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The category of framed correspondences Fr∗(k), framed presheaves
and framed sheaves were invented by Voevodsky in his unpublished
notes [20]. Based on the notes [20] a new approach to the classical
Morel–Voevodsky motivic stable homotopy theory was developed
in [8]. This approach converts the classical motivic stable homo-
topy theory into an equivalent local theory of framed bispectra.
The main result of the paper is the core of the theory of framed
bispectra. It states that for any homotopy invariant quasi-stable
radditive framed presheaf of Abelian groups F , the associated Nis-
nevich sheaf Fnis is strictly homotopy invariant and quasi-stable
whenever the base field k is infinite perfect of characteristic differ-
ent from 2.
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1. Introduction

The main goal of the Voevodsky theory on framed correspondences (see [20,
Introduction]) is to suggest a new approach to the stable motivic homotopy
theory SH(k) over a field k. This approach is more amenable to explicit
calculations. Recall that Voevodsky [20, Section 2] invented a category of
framed correspondences Fr∗(k) whose objects are those of Sm/k and mor-
phisms sets Fr∗(X,Y ) = �n�0Frn(X,Y ) are defined by means of certain
geometric data. The elements of Frn(X,Y ) are called framed correspon-
dences of level n. Definitions of Fr∗(k) and stable framed correspondences
Fr(X,Y ) are given in Section 2. In [20] framed presheaves of sets (respec-
tively Nisnevich framed sheaves) are defined and their basic properties are
proved. Based on the notes [20] the theory of big framed motives of bis-
pectra is introduced and studied in [8]. The big framed motive functor of
[8] converts the classical motivic stable homotopy theory into an equiva-
lent local theory of framed bispectra. Thus it gives a new approach to the
classical Morel–Voevodsky stable motivic homotopy theory SH(k) over an
infinite perfect field k. It also has several important computational appli-
cations (see [8]). Particularly, an explicit computation of the suspension
spectra/bispectra of smooth algebraic varieties (or, more generally, of sim-
plicial smooth schemes Y •) in terms of motivic spaces with framed corre-
spondences of the form Fr(Δ• ×−, Y •) is given in [8]. If the motivic space
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Fr(Δ• × −, Y •) is locally connected in the Nisnevich topology, then it is

isomorphic in HA1(k) to the motivic space Ω∞
P1Σ∞

P1(Y •
+) (see [8]). Moreover,

the motivic space Fr(Δ• × −, Y •) is A1-local. This result can be regarded

as a motivic counterpart of the Segal theorem [17, 3.5].

Theorem 1.1 stated below is the core of the theory of big framed motives

of [8]. The main goal of this paper is to prove the theorem. Its equivalent

form, Theorem 2.9, states that for any A1-invariant quasi-stable radditive

framed presheaf of Abelian groups F , the associated Nisnevich sheaf Fnis

is strictly A1-invariant and quasi-stable whenever the base field k is infinite

perfect of characteristic different from 2. The fact that Theorem 1.1 and

Theorem 2.9 are equivalent is explained in Remark 2.18.

We should stress that the original Voevodsky theorem [22, Theorem

3.1.12] as well as similar results from [4, 11] are not suitable for the theory

of big framed motives. The main reason for that is this: bigraded presheaves

of A1-homotopy groups of a bispectrum E ∈ SH(k) are naturally Fr∗(k)-
presheaves (i.e. framed presheaves), however they are in no reasonable way

presheaves with transfers in the sense of [22] or [4, 11]. It follows from [2]

that bigraded sheaves of stable A1-homotopy groups of a bispectrum E ∈
SH(k) are naturally C̃or-sheaves. But even this is not sufficient to develop

the big framed motives theory. To prove [22, Theorem 3.1.12], Voevodsky

used the standard triple machinery [21] developed by him as well as [22,

Proposition 3.1.11]. We should also stress that the standard triple machinery

of Voevodsky does not work at all to prove Theorem 1.1. However, the

present paper is definitely inspired by Voevodsky’s paper [21].

In the rest of the introduction we state Theorem 1.1. To this end, we

choose a field k and write Sm/k for the category of smooth schemes over k.

By Definition 2.11, for any pair X,Y ∈ Sm/k each element a ∈ Frn(X,Y )

has its support Za. It is a closed subset in X×An which is finite over X and

determined by a uniquely. If the support Za of an element a ∈ Frn(X,Y ) is

a disjoint union of Z1 and Z2, then the element a determines uniquely two

elements a1 and a2 in Frn(X,Y ) such that the support of ai is Zi. (this is

explained in Definition 2.11). Therefore one can form the subgroup A(X,Y )

of the free abelian group Z[Frn(X,Y )] generated by elements of the form

1 · a − 1 · a1 − 1 · a2, where a ∈ Frn(X,Y ) runs over those elements whose

support Za is a disjoint union of Z1 and Z2, and a1, a2 are the elements as

above determined by a.

The main result, Theorem 1.1, is stated in terms of ZF∗-presheaves of

abelian groups on smooth algebraic varieties Sm/k. Recall that ZF∗(k) is

defined in [8, Definition 8.3] as an additive category whose objects are those
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of Sm/k and Hom-groups are defined as follows (see Definition 2.11). We
set for every n � 0 and X,Y ∈ Sm/k,

ZFn(X,Y ) := Z[Frn(X,Y )]/A(X,Y ).

In other words, ZFn(X,Y ) is a free abelian group generated by the framed
correspondences of level n with connected supports. We then set

HomZF∗(k)(X,Y ) :=
⊕
n�0

ZFn(X,Y ).

By a presheaf of Abelian groups on ZF∗(k) we mean an additive functor
ZF∗(k)op → Ab.

By definition, a ZF∗(k)-presheaf F of Abelian groups is stable if for any
k-smooth variety the pullback map σ∗

X : F(X) → F(X) equals the identity
map, where σX = (X × 0, X ×A1, t; prX) ∈ ZF1(X,X). In turn, F is quasi-
stable if for any k-smooth variety the pullback map σ∗

X : F(X) → F(X) is
an isomorphism.

The main result of the paper is as follows.

Theorem 1.1. For any A1-invariant quasi-stable ZF∗(k)-presheaf of Abelian
groups F , the associated Nisnevich sheaf Fnis is A1-invariant quasi-stable
ZF∗(k)-presheaf of Abelian groups whenever the base field k is infinite of
characteristic different from 2. Moreover, if the base field k is infinite perfect
of characteristic different from 2, then all Nisnevich cohomology presheaves
Hn

nis(X,Fnis) are canonically ZF∗(k)-presheaves. All these ZF∗(k)-presheaves
are A1-invariant and quasi-stable. Furthermore, the same statements are
true in characteristic 2 if we also suppose that the framed presheaf of abelian
groups F is a presheaf of Z[1/2]-modules.

Throughout the paper the base field k is supposed to be infinite. We also
employ the following notation:

• all schemes are separated Noetherian k-schemes, all morphisms of
schemes are k-morphisms;

• Sm/k is the category of smooth k-schemes of finite type;
• we refer to the objects of Sm/k as k-smooth schemes or smooth k-

schemes;
• Sm′/k is the category of essentially smooth k-schemes. Following [10],
by an essentially smooth k-scheme we mean a Noetherian k-scheme X
which is the inverse limit of a left filtering system (Xi)i∈I with each
transition morphism Xi → Xj being an étale affine morphism between
smooth k-schemes;
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• by an affine essentially smooth k-scheme we mean a k-scheme of the
form Spec(AM ), where A is a smooth k-algebra of finite type and
M ⊂ A is a multiplicative system;

• by a quasi-affine essentially smooth k-scheme we mean an open sub-
scheme of an affine essentially smooth k-scheme;

• EssSm/k is the category of quasi-affine essentially smooth k-schemes.

2. Recollections on Voevodsky’s framed correspondences

In this section we collect basic facts for framed correspondences and framed
presheaves in the sense of Voevodsky [20]. We start with preparations.

Let S be a scheme and Z be a closed subscheme. Recall that an étale
neighborhood of Z in S is a triple (W,π : W → S, s : Z → W ) satisfying the
conditions:

(i) π is an étale morphism;
(ii) π◦s coincides with the inclusion Z ↪→ S (thus s is a closed embedding);
(iii) (π)−1(Z) = s(Z).

A morphism between two étale neighborhoods (W,π, s) → (V, τ, t) of Z in
S is a morphism ρ : W → V such that τ ◦ ρ = π and ρ ◦ s = t. Note that
such ρ is automatically étale.

Definition 2.1 (Voevodsky [20]). For k-smooth schemes Y,X and n � 0
an explicit framed correspondence Φ of level n consists of the following data:

1. a closed subset Z in An
Y which is finite over Y ;

2. an etale neighborhood p : U → An
Y of Z in An

Y ;
3. a collection of regular functions ϕ = (ϕ1, . . . , ϕn) on U such that

∩n
i=1{ϕi = 0} = Z;

4. a morphism g : U → X.

The subset Z will be referred to as the support of the correspondence. We
shall also write triples Φ = (U,ϕ; g) or quadruples Φ = (Z,U, ϕ; g) to denote
explicit framed correspondences.

Two explicit framed correspondences Φ and Φ′ of level n are said to be
equivalent if they have the same support and there exists an open neighbor-
hood V of Z in U ×A

n
Y
U ′ such that on V , the morphism g ◦ pr agrees with

g′ ◦ pr′ and ϕ ◦ pr agrees with ϕ′ ◦ pr′. A framed correspondence of level n is
an equivalence class of explicit framed correspondences of level n.

We let Frn(Y,X) denote the set of framed correspondences of level n
from Y to X. We consider it as a pointed set with the basepoint being the
class 0n of the explicit correspondence with U = ∅.
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As an example, the set Fr0(Y,X) coincides with the set of pointed mor-

phisms Y+ → X+. In particular, for a connected scheme X one has

Fr0(Y,X) = HomSm/k(Y,X) � {00}.

If f : Y ′ → Y is a morphism in Sm/k and Φ = (U,ϕ; g) an explicit

framed correspondence of level n from Y to X then

f∗(Φ) := (U ′ = U ×Y Y ′, ϕ ◦ pr; g ◦ pr)

is an explicit framed correspondence of level n from Y ′ to X.

Remark 2.2. Let Φ = (Z,An
Y

p←− U,ϕ : U → An
k , g : U → X) ∈ Frn(Y,X)

be an explicit framed correspondence of level n. It can more precisely be

written in the form

((α1, α2, . . . , αn), f, Z, U, (ϕ1, ϕ2, . . . , ϕn), g) ∈ Frn(Y,X),

where

� Z ⊂ An
Y is a closed subset finite over Y ,

� an etale neighborhood ((α1, α2, . . . , αn), f) = p : U → An
k × Y of Z,

� a collection of regular functions ϕ = (ϕ1, . . . , ϕn) on U such that

∩n
i=1{ϕi = 0} = Z;

� a morphism g : U → X.

We shall usually drop ((α1, α2, . . . , αn), f) from notation and just write

(Z,U, (ϕ1, ϕ2, . . . , ϕn), g) = ((α1, α2, . . . , αn), f, Z, U, (ϕ1, ϕ2, . . . , ϕn), g).

The following definition is to describe compositions of framed correspon-

dences.

Definition 2.3. Suppose Y,X and S are k-smooth schemes. Let

a = ((α1, α2, . . . , αn), f, Z, U, (ϕ1, ϕ2, . . . , ϕn), g)

be an explicit correspondence of level n from Y to X and let

b = ((β1, β2, . . . , βm), f ′, Z ′, U ′, (ψ1, ψ2, . . . , ψm), g′) ∈ Frm(X,S)
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be an explicit correspondence of level m from X to S. We define their com-
position as an explicit correspondence of level n+m from Y to S by

((α1, α2, . . . , αn, β1, β2, . . . , βm), f ◦ p1, Z ×X Z ′, U ×X U ′,

(ϕ1, ϕ2, . . . , ϕn, ψ1, ψ2, . . . , ψm), g′ ◦ p2).

Clearly, the composition of explicit correspondences respects the equivalence
relation on them and defines associative maps

Frn(Y,X)× Frm(X,S) → Frn+m(Y, S).

Given Y,X ∈ Sm/k, denote by Fr+(Y,X) the pointed set
∨

n Frn(Y,X).
The composition of framed correspondences defined above gives a category
Fr+(k). Its objects are those of Sm/k and the morphisms are given by
the pointed sets Fr+(Y,X), Y,X ∈ Sm/k. Since the naive morphisms of
schemes can be identified with certain framed correspondences of level zero,
we get a canonical functor

Sm/k → Fr+(k).

The category Fr+(k) has the empty scheme as zero object. One can easily see
that for a framed correspondence Φ : Y → X and a morphism f : Y ′ → Y ,
one has f∗(Φ) = Φ ◦ f .

There is also a subcategory Fr0(k) of the category Fr+(k). Its objects
are those of Sm/k and the morphisms are given by the sets Fr0(Y,X),
Y,X ∈ Sm/k.

Definition 2.4 (Voevodsky [20]). Define A1 to be Spec(k[t]). Given any k-
smooth schemeX, there is a distinguished morphism σX = (X×A1, t, prX) ∈
Fr1(X,X). It is worth to mention that for any f ∈ Fr0(Y,X) one has
σX ◦ f = f ◦ σY .

Voevodsky defined a category Fr∗(k) in [20] whose objects are those of
Sm/k and Hom-sets are given by Fr∗(Y,X) = �n�0Frn(X,Y ). There is an
obvious functor p : Fr∗(k) → Fr+(k), which is the identity on objects. We
prefer to work with the category Fr+(k) since it has a zero object.

Definition 2.5. A framed presheaf F on Sm/k is a contravariant functor
from Fr+(k) to the category of sets. A pointed framed presheaf F on Sm/k
is a contravariant functor from Fr+(k) to the category of pointed sets.

A framed presheaf F on Sm/k is called radditive if F(∅) = ∗ and F(X1�
X2) = F(X1) × F(X2). A framed Nisnevich sheaf on Sm/k is a framed
presheaf F such that its restriction to Sm/k is a Nisnevich sheaf.
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A framed presheaf F of Abelian groups on Sm/k is a contravariant
functor from Fr+(k) to the category of Abelian groups. A framed presheaf
F of Abelian groups on Sm/k is radditive if F(∅) = 0 and F(X1 � X2) =
F(X1)×F(X2). A framed Nisnevich sheaf of Abelian groups on Sm/k is a
framed presheaf of Abelian groups F such that its restriction to Sm/k is a
Nisnevich sheaf.

Finally, a framed presheaf F is homotopy invariant or A1-invariant if
for any X ∈ Sm/k and the projection prX : A1 × X → X the map p∗X :
F(X) → F(A1×X) is a bijection. A framed Nisnevich sheaf is A1-invariant
if it is A1-invariant as a framed presheaf.

Remark 2.6. The category of presheaves F of Abelian groups on Fr∗(k)
such that F(∅) = 0 is equivalent to the category of presheaves of abelian
groups G on Fr+(k) with the property G(∅) = 0. The equivalence is given by
the functor G �→ G ◦ p. Particularly, this comment is applicable to radditive
framed presheaves of Abelian groups. By Corollary 2.16 below the category
of radditive framed presheaves of Abelian groups is a Grothendieck category.
Therefore we can apply the standard homological algebra to it.

Voevodsky uses in [20] the term “global framed functors” for our rad-
ditive framed presheaves of sets. Note that the representable presheaves on
Fr+(k) are not radditive.

Definition 2.7 (Voevodsky [20]). A framed presheaf F is stable if for any
k-smooth scheme the pullback map σ∗

X : F(X) → F(X) equals the identity
map, where σX = (X×0, X×A1, t; prX). In turn, F is quasi-stable if for any
k-smooth scheme the pull-back map σ∗

X : F(X) → F(X) is an isomorphism.
Stable and quasi-stable framed presheaves of Abelian groups are defined in
a similar fashion.

Lemma 2.8 (Voevodsky [20], Lemma 4.5). For every radditive framed
presheaf of Abelian groups F the associated sheaf in the Nisnevich topol-
ogy has a unique structure of a framed presheaf of Abelian groups such that
the map F → Fnis is a map of framed presheaves of Abelian groups.

It is useful to have the following equivalent formulation of Theorem 1.1
in terms of framed raddive presheaves.

Theorem 2.9. For any A1-invariant quasi-stable framed radditive presheaf
of Abelian groups F , the associated Nisnevich sheaf Fnis is A1-invariant
quasi-stable framed presheaf of Abelian groups whenever the base field k is
infinite of characteristic different from 2. Moreover, if the base field k is infi-
nite perfect of characteristic different from 2, then all Nisnevich cohomology
presheaves X �→ Hn

nis(X,Fnis) are canonically framed radditive presheaves.
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Furthermore, all these cohomology framed presheaves are A1-invariant and
quasi-stable. Also, the same statements are true in characteristic 2 if we
suppose that the framed presheaf of abelian groups F is a presheaf of Z[1/2]-
modules.

Remark 2.10. The fact that Theorems 2.9 and 1.1 are equivalent is dis-
cussed in Remark 2.18.

The nearest aim is to define all notions related to Theorem 1.1. If the
support Z of a framed correspondence a = (Z,U, ϕ; g) ∈ Frn(Y,X) is a
disjoint union Z ′ � Z ′′, then α gives two framed correspondences

a′ = (Z ′, U \ Z ′′, ϕ|U\Z′′ ; g|U\Z′′) and a′′ = (Z ′′, U \ Z ′, ϕ|U\Z′ ; g|U\Z′)

in Frn(Y,X). Based on this observation, recall the definition of the category
of linear framed correspondences ZF∗(k) introduced in [8, Definition. 8.3].

Definition 2.11. Let Y and X be k-smooth schemes. Let Z[Frn(Y,X)]
be the free abelian group generated by the set Frn(Y,X). Denote by A
its subgroup generated by elements of the form (Z � Z ′, U, ϕ; g) − (Z,U \
Z ′, ϕ|U\Z′ ; g|U\Z′)− (Z ′, U \ Z,ϕ|U\Z , g|U\Z). Set,

ZFn(X,Y ) := Z[Frn(X,Y )]/A.

We shall also refer to the latter relation as the additivity property for sup-
ports. In other words, it says that for a framed correspondence a in Frn(Y,X)
whose support is a disjoint union Z ′�Z ′′ the element 1·a in ZFn(Y,X) equals
the sum 1 · a′ + 1 · a′′ of the elements with supports Z ′ and Z ′′ respectively.

The elements of ZFn(Y,X) are called linear framed correspondences of
level n or just linear framed correspondences. It is worth mentioning that
ZFn(Y,X) is a free abelian group generated by the elements of Frn(Y,X)
with connected support.

Denote by ZF∗(k) the additive category whose objects are those of Sm/k
with Hom-groups defined as

HomZF∗(k)(Y,X) =
⊕
n�0

ZFn(Y,X).

The composition is induced by the composition in the category Fr+(k). The
direct sum of X and X ′ is the disjoin union X � X ′. There is a canonical
functor Sm/k → ZF∗(k) which is the identity on objects and which takes a
regular morphism f : Y → X to the linear framed correspondence 1 ·(Y, Y ×
A0, prA0 , f ◦ prY ) ∈ ZF0(k).
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Remark 2.12. We will often write ZF∗ for ZF∗(k) dropping (k) from
notation. For any X,Y in Sm/k one has the equality ZF∗(−, X � Y ) =
ZF∗(−, X)⊕ ZF∗(−, Y ).

Definition 2.13. By a presheaf of Abelian groups on ZF∗(k) we shall mean
an additive contravariant functor from ZF∗(k) to the category of Abelian
groups Ab.

A ZF∗(k)-Nisnevich sheaf of Abelian groups is a ZF∗(k)-presheaf of
Abelian groups such that its restriction to Sm/k is an ordinary Nisnevich
sheaf.

A ZF∗(k)-presheaf F of Abelian groups is homotopy invariant or A1-
invariant if for any X ∈ Sm/k the projection prX : A1 × X → X induces
an isomorphism p∗X : F(X) → F(A1 × X). A Nisnevich ZF∗(k)-sheaf is
A1-invariant if it is A1-invariant as a ZF∗(k)-presheaf.

The canonical maps Fr+(X,Y ) → HomZF∗(k)(X,Y ) define a functor
R : Fr+(k) → ZF∗(k), which is the identity on objects. We often write σX
for 1 · σX ∈ ZF1(X,X).

