥ ∑
(θ,v)∈W

fθ,v

∥∥∥2
2
∼

∑
(θ,v)∈W

‖fθ,v‖22

for any collection of wave packets W ⊆ T[r].

It is worth noting that there is a local version of this orthogonality

relation. In particular, for 1 � ρ � r and a ρ−1/2-cap θ∗, one may readily

verify that ∥∥∥ ∑
(θ,v)∈W

fθ,v

∥∥∥2
L2(θ∗)

�
∑

(θ,v)∈W
‖fθ,v‖2L2(3θ∗)

where the right-hand norm is over the cap 3θ∗ concentric to θ∗ but with

thrice the radius. A reverse form of this inequality also holds (with θ∗ on

the left and 3θ∗ on the right-hand side), and together they imply the more

symmetric estimate

max
θ∗:ρ−1/2−cap

∥∥∥ ∑
(θ,v)∈W

fθ,v

∥∥∥2
L2(θ∗)

∼ max
θ∗:ρ−1/2−cap

∑
(θ,v)∈W

‖fθ,v‖2L2(θ∗)
,

where the maximum is over all ρ−1/2-caps.
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Spatial concentration. Given any wave packet (θ, v) ∈ T[r], on the ball
B(0, r) the function Efθ,v is essentially supported on the tube{

x ∈ B(0, r) : |x′ + 2xnξθ + v| � r1/2
}

in the sense that |Efθ,v(x)| decays rapidly as x ∈ B(0, r) moves away from
this set. More precisely, a simple stationary phase analysis shows that

|Efθ,v(x)| �N r−
n−1

4 (1 + r−1/2|x′ + 2xnξθ + v|)−N‖fθ,v‖2

for all N ∈ N and x ∈ Rn with |xn| < r; see, for example, [34, Lemma 4.1].
In particular, given 0 < δ � 1, the function |Efθ,v| is very small away from
the slightly fattened tube

Tθ,v :=
{
x ∈ B(0, r) : |x′ + 2xnξθ + v| � r1/2+δ

}
,

satisfying

(17) |Efθ,v(x)1B(0,r)\Tθ,v
(x)| �δ,N r−N‖fθ,v‖2

for all N ∈ N and x ∈ Rn with |xn| < r. Note that Tθ,v as defined above is
a tube with direction G(ξθ) (where G is the Gauss map as defined in (8))
which passes through the point (−v, 0) ∈ Rn.

Rapidly decaying terms of the kind seen in (17) are a regular feature
of the forthcoming analysis and it is convenient to introduce the notation
RapDec(r) to denote a non-negative term which is rapidly decreasing in r:
that is,

RapDec(r) �δ,N r−N for all N ∈ N.

Thus, with this definition, the estimate in (17) can be succinctly written as

|Efθ,v(x)1B(0,r)\Tθ,v
(x)| = RapDec(r)‖fθ,v‖2

for all x ∈ Rn with |xn| < r.

7.2. Comparing wave packet decompositions at different scales

For r as above, consider a smaller scale ρ satisfying r1/2 � ρ � r and a
ball B(y, ρ) with centre y ∈ B(0, r). We decompose f into wave packets
over the ball B(y, ρ) at this smaller spatial scale. The first step is to apply a
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Figure 2: For every (θ̃, ṽ) ∈ W̃ there exists a ‘parent’ wave packet (θ, v) ∈ W

such that: i) Tθ̃,ṽ + y (denoted here in blue ) is contained a fixed dilate

of Tθ,v ∩ B(y, ρ) (denoted here in yellow ) and ii) the angle between the

directions is O(ρ−1/2).

transformation to recentre B(y, ρ) at the origin. In particular, write Ef(x) =

Ef̃(x̃) where x = y + x̃ for some x̃ ∈ B(0, ρ) and

f̃(ξ) := ei(〈y
′, ξ〉+yn|ξ|2)f(ξ).

The function f̃ is now decomposed into scale ρ wave packets;

(18) f̃ =
∑

(θ̃,ṽ)∈T[ρ]

f̃θ̃,ṽ.

A basic question, studied in detail in [12, Section 7], is to understand

how the two wave packet decompositions (16) and (18) relate to one an-

other. For instance, suppose the significant contributions to f come from

a subcollection W of the scale r wave packets; which scale ρ wave packets

contribute significantly to f? To make this question precise, we introduce

the following definition.
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Definition 7.1. The function f : Bn−1 → C is said to be concentrated on
wave packets from W if∥∥ ∑

(θ,v)/∈W
fθ,v

∥∥
∞ = RapDec(r)‖f‖2.

With this definition, the following lemma provides a relationship between
wave packet concentration properties at distinct scales.

Lemma 7.2 ([12]). If f is concentrated on scale r wave packets W ⊆ T[r],

then f̃ is concentrated on a set of wave packets W̃ ⊆ T[ρ] with the following

property: for every (θ̃, ṽ) ∈ W̃ there exists a wave packet (θ, v) ∈ W such
that

i) distH
(
Tθ̃,ṽ + y, Tθ,v ∩B(y, ρ)

)
� r1/2+δ;

ii) ∠(G(ξθ), G(ξθ̃)) � ρ−1/2.

Here distH denotes the Hausdorff distance.

The lemma tells us that every small scale wave packet (θ̃, ṽ) ∈ W̃ has
a ‘parent’ large scale wave packet (θ, v) ∈ W such that Tθ̃,ṽ both lies close
to Tθ,v and points in a similar direction to Tθ,v. This behaviour is represented
in Figure 2 above.

8. Tangential wave packets

We begin by giving the precise definition of what it means for a tube Tθ,v

to be tangent to Z; throughout this section Z ⊂ Rn will denote an m-
dimensional transverse complete intersection and 0 < δ � δm � 1 are fixed
small parameters, where δ is as in the previous section.

Definition 8.1. Letting r � 1 and y ∈ BR, a (translated) tube Tθ,v + y for
(θ, v) ∈ T[r] is said to be r−1/2+δm-tangent to Z in B(y, r) if:

i) Tθ,v + y ⊆ Nr1/2+δmZ ∩B(y, r);
ii) For any x ∈ Tθ,v + y and z ∈ Z∩B(y, r) with |z− x| � r1/2+δm one has

∠(G(θ), TzZ) � r−1/2+δm .

Throughout this section, we consider a function g which is concentrated
on tangential wave packets in the sense that

(19) g =
∑

(θ,v)∈TZ[r]

gθ,v +RapDec(r)‖g‖2
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where

TZ[r] :=
{
(θ, v) ∈ T[r] : Tθ,v is r−1/2+δm-tangent to Z in B(0, r)

}
.

An important ingredient in the proof of Theorem 2.1 will be to understand
what can be said about Eg under this tangency hypothesis. Recall from the
discussion in Section 4 that there are three useful estimates at our disposal:

• Vanishing property of the k-broad norms,
• Transverse equidistribution estimates,
• Bounds arising from the polynomial Wolff axioms.

The purpose of this section is to provide the precise details of all three of
these estimates. The first two were observed and used by Guth [12] to prove
restriction estimates in high dimensions. The polynomial Wolff axioms were
also applied earlier by Guth [11] in the special case of 2-surfaces in R3 to
study the restriction problem in 3-dimensions.

8.1. Vanishing property of the k-broad norms

The key advantage of working with k-broad norms rather than classical Lp

inequalities is that the former satisfy the following property.

Lemma 8.2. Let r � 1, let 1 � m < k � n, and let Z be m-dimensional.
Suppose that g is concentrated on wave packets from TZ[r]. Then

‖Eg‖BLp
k,A(Br) = RapDec(r)‖g‖2.

The lemma follows fairly directly from the definition of the k-broad
norms and the basic properties of the wave packet decomposition. The sim-
ple argument can be readily extracted from the beginning of the proof of
Proposition 8.1 in [12].

8.2. Comparing tangency properties at different scales

The description of the transverse equidistribution estimates is a little in-
volved and will require some preliminary definitions. In Section 7.2 we com-
pared wave packet concentration properties at different spatial scales; we
now pursue this investigation further in the tangential scenario.

As above, suppose g is concentrated on wave packets from TZ[r]. Once
again, let r1/2 � ρ � r be a choice of smaller spatial scale and consider some
ρ-ball B(y, ρ) with centre y ∈ B(0, r). Lemma 7.2 can be used to analyse the
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Figure 3: The large scale tube Tθ,v is r−1/2+δm-tangent to Z in B(0, r). Here
we consider its intersection with B(y, ρ).

tangency properties of the scale ρ wave packets defined over the ball B(y, ρ).
To see this, first write

g̃(ξ) := ei(〈y
′,ξ〉+yn|ξ|2)g(ξ),

as in Section 7.2. By Lemma 7.2, the function g̃ is concentrated on scale ρ
wave packets which each admit a ‘parent’ wave packet in TZ[r]. The scale ρ
wave packets therefore inherit tangency properties from their parents. It
turns out that the angle condition inherited by the scale ρ wave packets
is very strong, but the containment property is too weak to ensure that
the scale ρ wave packets are tangent to Z itself. However, as shown in [12,
Section 7], the function g̃ is concentrated on scale ρ wave packets Tθ̃,ṽ which
are tangent to various translates of Z. A schematic of this behaviour is
provided in Figures 3 and 4 below.

To make the preceding discussion more precise, given b ∈ Rn let Tb[ρ] be
the subcollection of T[ρ] consisting of those wave packets which are ρ−1/2+δm-
tangent to Z + b − y in B(0, ρ). At least heuristically, there is a finite set
of translates B ⊆ B(0, r1/2+δm) such that the {Tb[ρ] : b ∈ B} are pairwise
disjoint and

(20) g̃ =
∑
b∈B

g̃b +RapDec(r)‖g‖2, where g̃b :=
∑

(θ̃,ṽ)∈Tb[ρ]

g̃θ̃,ṽ.
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Figure 4: The scale ρ wave packets are partitioned into collections Tb[ρ]. For
each (θ̃, ṽ) ∈ Tb[ρ] the corresponding tube Tθ̃,ṽ+y is tangent to the translate
Z+ b in B(y, ρ).

