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On tidal energy in Newtonian two-body motion

Shuang Miao and Sohrab Shahshahani

According to the classical analysis of Newton the trajectory of
two gravitating point masses is described by a conic curve. This
conic curve is a hyperbola if the mechanical energy of the system
is positive, and an ellipse if the mechanical energy is negative. The
mechanical energy is a conserved quantity in an isolated two-body
point mass system. If the point masses are initially very far, then
the orbital energy is positive, corresponding to hyperbolic motion.

In this work we consider the situation when the point masses are
replaced by gravitating incompressible fluid balls with free bound-
aries obeying the Euler-Poisson equations. In this case the con-

served total energy Ẽ can be decomposed as Ẽ =: Ẽorbital + Ẽtidal,

where Ẽtidal is the energy used in deforming the boundaries, and

Ẽorbital takes the role of the mechanical energy in the point mass

system and is such that if Ẽorbital < −c < 0 for some absolute
constant c > 0, then the orbit of the bodies must be bounded. In
analogy with the point mass picture we consider the scenario where
initially the two fluid balls are very far and their boundaries are un-
perturbed. In this case the initial orbital energy is equal to the total
energy and is positive. However, in the motion of fluid bodies the
orbital energy is no longer conserved because part of the conserved
energy is used in deforming the boundaries of the bodies. In [4],
based on a linear calculation Christodoulou conjectured that under
appropriate conditions on the initial configuration of the system,

the tidal energy Ẽtidal can become larger than the total energy Ẽ

during the evolution. In particular under these conditions Ẽorbital,
which is initially positive, becomes negative before the point of
the first closest approach. In this work we prove Christodoulou’s
conjecture in [4] for the full nonlinear system. That is, we prove
that for a family of initial configurations the fluid boundaries and
velocity remain regular up to the point of the first closest approach

in the orbit, and that the tidal energy Ẽtidal can be made arbitrar-
ily large relative to the total energy Ẽ . This reveals the possibility
that the center of mass orbit, which is unbounded initially, may
become bounded during the evolution. Since the initial distance
of the bodies can be arbitrarily large relative to their distance at
closest approach, the a-priori estimates, which as in the framework
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of [16] are carried out in the language of Clifford analysis, are in-

dependent of the initial time and separation of the bodies.

1. Introduction

Consider two point masses of equal mass M approaching each other from

a far distance with initial velocities v0 and −v0. According to Newton’s

laws, the masses accelerate due to the gravitational force between them.

The mechanical energy (per unit mass) of the each point mass is

E1 :=
1

2
|v|2 − GM

4r1
,(1)

where r1 = r1(t) is the distance of each point mass to the center of mass

of the system, |v| = |v(t)| is the speed of each point mass, and G is the

gravitational constant

G ≈ 6.67× 10−11 (meters)3

(seconds)2(kilograms)
.

The mechanical energy E1 is conserved in time. As shown by Newton, the

orbit of the point masses is described by a conic curve whose shape is de-

termined by the sign of E1: If E1 < 0, then the orbit is an ellipse, if E1 > 0,

then the orbit is a hyperbola, and if E1 = 0, then the orbit is a parabola.

Consider now the limiting case when the two point masses were infinitely

far at time minus infinity, that is, limt→−∞ r1(t) = ∞. When discussing the

point mass system we will informally refer to t → −∞ as the initial time.

Note that the initial velocities v0 and −v0 above now refer to the limiting

initial velocities as t → −∞. Then initially limt→−∞ E1 > 0 and, since E1 is

conserved, the orbit of the two point masses is hyperbolic.

In this work we are interested in the situation where the point masses

are replaced by two incompressible fluid bodies, B1 and B2, of equal mass

and density which are initially round spheres of radius R, with centers of

mass x1 and x2 respectively. We consider this configuration as a model for

the motion of two isolated astronomical fluid bodies whose motion is subject

only to the mutual gravitational force between them. More precisely, suppose

B1 and B2 are fluid bodies of constant density ρ and volume |Bj | = 4π
3 R3,
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with free boundaries, which satisfy the Euler-Poisson equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
vt + v · ∇v = −∇p−∇(ψ1 +ψ2), in Bj(t)

∇ · v = 0, ∇× v = 0, in Bj(t)

p = 0, on ∂Bj(t)

(1,v) ∈ T (t, ∂Bj(t)), on ∂Bj(t)

,(2)

j = 1, 2. Here v denotes the fluid velocity, p denotes the ratio of fluid
pressure to density, and ψj , j = 1, 2, are the gravitational potentials

ψj(t,x) := −Gρ

∫
Bj(t)

dy

|x− y| ,

so that with χBj(t) denoting the characteristic function of Bj(t)

Δψj(t,x) = 4πGρχBj(t).

The relevant initial configuration is when the bodies are initially at equi-
librium moving at constant speed and zero acceleration and their centers
of mass are as in the point mass system described above. Here equilibrium
refers to the assumption that initially the bodies are perfect spheres, so that
the gravitational force of each body does not generate deformations of its
own boundary. As for point masses we are interested in the limiting scenario
where the bodies have infinite distance at time minus infinity. Mathemati-
cally, we take the perfect spherical bodies to be at distance R1 � 1 at time
T0, a negative number such that |T0| � 1. We then carry out the analy-
sis with all quantitative estimates independent of R1 and T0. The equation
∇ × v = 0 in the second line of (2) holds because it holds initially, due to
the fact that the bodies are initially at equilibrium. The vanishing of surface
tension on the third line of (2) is imposed because surface tension should
be neglected in the scale of astronomical bodies. The last condition in (2) is
the free boundary condition stating that particles on the fluid boundary at
a given time remain on the boundary at all times.

For this system the total energy of each body,

E (t) :=
1

2

∫
B1(t)

|v(t,x)|2dx+
1

2

∫
B1(t)

ψ1(t,x)dx+
1

2

∫
B1(t)

ψ2(t,x)dx,(3)

is conserved during the evolution. Here we have defined the energy only
relative to the first body because by symmetry this is also equal to the
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energy relative to the other body. Note that since the bodies are no longer
point masses, E would not agree with E1 above even if the bodies were perfect
balls moving at speed |v|, because the contribution of ψ1 to the energy is
now a nonzero constant. Indeed, when B1 is a ball of radius R centered at
the origin,

1

2

∫
B1(t)

ψ1(t,x)dx = −Gρ

2

∫
BR(0)

∫
BR(0)

dx dy

|x− y| = −3GM |BR(0)|
5R

.

To account for this difference we renormalize the energy E above and define
the modified total energy Ẽ as

Ẽ :=
1

|B1|
E +

3GM

5R
.

When there is no risk of confusion we simply refer to Ẽ as the modified en-
ergy. Note that incompressibility implies that the volume |B1| is conserved
during the evolution, so the modified total energy Ẽ is also a conserved
quantity. Now as the bodies approach each other their boundaries deform
from their initial spherical shape and it is conceivable that the energy re-
quired for such deformation is so large that the energy left in the center of
mass motion becomes negative. More significantly, it is conceivable that the
orbit of the two bodies eventually becomes bounded, a phenomenon which
is impossible in the point mass case, and to which we refer as tidal capture.
To better understand the situation we decompose the modified total energy
as

Ẽ = Ẽorbital + Ẽtidal,(4)

where

Ẽtidal = Ẽtidal(t)

:=
1

2|B1|

∫
B1

|v(t,x)|2dx− 1

2
|x′

1|2 +
1

2|B1|

∫
B1

ψ1(t,x)dx+
3GM

5R
,

(5)

and

Ẽorbital = Ẽorbital(t)(6)

:=
1

|B1|
E +

3GM

5R
− Ẽtidal =

1

2
|x′

1|2 +
1

2|B1|

∫
B1

ψ2(t,x)dx.
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Here, and in the rest of this work, the notation f ′ is used to denote the

derivative of a function f of a single variable. We refer to Ẽtidal as the tidal

energy and to Ẽorbital as the orbital energy. Note that the modified total
energy is defined such that initially when the bodies are perfect balls, the

tidal energy Ẽtidal is zero and Ẽ = Ẽorbital. Moreover, if the initial distance
between the two bodies is sufficiently large, then initially

1

|B1|
E +

3GM

5R
= Ẽorbital =: e0 > 0, Ẽtidal = 0.(7)

We will see that, as in the case of point masses, the two bodies get closer
until at some point they reach their minimum distance1 and then start to
move apart. The question of interest for us is if the bodies will continue to
get arbitrarily far as in the point mass case, or if by contrast their orbit
will become bounded and their distance will start to decrease again at some
later time. Suppose now that we have a lower bound

Ẽtidal(t) ≥ m0 > e0,(8)

for all times t > T1 for some T1 > T0. This would imply that for t > T1

1

2
|x′

1(t)|2 +
1

2|B1|

∫
B1

ψ2(t,x)dx

= Ẽorbital(t)

=
1

|B1|
E (t) +

3GM

5R
− Ẽtidal(t) ≤ e0 −m0 < 0.

(9)

Since

lim
|x1|→∞

1

2|B1|

∫
B1

ψ2(t,x)dx = 0,

and the first term on the left hand side in (9) is non-negative, this would
imply that the orbit cannot be unbounded. Therefore, a uniform lower bound
of the form (8) for all times t > T1 for some T1 > T0, implies that tidal

1To be precise, this is the first local minimum of the distance between the bodies.
However, for brevity, and when there is no risk of confusion, we will often refer to this
as the minimum of their distance. Similarly we will often refer to the corresponding
point in the orbit as the point of closest approach rather than the point of first
closest approach.
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capture occurs. This explains our choice of terminology “orbital energy” for

Ẽorbital. The relation of the tidal energy Ẽtidal to the surface deformation of

the fluid bodies can also be made precise, but since this discussion requires

introducing some more parameters, we postpone it to further down in the

introduction; see (14) and Remark 1.4. In this work we will prove that if

certain relations are satisfied in the initial configuration of the system, then

(8) holds near and up to the point of the closest approach, where m0 can be

made arbitrarily large relative to the initial energy e0. To state our result

more precisely, we need to describe the setup in more detail.

Consider again the case of point masses. Suppose the two point masses

x1 and x2 have equal mass M , and satisfy

lim
t→−∞

x1(t) = − lim
t→−∞

x2(t) = (−b,∞, 0) ∈ R3,

lim
t→−∞

x′
1(t) = − lim

t→−∞
x′
2(t) = (0,−v0, 0), v0 > 0.

The following dimensionless parameter plays a crucial role in the analysis in

this paper:

p :=
GM

bv20
.(10)

The differential equation describing the motion of the point masses is given

by Newton’s second law

x′′
1(t) = −GMx1(t)

4|x1(t)|3
.

By direct differentiation we see that the energy,

E1 :=
1

2
|x′

1(t)|2 −
GM

4|x1(t)|
,

and the angular momentum,

J(t) = x1(t)× x′
1(t),

are constant in time. Conservation of angular momentum implies that the

orbit of the point masses is confined to the x-y coordinate plane, and we

will suppress the z-coordinate in the remainder of the discussion for point
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masses2. As mentioned earlier, when E1 > 0 the orbit of the two point masses
is a hyperbola. Indeed, a direct calculation shows that

e :=
4

GM

(
x′
1 × J− GM

4|x1|
x1

)
,(11)

is a constant vector, that is d
dte = 0. The constant scalar e := |e| is known

as the eccentricity of the system, and is given by

e =
4

GM

√(
1

4
GM

)2

+ 2E1|J|2 =
√

1 +
32E1|J|2
(GM)2

.

In particular,

E1 < 0 ⇐⇒ e < 1 and E1 > 0 ⇐⇒ e > 1.

Let r := |x1| and θ be the angle between x1 and e. It follows from (11) that

r =
4|J|2
GM

1

1 + e cos θ
.

Since e > 1 in the configuration described above, this is the polar repre-
sentation of a hyperbola. By construction, one asymptote of this hyperbola,
corresponding to t → −∞, is the y-axis. The other asymptote, L, corre-
sponding to t → ∞ is determined by the choice of the parameters b, v0, and
M . Let α be the angle between L and the negative y-axis so that π + α
is the angle L makes with the positive y-axis, measured counterclockwisely
from the positive y-axis. See Figure 1. We call α the scattering angle of x1.
If ϕ(t) is the angle from the positive y-axis to x1, then

π + α =

∫ ∞

−∞

dϕ

dt
dt.(12)

Since |x′
1|2 =

(
dr
dt

)2
+ r2

(
dϕ
dt

)2
and |J| = bv0 = r2 dϕdt ,(

dr

dt

)2

= 2(E1 − U1),

2Here we use the standard convention that the x, y, and z axes correspond to
the directions (1, 0, 0), (0, 1, 0), and (0, 0, 1) in R3, respectively.
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where

U1 := −GM

4r
+

|J|2
2r2

.

Since the orbit of x1 is a hyperbola, r will decrease until it reaches a min-
imum value r+, which we call the distance at closest approach, and then
increase again to infinity. If t+ denotes the time at which r(t+) = r+, then

dr

dt
= −

√
2(E1 − U1), t ≤ t+,

dr

dt
=

√
2(E1 − U1), t ≥ t+.

Using the change of variables λ = b−1r, with λ+ := b−1r+, and recalling the
definition of the parameter p from (10), we can rewrite (12) as

α+ π =

∫ ∞

−∞

dϕ

dt
dt

=−
∫ r+

∞

|J|
bv0r

√
λ2 + p

2λ− 1
dr +

∫ ∞

r+

|J|
bv0r

√
λ2 + p

2λ− 1
dr

=2|J|
∫ ∞

r+

dr

bv0r
√

λ2 + p
2λ− 1

= 2

∫ ∞

λ+

dλ

λ
√

λ2 + p
2λ− 1

.

The quadratic polynomial λ2+ p
2λ− 1 factorizes as (λ−λ+)(λ−λ−), where

λ± = −p
4±

√
p2

16 + 1. Finally, denoting the speed at closest approach by v+ :=

|x′
1(t+)|, by conservation of the energy E1 we have v2+ = GM

2r+

(
1 + 2v2

0r+
GM

)
.

Summarizing we get

λ+ =
1

p
4 +

√
p2

16 + 1
, r+ = bλ+, α = 2

∫ ∞

λ+

dλ

λ
√

λ2 + p
2λ− 1

− π,

v2+ =
GM

2r+

(
1 +

2v20r+
GM

)
.

Now consider the two limit cases where p is very small and very large. First,
when p → 0 (e.g., bv20 � GM) it is not surprising that the gravitational
force will almost not affect the trajectories of the masses. Indeed, in this
case λ+ → 1 so r+ → b and α → 0 and the motion of the two masses is
almost along a straight line. The more interesting case is when p → ∞ (e.g.,
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x

y

L

•x1

•x2

b

b

α

−v0

v0

Figure 1:

GM � bv20) and in this case we have

pλ+ → 2,
pr+
b

→ 2, α → π,
2v2+r+
GM

→ 1.

These limiting behaviors will be important guiding principles in choosing the

initial parameters in the case of fluid bodies. Suppose now that the point

masses are replaced by fluid bodies obeying (2). Assume that at time t = T0

the two bodies B1(T0) and B2(T0) are balls of radius R centered at (x, y, z) =

(−b, R0, 0) and (x, y, z) = (b,−R0, 0), respectively, with R0 � b � R. For

future reference let R1 :=
√

b2 +R2
0 be the initial distance of the center of

mass of the entire system to the initial position of the center of mass of each

body. Recall that we denote the center of masses of the two bodies by x1

and x2 = −x1 and suppose that the initial velocities of x1 and x2 are

x′
1(T0) = v0 := (0,−v0, 0), x′

2(T0) = −v0 = (0, v0, 0), v0 > 0.
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Note that, by symmetry, the center of mass of the entire system is always at
the origin. We will discuss the local existence of a solution to equation (2)
momentarily, but let us assume for now that there exists a classical solution
on some interval I := [T0, T∗). As mentioned earlier, a direct computation
shows that the total energy E defined in (3) is conserved in I. Since the
center of mass of each body is given by

xj =
ρ

M

∫
Bj

xdx,

we have

x′′
j =

ρ

M

∫
Bj

(vt + v · ∇v)dx = − ρ

M

∫
Bj

(∇ψ1 +∇ψ2)dx.

Recall the following points from the discussion above. The modified total
energy

Ẽ =
1

|B1|
E +

3GM

5R
(13)

admits the decomposition

Ẽ = Ẽtidal + Ẽorbital,

where Ẽtidal and Ẽorbital are defined in (5) and (6). As in the point mass case,
if the initial separation, 2R1, of the two bodies is sufficiently large then Ẽ is
positive. On the other hand, since the two bodies are initially unperturbed

round balls, initially Ẽ = Ẽorbital and Ẽorbital is positive, corresponding to
hyperbolic motion in the point mass case. As discussed at the beginning of
the introduction, our goal in this paper is to prove that the parameters of

the problem can be set up so that Ẽtidal becomes arbitrarily large relative
to the modified total energy Ẽ at the first point of closest approach, that is,
when the bodies reach their minimum distance. To show this, we also need
to prove that the solution of (2) does not develop singularities until the

bodies get sufficiently close for Ẽtidal to become large. To state the precise
result we need to introduce some more notation. First, motivated by the
more detailed discussion of the point mass system above we define

p :=
GM

bv20
, r+ :=

2b

p
.
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In addition we define the following dimensionless parameters which take into

account the size of the fluid balls:

η = η(t) :=
R

|x1(t)|
, η+ :=

R

r+
, β :=

b

R
.

The analysis in the point mass case shows that, in that case, if p � 1 the

scattering angle approaches π. It is important to note that in the case of

fluid bodies the condition p � 1 can be achieved while keeping r+ arbitrarily

large relative to R. For instance, one can take v0 ∼
√

GM
R β−9/10, p ∼ β4/5,

and β � 1. It follows that r+ ∼ Rβ1/5 � R. It is in the context of the

limiting scenario p � 1 and r+ � R that we will study the evolution of

fluid bodies. We will choose M , b, and v0 such that b � r+ and r+ � R,

which in particular imply β � 1. As was just mentioned, the significance

of the condition b � r+, or equivalently p � 1, is that the scattering angle

is close to π in the point mass analysis. The significance of the condition

r+ � R is that it will allow us to treat the deformation of the bodies

perturbatively in the proof of a-priori estimates. Indeed, note that we need

the solution to remain regular starting at the initial time when the distance

of the bodies is 2R1 until the time of closest approach. Since, as explained

above, for the configuration of interest R1 can be arbitrarily large relative

to the distance at closest approach this amounts to controlling appropriate

norms of the solution for infinite time, and the small parameter η together

with sharp decay bootstrap assumptions are what allow us to achieve this.

We refer the reader to Subsection 1.1.1 below for a more detailed discussion

of this aspect of the analysis.

To relate the energy Ẽtidal to the surface deformation, we introduce the

Lagrangian parametrization of the surface. Let ξ : R × SR → B1 be the

Lagrangian parametrization of B1 satisfying ξ(T0, p) = p for all p in SR,

that is,

ξt(t, p) = v(t, ξ(t, p)).

Here SR is the round sphere of radius R. We define the height function

h : R× SR → R as

h(t, p) = |ξ(t, p)− x1(t)| −R.

The following theorem is the main result of this paper.
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Theorem 1.1. Suppose r+ ≥ CR where C > 0 is sufficiently large. Then
|x1(t)| is decreasing on any time interval IT := [T0, T ) such that |x1(t)| ≥
3
2 r+ for all t ∈ IT , and a classical solution to (2) exists on the longest time
interval on which |x1| is decreasing. Moreover, there exist universal constants
c1 and c2 such that, with r0 denoting the first local minimum of |x1|, and
for |x1(t)| ∈ (r0, 2r0),

c1
GM

R
η6 ≤ Ẽtidal ≤ c2

GM

R
η6.

Furthermore, Ẽtidal is related to the height function h as 3

Ẽtidal ≈
GM

R5
‖h‖2L2(SR) +

1

R2
‖∂th‖2L2(SR).(14)

Here the constants c1 and c2 as well as the implicit constants in (14) are
independent of the initial time T0 and the initial separation R1. In particular,
if η5+p

2 � 1, then for some m > 2, and when |x1(t)| ∈ (r0, 2r0),

Ẽtidal ≥ m Ẽ .(15)

Remark 1.2. Condition (15) in Theorem 1.1 shows that by choosing the
parameters of the problem appropriately we can guarantee that the orbital

energy Ẽorbital, which is initially positive, becomes negative, which as de-
scribed above is a significant step in understanding the phenomenon of tidal
capture. In fact, we can make m in (15) arbitrarily large. To see this, sup-

pose we choose v0 ∼
√

GM
R β−α, which implies that r+ ∼ β2−2αR, and

η5+p
2 ∼ β14α−12. Then, for both of the conditions r+ � R and η5+p

2 � 1 to
be satisfied, we should choose α in the range [67 , 1]. In particular choosing

v0 =
√

μGM
R β−1 with μ � 1, we get r+ ∼ μR � R, and

Ẽtidal ∼
GM

R
η6+ ∼ μ−6GM

R
, Ẽ ∼ |v0|2 ∼ μβ−2GM

R
.

Therefore choosing β sufficiently large relative to μ we can make m in (15)
arbitrarily large.

Remark 1.3. The significance of the comparison (14) can be explained as
follows. As explained in Remark 1.2 above, Theorem 1.1 implies that the

3The notation f ≈ g means K−1|f | ≤ |g| ≤ K|f | for some constant K > 0.
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tidal energy Ẽtidal can be made arbitrarily large relative to the total energy

Ẽ at the time of closest approach. By (14) the tidal energy is comparable

to the H1 × L2 norm of (h, ∂th) (and this remains true as long as the tides

remain small). Therefore, if ‖(h, ∂th)‖L2×L2 retains a nontrivial portion of

its size at closest approach as the bodies move away from each other, we can

argue as in the beginning of this introduction to conclude that tidal capture

will indeed happen.

Remark 1.4. It is important to have constants that do not depend on the

initial time T0 and the initial separation R1 in Theorem 1.1. The reason is

that it makes sense for the bodies to be perfect balls only when their distance

is infinite. The fact that for us the constants are independent of T0 and R1

allows us to take the limit |T0|, R1 → ∞ in Theorem 1.1. It follows from our

analysis that in this case the estimate c1
GM
R η6 ≤ Ẽtidal ≤ c2

GM
R η6 is valid

for all times before the first closest approach, that is, before |x1(t)| = r0.

1.1. Discussion of the Proof

We divide the proof of Theorem 1.1 into two parts. The first part consists

of proving a-priori estimates, which in particular show that the solution

remains regular as long as |x1| remains larger than 3
2r+. More importantly

we derive a precise description of the evolution of the bodies up to closest

approach. The second part of the proof is an analysis of the tidal energy

Ẽtidal. Here we use the precise description and a-priori estimates from the

first part of the proof to derive a lower bound for the tidal energy. This

lower bound depends on the distance of the two bodies, and comparing it

with the conserved total energy we will see that if |x1| is sufficiently close

to r+ and p2η5+ � 1, then (15) holds.

1.1.1. A-priori estimates. Note that since each component of the fluid

velocity is a harmonic function inside B1 and B2, to prove regularity of the

solution it suffices to prove regularity of the boundary and the velocity on

the boundary. Let ξ : R× SR → ∂B1(t) be the Lagrangian parametrization

of the boundary of the first body, that is, ξt = v(t, ξ), with ξ(T0, ·) = Id, and

let ζ := ξ−x1 and u := ζt. ζ is the renormalized Lagrangian parametrization

as the motion of the center of mass is subtracted, and u is the Lagrangian

fluid velocity relative to the center of mass velocity. Local existence of a

solution starting at t = T0 follows from the local well-posedness of the
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system4. However, as we are interested in understanding the dynamics of
the motion up to the point of closest approach, local existence is far from
sufficient for our purposes. To prove the necessary long time existence result,
we derive a-priori bounds using energy estimates to which we now turn. The
first step is to derive a quasilinear equation for u. Since p ≡ 0 on ∂B1, the
gradient ∇p|∂B1

points in the direction of the normal to the boundary. With
n denoting the exterior normal (in Lagrangian coordinates), let a be defined
by the relation

−∇p(t, ξ) = an.

Note that the positivity of a corresponds to the Taylor sign condition (cf.
[13]), and can be verified using the maximum principle after applying the
divergence operator to (2). With this notation, we write the quasilinear
equation for u, which is derived in Section 2, in the schematic form

∂2
t u+ an×∇u+

GM

R3
u− 3GM

R3
Pu = F +N .(16)

Let us explain the notation. On the right hand side, the term F consists
of the principal contribution of the gravity from the second body B2, and
represents the contribution to the tidal acceleration from the body B2 acting
on B1. The error from considering only the principal contribution of the
gravity of the second body as well as the genuinely nonlinear terms are
contained in N . The operator n×∇, is intrinsic to the surface ∂B1. Indeed,
for a scalar function f defined on B1, n×∇f depends only on the restriction
of f to ∂B1 as the cross product with n annihilates the normal component of
∇f . For a vectorfield u, which is the restriction to ∂B1 of a divergence-curl
free vectorfield in B1, n×∇u is given by

n×∇u =
1

|N |(ξβ × uα − ξα × uβ),

4Local well-posedness in Sobolev spaces for the free boundary problem of the
incompressible Euler equation with constant gravity was proved in [15, 16]. In
particular, Clifford analysis was used in [16]. Later, the result in [16] was generalized
to the case with non-zero vorticity, again using Clifford analysis, in [19]. For the
particular model at hand with only one body this was established in [11, 12], and
the presence of a second body does not affect the local well-posedness of the system,
since it acts as a lower order source term in the equation. We refer the interested
reader to the works above and the references therein for a more detailed historical
account of these developments.
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in any (orientation preserving) local coordinates (α, β) on SR, with N = ξα×
ξβ. The operator P is a non-local operator which maps u to the projection
of (u ·n)n into the space of curl and divergence free vectorfields on ∂B1

5. For
the reader who is familiar with Clifford analysis, the projection P admits
the explicit representation

Pu =
1

2
(I +H∂B1

) ((u · n)n) ,

where H∂B1
denotes the Hilbert transform (see Appendix A)

H∂B1
f(ξ) = −p.v.

2π

∫
∂B1

ξ′ − ξ

|ξ′ − ξ|3n(ξ
′)f(ξ′)dS(ξ′).(17)

We now discuss a novel part of our analysis which is the most delicate point
in the proof of a-priori estimates, and is related to the correct bootstrap
assumptions for the energy and the unknowns. Recall that for the usual
lifespan estimates for a small data quasilinear system, one assumes a boot-
strap bound of the form E ≤ 2Cε on an appropriate energy functional E ,
where C > 0 and ε � 1 are determined by the initial data, and tries to
improve this to E ≤ Cε. Instead, here we impose a bootstrap assumption of
the form E ≤ 2C(t) where C(t) is a function that decays to zero as t → −∞,
and improve this to E ≤ C(t). We emphasize that here the energy functional
E is an energy functional in the mathematical sense of the term as used to
prove a-priori estimates and is different from the physical energies E , Ẽ , etc.
above. The reason for this choice is that the initial data for the problem are
trivial, so for the appropriate choice of E , initially E(T0) = 0 and we need to
prove the existence of a solution for infinite time rather than on a time inter-
val depending on the size of the data. In fact, it is more natural to think of
the decay in terms of the distance of the bodies from each other rather than
the time of evolution. To be able to close this type of bootstrap assumption,
we need to determine the correct decay rate for the energy functional. This
is based on a careful analysis of the source term F and the decay behavior
of various small quantities6 appearing in the nonlinearity N . More precisely,
to define the energy functional above at the level of u (that is, before com-
muting derivatives with the equation), which we call Eu, we take the inner

5More precisely, vectorfields on ∂B1 which can be written as the restriction of a
curl and divergence free vectorfield in B1. We will often simply refer to such vector
fields as curl and divergence free.