Definition 2.14. A ZF∗(k)-presheaf F of Abelian groups is called stable
(respectively quasi-stable), if the framed presheaf F ◦ R is stable (respec-
tively quasi-stable). It is worth mentioning that for any ZF∗(k)-presheaf F
of Abelian groups the framed presheaf F ◦R is radditive.

Lemma 2.15. The functor G �→ G◦R is an equivalence between the category
of radditive framed presheaves of Abelian groups on Sm/k and the category
of ZF∗(k)-presheaves of Abelian groups.

Proof. Let F be a radditive framed presheaf of Abelian groups on Sm/k.
Let us show that there is a unique ZF∗(k)-presheaf of Abelian groups F ′

such that F = F ′ ◦R. Consider k-smooth schemes V1, V2 and their disjoint
union V = V1 �V2 as objects of the category Fr0(k). Let ir : Vr → V be the
inclusion for r = 1, 2 and pr : V → Vr be the projection. So, pr|Vr

= id and
pr|Vs

is the zero morphism for s �= r. The radditivity of F guarantees that
(i1 ◦ p1)∗ + (i2 ◦ p2)∗ = id∗V : F(V ) → F(V ).

Take (V, ϕ; g) ∈ Frn(Y,X) with V = V1 � V2. Then (V, ϕ; g) = g ◦
(V, ϕ; idV ) and (Vr, ϕ|Vr

; idVr
) = pr ◦ (V, ϕ; idV ) for r = 1, 2. Therefore,

(V, ϕ; idV )
∗ = (V1, ϕ|V1

; idV1
)∗ ◦ i∗1 + (V2, ϕ|V1

; idV1
)∗ ◦ i∗2. Hence (V, ϕ; g)∗ =

(V1, ϕ|V1
; idV1

)∗ ◦ g∗1 + (V2, ϕ|V1
; idV1

)∗ ◦ g∗2 = (V1, ϕ|V1
; g1)

∗ + (V2, ϕ|V2
; g2)

∗,
where gr = g ◦ ir for r = 1, 2.

If the support Z of an element (W,ϕ; g) ∈ Frn(Y,X) is a disjoint union
Z1 � Z2, then (W,ϕ; g) = (V, ϕ|V ; g|V ) ∈ Frn(Y,X), where V = (W \ Z2) �
(W \Z1). The computations above show that for the group A from Definition



Homotopy invariant presheaves with framed transfers 11

2.11 and any element a ∈ A the map a∗ : F(X) → F(Y ) is the zero map.

Hence F = F ′ ◦R for a unique ZF∗(k)-presheaf F ′ of Abelian groups.

If G is a ZF∗(k)-presheaf of Abelian groups, then G ◦ R is a radditive

framed presheaf of Abelian groups. The proof is completed.

Corollary 2.16. The category of radditive framed presheaves of Abelian

groups is a Grothendieck category.

Proof. The category of ZF∗(k)-presheaves of Abelian groups is plainly a

Grothendieck category. Lemma 2.15 completes the proof.

The comment in Definition 2.14 together with Lemmas 2.8 and 2.15

imply the following

Corollary 2.17. For every ZF∗(k)-presheaf of Abelian groups F the asso-

ciated sheaf in the Nisnevich topology has a unique structure of a ZF∗(k)-
presheaf of Abelian groups such that the map F → Fnis is a map of ZF∗(k)-
presheaves of Abelian groups.

Remark 2.18. Lemma 2.15 together with Lemma 2.8 show that Theorem

2.9 is equivalent to Theorem 1.1.

In the rest of this section we extend Definition 2.1 to make it suitable

for lots of our computations.

Definition 2.19 (Voevodsky [20]). For any Y ∈ Sm′/k, X ∈ Sm/k and

n � 0, an explicit framed correspondence Φ of level n from Y to X consists

of the following data:

1. a closed subset Z in An
Y which is finite over Y ;

2. an etale neighborhood p : U → An
Y of Z in An

Y ;

3. a collection of regular functions ϕ = (ϕ1, . . . , ϕn) on U such that

∩n
i=1{ϕi = 0} = Z;

4. a morphism g : U → X.

The subset Z will be referred to as the support of the correspondence. We

shall also write triples Φ = (U,ϕ; g) or quadruples Φ = (Z,U, ϕ; g) to denote

explicit framed correspondences.

Two explicit framed correspondences Φ and Φ′ of level n are said to be

equivalent if they have the same support and there exists an open neighbor-

hood V of Z in U ×A
n
Y
U ′ such that on V , the morphism g ◦ pr agrees with

g′ ◦ pr′ and ϕ ◦ pr agrees with ϕ′ ◦ pr′. A framed correspondence of level n is

an equivalence class of explicit framed correspondences of level n.
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We let Frn(Y,X) denote the set of framed correspondences of level n
from Y to X. We consider it as a pointed set with the basepoint being the
class 0n of the explicit correspondence with U = ∅. As an example, the sets
Fr0(Y,X) coincide with the set of pointed k-morphisms Y+ → X+. If f :
Y1 → Y is a k-morphism of essentially k-smooth schemes and Φ = (U,ϕ; g)
an explicit framed correspondence of level n from Y to X then

f∗(Φ) := (U1 = U ×Y Y1, ϕ ◦ pr; g ◦ pr)

is an explicit framed correspondence of level n from Y1 to X. The as-
signment Φ �→ f∗(Φ) respects the equivalence relation and defines a map
f∗ : Frn(Y,X) → Frn(Y1, X). We will write Φ ◦ f for f∗(Φ).

If f1 : Y2 → Y1 is another k-morphism of essentially k-smooth schemes,
then

(Φ ◦ f) ◦ f1 = Φ ◦ (f ◦ f1).

If Y is an essentially k-smooth scheme, X,S are Sm/k, then repeat-
ing literally Definition 2.3 we get a pairing Frn(Y,X) × Frm(X,S) →
Frn+m(Y, S). If X,S, T are k-smooth schemes, a ∈ Frn(Y,X), b ∈
Frn(X,S), c ∈ Frn(S, T ), then (a◦b)◦c = a◦(b◦c). Note that if Y ∈ Sm/k,
then Definitions 2.1 and 2.19 coincide.

Definition 2.20. Let Y be in Sm′/k and X be in Sm/k. Set

� ZFn(Y,X) := Z[Frn(Y,X)]/A, where A is a subgroup generated by
the elements
(Z �Z ′, U, ϕ; g)− (Z,U \Z ′, ϕ|U\Z′ ; g|U\Z′)− (Z ′, U \ Z,ϕ|U\Z , g|U\Z).

The groups have the same functorial properties as the pointed sets
Frn(Y,X).

Note that if Y ∈ Sm/k, then Definitions 2.11 and 2.20 coincide.

For an affine k-smooth scheme Y and a multiplicative set M ⊂ k[Y ] set
YM = Spec(k[Y ]M ). For any m ∈ M let fm : YM → Ym be the canonical
map. Let X be in Sm/k. Then the family of maps f∗

m : Frn(Ym, X) →
Frn(YM , X) defines a map canM : colimm∈MFrn(Ym, X) → Frn(YM , X).
Let Y0 ⊂ Y be an open subset and let Y0,M = YM ∩ Y0.

Lemma 2.21. Let Y,X ∈ Sm/k, Y be an affine k-variety and M be
a multiplicative system. Then the map canM : colimm∈M Frn(Ym, X) →
Frn(YM , X) is a bijection of pointed sets. The same is true if we replace YM
by Y0,M , where Y0 ⊂ Y is an open subset.
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Proof. We first prove that the map in question is injective. Suppose Y is an
affine k-variety. Let m be in M and (Zm, Vm, ϕm; gm), (Z ′

m, V ′
m, ϕ′

m; g′m) ∈
Frn(Ym, X) be such that their images in Frn(YM , X) coincide. Firstly, this
yields that (Zm)M = (Z ′

m)M in YM ×An. Thus enlarging m, we may assume
that Zm = Z ′

m. In this case Vm and V ′
m are both étale neighborhoods of Zm in

Ym×An. Refining Vm and V ′
m, we may assume that Vm = V ′

m. Set V = (Vm)M
and Z = (Zm)M . Then we know that (Z, V, ϕ|V ; g|V ) = (Z, V, ϕ′|V ; g′|V ) in
Frn(YM , X). Thus there is a refinement π : W → V of the neighborhood
V of Z such that π∗(ϕ|V ) = π∗(ϕ′|V ) and π∗(g|V ) = π∗(g′|V ). Since π∗ :
Γ(V,OV ) → Γ(W,OW ) and π∗ : Mork(V,X) → Mork(W,X) are injective,
we see that ϕ|V = ϕ′|V and g|V = g′|V . Enlarging m ∈ M we may assume
that the maps k[Vm] → Γ(V,OV ) and Mork(Vm, X) → Mork(V,X) are
injective. We see that ϕ = ϕ′ and g = g′. This completes the proof of the
injectivity in the case of affine Y . The proof of the injectivity for the case
of an open Y0 ⊂ Y is similar.

To prove surjectivity, we need some preparations. Let d > 0 be an integer
and Hilbd := Hilbd(P

n) be the Hilbert scheme of closed subschemes in Pn

of degree d over k. By [9, Theorem 3.2] it is a projective k-scheme. Let
Zun ⊂ Hilbd×Pn be the universal closed subscheme which is flat, finite and
of degree d over Hilbd. If T is a Noetherian k-scheme and f : T → Hilbd
is a morphism, then T ×Hilbd Zun is a closed subscheme in T × Pn which
is finite, flat of degree d over T . Vice versa, for any T as above, any closed
subscheme S in T × Pn which is finite, flat of degree d over T , there is a
unique morphism fS : T → Hilbd such that the closed subschemes S and
T ×Hilbd Zun coincide in T × Pn.

For a point s ∈ Hilbd let Zs = s ×Hilbd Zun be the fibre of Zun over s.
It is a closed subscheme in Pn

k(s) of degree d over k(s). Let Pn−1 = Pn −An.

Let Hilbd(A
n) = {s ∈ Hilbd : Zs ∩ Pn−1 = ∅}. Then Hilbd(A

n) is an open
subset in Hilbd. Set Z(An) = Zun∩Hilbd(A

n)×Pn. Clearly, Z(An) = Zun∩
Hilbd(A

n)× An. Write in : Hilbd(A
n) ↪→ Hilbd for the open embedding.

Suppose Y is an affine k-variety. Without loss of generality we may as-
sume that Y is irreducible. Let (Z, π : V → YM×An, ϕ; g) be in Frn(YM , X).
We need to find (Zm, Vm, ψm; gm) ∈ Frn(Ym, X) for some m ∈ M which is
a lift of (Z, V, ϕ; g) ∈ Frn(YM , X).

We may assume that V is an affine YM -scheme. Since V is an étale
neighborhood of Z in YM × An we are given with a closed embedding s :
Z → V . Let I be the ideal in Γ(V,OV ) generated by ϕ1, ..., ϕn. Since (Z, π :
V → YM ×An, ϕ; g) is in Frn(YM , X) we know that the closed subsets s(Z)
and {ϕ1 = ... = ϕn = 0} of V coincide. Write Z for the closed subscheme
of V defined by I. It is easy to check that π|Z : Z → YM × An is a closed
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embedding. We will write S for the closed subscheme π(Z) of YM ×An. We

will also write s̃ : S → V for the scheme morphism S
(π|Z)−1

−−−−−→ Z ↪→ V .
Clearly, s̃|Z = s, (V, π, s̃) is an étale neighborhood of S in YM × An and Z
(regarded as a scheme with the reduced scheme structure) is the maximal
closed reduced subscheme of S.

Since Z is finite over YM the schemes Z and S are also finite over YM .
Since the scheme Z is a locally complete intersection over YM , it is flat over
YM , and hence so is S. Since S is finite over YM it remains closed if we regard
it as a subscheme in YM×Pn. So, the closed subscheme S of YM×Pn is finite,
flat of some degree d > 0 over YM . As explained above there is a unique
morphism fS : YM → Hilbd such that the closed subschemes YM ×Hilbd Zun

and S of the scheme YM × Pn coincide.
The inclusion S ⊂ YM×An yields that fS = in◦f for a unique morphism

f : YM → Hilbd(A
n) and S = YM ×Hilbd(An) Z(An) as closed subschemes

in YM × An. Since the k-scheme Hilbd(A
n) is of finite type, by [19, Ap-

pendix C.5.1] there is an m ∈ M and a morphism fm : Ym → Hilbd(A
n)

such that f = fm|YM
. Set Sm = Ym ×Hilbd(An) Z(An) ⊂ Ym × An. Then

S = (Sm)M . For any m′ ∈ M such that m′ = m · m1 with m1 ∈ M , set
Sm′ = (Sm)m′ . Enlarging m ∈ M we may assume that there is an étale
neighborhood (Vm, πm, s̃m) of Sm in Ym × An such that Vm is an affine
Ym × An-scheme and (Vm, πm, s̃m)M = (V, π, s̃). For any m′ ∈ M such that
m′ = m · m1 with m1 ∈ M set (Vm′ , πm′ , s̃m′) = (Vm, πm, s̃m)m′ . Then
(Vm′ , πm′ , s̃m′) is an étale neighborhood of Sm′ in Ym′ × An.

Let Im′ ⊂ k[Vm′ ] be the ideal defining the closed subscheme s̃m′(Sm′)
of the scheme Vm′ . Enlarging m ∈ M once again we can find ψ1, ...ψn ∈
Im such that their restrictions to V coincide with ϕ1, ..., ϕn respectively.
Since V = (Vm)M , S = (Sm)M and s̃ = (s̃m)M we have the equality I =
(Im)M . Thus enlarging m ∈ M , we may assume that the ideal Im ⊂ k[Vm]
is generated by the functions ψ1|Vm

, ...ψn|Vm
. Since X is a k-scheme of finite

type we can enlarge m ∈ M once again and find a morphism gm : Vm → X
such that gm|V : V → X coincides with g. Let Zm be the maximal closed
reduced subscheme of the scheme Sm and sm := s̃m|Zm

: Zm → Vm. Then
(Vm, πm, sm) is an étale neighborhood of Zm in Ym × An. We now see that
(Zm, Vm, ψm; gm) ∈ Frn(Ym, X) is a lift of (Z, V, ϕ; g). This completes the
proof of surjectivity for an affine Y .

The proof of surjectivity for the case of an open Y0 ⊂ Y is a bit more
technical, but it is shown in the same fashion. The key is to use the Hilbert
scheme Hilbd(A

n). We leave this part of the proof to the reader.

The following fact immediately follows from Lemma 2.21.
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Corollary 2.22. Under the assumptions of Lemma 2.21 the following map
is an isomorphism

canM : colimm∈M ZFn(Ym, X) → ZFn(YM , X).

The same is true if we replace YM with Y0,M , where Y0 ⊂ Y is an open
subset.

Let Y,X be in Sm/k and y ∈ Y be a point. Consider the henselization
Y h
y at y of the local scheme Yy := SpecOY,y. For an étale neighborhood

(V, π : V → Yy, s : y → V ) let fV : Y h
y → V be the canonical map and

f∗
V : Frn(V,X) → Frn(Y

h
y , X) be the induced map. Then the family of

pointed sets maps f∗
V defines a map

canY,y : colim(V,π,s)Frn(V,X) → Frn(Y
h
y , X),

where the colimit is taken over the co-filtered category of étale neighbor-
hoods of y in Yy. Arguing as in the proof of Lemma 2.21 we get the following

Lemma 2.23. Let Y,X be in Sm/k and y ∈ Y be a point. Then the map
canY,y is an isomorphism.

Corollary 2.24. Under the assumptions of Lemma 2.23 the following map
is an isomorphism

canY,y : colim(V,π,s) ZFn(V,X) → ZFn(Y
h
y , X).

Remark 2.25. Lemma 2.23 and Corollary 2.24 show that the pointed set
Frn(Y

h
y , X) (respectively the group ZFn(Y

h
y , X)) coincides with the Nis-

nevich stalk at the point y ∈ Y of the presheaf Frn(−, X) on Sm/k (respec-
tively of the presheaf ZFn(−, X) on Sm/k).

3. A few theorems

The main goal of this section is to state a few theorems on preshaves with
framed transfers. As an application, we deduce the following result (which
is the first assertion of Theorem 1.1).

Theorem 3.1. For any A1-invariant quasi-stable ZF∗-presheaf of abelian
groups F , the associated Nisnevich sheaf Fnis is A1-invariant and quasi-
stable ZF∗-presheaf if the characteristic of the base field k is different from
2. If the characteristic of k equals 2 and F is an A1-invariant quasi-stable
ZF∗-presheaf of Z[1/2]-modules, then the associated Nisnevich sheaf Fnis is
A1-invariant and quasi-stable ZF∗-presheaf of Z[1/2]-modules.
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We need some definitions. We will write (V, ϕ; g) for an element a in
Frn(Y,X). We also write Za to denote the support of (V, ϕ; g). It is a closed
subset in Y ×An which is finite over Y and which coincides with the common
vanishing locus of the functions ϕ1, ..., ϕn in V . Next, by 〈V, ϕ; g〉 we denote
the image of the element 1 · (V, ϕ; g) in ZFn(Y,X).

In what follows by SmOp/k we mean a category whose objects are pairs
(X,V ), where X ∈ Sm/k and V is an open subset of X. For (Y,W ) and
(X,V ) in SmOp/k a morphism between them is a morphism f : Y → X
in Sm/k such that f(W ) ⊂ V . By Sm′Op/k we mean a category whose
objects are pairs (Y,W ), where Y ∈ Sm′/k and W is an open subset of Y .
Morphisms in Sm′Op/k are defined similar to morphisms in SmOp/k. The
category SmOp/k is a full subcategory of the category Sm′Op/k.

Definition 3.2. Define ZF pr
∗ (k) as an additive category whose objects are

those of SmOp/k and Hom-groups are defined as follows. We set for every
n � 0 and (Y,W ), (X,V ) ∈ SmOp/k:

ZF pr
∗ ((Y,W ), (X,V )) = ker[ZF∗(Y,X)⊕ ZF∗(W,V )

i∗Y −iX,∗−−−−−→ ZF∗(W,X)],

where iY : W → Y is the embedding and iX : V → X is the embedding.
In other words, each group ZF pr

n ((Y,W ), (X,V )) consists of pairs (a, b) ∈
ZFn(Y,X)⊕ZFn(W,V ) such that iX◦b = a◦iY . By definition, the composite
(a, b) ◦ (a′, b′) is the pair ((a ◦ a′), (b ◦ b′)).

We define ZF ∗(k) as an additive category whose objects are those of
Sm/k and Hom-groups are defined as follows. We set for every n � 0 and
X,Y ∈ Sm/k:

ZF ∗(Y,X) = Coker[ZF∗(A
1 × Y,X)

i∗0−i∗1−−−→ ZF∗(Y,X)].

Next, one defines ZF
pr
∗ (k) as an additive category whose objects are

those of SmOp/k and Hom-groups are defined as follows. We set for every
n � 0 and (X,V ), (Y,W ) ∈ SmOp/k:

ZF
pr
∗ ((Y,W ), (X,V )) =

= Coker[ZF pr
∗ (A1 × (Y,W ), (X,V ))

i∗0−i∗1−−−→ ZF pr
∗ ((Y,W ), (X,V )].

Definition 3.3. Using Definition 2.20 and literally repeating Definition 3.2,
define groups

ZF ∗(Y,X),ZF pr
∗ ((Y,W ), (X,V )),ZF

pr
∗ ((Y,W ), (X,V ))
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with (Y,W ) ∈ Sm′Op/k and (X,V ) ∈ SmOp/k. These groups are covari-
antly functorial in morphisms of ZF ∗(k), ZF

pr
∗ (k) and ZF

pr
∗ (k) respectively.

These groups are also contravariantly functorial in morphisms of Sm′/k and
in Sm′Op/k respectively.

Notation 3.4. Let (Y, Y 0) be Sm′Op/k and (X,X0) be in SmOp/k. Given
a ∈ ZF∗(Y,X), denote by [a] its class in ZF ∗(Y,X).

Similarly, if r = (a, b) ∈ ZF pr
∗ ((Y, Y 0), (X,X0)), then we will write [[r]]

to denote its class in ZF
pr
∗ ((Y, Y 0), (X,X0)).