By the spatial concentration property of the wave packets, it follows

that

Eg̃b(x̃) = 1N
ρ1/2+δm (Z+b)(x)Eg(x) + RapDec(r)‖g‖2

whenever x = x̃+ y for some x̃ ∈ B(0, ρ). The decomposition in (20) there-

fore breaks Eg̃ into pieces with the property that each piece is concentrated

on a ρ1/2+δm-neighbourhood of some translate of Z.

Finding the set of translates B involves some technicalities and the pre-

cise statements are perhaps not quite as clean as the above discussion sug-

gests. A rigorous version of (20) is given by the following proposition, which

is implicit in [12] and is described more explicitly in [13].

Proposition 8.3. Let B(y, ρ) ∩Nρ1/2+δmZ 
= ∅ and let g be concentrated on

wave packets from TZ[r]. Then there is a set of translates B ⊂ B(0, r1/2+δm)

such that

‖Eg‖pBLp
k,A(B(y,ρ)) � (log r)2

∑
b∈B

‖Eg̃b‖pBLp
k,A(B(0,ρ)∩N

ρ1/2+δm (Z−y+b))

+RapDec(r)‖g‖22
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and ∑
b∈B

‖g̃b‖22 � ‖g‖22.

The lemma can be proved by independently selecting the translates b at
random, although this argument involves some technicalities. See the proof
of [12, Proposition 8.1] or [13, Lemma 10.5] for further details.

8.3. Transverse equidistribution estimates

If h : Bn−1 → C is concentrated on wave packets from TZ[r], then this prop-
erty constrains the support of h (since points of the support of h roughly
correspond to directions of the wave packets). This in turn influences the
behaviour of Eh via the uncertainty principle. In particular, it transpires
that Eh is essentially constant at scale r1/2 in directions transverse to the
variety Z. This phenomenon is encapsulated in the transverse equidistribu-
tion estimate of [12, Section 6] which roughly states that

(21)
1

|Nρ1/2Z ∩Br1/2 |

∫
N

ρ1/2
Z∩B

r1/2

|Eh|2 � 1

|Br1/2 |

∫
B

r1/2

|Eh|2

for any r1/2-ball Br1/2 and 1 � ρ � r. An informative case to have in mind is
given by taking Z to be a plane in the co-ordinate hyperplane perpendicular
to en; in this situation, a rigorous version of the above inequality can be
readily verified along the lines discussed above. For the general case, the
reader is referred to Sections 2 and 6 of [12] for a more detailed discussion
of the transverse equidistribution phenomenon, which plays a fundamental
role in [12] and also here.

It is of particular interest to apply these observations to h := g̃b, where g̃b
is one of the functions introduced in the previous subsection. Indeed, by the
discussion in Section 8.2, the operator |Eg̃b| is concentrated in Nρ1/2+δm (Z−
y + b) and so expressions of the form of the left-hand side of (21) naturally
arise in this context.

Estimates for L2 quantities involving Eg̃b can be related to L2 estimates
for the input function g̃b via Plancherel’s theorem or, more precisely, the en-
ergy identity (11). The following consequence of transverse equidistribution
will be useful, which is established in Section 7 of [12].

Lemma 8.4 (Guth [12]). Let 1 � ρ′ � ρ � r and |b| � r1/2+δm . Let Z be
m-dimensional and let g be concentrated on wave packets from TZ[r]. Then

(22) max
θ:(ρ′)−1/2−cap

‖g̃b‖2L2(θ) �degZ rO(δm)
(r
ρ

)−n−m

2

max
θ:(ρ′)−1/2−cap

‖g‖2L2(θ),
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where g̃b is defined with respect to scale ρ wave packets as in (20).

Note that the factor gained in (22) is the ratio of the volumes of the
sets of integration in (21). The inequality (22) is explicitly stated in [12,
Lemma 7.6] for the case ρ′ = 1; the version for general 1 � ρ′ � ρ can be
deduced via similar arguments (see also the equation (8.26) from [12]).

8.4. Applying the polynomial Wolff axioms

Theorem 4.1 can be expressed in terms of wave packets.

Proposition 8.5 ([18]). Let δ > 0, c, r � 1 and Z ⊆ Rn be m-dimensional.
If W ⊆ T[r] is such that Tθ,v ⊆ Ncr1/2Z for all (θ, v) ∈ W, then

#
{
θ : (θ, v) ∈ W for some v ∈ r1/2Zn−1

}
�degZ cn−mr

m−1

2
+δ.

From this geometric bound, we deduce an estimate involving the aver-
aged norm

‖f‖L2
avg(θ)

:=
( 1

|θ|

∫
θ
|f(ξ)|2dξ

)1/2
,

which is a higher dimensional generalisation of an inequality that featured
prominently in [11].

Lemma 8.6. Let δ > 0, c, r � 1 and Z ⊆ Rn be m-dimensional. If g is
concentrated on wave packets (θ, v) ∈ T[r] satisfying Tθ,v ⊆ Ncr1/2Z, then

‖g‖2L2(Bn−1) �degZ cn−mr−
n−m

2
+δ max

θ:r−1/2−cap
‖g‖2L2

avg(θ)
.

Proof. By the concentration hypothesis one may write

g =
∑

(θ,v)∈W
gθ,v +RapDec(r)‖g‖2

where W are scale r wave packets satisfying Tθ,v ⊆ Ncr1/2Z. Given an r−1/2-
cap θ, define

TZ(θ) :=
{
v ∈ r1/2Zn−1 : (θ, v) ∈ W

}
and let ΘZ denote the collection of all r−1/2-caps θ for which TZ(θ) 
= ∅.
Thus, by the orthogonality and support properties of the wave packets,

‖g‖22 ∼
∑
θ∈ΘZ

∥∥∥ ∑
v∈TZ(θ)

gθ,v

∥∥∥2
2
�

∑
θ∈ΘZ

‖g‖2L2(θ).
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To prove the lemma it therefore suffices to show that

#ΘZ �degZ cn−mr
m−1

2
+δ,

but this immediately follows from Proposition 8.5.

9. Finding polynomial structure

The purpose of this section is to reformulate the core of the (inductive) proofs
in [11, 12] as a recursive process. The argument will in fact be presented as
two separate algorithms:

• [alg 1] is the more involved of the two and is presented in the current
section. It effects a dimensional reduction, essentially passing from an
m-dimensional to an (m− 1)-dimensional situation.

• [alg 2] is described in Section 10 below. It consists of repeated ap-
plication of the first algorithm to reduce to a minimal dimensional
case.

Comparing the present analysis with the original induction arguments of
Guth, [alg 1] corresponds to the induction on the radius in the proof
of Proposition 8.1 of [12], whilst [alg 2] corresponds to the induction on
dimension.

The first algorithm

Throughout this section let p � 2, 0 < ε � 1 be fixed and

(23) εC � δ � δn � δn−1 � · · · � δ1 � δ0 � ε

be a family of small parameters. Taking, for instance, δ0 := ε10, δj := δ10j−1

for 1 � j � n and δ := δ10n suffices. These parameters play a rather technical
role9 and are chosen so as to satisfy the requirements of the forthcoming
proof.

Input. [alg 1] will take as its input:

• An r-ball Br ⊂ Rn for some choice of large scale r � 1.
• A transverse complete intersection Z of dimension m � 2.

9They are essentially used to compensate for certain rC̄δm-losses arising from the
transverse equidistribution lemma.
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• A function f ∈ Bn−1 → C concentrated on wave packets which are
r−1/2+δm-tangent to Z in Br.

• An admissible large integer A ∈ N.

Remark 9.1. The integer A corresponds to the A parameter featured in the
definition of the broad norm. It is chosen large enough to facilitate repeated
application of Lemma 5.2 and Lemma 5.3. These lemmas will be used no
more than δ−2 times and so it suffices to take A � 2δ

−2

: see the discussion
following (28) below.

The description of the output of the algorithm is, unfortunately, far more
involved.

Output. [alg 1] will output a finite sequence of sets (Ej)
J
j=0, which are

constructed via a recursive process. Each Ej is referred to as an ensemble
and contains all the relevant information coming from the jth step of the
algorithm. In particular, the ensemble Ej consists of:

• A word hj of length j in the alphabet {a, c}, is referred to as a his-
tory. The rationale behind this notation is that a is an abbreviation
of ‘algebraic’ and c ‘cellular’. The words hj are recursively defined by
successively adjoining a single letter. Each hj records how the cells
Oj ∈ Oj were constructed via repeated application of the polynomial
partitioning theorem and, in particular, whether the algebraic or cel-
lular case held in successive stages of the process.

• A choice of spatial scale ρj � 1. The ρj will in fact be completely
determined by the initial scale r and the history hj . In particular,
define an auxiliary exponent δ̃m−1 by

(24) (1− δ̃m−1)(1/2 + δm−1) = (1/2 + δm),

noting that δm−1/2 � δ̃m−1 � 2δm−1. Let σk : [1,∞) → [0,∞) be given
by

σk(ρ) :=

⎧⎨⎩
ρ

2
if the kth letter of hj is c

ρ1−δ̃m−1 if the kth letter of hj is a

for each 1 � k � j. With these definitions, take

ρj := σj ◦ · · · ◦ σ1(r);

this sequence of scales is represented pictorially by the tree in Figure 5.
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Note that each σk is a decreasing function and therefore

(25) ρj � r(1−δ̃m−1)#a(j)

and ρj �
r

2#c(j)

where #a(j) and #c(j) denote the number of occurrences of a and c

in the history hj , respectively.

Remark 9.2. It is perhaps useful to give some justification for the intro-
duction of the auxiliary exponent δ̃m−1. In the algebraic case one passes

from some scale ρj to a new scale ρj+1 := ρ
1−δ̃m−1

j ; this is encoded in the
definition of σk(ρ) above. In the last step of the current algorithm the anal-
ysis passes to a lower dimensional variety (or we end up in a trivial small
scale case). For this step, one wishes to analyse tangency properties of the
wave packets at the new scale ρj+1 with respect to an (m− 1)-dimensional
variety. Looking at the second condition in Definition 8.1, this involves

analysis at the scale ρ
1/2+δm−1

j+1 . The formula (24) ensures that ρ
1/2+δm−1

j+1 =

ρ
1/2+δm
j ; this allows certain tangency properties to be inherited at the new

scale.