6That is, quantities that would be zero if B1 were a non-accelerating ball of
radius R.
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product of (16) with ut

a , which leads to the following definition:

Eu :=
1

2

∫
∂B1

|ut|2
a

dS +
1

2

∫
∂B1

(n×∇u) · u dS(18)

+
GM

2R3

∫
∂B1

|u|2
a

dS − 3GM

2R3

∫
∂B1

(n · u)2
a

dS.

By analyzing the source term in the equations satisfied by u and the height
function h (see Subsection 1.1.2) we pose the bootstrap assumptions

‖h(t)‖L2(SR) ≤ CR2η3(t), ‖u(t)‖L2(SR) ≤ CRη4(t)|x′
1(t)|.(19)

According to (19) the various terms appearing in the nonlinearity will have
different decay rates, an observation which is crucial in controlling the con-
tribution of the nonlinearity in the energy estimates. Moreover, as shown in
the final section of this article where the tidal energy is analyzed, the decay
rates above for u and h are in fact sharp. The assumptions (19) then lead
to the following bootstrap assumption for the energy:

Eu(t) ≤ CRη8(t)|x′
1(t)|2.(20)

Recall that η(t) := R
r1(t)

, so (19) and (20) are formulated in terms of the

position and speed of the centers of mass of the bodies. Therefore, to be
able to prove a-priori estimates we need to control the center of mass motion
of the bodies to obtain bounds on |x1(t)| and |x′

1(t)| when the bodies are
sufficiently far. This requires analyzing the point mass system and the error
resulting from approximating the motion of the bodies by that of point
masses up to the point of closest approach.

The energy functional Eu satisfies

dEu
dt

=

∫
∂B1

(F +N )
ut
a
dS +

1

2

∫
∂B1

1

|N |∂t
(
|N |
a

)
|ut|2dS + . . . .

We have not written out all the error terms on the right hand side as they are
not relevant for our discussion of the main challenges in this introduction,
but the precise statement can be found in Proposition 3.3. The definition of
our energy and the energy identity are similar to the ones used in [16, 17]
to study water waves, but here several new ingredients are needed in using
them to prove a-priori estimates for equation (16). These are needed to deal
with the different geometry of the domain as well as the new linear and
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nonlinear contributions from the gravitational force which, in contrast to

the water wave problem, is not a constant. The first issue to discuss is the

coercivity of Eu. It is not hard to see that for a curl and divergence free

vectorfield f defined on B1,

n×∇f = ∇nf

where∇n denotes the Dirichlet-Neumann operator on B1. This shows that in

terms of the Eulerian fluid velocity relative to the center of mass, u := v−x′
1,∫

∂B1

(n×∇u) · udS =

∫
B1

|∇u|2dx.

However, in view of the negative sign of the last term on the right hand side

of (18), it is not clear that the energy functional Eu is positive in general. To

show that this negative term can be controlled by the other positive terms

in the definition of the energy functional, first note that since
∫
B1

u dx = 0,

by the Poincaré estimate∫
B1

|∇u|2dx ≥ C

∫
B1

|u|2dx.

Combining this with a careful computation using the trace embedding

H1(B1) ↪→ L2(∂B1), we are able to show the coercivity of the energy func-

tional, and that in particular

Eu �
∫
∂B1

(n×∇u) · u dS +
GM

R3

∫
∂B1

|u|2
a

dS.

To derive this estimate we need to have bounds on the constants in the trace

embedding and Poincaré estimates, but such bounds are available so long

as the surface ∂B1 is close to SR in the appropriate sense. These statements

are made precise in Lemmas 3.5, 3.7, and 3.11.

The last point to discuss regarding energy estimates is commuting deriva-

tives with equation (16) to estimate higher order derivatives of u. Since the

spatial domain of the Lagrangian variables is SR, to prove higher order reg-

ularity for u we need to estimate Ωku, where Ωk denotes k differentiations

using any combination of the restriction of the three rotational vectorfields

Ωij = xi∂j − xj∂i, 1 ≤ i < j ≤ 3,
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to SR. However, to preserve the structure of the equation we need the deriva-
tive we commute to have a small commutator with the operator P in (16),
and for the derivative of u to be approximately curl and divergence free.
For this purpose we introduce a modified Lie derivative Du which satisfies
these properties, and such that control of u and Du give us control of Ωu.
To motivate our definition of the modified Lie derivative, suppose for the
moment that ∂B1 is a round sphere SR centered at the origin, and that u is
the restriction to SR of a curl and divergence free vectorfield, u, defined in
BR(0). It is then easy to see that LΩu is also curl and divergence free, where
LΩ denotes the Lie derivative with respect to Ω. Moreover, since the normal
vector n to SR is the radial vectorfield ∂r, we have LΩn = 0. Recalling the
definition of P as the projection of (n · u)n into the space of curl and diver-
gence free vectorfields, we see that LΩ commutes with P . Now in general,
when B1 is not SR, the Lie derivative LΩ is not well-defined. Instead, we
observe that in R3, if e is the axis of rotation for Ω, we have the simple
relation

LΩf = Ωf − e× f,

for any vectorfield f . Motivated by this we define the differential operator

DΩ = Ω− e× .

This operator will then have a small commutator with P , and Dku is almost
curl and divergence free, in a sense that is made precise in Section 2. Higher
order energy functionals are then defined by replacing u in (18) by the
projection of Dku into the space of curl and divergence vectorfields7. For
the precise definition see Definition 3.12.

1.1.2. The Tidal Energy. Having proved the existence of a solution to
(2) and estimates on the velocity and height function, h = |ζ| − R, we can
turn to the study of the dynamics of the equation and the proof of (15).
Using the already-established a-priori estimates, it is not hard to show that∫

B1

|v − x′
1|2dx ≈ R‖∂th‖2L2(SR),∫

B1

ψ1dx+
3GM |B1|

5R
≈ GM

R2
‖h‖2L2(SR),

7More precisely by 1
2 (I +H∂B1)D

ku, which has a scalar component as well. See
Definition 3.12
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proving (14). Therefore, to prove (15) we need to obtain a lower bound on

GMR−2‖h‖2L2(SR) +R‖ht‖2L2(SR).

To obtain this lower bound, we study the linearized equation for the height

function h (see equation (22) below) to derive lower bounds for ‖h‖L2(SR) and

‖∂th‖L2(SR) in the linearized setting. We then use the a-priori estimates to

show that these lower bounds remain valid even after considering nonlinear

effects. To derive the desired linearized equation we first derive an equation

for h in Lagrangian coordinates which we schematically write as

∂2
t h+∇n(I − 3K∂B1

)h = F +N ,(21)

where the source term F contains the contribution of the gravitational force

from B2 and N contains the genuinely nonlinear terms. Here F and N are

not the same as in (16). ∇n denotes the Dirichlet-Neumann map of B1 and

the non-local operator K∂B1
is the double-layered potential for B1, defined

as

K∂B1
f(ξ) =

p.v.

2π

∫
∂B1

(ξ′ − ξ)

|ξ′ − ξ|3 · n(ξ′)f(ξ′)dS(ξ′)

for any real-valued function f . To derive a lower bound for ‖∂th‖L2(SR) we

do not rely on energy estimates for (21) but use the fundamental solution

for this equation instead. More precisely, we first transfer the equation to

an equation on R × SR, by replacing ∇n and K∂B1
by D and K, respec-

tively, where D and K are the Dirichlet-Neumann map and double-layered

potential for SR. The resulting equation is

∂2
t h+D(I − 3K)h = F + Ñ ,(22)

where Ñ contains the new error terms which arise in passing to the equation

on R×SR. Note that some of these error terms (in fact, also some of the error

terms in N ) are of highest order in terms of regularity, that is, equation (22)

is fully nonlinear. However, since we have already established higher order

regularity and a-priori estimates, regularity is not relevant in the analysis

of (22). We can now use the fundamental solution of (22) by decomposing

h, F , and Ñ into spherical harmonics h�, F�, and Ñ�. Studying the source

term F , we find that the main contribution to the equation comes from the
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second harmonic F2, where h2 satisfies

∂2
t h2 + a2h2 = F2 + Ñ2,

lim
t→T0

h2(t) = lim
t→T0

∂th2(t) = 0,
(23)

for some constant coefficient a2 > 0. The analysis of the system (23), using
the explicit representation of F2, is carried out in Section 4. This analysis
relies heavily on the fact that the frequency of oscillation of the source term
F2 is much smaller than the natural frequency of the system (23). Using the
explicit representation of F2, we then derive the lower bounds

‖∂th2‖L2(SR) � Rη4|x′
1|, ‖h2‖L2(SR) � R2η3.

Moreover, we show that the contribution of the other harmonics, h� and
∂th�, � �= 2, are smaller and do not affect these lower bounds, so

‖∂th‖L2(SR) � Rη4|x′
1|, ‖h‖L2(SR) � R2η3.

Note that these lower bounds are consistent with the bootstrap assump-
tions on h and ∂th in the discussion of a-priori estimates above, proving
the sharpness of our bootstrap assumptions on the decay rates of h and u.
Now since the total energy is conserved during the evolution, a comparison
of the implied lower bound on the tidal energy with the initial total energy
allows us to conclude the proof of Theorem 1.1. In fact, it follows from the
estimates above that the main contribution to the tidal energy up to the
point of closest approach is from the the potential energy which contributes
GMR−5‖h‖2L2(SR).

1.1.3. Christodoulou’s conjecture and analysis. In [4], Christodou-
lou showed that at the linearized level under the initial configuration v0 ∼√

GM
R β− 9

10 , p ∼ β
4

5 , the kinetic part 1
R2 ‖∂th‖L2(SR) of the tidal energy Ẽtidal

can be made larger than the total energy Ẽ near the point of closest ap-
proach, assuming that a smooth solution to the free boundary problem (2)
exists up to this point. He conjectured that the same conclusion holds in the
nonlinear setting. In this work we give a complete proof of Christodoulou’s
conjecture in the following sense: For a larger set of initial configurations
than the one proposed in [4], we prove the existence of smooth solution to
(2) up to the closest approach. Then based on the a-priori estimates derived
in this analysis, we use the fully nonlinear equation (22) to prove that the

tidal energy Ẽtidal can be made larger than the total energy Ẽ .
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1.2. Organization of the Paper

In Section 2 we derive the quasilinear system for u = ζt. Higher order deriva-
tives Dku and the equations they satisfy are discussed in Subsection 2.2. The
energy estimates are carried out in Section 3. In Subsection 3.1 we define the
energy functional and derive the basic energy identity. Here we also discuss
the coercivity of the energy functional as discussed above. Subsection 3.2 is
devoted to the analysis of the motion of the center of mass x1 of B1, and

estimates on d|x1|
dt and |x′

1| are derived. In Subsection 3.3 we introduce the
bootstrap assumptions and show how the various terms appearing in the
nonlinearity can be controlled in terms of the energy under the bootstrap
assumptions. Finally, we close the energy estimates in Subsection 3.4. Sec-
tion 4 is devoted to the analysis of the heigh function h and the proof of
Theorem 1.1. The equation for h is derived in Subsection 4.1, where we also
write the equation in spherical harmonics and obtain the key lower bounds
on h and ∂th. This analysis is then used in Subsection 4.2 to complete the
proof of Theorem 1.1. There are two appendices to this article where several
technical ingredients are discussed. In Appendix A we recall a few basic def-
initions from Clifford analysis as well as the definition of layered-potentials.
The notation and terminology introduced in this appendix are used through-
out the paper. We also carry out some spherical harmonic decompositions
which are used in Section 4. Appendix B contains classical important sin-
gular integral estimates which are used regularly in the proof of a-priori
estimates.

2. The Equations in Lagrangian Coordinates

In this section we derive the main equations of motion in Lagrangian coor-
dinates, starting with the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vt + v · ∇v = −∇p−∇ψ, in B(t)
∇ · v = 0, ∇× v = 0, in B(t)
p = 0, on ∂B(t)
(1,v) ∈ T (t, ∂B(t)), on ∂B(t)

.(24)

For this we work with the time differentiated equation, taking the La-
grangian velocity as our main unknown. In deriving the desired equation,
we will freely use the basic notation and concepts from Clifford analysis
reviewed in Appendix A. In particular see this appendix for the definition
of the operators H∂B1

,K∂B1
and H∗

∂B1
,K∗

∂B1
etc. Also the convention intro-

duced in Remark A.1 is in use in the rest of the paper.
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2.1. The Equation for u

We start by introducing the notation

r1 := |x1|, ξ1 =
x1

|x1|
, η =

R

|x1|
.

Let ξ : R×SR → ∂B1(t) be the Lagrangian parametrization of ∂B1 = ∂B1(t),

such that ξ(T0, ·)− x1(T0) is the identity map of SR ⊆ R3, and define

ζ : R× SR → ∂B1 − x1, ζ(t, p) = ξ(t, p)− x1.

Occasionally we write

ζ =

3∑
i=1

ζiei,

where ζi = xi ◦ ζ = ei · ζ. We will denote the exterior unit normal to ∂B1

by n and let

n(t, p) = n(t, ξ(t, p)).

In arbitrary (orientation preserving) local coordinates (α, β) on SR we have

n =
N

|N | , where N = ξα × ξβ = ζα × ζβ.

If f : B1 → R is a (possibly time-dependent) differentiable function, and

f = f ◦ ξ, then by a slight abuse of notation we write

∇f = (∇f) ◦ ξ, df = (df) ◦ ξ,

where d denotes the exterior differentiation operators on ∂B1. With this

notation, and using the fact that N = ζα × ζβ

n×∇f := (n×∇f) ◦ ξ =
ξβfα − ξαfβ

|N | =
ζβfα − ζαfβ

|N | .

Note that this definition is independent of the extension f of f |∂B1
to the

interior of B1.
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The fluid velocity in Lagrangian coordinates will be denoted by v, that
is,

v(t, p) = v(t, ξ(t, p)) = ξt(t, p).

We also let

u(t, p) = v(t, ξ(t, p))− x′
1 = ζt(t, p).

The gravity potential ψ is written as ψ = ψ1 +ψ2 with

ψi(t,x) = −Gρ

∫
Bj(t)

dy

|x− y| ,

and in Lagrangian coordinates we set

ψj(t, p) := ψj(t, ξ(t, p)).

Since p = 0 on ∂B1,

−∇p = an, where a := −∇p · n,

and we let

a(t, p) = a(t, ξ(t, p)).

Remark 2.1. Suppose f : ∂B1 → R is a function defined on the boundary
of the fluid domain, and let f = f ◦ ξ. By a slight abuse of notation, we
often write integrals on the boundary ∂B1 in terms of f instead of f . For
instance we write

∫
∂B1

fdS to mean
∫
∂B1

fdS, even though f is a function
with domain SR.

With the notation above the first equation in (24) becomes

ζtt = an−∇ψ1 − (∇ψ2 + x′′
1).(25)

To state the main result of this section we need to introduce some more
notation. Let

h(t, p) = |ζ(t, p)| −R, and h̃(t, p) = |ζ(t, p)|2 −R2.(26)

Both h and h̃ vanish when ∂B1 is a round sphere, and in general we expect
them to be small during the evolution. In computations it is often convenient
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to replace ζ by R3|ζ|−3ζ. The reason for this is that the function x−x1

|x−x1|3 has

zero curl and divergence outside B1 so H∂B1
(|ζ|−3ζ) = −|ζ|−3ζ. Here H∂B1

denotes the Hilbert transform introduced in (17). The error that is generated
from replacing ζ by R3|ζ|−3ζ is encoded in

μ := 1− R3

|ζ|3 .(27)

Taking common denominators gives

μ =
3

2R2
h̃+ νh̃,(28)

where

ν =
|ζ|2 +R|ζ|+R2

|ζ|3(|ζ|+R)
− 3

2R2
.(29)

Note that in view of the discussion above

(I +H∂B1
)ζ = (I +H∂B1

)(μζ).

We now state the main result of this section.

Proposition 2.2. u satisfies

∂2
t u+ an×∇u+

GM

R3
u− 3GM

2R3
(I +H∂B1

)((u · n)n)

= −Ft − ∂tE1 + E2 + ∂t

(
a

|N |

)
N + ∂t

(
1

|B1|

∫
B1

E1(t,x)dx

)
,

(30)

where with ζ = x− x1 and ζ′ = y − x2

F :=
GMη3

8R3
(ζ − 3(ζ · ξ1)ξ1),(31)

E1 = Gρη2
∫
B2

[
η(ζ − (y − x2)) + 2Rξ1
|η(ζ − (y − x2)) + 2Rξ1|3

− ξ1
4R2

− η

8R3
(ζ − (y − x2)− 3((ζ − (y − x2)) · ξ1) ξ1)

]
dy,

(32)
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E1(t,x) = Gρη2
∫
B2

[
η(ζ − ζ′) + 2Rξ1
|η(ζ − ζ′) + 2Rξ1|3

− ξ1
4R2

− η

8R3

(
ζ − ζ′ − 3((ζ − ζ′) · ξ1) ξ1

) ]
dy,

and

E2 :=
3GM

2R5
(I +H∂B1

)((u · (ζ −Rn))ζ) +
3GM

2R4
(I +H∂B1

)((u · n)(ζ −Rn))

+
GM

2R3
(I +H∂B1

)(μu) +
GM

2R3
(I +H∂B1

)((h̃tν + h̃νt)ζ)

+
GM

2R3
[∂t, H∂B1

](μζ).

(33)

Remark 2.3. Note that the left-hand side of equation (30) is a pure vector,

that is (I+H∂B1
)((n·u)n) has no real part. Indeed (recall that the convention

of Remark A.1 is in use)

H∂B1
((n · u)n) = p.v.

∫
∂B1

Kn′n′(n′ · u′)dS′ = −p.v.

∫
∂B1

K(n′ · u′)dS′

is a pure vector.

To derive equation (30) we will differentiate equation (25) in time. To

do this efficiently we need more convenient expressions for ∇ψ1 and ∇ψ2,

which are derived in the following lemma.

Lemma 2.4. 1. Let ∇ψ1(t, p) := ∇ψ1(t, ξ(t, p)). Then

∇ψ1 =
GM

2R3
(I −H∂B1

)ζ =
GM

R3
ζ − GM

2R3
(I +H∂B1

)ζ.(34)

2. Let x be any point in Bc
2. Then

∇ψ2(t,x) =
GMη2

4R2
ξ1 +

GMη3

8R3
((x− x1)− 3((x− x1) · ξ1) ξ1)(35)

+E1(t,x),
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where with ζ = x− x1 and ζ′ = y − x2

E1(t,x) = Gρη2
∫
B2

[
η(ζ − ζ′) + 2Rξ1
|η(ζ − ζ′) + 2Rξ1|3

− ξ1
4R2

− η

8R3

(
ζ − ζ′ − 3((ζ − ζ′) · ξ1) ξ1

) ]
dy.

(36)

3. Let ∇ψ2(t, p) := ∇ψ2(t, ξ(t, p)) and E1(t, p) := E1(t, ξ(t, p)). Then

∇ψ2 =
GMη2

4R2
ξ1 +

GMη3

8R3
(ζ − 3(ζ · ξ1) ξ1) + E1.(37)

Remark 2.5. Note that the integrand in the definition (36) of E1 consists
the O(η2) terms in the Taylor expansion of

η(ζ − ζ′) + 2Rξ1
|η(ζ − ζ′) + 2Rξ1|3

in η, and it is for this reason that E1 is regarded as an error term.

Proof of Lemma 2.4. We start with the equation for ∇ψ1. Recall that ψ1

satisfies

Δψ1 = 4πGρχB1
.

It follows that

∇ ·
(
∇ψ1 −

4πGρ

3
x

)
= 0 and ∇×

(
∇ψ1 −

4πGρ

3
x

)
= 0

in B1 and hence

(I −H∂B1
)(∇ψ1) =

4πGρ

3
(I −H∂B1

)ξ.

Similarly since ∇ψ1 is curl and divergence-free outside of B1,

(I +H∂B1
)∇ψ1 = 0.

It follows that

∇ψ1 =
1

2
(I −H∂B1

)∇ψ1 +
1

2
(I +H∂B1

)∇ψ1
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=
2πGρ

3
(I −H∂B1

)ξ =
GM

2R3
(I −H∂B1

)ξ

=
GM

R3
ξ − GM

2R3
(I +H∂B1

)ξ =
GM

R3
(ξ − x1)−

GM

2R3
(I +H∂B1

)(ξ − x1)

=
GM

R3
ζ − GM

2R3
(I +H∂B1

)ζ,

proving (34). Next we turn to the gravity of the second body. The formula
for ∇ψ2 follows directly from that of ∇ψ2 so we concentrate on the latter.
If x ∈ Bc

2 is an arbitrary point, then (suppressing the time variable from the
notation)

ψ2(x) = −Gρ

∫
B2

dy

|y − x| .

Since x ∈ Bc
2, the integration kernel is nonsingular and we can differentiate

inside the integral to get

∇ψ2(x) = Gρ

∫
B2

x− y

|x− y|3dy.

Introducing the notation ζ = x − x1 and ζ′ = y − x2 and recalling that
x1 = −x2 we can rewrite this as

∇ψ2(x) =Gρ

∫
B2−x2

(ζ − ζ′) + 2x1

|(ζ − ζ′) + 2x1|3
dζ ′

=Gρη2
∫
B2−x2

η(ζ − ζ′) + 2Rξ1
|η(ζ − ζ′) + 2Rξ1|3

dζ′.

(38)

Now Taylor expansion in η gives

Gρ
η(ζ − ζ′) + 2Rξ1
|η(ζ − ζ′) + 2Rξ1|3

=
Gρ

4R2
ξ1 +

Gρη

8R3

(
(ζ − ζ′)− 3((ζ − ζ′) · ξ1) ξ1

)
+ Ẽ1,

where

Ẽ1 = Gρ
η(ζ − ζ′) + 2Rξ1
|η(ζ − ζ′) + 2Rξ1|3

− Gρ

4R2
ξ1

− Gρη

8R3

(
(ζ − ζ′)− 3((ζ − ζ′) · ξ1) ξ1

)
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denotes the remainder of order η2 in the Taylor expansion. Note that by
definition, ∫

B2−x2

ζ′dζ ′ = 0, and ρ

∫
B2−x2

dζ′ = M,

so plugging the expansion above into (38) gives the desired identity

∇ψ2(x) =
GMη2

4R2
ξ1 +

GMη3

8R3
((x− x1)− 3((x− x1) · ξ1) ξ1) +E1.

The following simple lemma provides an expression for x′′
1.

Lemma 2.6. The acceleration of x1 is given by the average of −∇ψ2 over
B1. In other words,

x′′
1(t) = − 1

|B1|

∫
B1

∇ψ2(t,x)dx.

Proof. We start by computing x′′
1(t):

x′′
1 =

1

|B1|
d2

dt2

(∫
B1

xdx

)
=

1

|B1|

∫
B1

(∂tv + v · ∇v) dx

=− 1

|B1|

∫
B1

(∇p+∇ψ1 +∇ψ2) dx.

Using divergence theorem, we have∫
B1

∇pdx =

∫
∂B1

pndS = 0.

For the contribution from ∇ψ1, we have∫
B1

∇ψ1dx = Gρ

∫
B1

∫
B1

x− y

|x− y|3dydx = Gρ

∫
B1

∫
B1

x− y

|x− y|3dxdy

= −Gρ

∫
B1

∫
B1

x− y

|x− y|3 dydx = 0.

We now turn to the proof of Proposition 2.2.

Proof of Proposition 2.2. The statement will follow from differentiating (25)
in time. We start by differentiating∇ψ1. Using equations (27), (28), and (34)
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we have

−∂t∇ψ1 =− GM

R3
u+

GM

2R3
∂t(I +H∂B1

)(μζ)

=− GM

R3
u+

GM

2R3
[∂t, H∂B1

](μζ)

+
GM

2R3
(I +H∂B1

)∂t(μζ)

=− GM

R3
u+

3GM

4R5
(I +H∂B1

)(h̃tζ)

+
GM

2R3
(I +H∂B1

)(μu) +
GM

2R3
(I +H∂B1

)((h̃tν + h̃νt)ζ)

+
GM

2R3
[∂t, H∂B1

](μζ)

=− GM

R3
u+

3GM

2R5
(I +H∂B1

)((u · ζ)ζ)

+
GM

2R3
(I +H∂B1

)(μu) +
GM

2R3
(I +H∂B1

)((h̃tν + h̃νt)ζ)

+
GM

2R3
[∂t, H∂B1

](μζ)

=− GM

R3
u+

3GM

2R3
(I +H∂B1

)((u · n)n)

+
3GM

2R5
(I +H∂B1

)((u · (ζ −Rn))ζ)

+
3GM

2R4
(I +H∂B1

)((u · n)(ζ −Rn)) +
GM

2R3
(I +H∂B1

)(μu)

+
GM

2R3
(I +H∂B1

)((h̃tν + h̃νt)ζ) +
GM

2R3
[∂t, H∂B1

](μζ)

=− GM

R3
u+

3GM

2R3
(I +H∂B1

) ((u · n)n) + E2.

(39)

Next we differentiate an. Since u is curl and divergence free, by (162)

Nt = −(ξβ × uα − ξα × uβ) = −|N |n×∇u.(40)

It follows that

∂t(an) = ∂t

(
a

|N |

)
N − an×∇u.(41)
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Finally to compute ∂t(∇ψ2 + x′′
1), we note that by Lemma 2.6 x′′

1(t) =
− 1

|B1|
∫
B1

∇ψ2(t,x)dx, and therefore by Lemma 2.4

∇ψ2 + x′′
1 = F + E1 −

1

|B1|

∫
B1

E1(t,x)dx,

so

∂t(∇ψ2 + x′′
1) = Ft + ∂tE1 − ∂t

(
1

|B1|

∫
B1

E1(t,x)dx

)
.(42)

Equation (30) now follows by combining (39), (41), and (42).

Before deriving the equations for higher derivatives of u we clarify the
structure of the nonlinearity in equation (30) a bit more. We start with

deriving a formula for ∂t

(
a
|N |

)
N which is also of independent interest for

the energy estimates.

Proposition 2.7. There holds

−(I +K∗
∂B1

)

(
|N |∂t

(
a

|N |

))
= Ren[∂2

t + an×∇, H∂B1
]u

− GM

2R3
Ren[∂t, H∂B1

](I +H∂B1
)ζ

+Ren[∂t, H∂B1
](∇ψ2 + x′′

1).

(43)

Proof. We go back to equation (25) which using (34) we rewrite as

∂2
t ζ − an = −GM

R3
ζ +

GM

2R3
(I +H∂B1

)ζ − (∇ψ2 + x′′
1).

Differentiating in time and using Nt = −N ×∇u we get

∂t

(
a

|N |

)
N

= (∂2
t + an×∇)u+

GM

R3
u− GM

2R3
∂t(I +H∂B1

)ζ + ∂t(∇ψ2 + x′′
1).

Since (I−H∂B1
)u = (I−H∂B1

)∇ψ2 = (I−H∂B1
)x′′

1 = 0, applying (I−H∂B1
)

to this equation gives

(I −H∂B1
)

(
∂t

(
a

|N |

)
N

)
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= [∂2
t + an×∇, H∂B1

]u− GM

2R3
[∂t, H∂B1

](I +H∂B1
)ζ

+ [∂t, H∂B1
](∇ψ2 + x′′

1).

Multiplying the equation by n on both sides we get

− (I +H∗
∂B1

)

(
|N |∂t

(
a

|N |

))
= n[∂2

t + an×∇, H∂B1
]u− GMn

2R3
[∂t, H∂B1

](I +H∂B1
)ζ

+ n[∂t, H∂B1
](∇ψ2 + x′′

1).

The desired identity now follows from taking real parts.

Finally we use equation (25) to derive expressions for a− GM
R2 and Rn−ζ

which will allow us to estimate these terms in the energy estimates.

Lemma 2.8. Let

w := ut −
GM

2R3
(I +H∂B1

)ζ + (∇ψ2 + x′′
1),

and

b := |w|2 + 2GM

R3
ζ · w +

G2M2

R6

(
|ζ|2 −R2

)
.