Let (V, ϕ; g) be in Frn(Y,X). If i : Y 0 ↪→ Y is open in Y , X0 is open in
X and g(Z0) ⊂ X0 with Z0 the support of (V, ϕ; g) ◦ i, then 〈〈V, ϕ; g〉〉 will
stand for the element

(〈V, ϕ; g〉, 〈V 0, ϕ0; g0〉) ∈ ZFn((Y, Y
0), (X,X0)),

where V 0 := (Y 0 ×Y V ) ∩ g−1(X0), ϕ0 = ϕ|V 0 , g0 = g|V 0 .
We will also write [V, ϕ; g] to denote the class of 〈V, ϕ; g〉 in ZFn(Y,X). In

turn, [[V, ϕ; g]] will stand for the class of 〈〈V, ϕ; g〉〉 of ZF pr
n ((Y, Y 0), (X,X0)).

Remark 3.5. Clearly, the category ZF∗(k) is a full subcategory of ZF pr
∗ (k)

via the assignment X �→ (X, ∅). Similarly, the category ZF ∗(k) is a full
subcategory of ZF

pr
∗ (k) via the assignment X �→ (X, ∅).

In what follows we will also use the following groups.

Definition 3.6. Let (X,X0) be in SmOp/k. Let Y ∈ Sm′/k and Y 0 ⊂ Y
be an open subset. Let j : (X0, X0) ↪→ (X,X0) be the open embedding. For
any integer n � 0 set

ZFn((Y, Y
0), (X,X0)) =

= Coker[j∗ : ZFn((Y, Y
0), (X0, X0)) → ZFn((Y, Y

0), (X,X0))],

where j∗ takes r to j ◦ r.
These groups are contravariantly functorial with respect to morphisms

f : (Y1, Y
0
1 ) → (Y, Y 0) in Sm′Op/k. They are also covariantly functorial with

respect to morphisms in ZF
pr
∗ (k). Namely, if s ∈ ZF

pr
n ((X,X0), (S, S0)),

then the rule r �→ s ◦ r induces a homomorphism

s∗ : ZFm((Y, Y 0), (X,X0)) → ZFm+n((Y, Y
0), (S, S0)).

Notation 3.7. Let (Y, Y 0) be in Sm′Op/k and (X,X0) be in SmOp/k. If
r = (a, b) belongs to ZF pr

m ((Y, Y 0), (X,X0)), then we will write [[r]] for its
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class in ZFm((Y, Y 0), (X,X0)). For any morphism f : (Y1, Y
0
1 ) → (Y, Y 0) in

Sm′Op/k and any s ∈ ZF
pr
n ((X,X0), (S, S0)) set

[[r]] ◦ [[f ]] := f∗([[r]]), [[s]] ◦ [[r]] := s∗([[r]])

in ZFn((Y1, Y
0
1 ), (X,X0)) and ZFm+n((Y, Y

0), (S, S0)) respectively.

Given (X,X0) in SmOp/k, we will write 〈〈σX〉〉 for the morphism (1 ·
σX , 1 · σX0) in ZF1((X,X0), (X,X0)), [[σX ]] will denote the class of 〈〈σX〉〉
in ZF 1((X,X0), (X,X0)), and [[σX ]] is its class in ZFn((X,X0), (X,X0)).

The class of the element [[V, ϕ; g]] in ZFn((Y, Y
0), (X,X0)) will be de-

noted by [[V, ϕ; g]].

Construction 3.8. Let F be an A1-invariant ZF∗(k)-presheaf of abelian
groups. Then the assignments (X,V ) �→ F(X,V ) := F(V )/Im(F(X)) and

(a, b) �→ [(a, b)∗ = b∗ : F(V )/Im(F(X)) → F(W )/Im(F(Y ))],

for any (a, b) ∈ ZF∗((Y,W ), (X,V )) define a presheaf Fpr on the category
ZF

pr
∗ (k).

The nearest aim is to formulate a series of theorems (each of which is
of independent interest), which are crucial for the proof of Theorem 1.1. To
formulate these theorems, we use notation and definitions from this section.

Theorem 3.9 (Injectivity on the affine line). Let U ⊂ A1
k be an open subset

and let i : V ↪→ U be a non-empty open subset. Then there is a morphism
r ∈ ZF1(U, V ) such that [i] ◦ [r] = [σU ] in ZF 1(U,U).

Theorem 3.10 (Excision on the affine line). Let U ⊂ A1
k be an open subset.

Let i : V ↪→ U be an open inclusion with V non-empty. Let S ⊂ V be a proper
closed subset. Then there are morphisms r ∈ ZF1((U,U−S), (V, V −S)) and
l ∈ ZF1((U,U − S), (V, V − S)) such that

[[i]] ◦ [[r]] = [[σU ]] and [[l]] ◦ [[i]] = [[σV ]]

in ZF 1((U,U −S), (U,U −S)) and ZF 1((V, V −S), (V, V −S)) respectively.

Theorem 3.11 (Injectivity for local schemes). Let X ∈ Sm/k be irre-
ducible, x ∈ X be a point, U = Spec(OX,x), D � X be a closed subset. Then
there exists an integer N and an element r ∈ ZFN (U,X −D) such that

[j] ◦ [r] = [σN
X ] ◦ [can]
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in ZFN (U,X) with j : X − D ↪→ X the open inclusion and can : U → X
the canonical morphism.

Theorem 3.12 (Excision on the relative affine line). Let W ∈ Sm/k be an
affine variety. Let i : V = (A1

W )f ⊂ A1
W be an affine open subset, where

f ∈ k[W ][t] is a monic polynomial such that f(0) ∈ k[W ]×. Then there are
morphisms

r ∈ ZF1((A
1
W ,A1

W − 0×W ), (V, V − 0×W )) and

l ∈ ZF1((A
1
W ,A1

W − 0×W ), (V, V − 0×W ))

such that

[[i]] ◦ [[r]] = [[σA
1
W
]] and [[l]] ◦ [[i]] = [[σV ]]

in ZF 1((A
1
W ,A1

W − 0 × W ), (A1
W ,A1

W − 0 × W )) and ZF 1((V, V − 0 ×
W ), (V, V − 0×W )) respectively.

To formulate two further theorems concering étale excision properties, we
need some preparations. Let X,X ′ be in Sm/k and let both be irreducible.
Suppose V ⊂ X and V ′ ⊂ X ′ are open subschemes. Let

V ′ X ′

Π

V X

be an elementary distinguished square in the sense of [13, Definition 3.1.3].
This means that Π is etale, the square is cartesian and, moreover, if S =
X − V and S′ = X ′ − V ′ are closed subschemes equipped with reduced
structures, then Π induces a scheme isomorphism S′ → S. Let x ∈ S and
x′ ∈ S′ be two points such that Π(x′) = x. Let U = Spec(OX,x) and
U ′ = Spec(OX′,x′). Let π : U ′ → U be the morphism induced by Π.

Theorem 3.13 (Injective étale excision). Under the notation above there is
an integer N and an element r ∈ ZFN ((U,U − S), (X ′, X ′ − S′)) such that

[[Π]] ◦ [[r]] = [[σN
X ]] ◦ [[can]]

in ZFN ((U,U − S), (X,X − S)), where can : U → X is the canonical mor-
phism.

The statements of the next theorem depend on the characteristic of the
base field k.
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Theorem 3.14 (Surjective étale excision). Under the above notations sup-
pose in addition that S is k-smooth and k is of characteristic different from 2.
Then there is an integer N and an element l ∈ ZFN ((U,U−S), (X ′, X ′−S′))
such that

[[l]] ◦ [[π]] = [[σN
X′ ]] ◦ [[can′]]

in ZFN ((U ′, U ′ − S′), (X ′, X ′ − S′)) with can′ : U ′ → X ′ the canonical
morphism.

If the charcteristic of k is 2, then there is an integer N and an element
l ∈ ZFN ((U,U − S), (X ′, X ′ − S′)) such that

2 · [[l]] ◦ [[π]] = 2 · [[σN
X′ ]] ◦ [[can′]]

in ZFN ((U ′, U ′ − S′), (X ′, X ′ − S′)).

To formulate Theorem 3.15 it is convenient to give the following com-
ments. Consider the inclusion of categories inc : Sm/k → Sm′/k, where
Sm′/k is the category of essentially smooth schemes over k. Then for any
presheafG of Abelian groups on Sm/k the restriction of the presheaf inc∗(G)
on Sm′/k to Sm/k equals G (that is inc∗(inc∗(G)) = G on Sm/k ). For any
essentially smooth scheme Y over k we will use notation G(Y ) instead of
inc∗(G)(Y ). Any ZF∗(k)-presheaf F can be regarded as a Sm/k-presheaf.
So this comment is applicable to the presheaf F|Sm/k and allows to state
items (3) and (3’) of Theorem 3.15.

Let (X,V ), (X ′, V ′) ∈ SmOp/k be the pairs from the elementary dis-
tinguished square above. The assignments X0 �→ Fpr(X0, X0 ∩ V ), X ′

0 �→
Fpr(X ′

0, X
′
0 ∩ V ′) are Zariski presheaves on X and on X ′ respectively. So

they have Zariski stalks at the points x and x′ respectively. The morphism
Π : X ′ → X induces the pull-back map between these stalks. It is written
as [[π]]∗ in the item (5) of Theorem 3.15.

We are now in a position to state the following

Theorem 3.15. For any A1-invariant quasi-stable ZF∗-presheaf of abelian
groups F the following statements are true:

(1) under the assumptions of Theorem 3.9 the map i∗ : F(U) → F(V ) is
injective;

(2) under the assumptions of Theorem 3.10 the map

[[i]]∗ : F(U − S)/F(U) → F(V − S)/F(V )

is an isomorphism;
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(3) under the assumptions of Theorem 3.11 the map

η∗ : F(U) → F(Spec(k(X)))

is injective, where η : Spec(k(X)) → U is the canonical morphism;
(3’) under the assumptions of Theorem 3.11 let Uh

x be the henselization of
U at x and let k(Uh

x ) be the function field on Uh
x . Then the map

η∗h : F(Uh
x ) → F(Spec(k(Uh

x )))

is injective, where ηh : Spec(k(Uh
x )) → Uh

x is the canonical morphism;
(4) under the assumptions of Theorem 3.12 the map

[[i]]∗ : F(A1
W − 0×W )/F(A1

W ) → F(V − 0×W )/Im(F(V ))

is an isomorphism;
(5) under the assumptions of Theorems 3.13 and 3.14 the map

[[π]]∗ : F(U − S)/F(U) → F(U ′ − S′)/F(U ′)

is an isomorphism whenever the characteristic of k is different from
2.

If the characteristic of k is 2 and the presheaf F is a presheaf of Z[1/2]-
modules, then the map

[[π]]∗ : F(U − S)/F(U) → F(U ′ − S′)/F(U ′)

is an isomorphism.

Remark 3.16. By [22, Proposition 3.1.11] any presheaf with transfers in
the sense of [22] is a pretheory in the sense of [21, Definition 3.1]. This allows
Voevodsky to conclude that all results from [21] are applicable to homotopy
invariant presheaves with transfers. This is a reason to make a link between
the preceding theorem and some results from [21].

The assertions (1) and (2) are similar to some assertions from the proof
of [21, Theorem 4.15]. The assertion (3) is similar to [21, Corollary 4.18].
The assertion (4) (together with Corollary 3.19 below) is reminiscent of [21,
Proposition 4.11]. The assertion (5) is similar to [21, Corollary 4.13].

Theorem 3.15 is derived from Theorems 3.9–3.14 as we will show be-
low in this section. In turn, Theorems 3.9, 3.10 and 3.12 will be proved in
Sections 6 and 7 respectively. Theorem 3.11 will be derived from Theorem
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14.3 in Section 9. In turn, Theorem 14.3 will be proved in Section 14. In
Section 11, Theorem 3.13 will be derived from Proposition 10.9 and Theo-
rem 14.3 (Theorem 14.3 will be proved in Section 14). Proposition 10.9 will
be proved in Section 15. In Section 13, Theorem 3.14 will be derived from
Proposition 12.6 and Theorems 14.4–14.5. In turn, Theorems 14.4–14.5 will
be proved in Section 14. Proposition 12.6 will be proved in Section 15.

To derive all assertions of Theorem 3.15 except (1), (2) and (4) we need
a couple of lemmas.

Lemma 3.17. Under the hypotheses of Lemma 2.21 the following map is
an isomorphism

canM : colimm∈M ZFn(Ym, X) → ZFn(YM , X).

The same is true if we replace YM with Y0,M , where Y0 ⊂ Y is an open
subset.

Proof. By Corollary 2.22 one has ZFn(A
1 × YM , X) = colimm∈M ZFn(A

1 ×
Ym, X) and ZFn(YM , X) = colimm∈MZFn(Ym, X). This proves the lemma.

Lemma 3.18. Under the hypotheses of Lemma 2.21 the following maps are
isomorphisms:

canM : colimm∈M ZFn((Ym, Y0,m), (X,X0)) → ZFn((YM , Y0,M ), (X,X0)),

canM : colimm∈M ZFn((Ym, Y0,m), (X,X0)) → ZFn((YM , Y0,M ), (X,X0)),

canM : colimm∈M ZFn((Ym, Y0,m), (X,X0)) → ZFn((YM , Y0,M ), (X,X0)).

Proof. Prove the first assertion. For any pair (S, S0) in EssSmOp/k one has

ZFn((S, S0), (X,X0)) = ker[ZFn(S,X) ⊕ ZFn(S0, X0)
i∗S−iY,∗−−−−→ ZFn(S0, X)]

by Definition 3.2. Therefore ZFn((YM , Y0,M ), (X,X0)) = ker[ZFn(YM , X)⊕
ZFn(Y0,M , X0) → ZFn(Y0,M , X)] and for any m ∈ M , we have

ZFn((Ym, Y0,m), (X,X0)) =

= Ker[ZFn(Ym, X)⊕ ZFn(Y0,m, X0) → ZFn(Y0,m, X)].

Corollary 2.22 completes the proof of the first assertion.
The second assertion follows from the first assertion in the same fashion

as Lemma 3.17 was derived from Corollary 2.22. To prove the third assertion,

recall that for any (S, S0) ∈ EssSmOp/k one has ZFn((S, S0), (X,X0)) =
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Coker[j∗ : ZFn((S, S0), (X0, X0)) → ZFn((S, S0), (X,X0))] by Definition 3.6.

Hence ZFn((YM , Y0,M ), (X,X0)) = Coker[j∗ : ZFn((YM , Y0,M ), (X0, X0)) →
ZFn((YM , Y0,M ), (X,X0))] and for any m ∈ M , ZFn((Ym, Y0,m), (X,X0)) =
Coker[j∗ : ZFn((Ym, Y0,m), (X0, X0)) → ZFn((Ym, Y0,m), (X,X0))]. Apply-
ing the second part of the lemma, we complete the proof of the third asser-
tion.

Reducing Theorem 3.15 to Theorems 3.9–3.14. Theorem 3.9 implies the as-
sertion (1). To prove the assertion (2), use Construction 3.8 and apply The-
orem 3.10. To prove the assertion (4), use Construction 3.8 and apply The-
orem 3.12.

Let us prove assertion (3). Let a ∈ F(U) be such that η∗(a) = 0. Shrink-
ing X, one can find an element a′ ∈ F(X) such that a′|U = a. Since
a′|Spec(k(X)) = 0, there is a closed subset D � X such that a′|X−D = 0.
By Theorem 3.11, Corollary 2.22 and Lemma 3.17 there are a Zariski open
subset U1 containing x and a morphism r1 ∈ ZFN (U1, X − D) such that
[j] ◦ [r1] = [σN

X ] ◦ [in] in ZFN (U1, X) (here in : U1 ↪→ X is the em-
bedding). Since σN

X ◦ in = in ◦ σN
U1

and F is A1-invariant, we have 0 =

r∗1(j
∗(a′)) = (σN

U1
)∗(in∗(a′)). Since F is quasi-stable, we have in∗(a′) = 0

and a = a′|U = in∗(a′|U ) = 0. The assertion (3) is proved. The assertion (3’)
is a simple consequence of the assertion (3).

We use Construction 3.8 in the rest of the proof. Prove the assertion (5).
Prove its first part when char(k) �= 2. Let us verify injectivity of [[π]]∗. Let
a ∈ Fpr(U,U − S) be such that [[π]]∗(a) = 0 in Fpr(U ′, U ′ − S′). Replacing
X with an open X1 ⊂ X, we may assume that a = a1|(U,U−S) for an element
a1 ∈ Fpr(X1, X1 − S). Set X ′

1 = Π−1(X1) and Π1 = Π|X′
1
: X ′

1 → X1. Then
the square consisting of X ′

1, X1, X
′
1−S′, X1−S and the obvious morphisms

including Π1 is an elementary distinguished square. For any open X2 in X1

write a2 for a1|(X2,X2−S). Since Π is étale it is an open morphism. Replacing
X ′

1 with a neighborhood X ′
2 of the point x′ ∈ X ′ and setting X2 = Π1(X

′
2)

we may assume that [[Π2]]
∗(a2) = 0, where Π2 = Π|X′

2
: X ′

2 → X2. One
can check that the square consisting of X ′

2, X2, X
′
2 − S′, X2 − S and the

obvious morphisms including Π2 is an elementary distinguished square. Us-
ing Theorem 3.13 and Lemma 3.18 one can find a neighborhood U1 ⊂ X2

of the point x ∈ X, morphisms r1 ∈ ZF1(U1, U1 − S), (X ′
2, X

′
2 − S′)),

b ∈ ZF1((U1, U1 − S), (X2 − S,X2 − S)) such that

[[Π2]] ◦ [[r1]] = [[σX2
]] ◦ [[In]] + [[J ]] ◦ [[b]] ∈ ZF 1((U1, U1−S), (X2, X2−S)),

where In : (U1, U1−S) ↪→ (X2, X2−S), J : (X2−S,X2−S) ↪→ (X2, X2−S)
are embeddings. Clearly, Fpr(X2 − S,X2 − S) = 0. Since [[σX2

]] ◦ [[In]] =
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[[In]] ◦ [[σU1
]] and [[Π2]]

∗(a2) = 0 in Fpr(X ′
2, X

′
2 − S′), we have

0 = [[r1]]
∗([[Π2]]

∗(a2)) = [[σU1
]]∗([[In]]∗(a2)).

Since F is quasi-stable we get equalities a2|(U1,U1−S) = [[In]]∗(a2) = 0 in
Fpr(U1, U1 − S). Thus, a = a1|(U,U−S) = a2|(U,U−S) = 0.

Let us verify that [[π]]∗ is surjective. Take an element a ∈ Fpr(U ′, U ′ −
S′). Replacing X ′ with an open X ′

1 ⊂ X ′ we may assume that a =
a1|(U ′,U ′−S′) for some a1 ∈ Fpr(X ′

1, X
′
1 − S′). Set X1 = Π(X ′

1) and Π1 =
Π|X′

1
: X ′

1 → X1. Then the square consisting of X ′
1, X1, X

′
1 − S′, X1 − S

and the obvious morphisms including Π1 is an elementary distinguished
square. Since F is quasi-stable there is an element a′1 ∈ Fpr(X ′

1, X
′
1 − S′)

such that a1 = [[σX′
1
]]∗(a′1). Using Theorem 3.14 and Lemma 3.18 one

can find neighborhoods U2, U ′
2 ⊂ Π−1(U2) of points x ∈ X, x′ ∈ X ′

respectively and morphisms l2 ∈ ZF1((U2, U2 − S), (X ′
1, X

′
1 − S′)), c ∈

ZF1((U
′
2, U

′
2 − S′), (X ′

1 − S′, X ′
1 − S′)) such that

[[l2]] ◦ [[π2]] = [[σX′
2
]] ◦ [[in]] + [[j]] ◦ [[c]] ∈ ZF 1((U

′
2, U

′
2 −S′), (X ′

1, X
′
1 −S′)),

where in : (U ′
2, U

′
2−S′) ↪→ (X ′

1, X
′
1−S′), j : (X ′−S′, X ′−S′) ↪→ (X ′

1, X
′
1−S′)

are embeddings and π2 = Π|U ′
2
: U ′

2 → U2. Clearly, Fpr(X ′
1−S′, X ′

1−S′) = 0.
Thus we have

[[π2]]
∗([[l2]]

∗(a′1)) = [[in]]∗([[σX′
1
]]∗(a′1)) = [[in]]∗(a1) ∈ Fpr(U ′

2, U
′
2 − S′).