• A family of subsets Oj of Rn which will be referred to as cells. Each
cell Oj ∈ Oj will have diameter at most ρj .

• A collection of functions (fOj
)Oj∈Oj

. Each fOj
is concentrated on wave

packets in T[ρj ] which are ρ
−1/2+δm
j -tangent to some translate of Z on

(a ball of radius ρj containing) Oj .
• A large integer d ∈ N which depends only on the admissible parameters

and degZ.

Moreover, the components of the ensemble are defined so as to ensure
that, for certain coefficients10

(26) CI
j,δ(d, r), C

II
j,δ(d), C

III
j,δ (d, r) �d,δ r

δ0d#c(j)δ

and Aj := 2−#a(j)A ∈ N, the following properties hold:

Property I. Most of the mass of ‖Ef‖pBLp
k,A(Br)

is concentrated over the

Oj ∈ Oj :

(I)j ‖Ef‖pBLp
k,A(Br)

� CI
j,δ(d, r)

∑
Oj∈Oj

‖EfOj
‖pBLp

k,Aj
(Oj)

+ err(j)

10The quantity d#c(j)δ may be large (and non-admissible). Nevertheless, these
d#c(j)δ losses will be compensated for by other gains in the argument: see Re-
mark 10.1 below.
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Figure 5: The chain of scales ρj . Here we drop the subscript by writing
δ̃ := δ̃m−1. The blue path marked by arrows corresponds to the situation
where the word hj of length j begins with the letters accc . . . for 4 � j � J .

In this case the sequence ρj is given by ρ0 = r, ρ1 = r1−δ̃, ρ2 = r1−δ̃/2,

ρ3 = r1−δ̃/4, . . . .

where err(j) := jr−N‖f‖p2 for some fixed N ∈ N is a harmless ‘error’ term.

Property II. The functions fOj
satisfy

(II)j
∑

Oj∈Oj

‖fOj
‖22 � CII

j,δ(d)d
#c(j)‖f‖22.

Property III. Furthermore, each individual fOj
satisfies

(III)j ‖fOj
‖22 � CIII

j,δ (d, r)
( r

ρj

)−n−m

2

d−#c(j)(m−1)‖f‖22

and

(IIIloc)j max
θ:ρ−1/2−cap

‖fOj
‖2L2

avg(θ)
� CIII

j,δ (d, r)
( r

ρj

)−n−m

2

max
θ:ρ−1/2−cap

‖f‖2L2
avg(θ)

for all 1 � ρ � ρj .
The factors CI

j,δ(d, r), C
II
j,δ(d) and CIII

j,δ (d, r) play a minor technical role
in the analysis but, nevertheless, it is useful to work with explicit formulæ
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for these coefficients. In particular, they are defined by

CI
j,δ(d, r) := d#c(j)δ(log r)2#a(j)(1+δ),

CII
j,δ(d) := d#c(j)δ+n#a(j)(1+δ),

CIII
j,δ (d, r) := d#c(j)δ+#a(j)δrC̄#a(j)δm ,

where C̄ is some suitably chosen large constant.

The initial step The initial ensemble E0 is defined by taking:

• h := ∅ to be the empty word;
• ρ0 := r;
• O0 the collection consisting of a single cell O0 := Nr1/2+δmZ ∩Br;
• fO0

:= f .

At this point it is convenient also to fix d ∈ N to be some large integer, to be
determined later, which depends only on admissible parameters and degZ.

With these definitions, Property I holds due to the hypothesis on f and
the spatial concentration property of the wave packets, whilst Properties II
and III both hold vacuously.

The recursive step Assume the ensembles E0, . . . ,Ej have all been con-
structed for some j ∈ N0 and that they all satisfy the desired properties.

Stopping conditions. The algorithm has two stopping conditions which
are labelled [tiny] and [tang].

Stop:[tiny] The algorithm terminates if ρj � rδ̃m−1 .
Stop:[tang] Let Ctang and Calg be fixed admissible constants, chosen large

enough to satisfy the forthcoming requirements of the proof,

and ρ̃ := ρ1−δ̃m
j . The algorithm terminates if the inequalities∑

Oj∈Oj

‖EfOj
‖pBLp

k,Aj
(Oj)

� Ctang

∑
S∈S

‖EfS‖pBLp
k,Aj/2

(Bρ̃[S])

and ∑
S∈S

‖fS‖22 � Ctangr
nδ̃m

∑
Oj∈Oj

‖fOj
‖22;(27)

max
S∈S

θ:ρ−1/2−cap

‖fS‖2L2
avg(θ)

� Ctang max
Oj∈Oj

θ:ρ−1/2−cap

‖fOj
‖2L2

avg(θ)
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hold for all 1 � ρ � ρ̃ for some choice of:

• S a collection of transverse complete intersections in Rn

all of equal dimension m− 1 and degree at most Calgd;

• Bρ̃[S] an assignment of a ρ̃-ball to each S ∈ S;
• fS an assignment of a function to each S ∈ S which is
concentrated on wave packets ρ̃−1/2+δm−1-tangent to S
on Bρ̃ in the sense of Definition 8.1.

The stopping condition [tang] is somewhat involved, but it can be
roughly interpreted as forcing the algorithm to terminate if one can pass
to a lower dimensional situation.

If either of the above conditions hold, then the stopping time is defined
to be J := j. Recalling (25), the stopping condition [tiny] implies that the
algorithm must terminate after finitely many steps and, moreover,

(28) #a(J) � δ−1
m−1 log(δ

−1
m−1) and #c(J) � log r.

These estimates can be combined with the explicit formulæ for CI
j,δ(d, r),

CII
j,δ(d) and CIII

j,δ (d, r) to show that the bound (26) always holds, provided δm
is chosen to be sufficiently small relative to δm−1. Furthermore, by choosing
A � 2δ

−2

, say, one can ensure that the Aj defined above are indeed integers.

Recursive step. If neither stopping condition [tiny] nor [tang] is met,
one proceeds to construct the ensemble Ej+1 as follows.

Given Oj∈ Oj , apply the polynomial partitioning theorem, Theorem 6.3,
with degree d to

‖EfOj
‖pBLp

k,Aj
(Oj∩N

ρ
1/2+δm
j

(Z+xOj
)) = ‖EfOj

‖pBLp
k,Aj

(Oj)
+RapDec(r)‖f‖p2,

where xOj
∈ Rn is a choice of translate such that fOj

is concentrated on

wave packets ρ
−1/2+δm
j -tangent to Z+ xOj

in (a ρj-ball containing) Oj . For
each Oj ∈ Oj either the cellular or the algebraic case holds, as defined in
Theorem 6.3. Let Oj,cell denote the subcollection of Oj consisting of all cells
for which the cellular case holds and Oj,alg := Oj \Oj,cell. Thus, by (I)j , one
may bound ‖Ef‖pBLp

k,A(Br)
by

CI
j,δ(d, r)

[ ∑
Oj∈Oj,cell

‖EfOj
‖pBLp

k,Aj
(Oj)

+
∑

Oj∈Oj,alg

‖EfOj
‖pBLp

k,Aj
(Oj)

]
+ err(j);

the analysis splits into two cases depending on which term in this sum
dominates.
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Cellular-dominant case. Suppose that the inequality

(29)
∑

Oj∈Oj,alg

‖EfOj
‖pBLp

k,Aj
(Oj)

�
∑

Oj∈Oj,cell

‖EfOj
‖pBLp

k,Aj
(Oj)

holds so that

(30) ‖Ef‖pBLp
k,A(Br)

� 2CI
j,δ(d, r)

∑
Oj∈Oj,cell

‖EfOj
‖pBLp

k,Aj
(Oj)

+ err(j).

Definition of Ej+1. Define hj+1 by adjoining the letter c to the word hj .
Thus, it follows from the definitions that

(31) ρj+1 =
ρj
2
, #c(j + 1) = #c(j) + 1 and #a(j + 1) = #a(j).

The next generation of cells Oj+1 will arise from the cellular decompo-
sition of Theorem 6.3. Fix Oj ∈ Oj,cell so that there exists some polynomial
P : Rn → R of degree O(d) with the following properties:

i) #cell(P ) ∼ dm and each O ∈ cell(P ) has diameter at most ρj+1.
ii) One may pass to a refinement of cell(P ) such that if

(32) Oj+1(Oj) :=
{
O \Nρ1/2+δm

j
Z(P ) : O ∈ cell(P )

}
denotes the corresponding collection of ρ

1/2+δm
j -shrunken cells, then

‖EfOj
‖pBLp

k,Aj
(Oj)

� dm‖EfOj
‖pBLp

k,Aj
(Oj+1)

for all Oj+1 ∈ Oj+1(Oj).

Given Oj+1 ∈ Oj+1(Oj), define

fOj+1
:=

∑
(θ,v)∈T[ρj ]

Tθ,v∩Oj+1 
=∅

(fOj
)θ,v.

It is a simple consequence of the fundamental theorem of algebra (or Bézout’s
theorem) that any tube Tθ,v for (θ, v) ∈ T[ρj ] can enter at most O(d) cells
Oj+1 ∈ Oj+1(Oj) (it is for this reason that one works with the collection of
shrunken cells as defined in (32)). Consequently, by the basic orthogonality
between the wave packets,

(33)
∑

Oj+1∈Oj+1(Oj)

‖fOj+1
‖22 � d‖fOj

‖22.
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By the pigeonhole principle, one may therefore pass to a refinement of
Oj+1(Oj) such that

(34) ‖fOj+1
‖22 � d−(m−1)‖fOj

‖22 for all Oj+1 ∈ Oj+1(Oj).

Finally, define

Oj+1 :=
⋃

Oj∈Oj,cell

Oj+1(Oj).