Then

a− GM

R2
=

b

GM
R2 +

√(
GM
R2

)2
+ b

,(44)

and

Rn− ζ =
R3

GM
ut −

R3

GM

(
a− GM

R2

)
n− 1

2
(I +H∂B1

)ζ +
R3

GM
(∇ψ2 + x′′

1).

(45)

Proof. First by the definition of a = −∇p · n we know a ≥ 0. Using
Lemma 2.4 we rearrange (25) to get

a =

∣∣∣∣ut + GM

R3
ζ − GM

2R3
(I +H∂B1

)ζ + (∇ψ2 + x′′
1)

∣∣∣∣ = ∣∣∣∣GM

R3
ζ + w

∣∣∣∣ .
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A direct computation shows that
∣∣GM
R3 ζ + w

∣∣ = √
b+

(
GM
R2

)2
so

a− GM

R2
=

√
b+

(
GM

R2

)2

−

√(
GM

R2

)2

=
b

GM
R2 +

√(
GM
R2

)2
+ b

.

This proves (44) and (45) follows directly from rearranging equation (25)

and using Lemma 2.4.

Remark 2.9. Lemma 2.8 shows that under the bootstrap assumptions to

be stated in Section 3, a ∼ GM
R2 , which is more precise than a ≥ 0.

2.2. The Equation for Derivatives of u

To obtain higher regularity, we need to commute spatial derivatives with

equation (30). Let f : R × SR → R3 be a vectorfield (typically f is of the

form f(t, p) = f(t, ξ(t, p)) for some vectorfield f : R × ∂B1 → R3, which is

not necessarily tangent to ∂B1 or SR). Motivated by the discussion in the

introduction we define

Dif := Ωif − ei × f.(46)

Here Ω1 is the rotational vectorfield about the ei axis in R3 and Ωif =∑3
j=1(Ωif

j)ej is computed componentwisely. We also extend Di to real-

valued functions as

Dif := Ωif,(47)

and if f is a general Clifford algebra-valued function the we let

Dif := DiRef +DiVec f.

Here recall from Appendix A that for a Clifford valued function f the no-

tation Ref denotes the scalar, or real, part of f and Vec f its vector part.

Often, the choice of axis of symmetry ei is irrelevant in our computations,

so we simply write Ω instead of Ωi, D instead of Di, and e instead of ei so

for instance if f is vector-valued, then

Df = Ωf − e× f.
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Finally, if α is any multi-index α = (i1, . . . , ik) we let

Dα = Di1 . . .Dik

and if only the size |α| = k is important we simply write Dk instead of Dα.
Before computing the equation satisfied by Du we record a simple prod-

uct rule for D and an integration-by-parts formula for Ω.

Lemma 2.10. 1. If f and g are Clifford algebra-valued functions then

D(fg) = (Df)g + f(Dg).

Moreover, if f and g are vector-valued, then

D(f × g) = Df × g + f ×Dg,

and

D(f · g) = Df · g + f ·Dg.

2. For any differentiable f and g and with |/g| =
√

det /g denoting the
volume element on SR,∫

∂B1

fΩgdS =−
∫
∂B1

(Ωf)gdS −
∫
∂B1

fg
1

|N ||/g|−1
Ω(|N ||/g|−1)dS.

Here /g is induced Euclidean metric on SR.

Proof. 1. The first statement follows from the usual product rule if either
f or g are scalar-valued, so we assume that both f and g are vector-
valued. Then

D(fg) = D(−f · g + f × g)

= −Ωf · g − f · Ωg +Ωf × g + f × Ωg − e× (f × g).

On the other hand

(Df)g + f(Dg)

= −(Ωf − e× f) · g − f · (Ωg − e× g) + (Ωf − e× f)× g

+ f × (Ωg − e× g)

= −Ωf · g − f · Ωg +Ωf × g + f × Ωg − (e× f)× g − f × (e× g)

= −Ωf · g − f · Ωg +Ωf × g + f × Ωg − e× (f × g) = D(fg)
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according to the previous computation. This proves the first statement

of the lemma, and comparing the real and vector parts proves the last

two statements.

2. This follows from the following computation, where /∇ and dSR are

the gradient and volume form on SR respectively:∫
∂B1

fΩgdS =

∫
SR

f(Ωg)|N ||/g|−1dSR =

∫
SR

f(Ω · /∇g)|N ||/g|−1dSR

=−
∫
∂B1

(Ωf)gdS −
∫
∂B1

fg
1

|N ||/g|−1
Ω(|N ||/g|−1)dS.

We now derive the equation for the higher derivatives of u in a slightly

more abstract setting.

Proposition 2.11. Suppose f = f ◦ ξ where f : R× ∂B1 → R3 is such that

H∂B1
f = f . If f satisfies

∂2
t f + an×∇f +

GM

R3
f − 3GM

2R3
(I +H∂B1

)((n · f)n) = g0.

Then for any positive integer k, Dkf satisfies

∂2
tD

kf + an×∇Dkf +
GM

R3
Dkf − 3GM

2R3
(I +H∂B1

)((Dkf · n)n) = gk

(48)

where

gk :=Dkg0 −
k∑

j=1

(Dja)n×∇Dk−jf −
k∑

j=1

(Dja)[Dk−j , n×∇]f

− a[Dk, n×∇]f +
3GM

2R3
[Dk, H∂B1

]((n · f)n)

+
3GM

2R3

∑
1≤i+j≤k

(I +H∂B1
)((Din ·Dk−i−jf)Djn).

(49)

Proof. This follows from applying Dk to the equation satisfied by f and

using the product rules in Lemma 2.10.

In the following lemma we derive formulas for the commutators [D, n×∇]

and [D, H∂B1
] appearing on the right-hand side of (48).
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Lemma 2.12. 1. For any differentiable function f

[D, H∂B1
]f = −

∫
∂B1

K(D′ζ ′ −Dζ)× (n′ ×∇f ′)dS.(50)

2. For any C2 function f

[D, n×∇]f =−
Ω(|N ||/g|−1)

|N ||/g|−1
n×∇f

+
1

|N | ((∂β(Dξ))fα − (∂α(Dξ))fβ) .

(51)

Proof. 1. First note that H∂B1
1 = 1 which in particular implies

D

(
p.v.

∫
∂B1

Kn′dS′
)

= 0.

Using this observation and two applications of Lemma B.4 we get

(where some of the integrals below need to be interpreted in the prin-

cipal value sense)

[D, H∂B1
]f =D

∫
∂B1

Kn′f ′dS′ −
∫
∂B1

KD′(n′f ′)dS′

(52)

+

∫
∂B1

K(D′n′)f ′dS′

=

∫
∂B1

((Ω + Ω′)K − e×K)n′f ′dS′ +

∫
∂B1

K(D′n′)f ′dS′

+

∫
∂B1

Kn′f ′

|N ′||/g′|−1
Ω′(|N ′||/g′|−1)dS′

=

∫
∂B1

((Ω + Ω′)K − e×K)n′(f ′ − f)dS′

+

∫
∂B1

((Ω + Ω′)K − e×K)n′dS′f

+

∫
∂B1

K(D′n′)f ′dS′ +

∫
∂B1

Kn′f ′

|N ′||/g′|−1
Ω′(|N ′||/g′|−1)dS′

=

∫
∂B1

((Ω + Ω′)K − e×K)n′(f ′ − f)dS′
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+

∫
∂B1

K(D′n′)(f ′ − f)dS′

+

∫
∂B1

Kn′(f ′ − f)

|N ′||/g′|−1
Ω′(|N ′||/g′|−1)dS′

=

∫
∂B1

((D′ζ ′ −Dζ) · ∇K)n′(f ′ − f)dS′

+

∫
∂B1

Kn′(f ′ − f)

|N ′||/g′|−1
Ω′(|N ′||/g′|−1)dS′

+

∫
∂B1

K(D′n′)(f ′ − f)dS′

=

∫
∂B1

((D′ζ ′ −Dζ) · ∇K)n′(f ′ − f)dS′

+

∫
∂B1

Kn′(f ′ − f)

|/g′|−1
Ω′(|/g′|−1)dS′

+

∫∫
K(D′(ζ ′α′ × ζ ′β′))(f ′ − f)dα′dβ′.

Now using (167) we write (the integration by parts here can be justified

by choosing specific coordinates on SR or invariantly as in Lemma 3.2

below)∫
∂B1

((D′ζ ′ −Dζ) · ∇K)n′(f ′ − f)dS′

=

∫∫
∂α′K((D′ζ ′ −Dζ)× ζ ′β′)(f ′ − f)dα′dβ′

+

∫∫
∂β′K(ζ ′α′ × (D′ζ ′ −Dζ))(f ′ − f)dα′dβ′

= −
∫
∂B1

K(D′ζ ′ −Dζ)× (n′ ×∇f ′)dS′

+

∫∫
K(ζ ′β′ × ∂α′D′ζ ′ − ζ ′α′ × ∂β′D′ζ ′)(f ′ − f)dα′dβ′.

Plugging this back into (52) we get

[D, H∂B1
]f =−

∫
∂B1

K(D′ζ ′ −Dζ)× (n′ ×∇f ′)dS′(53)

+

∫
∂B1

Kn′(f ′ − f)

|/g′|−1
Ω′(|/g′|−1)dS′
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+

∫∫
K([Ω′, ∂α′ ]ζ ′ × ζ ′β′

+ ζ ′α′ × [Ω′, ∂β′ ]ζ ′)(f ′ − f)dα′dβ′.

We claim that the last two lines cancel. To see this we write Ω =
Ωα∂α +Ωβ∂β so that

[Ω, ∂α] = −∂αΩ
α∂α − ∂αΩ

β∂β, and

[Ω, ∂β ] = −∂βΩ
α∂α − ∂βΩ

β∂β.

It follows that

[Ω, ∂α]ζ × ζβ + ζα × [Ω, ∂β]ζ + |/g|Ω(|/g|−1)N

= −

⎛⎝ 2∑
μ=1

|/g|−1∂μ(|/g|Ωμ)

⎞⎠N

= −( /∇ · Ω)N = 0,

because Ω is divergence free. Going back to (53) we conclude that

[D, H∂B1
]f = −

∫
∂B1

K(D′ζ ′ −Dζ)× (n′ ×∇f ′)dS,

as desired.
2. Using the product rule for D from Lemma 2.10 we write D (n×∇f)

as

D
1

|N |(ξβfα − ξαfβ) = −Ω|N |
|N | n×∇f +

1

|N |D(ξβfα − ξαfβ).

We rewrite the second term as

D(ξβfα − ξαfβ)

= (ξβ∂αDf − ξα∂βDf) + ((∂βDξ)fα − (∂αDξ)fβ)

+ ([Ω, ∂β ]ξ)fα − ([Ω, ∂α]ξ)fβ + ξβ[Ω, ∂α]f − ξα[Ω, ∂β ]f.

For the first term we have

1

|N |Ω|N | = 1

|N ||/g|−1
Ω(|/g|−1|N |)− |/g|Ω|/g|−1.
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Therefore

Dn×∇f

= n×∇Df −
Ω(|N ||/g|−1)

|N ||/g|−1
n×∇f

+
1

|N | ((∂β(Dξ))fα − (∂α(Dξ))fβ)

+
1

|N | (([Ω, ∂β ]ξ)fα − ([Ω, ∂α]ξ)fβ + ξβ[Ω, ∂α]f − ξα[Ω, ∂β ]f)

+ |/g|Ω|/g|−1n×∇f.

Now using an argument similar to the one following (53) above we see

that the last line is zero.

Note that in view of Proposition 2.7 we will also need to commute D

with (I + K∗
∂B1

)−1 in order to estimate the higher derivatives of the time

derivative of a. Since K∂B1
= ReH∂B1

and in the case where ∂B1 is a round

sphere H∗
∂B1

= H∂B1
, where H∗

∂B1
= nH∂B1

n is as defined in Appendix A, it

suffices to compute the commutator between D and (I + K∂B1
)−1. This is

an abstract computation which is presented in the next lemma.

Lemma 2.13. Let f be a real-valued function. Then

[D,K∂B1
]f = Re[D, H∂B1

]f(54)

and

[D, (I +K∂B1
)−1]f = −(I +K∂B1

)−1[D,K∂B1
](I +K∂B1

)−1f.(55)

Proof. To prove (54) we first note that by definition DF = DF̊ + D�F (in

the notation of Appendix A) for any Clifford algebra-valued function F , so

DReF = ReDF . It follows that

DK∂B1
f = DReH∂B1

f = ReDH∂B1
f = ReH∂B1

Df +Re[D, H∂B1
]f

= K∂B1
Df +Re[D, H∂B1

]f,

proving (54). For (55) we let g := (I +K∂B1
)−1f . Then

Dg = D(I +K∂B1
)−1f = (I +K∂B1

)−1Df + [D, (I +K∂B1
)−1]f.
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So

[D, (I +K∂B1
)−1]f = Dg − (I +K∂B1

)−1D(I +K∂B1
)g

= Dg − (I +K∂B1
)−1[D,K∂B1

]g −Dg

= −(I +K∂B1
)−1[D,K∂B1

](I +K∂B1
)−1f.

Proposition 2.11 can be used to derive the equation for Dku. However,

as we will see in Section 3, for the purposes of the energy estimates it is

more convenient to work with the unknown �uk where

uk :=
1

2
(I +H∂B1

)Dku.

In view of Lemma 2.12, the difference between Dku and �uk is small, but �uk
has the advantage that it is the vector part of a Clifford analytic function.

The following proposition allows us to derive the equation satisfied by �uk.

Proposition 2.14. Suppose f = f ◦ ξ where f : R× ∂B1 → R3 is such that

H∂B1
f = f , and f satisfies

∂2
t f + an×∇f +

GM

R3
f − 3GM

2R3
(I +H∂B1

)((n · f)n) = g0.

For any positive integer k let fk := 1
2(I +H∂B1

)Dkf and let gk be as defined

in (49). Then �fk satisfies

∂2
t
�fk + an×∇�fk +

GM

R3
�fk −

3GM

2R3
(I +H∂B1

)((n · �fk)n) = g̃k,

where

g̃k :=gk −
1

2
an×∇Vec [Dk, H∂B1

]f − GM

2R3
Vec [Dk, H∂B1

]f

+
3GM

4R3
(I +H∂B1

)((n ·Vec [Dk, H∂B1
]f)n)− Vec

2
[∂2

t , [D
k, H∂B1

]]f

− Vec

2
[Dk, H∂B1

]

(
g0 − an×∇f − GM

R3
f

+
3GM

2R3
(I +H∂B1

)((n · f)n)
)
.

(56)
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Proof. Let P denote the operator on the left-hand side of the equation for
f , and let P0 be the spatial part of this operator, that is

Pf := ∂2
t f + P0f := ∂2

t f + an×∇f +
GM

R3
f − 3GM

2R3
(I +H∂B1

)((n · f)n),

Then since H∂B1
f = f and Ref = 0

P �fk =PDkf − 1

2
PVec [Dk, H∂B1

]f

=gk −
1

2
P0Vec [Dk, H∂B1

]f − Vec

2
[Dk, H∂B1

]∂2
t f

− Vec

2
[∂2

t , [D
k, H∂B1

]]f.

The desired identity now follows if we use the equation for f to solve for
∂2
t f .

We can now combine Propositions 2.2, 2.11, and 2.14 to derive the equa-
tion for higher derivatives of u. We record this equation below for future
reference.

Corollary 2.15. Let

g0 := −Ft − ∂tE1 + ∂t

(
1

|B1|

∫
B1

E1(t,x)dx

)
+ E2 + ∂t

(
a

|N |

)
N,

where F , E1 and E2 are defined as in (31), (32), and (33) respectively. With
this choice of g0, let gk and g̃k be defined as in (49) and (56) respectively,
with f = u. Let uk := 1

2(I +H∂B1
)Dku. Then �uk satisfies

∂2
t �uk + an×∇�uk +

GM

R3
�uk −

3GM

2R3
(I +H∂B1

)((n · �uk)n) = g̃k,(57)

Proof. This follows directly from Propositions 2.2, 2.11, and 2.14.

3. Energy Estimates

3.1. General Setup

Given two Clifford algebra-valued functions f and g we define their “dot
product” as

f · g = RefReg +Vec (f) ·Vec (g).
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Recall that

H∗
∂B1

:= nH∂B1
n

is the formal adjoint of H∂B1
with respect to the pairing

〈f, g〉 =
∫
∂B1

f · g dS,

where dS denotes the volume form on ∂B1. Recall also that sometimes we
use the notation

�f := Vec f and f̊ = Ref.

We consider the model equation

∂2
t f + an×∇f +

GM

R3
f − 3GM

2R3
(I +H∂B1

)((n · f)n) = g,(58)

where f = Vec f̃ and f̃ satisfies f̃ = H∂B1
f̃ , and define the following asso-

ciated energy

E := Ef (t)

:=
1

2

∫
∂B1

|ft|2
a

dS +
1

2

∫
∂B1

(n×∇f) · fdS +
GM

2R3

∫
∂B1

|f |2
a

dS

− 3GM

2R3

∫
∂B1

(n · f)2
a

dS.

(59)

When f̃ = u, then of course Ref̃ = 0 and f̃ is Clifford analytic, but after
commuting derivatives with equation (30) the new unknowns Dku are not
necessarily Clifford analytic, and we will instead work with �uk where uk =
1
2(I+H∂B1

)Dku. It is for this reason that we have defined the energies above

for Vec f̃ where f̃ satisfies f̃ = H∂B1
f̃ . Also note that in our applications, the

domain of the function f is SR rather than ∂B1 (for instance when f = u).
In this context we understand the notation Ef as

Ef := Ef◦ξ.

Remark 3.1. Note that in the definition above f was considered as a func-
tion on ∂B1, whereas a = a ◦ ξ is a function on SR. So to be precise, we
should replace a by a in the definition of Ef , but by abuse of notation we
use a both as the function defined on SR and as a|∂B1

.
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Before stating the main energy identity we record some integration-by-

parts identities. For any two Clifford algebra-valued functions f and g de-

fine

Q(f, g) :=
1

|N |(fαgβ − fβgα),(60)

Here |N | = |ζα × ζβ | which makes Q(f, g) coordinate-invariant. If f and g

are vector-valued we also define

�Q(f, g) :=
1

|N |(fα × gβ − fβ × gα),(61)

Note that when f and g are both scalars-valued Q(f, g) = −Q(g, f), and

when they are both vector-valued �Q(f, g) = �Q(g, f).

Lemma 3.2. Let Q and �Q be defined as in (60) and (61).

1. If f , g, and h are scalar-valued then∫
∂B

Q(f, g)hdS = −
∫
∂B

fQ(h, g)dS.

2. If f , g, and h are vector-valued then∫
∂B

�Q(f, g) · hdS =

∫
∂B

f · �Q(h, g)dS.

Proof. In the scalar case the identity follows by writing

Q(f, g)dS = (fαgβ − fβgα)dα ∧ dβ = df ∧ dg,(62)

where d denotes the exterior differentiation operator on ∂B1, and using

Stokes’ Theorem. In the vector case we write

�Q(f, g) · h =

3∑
i,j,k=1

Q(f i, gj)hk(ei × ej) · ek,

and then apply the scalar identity.

We are now ready to prove the main energy identity.
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Proposition 3.3. Suppose f̃ = H∂B1
f̃ , and f := Vec f̃ satisfies (58). Then

with E as in (59), and Q as in (61),

dE
dt

=

〈
g,

ft
a

〉
+

1

2

〈
1

|N |∂t
(
|N |
a

)
ft, ft

〉
− 1

2
〈 �Q(u, f), f〉

+
GM

2R3

〈
1

|N |∂t
(
|N |
a

)
f, f

〉
− 3GM

2R3

〈
1

|N |∂t
(
|N |
a

)
f · n, f · n

〉
− 3GM

R3

〈
a−1f · n, f · nt

〉
+

3GM

2R3
〈(n · f)n, [H∂B1

, a−1∂t]f〉

+
3GM

2R3
〈(n · f)n, (H∗

∂B1
−H∂B1

)(a−1ft)〉

− 3GM

2R3
〈(n · f)n, a−1∂t(I −H∂B1

)f〉.

(63)

Proof. We take the inner product of (58) with 1
aft and study the terms on

the left hand side one by one. The contributions of the first and third terms

on the left hand side are clear, so we focus on the second and fourth terms.

For the second term we have∫
∂B1

(n×∇f) · ftdS

=

∫∫
(ζβ × fα − ζα × fβ) · ft dαdβ

= ∂t

∫
∂B1

(n×∇f) · fdS −
∫∫

(ζβ × ftα − ζα × ftβ) · fdαdβ

−
∫∫

(uβ × fα − uα × fβ) · fdαdβ

= ∂t

∫
∂B1

(n×∇f) · fdS +

∫
∂B1

�Q(u, f) · fdS

−
∫∫

ft · (ζβ × fα − ζα × fβ)dαdβ,

where in the last step we have used Lemma 3.2. It follows that∫
∂B1

(n×∇f) · ftdS =
1

2
∂t

∫
∂B1

(n×∇f) · fdS +
1

2

∫
∂B1

�Q(u, f) · fdS.
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Finally we consider the contribution from (I +H∂B1
)((n · f)n). We have

〈(I +H∂B1
)((n · f)n), a−1ft〉

= 〈(n · f)n, (I +H∗
∂B1

)(a−1ft)〉
= 〈(n · f)n, (I +H∂B1

)(a−1ft)〉+ 〈(n · f)n, (H∗
∂B1

−H∂B1
)(a−1ft)〉

= 2〈(n · f)n, a−1ft〉+ 〈(n · f)n, [H∂B1
, a−1∂t]f〉

− 〈(n · f)n, a−1∂t(I −H∂B1
)f〉+ 〈(n · f)n, (H∗

∂B1
−H∂B1

)(a−1ft)〉
= ∂t〈a−1f · n, f · n〉 − 〈|N |−1∂t(|N |a−1)f · n, f · n〉 − 2〈a−1f · n, f · nt〉
+ 〈(n · f)n, [H∂B1

, a−1∂t]f〉+ 〈(n · f)n, (H∗
∂B1

−H∂B1
)(a−1ft)〉

− 〈(n · f)n, a−1∂t(I −H∂B1
)f〉.

The statement of the proposition now follows by combining the previous
identities.

Remark 3.4. Suppose f =
∑3

i=1 f
iei is the vector part of a Clifford analytic

function f̃ , f̃ = H∂B1
f̃ , and let f̊ = Ref̃ . Then from (160)

n×∇f =

3∑
i=1

(∇nf
i)ei +∇nf̊ − n×∇f̊ ,

where ∇n denotes the Dirichlet-Neumann map of ∂B1. It follows that in this
case ∫

∂B1

(n×∇f) · fdS ≥ −
∫
∂B1

(n×∇f̊) · fdS.

The energy defined in (59) is the natural energy associated to the time
symmetry of the equation, but unfortunately it is not clear that it is in
general positive definite. A similar problem was encountered in [2]. As in [2]
here we will be able to show that Ef is positive if B1 is a small perturbation
of SR (that is under our bootstrap assumptions) and for f of interest. The
approach we take here is more direct than the one in [2]. The following two
general results are the first steps in this direction. The first result provides
a lower bound on the constant for the Poincaré inequality, or equivalently
the first nonzero Neumann eigenvalue of the positive Laplacian.

Lemma 3.5. [18] Let D ⊆ R3 be a simply connected bounded domain with
diameter8 d, such that the second fundamental form of ∂D with respect

8The diameter d of D is by definition d = supx,y∈D |x− y|.
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to the exterior normal is non-negative. Then for any function f satisfying∫
D f(x)dx = 0 there holds

‖f‖L2(D) ≤
d

π
‖∇f‖L2(D).

Remark 3.6. We will later prove that the hypotheses of Lemma 3.5 are
satisfied under the bootstrap assumptions to be introduced.

The next result provides a lower bound for the constant of the trace
embedding H1(D) ↪→ L2(∂D).

Lemma 3.7. [8] Let D ⊆ R3 be a simply connected bounded domain with
C1 boundary ∂D, and let ν denote the exterior normal. Suppose μ is a C1

vectorfield defined in a neighborhood of D such that μ(x) · ν(x) ≥ b > 0 for
all x ∈ ∂D. Then for any function f in H1(D),

b

∫
∂D

|f(x)|2dS(x) ≤ sup
D

|μ|2
∫
D
|∇f(x)|2dx+ (1 + sup

D

|∇ · μ|)
∫
D
|f(x)|2dx.

Proof. Because the statement is slightly different from the one in [8], we
provide the proof which is directly from [8]. By the divergence theorem

2

∫
D
f∇f · μdx =

∫
D
∇(f2) · μdx = −

∫
D
f2∇ · μdx+

∫
∂D

f2μ · νdS.

The desired estimate follows by rearranging and applying Cauchy-Schwarz.

Remark 3.8. In our applications ∂D will be close to SR, in which case
ν(x) = R−1x. The choice μ(x) = x then gives b = R−1.

To use Lemma 3.5 to prove lower bounds for the energies for �uk we
also need to show that the average of uk is small for all k. We will use the
following notation for a Clifford algebra-valued function f defined on B1:

AV(f) :=
1

M

∫
B1

fdx.

Lemma 3.9. Let uk := 1
2(I+H∂B1

)Dku, and let uk be the Clifford analytic
extension of uk to B1, with u0 = u and u0 = u. Then for k ≥ 0

AV(uk) =
R

3M

∫
∂B1

ukdS − 1

3M

∫
∂B1

(ζ −Rn)nukdS

+
1

6M

∫
∂B1

((I +H∂B1
)ζ)nukdS,

(64)
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and for k ≥ 1∫
∂B1

ukdS =

∫
∂B1

uk−1

Ω(|N ||/g|−1)

|N ||/g|−1
dS − e×Vec

∫
∂B1

uk−1dS

− 1

2

∫
∂B1

[D, H∂B1
]Dk−1u dS.

(65)

Remark 3.10. This lemma can be used inductively as follows. First, since9

AV(u) = 0, we can use (64) to control
∫
∂B1

u0dS. Then we use (65) to bound∫
∂B1

u1dS. We then use (64) to estimate AV(u1) in terms of
∫
∂B1

u1dS, which

we in turn estimate in terms of
∫
∂B1

u0dS according to (65). This process can
now be continued inductively to estimate AV(uk) for all k. We summarize
this process in the following chart:

0 = AV(u0) →
∫
∂B1

u0dS →
∫
∂B1

u1dS →
∫
∂B1

u2dS

→ ... →
∫
∂B1

ukdS → ...,∫
∂B1

ukdS → AV(uk) for k ≥ 1.

Proof of Lemma 3.9. Since uk is Clifford analytic, by Theorem A.2, for any
ξ′ ∈ B1

uk(ξ
′) =

1

4π

∫
∂B1

ξ′ − ξ

|ξ′ − ξ|3n(ξ)uk(ξ)dS(ξ),

so

AV(uk) =
1

4πM

∫
∂B1

(∫
B1

ξ′ − ξ

|ξ′ − ξ|3 dξ
′
)
n(ξ)uk(ξ)dS(ξ).

Notice that the inner integral is equal to − 1
Gρ∇ψ1(ξ). So using Lemma 2.4,

AV(uk) =− 1

3M

∫
∂B1

ζnukdS +
1

6M

∫
∂B1

((I +H∂B1
)ζ)nukdS

=
R

3M

∫
∂B1

ukdS − 1

3M

∫
∂B1

(ζ −Rn)nukdS

9By definition, u = v − x′
1. On the other hand, x′

1 = ∂t

(
1

|B1|
∫
B1

xdx
)

=
1

|B1|
∫
B1

vdx.



On tidal energy in Newtonian two-body motion 515

+
1

6M

∫
∂B1

((I +H∂B1
)ζ)nukdS.