Set ã = [[l2]]
∗(a′1). Then,

a = a1|(U ′,U ′−S′) = ([[in]]∗(a1))|(U ′,U ′−S′) =

= ([[π2]]
∗(ã))|(U ′,U ′−S′) = [[π]]∗(ã|(U,U−S)).

The surjectivity of [[π]]∗ is proved. The case when char(k) �= 2 of the asser-
tion (5) is proved. If char(k) = 2 the proof is similar.

Reducing Theorem 3.1 to Theorem 3.15. We provide the reduction for fields
of characteristic not 2 and leave the reader the case of characteristic 2. By
Corollary 2.17 the sheaf Fnis has a unique structure of a ZF∗(k)-presheaf of
Abelian groups such that the morphism F → Fnis is a morphism of ZF∗(k)-
presheaves.

We now prove that Fnis is A
1-invariant. Firstly, (1) and (2) imply F|A1

is a Zariski sheaf. Using (5) applied to X = A1, one shows that for any open
V in A1 one has Fnis(V ) = F(V ).
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Now consider the following Cartesian square of schemes

Spec(k(X))
η

i0,k(X)

X

i0,X

A1
k(X)

η×id
X × A1

Evaluating the Nisnevich sheaf Fnis on this square, we get a square of abelian
groups

Fnis(Spec(k(X))) Fnis(X)
η∗

Fnis(A
1
k(X))

i∗0,k(X)

Fnis(X × A1)
(η×id)∗

i∗0,X

The map i∗0,X is plainly surjective. It remains to check its injectivity.
The map (η × id)∗ is injective (apply Theorem 3.15(3’)). We have already
proved above that Fnis(A

1
k(X)) = F(A1

k(X)). Since Fnis(Spec(k(X)) =

F(Spec(k(X)), we see that the map i∗0,k(X) is an isomorphism. Thus the
map i∗0,X is injective.

Now prove that Fnis is quasi-stable. Let F be a ZF∗(k)-presheaf. The
property σX ◦ f = f ◦ σX from Definition 2.4 yields the following: the as-
signment X �→ (σ∗

X : F(X) → F(X)) is an endomorphism of the presheaf
F|Sm/k. Denote it by σ. If F is quasi-stable, then σ acts as an isomor-
phism on Nisnevich stalks of the presheaf F . We already know that Fnis is
a ZF∗(k)-presheaf of Abelian groups. Lemma 2.8 yields that σ acts as an
isomorphism on Nisnevich stalks of Fnis. Thus for any X ∈ Sm/k the map
σX : Fnis(X) → Fnis(X) is an isomorphism. Hence Fnis is quasi-stable as
required.

We finish the section by proving the following useful statement, which
is a consequence of Theorem 3.15(4):

Corollary 3.19. Let X ∈ Sm/k, x ∈ X be a point, W = Spec(OX,x). Let
V := Spec(OW×A1,(x,0)) and can : V ↪→ W ×A1 be the canonical embedding.
Let F be an A1-invariant quasi-stable ZF∗-presheaf of abelian groups. Then
the pullback map

[[can]]∗ : F(W × (A1 − {0}))/F(W × A1) → F(V −W × {0})/F(V)

is an isomorphism (both quotients make sense: the second quotient makes
sense due to Theorem 3.15(3), the first one makes sense due to homotopy
invariance of F).
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Proof. Consider the category, C, of Zariski neighborhoods ofW×0 in W×P1

as well as the presheaf V �→ F(V − W × 0)/Im(F(V )) on C. Write G(V )

for F(V −W × 0)/Im(F(V )) and G(V) for F(V −W × 0)/F(V). Clearly,
the category C is cofiltered. By definition, one has

F(V) = colim F(V ) and F(V −W × 0) = colim F(V −W × 0),

where V runs over all Zariski neighborhoods of W × 0 in W × P1. Thus

G(V) = colimG(V ). For any closed subset D ⊂ W ×P1 of pure codimension

one (including the empty D as well) and any section H ⊂ W × P1 of the

projection pW : W × P1 → W with H ∩D = ∅ = (W × 0) ∩ (H ∪D) set

VH,D = W × P1 − (H ∪D).

Let C′ be the full subcategory of C consisting of objects of the form VH,D.

Since the base field k is infinite and W is regular local, then the subcategory

C′ is cofinal in C. Thus G(V) = colim G(VH,D), where VH,D runs over the

category C′. Let VH1,D1
, VH2,D2

∈ C′ be such that VH2,D2
⊂ VH1,D1

and let

α : VH2,D2
↪→ VH1,D1

be the inclusion.

We claim that the pullback map [[α]]∗ : G(VH1,D1
) → G(VH2,D2

) is an

isomorphism. To prove this claim, set D = H1 ∪ D1 ∪ H2 ∪ D2 and find a

sectionH ⊂ W×P1 of the projection pW such thatH∩D = ∅ = (W×0)∩H.

Using a projective change of coordinates on W × P1, we may assume that

H = W ×∞ and W × 0 remains the same. Consider the open inclusions

VH2,D2

α−→ VH1,D1

β−→ W × A1 = VH,∅

and set γ = β◦α. By Theorem 3.15(4) the maps [[β]]∗ : G(VH,∅) → G(VH1,D1
)

and [[γ]]∗ : G(VH,∅) → G(VH2,D2
) are isomorphisms. Thus the map [[α]]∗ is

an isomorphism in this case, too. This proves the claim.

Thus for any VH,D ∈ C′ the map G(VH,D) → G(V) is an isomorphism.

Particularly, the map [[can]]∗ : G(W ×A1) → G(V) is an isomorphism. This

proves the corollary.

4. Notation and agreements

In this section we follow definitions, notation and constructions from Sec-

tions 2 and 3. We suppose in this section that Y ∈ Sm′/k and X ∈ Sm/k.

Particularly, Y can be in Sm/k.
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Notation 4.1. We are recalling earlier defined notation for the convenience
of the reader. Given a ∈ Frn(Y,X), we write 〈a〉 for the image of 1 · a in
ZFn(Y,X) and write [a] for the class of 〈a〉 in ZFn(Y,X). We will write Za

for the support of a (it is a closed subset in Y × An which is finite over Y
and determined by the element a uniquely). Also, we will often write

(Va, ϕa : Va → An; ga : Va → X) or just (Va, ϕa; ga)

for a representative of the morphism a (here (Va, ρ : Va → Y ×An, s : Za ↪→
Va) is an étale neighborhood of Za in Y × An).

Remark 4.2. If the support Za of an element a = (V, ϕ; g) ∈ Frn(Y,X) is
a disjoint union of Z1 and Z2, then the element a determines two elements
a1 and a2 in Frn(Y,X). Namely, a1 = (V − Z2, ϕ|V−Z2

; g|V−Z2
) and a2 =

(V − Z1, ϕ|V−Z1
; g|V−Z1

). Moreover, by definition of ZFn(Y,X) one has the
equality

〈a〉 = 〈a1〉+ 〈a2〉
in ZFn(Y,X).

Definition 4.3. Let iY : Y ′ ↪→ Y and iX : X ′ ↪→ X be open embeddings.
Let a ∈ Frn(Y,X). We say that the restriction a|Y ′ of a to Y ′ runs inside
X ′ if there is a′ ∈ Frn(Y

′, X ′) such that

(1) iX ◦ a′ = a ◦ iY

in Frn(Y
′, X).

It is easy to see that if there is an element a′ satisfying condition (1), then
it is unique. In this case the pair (a, a′) is an element of ZFn((Y, Y

′), (X,X ′)).
For brevity we will write 〈〈a〉〉 for (a, a′) ∈ ZFn((Y, Y

′), (X,X ′)) and write
[[a]] to denote the class of 〈〈a〉〉 in ZFn((Y, Y

′), (X,X ′)).

Lemma 4.4. Let iY : Y ′ ↪→ Y and iX : X ′ ↪→ X be open embeddings. Let
a ∈ Frn(Y,X). Let Za ⊂ Y ×An be the support of a. Set Z ′

a = Za∩Y ′×An.
Then the following are equivalent:

(1) ga(Z
′
a) ⊂ X ′;

(2) the element a|Y ′ runs inside X ′.

Proof. (1) ⇒ (2). Set V ′ = p−1
Y ∩g−1(X ′), where pY = prY ◦ρa : V → Y ×An.

Then a′ := (V ′, ϕ|V ′); g|V ′) ∈ Frn(Y
′, X ′) satisfies condition (1).

(2) ⇒ (1). If a|Y ′ runs inside X ′, then for some a′ = (V ′, ϕ′; g′) ∈
Frn(Y

′, X ′)) equality (1) holds. In this case the support Z ′ of a′ must co-
incide with Z ′

a = Za ∩ Y ′ × An and ga|Z′ = g′|Z′ . Since g′(Z ′) is a subset of
X ′, then ga(Z

′
a) = ga(Z

′) ⊂ X ′.
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Corollary 4.5. Let iY : Y ′ ↪→ Y and iX : X ′ ↪→ X be open embeddings. Let
hθ = (Vθ, ϕθ; gθ) ∈ Frn(A

1 × Y,X). Suppose Zθ, the support of hθ, is such
that for Z ′

θ := Zθ∩A1×Y ′×An one has gθ(Z
′
θ) ⊂ X ′. Let i0, i1 : Y → A1×Y

be the 0- and 1-sections respectively and set h0 = hθ◦i0, h1 = hθ◦i1. Then hθ,
h0, h1 define elements 〈〈hθ〉〉 ∈ ZFn(A

1 × (Y, Y ′), (X,X ′)), 〈〈h0〉〉, 〈〈h1〉〉 ∈
ZFn((Y, Y

′), (X,X ′)) with

[[h0] = [[h1]]

in ZFn((Y, Y
′), (X,X ′)).

Lemma 4.6 (A disconnected support case). Let iY : Y ′ ↪→ Y and iX :
X ′ ↪→ X be open embeddings. Let a ∈ Frn(Y,X) and let Za ⊂ Y × An be
the support of a. Set Z ′

a = Za ∩ Y ′ ×An. Suppose that Za = Za,1 �Za,2. For
i = 1, 2 set Vi = Va − Za,j with j ∈ {1, 2} and j �= i. Also, set ϕi = ϕa|Vi

and gi = ga|Vi
. Suppose a|Y ′ runs inside X ′, then

(1) for each i = 1, 2 the element ai := (Vi, ϕi; gi) is such that ai|Y ′ runs
inside X ′;

(2) 〈〈a〉〉 = 〈〈a1〉〉+ 〈〈a2〉〉 in ZFn((Y, Y
′), (X,X ′)).

5. Some homotopies

Suppose U,W ⊂ A1
k are open and non-empty.

Lemma 5.1. Let a0 = (V, ϕ; g0) ∈ Fr1(U,W ), a1 = (V, ϕ; g1) ∈ Fr1(U,W ).
Denote their common support by Z. If g0|Z = g1|Z , then [a0] = [a1] in
ZF 1(U,W ).

Proof. Consider a function gθ = (1 − θ)g0 + θg1 : A1 × V → A1 and set
Vθ = g−1

θ (W ), ϕθ = ϕ ◦ prV : Vθ → A1
k. Next, consider a homotopy

(2) hθ = (Vθ, ϕθ; gθ) ∈ Fr1(A
1 × U,W ).

The support of hθ equals A1 × Z ⊂ A1 × U × A1. Clearly, h0 = a0 and
h1 = a1.

Corollary 5.2. Under the assumptions of Lemma 5.1 let U ′ ⊂ U and W ′ ⊂
W be open subsets. Suppose that a0|U ′ runs inside W ′. Then a1|U ′ runs
inside W ′, the restriction hθ|A1×U ′ of the homotopy hθ runs inside W ′ and

[[a0]] = [[a1]]

in ZF 1((U,U
′), (W,W ′)).
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Lemma 5.3. Let a0 = (V, ϕu0; g) ∈ Fr1(U,W ) and a1 = (V, ϕu1; g) ∈
Fr1(U,W ), where u0, u1 ∈ k[V] are both invertible. In this case the supports
of a0 and a1 coincide. Denote their common support by Z. Suppose u0|Z =
u1|Z , then [a0] = [a1] in ZF 1(U,W ).

Proof. Set uθ = (1− θ)u0 + θu1 ∈ k[A1 × V]. Clearly, uθ|A1×Z = pr∗Z(u0) =
pr∗Z(u1) ∈ k[A1 × Z]. Let Vθ = {uθ �= 0} ⊂ A1 × V. Set,

(3) hθ = (Vθ, uθϕ; g ◦ prV) ∈ Fr1(A
1 × U,W ).

The support of hθ equals A1 × Z ⊂ A1 × U × A1. Clearly, h0 = a0 and
h1 = a1.

Corollary 5.4. Under the assumptions of Lemma 5.3, let U ′ ⊂ U and
W ′ ⊂ W be open subsets. Suppose a0|U ′ runs inside W ′. Then a1|U ′ runs
inside W ′, the restriction hθ|A1×U ′ of the homotopy hθ from the proof of
Lemma 5.3 runs inside W ′ and

[[a0]] = [[a1]]

in ZF 1((U,U
′), (W,W ′)).

Lemma 5.5. Let U ⊂ A1
k be non-empty open as above and F0(Y ), F1(Y ) ∈

k[U ][Y ]. Suppose degY (F0) = degY (F1) = d > 0 and their leading coeffi-
cients coincide and invertible in k[U ]. Then,

[U × A1, F0(Y ), prU ] = [U × A1, F1(Y ), prU ] ∈ ZF 1[U,U ].

Proof. Set Fθ(Y ) = (1− θ)F0(Y ) + θF1(Y ) ∈ k[U ][θ, Y ]. Consider the mor-
phism

(4) hθ = (A1 × U × A1, Fθ; prU ) ∈ Fr1(A
1 × U,U).

Clearly, h0 = (U × A1, F0(Y ), prU ) and h1 = (U × A1, F1(Y ), prU ). This
proves the lemma.

Corollary 5.6. Under the assumptions of Lemma 5.5 let U ′ ⊂ U be an
open subset. Then

(U × A1, F0(Y ), prU )|U ′ , (U × A1, F1(Y ), prU )|U ′

run inside U ′, the restriction hθ|A1×U ′ of the homotopy hθ from the proof of
Lemma 5.5 runs inside W ′ = A1 × U ′ and

[[U × A1, F0(Y ), prU ]] = [[U × A1, F1(Y ), prU ]
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in ZF 1((U,U
′), (U,U ′)).

Proposition 5.7. Let U ⊂ A1
k and U ′ ⊂ U be open subsets. Let t ∈ k[A1]

be the standard parameter on A1
k. Set X := (t ⊗ 1)|U×U ∈ k[U × U ] and

Y := (1 ⊗ t)|U×U ∈ k[U × U ]. Then for any integer n � 1, one has an
equality

[[U × U, (Y −X)2n+1, p2]] = [[U × U, (Y −X)2n, p2]] + [[σU ]]

in ZF 1((U,U
′), (U,U ′)).

Proof. Let m � 1 be an integer. Then

[[U × U, (Y −X)m,p2]] = [[U × U, (Y −X)m, p1]] =

= [[U × A1, (Y −X)m, p1]] = [[U × A1, Y m, p1]]
(5)

in ZF 1((U,U
′), (U,U ′)). The first equality follows from Corollary 5.2, the

third one follows from Corollary 5.6, the middle one is obvious.
There is a chain of equalities in ZF 1((U,U

′), (U,U ′)):

[[U × A1, Y 2n+1; p1]] = [[U × A1, Y 2n(Y + 1); p1]] =

= [[U × (A1 −{−1}), Y 2n(Y +1); p1]] + [[U × (A1 −{0}), Y 2n(Y +1); p1]] =

= [[V0, Y
2n; p1]] + [[V1, (Y + 1); p1]] =

= [[U × A1, Y 2n; p1]] + [[U × A1, (Y + 1); p1]].

Here the first equality holds by Corollary 5.6, the second one holds by Lemma
4.6, the third one holds by Corollary 5.4, the forth one is obvious (replace-
ment of neighborhoods).

Continue the chain of equalities in ZF 1((U,U
′), (U,U ′)) as follows:

[[U × A1, Y 2n; p1]] + [[U × A1, (Y + 1); p1]] =

= [[U × A1, (Y −X)2n; p1]] + [[U × A1, Y ; p1]] =

= [[U × A1, (Y −X)2n; p1]] + [[σU ]] = [[U × U, (Y −X)2n; p1]] + [[σU ]] =

= [[U × U, (Y −X)2n; p2]] + [[σU ]].

Here the first equality holds by Corollary 5.6, the second one holds by the
definition of σU (see Notation 3.7), the third one is obvious, the fouth one
holds by Corollary 5.2. We have proved the equality

(6) [[U × A1, Y 2n+1; p1]] = [[U × U, (Y −X)2n; p2]] + [[σU ]].



Homotopy invariant presheaves with framed transfers 31

Combining that with the equality (5) for m = 2n + 1 we get the desired
equality

[[U × U, (Y −X)2n+1; p2]] = [[U × U, (Y −X)2n; p2]] + [[σU ]]

in ZF 1((U,U
′), (U,U ′)). This proves the proposition.

6. Injectivity and excision on affine line

The aim of this section is to prove Theorems 3.9 and 3.10.

Lemma 6.1. Let U ⊂ A1 be open and non-empty. Let A = A1
k − U . Let

G0(Y ), G1(Y ) ∈ k[U ][Y ] be such that

(1) degY (G0) = degY (G1);
(2) both are monic in Y , that is the leading coefficients equal one;
(3) G0|U×A, G1|U×A are both invertible and G0|U×A = G1|U×A ∈ k[U ×

A]×.

Then

[U × U,G0; p2] = [U × U,G1; p2]

in ZF 1(U,U).

Proof. One has a homotopy hθ = (A1 × U × U,Gθ, p2,U ) ∈ Fr1(A
1 × U,U),

where Gθ = (1− θ)G0 + θG1 and pr2,U : A1 × U × U → U is the projection
onto the second copy of U . Its restriction to 0 × U and to 1 × U coincides
with morphisms (U×U,G0; p2) and (U×U,G1; p2) respectively. This proves
the lemma.

Proof of Theorem 3.9. Under the assumptions of this theorem set A = A1
k−

U and B = U − V . For each big enough integer m � 0 find a polynomial
Fm(Y ) ∈ k[U ][Y ] such that Fm(Y ) is of degree m with the leading coefficient
equal 1 and such that

(i) Fm(Y )|U×A = (Y −X)m|U×A ∈ k[U ×A]×;
(ii) Fm(Y )|U×B = 1 ∈ k[U ×B]×.

Take n � 0 and set r = 〈U×V, F2n+1; prV 〉−〈U×V, F2n; prV 〉 ∈ ZF1(U, V ).
Then one has a chain equalities in ZF 1(U,U):

[i] ◦ [r] = [U × U,F2n+1; p2]− [U × U,F2n; p2] =

= [U × U, (Y −X)2n+1; p2]− [U × U, (Y −X)2n; p2] = [σU ].

Here the first equality is obvious, the second one holds by Lemma 6.1, the
third one holds by Proposition 5.7. This proves the theorem.
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Corollary 6.2 (of Lemma 6.1). Under the conditions and notation of
Lemma 6.1 let S ⊂ U be a proper closed subset. In addition to the con-
ditions (1)− (3) suppose that the following two conditions hold:

(4) G0(Y )|U×S = G1(Y )|U×S,
(5) G0(Y )|(U−S)×S is invertible.

Then one has an equality

[[U × U,G0; p2]] = [[U × U,G1; p2]]

in ZF 1((U,U − S), (U,U − S)).

Proof of the corollary. The support Zθ of the homotopy hθ from the proof
of Lemma 6.1 coincides with the vanishing locus of the polynomial Gθ. Since
Gθ|A1×(U−S)×S is invertible, then Zθ ∩A1× (U −S)×S = ∅. By Lemma 4.4
the homotopy hθ|A1×(U−S) runs inside U − S. Hence

[[U × U,G0; p2]] = [[h0]] = [[h1]] = [[U × U,G1; p2]]

in ZF 1((U,U − S), (U,U − S)). In fact, the second equality here holds by
Corollary 4.5. The first and the third equalities hold since for i = 0, 1 one
has hi = (U × U,Gi; p2) in Fr1(U,U).