This completes the construction of Ej+1 and it remains to check that the
new ensemble satisfies the desired properties.11 In view of this, it is useful
to note that

(35) CN
j,δ(d, r) = d−δCN

j+1,δ(d, r) for N ∈ {I, II, III} and Aj = Aj+1,

which follows immediately from (31) and the definition of the CN
j,δ(d, r)

and Aj .

Property I. Fixing Oj ∈ Oj,cell, observe that #Oj+1(Oj) ∼ dm and

‖EfOj
‖pBLp

k,Aj
(Oj)

� dm‖EfOj
‖pBLp

k,Aj
(Oj+1)

for all Oj+1 ∈ Oj+1(Oj)

by the properties i) and ii) from the polynomial partitioning theorem and
the fact that Oj+1(Oj) is obtained by twice refining a set of cardinality
comparable to that of cell(P ). Thus,

‖EfOj
‖pBLp

k,Aj
(Oj)

�
∑

Oj+1∈Oj+1(Oj)

‖EfOj
‖pBLp

k,Aj
(Oj+1)

and, recalling (30) and (35), one deduces that

‖Ef‖pBLp
k,A(Br)

� Cd−δCI
j+1,δ(d, r)

∑
Oj+1∈Oj+1

‖EfOj
‖pBLp

k,Aj+1
(Oj+1)

+ err(j).

11There is a slight technical issue here as the fOj+1 are required to satisfy the
tangency hypothesis at scale ρj+1; this is not quite directly inherited from the par-
ent fOj functions since they only satisfy a tangency hypothesis at scale ρj . Although
the scales differ by only a factor of 2, the construction is applied repeatedly as part
of the recursive process and therefore such factors can build up and potentially
threaten the argument. One may deal with this problem by performing a further
decomposition of the cells Oj+1 and functions fOj+1 using Proposition 8.3: the de-
tails are omitted since the argument is similar (but significantly simpler) to that
used to treat the algebraic case below. See also Lemma 10.2 of [13].
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By the definition of fOj+1
and the spatial concentration property of the wave

packets, it follows that

EfOj
(x) = EfOj+1

(x) + RapDec(r)‖f‖2 for all x ∈ Oj+1.

This inequality relies on the fact that ρj+1 � rδ, which is valid since it is
assumed that the stopping condition [tiny] fails. If r is sufficiently large,
then one concludes that

‖Ef‖pBLp
k,A(Br)

� Cd−δCI
j+1,δ(d, r)

∑
Oj+1∈Oj+1

‖EfOj+1
‖pBLp

k,Aj+1
(Oj+1)

+err(j+1).

Thus, provided d is chosen large enough so as to ensure that the addi-
tional d−δ factor absorbs the unwanted constant C, one deduces (I)j+1.
This should be compared with Solymosi and Tao’s approach to polynomial
partitioning [29].

Property II. By the construction,∑
Oj+1∈Oj+1

‖fOj+1
‖22 =

∑
Oj∈Oj,cell

∑
Oj+1∈Oj+1(Oj)

‖fOj+1
‖22

� d
∑

Oj∈Oj

‖fOj
‖22,

where the inequality follows from a term-wise application of (33). Thus, (II)j
and (35) imply that∑

Oj+1∈Oj+1

‖fOj+1
‖22 � d−δCII

j+1,δ(d)d
#c(j+1)‖f‖22

and, provided d is chosen sufficiently large, one deduces (II)j+1.

Property III. Fix Oj ∈ Oj,cell, Oj+1 ∈ Oj+1(Oj) and recall from (34) that

(36) ‖fOj+1
‖22 � d−(m−1)‖fOj

‖22.

Thus, (III)j and (35) imply that

‖fOj+1
‖22 � d−δCIII

j+1,δ(d, r)
( r

ρj

)−n−m

2

d−(#c(j)+1)(m−1)‖f‖22.
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Since ρj ∼ ρj+1 and #c(j) + 1 = #c(j +1), provided d is chosen sufficiently
large, one deduces (III)j+1.

The local inequality (IIIloc)j+1 follows in a similar manner but with
one key difference: the inequality (36) is no longer available due to the
localisation in the L2-norms. Instead, one uses simple orthogonality between
the wave packets to prove that

max
θ:ρ−1/2−cap

‖fOj+1
‖2L2

avg(θ)
� max

θ:ρ−1/2−cap
‖fOj

‖2L2
avg(θ)

for 1 � ρ � ρj+1 � ρj .

Algebraic-dominant case. Suppose that the hypothesis (29) of the cel-
lular-dominant case fails so that

(37)
∑

Oj∈Oj,cell

‖EfOj
‖pBLp

k,Aj
(Oj)

<
∑

Oj∈Oj,alg

‖EfOj
‖pBLp

k,Aj
(Oj)

and, consequently,

(38) ‖Ef‖pBLp
k,A(Br)

� 2CI
j,δ(d, r)

∑
Oj∈Oj,alg

‖EfOj
‖pBLp

k,Aj
(Oj)

+ err(j).

Each cell in Oj,alg satisfies the condition of the algebraic case of Theorem 6.3;
this information is used to construct the (j + 1)-generation ensemble.

Definition of Ej+1. Define hj+1 by adjoining the letter a to the word hj .
Thus, it follows from the definitions that

ρj+1 = ρ
1−δ̃m−1

j , #c(j + 1) = #c(j) and #a(j + 1) = #a(j) + 1.

The next generation of cells is constructed from the varieties which arise
from the algebraic case in Theorem 6.3. Fix Oj ∈ Oj,alg so that there exists
a transverse complete intersection Y of dimension m− 1 and degY � Calgd
such that

‖EfOj
‖pBLp

k,Aj
(Oj)

� ‖EfOj
‖pBLp

k,Aj
(Oj∩N

ρ
1/2+δm
j

Y).

Let B(Oj) be a cover of Oj ∩ Nρ1/2+δm
j

Y by finitely-overlapping balls of ra-

dius ρj+1. For each B ∈ B(Oj) let TB denote the collection of all (θ, v) ∈
T[ρj ] for which Tθ,v ∩B∩Nρ

1/2+δm
j

Y 
= ∅. This set is partitioned into subsets
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TB,tang and TB,trans consisting of wave packets in TB which are tangential

and transverse to Y on B, respectively, by defining

TB,tang :=
{
(θ, v) ∈ TB : Tθ,v is ρ

−1/2+δm−1

j+1 -tangent to Y on B
}

and TB,trans := TB \ TB,tang. This setup is slightly inconsistent with the

definition of tangent from Definition 8.1 (since the wave packets in TB are

at the large scale ρj rather than ρj+1) and therefore some clarification is

necessary.

Definition 9.3. In this context, the tangency condition means that the

following conditions hold:

i) Tθ,v ∩ 2B ⊆ N
2ρ

1/2+δm−1
j+1

Y = N2ρ
1/2+δm
j

Y;

ii) If x ∈ Tθ,v and y ∈ Y ∩ 2B satisfy |y − x| � ρ
1/2+δm−1

j+1 = ρ
1/2+δm
j , then

∠(G(θ), TyY) � ρ
−1/2+δm−1

j+1 .

By the basic concentration property of the wave packets, one may de-

compose the function EfOj
on B as

EfOj
(x) = EfB,trans(x) + EfB,tang(x) + RapDec(r)‖f‖2 for all x ∈ B

where

fB,tang :=
∑

(θ,v)∈TB,tang

(fOj
)θ,v and fB,trans :=

∑
(θ,v)∈TB,trans

(fOj
)θ,v.

The functions fB,tang are in fact concentrated on scale ρj+1 wave packets

which are ρ
−1/2+δm−1

j+1 -tangent to Y in B in precisely the sense of Defini-

tion 8.1. This can be seen by a direct application of Lemma 7.2. In addition,

by the local version of the basic orthogonality between wave packets,

max
θ:ρ−1/2−cap

‖fB,tang‖2L2
avg(θ)

� max
θ:ρ−1/2−cap

‖fOj
‖2L2

avg(θ)

whenever B ∈ B(Oj) and 1 � ρ � ρj . Provided that the constant Ctang is

suitably chosen, these observations imply that the functions fB,tang satisfy

the conditions stated in (27) from the definition of the stopping condition

[tang].
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By hypothesis, [tang] fails and, consequently, one may deduce that

(39)
∑

Oj∈Oj,alg

‖EfOj
‖pBLp

k,Aj
(Oj)

�
∑

Oj∈Oj,alg

∑
B∈B(Oj)

‖EfB,trans‖pBLp
k,Aj+1

(B),

where this inequality holds up to the inclusion of a rapidly decaying error
term on the right-hand side. Indeed, by the triangle inequality for broad
norms (Lemma 5.2) and since Aj+1 = Aj/2, one may dominate the left-
hand side of (39) by∑

Oj∈Oj,alg

∑
B∈B(Oj)

[
‖EfB,tang‖pBLp

k,Aj+1
(B) + ‖EfB,trans‖pBLp

k,Aj+1
(B)

]
plus a rapidly decaying error term. By the preceding observations, the failure
of the stopping condition [tang] forces∑

Oj∈Oj,alg

∑
B∈B(Oj)

‖EfB,tang‖pBLp
k,Aj+1

(B) <
1

Ctang

∑
Oj∈Oj

‖EfOj
‖pBLp

k,Aj
(Oj)

(since it has been shown that all other conditions for [tang] are met).
Recalling (37), for a suitable choice of constant Ctang, this implies (39).

The functions fB,trans and sets B are further decomposed so as to ensure
favourable tangency properties with respect to translates of the variety Z at
the new scale ρj+1. Let ZB := Z+ xOj

− xB where xB denotes the centre of
B ∈ B(Oj). Proposition 8.3 implies that for each B ∈ B(Oj) there exists a

finite set of translates B ⊆ B(0, ρ
1/2+δm
j ) such that

‖EfB,trans‖pBLp
k,Aj+1

(B)

� (log r)2
∑
B∈B

‖Ef̃B,trans,b‖pBLp
k,Aj+1

(B(0,ρj+1)∩N
ρ
1/2+δm
j+1

(ZB+b))(40)

holds up to the inclusion of a rapidly decaying error term, whilst

(41)
∑
b∈B

‖f̃B,trans,b‖22 � ‖fB,trans‖22.