This proves (64), and (65) follows from the identity

uk :=
1

2
(I +H∂B1

)Dku = Ωuk−1 − e×Vec uk−1 −
1

2
[D, H∂B1

]Dk−1u,

k ≥ 1,

and an integration by parts according to Lemma 2.10.

Using Lemmas 3.5 and 3.7 we can prove the positivity of the energy to

leading order. In fact we will show that Ef controls the L2 norm of f .

Lemma 3.11. Suppose the second fundamental form of ∂B1 with respect

to the exterior normal n is non-negative. Suppose further that there is δ ∈
[0, 1) such that ζ satisfies ζ · n ≥ (1 − δ)R and such that for all x ∈ B1,

|x−x1| ≤ (1+δ)R. Let f = Vec f̃ and f0 = Ref̃ , where f̃ is a Clifford analytic

function in B1, and let f and f0 be the restrictions of f and f0 to ∂B1. If δ

is sufficiently small and f satisfies the assumptions in Proposition 3.3, then

there exist absolute constants c, C > 0 such that

1

2

∫
∂B1

(n×∇f) · fdS +
1

2R

∫
∂B1

|f |2dS − 3

2R

∫
∂B1

(n · f)2dS

≥ c

4R

∫
∂B1

|f |2dS − 3

2R

∫
∂B1

(f · n)f · (n−R−1ζ)dS − CMρ

R2
(AV(f))2

− 3

4R

∫
∂B1

|f |2(R−1ζ − n) · ndS − 3

2R2

∫
∂B1

(f × ζ) · (n−R−1ζ)f0dS

− 9

4R2

∫
B1

f2
0dx+

3

4R2

∫
∂B1

(ζ · n)f2
0dS − CR

∫
∂B1

|n×∇f0|2dS.

(66)

Moreover,

∫
B1

|f0|2dx ≤ CR

∫
∂B1

|f0|2dS + CR3

∫
∂B1

|∇nf0|2dS + CMρ(AV(f0))
2.

(67)

Proof. We start by proving (66). Let f = Vec f̃ , where f̃ is the Clifford

analytic extension of f̃ to the interior of B1, and let ζ = x − x1 be the
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harmonic extension of ζ to the interior. First note that since n × ∇f =

∇nf +∇nf0 − n×∇f0 and f has harmonic components,

1

2

∫
∂B1

(n×∇f) · fdS =
1

2

∫
B1

|∇f |2dx− 1

2

∫
∂B1

(n×∇f0) · fdS,

where |∇f |2 =
∑3

i=1 |∇f i|2. Next, by assumption ∂if
j − ∂jf

i = εijk∂kf0,

where εijk = 1 if (ijk) is an even permutation of (123), εijk = −1 if (ijk) is

an odd permutation of (123), and εijk = 0 otherwise. Combining this with

the facts that ∇ · f = 0 and ∇ · ζ = 3, we write

∫
∂B1

(n · f)2dS =
1

R

∫
∂B1

(f · ζ)(f · n)dS +

∫
∂B1

(f · n)f · (n−R−1ζ)dS

=
1

R

∫
B1

∇ · ((f · ζ)f)dx+

∫
∂B1

(f · n)f · (n−R−1ζ)dS

=
1

R

∫
B1

|f |2dx+
1

2R

∫
B1

ζ · ∇|f |2dx+

∫
∂B1

(f · n)f · (n−R−1ζ)dS

+
1

R

∫
B1

f iζjεijk∂kf0dx

=− 1

2R

∫
B1

|f |2dx+
1

2R

∫
B1

∇ · (|f |2ζ)dx+

∫
∂B1

(f · n)f · (n−R−1ζ)dS

+
1

R

∫
B1

∂k(f
iζjεijkf0)dx− 1

R

∫
B1

∂kf
iζjεijkf0dx

=− 1

2R

∫
B1

|f |2dx+
1

2R

∫
∂B1

|f |2ζ · ndS +

∫
∂B1

(f · n)f · (n−R−1ζ)dS

+
1

R

∫
∂B1

(f × ζ) · (n−R−1ζ)f0dS − 1

2R

∫
B1

εki�εkijζ
jf0∂�f0dx

=− 1

2R

∫
B1

|f |2dx+
1

2

∫
∂B1

|f |2dS

+
1

2

∫
∂B1

|f |2(R−1ζ − n) · ndS +

∫
∂B1

(f · n)f · (n−R−1ζ)dS

+
1

R

∫
∂B1

(f × ζ) · (n−R−1ζ)f0dS +
3

2R

∫
B1

f2
0dx

− 1

2R

∫
∂B1

(ζ · n)f2
0dS.

(68)
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To pass to the last equality, we have used the fact that

−1

2
εki�εkijζ

j∂�f
2
0 =− 1

2
∂�(ζ

jf20 εki�εkij) + 3f20 = −∇ · (f20 ζ) + 3f20 .

Combining this with the previous identity, and for any constant c ∈ (0, 1),
we get

1

2

∫
∂B1

(n×∇f) · fdS +
1

2R

∫
∂B1

|f |2dS − 3

2R

∫
∂B1

(n · f)2dS

=
1

2

∫
B1

|∇f |2dx+
3

4R2

∫
B1

|f |2dx− 1 + c

4R

∫
∂B1

|f |2dS +
c

4R

∫
∂B1

|f |2dS

− 3

4R

∫
∂B1

|f |2(R−1ζ − n) · ndS − 3

2R

∫
∂B1

(f · n)f · (n−R−1ζ)dS

− 1

2

∫
∂B1

(n×∇f0) · fdS − 3

2R2

∫
∂B1

(f × ζ) · (n−R−1ζ)f0dS

− 9

4R2

∫
B1

f2
0dx+

3

4R2

∫
∂B1

(ζ · n)f2
0dS.

(69)

Now applying Lemma 3.7 with D = B1 and μ = ζ we get

(1− δ)R

∫
∂B1

|f |2dS ≤ sup
B1

|ζ|2
∫
B1

|∇f |2dx+ 4

∫
B1

|f |2dx

≤ (1 + δ)2R2

∫
B1

|∇f |2dx+ 4

∫
B1

|f |2dx.

It follows that

1

2

∫
B1

|∇f |2dx+ 3

4R2

∫
B1

|f |2dx− 1 + c

4R

∫
∂B1

|f |2dS

≥2− (1 + δ)2(1 + c)(1− δ)−1

4

∫
B1

|∇f |2dx

− (4(1 + c)(1− δ)−1 − 3)(1 + ε)

4R2

∫
B1

|f − ρAV(f)|2dx

− CMρ

R2
(AV(f))2,

where ε > 0 is a small constant to be chosen, and C > 0 is an absolute
constant depending only on c, ε, and δ. Now since by assumption |x−x1| <
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(1+δ)R for all x ∈ B1, the diameter d of B1 satisfies d ≤ 2(1+δ)R. Therefore

applying the Poincaré estimate in Lemma 3.5 to the right-hand side of the

estimate above, and choosing δ, ε, and c sufficiently small we get

1

2

∫
B1

|∇f |2dx+ 3

4R2

∫
B1

|f |2dx− 1 + c

4R

∫
∂B1

|f |2dS ≥ −CMρ

R2
(AV(f))2.

Identity (66) follows from plugging this back into (69) and applying Cauchy-

Schwarz to
∫
∂B1

(n×∇f0) · fdS.
We next prove (67). Note that by the Poincaré estimate in Lemma 3.5∫

B1

|f0|2dx =

∫
B1

|f0 − ρAV(f0) + ρAV(f0)|2dx

≤ 2

∫
B1

|f0 − ρAV(f0)|2dx+ 2ρ2
∫
B1

|AV(f0)|2dx

� R2

∫
B1

|∇f0|2dx+Mρ(AV(f0))
2.

But since f0 is harmonic in B1,∫
B1

|∇f0|2dx =

∫
∂B1

f0∇nf0dS ≤ 1

2R

∫
∂B1

|f0|2dS +
R

2

∫
∂B1

|∇nf0|2dS,

proving (67).

Since a is equal to GM
R2 to leading order (see Lemma 2.8), and u has zero

average in B1, we can use Lemma 3.11 to prove positivity of the energy Ef
for f = u.

We close this section by defining the main energies, motivated by the

discussion above.

Definition 3.12. Let u0 := u and uα := 1
2(I + H∂B1

)Dαu for any multi-

index α with |α| ≥ 1. We then define

Ej :=
∑
|α|=j

E�uα
, and E≤k =

k∑
j=1

Ej ,

where Ef is defined in (59).
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3.2. Estimates on the Center of Mass x1 and Angular

Momentum J

In the next section we pose our bootstrap assumptions in terms of the dis-

tance |x1| between the center of mass of each body to the origin, which is

the center of mass of the entire system. We expect that as long as this dis-

tance is large, the size of x1 and its time derivatives can be approximated by

the corresponding quantities in the motion of point masses. Our goal in this

section is to make this claim rigorous by providing quantitative estimates.

Recall once more the definitions

r1 := |x1|, ξ1 =
x1

|x1|
, η =

R

|x1|
, β =

b

R
.

We also define the angular momentum vector J as

J := x1 × x′
1,

and the velocity v1 as v1 = x′
1 so that

|v1|2 = |x′
1|2 = |r′1|2 +

J2

r21
,(70)

where J = |J|. Recall from Lemma 2.6 that x1 satisfies the ODE

x′′
1 = − 1

|B1|

∫
B1

∇ψ2(t,x)dx = −GMη2

4R2
ξ1 −

1

|B1|

∫
B1

E1(t,x)dx(71)

= −GMx1

4|x1|3
− 1

|B1|

∫
B1

E1(t,x)dx,(72)

where E1 is defined in (36). In the remainder of this section we write

ÃV(E1) :=
1

|B1|

∫
B1

E1(t,x)dx.

It follows from a simple computation that

r′′1 = − GM

4|x1|2
+

|x1 × x′
1|2

|x1|3
− ξ1 · ÃV(E1) = − GM

4|x1|2
+

J2

|x1|3
− ξ1 · ÃV(E1).

(73)
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The point mass energy E1 of x1 is by definition

E1 :=
|v1|2
2

− GM

4r1
,

so

|r′1|2 = 2E1 +
GM

2r1
− J2

r21
.(74)

To be consistent with the assumptions of Theorem 1.1, we write the initial
velocity as

v0 = |x′
1(T0)| = κβ−α

√
GM

R
,

where α ∈ [67 , 1], κ
2β2−2α � 1, and κ−14β14α−12 � 1 (see Remark 1.2)10.

To unify the notation, we introduce the new parameter

c0 := κβ
6

7
−α,

so that c0 � 1 for all choices of α ∈ [67 , 1] and

v0 = c0β
− 6

7

√
GM

R
.

This implies that

J2(T0) = c20β
2

7GMR, 2E1(T0) = c20β
− 12

7
GM

R
− GM

2R1
.(75)

Unlike the point-mass case, the energy E1 and angular momentum J are not
conserved and instead satisfy the evolution laws

J′ = ÃV(E1)× x1,

d

dt
J2 = 2

(
(ÃV(E1) · x1)(x1 · x′

1)− (ÃV(E1) · x′
1)|x1|2

)
,

(76)

and

E ′
1 = −ÃV(E1) · x′

1.(77)

10In practice we first choose κ and then β depending on κ so that both conditions
are satisfied. For instance, when α = 1 we choose κ � 1 and β such that β2 � κ14.
When α = 6

7 we choose κ � 1 and β such that β
2
7 � κ−2.
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In the following proposition we derive estimates on the radial velocity |r′1|.
Since r′1 is initially negative, by continuity, it will remain negative for t close
to T0. It follows that there exists r̃ such that for any T > T0

r(t) ≥ r̃ ∀t ≤ T, implies r′1(t) < 0 ∀t ≤ T.(78)

We define r0 to be the smallest such r̃, that is,

r0 := inf{r̃ s.t. (78) holds},

and let t0, if it exists, be the first time such that r1(t0) = r0. Then by
finding the roots of the quadratic polynomial in r−1

1 in (74) we see that r0,
if it exists, satisfies,

r0 =
4J2(t0)√

G2M2 + 32E1(t0)J2(t0) +GM
,(79)

whenever G2M2 +32E1(t0)J
2(t0) ≥ 0. We prove the estimates on r1 and its

derivative under the mild assumption that the diameter of the second body
B2 is bound by a constant multiple of R. When we apply these estimates in
the proof of energy estimates, the diameter of B2 will in fact be close to 2R
under our bootstrap assumptions.

Proposition 3.13. The following statements hold if a solution to (24) exists
and the diameter of B2 is no larger than 10R.

1. If β is sufficiently large, then for some universal constant C and all
r ≥ r0

GM

C|r1|2
≤ |v′1| ≤

CGM

|r1|2
.(80)

2. If β is sufficiently large, then 3
2c

2
0Rβ

2

7 ≤ r0 ≤ 5
2c

2
0Rβ

2

7 and r′1 satisfies
the following estimates for some universal constant C

1

C

√
GM

R
c0β

− 6

7 ≤ |r′1| ≤ C

√
GM

R
c0β

− 6

7 if r1 ≥ Rc−2
0 β

12

7 ,

1

C

√
GM

R
η

1

2 ≤ |r′1| ≤ C

√
GM

R
η

1

2 if 3Rc20β
2

7 ≤ r1 ≤ Rc−2
0 β

12

7 ,

1

C

√
GM

c20R
β− 2

7

√
r1 − r0 ≤ |r′1| ≤ C

√
GM

c20R
β− 2

7

√
r1 − r0

if r0 < r1 ≤ 4c20Rβ
2

7 .

(81)
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3. If β is sufficiently large, v1 satisfies the following estimates

1

C

√
GM

R
c0β

− 6

7 ≤ |v1| ≤ C

√
GM

R
c0β

− 6

7 if r1 ≥ Rc−2
0 β

12

7 ,

1

C

√
GM

R
η

1

2 ≤ |v1| ≤ C

√
GM

R
η

1

2 if 3c20Rβ
2

7 ≤ r1 ≤ Rc−2
0 β

12

7 ,

c−1
0

C

√
GM

R
β− 1

7 ≤ |v1| ≤ Cc−1
0

√
GM

R
β− 1

7 if r0 < r1 ≤ 4c20Rβ
2

7 .

(82)

Proof. Note that under the assumption on the diameter of B2 and by (36),

there exists a universal constant c such that

|E1| ≤
cGMη4

R2
, ⇒

∣∣∣∣ 1

|B1|

∫
B1

E1(t,x)dx

∣∣∣∣ ≤ cGMη4

R2
.(83)

Combined with (76) and (77) this implies that∣∣∣∣dE1

dt

∣∣∣∣ ≤ cGMη4|v1|
R2

and

∣∣∣∣ ddtJ2

∣∣∣∣ ≤ cGMη4r21|v1|
R2

.(84)

The estimate on |v′1| is a direct consequence of (71) and (83). Next we

prove the estimates on |r′1| and |v1| in the first two stages, that is, when

r ≥ 4Rc20β
2

7 . For this we rewrite (70) and (74) as

|r′1(t)|2 = 2E1(T0) +
GM

2r1(t)
− J2(T0)

r21(t)
+ 2

∫ t

T0

dE1

ds
ds− 1

r21(t)

∫ t

T0

d

ds
J2ds,

(85)

and

|v1(t)|2 = |r′1(t)|2 +
J2(T0)

r21(t)
+

1

r21(t)

∫ t

T0

d

ds
J2ds.(86)

If R1 is sufficiently large, it follows from (75) that the desired estimates

hold at t = T0 with C = 1 + 10−10. Therefore, it suffices to assume that
the estimates on |v1| and |r′1| hold for r1 ≥ c−2

0 β12/7R with C = 20, and

show that the same estimates hold with C = 10. To prove this we show that

the contribution of the time integrals of
∣∣dE1

dt

∣∣ and ∣∣ d
dtJ

2
∣∣ to (85) and (86)

can be estimated. If r1 ≥ Rc−2
0 β

12

7 it follows from (84) and the bootstrap
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assumption on |v1| and |r′1| that∣∣∣∣dE1

dt

∣∣∣∣ � GMη4|r′1|
R2

and

∣∣∣∣ ddtJ2

∣∣∣∣ � GMη4r21|r′1|
R2

,(87)

so ∫ t

T0

∣∣∣∣dE1

dt

∣∣∣∣ dt = ∫ r1(T0)

r1(t)

∣∣∣∣dE1

dt

∣∣∣∣ ∣∣∣∣ dtdr1

∣∣∣∣ dr1 � GMη3

R
� c60GMβ− 36

7

R
,

and similarly ∫ t

T0

∣∣∣∣ ddtJ2

∣∣∣∣ dt � GMRη � c20GMRβ− 12

7 .

If β is sufficiently large these estimates allow us to close the bootstrap as-

sumption in the region r1 ≥ Rc−2
0 β

12

7 . The analysis in the second region

3Rc20β
2

7 ≤ r1 ≤ Rc−2
0 β

12

7 is similar. Indeed, the estimates at r1 = Rc−2
0 β

12

7

are satisfied, because we have already proved the estimates in the first stage

with C = 10. So as in the first stage, we assume that the estimates on |v1|
and |r′1| hold with C = 20 and improve this to C = 15. Since (84) are still

valid in the region region 3Rc20β
2

7 ≤ r1 ≤ Rc−2
0 β

12

7 ,∫ t

T0

∣∣∣∣dE1

dt

∣∣∣∣ dt � GMη3

R
and

∫ t

T0

∣∣∣∣ ddtJ2

∣∣∣∣ dt � GMRη.

It follows that if 3Rc20β
2

7 ≤ r1(t) ≤ Rc−2
0 β

12

7∣∣∣∣∣2E1(t)−
GMc20β

− 9

5

R

∣∣∣∣∣ � GMη3

R
,

c20GMRβ
2

7 − CGMRη ≤ J2(t) ≤ c20GMRβ
2

7 + CGMRη.

(88)

Combining this with (70) and (74) we can close the bootstrap assumption

in the second region. Here we have used the fact that in the second stage

GM(2r1)
−1 − J2(T0)r

−2
1 is positive. For the last part we argue a bit differ-

ently. Since we have already closed the bootstrap assumptions in the second

region, the estimates on |r′1| and |v1| hold at the starting point of the last

region where r1 = 4Rc20β
2

7 . Let t2 be the time at which r1(t2) = 4c20β
2

7R.

We still use a continuity argument by assuming the estimates for |v1| and
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|r′1| in the last region hold with a larger constant. Since the estimates (84)

still hold, for r(t) > r0,∫ t

t2

∣∣∣∣dE1

dt

∣∣∣∣ dt = ∫ r1(t2)

r1(t)

∣∣∣∣dE1

dt

∣∣∣∣ ∣∣∣∣ dtdr1

∣∣∣∣ dr1 � GMc−7
0

R
3

2

∫ r1(t2)

r1(t)

β−1

√
r′ − r0

dr′

� GMc−6
0

R
β− 6

7 � GMη3

R
.

It follows that the estimate on E1 in (88) still holds in the last stage. A

similar argument shows that the estimate on J in (88) also holds in the last

stage. Now we can argue that r0 exists as follows. From (88) and (73), we

see that r′′1 is positive for r1 ∈ [c20β
2/7R, 3c20β

2/7R]. Assume for contradiction

that r′1 does not become zero in finite time. We first show that in this case

r1 must get as small as 3
2c

2
0β

2/7R. If not, then since r′1 is negative, it follows

that r1 will remain in the interval (32c
2
0β

2/7R, 3c20β
2/7R]. But then using (88)

and (73) we conclude that r′′1 has a non-trivial lower bound, contradicting

the fact that r′1 does not vanish in finite time. Let t∗ be the time at which

r1(t∗) =
3
2c

2
0β

2/7R, and t3 the time at which r1(t3) = 3c20β
2/7R. Integrating

the identity

d

dt
|r′1|2 = 2r′1r

′′
1 ,

from t3 to t∗ and using (88) and (73) we conclude that r′1 becomes positive,

which is the desired contradiction. Having proved that r′1 vanishes in finite

time, the formula (79) together with (88) give the desired range for r0.

Next, we rewrite (74) as

|r′1(t)|2 = 2E1(t0) +
GM

2r1(t)
− J2(t0)

r21(t)
+ 2(E1(t)− E1(t0))

− 1

r21(t)
(J2(t)− J2(t0)) = I + II,

where I := 2E1(t0) +
GM
2r1

− J2(t0)
r21(t)

and II := 2(E1(t)− E1(t0))− 1
r21(t)

(J2(t)−
J2(t0)). A simple calculation using (74) and (79) shows that

I =

(
8E1(t0)r1 +GM +

√
G2M2 + 32E1(t0)J2(t0)

4r21

)
|r1 − r0|.
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It follows that

2

Cc40

GM

R2
β− 4

7 |r − r0| ≤ I ≤ C

2c40

GM

R2
β− 4

7 |r − r0|,

so it suffices to show that the contribution of II can be estimated using the
bootstrap assumptions. For this we use (77) and (76) to write

II =
2

r21(t)

∫ t

t0

ÃV(E1)(s) · v1(s)(r21(s)− r21(t))ds

− 2

r21(t)

∫ t

t0

x1(s) · ÃV(E1)(s)r1(s)r
′
1(s)ds.

(89)

For the second term above we use (83) to estimate∣∣∣∣ 2

r21(t)

∫ t

t0

x1(s) · ÃV(E1)(s)r1(s)r
′
1(s)ds

∣∣∣∣ � GMη4

R2
|r − r0|

� GMβ− 8

7

c80R
2

|r − r0|.

To estimate the first term on the right-hand side in (89) we note that since
r1(t) is decreasing for t ≥ t0, we have

|r21(t)− r21(s)| = |r1(t)− r1(s)||r1(t) + r1(s)| ≤ 2r1(t)|r1(t)− r0|.

It follows that under the bootstrap assumptions∣∣∣∣ 2

r21(t)

∫ t

t0

ÃV(E1)(s) · v1(s)(r21(s)− r21(t))ds

∣∣∣∣
� GMη4β− 1

7

c0R
5

2

(∫ r1

r0

dr̃1√
r̃1 − r0

)
|r1 − r0|

� GMβ− 8

7

c80R
2

|r1 − r0|,

which can be controlled if β is sufficiently large. This proves the desired esti-
mates for |r′1|. The estimates on |v1| are simpler and similar to the arguments
in the first two stages. We omit the details.

Finally for future use we record the formulas for v′′1 and r′′′1 in the fol-
lowing lemma.
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Lemma 3.14. x′′′
1 and r′′′1 satisfy

x′′′
1 =− GMv1

4|x1|3
+

3GMx1

4|x1|4
r′1 −

d

dt

(
1

|B1|

∫
B1

E1(t,x)dx

)
,(90)

and

r′′′1 =
GMr′1
2|x1|3

− 3J2r′1
|x1|4

+ 2

((
1

|B1|

∫
B1

E1(t,x)dx

)
· ξ1

)
r′1
|x1|

− 2

(
1

|B1|

∫
B1

E1(t,x)dx

)
· x′

1

|x1|

− ξ1 ·
d

dt

(
1

|B1|

∫
B1

E1(t,x)dx

)
− ξ′1 ·

(
1

|B1|

∫
B1

E1(t,x)dx

)
.

(91)

Proof. These formulas follow by differentiating (71) and (73) and using
(76).

We end this subsection with the following simple consequence of Propo-
sition 3.13 which will be used many times in the remainder of the paper.

Lemma 3.15. Under the assumptions of Proposition 3.13 and for r1 ≥ r0,
the following estimate holds for any m ≥ 1, and some universal constant
C = C(m): ∫ t

T0

ηm+1(s)|v1(s)|ds ≤ CRηm(t).

Proof. We write∫ t

T0

ηm+1(s)|v1(s)|ds =
∫ R1

r1(t)
ηm+1

∣∣∣∣ dsdr1
∣∣∣∣ |v1|dr1.

According to Proposition 3.13 in the first two stages of the evolution, that
is, when r1 ≥ 3c20β

2/7R, |v1| and |r′1| are comparable and the statement of
the lemma follows from the identity above. In the final stage of the evolution
when r1 is between r0 and 3c20β

2/7R we get∫ t

T0

ηm+1(s)|v1(s)|ds

�
∫ R1

3c20β
2/7R

ηm+1dr1 + ηm(t)c−1
0 β− 1

7R
1

2

∫ 3c20β
2/7R

r1(t)

dr1√
r1 − r0

� Rηm(t).
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3.3. Bootstrap Assumptions and Estimates on the Error Terms

In this subsection we estimate various error terms appearing in the equations
for uj , j ≥ 0, in terms of the energies in Definition 3.12. We will do this under
smallness bootstrap assumptions on u. The precise bootstrap assumptions,
which are motivated by the analysis in Section 3.2 and the ODE (21), are
as follows. Suppose T > 0 is such that u(t, p) is a solution of (30) for t ≤ T
and r1(t) ≥ r0 for t ≤ T , and let � ≥ 5 be a fixed integer. We assume that
for some fixed constants C1, all p, q ∈ SR, and all t ≤ T⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R−1‖Dαu(t)‖L2(SR) +
√

R
GM ‖∂tDαu(t)‖L2(SR) ≤ C1η

4(t)|v1(t)|,
|α| ≤ �

1
2 ≤ |ξ(t,p)−ξ(t,q)|

|p−q| ≤ 2, |ξ(t, p)− x1(t)| ≤ 5R, 1
2 ≤ |N |

|/g| ≤ 2

R−1‖Dα(|N ||/g|−1)‖L2(SR) ≤ C1η
3, 1 ≤ |α| ≤ �

R−2‖Dα(ζ −Rn)‖L2(SR) ≤ C1η
3, |α| ≤ �

R
GM

∥∥Dα
(
a− GM

R2

)∥∥
L2(SR)

≤ C1η
3, |α| ≤ �

R−2‖Dαζ‖L2(SR) +R−1‖Dγn‖L2(SR) ≤ C1η
3, 1 ≤ |α| ≤ �+ 1,

1 ≤ |γ| ≤ �

R−2‖Dαh‖L2(SR) +R−1‖Dαμ‖L2(SR) +R‖Dαν‖L2(SR) ≤ C1η
3,

|α| ≤ �

.(92)

Here we recall from (27) and (29) that

μ = 1− R3

|ζ|3 and ν =
|ζ|2 +R|ζ|+R2

|ζ|3(|ζ|+R)
− 3

2R2
.

Before proceeding to the estimates, we observe that by the Sobolev em-
bedding, the bootstrap assumptions (92) imply the simple pointwise bound

‖Dαu(t)‖L∞(SR) � C1η
4(t)|v1(t)|, |α| ≤ �− 2.(93)

We start with the following simple estimate on the expression n×∇f .

Lemma 3.16. Suppose the bootstrap assumptions (92) hold. Then

|n×∇f | � |/dξ||/df | � 1

R

3∑
i=1

|Ωif |.
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Proof. The first estimate is a direct consequence of (62), and the second a

consequence of the first and the fact that, by (92), |/dξ| � 1.

More generally, we have the following estimate on the quadratic form Q.

Lemma 3.17. Suppose the bootstrap assumptions (92) hold. Then

|Q(f, g)| � |/df ||/dg| � 1

R2

(
3∑

i=1

|Ωif |
)(

3∑
i=1

|Ωig|
)
.

Proof. This follows from the same argument as in the proof of Lemma 3.16.

Using Lemma 3.16 we are able to compare L2 norms on SR with L2

norms on ∂B1. For this, we first recall that by equation (40)

∂t
|N |
|/g|

= −|N |
|/g|

n · (n×∇u).(94)

Since limt→T0

|N |
|/g| = 1, we conclude that

|N |
|/g|

− 1 =−
∫ t

T0

|N(s)|
|/g|

n(s) · (n(s)×∇u(s))ds

=−
∫ t

T0

(
|N(s)|
|/g|

− 1

)
n(s) · (n(s)×∇u(s))ds

−
∫ t

T0

n(s) · (n(s)×∇u(s))ds.