Proof of Theorem 3.10. Firstly, we construct a morphism r ∈ ZF1((U,U −
S)), (V, V − S)) such that for its class [[r]] in ZF 1((U,U − S)), (V, V − S))
one has

(7) [[i]] ◦ [[r]] = [[σU ]]

in ZF 1((U,U − S)), (U,U − S)).
To this end, set A = A1

k − U , B = U − V . Recall that S ⊂ V is a
proper closed subset. Take any big enough integer m � 1 and find a monic
polynomial Fm(Y ) of degree m satisfying the following properties:

(i) Fm(Y )|U×A = (Y −X)m|U×A ∈ k[U ×A]×;
(ii) Fm(Y )|U×B = 1 ∈ k[U ×B]×;
(iii) Fm(Y )|U×S = (Y −X)m|U×S ∈ k[U × S].

Note that Fm(Y )|(U−S)×S ∈ k[(U − S) × S]×. Hence by Lemma 4.4 the
morphism (U × V, Fm; prV ) ∈ Fr1(U, V ) being restricted to U − S runs
inside V − S. Thus using Definition 4.3 we get a morphism

〈〈U × V, Fm; prV 〉〉 ∈ ZF1((U,U − S)), (V, V − S)).
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For that morphism one has equalities

[[i]] ◦ [[U × V, Fm; prV ]] = [[U × U,Fm; p2]] = [[U × U, (Y −X)m; p2]]

in ZF 1((U,U−S)), (U,U−S)). Here the first equality is obvious, the second
one follows from Corollary 6.2. Take a big enough integer n. Set

r = 〈〈U×V, F2n+1; prV 〉〉−〈〈U×V, F2n; prV 〉〉 ∈ ZF1((U,U−S)), (V, V −S)).

We claim that [[i]] ◦ [[r]] = [[σU ]] in ZF 1((U,U − S)), (U,U − S)). In fact,

[[i]] ◦ [[r]] = [[U × U, (Y −X)2n+1; p2]]− [[U × U, (Y −X)2n; p2]] = [[σU ]].

The first equality is proven a few lines above and the second one follows
from Proposition 5.7. We see that equality (7) holds.

We now find morphisms l ∈ ZF1((U,U − S)), (V, V − S)) and g ∈
ZF1((V, V − S)), (V − S, V − S)) such that

(8) [[l]] ◦ [[i]]− [[j]] ◦ [[g]] = [[σV ]]

in ZF 1(V, V − S)), (V, V − S)). Here j : (V − S, V − S) → (V, V − S) is

the inclusion. Clearly, equality (8) yields [[l]] ◦ [[i]] = [[σV ]] ∈ ZF 1(V, V −
S)), (V, V − S)).

Set A′ = A1
k − U , B = U − V and recall that S ⊂ V is a proper

closed subset. Take an integer m big enough and find a polynomial Fm(Y ) ∈
k[U ][Y ] of degree m, monic in Y , such that

(i) Fm(Y )|U×A′ = (Y −X)|U×A′ ∈ k[U ×A′]×;
(ii) Fm(Y )|U×B = 1 ∈ k[U ×B]×;
(iii) Fm(Y )|U×S = (Y −X)|U×S ∈ k[U × S].

Note that Fm(Y )|(U−S)×S ∈ k[(U − S) × S]×. Hence by Lemma 4.4 the
morphism (U × V, Fm; prV ) ∈ Fr1(U, V ) being restricted to U − S runs
inside V − S. Thus, using Definition 4.3, we get a morphism

l = 〈〈U × V, Fm; prV 〉〉 ∈ ZF1((U,U − S)), (V, V − S)).

To construct the desired morphism g, find a polynomial Em−1 ∈ k[V ][Y ] of
degree m− 1, monic in Y , such that

(i’) Em−1(Y )|V×A′ = 1|U×A′ ∈ k[V ×A′]×;
(ii’) Em−1(Y )|V×B = (Y −X)−1 ∈ k[V ×B]×;
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(iii’) Em−1(Y )|V×S = 1|V×S ∈ k[U × S];
(iv’) Em−1(Y )|Δ(V ) = 1|Δ(V ) ∈ k[Δ(V )].

Let G ⊂ V ×A1
k be a closed subset defined by Em−1(Y ) = 0. By conditions

(i′) − (iv′) one has G ⊂ V × (V − S) and G ∩ Δ(V ) = ∅. Set g′ = 〈V ×
(V −S)−Δ(V ), (Y −X)Em−1(Y )〉; prV−S) ∈ ZF1(V, V −S). Since g′|V−S ∈
ZF1(V − S, V − S), we get a morphism

(9) g = (g′, g′|V−S) ∈ ZF1((V, V − S)), (V − S, V − S)).

Claim 6.3. Equality (8) holds for the morphisms l and g defined above.

Note firstly that l ◦ 〈〈i〉〉 = 〈〈V × V, Fm(Y )|V×V ; pr2〉〉 ∈ ZF1((V, V −
S), (V, V − S)). Applying Corollary 6.2 to the case V ⊂ A1, S ⊂ V and
A := A′ ∪B, we get an equality

[[V × V, Fm(Y )|V×V ; pr2]] = [[V × V, (Y −X)Em−1(Y ); pr2]]

in ZF 1((V, V −S), (V, V −S)). By Lemma 4.6 and the fact thatG∩Δ(V ) = ∅,
one has

[[V × V, (Y −X)Em−1(Y ); pr2]] =

[[V × V −G,Em−1(Y −X); pr2]] + [[V × V −Δ(V ), (Y −X)Em−1; pr2]] =

= [[V × V −G,Em−1(Y −X); pr2]] + [[j]] ◦ [[g]]

in ZF 1((V, V − S)), (V, V − S)).

One has a chain of equalities

[[V × V −G,Em−1(Y −X); pr2]] = [[V × V −G, (Y −X); pr2]] =

= [[V × V, (Y −X); pr2]] = [[V × A1, Y ; pr1]] = [[σV ]].

The first equality holds by condition (iv′) and Corollary 5.4. The second
one is obvious. The third one is equality (5) for m = 1 from the proof of
Proposition 5.7. The forth one is the definition of 〈〈σV 〉〉 (see Definition 2.4
and Notation 3.7). Combining altogether, we get a chain of equalities

[[l]] ◦ [[i]] = [[V × V, Fm(Y )|V×V ; pr2]] =

= [[V × V, (Y −X)Em−1(Y ); pr2]] = [[σV ]] + [[j]] ◦ [[g]],

which proves the claim. The theorem now follows.
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7. Excision on relative affine line

Proof of Theorem 3.12. Let U = A1
W , let V ⊂ U be the open V from The-

orem 3.12. Let S = 0 × W . Note that S ⊂ V . Set A = A1
W − U = ∅,

B = U −V = {f = 0}. Then B is finite over W , since f is monic. Note that
B ∩ (0×W ) = ∅.

Repeat literally the proof of Theorem 3.10 replacing fibre products over
Spec(k) by fibre products overW . For instance, replace A1

k×A1
k from Section

6 by A1
W ×W A1

W .

8. Almost elementary fibrations

In this section we recall a modification of a result of M. Artin from [3]
concerning the existence of nice neighborhoods. The following notion (see
[16, Definition 2.1]) is a modification of that introduced by Artin in [3, Exp.
XI, Déf. 3.1].

Definition 8.1. ([16]) An almost elementary fibration over a scheme B is
a morphism of schemes p : X → B which can be included in a commutative
diagram

(10) X

q

j
X

q

X∞
i

q∞

B

of morphisms satisfying the following conditions:

(i) j is an open immersion dense at each fibre of q, and X = X −X∞;
(ii) q is smooth projective all of whose fibres are geometrically irreducible

of dimension one;
(iii) q∞ is a finite flat morphism all of whose fibres are non-empty;
(iv) the morphism i is a closed embedding and the ideal sheaf IX∞ ⊂ OX

defining the closed subscheme X∞ in X is locally principal.

Proposition 8.2 ([16]). Let k be an infinite field, X be a smooth geo-
metrically irreducible affine variety over k, x1, x2, . . . , xn ∈ X be closed
points. Then there exists a Zariski open neighborhood X0 of the family
{x1, x2, . . . , xn} and an almost elementary fibration p : X0 → S, where
S is an open subscheme of the projective space PdimX−1

k . If, moreover, Z is
a closed codimension one subvariety in X, then one can choose X0 and p in
such a way that p|Z ⋂

X0 : Z
⋂

X0 → S is finite surjective.
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Proposition 8.3 ([16]). Let p : X → S be an almost elementary fibration. If

S is a regular semi-local irreducible scheme, then there exists a commutative

diagram of S-schemes

(11) X
j

π

X

π

Y
i

A1 × S
in

P1 × S {∞} × S
i

with π a finite surjective morphism such that the left hand side square is

Cartesian. Here j and i are the same as in Definition 8.1, while prS ◦π = p,

where prS is the projection A1 × S → S.

In particular, π : X → A1 × S is a finite surjective morphism of S-

schemes, where X and A1 × S are regarded as S-schemes via the morphism

p and the projection prS, respectively.

9. Reducing the injectivity for local schemes to
Theorem 14.3

In this section we follow definitions, notation and constructions from Sec-

tions 2 and 3. In particular, we can work with pointed sets Frn(Y,X) and

abelian groups ZFn(Y,X), ZFn(Y,X), with Y ∈ EssSm/k and X ∈ Sm/k.

The main aim of this section is to prove Theorem 3.11. Let X ∈ Sm/k be ir-

reducible, x ∈ X be a point, U = Spec(OX,x), i : D ↪→ X be a proper closed

subset. Let j : X − D ↪→ X be the open inclusion. Under the notation of

Theorem 3.11 we will find an integer N and an element r ∈ ZFN (U,X −D)

such that

[j] ◦ [r] = [σN
X ] ◦ [can]

in ZFN (U,X) (see Definition 9.8). For this we need some preparations as

well as Theorem 14.3.

Let X ′ ⊂ X be an open subset containing the point x and let D′ =
X ′∩D. Clearly, if we solve a similar problem for the triple U ,X ′ andX ′−D′,
then we solve the problem for the given triple U , X and X −D. So, we may

shrink X appropriately. In particular, we may assume that the canonical

sheaf ωX/k is trivial, i.e. is isomorphic to the sheaf OX . Let d = dimX.

Shrinking X further (and replacing D with its trace) and using Propo-
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sitions 8.2 and 8.3, we can find a commutative diagram of the form

(12) A1 ×B

prB

X

p

υ
D

p|D

i

B

where p : X → B is an almost elementary fibration in the sense of [16], B
is an affine open subset of the projective space Pd−1

k , υ is a finite surjective
morphism, p|D is a finite morphism.

The canonical sheaf ωX/k remains trivial. Since p is an almost elementary
fibration, then it is a smooth morphism such that for each point b ∈ B the
fibre p−1(b) is a k(b)-smooth absolutely irreducible affine curve. Since υ is
finite, then the B-scheme X is affine.

Set U = Spec(OX,x), X = U ×B X, D = U ×B D. There is an obvious
morphism Δ = (id, can) : U → X . It is a section of the projection pU : X →
U . Let pX : X → X be the projection to X. The base change of diagram
(12) gives a commutative diagram of the form

(13) A1 × U

prU

X
pU

Υ D

pU |D

i

U

where pU : X → U is an almost elementary fibration over U in the sense
of Definition 8.1, i is a closed embedding, Υ is a finite surjective morphism,
pU |D is a finite morphism. Since ωX/k is trivial and U is local and essentially
k-smooth, the relative canonical sheaf ωX/U is trivial, i.e. isomorphic to the
structure sheaf OX .

Lemma 9.1 ([15], Lemma 10.1). Given the commutative diagram (13), there
is a finite surjective morphism Hθ = (pU , hθ) : X → A1 × U of U -schemes
such that for the closed subschemes D1 := H−1

θ (1×U) and D0 := H−1
θ (0×U)

of X one has

(i) D1 ⊂ X −D;
(ii) D0 = Δ(U) � D′

0 (equality of schemes) and D′
0 ⊂ X −D.

Now regard X as an affine A1 × U -scheme via the morphism Hθ. And
also regard X as an X-scheme via pX .

Lemma 9.2. There is an integer N � 0, a closed embedding X ↪→ A1 ×
U × AN of A1 × U -schemes, an étale affine neighborhood (V, ρ : V → A1 ×
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U × AN , s : X ↪→ V) of X in A1 × U × AN , functions ϕ1, ..., ϕN ∈ k[V] and
a morphism r : V → X such that:

(i) the functions ϕ1, ..., ϕN generate the ideal Is(X ) in k[V] defining the
closed subscheme s(X ) of V;

(ii) r ◦ s = idX ;
(iii) the morphism r is a U -scheme morphism if V is regarded as a U -

scheme via the morphism prU ◦ρ and X is regarded as a U -scheme via
the morphism pU .

Proof. Since Hθ is a finite morphism, then for some integer N � 1 there
is a closed embedding of U -schemes in : X ↪→ A1 × U × AN . Consider the
short exact sequence of vector bundles on X defining the normal bundle
N = NA1×U×AN/X :

(14) {0} → TX/U → A1 × X × AN = T(A1×U×AN )/U |X
q−→ N → {0}

Since Hθ is finite, the scheme X is affine. As mentioned above the bundle
TX/U is trivial. Thus the bundle N is stably trivial. Increasing the integer
N we may assume that the bundle N is trivial. Since the scheme X is
affine, there is a linear section t : N → A1 × X × AN of the morphism
q. Let qX : N → X be the projection on X . There are two morphisms of
U -schemes:

in ◦ qX : N → A1 × U × AN and (id× pU × id) ◦ t : N → A1 × U × AN .

Regarding A1 × U × AN as a vector bundle over U we have a morphism

+ : (A1 × U × AN )×U (A1 × U × AN ) → A1 × U × AN .

Set ρ′ = in◦qX +(id×pU×id)◦t : N → A1×U×AN . It is easy to check that
ρ′ is étale along s0(X ), where s0 : X → N is the zero section of N . Hence
ρ′ is étale in an affine neighborhood V ′ of s0(X ). Since ρ′ ◦ s0 = in : X ↪→
A1×U×AN , hence (ρ′)−1(in(X )) = s0(X )�Y . Hence there is an open affine
subscheme V in V ′ containing s0(X ) such that (ρ′|V)−1(in(X )) = s0(X ). Set
ρ = ρ′|V : V → A1 × U × AN . Set s = s0 : X → V.

Clearly, (V, ρ : V → A1 × U × AN , s : X ↪→ V) is an étale neighborhood
of in(X ) in A1 × U × AN . We will write in this proof X for in(X ).

Set r = (qX )|V : V → X . Since the bundle N is trivial we can choose
a trivialization N ∼= X × AN . The trivialization gives functions ϕ1, ..., ϕN

which generate the ideal Is(X ) in k[V] defining the closed subscheme s0(X )
of V.
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Clearly, r ◦ s = idX . Also, the morphism r is a U -scheme morphism if V
is regarded as a U -scheme via the morphism prU ◦ ρ and X is regarded as a

U -scheme via the morphism pU . Whence follows the lemma.

By Lemma 9.1, D0 = Δ(U)�D′
0. Set V0 = ρ−1(0×U×AN ). For a suitable

affine open neighborhood W0 of s(Δ(U)) in V0 the triple (W0, ρ|W0
: W0 →

U ×AN , s|Δ(U) : Δ(U) ↪→ W0) is an étale neighborhood of Δ(U) in U ×AN .

Remark 9.3. By Lemma 9.2 the functions ϕ1|W0
, ..., ϕN |W0

generate the

ideal I defining the closed subscheme s(Δ(U)) of the scheme W0. In partic-

ular, the family

(ϕ1|W0
), ..., (ϕN |W0

) ∈ I/I2

is a free basis of the free k[U ]-module I/I2. Another basis of the k[U ]-module

I/I2 is the family

(t1 −Δ∗(t1))|W0
, ..., (tN −Δ∗(tN ))|W0

∈ I/I2.

Let A ∈ GLN (k[U ]) be a unique matrix which converts the second free

basis to the first one and let J := det(A) be its determinant. Replacing ϕ1

by J−1ϕ1, we may and will assume below in this section that J = 1 ∈ k[U ].

This is useful to apply Theorem 14.3 below.

Set V1 = ρ−1(1 × U × AN ) ∩ r−1(X − D). Then s(D1) ⊂ V1. In fact,

(r ◦ s)(D1) = D1 ⊂ X −D and ρ(D1) ⊂ 1× U × AN . Thus V1 �= ∅.

Construction 9.4 (Étale neighborhood of D1). The morphism ρ|1×U×AN :

ρ−1(1 × U × AN ) → 1 × U × AN is étale and the inclusion i1 : V1 ↪→
ρ−1(1× U × AN ) is open. Set ρ1 = (ρ|1×U×AN ) ◦ i1. Then the triple

(V1, ρ1 : V1 → 1× U × AN , s1 = s|D1
: D1 → V1)

is an étale neighborhood of D1 in 1× U × AN . Let r1 = r|V1
: V1 → X −D.

Definition 9.5. We set a1 = (D1,V1, ϕ1|V1
, ..., ϕN |V1

; (pX)|X−D ◦ r1) ∈
FrN (U,X −D).

Set V ′
0 = ρ−1(0 × U × AN ) ∩ r−1(X − D). Then s(D′

0) ⊂ V ′
0. In fact,

(r ◦ s)(D′
0) = D′

0 ⊂ X − D and ρ(D′
0) ⊂ 0 × U × AN . Thus V ′

0 �= ∅. The
functions ϕ1, ..., ϕN define s(X ) in V, so their restriction to V ′

0 define s(X ∩
0× U × AN ) = s(Δ(U) � D′

0). Set V ′′
0 = V ′

0 − s(Δ(U)).
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Construction 9.6. The morphism ρ|0×U×AN : ρ−1(0 × U × AN ) → 0 ×
U × AN is étale and the inclusion i0 : V ′′

0 ↪→ ρ−1(0× U × AN ) is open. Set

ρ0 = (ρ|0×U×AN ) ◦ i0. Then the triple

(V ′′
0 , ρ0 : V ′′

0 → 0× U × AN , s0 = s|D′
0
: D′

0 → V ′′
0 )

is an étale neighborhood of D′
0 in 0×U ×AN . Let r0 = r|V ′′

0
: V ′′

0 → X −D.

Definition 9.7. We set a0 = (D′
0,V ′′

0 , ϕ1|V ′′
0
, ..., ϕN |V ′′

0
; (pX)|X−D ◦ r0) ∈

FrN (U,X −D).

Definition 9.8. Set r = 〈a1〉 − 〈a0〉 ∈ ZFN (U,X −D).

Claim 9.9. One has an equality [j] ◦ [r] = [σN
X ] ◦ [can] ∈ ZFN (U,X).

In fact, take the element hθ = (X ,V, ϕ1, ..., ϕN ; pX◦r) ∈ FrN (A1×U,X).

By Lemma 9.1 the support of h0 is the closed subset Δ(U) � D′
0. Thus by

Lemma 4.2 〈h0〉 is the sum of two summands. Namely,

〈h0〉 = j ◦ 〈a0〉+ 〈Δ(U),W0, ϕ1|W0
, ..., ϕN |W0

; pX ◦ (r|W0
)〉

in ZFN (U,X). By Remark 9.3 and Theorem 14.3 for the second summand

one has

[Δ(U),W0, ϕ1|W0
, ..., ϕN |W0

; pX ◦ (r|W0
)] = [σN

X ]◦ [pX ◦r|W0
◦ (s|Δ(U) ◦Δ)] =

= [σN
X ] ◦ [pX ◦Δ] = [σN

X ] ◦ [can]

in ZFN (U,X). Clearly, h1 = j ◦ a1 in FrN (U,X). Thus one has a chain of

equalities

[j] ◦ [a1] = [h1] = [h0] = [j] ◦ [a0] + [σN
X ] ◦ [can]

in ZFN (U,X). This reduces the claim to Theorem 14.3. Thus we have de-

rived Theorem 3.11 from Theorem 14.3.