Here the functions f̃B,trans,b are defined as in Section 7.2. In particular, each

f̃B,trans,b is concentrated on wave packets which are ρ
−1/2+δm
j+1 -tangent to

ZB + b in B(0, ρj+1). Finally, define

Oj+1(Oj) :=
{
B ∩Nρ1/2+δm

j+1
(Z+ xOj

+ b) : B ∈ B(Oj) and b ∈ B

}
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and for any Oj+1 = B ∩Nρ1/2+δm
j+1

(Z + xOj
+ b) ∈ Oj+1(Oj) let fOj+1

satisfy

f̃Oj+1
:= f̃B,trans,b; once again, we are using the definition of the map g �→ g̃

from Section 7.2. Thus, each fOj+1
is concentrated on wave packets which

are ρ
−1/2+δm
j+1 -tangent to Z + xOj+1

in B ∈ B(Oj), where xOj+1
= xOj

+ b.
The collection of cells Oj+1 is then given by

Oj+1 :=
⋃

Oj∈Oj,alg

Oj+1(Oj).

It remains to verify that the ensemble Ej+1 satisfies the desired properties.
In view of this, it is useful to note that

CI
j,δ(d, r) = (log r)−2(1+δ)CI

j+1,δ(d, r),

CII
j,δ(d) = d−n(1+δ)CII

j+1,δ(d),(42)

CIII
j,δ (d, r) = r−C̄δmd−δCIII

j+1,δ(d, r),

which can be verified directly from the definitions.

Property I. By combining (39) and (40) together with the various defini-
tions one obtains∑

Oj∈Oj,alg

‖EfOj
‖pBLp

k,Aj
(Oj)

� (log r)2
∑

Oj+1∈Oj+1

‖EfOj+1
‖pBLp

k,Aj+1
(Oj+1)

,

where this inequality holds up to the inclusion of a rapidly decaying error
term on the right-hand side. Recalling (38) and (42), it follows that

‖Ef‖pBLp
k,A(Br)

�
C · CI

j+1,δ(d, r)

(log r)2δ

∑
Oj+1∈Oj+1

‖EfOj+1
‖pBLp

k,Aj+1
(Oj+1)

+ err(j + 1).

Provided r is chosen to be sufficiently large, one may absorb the unwanted
constant C by the additional (log r)−2δ factor and thereby deduce (I)j+1.

Property II. Fix Oj ∈ Oj,alg and note that∑
Oj+1∈Oj+1(Oj)

‖fOj+1
‖22 =

∑
B∈B(Oj)

∑
b∈B

‖fB,trans,b‖22

�
∑

B∈B(Oj)

‖fB,trans‖22(43)



260 Jonathan Hickman and Keith M. Rogers

by the definition of fOj+1
and (41). To estimate the latter sum one exploits

the transversal property of the wave packets of the fB,trans. The key obser-

vation is the following algebraic-geometric result of Guth, which appears in

Lemma 5.7 of [12] and can be roughly thought of as a continuum version of

the fundamental theorem of algebra (or Bézout’s theorem).

Lemma 9.4 ([12]). Suppose T is an infinite cylinder in Rn of radius ρ and

central axis � and Y is a transverse complete intersection. For α > 0 let

Y>α := {y ∈ Y : ∠(TyY, �) > α}.

The set Y>α∩T is contained in a union of O
(
(degY)n

)
balls of radius ρα−1.

By choosing the implicit constants correctly in Definition 9.3, a wave

packet (θ, v) ∈ TB belongs to TB,trans if and only if the angle condition ii)

fails to be satisfied. Indeed, if ii) holds, then since Tθ,v∩B∩Nρ
1/2+δm
j

Y 
= ∅ by
the definition of TB, the containment property i) automatically follows and

therefore (θ, v) ∈ TB,tang (see, for instance, [13, Proposition 9.2] for details

of an argument of this type). Thus, given any (θ, v) ∈
⋃

B∈B(Oj)
TB,trans, it

follows from the definitions that

(44) ∠(G(θ), TyY) � ρ
−1/2+δm−1

j+1

for some y ∈ Y∩2B with |y−x| � ρ
1/2+δm−1

j+1 for some x ∈ Tθ,v. This implies

that

T ∩B ∩Y�ρ
−1/2+δm−1
j+1


= ∅

where T is the infinite cylinder that shares the core line of Tθ,v but has

radius ∼ ρ
1/2+δm−1

j+1 . Observe that

ρ
1/2+δm−1

j+1︸ ︷︷ ︸
∼Radius

of T

[
ρ
−1/2+δm−1

j+1︸ ︷︷ ︸
∼Angle
from (44)

]−1
= ρj+1︸︷︷︸

Radius
of B ∈ B(Oj)

.

Thus, by Lemma 9.4, any (θ, v) ∈
⋃

B∈B(Oj)
TB,trans lies in at most O(dn) of

the sets TB,trans and, consequently, by the basic orthogonality between the

wave packets, ∑
B∈B(Oj)

‖fB,trans‖22 � dn‖fOj
‖22.
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Combining this inequality with (43) and summing over all Oj ∈ Oj,alg,∑
Oj+1∈Oj+1

‖fOj+1
‖22 � dn

∑
Oj∈Oj

‖fOj
‖22.

Applying (II)j and (42), one concludes that∑
Oj+1∈Oj+1

‖fOj+1
‖22 � d−nδCII

j+1,δ(d, r)‖f‖22.

Thus, provided d is chosen sufficiently large, one deduces (II)j+1.

Property III. Fix Oj ∈ Oj,alg and Oj+1 ∈ Oj+1(Oj) and suppose that

f̃Oj+1
= f̃B,trans,b. Recall that the function fB,trans is concentrated on scale ρj

wave packets which are ρ
−1/2+δm
j -tangent to some translate of Z on some ρj-

ball. It therefore follows from the transverse equidistribution estimate (22)
of Lemma 8.4 with ρ := 1 that

‖f̃B,trans,b‖22 �degZ rC̄δm
( ρj
ρj−1

)−n−m

2 ‖fB,trans‖22.

On the other hand, by the basic orthogonality between the wave packets,

‖fB,trans‖22 � ‖fOj
‖22.

Applying (III)j and (42), one concludes that

‖fOj+1
‖22 �degZ d−δCIII

j+1,δ(d, r)
( r

ρj+1

)−n−m

2

d−#c(j+1)(m−1)‖f‖22.

Thus, provided d is chosen sufficiently large, one deduces (III)j+1. The local
version, (IIIloc)j+1, follows in a similar manner, using the local transverse
equidistribution estimate (22) for general values of 1 � ρ � ρj+1.

10. Proof of Theorem 2.1

10.1. The second algorithm

Theorem 2.1 is established by repeated application of the algorithm
[alg 1] from the previous section. This process forms part of a second
algorithm which is referred to as [alg 2] and is described presently.
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Throughout this section, let p� denote Lebesgue exponents, to be fixed
later, defined for k � � � n and satisfying

pk � pk+1 � · · · � pn =: p � 2.

The numbers 0 � α�, β� � 1 for k � � � n are then defined in terms of the
p� by

1

p�
=:

1− α�−1

2
+

α�−1

p�−1
and β� :=

n−1∏
i=�

αi for k + 1 � � � n− 1

and αn :=: βn := 1. Also fix ε > 0 and define the small parameters δ� as in
the previous section so that the inequalities in (23) hold.

There are two stages to [alg 2], which can roughly be described as
follows:

• The recursive stage: Ef is repeatedly decomposed into pieces with
favourable tangency properties with respect to varieties of progres-
sively lower dimension.

• The final stage: Ef is further decomposed into very small scale
pieces.

To begin, the recursive stage of [alg 2] is described.

Input. Fix R � 1 and let f : Bn−1 → C be smooth and bounded and,
without loss of generality, assume that f satisfies the non-degeneracy hy-
pothesis

(45) ‖Ef‖BLp
k,A(BR) � ChypR

ε‖f‖2

where Chyp and A ∈ N are constants which are chosen sufficiently large to
satisfy the forthcoming requirements of the proof.

Output. The (n+ 1− �)th step of the recursion will produce:

• An (n+ 1− �)-tuple of:

– scales �r� = (rn, . . . , r�) satisfying R = rn > rn−1 > · · · > r�;

– large and non-admissible parameters �D� = (Dn, . . . , D�);

– integers �A = (An, . . . , A�) satisfying A = An > An−1 > · · · > A�.

Each of these (n + 1 − �)-tuples is formed by adjoining a component
to the corresponding (n− �)-tuple from the previous stage.
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• A family �S� of (n + 1 − �)-tuples of transverse complete intersections
�S� = (Sn, . . . , S�) satisfying dimSi = i and degSi = O(1) for all

i = �, . . . , n.

• An assignment of a function f�S�
and a ball Br� [�S�] to each �S� ∈ �S� with

the property that f�S�
is concentrated on scale r� wave packets which

are r
−1/2+δ�
� -tangent to S� in Br� [�S�] (here S� is the final component

of �S�). For notational convenience, the dependence on �S� will often be

suppressed in the Br� [�S�] notation by simply writing Br� .

This data is chosen so that the following properties hold:

Notation. Throughout this section a large number of harmless RCδ0 factors

appear in the inequalities, where C is a constant depending on p and n. By

choosing δ0 sufficiently small relative to ε, at the end of the argument one

may dominate any RCδ0 by Rε, say, which constitutes an acceptable loss in

the inequality. Thus, for notational convenience, given A,B � 0 let A � B

or B � A denote A � RCδ0B.

Property 1. The inequality

(46) ‖Ef‖BLp
k,A(BR) � M(�r�, �D�)‖f‖1−β�

2

( ∑
�S�∈ �S�

‖Ef�S�
‖p�

BL
p�
k,A�

(Br�
)

) β�
p�

holds for

M(�r�, �D�) :=
( n−1∏

i=�

Di

)(n−�)δ( n−1∏
i=�

r
1

2
(βi+1−βi)

i D
1

2
(βi+1−β�)

i

)
.