(95)

Lemma 3.18. Suppose the bootstrap assumptions (92) hold and β is suffi-

ciently large. Then ∣∣∣∣ |N |
|/g|

− 1

∣∣∣∣ � η3.

Moreover, if f is a function defined on ∂B1 then

3

4
‖f ◦ ξ‖L2(SR) ≤ ‖f‖L2(∂B1) ≤

5

4
‖f ◦ ξ‖L2(SR).
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Proof. The first estimate is a consequence of (93), Lemmas 3.15 and 3.16,
and (95). The second statement follows from writing

‖f‖2L2(∂B1)
=

∫
SR

|f ◦ ξ(p)|2 |N(p)|
|/g(p)|

dS(p)

= ‖f ◦ ξ‖2L2(SR) +

∫
SR

|f ◦ ξ(p)|2
(
|N(p)|
|/g(p)|

− 1

)
dS(p),

and using the bound on
∣∣∣ |N |
|/g| − 1

∣∣∣.
We now state the following important result which allows us to estimate

error terms involving H∂B1
and K∂B1

.

Lemma 3.19. Suppose the bootstrap assumptions (92) hold and that β is
sufficiently large. Then the following estimates hold for any function f de-
fined on ∂B1 and any k ≤ �:

‖DkH∂B1
f‖L2(SR) �

∑
j≤k

‖Djf‖L2(SR),

‖DkK∂B1
f‖L2(SR) + ‖Dk(I +K∂B1

)−1f‖L2(SR) �
∑
j≤k

‖Djf‖L2(SR),

‖Dk−1[D, H∂B1
]f‖L2(SR) + ‖[Dk, H∂B1

]f‖L2(SR) � η3
∑

j≤k−1

‖Djf‖L2(SR),

‖Dk−1[D, n×∇]f‖L2(SR) + ‖[Dk, n×∇]f‖L2(SR) � R−1η3
∑
j≤k

‖Djf‖L2(SR),

‖Dk−1[n×∇, H∂B1
]f‖L2(SR) � R−1η3

∑
j≤k−1

‖Djf‖L2(SR),

‖Dk[∂t, H∂B1
]f‖L2(SR) � R−1η4|v1|

∑
j≤k

‖Djf‖L2(SR),

‖Dk[∂2
t , H∂B1

]f‖L2(SR) �
√

GM

R5
η4|v1|

∑
j≤k

‖Djf‖L2(SR)

+R−1η4|v1|
∑
j≤k

‖∂tDjf‖L2(SR),

‖∇nf‖L2(SR) � ‖n×∇f‖L2(SR) � R−1
∑
j≤1

‖Djf‖L2(SR).

Proof. This is a corollary of Lemmas 2.12, 2.13, 3.16, 3.18, A.4, and A.7,
Corollary B.6, equation (168), Propositions B.2 and B.3, and Theorem A.3.
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Note that the estimate on [Dk, H∂B1
]f follows from the estimate on

Dk−1[D, H∂B1
]f by writing

[Dk, H∂B1
]f

= [D, H∂B1
]Dk−1f +D[D, H∂B1

]Dk−2f + · · ·+Dk−1[D, H∂B1
]f,

and a similar argument can be used to estimate [Dk, n×∇]f .

Recall the definition uα = 1
2(I + H∂B1

)Dαu. As a corollary of Lem-
mas 3.18 and 3.19 we can control the L2(SR) norms of Dαu in terms of the
L2(∂B1) norms of �uα which appear in the energies.

Corollary 3.20. Suppose the bootstrap assumptions (92) hold and that β
is sufficiently large. Then for all |α| ≤ �

‖Dαu‖L2(SR) �
∑

|γ|≤|α|
‖�uγ‖L2(∂B1), and

‖∂tDαu‖L2(SR) �
∑

|γ|≤|α|
‖∂t�uγ‖L2(∂B1).

(96)

Proof. We prove (96) inductively on |α|. If |α| = 0, this follows from the
fact that H∂B1

u = u and u is a vector as well as Lemma 3.18. Assume (96)
holds for all |α| ≤ k ≤ �− 1. We write Dk+1u

Dk+1u =
1

2
(I +H∂B1

)Dk+1u+
1

2
[Dk+1, H∂B1

]u

=�uk+1 +
1

2
Re(I +H)Dk+1u+

1

2
[Dk+1, H∂B1

]u

=�uk+1 −
1

2
Re[Dk+1, H∂B1

]u+
1

2
[Dk+1, H∂B1

]u

=�uk+1 +
1

2
Vec [Dk+1, H∂B1

]u.

Similarly ∂tD
k+1u = ∂t�uk+1 + 1

2Vec ∂t[D
k+1, H∂B1

]u. Estimate (96) for
|α| = k + 1 now follows from Lemmas 3.18 and 3.19 and the induction
hypothesis.

To be able to use Lemma 3.11 to replace the L2 norms on the right-hand
side of (96) by the energies defined in Definition 3.12, we need to show that
the second fundamental form of ∂B1 is positive. This is an easy consequence
of the bootstrap assumptions.
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Lemma 3.21. Suppose the bootstrap assumptions (92) hold and that β is
sufficiently large. Then the second fundamental form of ∂B1 is positive.

Proof. In arbitrary orientation-preserving local coordinates, we need to show
that the eigenvalues of the matrix

M(t) = −
(

1
|ζα|2 ζαα(t) · n(t)

1
|ζα||ζβ |ζαβ(t) · n(t)

1
|ζα||ζβ |ζβα(t) · n(t)

1
|ζβ |2 ζββ(t) · n(t)

)

are positive. Note that since ∂B1 at time t = T0 is the round sphere SR,
the eigenvalues of M(T0) are both equal to R−1. Now the positivity of the
eigenvalues of M(t) follow from writing

M(t) = M(T0) +

∫ t

T0

dM(s)

ds
ds,

and using the bootstrap assumptions and equation (40).

We are now in the position to estimate the L2 norms of Dku and ∂tD
ku

in terms of the energies in Definition 3.12.

Proposition 3.22. Suppose the bootstrap assumptions (92) hold and that
β is sufficiently large. Let E≤k be as defined in Definition 3.12. Then for for
all 3 ≤ k ≤ �∑

j≤k

(
R−1‖Dju‖2L2(SR) + (GM)−1R2‖∂tDju‖2L2(SR)

)
� E≤k.

Proof. Note that since under the bootstrap assumptions a � GM
R2 from

Lemma 3.18 we have∑
j≤k

‖∂tDju‖2L2(SR) �
∑
j≤k

∫
∂B1

|∂t�uj |2dS � GM

R2

∑
j≤k

∫
∂B1

|∂t�uj |2
a

dS.

Therefore to prove the proposition it suffices to show that

1

R

∑
j≤k

‖Dju‖2L2(SR) �
∑
j≤k

E0
j ,(97)

where

E0
j :=

1

2

∫
∂B1

(n×∇�uj) · �ujdS +
GM

2R3

∫
∂B1

|�uj |2
a

dS − 3GM

2R3

∫
∂B1

(n · �uj)2
a

dS.
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By the bootstrap assumptions (92) it suffices to prove (97) with E0
j replaced

by E1
j , where

E1
j :=

1

2

∫
∂B1

(n×∇�uj) · �ujdS +
1

2R

∫
∂B1

|�uj |2dS − 3

2R

∫
∂B1

(n · �uj)2dS.

Indeed, using the bootstrap assumptions on a− GM
R2 the difference between

E0
j and E1

j can be absorbed into the left-hand side of (97). By Lemma 3.21
the second fundamental form of ∂B1 is positive. Therefore by Lemma 3.11
and with the same notation,

E1
j ≥ c

4R

∫
∂B1

|�uj |2dS − C

R

∫
∂B1

(�uj · n)�uj · (n−R−1ζ)dS

− C

R

∫
∂B1

|�uj |2(R−1ζ − n) · ndS − C

R2

∫
∂B1

(�uj × ζ) · (n−R−1ζ )̊ujdS

− C

R2

∫
B1

|̊uj |2dx− CMρ

R2
|AV(�uj)|2 +

C

R2

∫
∂B1

|ζ · n||̊uj |2dS

− CR

∫
∂B1

|n×∇ůj |2dS.

Using the bootstrap assumptions we conclude that

1

R

∑
j≤k

‖Dju‖2L2(SR) �
∑
j≤k

E1
j +

∑
j≤k

(
C

R2

∫
B1

|̊uj |2dx+
CMρ

R2
|AV(�uj)|2

)
+

∑
j≤k

C

R

∫
∂B1

|̊uj |2dS +
∑
j≤k

CR

∫
∂B1

|n×∇ůj |2dS.

Now by equation (67), we have∫
B1

|ůj |2dx ≤ CR

∫
∂B1

|̊uj |2dS + CR3

∫
∂B1

|∇nůj |2dS + CMρ(AV(ůj))
2.

For the average AV(ůj)
2, we use Lemma 3.9. Taking real parts on both sides

of (64) and using the bootstrap assumptions (92) we have

(AV(ůj))
2 � R4

M2

∫
∂B1

|̊uj |2dS +
η6R4

M2

∑
j≤k

‖Dju‖2L2(SR),

CMρ

R2
(AV(ůj))

2 � 1

R

∫
∂B1

|̊uj |2dS +
η6

R

∑
j≤k

‖Dju‖2L2(SR).
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Taking vector parts on both sides of (64) and using bootstrap assumptions

(92) as well as (65) inductively, we have

CMρ

R2
(AV(�uj))

2 � Cρ

M

(∫
∂B1

�ujdS

)2

� η(t)6

R

∑
l≤j

∫
∂B1

|�ul|2dS +
η6

R

∑
j≤k

‖Dju‖2L2(SR),

which, by the bootstrap assumptions and the argument in Remark 3.10, can

be absorbed by the left hand side 1
R

∑
j≤k ‖Dju‖2L2(SR). So we get

1

R

∑
j≤k

‖Dju‖2L2(SR)

�
∑
j≤k

E1
j

+
∑
j≤k

(
C

R

∫
∂B1

|̊uj |2dS + CR

∫
∂B1

|∇nůj |2dS + CR

∫
∂B1

|n×∇ůj |2dS
)
.

Since Dju is a vector, ůj = −1
2Re[D

j , H∂B1
]u. So using Lemma 3.19 we

conclude that

1

R

∑
j≤k

‖Dju‖2L2(SR) �
∑
j≤k

E1
j .

Using Proposition 3.22, we can now estimate the quantities h, μ, ν,

Dζ, Dn, D(|N ||/g|−1 − 1), Rn− ζ, and a − GM
R2 appearing in the bootstrap

assumptions (92) in terms of the energies Ej . We will also derive a simple

estimate for nt and ∂t(I − H∂B1
)�uk, where uk := 1

2(I + H∂B1
)Dku, which

appear in the energy identity (63). Note that since nt appears only in the

energy identity (63) and not in the nonlinearity in the equation (30) for u,

we do not need to estimates the higher derivatives of nt. Also note that in

(99) and (103) below we do not estimate the top order derivatives yet. We

will consider the top order derivatives later, after estimating |N |∂t(a|N |−1)

in Proposition 3.25.

Proposition 3.23. Suppose that the bootstrap assumptions (92) hold and

that β is sufficiently large. Let uk := 1
2(I+H∂B1

)Dku. Then for all 3 ≤ k ≤ �
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and some universal constant C

∑
j≤k

‖Dj(ζ −Rn)‖L2(SR) ≤ CR
1

2

∫ t

T0

E
1

2

≤k(s)ds+ C
R2

√
GM

E
1

2

≤k + 20R2η3,

(98)

∑
1≤j≤k

‖Djζ‖L2(SR) ≤ CR
1

2

∫ t

T0

E
1

2

≤k(s)ds,

(99)

∑
1≤j≤k

‖Djn‖L2(SR) ≤ CR− 1

2

∫ t

T0

E
1

2

≤k(s)ds+ C
R√
GM

E
1

2

≤k + 30Rη3,

(100)

∑
j≤k

‖Djh‖L2(SR) +R
∑
j≤k

‖Djμ‖L2(SR) +R3
∑
j≤k

‖Djν‖L2(SR)

(101)

≤ CR
1

2

∫ t

T0

E
1

2

≤k(s)ds,

∑
j≤k

‖Dj
(
a−GMR−2

)
‖L2(SR)

(102)

≤ C
GM

R
5

2

∫ t

T0

E
1

2

≤k(s)ds+ C

√
GM

R
E

1

2

≤k +
10GMη3

R
,

∑
j≤k−1

‖Dj(|N ||/g|−1 − 1)‖L2(SR) ≤ CR− 1

2

∫ t

T0

E
1

2

≤k(s)ds,

(103)

‖nt‖L2(SR) ≤ CR− 1

2E
1

2

≤3,

(104)

‖∂t(I −H∂B1
)�uk‖L2(SR) ≤ C

(√
GM

R
η3 +R− 1

2 η4|v1|
)
E

1

2

≤k.

(105)

Proof. We start with the estimates for h. Note that ∂th = u·ζ
|ζ| so |∂th| = |u|.

Since h(T0) = 0, we have

|h(t)| ≤
∫ t

T0

|u(s)|ds.



On tidal energy in Newtonian two-body motion 535

It follows that

‖h‖L2(SR) ≤
∫ t

T0

‖u(s)‖L2(SR)ds.

The desired estimate for ‖h‖L2(SR) now follows from Proposition 3.22 and
Lemma 3.15. The estimates for the derivatives of h follow similarly by dif-
ferentiating ∂th = u·ζ

|ζ| and using the bootstrap assumptions. For μ and ν we

argue exactly the same way using the fact that μ(T0) = ν(T0) = 0. To esti-
mate the higher derivatives of ζ, first note that Dαζ(T0) = 0 for all |α| ≥ 1.
It then follows that

Dαζ(t) =

∫ t

T0

Dαu(s)ds,

and the estimates on ‖Dαζ‖L2(SR) follow from the assumptions (92) and

Proposition 3.22. We next turn to a − GM
R2 for which we use equation (44)

from Lemma 2.8. First note that in view of (35) and Lemma 2.6, under the
bootstrap assumptions (92) and if β is sufficiently large, we have

∑
j≤k

‖Dj(∇ψ2 + x′′
1)‖L2(SR) ≤

GMη3

R
.(106)

Since we have already proved (99) and (101), we can use (44) together with
Proposition 3.22, the bootstrap assumptions (92), and Lemmas 2.4 and 2.6
to establish (102). Here (I + H∂B1

)ζ can be estimated by observing that
(I + H∂B1

)ζ = (I + H∂B1
)(ζμ) and using equation (101) and Lemma 3.19.

We can now use (102) to prove (98). The argument is similar to the one
used to prove (102), but we now use (45) instead of (44), and use (102) to
estimate the term involving a− GM

R2 in (45). Estimate (100) now follows from
(98) and (99). Estimate (103) follows from differentiating equation (95) and
using Lemma 3.16 and Proposition 3.22. For (104) we use (40) to get

nt = −n×∇u+ (n · (n×∇u))n,

and use Proposition 3.22 and the bootstrap assumptions (92). Finally for
(105) we note that since ReDku = 0

∂t(I −H∂B1
)�uk

= −1

2
∂t(I −H∂B1

)Re(I +H∂B1
)Dku =

1

2
∂t(I −H∂B1

)Re[Dk, H∂B1
]u
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=
1

2
(I −H∂B1

)Re∂t[D
k, H∂B1

]u− 1

2
[∂t, H∂B1

]Re[Dk, H∂B1
]u

= −1

2
(I −H∂B1

)Re
{
[∂t, H∂B1

]Dku+ [H∂B1
,Dk]∂tu+Dk[H∂B1

, ∂t]u
}

− 1

2
[∂t, H∂B1

]Re[Dk, H∂B1
]u.

The estimate (105) now follows from the bootstrap assumptions (92), Lemma

3.19, and Proposition 3.22.

To estimate the nonlinearity in equation (30) we still need to estimate

|N |∂t(a|N |−1) in terms of the energies. For this we will use the expression

(43) derived for |N |∂t(a|N |−1) in Proposition 2.7. However, to estimate the

derivatives of this expression we need to compute the commutator of (I +

K∗
∂B1

)−1 and D. The same argument used in Lemma 2.13 to derive (55)

gives

[D, (I +K∗
∂B1

)−1]f = −(I +K∗
∂B1

)−1[D,K∗
∂B1

](I +K∗
∂B1

)−1f.

The commutator [D,K∗
∂B1

] can now be computed using the fact that K∂B1
−

K∗
∂B1

is small. That is, we rewrite the identity above as

[D, (I +K∗
∂B1

)−1]f =− (I +K∗
∂B1

)−1[D,K∂B1
](I +K∗

∂B1
)−1f

− (I +K∗
∂B1

)−1[D,K∗
∂B1

−K∂B1
](I +K∗

∂B1
)−1f.

(107)

A precise expression for the differenceK∗
∂B1

−K∂B1
can be obtained by taking

the real part of identity (108) in the following lemma, where we compute

H∂B1
−H∗

∂B1
which also appears in the energy identity (63).

Lemma 3.24. For any Clifford-algebra valued function f we have

(H∗
∂B1

−H∂B1
)f =

p.v.

2πR

∫
∂B1

(|ζ ′|2 −R2)− (|ζ|2 −R2)

|ξ′ − ξ|3 f ′dS′

− (n−R−1ζ)
p.v.

2π

∫
∂B1

K(ξ′ − ξ)f ′dS′

− p.v.

2π

∫
∂B1

K(ξ′ − ξ)(n′ −R−1ζ ′)f ′dS′.

(108)

Moreover, if the bootstrap assumptions (92) hold and β is sufficiently large
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then for any k ≤ �

‖Dk(H∂B1
−H∗

∂B1
)f‖L2(SR) � η3

∑
j≤k

‖Djf‖L2(SR)(109)

Proof. By definition H∗
∂B1

= nH∂B1
n so with K = K(ξ′ − ξ)

H∗
∂B1

f = n p.v.

∫
∂B1

Kn′n′f ′dS′ = −p.v.

∫
∂B1

nKf ′dS′

= H∂B1
f − p.v.

∫
∂B1

(nK +Kn′)f ′dS′.

Identity (108) follows by observing that

nK +Kn′ =(n−R−1ζ)K +K(n′ −R−1ζ ′) +R−1(ζK +Kζ ′)

=(n−R−1ζ)K +K(n′ −R−1ζ ′) +
1

2πR

|ζ|2 − |ζ ′|2
|ζ ′ − ζ|3 .

The proof of estimate (109) using (108) uses Propositions B.2 and B.3 and
Corollary B.6 as in the proof of Lemma 3.19.

We can now estimate |N |∂t(a|N |−1).

Proposition 3.25. Suppose the bootstrap assumptions (92) hold and that
β is sufficiently large. Then for any 3 ≤ k ≤ � (the implicit constant below
depends on C1 in (92))∑

j≤k

‖Dj(|N |∂t(a|N |−1))‖L2(SR) � GM

R
5

2

η3E
1

2

≤k.

Proof. This proposition follows from differentiating equation (43) and ap-
plying the estimates in Lemma 3.19, Propositions 3.22, Propositions B.2,
and B.3, Corollary B.6, and the bootstrap assumptions (92). To estimate
the contribution of ∇ψ2+x′′

1 we use (106), and to commute derivatives with
(I +K∗

∂B1
)−1 we also use (107) and Lemma 3.24.

Finally we use Proposition 3.25 to estimate one more derivative in (99)
and (103).

Corollary 3.26. Under the assumptions of Propositions 3.23 and 3.25,

‖D�+1ζ‖L2(SR) +R‖D�(|N |−1|/g| − 1)‖L2(SR) ≤ CR
1

2

∫ t

T0

E
1

2

≤�(s)ds.
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Proof. We first estimate D�(|/g||N |−1). Note that in view of (92) and (102)

it suffices to show that

‖D�(a|/g||N |−1)‖L2(SR) ≤ C
GM

R
5

2

∫ t

T0

E
1

2

≤�(s)ds.

But this follows from the identity

∂tD
�(a|/g||N |−1) = D�

(
|N |−1|/g| |N |∂t(a|N |−1)

)
=

∑
k≤�

ck,�D
k(|/g||N |−1)D�−k(|N |∂t(a|N |−1)),

where ck,� are some constants, combined with (92) and Propositions 3.23

and 3.25. Next, to estimate D�+1ζ we first note that

n×∇ζ =
1

|N |(ζβζα − ζαζβ) = −2n.

It follows that

n×∇D�ζ = −[D�, n×∇]ζ − 2D�n.(110)

Now using (51) we write

[D�, n×∇]ζ

= [D�−1, n×∇]Dζ +D�−1[D, n×∇]ζ

= [D�−1, n×∇]Dζ

+D�−1

(
1

|N | ((∂β(Dζ))ζα − (∂α(Dζ))ζβ)−
Ω(|N ||/g|−1)

|N ||/g|−1
n×∇ζ

)

=:
1

|N |
(
(∂β(D

�ζ))ζα − (∂α(D
�ζ))ζβ

)
+ I,

where I consists of terms which are lower order in regularity, or which can

be absorbed using the bootstrap assumptions (92), and the fact that we

have already estimated D�(|N ||/g|−1). Combining with (110) and using the

coordinate expression for n×∇D�ζ we get

2

|N |
(
ζβ × ∂α(D

�ζ)− ζα × ∂β(D
�ζ)

)
= −I − 2D�n,(111)
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Note that D�ζ = 1
2Vec (I −H∂B1

)D�ζ + 1
2Vec (I +H∂B1

)D�ζ. Since

ζα × ∂βVec (I −H∂B1
)D�ζ − ζβ × ∂αVec (I −H∂B1

)D�ζ

= ζα∂βVec (I −H∂B1
)D�ζ − ζβ∂αVec (I −H∂B1

)D�ζ

+ ζα · ∂βVec (I −H∂B1
)D�ζ − ζβ · ∂αVec (I −H∂B1

)D�ζ,

and using a similar computation for (I +H∂B1
)D�ζ, we get

1

|N |(ζβ × ∂αD
�ζ − ζα × ∂βD

�ζ)

= n×∇D�ζ

+
1

2|N |
(
ζα · ∂βVec (I −H∂B1

)D�ζ − ζβ · ∂αVec (I −H∂B1
)D�ζ

)
+

1

2|N |
(
ζα · ∂βVec (I +H∂B1

)D�ζ − ζβ · ∂αVec (I +H∂B1
)D�ζ

)
.

Now by (162) applied to B1 and Bc
1,

1

2|N |
(
ζα · ∂βVec (I −H∂B1

)D�ζ − ζβ · ∂αVec (I −H∂B1
)D�ζ

)
= ∇out

n

Re

2
(I −H∂B1

)D�ζ,

1

2|N |
(
ζα · ∂βVec (I +H∂B1

)D�ζ − ζβ · ∂αVec (I +H∂B1
)D�ζ

)
= ∇in

n

Re

2
(I +H∂B1

)D�ζ,

where ∇out
n and ∇in

n are the Dirichlet-Neumann maps for Bc
1 and B1, respec-

tively, both with respect to the exterior normal n to B1. Moreover, since
H∂B1

ζ is a pure vector (see (34)),

Re(I −H∂B1
)D�ζ = Re[D�, H∂B1

]ζ and

Re(I +H∂B1
)D�ζ = −Re[D�, H∂B1

]ζ,

which shows that the real parts Re(I −H∂B1
)D�ζ and Re(I +H∂B1

)D�ζ are
lower order with respect to regularity compared to D�ζ, so

1

|N |(ζβ × ∂αD
�ζ − ζα × ∂βD

�ζ) = n×∇D�ζ + II.(112)
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where II is lower order with respect to regularity compared to D�+1ζ. Next
we write

n×∇D�ζ =
1

|/g|
(
ζβ(0)∂αD

�ζ − ζα(0)∂βD
�ζ
)
+ III,

where III denotes the error which can be absorbed using the bootstrap
assumptions (92). Since ζ(0) : SR → SR is the identity map, combined
with (112) this gives us control of /∇D�ζ where /∇ is the intrinsic covariant
differentiation operator on SR, which in turn gives us control of D�+1ζ.

3.4. Closing the Energy Estimates

In this section we use the results in Sections 3.1, 3.2, and 3.3 to close the
energy estimates for equation (30). More precisely, our goal is to prove the
following result, where we use the notation introduced in Sections 3.1, 3.2,
and 3.3.

Proposition 3.27. Let � ≥ 5 be a fixed integer, and suppose β is sufficiently
large. There exists a constant C0 such that if u is a solution to (30) on [T0, T )
and r1(t) ≥ r0 for all t ∈ [T0, T ), then

E≤�(t) ≤ C0Rη8(t)|v1(t)|2, t ∈ [T0, T ).(113)

Moreover, there exists a constant C1 > 0 such that the estimates (92) are
satisfied for all t ∈ [T0, T ).

The existence of a solution up to the point of closest approach r0 is an
immediate corollary of Proposition 3.27 and the local well-posendess result
in [12].

Corollary 3.28. If t0 is the time at which r(t0) = r0 then the solution to
(24) remains regular for t ≤ t0.

Proof. By the local well-posedness result of [11, 12]11 the solution exists
locally in time starting at t = T0. By Proposition 3.27 the higher order
derivatives of the solution and the Lipschitz constant of the boundary remain
bounded as long as r < r0, so referring back to [11, 12] the solution can be
extended to t = t0.

11See also [2] where the local well-posedness in dimension two and in the irro-
tational case was derived in a set up more similar to the one used here. The local
well-posedness proof of [2] can also be extended to three dimensions as in [16].
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The proof of Proposition 3.27 uses the energy identity (63), where we

will treat the contributions from the source term ∂tF and the rest of the

terms, to which we refer as “error terms”, separately. To understand the

contribution of the source term we use the analysis from Section 3.2, and

for the error terms we use the estimates in Section 3.3.

Proof of Proposition 3.27. We divide the proof into several steps.

Step 1. Since Ej(T0) = 0 for all j, the estimate (113) is trivially satisfied

at t = T0 for any choice of C0. Given C0 (to be chosen later) we let T1 be

the largest time in [T0, T ] such that

E≤�(t) ≤
1

2
C0Rη8(t)|v1(t)|2, t ∈ [T0, T1).(114)

For another constant C1 to be fixed later, we let T2 be the largest time

in [T0, T ] such that the bootstrap assumptions (92) are satisfied for all t ∈
[T0, T2). Note that since the assumptions (92) are trivially satisfied at t = T0,

we have T2 > T0.

Step 2. We claim that if C1 and β are chosen sufficiently large, then

T1 ≤ T2. Assume for contradiction that T2 < T1. Let β be so large that the

results in Section 3.3 hold. By Propositions 3.22, if C1 is chosen sufficiently

large relative to C0, then the estimates on ‖Dku‖L2(SR) and ‖∂tDku‖L2(SR)

in (92) hold with C1 replaced by C1/2 for t < T2. We will now use Proposi-

tion 3.23 and Corollary 3.26 to show that the remaining conditions in (92)

also hold with C1 replaced by C1/2 for t < T2, which is a contradiction. Let

β so large that the conclusions of Proposition 3.13 hold. Then by (114) and

Lemma 3.15, ∫ t

T0

E
1

2

≤�(s)ds � C
1

2

0 R
3

2 η3(t).