10. Preliminaries for the injective part of the étale excision

In this section we follow definitions, notation and constructions from Sec-

tions 2 and 3. In particular, we can work with pointed sets Frn(Y,X)

and abelian groups like ZFn((Y, Y
0), (X,Y 0)), ZFn((Y, Y

0), (X,X0)), where
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(Y, Y 0) ∈ EssSm/k and (X,X0) ∈ Sm/k. Let X,X ′ be irreducible smooth

k-schemes. Let V ⊂ X and V ′ ⊂ X ′ be open subschemes. Suppose

V ′ X ′

Π

V X

is an elementary distinguished square in the sense of [13, Definition 3.1.3].

Let S = X−V and S′ = X ′−V ′ be closed subschemes equipped with reduced

structures. Let x ∈ S and x′ ∈ S′ be two points such that Π(x′) = x. Let

U = Spec(OX,x) and U ′ = Spec(OX′,x′). Let π : U ′ → U be the morphism

induced by Π.

To prove Theorem 3.13, it suffices to find elements a ∈ ZFN ((U,U −
S)), (X ′, X ′ − S′)) and bG ∈ ZFN ((U,U − S)), (X − S,X − S)) such that

(15) [[Π]] ◦ [[a]]− [[j]] ◦ [[bG]] = [[σN
X ]] ◦ [[can]]

in ZFN (U,U − S)), (X,X − S)). Here j : (X − S,X − S) → (X,X − S)

and can : (U,U − S) → (X,X − S) are inclusions. In this section we

do some preparations to construct the desired elements a ∈ ZFN ((U,U −
S)), (X ′, X ′−S′)) and bG ∈ ZFN ((U,U −S)), (X−S,X −S)) in Section 11

satisfying (15).

Let in : X◦ ↪→ X and in′ : (X ′)◦ ↪→ X ′ be open such that

(1) x ∈ X◦,
(2) x′ ∈ (X ′)◦,
(3) Π((X ′)◦) ⊂ X◦,
(4) the square

V ′ ∩ (X ′)◦ (X ′)◦

Π|(X′)◦

V ∩X◦ X◦

is an elementary distinguished square.

Suppose a◦ ∈ ZFN ((U,U − S)), ((X ′)◦, (X ′)◦ − S′)), b◦G ∈ ZFN ((U,U −
S)), (X◦−S,X◦−S)) are such that for the inclusions j◦ : (X◦−S,X◦−S) →
(X◦, X◦ − S) and canX◦ : (U,U − S) → (X◦, X◦ − S) one has

(16) [[Π|(X′)◦ ]] ◦ [[a◦]]− [[j◦]] ◦ [[b◦G]] = [[σN
X◦ ]] ◦ [[canX◦ ]].
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Then the elements a = in′ ◦ a◦ and bG = in ◦ b◦G satisfy (15). Thus if we
shrink X and X ′ in such a way that properties (1) − (4) are fulfilled and
find appropriate elements a◦ and b◦G, then we find a and bG satisfying (15).

Remark 10.1. One way of shrinkingX andX ′ such that properties (1)−(4)
are fulfilled is as follows. Replace X by an affine open X◦ containing x and
then replace X ′ by (X ′)◦ = Π−1(X◦).

Let X ′
n be the normalization of X in Spec(k(X ′)). Let Πn : X ′

n → X
be the corresponding finite morphism. Since X ′ is k-smooth it is an open
subscheme of X ′

n. Let Y ′′ = X ′
n − X ′. It is a closed subset in X ′

n. Since
Π|S′ : S′ → S is an isomorphism of schemes, then S′ is closed in X ′

n. Thus
S′ ∩ Y ′′ = ∅. Hence there is a function f ∈ k[X ′

n] such that f |Y ′′ = 0 and
f |S′ = 1.

Definition 10.2. Set X ′
new = (X ′

n)f , Y
′ = {f = 0}, Y = Πn(Y

′
red) ⊂ X.

Note that X ′
new is an affine k-variety as a principal open subset of the affine

k-variety X ′
n. We regard Y ′ as an effective Cartier divisor of X ′

n. The subset
Y is closed in X, because Πn is finite. Set Πnew = Π|X′

new
.

Remark 10.3. We note that Π−1
new(S) = S′ and the open subsets X◦ = X,

(X ′)◦ = X ′
new ⊂ X ′ satisfy the properties (1) − (4). Thus, we may change

notation and write X ′ for X ′
new.

Remark 10.4. Shrinking X and X ′ as described in Remark 10.1, changing
notation again, and using Proposition 8.3, one can find an almost elementary
fibration q : X → B in the sense of Definition 8.1 (here B is affine open in
Pn−1) such that q|Y ∪S : Y ∪ S → B is finite, ωB/k

∼= OB, ωX/k
∼= OX .

The scheme X ′ will be regarded below as a B-scheme via the morphism
q ◦Π.

Remark 10.5. If q : X → B is the almost elementary fibration from Re-
mark 10.4, then Ω1

X/B
∼= OX . In fact, ωX/k

∼= q∗(ωB/k)⊗ωX/B. Thus ωX/B
∼=

OX . Since X/B is a smooth relative curve, then Ω1
X/B = ωX/B

∼= OX .

If, furthermore, j : X ↪→ B × AN is a closed embedding of B-schemes,
then one has [N (j)] = (N − 1)[OX ] in K0(X), where N (j) is the normal
bundle to X for the imbedding j.

Thus by increasing the integerN , we may assume that the normal bundle
N (j) is isomorphic to the trivial bundle ON−1

X .

Repeating arguments from the proof of Lemma 9.2 we get the following

Proposition 10.6. Let q : X → B be the almost elementary fibration from
Remark 10.4. Then there are an integer N � 0, a closed embedding X ↪→
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B ×AN of B-schemes, an étale affine neighborhood (V, ρ : V → B ×AN , s :

X ↪→ V) of X in B × AN , functions ϕ1, ..., ϕN−1 ∈ k[V] and a morphism

r : V → X such that:

(i) the functions ϕ1, ..., ϕN−1 generate the ideal Is(X) in k[V] defining the

closed subscheme s(X) of V;
(ii) r ◦ s = idX ;

(iii) the morphism r is a B-scheme morphism if V is regarded as a B-

scheme via the morphism prU ◦ ρ, and X is regarded as a B-scheme

via the morphism q.

Definition 10.7. Let x ∈ S, x′ ∈ S′ be such that Π(x′) = x. Set U =

Spec(OX,x). There is an obvious morphism Δ = (id, can) : U → U ×B X. It

is a section of the projection pU : U ×B X → U . Let pX : U ×B X → X be

the projection onto X. Let π : U ′ → U be the restriction of Π to U ′.

Notation 10.8. In what follows we will write U × X to denote U ×B X,

U × X ′ to denote U ×B X ′, U ′ × X ′ to denote U ′ ×B X ′, etc. Here X ′ is
regarded as a B-scheme via the morphism q ◦Π.

The following proposition will be proved in Section 15.

Proposition 10.9. Under the conditions of Remark 10.4 and Notation 10.8

there is a function hθ ∈ k[A1 × U × X] (θ is the parameter on the left

factor A1) such that the following properties hold for the functions hθ, h1 :=

hθ|1×U×X and h0 := hθ|0×U×X :

(a) the morphism (pr, hθ) : A
1×U ×X → A1×U ×A1 is finite surjective,

and hence the closed subscheme Zθ := h−1
θ (0) ⊂ A1 × U ×X is finite

flat and surjective over A1 × U ;

(b) for the closed subscheme Z0 := h−1
0 (0) one has Z0 = Δ(U) � G (an

equality of closed subschemes) and G ⊂ U × (X − S);

(c) the closed subscheme (idU×Π)∗(h1) = 0 is a disjoint union of the form

Z ′
1�Z ′

2 and m := (idU ×Π)|Z′
1
identifies Z ′

1 with the closed subscheme

Z1 := {h1 = 0};
(d) Zθ ∩A1 × (U − S)× S = ∅ or, equivalently, Zθ ∩A1 × (U − S)×X ⊂

A1 × (U − S)× (X − S).

Remark 10.10. Item (d) yields the following inclusions: Zθ ∩ A1 × (U −
S)×X ⊂ A1×(U−S)×(X−S), Z0∩(U−S)×X ⊂ (U−S)×(X−S), and

Z1 ∩ (U − S)×X ⊂ (U − S)× (X − S). Applying item (c), we get another

inclusion: Z ′
1 ∩ (U − S)×X ′ ⊂ (U − S)× (X ′ − S′).
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11. Reducing Theorem 3.13 to Proposition 10.9

As ususal we follow definitions, notation and constructions from Sections 2
and 3. In this section we construct the desired elements a ∈ ZFN ((U,U −
S)), (X ′, X ′ − S′)) and bG ∈ ZFN ((U,U − S)), (X − S,X − S)) satisfying
the relation (15). To construct b ∈ FrN (U,X), we first construct its support
in U × AN for some integer N , then we construct an étale neighborhood of
the support in U ×AN , then one constructs a framing of the support in the
neighborhood, and finally one constructs b itself. In the same manner we
construct a ∈ FrN (U,X ′) and a homotopy H ∈ FrN (A1 × U,X) between
Π ◦ a and b. Using the fact that the support Z0 of b is of the form Δ(U)�G
with G ⊂ U × (X − S), we get an equality

〈b〉 = 〈b1〉+ 〈b2〉

in ZFN (U,X). Then we prove that [b1] = [σN
X ]◦[can] and [b2] factors through

X − S. Moreover, we are able to work with elements of pairs. These will
end up with the equality (15) and will complete the proof of Theorem 3.13
at the very end of the section. We will use systematically the data from
Proposition 10.6 in this section (the details are given below).

Under the assumptions and notation of Proposition 10.6, Lemma 10.6
and Remark 10.3, set V ′ = X ′ ×B V. So we have a Cartesian square

V ′ Π′

r′

V
r

X ′ Π
X,

where r′ and Π′ are the projections to the first and second factors respec-
tively. The section s : X → V defines a section s′ = (id, s) : X ′ → V ′ of
r′. For brevity, we will write below U × V to denote U ×B V, U × V ′ for
U ×B V ′, and id× ρ for id×B ρ : U ×B V → U ×B (B ×An) = U ×AN . Let
pV : U × V → V be the projection.

Let X ⊂ B × AN be the closed inclusion from Proposition 10.6. Taking
the base change of the latter inclusion by means of the morphism U → B,
we get a closed inclusion U ×X ⊂ U × AN .

Under the notation from Proposition 10.6 and Proposition 10.9, we now
construct an element b ∈ FrN (U,X). Let Z0 ⊂ U ×X be the closed subset
from Proposition 10.9. Then one has the closed inclusions

Δ(U) �G = Z0 ⊂ U ×X ⊂ U × AN .
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Let in0 : Z0 ⊂ U ×X be the closed inclusion. Define an étale neighborhood
of Z0 in U × AN as follows:

(17) (U × V, id× ρ : U × V → U × AN , (id× s) ◦ in0 : Z0 → U × V).

We will write Δ(U)�G = Z0 ⊂ U ×V for ((id× s) ◦ in0)(Z0) ⊂ U ×V. Let
f ∈ k[U × V] be a function such that f |G = 0 and f |Δ(U) = 1. Then Δ(U)
is a closed subset of the affine scheme (U × V)f .
Definition 11.1. Under the notation from Proposition 10.6 and Proposition
10.9, set

b′ = (Z0, U×V, p∗V(ϕ1), ..., p
∗
V(ϕN−1), (id×r)∗(h0); prX◦(id×r))∈FrN (U,X).

We will sometimes write below (Z0, U×V, p∗V(ϕ), (id×r)∗(h0); prX ◦(id×r))
to denote the element b′.

To construct the desired element b ∈ FrN (U,X), we need to modify
slightly the function p∗V(ϕ1) in the framing of Z0. By Proposition 10.6 and
item (b) of Proposition 10.9, the functions

p∗V(ϕ1), ..., p
∗
V(ϕN−1), (id× r)∗(h0)

generate the ideal I(id×s)(Δ(U)) in k[(U ×V)f ] defining the closed subscheme

Δ(U) of the scheme (U×V)f . Let t1, t2, . . . , tN ∈ k[U×AN ] be the coordinate
functions. For any i = 1, 2, . . . , N , set t′i = ti − (ti|Δ(U)) ∈ k[U ×AN ]. Then
the family

(t′′1, t
′′
2, . . . , t

′′
N ) = (id× ρ)∗(t′1), (id× ρ)∗(t′2), . . . , (id× ρ)∗(t′N )

also generates the ideal I = I(id×s)(Δ(U)) in k[(U × V)f ]. This holds, be-

cause (17) is an étale neighborhood of Z0 in U × AN . By Remark 10.5 the
k[U ] = k[(id × s)(Δ(U))]-module I/I2 is free of rank N . Thus the families
(t̄′′1, t̄

′′
2, . . . , t̄

′′
N ) and (p∗V(ϕ1), ..., p∗V(ϕN−1), (id× r)∗(h0)) are two bases of the

free k[((id × s) ◦ Δ)(U))]-module I/I2. Let J ∈ k[U ]× be the Jacobian of
a unique matrix A ∈ MN (k[U ]) which transforms the first free basis to the
second one. Set,

ϕnew
1 = q∗U (J

−1)ϕ1 ∈ k[V],
where qU = prU ◦ (id × ρ) : V → U . Let Anew ∈ MN (k[U ]) be a unique
matrix changing the first free basis to the basis

(p∗V(ϕ
new
1 ), p∗V(ϕ2), ..., p∗V(ϕN−1), (id× r)∗(h0)).
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Then the Jacobian Jnew of Anew is equal to 1:

(18) Jnew = 1 ∈ k[U ]×.

We will write

(ψ1, ψ2, . . . , ψN−1) for (p∗V(ϕ
new
1 ), p∗V(ϕ2), ..., p

∗
V(ϕN−1)).

Definition 11.2. Under the notation from Proposition 10.6 and Proposition
10.9 set

b = (Z0, U × V, ψ1, ..., ψN−1, (id× r)∗(h0); prX ◦ (id× r)) ∈ FrN (U,X).

For brevity, we will sometimes write

b = (Z0, U × V, p∗V(ψ), (id× r)∗(h0); prX ◦ (id× r)).

Under the notation from Proposition 10.6 and Proposition 10.9 we now
construct an element a ∈ FrN (U,X). Let Z1 ⊂ U ×X be the closed subset
from Proposition 10.9. Then one has closed inclusions

Z1 ⊂ U ×X ⊂ U × AN .

Set (U ×X ′)◦ = (U ×X ′)−Z ′′
2 and (U ×V ′)◦ = (id× r′)−1((U ×X ′)◦). Let

in1 : Z1 ⊂ U ×X and in′
1 : Z

′
1 ⊂ (U ×X ′)◦ be closed inclusions. Set,

r◦ = (id× r′)|(U×V ′)◦ : (U × V ′)◦ → (U ×X ′)◦.

Using the notation of Proposition 10.6 and Proposition 10.9 (item (c)), define
an étale neighborhood of Z1 in U × AN as follows:

((U × V ′)◦,(id× ρ) ◦ (id×Π′) : (U × V ′)◦ → U × AN ,

(id× s′) ◦ in′
1 ◦m−1 : Z1 → (U × V ′)◦).

(19)

Definition 11.3. Under the notation of Proposition 10.6 and Proposi-
tion 10.9 set

a :=

(Z1, (U ×V ′)◦, (id×Π′)∗(ψ1), ..., (id×Π′)∗(ψN−1), r
∗
◦(id×Π)∗(h1); prX′ ◦ r◦)

∈ FrN (U,X ′).
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For brevity, we will sometimes write

a = (Z1, (U × V ′)◦, (id×Π′)∗(ψ), r∗◦(id×Π)∗(h1); prX′ ◦ r◦).

Under the notation of Proposition 10.6 and Proposition 10.9, let us con-
struct now a element Hθ ∈ FrN (A1 × U,X). Let Zθ ⊂ A1 × U ×X be the
closed subset from Proposition 10.9. Then one has closed inclusions

Zθ ⊂ A1 × U ×X ⊂ A1 × U × AN .

Let inθ : Zθ ⊂ A1 × U × X be the closed inclusion. Define an étale neigh-
borhood of Zθ in A1 × U × AN as follows:

(A1 × U × V,id× id× ρ : A1 × U × V → A1 × U × AN ,

(id× id× s) ◦ inθ : Zθ → A1 × U × V).
(20)

Definition 11.4. Under the notation of Propositions 10.6 and 10.9 we set

Hθ = (Zθ,A
1 ×U ×V, ψ1, ..., ψN−1, (id× id× r)∗(hθ); prX ◦ (id× id× r))

∈ FrN (A1 × U,X).

We will sometimes write below (Zθ,A
1 × U × V, ψ, (id× id× r)∗(hθ); prX ◦

(id× id× r)) to denote the element Hθ.

Lemma 11.5. One has equalities H0 = b, H1 = Π ◦ a in FrN (U,X).

Proof. The first equality is obvious. To check the second one, consider

H1 = (Z1, U × V, ψ, (id× r)∗(h1); prX ◦ (id× r)) ∈ FrN (U,X).

Here we use (U ×V, id×ρ : U ×V → U ×AN , (id×s)◦ in1 : Z1 → U ×V) as
an étale neighborhood of Z1 in U × AN . Take another étale neighborhood
of Z1 in U × AN

((U × V ′)◦, (id× ρ) ◦ (id×Π′) : (U × V ′)◦ → U × AN ,

(id× s′) ◦ in′
1 ◦m−1 : Z1 → (U × V ′)◦)

and the morphism id× Π′ : (U × V ′)◦ → U × V regarded as a morphism of
étale neighborhoods. Refining the étale neighborhood of Z1 in the definition
of H1 by means of that morphism, we get a framed correspondence H ′

1 = H1

of level N , which has the form

(Z1, (U×V ′)◦, (id×Π′)∗(ψ), (id×Π′)∗(id×r)∗(h1); prX ◦ (id×r)◦ (id×Π′)).
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Note that

(id×Π′)∗(id× r)∗(h1) = r∗◦(id×Π)∗(h1)

and

prX ◦ (id× r) ◦ (id×Π′) = Π ◦ prX′ ◦ r◦.
Thus, H1 = H ′

1 = Π ◦ a in FrN (U,X).

The following lemma follows from Lemma 4.4 and Remark 10.10.

Lemma 11.6. The elements a|U−S, b|U−S, Hθ|A1×(U−S) and Π|X′−S′ run
inside X ′ − S′, X − S, X − S and X − S respectively.

By the preceding lemma and Definition 4.3 the elements a, b, Hθ and Π
define elements

〈〈a〉〉 ∈ ZFN ((U,U − S), (X ′, X ′ − S′)),

〈〈b〉〉 ∈ ZFN ((U,U − S), (X,X − S)),

〈〈Hθ〉〉 ∈ ZFN (A1 × (U,U − S), (X,X − S)),

〈〈Π〉〉 ∈ ZFN ((X ′, X ′ − S′), (X,X − S)).

Lemma 11.5 and Definition 4.3 yield equalities

〈〈Π〉〉 ◦ 〈〈a〉〉 = 〈〈H1〉〉 and 〈〈H0〉〉 = 〈〈b〉〉

in ZFN ((U,U − S), (X,X − S)).

Corollary 11.7. One has an equality [[Π]] ◦ [[a]] = [[b]] in ZFN ((U,U −
S), (X,X − S)).

Proof of Corollary 11.7. In fact, by Corollary 4.5 one has a chain of equali-
ties

[[Π]] ◦ [[a]] = [[H1]] = [[H0]] = [[b]]

in ZFN ((U,U − S), (X,X − S)).

Reducing Theorem 3.13 to Proposition 10.9. The support Z0 of b is the dis-
joint union Δ(U) �G. Thus, by Lemma 4.6 one has an equality

〈〈b〉〉 = 〈〈b1〉〉+ 〈〈b2〉〉

in ZFN ((U,U − S), (X,X − S)), where

b1 = (Δ(U), (U × V)f , ψ1, ..., ψN−1, (id× r)∗(h0); prX ◦ (id× r)),
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b2 = (G, (U × V −Δ(U), ψ1, ..., ψN−1, (id× r)∗(h0); prX ◦ (id× r)).