Property 2. For � � n− 1 the inequality∑
�S�∈ �S�

‖f�S�
‖22 � D1+δ

�

∑
�S�+1∈ �S�+1

‖f�S�+1
‖22

holds.

Property 3. For � � n− 1 the inequalities

max
�S�∈ �S�

‖f�S�
‖22 �

(r�+1

r�

)−n−�−1

2

D−�+δ
� max

�S�+1∈ �S�+1

‖f�S�+1
‖22
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and

max
�S�∈ �S�

θ:ρ−1/2−cap

‖f�S�
‖2L2

avg(θ)
�

(r�+1

r�

)−n−�−1

2

Dδ
� max

�S�+1∈ �S�+1

θ:ρ−1/2−cap

‖f�S�+1
‖2L2

avg(θ)

hold for 1 � ρ � r�.

First step. Vacuously, the function f is concentrated on scale R wave
packets which are R−1/2+δn-tangent to the n-dimensional variety Rn on BR.
Thus, one may define

• rn := R; Dn := 1 and An := A.
• Sn is the collection consisting of a single 1-tuple �Sn = (Sn) where
Sn := Rn.

• f�Sn
:= f and Brn [�Sn] := BR.

With these definitions, all the desired properties vacuously hold.

(n + 2 − �)th step. Let � � 1 and suppose that the recursive algorithm
has ran through n+ 1− � steps. Since each function f�S�

is concentrated on

wave packets r
−1/2+δ�
� -tangent to S� on Br� [S�], one may apply [alg 1] to

bound the k-broad norm ‖Ef�S�
‖BL

p�
k,A�

(Br�
). One of two things can happen:

either [alg 1] terminates due to the stopping condition [tiny] or it termi-
nates due to the stopping condition [tang]. The current recursive process
terminates if the contributions from terms of the former type dominate:

Stopping condition. The recursive stage of [alg 2] has a single stop-
ping condition, which is denoted by [tiny-dom].

Stop:[tiny-dom] Suppose that the inequality
(47)∑

�S�∈ �S�

‖Ef�S�
‖p�

BL
p�
k,A�

(Br�
)
� 2

∑
�S�∈ �S�,tiny

‖Ef�S�
‖p�

BL
p�
k,A�

(Br�
)

holds, where the right-hand summation is restricted to
those S� ∈ �S� for which [alg 1] terminates owing to the
stopping condition [tiny]. Then [alg 2] terminates.

Assume that the condition [tiny-dom] is not met. Necessarily,

(48)
∑
�S�∈ �S�

‖Ef�S�
‖p�

BL
p�
k,A�

(Br�
)
� 2

∑
�S�∈ �S�,tang

‖Ef�S�
‖p�

BL
p�
k,A�

(Br�
)
,
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where the right-hand summation is restricted to those S� ∈ �S� for which

[alg 1] does not terminate owing to [tiny] and therefore terminates owing

to [tang]. Consequently, for each �S� ∈ �S�,tang the inequalities

(49) ‖Ef�S�
‖p�

BL
p�
k,A�

(Br�
)
� Dδ

�−1

∑
S�−1∈S�−1[�S�]

‖Ef�S�−1
‖p�

BL
p�
k,2A�−1

(Br�−1
)
,

and ∑
S�−1∈S�−1[�S�]

‖f�S�−1
‖22 � D1+δ

�−1‖f�S�
‖22;(50)

max
S�−1∈S�−1[�S�]

‖f�S�−1
‖22 �

( r�
r�−1

)−n−�

2

D
−(�−1)+δ
�−1 ‖f�S�

‖22;(51)

max
S�−1∈S�−1[�S�]
θ:ρ−1/2−cap

‖f�S�−1
‖2L2

avg(θ�)
�

( r�
r�−1

)−n−�

2

Dδ
�−1 max

θ:ρ−1/2−cap
‖f�S�

‖2L2
avg(θ)

(52)

hold for 1 � ρ � r�−1 for some choice of:

• Scale Rδ < r�−1 < r�, an (in general) non-admissible number D�−1

and some large integer A�−1 satisfying A�−1 ∼ A�;

• Family S�−1[�S�−1] of (�− 1)-dimensional transverse complete intersec-

tions of degree O(1);

• Assignment Br�−1
[�S�−1] of an r�−1-ball to every S�−1 ∈ S�−1[�S�];

• Assignment f�S�−1
= (f�S�

)S�−1
of a function to every S�−1 ∈ S�−1[�S�]

which is concentrated on wave packets which are r
−1/2+δ�−1

�−1 -tangent

to S�−1 on Br�−1
[S�−1].

Each inequality (49), (50), (51) and (52) is obtained by combining the defi-

nition of the stopping condition [tang] with Properties I, II and both the

global and local variants of Property III from [alg 1], respectively.12 In-

deed, using the notation from [alg 1], we take

r := r�, r�−1 := ρ
1−δ̃�−1

J , and D�−1 := d#c(J).

Note that the RO(δ0)Dδ
�−1 factors arise in the above inequalities owing to (26).

12Here the ‘error terms’ err(j) := jr−N‖f‖p2 in Property I of [alg 1] can be
ignored owing to the non-degeneracy hypothesis (45).
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The r�−1, D�−1 and A�−1 can depend on the choice of �S�, but this de-

pendence can be essentially removed by pigeonholing. Indeed, recalling that

#c(J) = O(logR), one may find a subset of the S�,tang over which the D�−1

all have a common value and, moreover, the inequality (47) still holds ex-

cept that the constant 1
2 is now replaced with, say, Rδ0 . A brief inspection of

[alg 1] shows that, once we have pigeonholed in the parameter N above,

both r�−1 and A�−1 immediately inherit the desired uniformity.

Letting �S�−1 denote the structured set

�S�−1 :=
{
(�S�, S�−1) : �S� ∈ �S�,tang and S�−1 ∈ S�−1[�S�]

}
,

where �S�,tang is understood to be the refined collection described in the

previous paragraph, it remains to verify the desired properties for the newly

constructed data. Property 2 follows immediately from (50) and Property 3

from (51) and (52), so it remains only to verify Property 1.

By combining the inequality (46) from the previous stage of the algo-

rithm with (48) and (49), one deduces that

‖Ef‖BLp
k,A(BR)

� Dδ
�−1M(�r�, �D�)‖f‖1−β�

2

( ∑
�S�−1∈ �S�−1

‖Ef�S�−1
‖p�

BL
p�
k,2A�−1

(Br�−1
)

) β�
p� .

Writing

( ∑
�S�−1∈ �S�−1

‖Ef�S�−1
‖p�

BL
p�
k,2A�−1

(Br�−1
)

) 1

p� =
∥∥∥‖Ef�S�−1

‖BL
p�
k,2A�−1

(Br�−1
)

∥∥∥
�p�( �S�−1)

,

one may apply the logarithmic convexity inequality from Lemma 5.3 to

dominate this expression by∥∥∥‖Ef�S�−1
‖BL2

k,A�−1
(Br�−1

)

∥∥∥1−α�−1

�2( �S�−1)

∥∥∥‖Ef�S�−1
‖BL

p�−1
k,A�−1

(Br�−1
)

∥∥∥α�−1

�p�−1 ( �S�−1)
.

By the standard L2 estimate (12) applied to broad norms,∥∥∥‖Ef�S�−1
‖BL2

k,A�−1
(Br�−1

)

∥∥∥
�2( �S�−1)

� r
1/2
�−1

( ∑
�S�−1∈ �S�−1

‖f�S�−1
‖22
)1/2
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and, by Property 2 for the families of functions (f�Si
)�Si∈ �Si

for all i = � −
1, . . . , n− 1, it follows that

∥∥∥‖Ef�S�−1
‖BL2

k,A�−1
(Br�−1

)

∥∥∥
�2( �S�−1)

�
(
r�−1

n−1∏
i=�−1

D1+δ
i

)1/2
‖f‖2.

One may readily verify that

Dδ
�−1 ·M(�r�, �D�) ·

(
r�−1

n−1∏
i=�−1

D1+δ
i

) 1

2
(1−α�−1)β�

� M(�r�−1, �D�−1)

and so combining the above estimates yields

‖Ef‖BLp
k,A(BR)

� M(�r�−1, �D�−1)‖f‖1−β�−1

2

∥∥∥‖Ef�S�−1
‖BL

p�−1
k,A�−1

(Br�−1
)

∥∥∥β�−1

�p�−1 ( �S�−1)
,

which is Property 1 in this case.

The final stage. If the algorithm has not stopped by the kth step, then
it necessarily terminates at the kth step. Indeed, otherwise (46) would hold
for � = k − 1 and functions f�Sk−1

concentrated on wave packets which are
tangent to some transverse complete intersection of dimension k−1. By the
vanishing property of the k-broad norms as described in Lemma 8.2, one
would then have

‖Ef�Sk−1
‖BL

pk−1
k,Ak−1

(Brk−1
) = RapDec(R)‖f�Sk−1

‖2

and it would easily follow from (46) that ‖Ef‖BLp
k,A(BR) = RapDec(R)‖f‖2.

If R is sufficiently large, then this would contradict the non-degeneracy
hypothesis (45).

Suppose the recursive process terminates at step m, so that m � k. For
each �Sm ∈ �Sm,tiny let O[�Sm] denote the final collection of cells output by
[alg 1] (that is, the collection denoted by OJ in the notation of Section 9)
when applied to estimate the broad norm ‖Ef�Sm

‖BLpm
k,Am

(Brm ). Each O ∈
O[�Sm] has diameter at most Rδ0 by the definition of the stopping condition
[tiny]. By Properties I, II and III of [alg 1] one has

‖Ef�Sm
‖pm

BLpm
k,Am

(Brm ) � Dδ
m−1

∑
O∈O[�Sm]

‖EfO‖pm

BLpm
k,Am−1

(O),
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for some Am−1 ∼ Am where the functions fO satisfy

(53)
∑

O∈O[�Sm]

‖fO‖22 � D1+δ
m−1‖f�Sm

‖22

and

(54) max
O∈O[�Sm]

‖fO‖22 �
( rm
rm−1

)−n−m

2

D
−(m−1)+δ
m−1 ‖f�Sm

‖22

for Dm−1 a large non-admissible parameter. In particular, Dm−1 := d#c(J)

where J is the stopping time for this final application of [alg 1]. Once
again, by pigeonholing, one may pass to a subcollection of Sm,tiny and
thereby assume that the Dm−1 (and also the Am−1) all share a common
value.