It follows from Proposition 3.23 and Corollary 3.26 that if C1 is chosen

sufficiently large relative to C0 then the bootstrap assumption on h, μ, ν,

Dζ, Dn, ζ −Rn, a− GM
R2 , and |N ||/g|−1− 1 are satisfied with C1 replaced by

C1/2 for t < T2. Note that the estimate on |ζ| = |ξ − x1| with 5R replaced

by 3R follows from the estimate on h if β is sufficiently large. Similarly

if β is sufficiently large the estimates on |N ||/g|−1 − 1 imply the estimate
2
3 ≤ |N |

|/g|−1 ≤ 3
2 . Finally to show that 2

3 ≤ |ξ(p)−ξ(q)|
|p−q| ≤ 3

2 , we consider the map

ζ : SR → ∂B1 and derive a pointwise estimate on the differential of ζ with

respect to p ∈ SR, which we denote by dζ. To estimate dζ we view ζ as a
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map to all of R3 and identify the tangent space of R3 with R3. Note that

ζ(t, p) = ζ(0, p) +

∫ t

T0

ζt(t
′, p)dt′ = p+

∫ t

T0

ζt(t
′, p)dt′,

⇒ dζ(t, p) = ι+

∫ t

T0

dζt(t
′, p)dt′,

where ι is the inclusion of the tangent space TpSR into R3. Using the fact that

|dζt| � R−1
(∑3

i=1 |Ωiζt|2
) 1

2

, Proposition 3.22, and the Sobolev inequality,

we have ∣∣∣∣∫ t

T0

dζt(t
′, p)dt′

∣∣∣∣ � η(t)3.

So the differential dζ is a small perturbation of the inclusion map. It follows
that, viewed as a map from TpST to Tζ(p)∂B1, dζ(p) has norm close to one.
By the Inverse Function Theorem, as a map from SR to ∂B1, ζ has an
inverse and the differential of its inverse also has norm close to one. Using
the mean value theorem for both ζ and its inverse, the desired estimate for
|ξ(p)−ξ(q)|

|p−q| = |ζ(p)−ζ(q)|
|p−q| follows.

Step 3. In this and the next step we show that if β and C0 are suffi-
ciently large, then T1 = T . We will do this by showing that of β and C0 are
sufficiently large, then

E≤�(t) ≤
1

4
C0Rη8(t)|v1(t)|2, t ∈ [T0, T1).(115)

Note that since we have already shown that T1 ≤ T2, we may assume that
the bootstrap assumptions (92) hold for all t < T1. Moreover, by taking β
sufficiently large we may assume that the conclusions of Propositions 3.22
and 3.23 hold for all t ≤ T1. We treat the contribution of the source term
Ft to the energy identity (63) in this step, and leave the error terms to the
following step. More precisely, we consider the contribution of

I :=
R2

GM
〈∂tDkF, ∂t�uk〉(116)

to the energy identity (63), where we have replaced a by its leading order
contribution GM

R2 , and where the source term F is defined in (31). We will
show that if β is large enough, then∣∣∣∣∫ t

T0

I(s)ds

∣∣∣∣ � C
1

2

0 Rη8(t)|v1(t)|2.(117)
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Note that if C0 is sufficiently large, then the right-hand side above is bounded

by C0η8(t)|v1(t)|2
100 . Writing

I =
R2

GM
∂t〈∂tDkF, �uk〉 −

R2

GM
〈∂2

tD
kF, �uk〉,

for any t < T gives∫ t

T0

I(s)ds =
R2

GM
〈∂tDkF (t), �uk(t)〉 −

R2

GM

∫ t

T0

〈∂2
sD

kF (s), �uk(s)〉ds

=:I1 + I2.

(118)

Using the results from Sections 3.2 and 3.3, we will obtain estimates on ∂tF
and ∂2

t F . Direct differentiation of (31) gives

∂tF =− 3GMη4r′1
8R4

(ζ − 3(ζ · ξ1)ξ1) +
GMη3

8R3
(u− 3(u · ξ1)ξ1 − 3(ζ · ξ′1)ξ1

− 3(ζ · ξ1)ξ′1),

and

∂2
t F = −3GMη4r′1

4R4
(u− 3(u · ξ1)ξ1 − 3(ζ · ξ′1)ξ1 − 3(ζ · ξ1)ξ′1)

+
GMη3

8R3

(
ut − 3(ut · ξ1)ξ1 − 3(ζ · ξ′′1)ξ1 − 3(ζ · ξ1)ξ′′1

− 6(u · ξ′1)ξ1 − 6(u · ξ1)ξ′1 − 6(ζ · ξ′1)ξ′1
)

+
3GMη5(r′1)

2

2R5
(ζ − 3(ζ · ξ1)ξ1)−

3GMη4r′′1
8R4

(ζ − 3(ζ · ξ1)ξ1).

Also

ξ′1 =
v1
r1

− r′1
r1
ξ1,

ξ′′1 = −2r′1v1
r21

+
v′1
r1

− r′′1ξ1
r1

+
2(r′1)

2ξ1
r21

,

r′′1 = v′1 · ξ1 +
|v1|2
r1

− (v1 · ξ1)2
r1

.

Differentiating these relations using D and combining with Proposition 3.13
and the bootstrap assumptions (92) we conclude that
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∑
j≤k

‖Dj∂tF (t)‖L2(SR)

� GMη3(t)

R3

∑
j≤k

‖Dju(t)‖L2(SR) +
GMη4(t)|r′1(t)|

R2
+

GMη4(t)|v1(t)|
R2

� GMη3(t)

R3

∑
j≤k

‖Dju(t)‖L2(SR) +
GMη4(t)|v1(t)|

R2
,

(119)

and

∑
j≤k

‖Dj∂2
t F (t)‖L2(SR)

� GMη3(t)

R3

∑
j≤k

‖∂tDju(t)‖L2(SR)

+
GMη4(t)(|r′1(t)|+ |v1(t)|)

R4

∑
j≤k

‖Dju(t)‖L2(SR)

+
GMη5(|v1|2 + |r′1|2)

R3
+

GMη4|v′1|
R2

� GMη3(t)

R3

∑
j≤k

‖∂tDju(t)‖L2(SR) +
GMη4(t)|v1(t)|

R4

∑
j≤k

‖Dju(t)‖L2(SR)

+
GMη5|v1|2

R3
+

G2M2η6

R4
.

(120)

Plugging (119) back into (118) and using (114) and Proposition 3.22 we get

|I1| �η3(t)R−1
∑
j≤k

‖Dju(t)‖2L2(SR) + η4(t)|v1(t)|
∑
j≤k

‖Dju(t)‖L2(SR)

�C0Rη11(t)|v1(t)|2 + C
1

2

0 Rη8(t)|v1(t)|2 � C
1

2

0 Rη8(t)|v1(t)|2,

where the last step follows if β is sufficiently large. We next turn to I2 in
(118). By repeated applications of Proposition 3.22, (120), and (114) we get

R2

GM
〈∂2

tD
kF (s), �uk(s)〉 �C0

√
GM

R
η11(s)|v1(s)|2 + C0η

12(s)|v1(s)|3

+ C
1

2

0 η
9(s)|v1(s)|3 +

GMC
1

2

0

R
η10(s)|v1(s)|.

(121)
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Now using Proposition 3.13 and Lemma 3.15 we conclude that if β is suffi-
ciently large, then

|I2(t)| � C
1

2

0 Rη8(t)|v1(t)|2.(122)

Since |v1| has higher powers in (121) compared to Lemma 3.15, we carry
out this computation for the last two terms on the right hand side of (121),

C
1

2

0 η
9(s)|v1(s)|3 and GMC

1
2
0

R η(s)10|v1(s)|. Note that if β > 0 is large enough,
the first term on the right had side of (121) is smaller than the last term
and second term is smaller than the third term. Let

I2,3 := C
1

2

0

∫ R1

r1(t)
η9(s)|v1(s)|3

∣∣∣∣ dsdr1
∣∣∣∣ dr1.

We consider three different cases according to Proposition 3.13 depending
on the value of r1(t). If r1 ≥ c−2

0 Rβ
12

7 then

I2,3 � GMc20C
1

2

0 β
− 12

7

R

∫ ∞

r1(t)
η9(r)dr � C

1

2

0 Rη8(r1)|v1(r1)|2.

Next, using this estimate, if r1 ∈ [3c20Rβ
2

7 , c−2
0 Rβ

12

7 ], then

I2,3 �C
1

2

0 Rη8(c−2
0 Rβ

12

7 )|v1(c−2
0 Rβ

12

7 )|2 + GMC
1

2

0

R

∫ c−2
0 Rβ

12
7

r1

η10(r)dr

�C
1

2

0 Rη8(r1)|v1(r1)|2 + C
1

2

0 Rη8(r1)
GM

R
η(r1) � C

1

2

0 Rη8(r1)|v1(r1)|2.

Finally, using this estimate, if r1 ∈ (r0, 4c
2
0Rβ

2

7 ], then

I2,3 �C
1

2

0 Rη8(4c20Rβ
2

7 )|v1(4c20Rβ
2

7 )|2 + GMc−19
0 C

1

2

0

R
1

2

β− 19

7

∫ 4c20Rβ
2
7

r1

dr√
r − r0

�C
1

2

0 Rη8(r1)|v1(r1)|2 + C
1

2

0 Rc−16
0 β− 16

7
GMc−2

0

R
β− 2

7

�C
1

2

0 Rη8(r1)|v1(r1)|2,

completing the estimate for I2,3. The estimate for

I2,4 :=
GMC

1

2

0

R

∫ r(T0)

r1(t)
η10(s)|v1(s)|

∣∣∣∣ dsdr1
∣∣∣∣ dr1.
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follows from the one for I2,3 and the observation that, in view of (82),
|η| � (GM)−1R|v1|2. This completes the proof of (117).

Step 4. Let I be as defined in (116), and let II be defined according to
the relations (63) and

dEk
dt

=: II − I.

We will show that if β is sufficiently large then∣∣∣∣∫ t

T0

II(s)ds

∣∣∣∣ ≤ 1

100
C0Rη8(t)|v1(t)|2.(123)

Combined with (117) this will complete the proof of (115) and hence of the
proposition. We divide the terms in II into several groups. Let g̃k be as
defined in Corollary 2.15, and set

II1 := 〈g̃k,
∂t�uk
a

〉+ I,

II2 :=
1

2

〈
1

|N |∂t
(
|N |
a

)
∂t�uk, ∂t�uk

〉
+

GM

2R3

〈
1

|N |∂t
(
|N |
a

)
�uk, �uk

〉
+

3GM

2R3

〈
1

|N |∂t
(
|N |
a

)
�uk · n, �uk · n

〉
,

II3 :=
3GM

R3

〈
a−1�uk · n, �uk · nt

〉
,

II4 := −3GM

2R3
〈(n · �uk)n, (H∗

∂B1
−H∂B1

)(a−1∂t�uk)〉,

II5 :=
3GM

2R3
〈(n · �uk)n, a−1∂t(I −H∂B1

)�uk〉,

II6 := −3GM

2R3
〈(n · �uk)n, [H∂B1

, a−1∂t]�uk〉 −
1

2
〈 �Q(u, �uk), �uk〉.

The first term II1 contains the error terms from the nonlinearity in the
equation (57) for �uk and the remaining terms II2, . . . , II6 contain the other
error terms arising in the energy identity (63). Using the bootstrap assump-
tions (92) and (114), Propositions 3.22, 3.23, and 3.25, Corollary 3.26, and
Lemmas 3.24 and Lemma B.1 we get (with constants possibly depending on
C1)

|II2| � R−1η7|v1|E≤k � C0η
15|v1|3,

|II3| � R− 3

2E
1

2

≤3E≤k � C
3

2

0 η
12|v1|3,
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|II4| �
√

GM

R
R−1η3E≤k � C0

√
GM

R
η11|v1|2,

|II5| �
√

GM

R
R−1η3E≤k +R−1η4|v1|E≤k � C0

√
GM

R
η11|v1|2 + C0η

12|v1|3,

|II6| � R−1η4|v1|E≤k � C0η
12|v1|3.

Arguing as in the proof of (122) we conclude that if β is sufficiently large

(depending on C0 and C1), then

6∑
j=2

∫ t

T0

|IIj(s)|ds ≤
1

300
C0Rη8(t)|v1(t)|2.(124)

We now turn to the error terms form the nonlinearity in II1. Let g0 be as

defined in Corollary 2.15, that is, in the notation of Proposition 2.2,

g0 = −∂tF − ∂tE1 + ∂t

(
1

|B1|

∫
B1

E1(t,x)dx

)
+ E2 + ∂t

(
a

|N |

)
N.

Repeated applications of Lemma 3.19, Propositions 3.22 and 3.23, and Corol-

lary 3.26 give

∑
0≤j≤k

‖g̃j −Djg0‖L2(SR) �GM

R
5

2

η3E
1

2

≤k +

√
GM

R2
η4|v1|E

1

2

≤k

+
GM

R
7

2

η4|v1|
∫ t

T0

E
1

2

≤k(s)ds+
GM

R2
η7|v1|

�C
1

2

0 GM

R2
η7|v1|+

√
GMC0

R
3

2

η8|v1|2.

Here to estimate the term [∂2
t , [D

k, H∂B1
]]u we have used the fact that

[∂2
t , [D

k, H∂B1
]]u = Dk[∂2

t , H∂B1
]u− [∂2

t , H∂B1
]Dku,

and applied Lemma 3.19. Use Lemma 3.15 as in the proof of (122) now

shows that if β is sufficiently large, then∫ t

T0

∣∣∣∣〈g̃k(s)−Dkg0(s),
∂s�uk(s)

a(s)
〉
∣∣∣∣ ds ≤ 1

400
C0η

8(t)|v1(t)|2.
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For the contribution of Dkg0 note that

〈Dkg0,
∂t�uk
a

〉+ I =〈∂tDkF,

(
R2

GM
− 1

a

)
∂t�uk〉 − 〈∂tDkE1,

∂t�uk
a

〉

+ 〈∂tDk

(
1

|B1|

∫
B1

E1(t,x)dx

)
,
∂t�uk
a

〉

+ 〈DkE2,
∂t�uk
a

〉+ 〈Dk(∂t(a|N |−1)N),
∂t�uk
a

〉

=:II1,1 + II1,2 + II1,3 + II1,4 + II1,5.

The contribution of II1,1 is smaller than the contribution of I computed

in Step 3. The contribution of II1,2 and II1,3 can also be estimated simi-

larly. Indeed E1 was obtained by subtracting the leading order term F from

∇ψ2 + x′′
1 so the contributions of E1 and 1

|B1|
∫
B1

E1(t,x)dx are also smaller

than that of F which we estimated in Step 3. Note that since the fluid is

incompressible and irrotational, and E1 is a function of x − x1, the time

derivative of 1
|B1|

∫
B1

E1(t,x)dx can be computed as

∂t

(
1

|B1|

∫
B1

E1(t,x)dx

)
=

1

|B1|

∫
B1

(∇E1)(t,x) · (v(t,x)− x′
1)dx

+
1

|B1|

∫
B1

(∂tE1)(t,x)dx

=
1

|B1|

∫
∂B1

E1n · ζtdS +
1

|B1|

∫
B1

(∂tE1)(t,x)dx.

(125)

The time derivative (∂tE1)(t,x) can be computed similarly using the fact

that the fluid is incompressible and irrotational in B2, and the fact that in

the integral expression for E1 in (36) the integrand depends only on y−x2,

where y ∈ B2 is the variable of integration. Next, recalling the definition of

E2 from (33), from repeated applications of the bootstrap assumptions (92)

and (114), Proposition 3.22, and Lemma 3.19, we get

‖DkE2‖L2(SR) � GM

R
5

2

η3E
1

2

≤k +
GM

R2
η7|v1| � C

1

2

0 GM

R2
η7|v1|.

Using Lemma 3.15 as in the proof of (122) we conclude that if β is sufficiently
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large, then ∫ t

T0

∣∣∣∣〈II1,4(s), ∂s�uk(s)a(s)
〉
∣∣∣∣ ds ≤ 1

800
C0η

8(t)|v1(t)|2.

Finally direct application of Proposition 3.25 gives

‖II1,5‖L2(SR) �
√

GM

R3
η3E≤k �

√
GM

R3
C0η

11|v1|2.

It follows that if β is sufficiently large then∫ t

T0

∣∣∣∣〈II1,5(s), ∂s�uk(s)a(s)
〉
∣∣∣∣ ds ≤ 1

1000
C0η

8(t)|v1(t)|2,

completing the proof of the proposition.

4. Tidal Energy

In this final section we prove Theorem 1.1. For this we will express the tidal
energy in terms of the height function h = |ζ| − R and its time derivative
∂th. The first subsection below is devoted to the analysis of the dynamics
of h and ∂th. We then use this analysis in the second subsection to prove
Theorem 1.1.

4.1. The height function

A crucial step in the proof of Theorem 1.1 is to analyze the behavior of the
tidal energy in terms of the height function (see (26))

h(t, ω) := h(ζ(t, ω)) := |ζ(t, ω)| −R, ω ∈ S2.(126)

Recall also the definition of h̃ (see (26)):

h̃(t, ω) := |ζ(t, ω)|2 −R2,(127)

and the relation h̃ = h(h+2R) = 2Rh+h2. From now on, we will call h̃ the
modified height function. Our goal in this section is to derive the equation
satisfied by h. Let φ and φ̊ denote the velocity potentials for v and x′

1,
respectively, that is,

v(t,x) = −∇φ(t,x),
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x′
1(t) = −∇φ̊(t,x), φ̊(t,x) := −x′

1 · (x− x1).

We will denote x−x1 by ζ. In Lagrangian coordinates, let φ(t, p) = φ(t, ξ(t,
p)) and φ̊(t, p) := φ̊(t, ζ(t, p)). The modified height function satisfies,

h̃t = 2ζt · ζ = 2Rζt · n+ 2ζt · (ζ −Rn) = −2R∇n(φ− φ̊) + 2ζt · (ζ −Rn).

Differentiating this equation in time we get

h̃tt =− 2R∇n(φt − φ̊t)− 2R[∂t,∇n](φ− φ̊) + 2ζtt · (ζ −Rn)

+ 2ζt · (ζt −Rn′)

= : −2R∇n(φt − φ̊t) +R1,

(128)

with

R1 := −2R[∂t,∇n](φ− φ̊) + 2ut · (ζ −Rn) + 2u · (u−Rn′).(129)

To express φ− φ̊ in terms of h, we use the Bernoulli equation

∂tφ = ψ1 +ψ2 + p+
1

2
|v|2, ⇒ φt = ψ1 + ψ2 −

1

2
|ζt + x′

1|2.

Remark 4.1. Note that here ∂tφ is the Eulerian timte derivative of φ in
fluid domain, while φt is the restriction of the Lagrangian time derivative of
φ on the boundary. Therefore the coefficient of |ζt+x′

1|2 in the second term
above is −1

2 instead of 1
2 .

On the other hand, by the definition of φ̊,

φ̊t = −ζt · x′
1 − ζ · x′′

1,

so

φt − φ̊t = ψ1 + ψ2 −
1

2
|ζt|2 −

1

2
|x′

1|2 + ζ · x′′
1.

Equation (128) is therefore equivalent to

h̃tt = −2R∇nψ1 − 2R(x′′
1 · n+∇nψ2) +R1 +R2,(130)

where

R2 = R∇n|u|2.(131)
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Next we derive an expression for ψ1. Recall from Lemma 2.4 that

∇ψ1 =
GM

R3
ζ − GM

2R3
(I +H∂B1

)ζ.

This formula will be useful for analyzing R1, but since ψ1 is not harmonic
inside B1, ∇nψ1 cannot be computed by taking the inner product of this
identity with n. Instead, to compute ∇nψ1 we argue as follows. First, since

Dψ1 = ∇ψ1 = D((∇ψ1)ζ)

outside of B1 (here (∇ψ1)ζ denotes the Clifford product),

(I +H∂B1
)ψ1 = (I +H∂B1

)((∇ψ1)ζ).

Using the formula ∇ψ1 =
GM
R3 ζ − GM

2R3 (I +H∂B1
)ζ above we get

(I +H∂B1
)ψ1 = −GM

R3
(I +H∂B1

)(|ζ|2)− GM

2R3
(I +H∂B1

)(((I +H∂B1
)ζ)ζ).

(132)

Now recall from (27)–(29) that with μ = 1− R3

|ζ|3 = 3
2R2 h̃+ h̃ν,

(I +H∂B1
)ζ = (I +H∂B1

)(ζμ).

Going back to equation (132) we get

(I +H∂B1
)ψ1 = −GM

R3
(I +H∂B1

)(h̃+R2) +B +A1,(133)

where

B := −3GM

4R5
(I +H∂B1

)(((I +H∂B1
)(h̃ζ))ζ)

and

A1 := −GM

2R3
(I +H∂B1

)(((I +H∂B1
)(h̃νζ))ζ).

To compute B we keep in mind that H∂B1
nf+nH∂B1

f and ζ−Rn are small
quantities for any f , and write

B =− 3GM

4R5
(I +H∂B1

)[(ζ)(I −H∂B1
)(h̃)(ζ)]
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A2︷ ︸︸ ︷
−3GM

4R5
(I +H∂B1

)
[(

ζH∂B1
h̃+H∂B1

(ζh̃)
)
ζ
]

=A2 −
3GM

4R5
(I +H∂B1

)[(ζ)2(I +H∂B1
)h̃− 2(ζ)2K∂B1

h̃]

A3︷ ︸︸ ︷
−3GM

2R5
(I +H∂B1

)[(ζ)((ζ) · (H∂B1
h̃−K∂B1

h̃))]

=A2 +A3 +
3GM

4R3
(I +H∂B1

)[(I +H∂B1
)h̃− 2K∂B1

h̃]

A4︷ ︸︸ ︷
+
3GM

4R5
(I +H∂B1

)[h̃(I +H∂B1
)h̃− 2h̃K∂B1

h̃]

=A2 +A3 +A4 +
3GM

2R3
(I +H∂B1

)(I −K∂B1
)h̃.

Plugging back into (133) we get

(I +H∂B1
)ψ1 = −GM

R3
(I +H∂B1

)(h̃+R2)

+
3GM

2R3
(I +H∂B1

)(I −K∂B1
)h̃+A1 +A2 +A3 +A4.

Taking real parts and applying (I +K∂B1
)−1 gives

ψ1 = −GM

R
+

g

2R
(I − 3K∂B1

)h̃+ R̃3 = −GM

R
+ g(I − 3K∂B1

)h+R3,

(134)

where g = GM
R2 ,

R̃3 = (I +K∂B1
)−1 (Re(A1 +A2 +A3 +A4)) ,

and

R3 = R̃3 +
g

2R
(I − 3K∂B1

)h2.(135)

It follows that

∇nψ1 = g∇n(I − 3K∂B1
)h+∇nR3.(136)
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The formula above gives us an expression for the first term on the right-hand
side of (130). Since ψ2 is harmonic in B1, the second term on the righthand
side of (130) can simply be computed by using the relation ∇nψ2 +n ·x′′

1 =
n · (∇ψ2+x′′

1). Indeed, this identity combined with Lemma 2.4 and the fact
that x′′

1 = − ρ
M

∫
B1

∇ψ2dx, gives

∇nψ2 + n · x′′
1 =

GMη(t)3

8R3
(ζ · n− 3(ζ · ξ1)(ξ1 · n))

+ n ·
(
E1 −

ρ

M

∫
B1

E1(t,x)dx

)
=
GMη(t)3

8R2

(
1− 3(ξ1 · ζ)2

R2

)
+R4,

(137)

where

R4 :=
GMη3

8R3

(
(ζ −Rn) · n− 3(ζ · ξ1)(ξ1 · (n−R−1ζ))

)
(138)

+ n ·
(
E1 −

ρ

M

∫
B1

E1(t,x)dx

)
.

Inserting (136) and (137) back into (130), we get the desired equation for h
which we summarize in the following proposition.

Proposition 4.2. Let R1, . . . ,R4 be as defined in (129), (131), (135), and
(138), respsectively. Then h satisfies

htt + g∇n(I − 3K∂B1
)h

= −GMη3

8R2

(
1− 3(ξ1 ·R−1ζ)2

)
+

R1

2R
+

R2

2R
−∇nR3 −R4 −

1

R
h2t −

1

R
hhtt.

(139)

Proof. This follows by combining equations (128)–(138).

Except for the term [∂t,∇n](φ − φ̊) in R1, all the error terms in (139)
can be estimated using the results in Section 3. The commutator [∂t,∇n] is
also calculated in Lemma A.7. We next derive an expression for φ − φ̊ in
terms of h which is of independent interest for future calculations. Note that
φ− φ̊ is the solution to the Neumann problem

Δ(φ− φ̊) = 0, in B1,

n · ∇(φ− φ̊) = −n · (v − x′
1(t)) on ∂B1.

(140)
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Therefore by equation (166),

φ− φ̊ =2S∂B1
(I −K∗

∂B1
)−1 (n · u)

=
2

R
S∂B1

(I −K∗
∂B1

)−1(ζ · u+ (Rn− ζ) · u)

=
1

R
S∂B1

(I −K∗
∂B1

)−1(h̃t + 2(Rn− ζ) · u)

=
2

R
S∂B1

(I −K∗
∂B1

)−1(Rht + hht + (Rn− ζ) · u).

(141)

To estimate [∂t,∇n](φ− φ̊), we only need the expression φ− φ̊ = 2S∂B1
(I −

K∗
∂B1

)−1(n · u) together with Lemmas A.7 and B.4. However, the entire
expression will be needed in the next subsection.

To analyze equation (139) we will decompose h into spherical harmonics,
but in order to do this effectively we need to replace the non-local terms
∇n and K∂B1

on the left-hand side of the equation by the corresponding
operators on SR. In the following lemma we calculate the resulting errors.

Lemma 4.3. Let K, S, and D denote the double-layered potential, single-
layered potential, and Dirichlet-Neumann operators on SR, respectively. Let
f : R × SR → R and F : R × ∂B1 → R be related as f(t, p) = F (t, ξ(t, p)).
Then

K∂B1
F −Kf

= −
∫ t

T0

(
p.v.

∫
SR

(
((u′ − u) · ∇)K(ξ′ − ξ) · n′ +K(ξ′ − ξ) · n′

t

)
(s)

× |N ′|
|/g′|

F ′(t)dS(p′)

)
ds

−
∫ t

T0

(
p.v.

∫
SR

(
K(ξ′ − ξ) · n′) (s)∂t|N ′|

|/g′|
F ′(t)dS(p′)

)
ds,

S∂B1
F − Sf = R(Kf −K∂B1

F )

+ p.v.

∫
∂B1

(
1

4π

h′ − h

|ξ′ − ξ|3 −K(ξ′ − ξ) · (Rn′ − ζ ′)

)
F ′dS′,

K∗
∂B1

F −Kf = K∂B1
F −Kf

+ p.v.

∫
∂B1

(
1

2πR

h− h′

|ξ′ − ξ|3 +K(ξ′ − ξ) · ((n′ −R−1ζ ′)

+ (n−R−1ζ))

)
F ′dS′,
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∇nF −Df =
(
(I +K∗

∂B1
)−1 − (I +K)−1

)
p.v.

∫
∂B1

(n×K) · (n′ ×∇)F ′dS′

+ (I +K)−1p.v.

∫
SR

(n×K) · (n′ ×∇)F ′
(
|N ′|
|/g′|

− 1

)
dS′

+ (I +K)−1

∫ t

T0

(
p.v.

∫
SR

(
ns(s)×K(s)

+ n(s)× ((u′(s)− u(s)) · ∇)K(s)
)
· n′(s)×∇F ′(t)dS′

)
ds

+ (I +K)−1

∫ t

T0

(
p.v.

∫
SR

(n(s)×K(s))

·
(
|N(s)|−1(uβ(s)Fα(t)− uα(s)Fβ(t))

)
dS′

)
ds

− (I +K)−1

∫ t

T0

(
p.v.

∫
SR

(n(s)×K(s))

·
(
∂s|N(s)|
|N(s)|2 (ξβ(s)Fα(t)− ξα(s)Fβ(t))

)
dS′

)
ds.

Proof. Recall that by assumption ∂B1(T0) = x1(T0) + SR and by definition
ζ(T0, p) = p for all p ∈ SR. It follows that

K∂B1
F (ξ)

= −p.v.

∫
SR

K(ξ − ξ′) · n(p′) |N(p′)|
|/g(p′)|

F (ξ′)dS(p′)

= Kf(p)−
∫ t

T0

(
p.v.