By Proposition 10.9 one has G ⊂ U × (X − S). Thus b2 = j ◦ bG for an
obvious element bG ∈ FrN (U,X − S). Also,

〈〈b2〉〉 = 〈〈j〉〉 ◦ 〈〈bG〉〉 ∈ ZFN ((U,U − S), (X,X − S)),

where j : (X −S,X −S) ↪→ (X,X −S) is a natural inclusion. By the latter
comments and Corollary 11.7 one gets an equality

[[Π]] ◦ [[a]]− [[j]] ◦ [[bG]] = [[b1]]

in ZFN ((U,U −S), (X,X −S)). To prove equality (15), and hence to prove
Theorem 3.13, it remains to check that [[b1]] = [[σN

X ]] ◦ [[can]]. Recall that
one has equality (18). Thus the equality [[b1]] = [[σN

X ]] ◦ [[can]] holds by
Theorem 14.3. This finishes the proof of Theorem 3.13.

12. Preliminaries for the surjective part of the étale excision

As ususal we follow definitions, notation and constructions from Sections 2
and 3. Let X,X ′ be irreducible k-smooth schemes. Let V ⊂ X and V ′ ⊂ X ′

be open subsets. Let

V ′ X ′

Π

V X

be an elementary distinguished square in the sense of [13, Definition 3.1.3].
Let S = X−V and S′ = X ′−V ′ be closed subschemes equipped with reduced
structures. Let x ∈ S and x′ ∈ S′ be two points such that Π(x′) = x. Let
U = Spec(OX,x) and U ′ = Spec(OX′,x′). Let π : U ′ → U be the morphism
induced by Π.

To prove Theorem 3.14 it suffices to find elements a ∈ ZFN ((U,U −
S)), (X ′, X ′−S′)) and bG ∈ ZFN ((U ′, U ′−S′)), (X ′−S′, X ′−S′)) such that
in the characteristic different from 2 the following equality holds:

(21) [[a]] ◦ [[π]]− [[j]] ◦ [[bG]] = [[σN
X′ ]] ◦ [[can′]].

If the characteristic of k is 2 then the following equality holds in ZFN (U ′, U ′−
S′)), (X ′, X ′ − S′)):

(22) 2 · [[a]] ◦ [[π]]− 2 · [[j]] ◦ [[bG]] = 2 · [[σN
X′ ]] ◦ [[can′]].
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Here j : (X ′ − S′, X ′ − S′) → (X ′, X ′ − S′) and can′ : (U ′, U ′ − S′) →
(X ′, X ′ − S′) are inclusions. In this section we do some preparations to
construct the desired elements

a ∈ ZFN ((U,U − S)), (X ′, X ′ − S′))

and

bG ∈ ZFN ((U ′, U ′ − S′)), (X ′ − S′, X ′ − S′))

in Section 13 satisfying (21) in the characteristic different from 2, and sat-
isfying (22) if the characteristic of k is 2. Our preparations are independent
of the characteristic of the base field k.

Replace X by an affine open neighborhood in : X◦ ↪→ X of the point
x. Replace X ′ by (X ′)◦ := Π−1(X◦) and write in′ : (X ′)◦ ↪→ X ′ for the
inclusion. Replace V by V ∩X◦ and V ′ with V ′∩(X ′)◦. Let can′

◦ : U
′ → (X ′)◦

be the canonical inclusion. Let j◦ : ((X ′◦)−S′, (X ′)◦−S′) → ((X ′)◦, (X ′)◦−
S′) be an inclusion of pairs. If we find

a◦ ∈ ZFN ((U,U − S)), ((X ′)◦, (X ′)◦ − S′))

and

b◦G ∈ ZFN ((U ′, U ′ − S′)), ((X ′)◦ − S′, (X ′)◦ − S′))

such that

(23) [[a◦]] ◦ [[π]]− [[j◦]] ◦ [[b◦G]] = [[σN
(X′)◦ ]] ◦ [[can′

◦]],

then the elements a = in′ ◦ a◦ and bG = in′ ◦ b◦G satisfy condition (21). Thus
we may assume that X is an affine variety.

Let X ′
n be the normalization of X in Spec(k(X ′)). Let Πn : X ′

n → X
be the corresponding finite morphism. Since X ′ is k-smooth it is an open
subscheme of X ′

n. Let Y ′′ = X ′
n − X ′. It is a closed subset in X ′

n. Since
Π|S′ : S′ → S is a scheme isomorphism, then S′ is closed in X ′

n. Thus
S′ ∩ Y ′′ = ∅. Hence there is a function f ∈ k[X ′

n] such that f |Y ′′ = 0 and
f |S′ = 1.

Remark 12.1. In this section we use agreements and notation from Defini-
tion 10.2 and Remark 10.3. Particularly, we may change notation and write
X ′ for X ′

new.

Remark 12.2. ShrinkingX andX ′ exactly as in Remark 10.4 and changing
notation again, consider the almost elementary fibration q : X → B from
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Remark 10.4. Then Ω1
X′/B

∼= OX′ . In fact, by Remark 10.5 Ω1
X/B = ωX/B

∼=
OX . The morphism Π : X ′ → X is étale. Thus Ω1

X′/B
∼= OX′ .

Since X ′ is an affine k-variety, there is a closed embedding j : X ′ ↪→
B × AN of B-schemes. Choose and fix such an embedding j. Since X ′ is
affine k-smooth, hence [N (j)] = (N − 1)[OX ] in K0(X

′), where N (j) is the
normal bundle to X ′ associated with the imbedding j.

Thus by increasing the integerN , we may assume that the normal bundle
N (j) is isomorphic to the trivial bundle ON−1

X′ .

Repeating arguments from the proof of Lemma 9.2, we get the following

Proposition 12.3. Let q : X → B be the almost elementary fibration from
Remark 12.2 and let X ′ be as in Remark 12.2. Then there are an integer
N � 0, a closed embedding j : X ′ ↪→ B × AN of B-schemes, an étale affine
neighborhood (V ′′, ρ′′ : V ′′ → B × AN , s′′ : X ′ ↪→ V ′′) of X ′ in B × AN ,
functions ϕ′

1, ..., ϕ
′
N−1 ∈ k[V ′′] and a morphism r′′ : V ′′ → X ′ such that:

(i) the functions ϕ′
1, ..., ϕ

′
N−1 generate the ideal Is′′(X′) in k[V ′′] defining

the closed subscheme s′′(X ′) of V ′′;
(ii) r′′ ◦ s′′ = idX′;
(iii) the morphism r′′ is a B-scheme morphism if V ′′ is regarded as a B-

scheme via the morphism prU ◦ ρ′′ and X ′ is regarded as a B-scheme
via the morphism q ◦Π from Lemma 10.4.

Definition 12.4. Let x ∈ S, x′ ∈ S′ be such that Π(x′) = x. We put U =
Spec(OX,x). There is an obvious morphism Δ′ = (id, can) : U ′ → U ′ ×B X ′.
It is a section of the projection pU ′ : U ′×BX

′ → U ′. Let pX′ : U ′×BX
′ → X ′

be the projection onto X ′. Let π : U ′ → U be the restriction of Π to U ′.

Notation 12.5. We regard X as a B-scheme via the morphism q and regard
X ′ as a B-scheme via the morphism q ◦Π. In what follows we write U ×X ′

for U ×B X ′, U ′ ×X ′ for U ′ ×B X ′, A1 × U ′ ×X ′ for A1 × U ′ ×B X ′ etc.

The following proposition will be proved in Section 15.

Proposition 12.6. Under the conditions of Remark 12.2 and Notation 12.5
there are functions F ∈ k[U×X ′] and h′θ ∈ k[A1×U ′×X ′] (θ is the parameter
on the left factor A1) such that the following properties hold for the functions
h′θ, h

′
1 := h′θ|1×U ′×X′ and h′0 := h′θ|0×U ′×X′:

(a) the morphism (pr, h′θ) : A1 × U ′ × X ′ → A1 × U ′ × A1 is finite and
surjective, hence the closed subscheme Z ′

θ := (h′θ)
−1(0) ⊂ A1×U ′×X ′

is finite flat and surjective over A1 × U ′;
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(b) for the closed subscheme Z ′
0 := (h′0)

−1(0) one has Z ′
0 = Δ′(U ′) � G′

(an equality of closed subschemes) and G′ ⊂ U ′ × (X ′ − S′);
(c) h′1 = (π × idX′)∗(F ) (we write Z ′

1 to denote the closed subscheme
{h′1 = 0});

(d) Z ′
θ∩A1×(U ′−S′)×S′ = ∅ or, equivalently, Z ′

θ∩A1×(U ′−S′)×X ′ ⊂
A1 × (U ′ − S′)× (X ′ − S′);

(e) the morphism (prU , F ) : U × X ′ → U × A1 is finite surjective, and
hence the closed subscheme Z1 := F−1(0) ⊂ U ×X ′ is finite flat and
surjective over U ;

(f) Z1 ∩ (U −S)×S′ = ∅ or, equivalently, Z1 ∩ (U −S)×X ′ ⊂ (U −S)×
(X ′ − S′).

Remark 12.7. Item (d) yields the following inclusions:

� Z ′
θ ∩ A1 × (U ′ − S′)×X ′ ⊂ A1 × (U ′ − S′)× (X ′ − S′);

� Z ′
0 ∩ (U ′ − S′)×X ′ ⊂ (U ′ − S′)× (X ′ − S′);

� Z ′
1 ∩ (U ′ − S′)×X ′ ⊂ (U ′ − S′)× (X ′ − S′).

Applying (f), we get another inclusion: Z1∩(U−S)×X ′ ⊂ (U−S)×(X ′−S′).

13. Reducing Theorem 3.14 to Propositions 12.3 and 12.6

We follow here definitions, notation and constructions from Sections 2 and
3. We suppose in this section that S ⊂ X is k-smooth. In the present section
we construct the desired elements a ∈ ZFN ((U,U − S)), (X ′, X ′ − S′)) and
bG ∈ ZFN ((U ′, U ′−S′)), (X ′−S′, X ′−S′)) satisfying (21) in the character-
istic different from 2, and satisfying (22) if the characteristic equals 2. This
construction does not depend on the characteristic of the base field k.

To construct an element a ∈ FrN (U,X ′), we first construct its support
in U × AN for some integer N , then we construct an étale neighborhood
of the support in U × AN , then one constructs a framing of the support in
the neighborhood and finally one constructs a itself. In the same fashion
we construct an element b ∈ FrN (U ′, X ′) and a homotopy H ∈ FrN (A1 ×
U ′, X ′) between a◦π and b. Using the fact that the support Z ′

0 of b is of the
form Δ′(U ′) �G′ with G′ ⊂ U ′ × (X ′ − S′), we get a relation

〈b〉 = 〈b1〉+ 〈b2〉

in ZFN (U ′, X ′). Then we prove that [σN
X′ ]◦ [b1] = [can′] if char k �= 2 and [b2]

factors through X ′−S′. If char k = 2 we prove that 2 · [b1] = 2 ·([σN
X′ ]◦ [can′])

and [b2] factors throughX ′−S′. Moreover, we are able to work with elements
of pairs. In this section we will use systematically Propositions 12.3 and 12.6
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and Notation 12.5. These will end up with the equalities (21), (22) and will
complete the proof of Theorem 3.14 at the very end of the section (details
are given below).

Let X ′ ⊂ B ×AN be the closed inclusion from Proposition 12.3. Taking
the base change of the latter inclusion by means of the morphism U → B,
we get a closed inclusion U ×B X ′ ⊂ U ×B (B×AN ) = U ×AN . Recall (see
Notation 12.5) that we regard X as a B-scheme via the morphism q and
regard X ′ as a B-scheme via the morphism q ◦ Π. In what follows we write
U ×X ′ for U ×B X ′, U ′×X ′ for U ′×B X ′, U ×V ′′ for U ×B V ′′, U ′×V ′′ for
U ′ ×B V ′′, and id × ρ for id ×B ρ : U ×B V ′′ → U ×B (B × An) = U × AN .
Let pV : U × V → V be the projection.

Under the notation from Proposition 12.3 and Proposition 12.6, con-
struct now an element b ∈ FrN (U ′, X ′). Let Z ′

0 ⊂ U ′ × X ′ be the closed
subset from Proposition 12.6. Then one has closed inclusions

Δ′(U ′) �G′ = Z ′
0 ⊂ U ′ ×X ′ ⊂ U ′ × AN .

Let in0 : Z ′
0 ⊂ U ′ ×X ′ be a closed inclusion. Define an étale neighborhood

of Z ′
0 in U ′ × AN as follows:

(24) (U ′×V ′′, id×ρ′′ : U ′×V ′′ → U ′×AN , (id× s′′) ◦ in0 : Z
′
0 → U ′×V ′′).

We will write Δ′(U ′)�G′ = Z ′
0 ⊂ U ′×V ′′ for ((id×s′′)◦ in0)(Z

′
0) ⊂ U ′×V ′′.

Let f ∈ k[U ′ × V ′′] be a function such that f |G′ = 0 and f |Δ′(U ′) = 1. Then
Δ′(U ′) is a closed subset of the affine scheme (U ′ × V ′′)f .

Definition 13.1. Under the notation from Proposition 10.6 and Proposi-
tion 10.9, set

b′ :=

(Z ′
0, U

′×V ′′, (π×id)∗(p∗V ′′(ϕ′
1), ..., p

∗
V ′′(ϕ′

N−1)), (id×r′′)∗(h′0); prX′ ◦(id×r′′))

∈ FrN (U ′, X ′).

Here pV ′′ : U × V ′′ → V ′′ is the projection. Below we will sometimes write
(Z ′

0, U
′×V ′′, (π× id)∗(p∗V ′′(ϕ′)), (id×r′′)∗(h′0); prX′ ◦ (id×r′′)) to denote the

element b′.

To construct the desired element b ∈ FrN (U ′, X ′), we slightly modify the
function p∗V ′′(ϕ′

1) in the framing of Z ′
0. By Proposition 12.3 and Proposition

12.6(b), the functions

(π × id)∗(p∗V ′′(ϕ′
1)), ..., (π × id)∗(p∗V ′′(ϕ′

N−1)), (id× r′′)∗(h′0)
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generate an ideal I(id×s′′)(Δ′(U ′)) in k[(U ′ × V ′′)f ] defining the closed sub-

scheme Δ′(U ′) of the scheme (U ′ × V ′′)f . Let t1, t2, . . . , tN ∈ k[U ′ × AN ] be
the coordinate functions. For any i = 1, 2, . . . , N , set t′i = ti − (ti|Δ′(U ′)) ∈
k[U ′ × AN ]. Then the family

(t′′1, t
′′
2, . . . , t

′′
N ) = (id× ρ′′)∗(t′1), (id× ρ′′)∗(t′2), . . . , (id× ρ′′)∗(t′N )

also generates the ideal I = I(id×s′′)(Δ′(U ′)) in k[(U ′ × V ′′)f ]. This holds,

because (24) is an étale neighborhood of Z ′
0 in U × AN . By Remark 12.2

the k[U ′] = k[(id × s′′)(Δ′(U ′))]-module I/I2 is free of rank N . Thus the
families

(t̄′′1, t̄
′′
2, . . . , t̄

′′
N ) and (p∗V ′′(ϕ′

1), ..., p
∗
V ′′(ϕ′

N−1), (id× r′′)∗(h′0))

are two bases of the free k[((id×s′′)◦Δ′)(U ′))]-module I/I2. Let J ∈ k[U ′]×

be the Jacobian of a unique matrix A ∈ MN (k[U ′]) converting the first basis
to the second one. There is an element λ ∈ k[U ] such that λ|S∩U = J |S′∩U ′

(we identify here S′ ∩ U ′ with S ∩ U via the morphism π|S′∩U ′). Clearly,
λ ∈ k[U ]×. Set,

(ϕ′
1)

new = q∗U (J
−1)(ϕ′

1) ∈ k[V ′′],

where qU = prU ◦ (id × ρ′′) : V ′′ → U . Let Anew ∈ MN (k[U ]) be a unique
matrix which converts the first basis to the basis

(p∗V ′′((ϕ′
1)

new), ..., p∗V ′′(ϕ′
N−1), (id× r′′)∗(h′0)).

Then the Jacobian Jnew ∈ k[U ′]× of Anew has the property:

(25) Jnew|S′∩U ′ = 1 ∈ k[S′ ∩ U ′].

We will write (ψ1, ψ2, . . . , ψN−1) for (p
∗
V ′′((ϕ′

1)
new), ..., p∗V ′′(ϕ′

N−1)).

Definition 13.2. Under the notation from Proposition 12.3 and Proposi-
tion 12.6, set

b :=

(Z ′
0, U

′×V ′′, (π×id)∗(ψ1), ..., (π×id)∗(ψN−1), (id×r′′)∗(h′0); prX′ ◦(id×r′′))

∈ FrN (U ′, X ′).

We often write for brevity b = (Z ′
0, U

′×V ′′, (π×id)∗(ψ), (id×r′′)∗(h′0); prX′ ◦
(id× r′′)).
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Under the notation from Proposition 12.3 and Proposition 12.6 we now

construct an element a ∈ FrN (U,X ′). Let Z1 ⊂ U ×X ′ be the closed subset

from Proposition 12.6. Then one has closed inclusions

Z1 ⊂ U ×X ′ ⊂ U × AN .

Let in1 : Z1 ⊂ U ×X be the closed inclusion. Define an étale neighborhood

of Z1 in U × AN as follows:

(26) (U × V ′′, id× ρ′′ : U × V ′′ → U × AN , (id× s′′) ◦ in1 : Z1 ↪→ U × V ′′).

Definition 13.3. Under the notation from Proposition 12.3 and Proposi-

tion 12.6 set

a = (Z1, U ×V ′′, ψ1, ..., ψN−1, (id× r′′)∗(F ); prX′ ◦ (idU × r′′)) ∈ FrN (U,X ′)

We will sometimes write (Z1, U × V ′′, ψ, (id× r′′)∗(F ); prX′ ◦ (idU × r′′)) to
denote a.

Under the notation from Proposition 12.3 and Proposition 12.6 we now

construct an element Hθ ∈ FrN (A1 × U ′, X ′). Recall that under that nota-
tion we write A1 × U ′ ×X ′ for A1 × U ′ ×B X ′. Let Z ′

θ ⊂ A1 × U ′ ×X ′ be
the closed subset from Proposition 12.6. Then one has closed inclusions

Z ′
θ ⊂ A1 × U ′ ×X ′ ⊂ A1 × U ′ × AN .

Let inθ : Z ′
θ ⊂ A1 × U ′ ×X ′ be the closed inclusion. Define an étale neigh-

borhood of Z ′
θ in A1 × U ′ × AN as follows:

(A1 × U ′×V ′′,A1 × U ′ × V ′′ id×id×ρ′′

−−−−−−→ A1 × U ′ × AN ,

(id×id× s′′) ◦ inθ : Z
′
θ ↪→ A1 × U ′ × V ′′).

(27)

Definition 13.4. Under the notation from Proposition 12.3 and Proposi-

tion 12.6, set Hθ to be equal to

(Z ′
θ,A

1×U ′×V ′′, pr∗((π× id)∗(ψ)), (id× id× r′′)∗(h′θ); prX′ ◦ (id× id× r′′))

from FrN (A1×U ′, X ′), where pr : A1×U ′×V ′′ → U ′×V ′′ is the projection.

Lemma 13.5. One has equalities H0 = b, H1 = a ◦ π in FrN (U ′, X ′).
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Proof. The first equality is obvious. Let us prove the second one. By Propo-
sition 12.6 one has h′1 = (π × idX′)∗(F ). Thus one has a chain of equalities
in FrN (U ′, X ′):

a ◦ π =

(Z ′
1, U

′×V ′′,(π×idV′′)∗(ψ),(π×idV′′)∗((idU×r′′)∗(F )); prX′◦(idU×r′′)◦(π×idV′′))=

(Z ′
1, U

′×V ′′, (π×idV′′)∗(ψ), (idU ′×r′′)∗((π×idX′)∗(F )); prX′◦(π×idX′)◦(idU ′×r′′))

= (Z ′
1, U

′ × V ′′, (π × idV′′)∗(ψ), (idU ′ × r′′)∗(h′
1); prX′ ◦ (idU ′ × r′′)) = H1,

as required.

The following lemma follows from Lemma 4.4 and Remark 12.7.

Lemma 13.6. The elements a|U−S, b|U ′−S′, Hθ|A1×(U ′−S′) and π|U ′−S′ run
inside X ′ − S′, X ′ − S′, X ′ − S′ and U − S respectively.