If O denotes the union of the O[�Sm] over all �Sm belonging to subcollec-
tion of Sm,tiny described above, then
(55)

‖Ef‖BLp
k,A(BR) � Dδ

m−1M(�rm, �Dm)‖f‖1−βm

2

( ∑
O∈O

‖EfO‖pm

BLpm
k,Am−1

(O)

) βm
pm.

This concludes the description of [alg 2].

10.2. Applying [alg 2] to prove k-broad estimates

Having arrived at the final decomposition of the broad norm given by (55),
the task is now to apply the properties guaranteed by the algorithm in order
to prove the desired estimates. In particular, one wishes to show that the
quantity

M(�rm, �Dm)
( ∑

O∈O
‖EfO‖pm

BLpm
k,Am−1

(O)

) βm
pm

featured in (55) can be effectively bounded, provided that the exponents
pk, . . . , pn are suitably chosen. Since each O ∈ O has diameter at most Rδ0 ,
trivially one may bound

‖EfO‖BLpm
k,Am−1

(O) � ‖fO‖2

and, thus, it follows that( ∑
O∈O

‖EfO‖pm

BLpm
k,Am−1

(O)

) βm
pm �

( ∑
O∈O

‖fO‖22
) βm

pmmax
O∈O

‖fO‖
2( 1

2
− 1

pm
)βm

2 .
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The definition of the βm ensures that(1
2
− 1

pm

)
βm =

1

2
− 1

pn

whilst (53) and repeated application of Property 2 from [alg 2] imply that

∑
O∈O

‖fO‖22 �
( n−1∏

i=m−1

D1+δ
i

)
‖f‖22.

Combining this estimate with (55) and the definition of M(�rm, �Dm), one
concludes that
(56)

‖Ef‖BLp.
k,A(BR) �

n−1∏
i=m−1

r
βi+1−βi

2

i D
βi+1

2
−( 1

2
− 1

pn
)+O(δ)

i ‖f‖
2

pn

2 max
O∈O

‖fO‖
1− 2

pn

2

where rm−1 := 1. The problem is now to bound the maximum appearing on
the right-hand side of this expression.

By (54) and repeated application of Property 3 of [alg 2], it follows
that for any m � � � n the inequality

max
O∈O

‖fO‖22 �
�−1∏

i=m−1

(ri+1

ri

)−n−i−1

2

D−i+δ
i max

�S�∈ �S�

‖f�S�
‖22

= r
−n−�

2

�

�−1∏
i=m−1

r
−1/2
i D−i+δ

i max
�S�∈ �S�

‖f�S�
‖22(57)

holds. This bound will be exploited in different ways.

10.3. Guth’s estimate revisited

As a warm up exercise for the more involved computation to follow, here
Guth’s k-broad estimate from [12] is recovered using the above inequalities.
In particular, taking � = n, the inequality (57) simplifies to give:

Key estimate.

max
O∈O

‖fO‖22 �
n−1∏

i=m−1

r
−1/2
i D−i+δ

i ‖f‖22.
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Combining this with (56), one concludes that

(58) ‖Ef‖BLp
k,A(BR) �

n−1∏
i=m−1

rXi

i D
Yi+O(δ)
i ‖f‖2

where

Xi :=
βi+1 − βi

2
− 1

2

(1
2
− 1

pn

)
; Yi :=

βi+1

2
− (i+ 1)

(1
2
− 1

pn

)
.

In order to ensure that there is an acceptable dependence on R in (58),
the parameters must be chosen so as to ensure that Xi, Yi � 0 for m � i �
n− 1 and Ym−1 � 0.

Remark 10.1. Ostensibly, the above conditions on the Yi do not take into
account the additional O(δ)-powers of the Di in (58). By perturbing the
exponents which result under these conditions and choosing δ sufficiently
small depending on the choice of perturbation, the O(δ)-powers may never-
theless be safely handled. This perturbative argument yields an open range
of k-broad estimates, which can be trivially extended to a closed range via
interpolation through logarithmic convexity (the interpolation argument re-
lies on the fact that one is permitted an Rε-loss in the constants in the
k-broad inequalities).

Recalling from the definitions that

βi =
(1
2
− 1

pn

)(1
2
− 1

pi

)−1
,

the condition Xi � 0 is equivalent to

(59)
(1
2
− 1

pi+1

)−1
−
(1
2
− 1

pi

)−1
� 1

whilst the condition Yi−1 � 0 is equivalent to

(60)
(1
2
− 1

pi

)−1
− 2i � 0.

Choose pm := 2m
m−1 so that the exponent satisfies (12 − 1

pm
)−1 = 2m and

therefore (60) is saturated in the i = m case. The remaining pi are then
chosen so as to satisfy (1

2
− 1

pi

)−1
= m+ i
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so that (59) is saturated for every value of i. With this choice, (60) automat-

ically holds for all the remaining indices m+1 � i � n. The worst situation

occurs when m = k, in which case one deduces that the inequality

(61) ‖Ef‖BLp
k,A(BR) � Rε‖f‖2

holds for all p � 2 + 4
n+k−2 ; this exponent agrees with that featured in [12,

Proposition 8.1] and, indeed, the above argument is simply a reformulation

of the proof appearing in [12].

10.4. Improvement using the polynomial Wolff axioms

To prove Theorem 2.1, the argument of the previous subsection is augmented

with the bounds coming from the polynomial Wolff axiom theorem. This

follows the strategy of [11], which established the n = 3 case of the theorem.

The goal is to improve the range of p at the expense of weakening the L2-type

estimate (61) to an L∞-type estimate

‖Ef‖BLp
k,A(BR) � Rε‖f‖∞.

One key observation is that the choice of exponents in the previous subsec-

tion does not saturate the constraint (60) coming from the Di exponents

for m � i � n − 1. This provides some leeway, and the polynomial Wolff

axiom theorem allows one to trade an acceptable loss in the Di exponents

for a gain in the ri exponents, and thereby leads to an improvement in the p

range.

Fix m � � � n and apply Lemma 8.6 to deduce that

(62) max
�S�∈ �S�

‖f�S�
‖22 � r

−n−�

2

� max
�S�∈ �S�

θ�:r
−1/2
� −cap

‖f�S�
‖2L2

avg(θ�)
.

Let � � i � n− 1 and note that, by Property 3 of [alg 2],

(63)

max
�Si∈ �Si

θi:r
−1/2
i −cap

‖f�Si
‖2L2

avg(θi)
�

(ri+1

ri

)−n−i−1

2

Dδ
i max

�Si+1∈ �Si+1

θi+1:r
−1/2
i+1 −cap

‖f�Si+1
‖2L2

avg(θi+1)

Combining (62) with n− � applications of (63), we obtain
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max
�S�∈ �S�

‖f�S�
‖22 � r

−n−�

2

�

n−1∏
i=�

(ri+1

ri

)−n−i−1

2

Dδ
i max
θ:R−1/2−cap

‖f‖2L2
avg(θ)

�
( n−1∏

i=�

r
−1/2
i

)( n−1∏
i=�

Dδ
i

)
‖f‖2∞.

Substituting this estimate into (57), one concludes that

max
O∈O

‖fO‖22 � r
−n−�

2

�

( n−1∏
i=m

r
−1/2
i Dδ

i

)( �−1∏
i=m−1

D−i
i

)
‖f‖2∞

for all m � � � n. Finally, these n−m+1 different estimates are combined
into a single inequality by taking a weighted geometric mean, yielding:

Key estimate. Let 0 � γm, . . . , γn � 1 satisfy
∑n

j=m γj = 1. Then

max
O∈O

‖fO‖22 �
n−1∏

i=m−1

r
− 1+(n−i)γi

2

i D
−i(1−

∑i
j=m γj)+O(δ)

i ‖f‖2∞.

Thus, the parameters γj allow a loss in the Di exponents to be traded
for a gain in the ri exponents.

The key estimate may be combined with the inequality (56) from Sec-
tion 10.2 to yield the bound

‖Ef‖BLpn
k,A(BR) �

n−1∏
i=m−1

rXi

i D
Yi+O(δ)
i ‖f‖∞

where

Xi :=
βi+1 − βi

2
− 1 + (n− i)γi

2

(1
2
− 1

pn

)
;

Yi :=
βi+1

2
−
(
1 + i

(
1−

i∑
j=m

γj
))(1

2
− 1

pn

)
.

As in Section 10.3, one chooses the various exponents so as to ensureXi, Yi �
0 for all m � i � n − 1 and Ym−1 � 0. Owing to the extra degrees of
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freedom offered by the γj parameters, in this case one may in fact saturate

all the conditions: that is, the parameters may be chosen so as to ensure

that Xi = Yi = 0. Indeed, the condition Xi = 0 is equivalent to

(64)
(1
2
− 1

pi+1

)−1
−
(1
2
− 1

pi

)−1
= 1 + (n− i)γi

whilst the condition Yi−1 = 0 is equivalent to

(65)
(1
2
− 1

pi

)−1
= 2i− 2(i− 1)

i−1∑
j=m

γj

Once again, choose pm := 2m
m−1 so that (65) holds in the i = m case. The

remaining pi are then defined in terms of the γj by the equation

(66)
(1
2
− 1

pi

)−1
= m+ i+

i−1∑
j=m

(n− j)γj

so that each of the n−m constraints in (64) is met.