∫
SR

∂

∂s

(
K(ξ − ξ′) · n′ |N ′|

|/g′|

)
(s)F ′(t)dS(p′)

)
ds

= Kf(p)

−
∫ t

T0

(
p.v.

∫
SR

(
((u′ − u) · ∇)K(ξ′ − ξ) · n′ +K(ξ′ − ξ) · n′

t

)
(s)

× |N ′|
|/g′|

F ′(t)dS(p′)

)
ds

−
∫ t

T0

(
p.v.

∫
SR

(
K(ξ′ − ξ) · n′) (s)∂t|N ′|

|/g′|
F ′(t)dS(p′)

)
ds.

The second and third identities follow by inspection of (164) and (165), and
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noting that

−K(ξ′ − ξ) · n′ =
1

2πR

(ζ ′ − ζ) · ζ ′
|ζ ′ − ζ|3 −K(ξ′ − ξ) · (n′ −R−1ζ ′)

=
1

4πR

1

|ξ′ − ξ| +
1

4πR

h̃′ − h̃

|ξ′ − ξ|3 −K(ξ′ − ξ) · (n′ −R−1ζ ′),

and similarly

(n+ n′) ·K(ξ′ − ξ)

=
1

2πR

h̃− h̃′

|ξ′ − ξ|3 +K(ξ′ − ξ) · ((n′ −R−1ζ ′) + (n−R−1ζ)).

For the last identity, we use Lemma A.4 to write

∇nF =(I +K)−1p.v.

∫
SR

(n×K) · (n′ ×∇)F ′dS′

+
(
(I +K∗

∂B1
)−1 − (I +K)−1

)
p.v.

∫
∂B1

(n×K) · (n′ ×∇)F ′dS′

+ (I +K)−1p.v.

∫
SR

(n×K) · (n′ ×∇)F ′
(
|N ′|
|/g′|

− 1

)
dS′

=Df +
(
(I +K∗

∂B1
)−1 − (I +K)−1

)
p.v.

∫
∂B1

(n×K) · (n′ ×∇)F ′dS′

+ (I +K)−1p.v.

∫
SR

(n×K) · (n′ ×∇)F ′
(
|N ′|
|/g′|

− 1

)
dS′

+ (I +K)−1

∫ t

T0

(
p.v.

∫
SR

(
ns(s)×K(s)

+ n(s)× ((u′(s)− u(s)) · ∇)K(s)
)
·
(
n′(s)×∇

)
F ′(t)dS′

)
ds

+ (I +K)−1

∫ t

T0

(
p.v.

∫
SR

(n(s)×K(s))

·
(
|N(s)|−1(uβ(s)Fα(t)− uα(s)Fβ(t))

)
dS′

)
ds

− (I +K)−1

∫ t

T0

(
p.v.

∫
SR

(n(s)×K(s))
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· (∂s|N(s)|)|N(s)|−2(ξβ(s)Fα(t)− ξα(s)Fβ(t))dS

)
ds.

Combining the previous lemma with Proposition 4.2 we arrive at our
final equation for h which we record in the following corollary.

Corollary 4.4. Let

f(t, ω) := −gη3

8

(
1− 3(ξ1 · ω)2

)
,

(142)

R5 := − 1

R
h2t −

1

R
hhtt + g (D(I − 3K)−∇n(I − 3K∂B1

))h

(143)

+
3gη3

8R2

(
ξ1 ·

∫ t

T0

u(s)ds

)2

+
3gη3

4R2
(ξ1 · ω)

(
ξ1 ·

∫ t

T0

u(s)ds

)
,

and R := R1

2R + R2

2R −∇nR3 −R4 +R5, where R1, . . . ,R4 are as in Propo-
sition 4.2. Then h : R× SR → R satisfies

(∂2
t + gD(I − 3K))h(t, ω) = f(t, ω) +R,(144)

and the remainder R satisfies the estimates

‖R‖L2(SR) � GMR−1η4,

‖∂tR‖L2(SR) � GMR−2η5|v1|,
‖∂2

tR‖L2(SR) � (GM)
3

2R− 7

2 η6|v1|,
‖∂3

tR‖L2(SR) � (GM)2R−5η7|v1|.

Proof. Equation (144) is just a rewriting of (139). The estimates on the
remainder R can be proved much in the same way as the estimates in Sec-
tion 3. We will use Proposition 3.27 to obtain the estimates. Using Propo-
sitions 3.22, 3.23, 3.27 and Lemmas A.4, A.7, and B.4 and equations (141)
and (129) we get

‖R1‖L2(SR) �
√
GMRη7|v1|.

For R2, by Lemmas A.4 and B.4 and (131) we have

‖R2‖L2(SR) � Rη8|v1|2.
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Next, using (135) and Lemmas A.4 and B.4, we get

‖∇nR3‖L2(SR) � GM

R
η6.

Here to estimate A2 we have written

ζH∂B1
h̃+H∂B1

(ζh̃)

= Rn(H∂B1
−H∗

∂B1
)h̃+ (ζ −Rn)H∂B1

h̃+H∂B1
((ζ −Rn)h̃),

and applied Lemma 3.24. Similarly for A3 we have used the expression K =
K(ξ′ − ξ) = − 1

2π
ζ′−ζ

|ζ′−ζ|3 for the kernel of H∂B1
to write

ζ · (H∂B1
−K∂B1

)h̃

= ζ · p.v.
∫
∂B1

K × (n′ −R−1ζ ′)h̃′dS′

+R−1ζ · p.v.
∫
∂B1

(ζ ×K +K × ζ ′)h̃′dS′

= ζ · p.v.
∫
∂B1

K × (n′ −R−1ζ ′)h̃′dS′.

For R4 by (138) we have

‖R4‖L2(SR) � GM

R
η6 +

GM

R
η4,

where the last term on the right is the contribution of E1. Finally by (143)
and Lemma 4.3

‖R5‖L2(SR) �
√

GM

R
η7|v1|+

GM

R
η6,

finishing the proof of the estimate on ‖R‖L2(SR). The estimates for the
time derivatives are similar where we additionally use Proposition 3.13,
Lemma 3.14, and Lemma B.4 and to estimate the time derivative of E1

we use the same argument as in (125).

Equation (144) is our working equation for the remainder of this section.
Our goal now is to use this equation to obtain a lower bound for ‖∂th‖L2(SR).
For this, we decompose h and R into spherical harmonics (see Appendix A)

h =

∞∑
�=0

h�, /Δh� =
�(�+ 1)

R2
h�,
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R =

∞∑
�=0

R�, /ΔR� =
�(�+ 1)

R2
R�.

Using Proposition A.6 and the facts that Dh� =
�
Rh� and that f belongs to

the second eigenspace of the Laplacian, Y2, we can write equation (144) as

∂2
t h� + a�h� = f�,

f2 = f +R2, f� := R�, � �= 2,

lim
t→T0

h�(t) = lim
t→T0

∂th�(t) = 0, ∀� ≥ 0,

(145)

where

a� :=
g

R

2�(�− 1)

2�+ 1
.

The following is the main result of this section.

Proposition 4.5. The following estimates hold for r ∈ [r0, 10r0]:

R2η3 � ‖h2‖L2(SR) � 2η3,

‖h− h2‖L2(SR) � R2η4,
(146)

and

Rη4|v1| � ‖∂th2‖L2(SR) � Rη4|v1|,
‖∂t(h− h2)‖L2(SR) � Rη5|v1|.

(147)

In particular ‖h(t)‖L2(SR) � R2η3(t) and ‖∂th(t)‖L2(SR) � Rη4(t)|v1(t)|.

Proof. The proofs of (146) and (147) are almost identical, so we provide the
details only for the latter. Solving the ODE (145) we get

h�(t) =
1√
a�

∫ t

T0

sin(
√
a�(t− s))f�(s)ds.

Differentiating in time and using several integration-by-parts, for � ≥ 2 we
arrive at

∂th�(t) =

∫ t

T0

cos(
√
a�(t− s))f�(s)ds

(148)
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=− 1√
a�

∫ t

T0

d

ds
(sin(

√
a�(t− s)))f�(s)ds

=
1√
a�

sin (
√
a�(t− T0)) f�(T0) +

1√
a�

∫ t

T0

sin(
√
a�(t− s))f ′

�(s)ds

=
1

a�

∫ t

T0

d

ds
(cos(

√
a�(t− s)))f ′

�(s)ds+
1√
a�

sin (
√
a�(t− T0)) f�(T0)

=
f ′
�(t)

a�
− 1

a�

∫ t

T0

cos(
√
a�(t− s))f ′′

� (s)ds

+
1√
a�

sin (
√
a�(t− T0)) f�(T0)−

1

a�
cos (

√
a�(t− T0)) f

′
�(T0)

=
f ′
�(t)

a�
+

1

a
3/2
�

∫ t

T0

d

ds
(sin(

√
a�(t− s)))f ′′

� (s)ds

+
1√
a�

sin (
√
a�(t− T0)) f�(T0)−

1

a�
cos (

√
a�(t− T0)) f

′
�(T0)

=
f ′
�(t)

a�
− 1

a
3/2
�

∫ t

T0

sin(
√
a�(t− s))f ′′′

� (s)ds

− 1

a
3/2
�

sin (
√
a�(t− T0)) f

′′
� (T0)

+
1√
a�

sin (
√
a�(t− T0)) f�(T0)−

1

a�
cos (

√
a�(t− T0)) f

′
�(T0).

It follows from the estimates in Corollary 4.4, Proposition 3.13, and Lemma
3.14, that ∫

SR

|∂th2|2dS =
1

a22

∫
SR

|f ′
2|2dS +O

(
|v1|2η10

)
.

Here we want to show that the first term on the right hand side above has a
lower bound of orderO

(
|v1|2η8

)
. Since ∂tf2 = ∂tf+∂tR2 and ‖∂tR2‖2L2(SR) �

|v1|2η10, the problem reduces to deriving a lower bound of order O
(
|v1|2η8

)
for

∫
SR

|∂tf |2dS. According to (142) we can write f and ∂tf in the schematic
forms

f(t, ω) = c1η
3(t)(1− c2(ξ1(t) · ω)2),

⇒ ∂tf = c1
(
η3(t)

)′
(1− c2(ξ1(t) · ω)2)− c1c2η

3(t)
(
(ξ1 · ω)2

)′
,

where c1, c2 are constants depending on G,M,R. This gives the following
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formula for |∂tf |2:

|∂tf |2 =c21
(
3η2(t)η′(t)

)2
(1− c2(ξ1 · ω)2)2 + 4c21c

2
2η

6(t)(ξ1 · ω)2(ξ′1 · ω)2

− 2c21c2
(
η3(t)

)′
η3(t)(1− c2(ξ1 · ω)2)

(
(ξ1 · ω)2

)′
(149)

The integral of the second line above on SR is zero. Indeed,

− 2c21
(
η3(t)

)′
η3(t)

∫
SR

(1− c2(ξ1 · ω)2)c2
(
(ξ1 · ω)2

)′
dS

= c21
(
η3(t)

)′
η3(t)

∫
SR

(
(1− c2(ξ1 · ω)2)2

)′
dS

= c21
(
η3(t)

)′
η3(t)

d

dt

(∫
SR

(1− c2(ξ1 · ω)2)2dS
)
.

But due to the symmetry of SR, the integral
∫
SR

(1 − c2(ξ1 · ω)2)2dS does

not depend on ξ1 and hence on time, so the last term above vanishes. Going

back to (149) and using the symmetry of SR again, and using the values of

c1 and c2 from (142), we see conclude that

∫
SR

|∂tf |2dS �
(
GM

R

)2

η4(t)(η′(t))2 +

(
GM

R

)2

η6(t)|ξ′1(t)|2

�
(
GM

R

)2

R−2η8(t)
(
|r′1(t)|2 + |v1 − r′1ξ1|2

)
�

(
GM

R

)2

R−2η8(t)|v1|2.

For the last inequality above we simply observe that the estimate is trivial if

|r′1| ≥ 1
4 |v1|, and if |r′1| ≤ 1

4 |v1|, then |v1 − r′1ξ1| ≥ 3
4 |v1|. Returning to (148)

we have proved that

Rη4|v1| � ‖∂th2‖L2(SR) � Rη4|v1|,

‖∂th�‖L2(SR) � R3

GM
‖∂tR�‖L2(SR), � ≥ 3.

(150)

Since a0 = a1 = 0 this argument does not apply to � = 0, 1. Instead, to
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estimate h0 and h1 we argue as follows. First, since the fluid is incompressible

4πR3 =

∫
∂B1

n · ζdS =

∫
SR

n · ζ |N |
|/g|

dS

=

∫
SR

n · ζdS +

∫
SR

n · ζ
(
|N |
|/g|

− 1

)
dS

=
1

R

∫
SR

ζ · ζdS +

∫
SR

(
n− 1

R
ζ

)
· ζdS +

∫
SR

n · ζ
(
|N |
|/g|

− 1

)
dS

=4πR3 +
1

R

∫
SR

h̃dS +

∫
SR

(
n− 1

R
ζ

)
· ζdS +

∫
SR

n · ζ
(
|N |
|/g|

− 1

)
dS

=4πR3 + 2

∫
SR

hdS +
1

R

∫
SR

h2dS +

∫
SR

(
n− 1

R
ζ

)
· ζdS

+

∫
SR

n · ζ
(
|N |
|/g|

− 1

)
dS.

We can now solve for h0 =
1
4π

∫
SR

hdS from this equation to estimate h0 and

differentiating in time. Indeed the third term on the right hand side above

is already quadratic in h. On the other hand, the time derivative of the sum

of the last two terms is∫
SR

(n−R−1ζ) · ζtdS +

∫
SR

n · ζt
(
|N |
|/g|

− 1

)
dS −R−1

∫
SR

ζ · ζtdS

+

∫
SR

n · ζ∂t
|N |
|/g|

dS.

The first two terms are quadratic and their time integration is bounded as

desired. For the third term, using the harmonicity of v, we write

R−1

∫
SR

ζ · ζtdS

=

∫
SR

(R−1ζ − n) · ζtdS +

∫
SR

n · ζt
(
1− |N |

|/g|

)
dS +

∫
∂B1

n · ζtdS

=

∫
SR

(R−1ζ − n) · ζtdS +

∫
SR

n · ζt
(
1− |N |

|/g|

)
dS,

which is quadratic and can be bounded as before. Finally, using (94) and
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Lemma 3.2, and the facts that n×∇ζ = −2n and v is harmonic,∫
SR

n · ζ∂t
|N |
|/g|

dS

= −
∫
∂B1

(ζ · n)n · (n×∇u)dS

= −R

∫
∂B1

n · (n×∇u)dS +

∫
∂B1

(R− ζ · n)n · (n×∇u)dS

= −
∫
∂B1

ζ · (n×∇u)dS −
∫
∂B1

(Rn− ζ) · (n×∇u)dS

+

∫
∂B1

(R− ζ · n)n · (n×∇u)dS

=

∫
∂B1

(n×∇ζ) · udS −
∫
∂B1

(Rn− ζ) · (n×∇u)dS

+

∫
∂B1

(R− ζ · n)n · (n×∇u)dS

= −
∫
∂B1

(Rn− ζ) · (n×∇u)dS +

∫
∂B1

(R− ζ · n)n · (n×∇u)dS,

which is again quadratic. This completes the proof of the desired estimate

for both h0 and ∂th0. Similarly, for h1, since
∫
B1
(x− x1)dx = 0,

0 =

∫
∂B1

|ζ|2ndS =

∫
∂B1

h̃ndS

=2

∫
∂B1

hζdS + 2

∫
∂B1

h(Rn− ζ)dS +

∫
∂B1

h2ndS

=2

∫
∂B1

hωdS + 2

∫
∂B1

h(ζ(t)− ζ(0))dS + 2

∫
∂B1

h(Rn− ζ)dS

+

∫
∂B1

h2ndS

=2

∫
SR

hωdS + 2

∫
SR

hω

(
|N |
|/g|

− 1

)
dS + 2

∫
∂B1

h(ζ(t)− ζ(0))dS

+ 2

∫
∂B1

h(Rn− ζ)dS +

∫
∂B1

h2ndS.

Since {ωj}j=1,2,3 form a basis for Y1, we can solve for h1 from this relation,

and differentiating in time we can estiamte ∂th1. Combining with (150) we



564 Shuang Miao and Sohrab Shahshahani

get the desired bound

‖∂t(h− h2)‖L2(SR) � Rη5|v1|.

4.2. Proof of Theorem 1.1

Recall that the total energy

E :=
1

2

∫
B1

|v(t,x)|2dx+
1

2

∫
B1

ψ1(t,x)dx+
1

2

∫
B1

ψ2(t,x)dx,

is conserved during the evolution. To see this we compute the time derivative

of each of the terms in the definition of E . First,

1

2

d

dt

(∫
B1

|v(t,x)|2dx
)

=

∫
B1

v · (∂tv + v · ∇v) dx

=−
∫
B1

v · (∇P +∇ψ1 +∇ψ2) dx

=−
∫
B1

v · (∇ψ1 +∇ψ2) dx.

(151)

For the contribution of ψ1 we have

d

dt

(∫
B1

ψ1(t,x)dx

)
=Gρ

∫
B1

∫
B1

x− y

|x− y|3 · (v(x)− v(y)) dydx

=

∫
B1

v(x) · ∇ψ1(x)dx

−Gρ

∫
B1

v(y) ·
(∫

B1

x− y

|x− y|3dx
)
dy

=2

∫
B1

v(x) · ∇ψ1(x)dx.

(152)

For ψ2

d

dt

(∫
B1

ψ2(t,x)dx

)
=Gρ

∫
B1

∫
B2

x− y

|x− y|3 · (v(x)− v(y)) dydx

(153)

=

∫
B1

v(x) · ∇ψ2(x)dx+Gρ

∫
B2

v(y)
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·
(∫

B1

y − x

|y − x|3dx
)
dy

=

∫
B1

v(x) · ∇ψ2(x)dx+

∫
B2

v(y) · ∇ψ1(y)dy

=

∫
B1

v(x) · ∇ψ2(x)dx+

∫
B1

v(−y) · ∇ψ1(−y)dy.

Note that v(−y) = −v(y) and

∇ψ1(−y) = Gρ

∫
B1

−y − z

| − y − z|3dz = Gρ

∫
B2

z− y

|z− y|3 dz = −∇ψ2(y),

so (153) becomes

d

dt

(∫
B1

ψ2(t,x)dx

)
= 2

∫
B1

v(x) · ∇ψ2(x)dx.(154)

Multiplying (152) and (154) by 2−1 and adding them to (151), we see that
dE
dt = 0. Recall also that Ẽtidal is defined as

Ẽtidal(t) :=
1

2|B1|

∫
B1

|v|2dx− 1

2
|x′

1|2 +
1

2|B1|

∫
B1

ψ1dx+
3GM

5R
.

We divide Ẽtidal into its kinetic and potential parts Ẽtidal := E 0
tidal + E 1

tidal
where

E 0
tidal :=

1

2|B1|

∫
B1

|v|2dx− 1

2
|x′

1|2,

E 1
tidal :=

1

2|B1|

∫
B1

ψ1dx+
3GM

5R
.

Proof of Theorem 1.1. The existence part of the theorem was already proved
in Corollary 3.28. We now prove (14). First,

|B1|E 0
tidal =

1

2

∫
B1

(
|v|2 − |x′

1|2
)
dx =

1

2

∫
B1

(
|v − x′

1 + x′
1|2 − |x′

1|2
)
dx

(155)

=
1

2

∫
B1

|v − x′
1|2dx+

∫
B1

x′
1 · (v − x′

1)dx =
1

2

∫
B1

|v − x′
1|2dx

=
1

2

∫
B1

|∇(φ− φ̊)|2dx =
1

2

∫
∂B1

(φ− φ̊)∇n(φ− φ̊)dS
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=− 1

2

∫
∂B1

(φ− φ̊)n · (v − x′
1)dS = −1

2

∫
∂B1

(φ− φ̊)(n · ζt)dS

=− 1

4R

∫
∂B1

(φ− φ̊)h̃tdS − 1

2

∫
∂B1

(φ− φ̊)

((
n− 1

R
ζ

)
· ζt

)
dS

=− 1

2

∫
SR

(φ− φ̊)htdS + I,

where

I := −1

2

∫
SR

(φ− φ̊)ht
(
|N ||/g|−1 − 1

)
dS − 1

2R

∫
∂B1

(φ− φ̊)hhtdS

− 1

2

∫
∂B1

(φ− φ̊)

((
n− 1

R
ζ

)
· ζt

)
dS.

To understand the contribution of the main term we let P� denote the

projection on the �th eigenspace, Y�, of /Δ and use (141) to write

D(φ− φ̊) = −ht −
1

R
hht + (R−1ζ − n) · u+ (D−∇n)(φ− φ̊).

Therefore,

φ− φ̊ =
2

R
S(I −K)−1(Rht + hht + (Rn− ζ) · u−R(D−∇n)(φ− φ̊))

=− 1

2
P2(Rht + hht + (Rn− ζ) · u−R(D−∇n)(φ− φ̊))

+
2

R
S(I −K)−1(I −P2)(Rht + hht + (Rn− ζ) · u

−R(D−∇n)(φ− φ̊))

=− R

2
∂th2 + II,

(156)

where

II :=− 1

2
P2(hht + (Rn− ζ) · u−R(D−∇n)(φ− φ̊))

+
2

R
S(I −K)−1(I −P2)(Rht + hht + (Rn− ζ) · u

−R(D−∇n)(φ− φ̊)).
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Combining with (155) we get

|B1|E 0
tidal =

R

4

∫
SR

|∂th2|2dS + I − 1

2

∫
SR

II × htdS.

It follows from Propositions 4.5, B.2, B.3, 3.27, Corollary B.6, Lemma 4.3,
and (141), that for some universal constant C0 > 0,

E 0
tidal(t) ≈ R−2‖∂th‖2L2(SR) ≥ C0η

8(t)|v1(t)|2.(157)

Here the last estimate is valid for r ∈ (r0, 10r0). For E 1
tidal we argue differ-

ently. First note that since B1 is a ball of radius R at t = T0,

E 1
tidal(t) =

∫ t

T0

d

ds

(
1

2|B1|

∫
B1(s)

ψ1(s,x)dx

)
ds.(158)

Recall that acceleration of B1 due to the self-gravitational force from B1 is
zero, that is, ∫

B1

∇ψ1dx = 0.

Using this observation, (152), (134),and the curl and divergence free prop-
erties of v we compute

d

dt

(
1

2|B1|

∫
B1

ψ1dx

)
=

1

|B1|

∫
B1

v · ∇ψ1dx =
1

|B1|

∫
B1

(v − x′
1) · ∇ψ1dx

=
1

|B1|

∫
B1

∇ · (ψ1(v − x′
1))dx

=
1

|B1|

∫
∂B1

ζt · nψ1dS =
1

|B1|

∫
B1

ζt · n
(
ψ1 +

GM

R

)
dS

=
R−1

2|B1|

∫
B1

∂th̃

(
ψ1 +

GM

R

)
dS

+
1

|B1|

∫
B1

ζt · (n−R−1ζ)

(
ψ1 +

GM

R

)
dS

=
1

|B1|

∫
B1

∂th

(
ψ1 +

GM

R

)
dS +

R−1

|B1|

∫
B1

h ∂th

(
ψ1 +

GM

R

)
dS
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+
1

|B1|

∫
B1

ζt · (n−R−1ζ)

(
ψ1 +

GM

R

)
dS

=
g

|B1|

∫
B1

∂th(I − 3K∂B1
)h dS + III,

where

III :=
R−1

|B1|

∫
B1

h ∂th

(
ψ1 +

GM

R

)
dS

+
1

|B1|

∫
B1

ζt · (n−R−1ζ)

(
ψ1 +

GM

R

)
dS +

1

|B1|

∫
B1

R3∂th dS.

Letting

IV :=
g

|B1|

∫
B1

∂th(I − 3K∂B1
)h dS − g

|B1|

∫
SR

∂th2(I − 3K)h2 dS,

and using Proposition A.5 we arrive at

d

dt

(
1

2|B1|

∫
B1

ψ1dx

)
=

g

5|B1|
∂t‖h2‖2L2(SR) + III + IV.

Inserting this into (158) and applying Proposition 4.5, it follows as in the
proof of (157) that for some universal constant C0 > 0

E 1
tidal(t) ≈

GM

R5
‖h(t)‖2L2(SR) ≥ C0

GM

R
η6.

This completes the proof of (14). On the other hand, using the notation
introduced in Subsection 3.2,

Ẽ = lim
t→T0

Ẽ =
1

2
c20
GM

R
β− 12

7 .

In view of Proposition 3.13, if t∗ is such that r1(t
∗) = 3c20Rβ

2

7 , and if c0 is

sufficiently small, then Ẽorbital(t
∗) = Ẽ − Ẽtidal(t

∗) ≤ −c1
GM
R η6(t∗) for some

positive constant c1 > 0, completing the proof of the theorem.

Appendix A. Clifford Analysis and Layered Potentials

A.1. The Clifford Algebra C�0,2(R)

In this appendix we recall basic algebraic properties of the Clifford algebra
C := C�0,2(R). We refer the reader to [7] for a much more complete treat-
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ment, and to [16, 17] and the references therein for earlier use of Clifford
analysis in study of incompressible free boundary problems. The algebra C
is the associative algebra generated by the four basis elements {1, e1, e2, e3}
over R, satisfying the relations

1ei = ei, eiej = −ejei, i �= j, i, j = 1, 2, 3, e1e2 = e3,

e2i = −1, i = 1, 2, 3.
(159)

Every element c ∈ C has a unique representation ξ = ξ0 +
∑3

i=1 ξ
iei. Some-

times we also write e0 for 1 so that ξ =
∑3

i=0 ξ
iei. We call ξ0 the real part

of ξ and denote it by Reξ, and
∑3

i=1 ξ
iei the vector part of ξ and denote it

by Vec ξ. An element ξ ∈ C is referred to as a Clifford vector. If Reξ = 0
we say that ξ is a vector (or pure vector) and if Vec ξ = 0 we say that ξ
is a real number or a scalar (or pure scalar). We identify the real numbers
R with Clifford numbers using the relation a �→ a1, and identify vectors in
R3 with Clifford vectors using the relation viei �→ viei. Here {e1, e2, e3} is
the standard basis for R3. The dot product of two Clifford vectors η and ξ
is defined as

ξ · η := ReξReη +Vec ξ ·Vec η =

3∑
i=0

ξiηi.

If ξ and η are vectors, then, in view of (159), the usual (or Clifford) product
of ξ and η is

ξη = −ξ · η + ξ × η.

A.2. Layered Potentials and the Hilbert Transform

The Clifford differentiation operator D, acting on Clifford algebra-valued
functions, is defines as

D =

3∑
i=1

∂xiei,

where x = (x1, x2, x3) are the usual rectangular coordinates in R3. If f is a
Clifford algebra-valued function we denote the real part of f by f̊ := Ref ,
and the vector part of f by �f := Vec f =

∑3
i=1 f

iei. The Clifford derivative
of f then satisfies

Df = ∇̊f +∇×�f −∇ ·�f .
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Moreover, by direct computation we see that D2f = −Δf = −
∑3

i=0Δf iei.

Let Ω be a C2, bounded, and simply-connected domain in R3 with
boundary Σ and complement Ωc. We denote the exterior normal vector to
Σ by n and the induced volume form on Σ by dS. We say that a function f
defined on Ω is Clifford analytic, if Df = 0. Note that if f is vector-valued,
this is equivalent to f being curl and divergence free. In general the compu-
tation above shows that the components of a Clifford analytic function are
harmonic. The following simple observations are used many times in this
work. For any function f defined in Ω,

nDf = −n · ∇f + n×∇f .

Since the components of a Clifford analytic function are harmonic, it follows
that if f is the restriction to Σ of a Clifford analytic function f in Ω, then

∇nf = n×∇f,(160)

where ∇n denotes the Dirichlet-Neumann map of Ω. Moreover, writing f =
�f + f̊ , with f̊ = Ref = f̊ |Σ and �f = Vec f = �f |Σ, since ∇×�f = ∇̊f in Ω, we
have (the same identity holds if Ω is unbounded but f decays at infinity)

1

|N |(ξβ · �fα − ξα · �fβ) =
1

|N |ξ
i
αξ

j
β(∂i

�f j − ∂j �f
i) = n · ∇f̊ = ∇nf̊ .(161)

In particular, when f is a vector-valued Clifford analytic function

n×∇f =
1

|N |(ξβ × fα − ξα × fβ).(162)

We next turn to the definition of the Hilbert transform and layered
potentials. Let Γ(x) := − 1

4π|x| , x ∈ R3, be the fundamental solution of the

Laplace equation in R3, and let

K(x) := −2DΓ(x) = − 1

2π

x

|x|3 , x ∈ R3.

For a Clifford algebra-valued function f defined on Σ we define the Hilbert
transform of f as

HΣf(ξ) = p.v.

∫
Σ
K(ξ′ − ξ)n(ξ′)f(ξ′)dS(ξ′), ξ ∈ Σ.(163)
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Remark A.1. We often use the shorthand
∫
ΣKn′f ′dS′ for the integral in

(163). More generally, when considering integrals with variable of integration
ξ′, we write f ′ instead of f(ξ′) and dS′ instead of dS(ξ′).

Similarly, the Cauchy integral of f is defined for interior points η ∈ Ω as

CΣf(η) :=
1

2

∫
Σ
K(ξ′ − η)n(ξ′)f(ξ′)dS(ξ′), η ∈ Ω.

The Hilbert transform satisfies H2
Σ = Id and HΣ1 = 1. The following the-

orem summarizes the relation between the Hilbert transform and Clifford
analyticity.

Theorem A.2. [See [7] Chapter 2 and [16] Remark 1] If f is the restriction
to Σ of a Clifford analytic function f defined in a neighborhood of Ω, then
f(η) = CΣf(η) for every η ∈ Ω. Conversely, if f ∈ C1(Σ, C), then CΣf is
Clifford analytic in Ω and continuous on Ω. Moreover, if f ∈ C1(Σ, C), then

CΣf(ξ) =
1

2
f(ξ) +

1

2
HΣf(ξ), ξ ∈ Σ.

Finally, f is the restriction to Σ of a Clifford analytic function f ∈ C0(Ω, C),
if and only if f = HΣf . Similarly, f is the restriction to Σ of a Clifford
analytic function f ∈ C0(Ωc, C) with lim|x|→∞ f(x) = 0, if and only if f =
−HΣf .

The Hilbert transform is also related to the classical layered potentials
for the Laplace operator on Ω. Recall that the double-layered potential, KΣ,
and the single-layered potential, SΣ, are defined as

KΣf(ξ) = −p.v.

∫
Σ
K(ξ′ − ξ) · n(ξ′)f(ξ′)dS(ξ′), ξ ∈ Σ,

SΣf(ξ) = − 1

4π

∫
Σ

f(ξ′)

|ξ′ − ξ|dS(ξ
′), ξ ∈ R3,

(164)

where f is a real-valued function defined on Σ. By direct inspection, we have

KΣf = ReHΣf and DSΣf = −CΣ(nf).

We define the formal L2(Σ, dS) adjoint of HΣ by H∗
Σ := nHΣn. Then the

L2(Σ, dS) adjoint of KΣ satisfies

K∗
Σf(ξ) = p.v.

∫
Σ
n(ξ) ·K(ξ′ − ξ)f(ξ′)dS(ξ′) = ReH∗

Σf(ξ), ξ ∈ Σ.

(165)
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As shown in [9, 10, 14], the operator I +KΣ : L2(Σ, dS) → L2(Σ, dS) and
its adjoint I +K∗

Σ : L2(Σ, dS) → L2(Σ, dS) are bounded and invertible.

Theorem A.3. For any bounded domain Ω ⊆ R3 with Lipschitz boundary
Σ, the operators I +KΣ, I +K∗

Σ : L2(Σ, dS) → L2(Σ, dS) are bounded and
invertible. Similarly, with L2

0(Σ, dS) denoting the space of L2 functions with
zero average on Σ, the operators I −KΣ, I −K∗

Σ : L2
0(Σ, dS) → L2

0(Σ, dS)
are bounded and invertible. Moreover the operator bounds ‖(I ± K∗

Σ)
−1‖2,2

and ‖(I ±KΣ)
−1‖2,2 depend only on the Lipschitz constant for Σ.

The double-layered potential KΣ is related to the Dirichlet problem on
Ω in the following way. If f ∈ L2(Σ, dS) then the unique solution to the
Dirichlet problem

Δu = 0 in Ω, u|Σ = f,

is given by

u(η) =
1

2π

∫
Σ

(ξ − η) · n(ξ)
|ξ − η|3 (I +KΣ)

−1f(ξ)dS(ξ), η ∈ Ω.

See [9], [10], or [14] for a proof of this fact. Similarly, if f ∈ L2(Σ, dS) then
the unique solution to the Neumann problem

Δu = 0 in Ω, ∇nu|Σ = f,

is given by

u(η) =
1

2π

∫
Σ

1

|ξ − η|(I −K∗
Σ)

−1f(ξ)dS(ξ) = −2SΣ(I −K∗
Σ)

−1f(η),

η ∈ Ω.

(166)

See [9], [10], or [14] for a proof. Note that since f = ∇nu,
∫
Σ fdS =∫

ΩΔudx = 0, so f belongs to the domain of (I − K∗
Σ)

−1. In the follow-
ing lemma we also provide an expression for the Dirichlet-Neumann map
∇n of Σ in terms of layered potentials.

Lemma A.4. For any differentiable function f on Σ, the Dirichlet-Neu-
mann map, ∇n, satisfies

∇nf = (I +K∗
Σ)

−1 p.v.

∫
Σ
(n×K) · (n′ ×∇)f ′dS′.
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Moreover, if f denotes the harmonic extension of f to the interior, Ω, and
Df the restriction of Df to Σ, then

Df = (I +HΣ)(n (I −K∗
Σ)

−1∇nf).

Proof. See [16], equation (3.13), for the proof of this statement.

Finally, we restrict attention to the case where Ω is a ball in R3, Ω =
B1(0), with the standard sphere as boundary, ∂Ω = S2, and present a
formula for the double-layered potential K := KS2 in terms of spherical
harmonics. We start by fixing our notation for spherical harmonics. Recall
that L2(S2) admits a direct sum decomposition L2(S2) =

⊕∞
�=0 Y̊� into the

eigenspaces of the Laplacian /̊Δ on S2. In other words, any smooth function
f ∈ L2(S2) admits a unique decomposition f =

∑∞
�=0 f�, f� ∈ Y̊�, such that

− /̊Δf� = �(�+ 1)f�.

The �th eigenspace Y̊� has dimension 2� + 1, and using the usual polar
coordinates ξ = (cosϕ sin θ, sinϕ sin θ, cos θ) for ξ ∈ S2, an orthonormal
basis for Y̊� is given by

Y m
� (ξ) = Y m

� (θ, ϕ) = (−1)m

√
2�+ 1

4π

(�−m)!

(�+m)!
Pm
� (cos θ)eimϕ,

m = −�, . . . , �,

where Pm
� are the Legendre polynomials Pm

� (x) = 1
2��!(1−x2)m/2 d�+m

dx�+m (x2−
1)�. Using this basis we can decompose a function f ∈ L2(S2) as

f(ξ) =

∞∑
�=0

�∑
m=−�

f �
mY m

� (ξ), f �
m :=

∫
S2

f(ξ′)Y m
� (ξ′)dS(ξ′).

Our interest is in understanding the action of the double-layered potential
K on Y̊�.

Proposition A.5. Let K and S be the double-layered and single-layered
potentials on S2, respectively. K is self-adjoint, that is, K∗ = K, and for any
f� ∈ Y̊�

Kf� = −Sf� = (1− 4 /̊Δ)−
1

2 f� :=
1

2�+ 1
f�.
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Proof. The self-adjointness of K follows by inspection of formulas (164) and
(165), and the observation that when Σ = S2 the exterior normal is given
by n(ξ) = ξ. Using this same observation we get

Kf�(ξ) =
1

4π

∫
S2

f�(ξ
′)

|ξ′ − ξ|dS(ξ
′) = −Sf�(ξ).

Since for any ξ, ξ′ ∈ S2, d
dr |ξ′ − rξ|−1 = |ξ′ − rξ|−3(ξ′ · ξ − r) ≤ 0, by the

dominate convergence theorem

Kf�(ξ) = lim
r→1+

1

4π

∫
S2

f�(ξ
′)

|ξ′ − rξ|dS(ξ
′).

We now use the following representation for |ξ′ − rξ|, valid for any r > 1:

1

|ξ′ − rξ| =
4π

r

∞∑
k=0

r−k

2k + 1

k∑
m=−k

Y m
k (ξ)Y m

k (ξ′).

This relation can be verified by direct computation using properties of Leg-
endre polynomials. See for instance [1]. Plugging this back into the rep-
resentation for K above and using the fact that f� ∈ Y̊�, with f�(ξ) =∑�

m=−� f
�
mY m

� (ξ), we get

Kf�(ξ) = lim
r→1+

r−�−1

2�+ 1

�∑
m=−�

f �
mY m

� (ξ) =
1

2�+ 1
f�.

The analysis above can be extended to SR, the sphere of radius R. We
denote the �th eigenspace of the Laplacian /Δ of SR by Y�, so that /Δf� =

−R−2�(� + 1)f� for f� ∈ Y�. Let K and S be the double and single layered
potentials on SR, respectively. The following proposition is the analogue of
Proposition A.5 for SR.

Proposition A.6. Let K and S be the double-layered and single-layered
potentials on SR, respectively. Then K and S are self-adjoint and S = −RK.
Moreover, for any f� ∈ Y� we have

K =
1

2�+ 1
f�.

Proof. The proof is the same as that of Proposition A.5.
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A.3. Commutator Formulas

We present a number of commutator formulas that are frequently used in
this paper. The proofs of these formulas are similar to the ones in the case
where the domain is diffeomorphic to R2 where they were derived by Wu in
[16, 17].

The following important identity is from [16] (see equation (3.5) on page
453): Suppose ξ, ξ′, η ∈ R3 are arbitrary vectors with ξ �= ξ′, and let K =
K(ξ′ − ξ). Then in local coordinates (α, β) on Σ

−(η · ∇)K(ξ′α′ × ξ′β′) + (ξ′α′ · ∇)K(η × ξ′β′) + (ξ′β′ · ∇)K(ξ′α′ × η) = 0.

(167)

The proof of this identity is identical to the one in [16] so we omit it. Before
stating the commutator formulas for the Hilbert transform HΣ we recall the
following notation from (60):

Q(f, g) =
1

|N |(fαgβ − fβgα),

where (α, β) are orientation preserving local coordinates on Σ.

Lemma A.7. Let f ∈ C1(R×Σ) be a Clifford algebra-valued function, and
let a ∈ C0(R× Σ) be real-valued. Then

[∂t, HΣ]f =

∫
Σ
K(ξ′ − ξ)(ξt − ξ′t)× (n′ ×∇f ′)dS′,

[an×∇, HΣ]f =

∫
Σ
K(ξ′ − ξ)(an− a′n′)× (n′ ×∇f ′)dS′,

[∂2
t , HΣ]f =

∫
Σ
K(ξ′ − ξ)(ξtt − ξ′tt)× (n′ ×∇f ′)dS′

+ 2

∫
Σ
K(ξ′ − ξ)(ξt − ξ′t)× (n′ ×∇f ′

t)dS
′

+

∫
Σ
K(ξ′ − ξ)(ξt − ξ′t)Q(f ′, ξ′t)dS

′

+

∫
Σ
∂tK(ξ′ − ξ)(ξt − ξ′t)× (n′ ×∇f ′)dS.

[∂t,∇n]f = (I +K∗
Σ)

−1Re {−ntHΣDf − n[∂t, HΣ]Df + nHΣ(ntnDf)}

+ (I +K∗
Σ)

−1

∫
Σ
n×K(ξ′ − ξ)
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·
(
Q(f ′, u′)− ∂t|N ′|

|N ′| n′ ×∇f ′
)
dS′.

Proof. The proof is the same as the proof of Lemma 1.2 in [17]. The last

statement has the same proof as equation (3.16) in Lemma 3.2 of [16]. Note

that the analogues of the integration by parts in the proof of Lemma 1.2

in [17] in our case can be carried out using the invariant formulation in

Lemma 3.2.

Remark A.8. Expressions of the form η× (n×∇f) in the identities above

should be understood componentwise. That is,

η × (n×∇f) =
1

|N | ((η × ξβ)fα − (η × ξα)fβ) .

To show that the commutator between n × ∇ and HΣ is small in the

case where Σ is close to a round sphere, we need an additional identity. This

identity which is from the proof of Proposition 2.2 in [17] states that for any

differentiable function f∫
Σ
K(ξ′ − ξ)(ξ′ − ξ)× (n′ ×∇f ′)dS′ = 0.

We omit the simple proof which uses (167) and integration by parts, and can

be found in [17], Proposition 2.2. Note that when Σ is a round sphere the

vector ξ points in the same direction as the normal vector, so comparing with

the expression for [n×∇, HΣ]f in Lemma A.7 we see that [n×∇, HSR
]f = 0.

More generally, for arbitrary Σ we get

[n×∇, HΣ]f =
1

R

∫
Σ
K(ξ′ − ξ)((Rn− ξ)− (Rn′ − ξ′))× (n′ ×∇f ′)dS′.

(168)

Appendix B. Analytic Preparations

In this appendix we collect some general estimates that are used in the paper.

In this section /∇ denotes the covariant differentiation operator with respect

to the standard metric on SR and Ωi denotes the rotational vectorfield about

the axis ei in R3. Ωi is tangent to SR and in coordinates is given by xk∂� −
x�∂k for some k and �. Since the three vectorfields Ω1, Ω2, and Ω3 span the
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tangent space to SR at each point, for any function f : SR → R we have the

pointwise estimate

| /∇f | � 1

R

3∑
i=1

|Ωif |.

The following lemma is just the standard Sobolev estimate on SR which we

record for reference.

Lemma B.1. For any f ∈ H2(SR)

‖f‖L∞(SR) � 1

R
‖f‖L2(SR) +

1

R

3∑
i=1

‖Ωif‖L2(SR) +
1

R

3∑
i,j=1

‖ΩiΩjf‖L2(SR).

When the axis of rotation is not important we simply write Ωf instead

of Ωif , and Ω2f instead of ΩiΩjf , etc. We next turn to estimates on singular

integral operators, due to Calderon, Coifman, David, McIntosh, and Meyer

(see [3], [5], and [6]). The general setup is as as follows. Let J : SR → Rk,

F : Rk → R, and A : SR → R be smooth functions. We want to estimate

singular and nonsingular integrals of the following forms:

C1f(p) := p.v.

∫
SR

F

(
J(p)− J(q)

|p− q|

) ∏N
i=1(Ai(p)−Ai(q))

|p− q|N+2
f(q)dS(q),

(169)

where dS denotes the surface measure on SR, and where we assume that the

kernel

k1(p, q) = F

(
J(p)− J(q)

|p− q|

) ∏N
i=1(Ai(p)−Ai(q))

|p− q|N+2

is odd, that is, k1(p, q) = −k1(q, p). Similarly,

C2f(p) := p.v.

∫
SR

F

(
J(p)− J(q)

|p− q|

) ∏N
i=1 (Ai(p)−Ai(q))

|p− q|N+1
Df(q)dS(q),

(170)

where we assume that the kernel

k2(p, q) = F

(
J(p)− J(q)

|p− q|

) ∏N
i=1 (Ai(p)−Ai(q))

|p− q|N+1



578 Shuang Miao and Sohrab Shahshahani

is even, that is, k2(p, q) = k2(q, p). Here Df = Ωf where Ω is a rotational
vectorfield defined earlier, but we have chosen the notation Df instead of
Ωf for consistency with the main body of the article. To prove the desired
estimates we fix a finite covering {Uα} of SR with geodesic balls of radius
r � R, such that if Uα ∩ Uβ = ∅, then inf{x∈Uα, y∈Uβ} |x − y| > cR for
some absolute constant c. We let {χα} be a smooth partition of unity with
respect to the finite covering {Uα}. Before stating the main estimates we
remark that with d denoting the geodesic distance on SR we have

|p− q| ≤ d(p, q) ≤ C|p− q|, ∀p, q ∈ SR,

and for some absolute constant C > 0. We now state the estimate on C1.
Recall that /∇ denotes the standard covariant differentiation operator on SR.

Proposition B.2. With the same notation as (169)

‖C1f‖L2(SR) ≤ C

N∏
i=1

(
‖ /∇Ai‖L∞(SR) +R−1‖Ai‖L∞(SR)

)
‖f‖L2(SR),(171)

and

‖C1f‖L2(SR) ≤ C
(
‖ /∇A1‖L2(SR) +R−1‖A1‖L2(SR)

)
×

N∏
i=2

(
‖ /∇Ai‖L∞(SR) +R−1‖Ai‖L∞(SR)

)
‖f‖L∞(SR),

(172)

where the constants depend on F and ‖ /∇J‖L∞.

Proof. For simplicity of notation we assume N = 1. Writing

C1f(p) =
∑
β

p.v.

∫
Uβ

F

(
J(p)− J(q)

|p− q|

)
A(p)−A(q)

|p− q|3 χβ(q)f(q)dS(q),

and using the triangle inequality in L2(SR) we estimate

‖C1f‖2L2(SR)

�
∑
α,β

∫
Uα

χα(p)

×
(
p.v.

∫
Uβ

F

(
J(p)− J(q)

|p− q|

)
A(p)−A(q)

|p− q|3 χβ(q)f(q)dS(q)

)2

dS(p)
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=: Iαβ .

We estimate Iαβ differently according to whether Uα and Uβ intersect non-

trivially. If Uα ∩ Uβ = ∅ then |p− q| � R, so we simply have

Iαβ � R−4‖A‖2L∞(SR)

(∫
SR

f(q)dS(q)

)2

� R−2‖A‖2L∞(SR)‖f‖2L2(SR),

in accordance with (171). Similarly

Iαβ � R−6

∫
SR

‖f‖2L∞(SR)

(∫
SR

A(q)dS(q) +R2A(p)

)2

dS(p)

� R−2‖f‖2L∞(SR)‖A‖2L2(SR),

in accordance with (172). Next, if Uα ∩ Uβ �= ∅ then we define U to be a

slight enlargement of Uα ∪ Uβ and let ϕ : B → U ⊆ R3 be a diffeomorphism

onto its image, satisfying

c1 ≤
|ϕ(x)− ϕ(y)|

|x− y| ≤ c2, ∀x, y ∈ B and c3 ≤ |ϕ′(x)| ≤ c4, ∀x ∈ B.

(173)

for some absolute constants c1, . . . , c4, where B = {x ∈ R2 s.t. |x| ≤ r}, and
|ϕ′| := |∂1ϕ× ∂2ϕ|. We can now use the coordinate function ϕ to write the

integrals Iαβ as integrals on R2. For this we first extend ϕ to a map from all

of R2 to R3 in such a way that (173) holds on all of R2 and ϕ(x) /∈ Uα ∪Uβ

for x /∈ B. We then have

Iαβ =∫
R2

χα(ϕ(x))

(
p.v.

∫
R2

F

(
J(ϕ(x))− J(ϕ(y))

|ϕ(x)− ϕ(y)|

)
A(ϕ(x))−A(ϕ(y))

|ϕ(x)− ϕ(y)|3

χβ(ϕ(y))f(ϕ(y))|ϕ′(y)|dy
)2

|ϕ′(x)|dx.

Let Ã : R2 → R, f̃ : R2 → R, and J̃ : R2 → Rk+1 be

Ã = A ◦ ϕ, J̃ = (J ◦ ϕ,ϕ), f̃ = |ϕ′|f ◦ ϕ.
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We also define F̃ ∈ C∞(Rk+1,R) in such away that outside the interval

|zk+1| ≤ δ, δ � c1,

F̃ (z1, . . . , zk+1) =
1

|zk+1|3
F

(
z1

|zk+1|
, . . . ,

zk
|zk+1|

)
.

It follows that

F

(
J(ϕ(x))− J(ϕ(y))

|ϕ(x)− ϕ(y)|

)
A(ϕ(x))−A(ϕ(y))

|ϕ(x)− ϕ(y)|3

= F̃

(
J̃(x)− J̃(y)

|x− y|

)
Ã(x)− Ã(y)

|z − y|3 .

Since |ϕ′|, |χα|, |χβ | � 1, and ‖∇Ã‖Lp(R2) � ‖ /∇A‖Lp(SR) for p = 2,∞, the

contribution of Iαβ can be bounded using Proposition 2.6 in [17].

For C2f we have the following estimate.

Proposition B.3. With the same notation as (170)

‖C2f‖L2(SR) ≤ C

N∏
i=1

(
‖ /∇Ai‖L∞(SR) +R−1‖Ai‖L∞(SR)

)
‖f‖L2(SR),(174)

and

‖C2f‖L2(SR) ≤ C
(
‖ /∇A1‖L2(SR) +R−1‖A1‖L2(SR)

)
×

N∏
i=2

(
‖ /∇Ai‖L∞(SR) +R−1‖Ai‖L∞(SR)

)
‖f‖L∞(SR),

(175)

where the constants depend on F and ‖ /∇J‖L∞.

Proof. This follows from Proposition B.2 and integration by parts. Note that

since /∇ · Ω = 0, for any differentiable functions f and g defined on SR we

have
∫
SR

fΩgdS = −
∫
SR

gΩfdS.

To estimate the derivatives of integral operators such as C1 and C2 we

need to find a convenient expression for these derivatives. We derive such an

expression in the next lemma, both in the case where the domain is SR and

when the domain is the free surface boundary ∂B1. The latter is of separate

interest in the paper.
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Lemma B.4. 1. Suppose L = L(ξ, ξ′) is a vector-valued kernel on ∂B1×
∂B1 such that |ξ − ξ′|2L(ξ, ξ′) is continuous and L is differentiable
away from ξ′ = ξ. Then for any Clifford algebra-valued differentiable
function g on ∂B1,

D

∫
∂B1

Lg′dS′ −
∫
∂B1

LD′g′dS′ =

∫
∂B1

(
(Ω + Ω′)L− e× L

)
g′dS′

+

∫
∂B1

Lg′

|N ′||/g′|−1
Ω′(|N ′||/g′|−1)dS′.

(176)

2. Suppose L = L(ξ, ξ′) is a vector-valued kernel on SR × SR such that
|ξ− ξ′|2L(ξ, ξ′) is continuous and L is differentiable away from ξ′ = ξ.
Then for any Clifford algebra-valued differentiable function g on SR,

D

∫
SR

Lg′dS′ −
∫
SR

LD′g′dS′ =

∫
SR

(
(Ω + Ω′)L− e× L

)
g′dS′.

(177)

Proof. The second part is a consequence of the first in the special case where
∂B1 is a round sphere, so we concentrate on the first. If g′ is scalar-valued,
then by Lemma 2.10

D

∫
∂B1

Lg′dS′ =

∫
∂B′

(ΩL− e× L)g′dS′

=

∫
∂B1

((Ω + Ω′)L− e× L)g′dS′ +

∫
∂B1

LΩ′g′dS′

+

∫
∂B1

Lg′

|N ′||/g′|−1
Ω′(|N ′||/g′|−1)dS′,

proving (176) when g′ is scalar-valued. If g′ is vector-valued, then

D

∫
∂B1

Lg′dS′

= −
∫
∂B1

(ΩL) · g′dS′ +

∫
∂B1

(ΩL)× g′dS′ −
∫
∂B1

e× (L× g′)dS′

=

∫
∂B1

((Ω + Ω′)L)g′dS′ −
∫
∂B1

e× (L× g′)dS′

+

∫
∂B1

LΩ′g′dS′ +

∫
∂B1

Lg′

|N ′||/g′|−1
Ω′(|N ′||/g′|−1)dS′
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=

∫
∂B1

((Ω + Ω′)L)g′dS′ −
∫
∂B1

e× (L× g′)dS′ +

∫
∂B1

L(e× g′)dS′

+

∫
∂B1

LD′g′dS′ +

∫
∂B1

Lg′

|N ′||/g′|−1
Ω′(|N ′||/g′|−1)dS′

=

∫
∂B1

((Ω + Ω′)L)g′dS′ −
∫
∂B1

e× (L× g′)dS′ +

∫
∂B1

g′ · (e× L)dS′

+

∫
∂B1

(L× e)× g′dS′ −
∫
∂B1

e× (g′ × L)dS′

+

∫
∂B1

LD′g′dS′ +

∫
∂B1

Lg′

|N ′||/g′|−1
Ω′(|N ′||/g′|−1)dS′

=

∫
∂B1

((Ω + Ω′)L)g′dS′ −
∫
∂B1

(e× L)g′dS′

+

∫
∂B1

LD′g′dS′ +

∫
∂B1

Lg′

|N ′||/g′|−1
Ω′(|N ′||/g′|−1)dS′,

proving (176) when g′ is vector-valued.

Combining the previous lemma (in the case where ∂B1 is SR and ξ is
the identity mapping) with Sobolev estimates and Proposition B.2 we get
the following L∞ estimate.

Proposition B.5. There is a constant C = C(F, ‖ /∇J‖L∞ , ‖ /∇2
J‖L∞ ,

‖ /∇3
J‖L∞) such that

‖C1f‖L∞(SR) ≤ CR−N
N∏
i=1

(
3∑

k=0

Rk‖ /∇k
Ai‖L∞(SR)

)(
2∑

k=0

Rk‖ /∇k
f‖L∞(SR)

)
.

Proof. The proof is immediate from Lemmas B.1 and B.4 and Proposi-
tion B.2. Note that we have used the embedding L∞(SR) ↪→ L2(SR) to
replace the L2 norms on the right-hand side in Proposition B.2 by L∞

norms.

In applications we often encounter integrals similar to C1 and C2 which
are defined on ∂B1 rather than SR. The estimates in Propositions B.2–B.5
can be transferred to this case if we parameterize ∂B1 by ξ. More precisely,
we have the following corollary.

Corollary B.6. Suppose for some � ≥ 5, ξ satisfies

sup
p,q∈SR

|p− q|
|ξ(p)− ξ(q)| ≤ c0,

∑
|α|≤�

‖Dα(|N ||/g|−1)‖L2(SR) ≤ c1,
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∑
|α|≤�

‖Dαξ‖L2(SR) ≤ c2,

where N = ξα × ξβ, for some constants c0, c1, and c2.

h(ξ) =

∫
∂B1

K(ξ′ − ξ)(g(ξ′)− g(ξ))f(ξ′)dS(ξ′)

for some given functions f and g. Then there is a constant C = C(c0, c1, c2)
such that for all k ≤ �

‖Dkh‖L2(∂B1) ≤
C

R

∑
j≤max{k,3}

‖Djg‖L2(∂B1)

∑
j≤max{k−1,3}

‖Djf‖L2(∂B1).

Proof. To be able to use Propositions B.2 and B.3 we write F (identifying
h ◦ ξ with h as usual) as

h(p) = − 1

2π

∫
SR

|p′ − p|3
|ξ(p′)− ξ(p)|3

(ξ(p′)− ξ(p))(g(p′)− g(p))

|p′ − p|3
|N(p′)|
|/g(p′)|

× f(p′)dS(p′).

Similarly for the L2(∂B1) norms we write

‖Djh‖2L2(∂B1)
=

∫
SR

|Djh(p)|2 |N(p)|
|/g(p)|

dS(p).

The statement now follows from Propositions B.2 and B.3, together with
Lemma B.4, and the Sobolev embedding. We refer the reader to Lemma 2.5
in [2] for a similar argument in dimension two.
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