It remains to solve for the n − m + 1 variables γm, . . . , γn; note that

there are n − m + 1 remaining constraints (in particular, there are n − m

constraints left over from (65) together with the condition that the γj must

sum to 1) and so the number of equations in our system equals the number

of variables. By comparing the right-hand sides of (65) and (66), it follows

that

(67)

i−1∑
j=m

(n− j + 2i− 2)γj = i−m for m+ 1 � i � n,

from which we read off that γm = (n + m)−1. To solve this linear system,

let κi denote the left-hand side of the equation in the above display and

observe that

κi+1 − 2κi + κi−1 = (n+ i)γi − (n+ i− 3)γi−1 for m+ 1 � i � n− 1,

where κm := 0. On the other hand, by considering the right-hand side

of (67), it is clear that κi+1 − 2κi + κi−1 = 0. Combining these observa-
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tions gives a recursive relation for the γj and from this one deduces that

γj =
1

n+m

j−1∏
i=m

n+ i− 2

n+ i+ 1
=

(n+m− 1)(n+m− 2)

(n+ j)(n+ j − 1)(n+ j − 2)

for m+ 1 � j � n− 1. The remaining parameter γn is then given by13

γn = 1−
n−1∑
j=m

γj ,

so that the γj sum to 1.
It remains to check that these parameter values give the correct value

of pn, corresponding to the exponent pn(k) stated in Theorem 2.1. It follows
from (65) that

(68)
(1
2
− 1

pn

)−1
= 2n− 2(n− 1)

n−1∑
j=m

(n+m− 1)(n+m− 2)

(n+ j)(n+ j − 1)(n+ j − 2)
.

The expression on the right-hand side can be simplified by first writing the
denominator in each summand as

1

(n+ j)(n+ j − 1)(n+ j − 2)

=
1

2

( 1

n+ j − 2
− 1

n+ j − 1

)
− 1

2

( 1

n+ j − 1
− 1

n+ j

)
and then using the resulting telescoping property of the sum. This yields
the identity
(69)

n−1∑
j=m

(n+m− 1)(n+m− 2)

(n+ j)(n+ j − 1)(n+ j − 2)
=

1

2

(
1− (n+m− 1)(n+m− 2)

(2n− 1)2(n− 1)

)
.

Plugging this into (68) and performing some simple algebraic manipulations,
one concludes that

pn = 2 +
8(2n− 1)

n(5n+ 2m− 9) +m(m− 3) + 4
� pn(k)

for m � k, which completes the proof. 	
13To ensure this is a valid solution, one must verify that γn � 0 (so that 0 �

γj � 1 for all m � j � n). This property follows directly from the identity (69)
below.
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11. Final remarks

Remark 11.1. One direction by which the argument could be improved
would be to develop a more efficient mechanism for converting k-broad es-
timates into linear estimates than Proposition 2.2. One such mechanism
does indeed already exist and is described in the work of Bourgain–Guth
(see the fourth section of [6] or [22, 37] for an alternative presentation
of this method). In particular, Bourgain–Guth [6] use Kakeya-type esti-
mates to prove a stronger version of Proposition 2.2 in which the constraint
p � 2 + 4

2n−k is slightly relaxed. Demeter [9] used this approach (combined
with recent advances on the Kakeya conjecture [15, 45]) to give the previ-
ous best range for the restriction problem in R4 (namely, p > 2 + 66642

83303).
In fact, using Theorem 2.1 (and, in particular, the 3-broad estimate in four
dimensions with p4(3) = 2+ 7

9) one can slightly improve Demeter’s result to
p > 2 + 1407

1759 via the same method. For other low dimensions the use of the
more efficient Bourgain–Guth mechanism is limited due to the lack of under-
standing of the Kakeya problem in this regime. In high dimensions, however,
stronger Kakeya maximal andX-ray transform estimates are available owing
to the sum-difference approach to Kakeya, which was pioneered by Bour-
gain [5] and later honed by Katz–Tao [19, 20] and Oberlin [26]. Potentially,
improvements could be obtained in high dimensional cases using the more
efficient Bourgain–Guth mechanism and the Kakeya-type estimates arising
from sum-difference theory; however, since the computation of the various
exponents is rather involved and any gain is likely to be very small, this has
not been pursued here.

Remark 11.2. An alternative approach to improving the range of restric-
tion estimates would be to attempt to establish a stronger version of The-
orem 2.1. This has been achieved for n = 3 in the work of Wang [39] who
showed that (BLp

k) holds in the wider range p > 3 + 3
13 in this case (this

in turn implies the best-known result on the restriction problem in R3; see
Figure 1). The proof of Wang’s theorem relies on a careful analysis and
exploitation of certain underlying geometric features of the restriction prob-
lem; it would be of interest to extend and incorporate this analysis into the
study of higher dimensional situations.

Remark 11.3. It is not difficult to extend the methods of this article to
treat the class of (compact pieces of) hypersurfaces with strictly positive
principal curvatures, which includes the unit sphere Sn−1. To do this, one
applies a standard argument to reduce considerations to hypersurfaces of
elliptic-type, as defined in [24, 36] (see also [34, 11]). One may then ap-
peal to the more general transverse equidistribution results of [13] in place
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of Lemma 8.4. A more involved version of the Bourgain–Guth method for
passing from k-broad to linear estimates is also required, but this already
essentially appears in [6] (see also [13]). For this it is useful to work with
the class of elliptic-type hypersurfaces (rather than specific examples such
as Sn−1), since this class is closed under parabolic rescaling.

On the other hand, the method breaks down when one considers gen-
eral (compact pieces of) hypersurfaces of non-vanishing Gaussian curvature.
For instance, for the prototypical example of a graph of a non-degenerate
quadratic form, the transverse equidistribution estimate from Lemma 8.4
fails to hold in mixed signature cases (see [13] for further discussion of such
phenomena).

Remark 11.4. Another possible direction in which to strengthen the results
would be to establish analogous estimates for Bochner–Riesz multipliers.
An obvious approach to this would be to follow the classical Carleson–Sjölin
argument [8] (see also [17]) which reduces the problem to establishing certain
Lp estimates for oscillatory integrals of the form

(70) T λf(x) :=

∫
Rn

eiλ|x−y|a(x, y)f(y) dy,

where a is some smooth, compactly supported amplitude. Here the key diffi-
culty is to obtain a favourable dependence in the inequality on the parameter
λ � 1. After fixing one of the components of y and scaling, one obtains an
operator which can be thought of as a perturbed version of Ef . The prob-
lem is then to show that the arguments used to study Ef are stable under
perturbation; see [21, 6, 13] for recent examples of this approach, producing
the current best-known results for the Bochner–Riesz problem.

Again it is useful to work with a class of oscillatory integral operators
which is closed under rescaling, rather than just the specific example arising
from the Bochner–Riesz problem. Here some care is needed, however: for a
natural class of variable coefficient operators which extends the family of ex-
tension operators associated to positively-curved hypersurfaces, the desired
Lp estimates are false for the range of p featured in this article. Counterex-
amples of this kind first appeared in work of Bourgain [3] and were further
studied in [4, 25, 40, 6] (see also [13]). For instance, Minicozzi and Sogge [25]
considered the analogue of (70) defined over a compact Riemannian mani-
fold (M, g) given by

(71) T λf(x) :=

∫
M

eiλdistg(x,y)a(x, y)f(y) dy,
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where distg is the Riemannian distance function on M . These operators arise

naturally in the study of Bochner–Riesz multipliers on compact manifolds,

defined with respect to the spectral decomposition of the Laplace–Beltrami

operator (see, for instance, [28, Chapter 5]). In [25] examples of (M, g) were

found for which the desired Lp estimates for (71) could only hold for a

relatively small range of p. Sharp inequalities for such examples were later

established in the work of Guth, Iliopoulou and the first author [13]. The

problematic behaviour for certain M can be attributed to the fact that

analogues of the polynomial Wolff axioms can fail to hold for families of

geodesic tubes relevant to the study of T λ.

Remark 11.5. It is well-known that Lp-estimates for the extension operator

imply bounds for the Kakeya maximal function. Let T be a collection of

direction-separated R-tubes in Rn, with angle at least R−1/2 between each

pair of tubes. If the estimate

(72) ‖Ef‖Lp(Rn) � ‖f‖Lp(Rn−1)

is valid for some p > 2, then

(73)
∥∥∥ ∑
T∈T

1T

∥∥∥
Lp/2(Rn)

� Rn−1− 2n

p

( ∑
T∈T

|T |
)2/p

;

see, for example, [42] for a proof of this fact. New estimates for the Kakeya

maximal operator with n = 9 are obtained by plugging in our estimates for

the extension operator. For other values of n the maximal function estimates

that arise in this way are strictly weaker than those previously obtained by

Wolff [41] or Katz–Tao [20].

Maximal inequalities such as (73) imply lower bounds on the dimensions

of Kakeya sets. Recall that a set K ⊂ Rn is Kakeya if it is compact and it

contains a unit line segment in every direction. Let d(n) denote the infimum

of the Hausdorff dimensions of Kakeya sets in Rn; explicitly,

d(n) := inf{dimK : K ⊂ R
n Kakeya}.

The Kakeya conjecture then asserts that d(n) = n. As is well-known, the

inequality (73) implies that

d(n) � 2p

p− 2
− n.
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However, the aforementioned maximal inequality is not strong enough to
improve over the existing lower bounds of Katz–Tao [20] for the Hausdorff
dimension of Kakeya sets, obtained via the sum-difference method.

In terms of the asymptotic perspective espoused in this article, if (72)
holds for p = 2 + λn−1 +O(n−2), then

d(n) � 4− λ

λ
n+O(1).

Taking λ to be the value given by Theorem 1.1, it follows that

4− λ

λ
= 4− 2

√
3 = 0.535...,

which provides a high dimensional improvement over the classical d(n) �
n+2
2 bound of Wolff [41]. Once again, this does not improve the results of

Katz–Tao [20]. Nevertheless, it seems of interest that one can go beyond the
d(n) � n

2 + O(1) range for the Kakeya problem using a different approach
than the sum-difference method, and that oscillatory methods are becoming
more effective in the Kakeya problem.

We have since obtained further bounds for the Kakeya conjecture by ap-
plying similar arguments to those of this article directly in that context [16].
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