By the preceding lemma and Definition 4.3 the elements a, b, Hθ and π
define elements

〈〈a〉〉 ∈ ZFN ((U,U − S), (X ′, X ′ − S′)),

〈〈b〉〉 ∈ ZFN ((U ′, U ′ − S′), (X ′, X − S′)),

〈〈Hθ〉〉 ∈ ZFN (A1 × (U ′, U ′ − S′), (X ′, X ′ − S′)),

〈〈π〉〉 ∈ ZFN ((U ′, U ′ − S′), (U,U − S)).

Lemma 13.5 and Definition 4.3 yield equalities

〈〈a〉〉 ◦ 〈〈π〉〉 = 〈〈H1〉〉 and 〈〈H0〉〉 = 〈〈b〉〉

in ZFN ((U ′, U ′ − S′), (X ′, X ′ − S′)).

Corollary 13.7. There is a relation [[a]] ◦ [[π]] = [[b]] in ZFN ((U ′, U ′ −
S′), (X ′, X ′ − S′)).

Proof of Corollary 13.7. In fact, by Corollary 4.5 one has a chain of equali-
ties

[[a]] ◦ [[π]] = [[H1]] = [[H0]] = [[b]]

in ZFN ((U ′, U ′ − S′), (X ′, X ′ − S′)).

Reducing Theorem 3.14 to Propositions 12.6. The support Z0 of b is the dis-
joint union Δ′(U ′) �G′. Thus, by Lemma 4.6 one has,

〈〈b〉〉 = 〈〈b1〉〉+ 〈〈b2〉〉



Homotopy invariant presheaves with framed transfers 57

in ZFN ((U ′, U ′ − S′), (X ′, X ′ − S′)), where

b1 = (Δ′(U ′), (U ′ × V ′′)f , ψ1, ..., ψN−1, (id× r′′)∗(h′0); prX′ ◦ (id× r′′)),

b2 = (G′, (U ′ × V ′′ −Δ′(U ′), ψ1, ..., ψN−1, (id× r′′)∗(h′0); prX′ ◦ (id× r′′))

and the function f is defined just above Definition 13.1. By Proposition
12.6 one has G′ ⊂ U ′ × (X ′ − S′). Thus b2 = j ◦ bG′ for the obvious element
bG′ ∈ FrN (U ′, X ′ − S′). Also,

〈〈b2〉〉 = 〈〈j〉〉 ◦ 〈〈bG′〉〉 ∈ ZFN ((U ′, U ′ − S′), (X ′, X ′ − S′)),

where j : (X ′ − S′, X ′ − S′) ↪→ (X ′, X ′ − S′) is a natural inclusion. By the
latter comments and Corollary 13.7 one gets,

(28) [[a]] ◦ [[π]]− [[j]] ◦ [[bG′ ]] = [[b1]]

in ZFN ((U ′, U ′ − S′), (X ′, X ′ − S′)). Suppose now char k = 2. Then by
Theorem 14.5 one has

(29) 2 · [[b1]] = 2 · ([[σN
X′ ]] ◦ [[can′]])

in ZFN ((U ′, U ′ − S′), (X ′, X ′ − S′)). Hence the equality (28) yields the re-
lation (22). So Theorem 3.14 follows for the case when char k = 2.

Suppose now char k �= 2. To prove the equality (21), and hence to prove
Theorem 3.14 in this case, it remains to check that [[b1]] = [[σN

X′ ]] ◦ [[can′]].
Recall that one has equality (25). Let us consider the étale k[U ′]-algebra

k[U ′][t]/(t2 − Jnew). Set Ũ ′ = Spec(k[U ′][t]/(t2 − Jnew)). Since x′ ∈ S′ ∩U ′,
we have equality Jnew(x′) = 1. Thus there are exactly two points x′′, x′′1 in
Ũ ′, which are over the point x′. Set U ′′ = Spec(OŨ ′,x′′). Let π′ : U ′′ → U ′

be the canonical morphism. Set S′′ = (π′)−1(S′ ∩U ′). The morphism π′|S′′ :
S′′ → S′∩U ′ is an isomorphism, since Jnew

S′∩U ′ = 1. Note that (π′)∗(Jnew) is a
square in k[U ′′]×. Thus by Theorem 14.4 one has an equality [[b1]] ◦ [[π′]] =
[[σN

X′ ]]◦[[can′]]◦[[π′]] in ZFN ((U ′′, U ′′−S′′), (X ′, X ′−S′)). Applying Theorem
3.13 to the morphism π′ : U ′′ → U ′, we see that for an integer M � 0 one
has an equality

[[σM
X′ ]] ◦ [[b1]] = [[σM+N

X′ ]] ◦ [[can′]] ∈ ZFM+N ((U ′, U ′ − S′), (X ′, X ′ − S′)).

Thus,

[[σM
X′ ]] ◦ [[a]] ◦ [[π]]− [[σM

X′ ]] ◦ [[j]] ◦ [[bG′ ]] =

= [[σM+N
X′ ]] ◦ [[can′]] ∈ ZFM+N ((U ′, U ′ − S′), (X ′, X ′ − S′)).
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Note that 〈〈σM
X′〉〉 ◦ 〈〈j〉〉 = 〈〈j〉〉 ◦ 〈〈σM

X′−S′〉〉 ∈ ZFM ((X ′ − S′, X ′ − S′),
(X ′, X ′ − S′)). Set anew = [[σM

X′ ]] ◦ [[a]], bnewG′ = σM
X′−S′ ◦ bG′ , N(new) =

M +N . Having these the following equality holds:

[[anew]] ◦ [[π]]− [[j]] ◦ [[bnewG′ ]] = [[σ
N(new)
X′ ]] ◦ [[can′]]

∈ ZFM+N ((U ′, U ′ − S′), (X ′, X ′ − S′)).

The latter equality is of the form (21). Thus, Theorem 3.14 is proved in the
characteristic not 2.

14. Three useful theorems

We follow definitions, notation and constructions from Sections 2 and 3.
Let Y, Y1 ∈ EssSm/k be essentially k-smooth schemes, Z ⊂ Y , Z1 ⊂ Y1 be
closed subsets. Let f : Y1 → Y be a k-morphism such that Z1 ⊂ f−1(Z). For
an étale neighborhood (V, π : V → Y, s : Z → V ) of Z in Y set V1 = Y1×Y V .
Let π1 : V1 → Y1 be the projection and let s1 = (i1, f |Z1

) : Z1 → V1, where
i1 : Z1 ↪→ Y1 is the inclusion. Then (V1, π1, s1) is an étale neighborhood of
Z1 in Y1. We often will write (f∗(V ), f∗(ρ), f∗(s)) for (V1, ρ1, s1). Denote
by fnb : f∗(V ) = V1 → V the projection. The following properties of this
construction are straightforward:

Lemma 14.1. (1) If f = idY , then (f∗(V ), f∗(π), f∗(s)) = (V, π, s) and
fnb = idV .

(2) Given a morphism f1 : Y2 → Y1 in EssSm/k and a closed subset
Z2 ⊂ Y2 with Z2 ⊂ f−1

1 (Z1) one has (f ◦f1)nb = fnb◦fnb
1 : (f ◦f1)∗(V ) → V .

(3) If i : Z ↪→ Y is a closed subset, Y1 = Z, f = i, then i∗(π) : i∗(V ) → Z
identifies (i∗(V ), i∗(π), i∗(s)) with (Z, idZ , idZ). So, we write Z for i∗(V ).

(4) If Z from the previous item is also in EssSm/k, p : Y → Z is a
morphism in EssSm/k, then (p ◦ i)∗(V ) = p∗(i∗(V )) = p∗(Z) = Y .

Let W ∈ EssSm/k and let (W , ρ0 : W → W × AN , s0 : W → W) be an
étale neighborhood of W × 0 in W × AN . The nearest aim is to formulate
and prove Lemma 14.2 below.

Let fθ : A1 ×W × AN → W × AN be a morphism given by (θ, w, y) �→
(w, θ · y). Since A1 × W × 0 ⊂ f−1

θ (W × 0) we see that f∗
θ (W) is an étale

neighborhood of A1×W×0 in A1×W×AN . Consider the étale neighborhoods
id×ρ : A1 ×W → A1 ×W × AN of A1 ×W × 0 in A1 ×W × AN . Then

Wθ := f∗
θ (W)×A1×W×AN (A1 ×W) = f∗

θ (W)×W×AN W
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is an étale neighborhood of A1 × W × 0 in A1 × W × AN . There are two
morphisms

Hθ : Wθ
pr1−−→ f∗

θ (W)
fnb
θ−−→ W and prW : Wθ → W .

Let i0 : W ×An ↪→ A1 ×W ×AN be the inclusion taking (w, z) to (0, w, z).
Note that fθ ◦ i0 = in0 ◦ prW , where in0 : W ↪→ W × AN takes w to (w, 0)
and prW is the projection. Thus, i∗0(f

∗
θ (W)) = pr∗W (in∗

0(W)) = pr∗W (W ) =
W × AN . Clearly, i∗0(A

1 ×W) = W . So,

W0 := i∗0(Wθ) = (W × AN )×W×AN W = W .

It is easy to check that H0 = Hθ|W0
: W → W equals W prW ◦ρ0−−−−→ W

s0−→ W .
Clearly, prW |W0

= idW .
Let i1 : W×An ↪→ A1×W×AN be the inclusion taking (w, z) to (1, w, z).

Note that fθ ◦ i1 = idW . Thus, i∗1(f
∗
θ (W)) = W . Clearly, i∗1(A

1 ×W) = W .
So, i∗1(Wθ) = W ×W×AN W . Let W1 = Δ(W) be the diagonal. It is a finer
étale neighborhood of W × 0 in W × AN . We write W for W1. Clearly,
H1 = Hθ|W1

: W → W and prW |W1
: W → W are the identity maps. We

have thus proved the following

Lemma 14.2. Let W ∈ EssSm/k and let (W , ρ0 : W → W × AN , s0 :
W → W) be an étale neighborhood of W ×0 in W ×AN (particularly, in0 =
ρ0 ◦ s0). Suppose X is a k-smooth scheme and (W × 0,W , ψ; g : W → X) ∈
FrN (W,X). Set hθ = (A1×W × 0,Wθ, ψ ◦ prW ; g ◦Hθ) ∈ FrN (A1×W,X).
Then one has:

(a) h1 = (W × 0,W , ψ; g) ∈ FrN (W,X);

(b) h0 = (W × 0,W , ψ; g ◦ s0 ◦ pW ) ∈ FrN (W,X), where pW = (W ρ0−→
W × AN prW−−→ W ).

If W ◦ ⊂ W is open, X◦ ⊂ X is open and g(W ◦ × 0) ⊂ X◦, then hθ|A1×W ◦

runs inside X◦.

Theorem 14.3. Let W ∈ EssSm/k be a local scheme and let N � 1 be an
integer. Let i : W → W×AN be a section of the projection prW : W×AN →
W . Let

(W0, ρ : W0 → W × AN , s : W → W0)

be an étale neighborhood of i(W ) in W ×AN (particularly, i = ρ0 ◦s). Let X
be a k-smooth scheme. Suppose W0 is an affine essentially k-smooth scheme.
Let

α = (i(W ),W0, ϕ1, . . . , ϕN ; f : W0 → X) ∈ FrN (W,X),
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be a N -framed correspondence such that the functions (ϕ1, . . . , ϕN ) generate
the ideal I = Is(W ) of those functions in k[W0], which vanish on the closed
subset s(W ). Let A ∈ MN (k[W ]) be the unique matrix transforming the basis
(t1 − (t1|i(W )), . . . , tN − (tN |i(W ))) of the free k[W ]-module I/I2 to the basis
(ϕ̄1, . . . , ϕ̄N ) of the same k[W ]-module. Let J := det(A) ∈ k[W ]× be the
determinant of A. Suppose that J = 1 ∈ k[W ]×. Then,

(30) [α] = [σN
X ] ◦ [f ◦ s] ∈ ZFN (W,X).

If W ◦ ⊂ W is Zariski open and X◦ ⊂ X is Zariski open and f(s(W ◦)) ⊂ X◦,
then

(31) [[α]] = [[σN
X ]] ◦ [[f ◦ s]] ∈ ZFN ((W,W ◦), (X,X◦)).

Theorem 14.4. Suppose char k �= 2. Let W ∈ EssSm/k be a local scheme
and N � 1 be an integer. Let X be a k-smooth scheme. Let i : W → W×AN ,
α ∈ FrN (W,X), A ∈ MN (k[W ]), J := det(A) ∈ k[W ]×, s : W → W0 be the
same as in Theorem 14.3. Suppose that J ∈ k[W ]× is a square. Then,

(32) [α] = [σN
X ] ◦ [f ◦ s] ∈ ZFN (W,X).

If W ◦ ⊂ W is Zariski open and X◦ ⊂ X is Zariski open and f(s(W ◦)) ⊂ X◦,
then

(33) [[α]] = [[σN
X ]] ◦ [[f ◦ s]] ∈ ZFN ((W,W ◦), (X,X◦)).

Theorem 14.5. Suppose that char k = 2. Let W ∈ EssSm/k be a local
scheme and N � 1 be an integer. Let X be a k-smooth scheme. Let i :
W → W × AN , α ∈ FrN (W,X), A ∈ MN (k[W ]), J := det(A) ∈ k[W ]×,
s : W → W0 be the same as in Theorem 14.3. Then,

(34) 2 · [α] = 2 · ( [σN
X ] ◦ [f ◦ s] ) ∈ ZFN (W,X).

If W ◦ ⊂ W is Zariski open and X◦ ⊂ X is Zariski open and f(s(W ◦)) ⊂ X◦,
then

(35) 2 · [[α]] = 2 · ( [[σN
X ]] ◦ [[f ◦ s]] ) ∈ ZFN ((W,W ◦), (X,X◦)).

To prove these three theorems, we need several elementary lemmas.
Their proofs are left to the reader. Below in this section we assume that
W ∈ EssSm/k and W = Spec(R) for a k-algebra R. Also, we consider an
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étale neighborhood (W , ρ0, s0) of W × 0 in W × AN such that W is of the
form Spec(R) for an étale R[t1, ..., tN ]-algebra R. We write k[W ] for R and
k[W ] for R.

Lemma 14.6. Let (W , ρ0 : W → W × AN , s0 : W → W) be the étale
neighborhood of W×0 in W×AN . Let (W×0,W , ψ; g◦s0◦pW ) ∈ FrN (W,X),
where g and pW : W → W are the morphisms from Lemma 14.2. Let Aθ ∈
GLN (k[W ][θ]) be a matrix such that A0 = id. Set A := A1 ∈ GLN (k[W ]).
Let pr : A1 × W → W be the projection. Take the row (ψ′, . . . , ψ′

N ) :=
(ψ1, . . . , ψN ) · p∗W (A) in k[W ] and take the N -framed correspondence

hθ := (A1 ×W × 0,A1 ×W ,Ψθ; g ◦ s0 ◦ pW ◦ pr) ∈ FrN (A1 ×W,X),

where Ψθ is the row (pr∗(ψ1), . . . , pr
∗(ψN )) · (id× pW )∗(Aθ) in k[A1 ×W ].

Then one has:

(a) h0 = (W × 0,W , ψ; g ◦ s0 ◦ pW );
(b) h1 = (W × 0,W , ψ′; g ◦ s0 ◦ pW ).

If W ◦ ⊂ W is open, X◦ ⊂ X is open and g(W ◦ × 0) ⊂ X◦, then hθ|A1×W ◦

runs inside X◦.

Lemma 14.7. Let (W , ρ0 : W → W × AN , s0 : W → W) be the étale
neighborhood of W×0 in W×AN . Let (W×0,W , ψ; g◦s0◦pW ) ∈ FrN (W,X)
be as in Lemma 14.6. Suppose the functions ψ1, . . . , ψN generate the ideal
I ⊂ k[W ] consisting of all the functions vanishing on the closed subset W×0.
Furthermore, suppose that for any i = 1, . . . , N one has that ψ̄i = t̄i in I/I2.
Set ψθ,i := (1− θ)ψi + θti ∈ k[A1 ×W ] and ψθ := (ψθ,1, . . . , ψθ,N ). Set

hθ := (A1 ×W × 0,A1 ×W , ψθ, g ◦ s0 ◦ pW ◦ pr) ∈ FrN (A1 ×W,X).

Then one has:

(a) h0 = (W × 0,W , ψ; g ◦ s0 ◦ pW );

(b) h1 = (W × 0,W × AN , t1, . . . , tN ; g ◦ s0 ◦ prW ) = σN
X ◦ g ◦ s0.

If W ◦ ⊂ W is open, X◦ ⊂ X is open and g(W ◦ × 0) ⊂ X◦, then hθ|A1×W ◦

runs inside X◦.

Let i : W → W × AN , (W0, ρ, s) be as in Theorem 14.3 and let T :
W × AN → W × AN be the morphism taking a point (w, v) to the point
(w, v+i(w)). Then (T ∗(W0), T

∗(ρ), T ∗(s)) is an étale neighborhood of W×0
in W × AN . Write W for T ∗(W0), s0 for T ∗(s) and ρ0 for T ∗(ρ). If Tnb :
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W = T ∗(W0) → W0 is the projection as in the beginning of this section,
then s = Tnb ◦ T ∗(s) = Tnb ◦ s0.
Lemma 14.8. Suppose that i : W → W × AN , (W0, ρ, s), X and α =
(i(W ),W0, ϕ1, . . . , ϕN ; f) ∈ FrN (W,X) are as in Theorem 14.3. Then one
has,

[α] = [W × 0,W , ϕ1 ◦ Tnb, . . . , ϕN ◦ Tnb; f ◦ Tnb] ∈ ZFN (W,X).

Moreover, if W ◦ ⊂ W is open and if X◦ ⊂ X is any open such that
g(s(W ◦)) ⊂ X◦, then one has,

[[α]] = [[W×0,W , ϕ1◦Tnb, . . . , ϕN ◦Tnb; f ◦Tnb]] ∈ ZFN ((W,W ◦), (X,X◦)).

Proof of Theorem 14.3. By Lemma 14.8 one has an equality in ZFN (W,X)

[α] = [W × 0,W , ψ1, . . . , ψN ; f ◦ Tnb],

where ψi = ϕi ◦ Tnb for i = 1, . . . , N . Set g = f ◦ Tnb : W → X. By Lemma
14.2 one has an equality in ZFN (W,X)

[W × 0,W , ψ1, . . . , ψN ; g] = [W × 0,W , ψ; g ◦ s0 ◦ pW ].

Thus one has

[α] = [W × 0,W , ψ; g ◦ s0 ◦ pW ] ∈ ZFN (W,X).

Clearly, the functions (ψ1, . . . , ψN ) generate the ideal I0 = IW×0 of those
functions in k[W ] that vanish on the closed subsetW×0. Let A′ ∈ MN (k[W ])
be the unique matrix that transforms the basis (t̄1, . . . , t̄N ) of the free k[W ]-
module I0/I

2
0 to the basis (ψ̄1, . . . , ψ̄N ) of the same k[W ]-module. Clearly,

det(A′) = det(A). Thus det(A′) = 1 ∈ k[W ]. The ring k[W ] is local. Thus
A′ belongs to the group of elementary N × N matrices over k[W ]. Hence
there is a matrix Aθ ∈ MN (k[W ][θ]) such that A0 = id and A1 = (A′)−1 ∈
GLN (k[W ]). By Lemma 14.6 one has an equality

[W × 0,W , ψ, g ◦ s0 ◦ pW ] = [W × 0,W , ψ′, g ◦ s0 ◦ pW ] ∈ ZFN (W,X)

with the row ψ′
1, . . . , ψ

′
N as in Lemma 14.6. By construction, for any i =

1, . . . , N the function ψ′
i has the property: ψ̄′

i = t̄i in I0/I
2
0 . By Lemma 14.7

one has an equality

[W × 0,W , ψ′, g ◦ s0 ◦ pW ] = [σN
X ] ◦ [g ◦ s0] ∈ ZFN (W,X).
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Since s = Tnb ◦ s0 and g = f ◦ Tnb, we have equalities g ◦ s0 = f ◦ s and

[α] = [σN
X ] ◦ [g ◦ s0] = [σN

X ] ◦ [f ◦ s] ∈ ZFN (W,X).

If W ◦ ⊂ W is Zariski open and X◦ ⊂ X is Zariski open and f(s(W ◦)) ⊂
X◦, then the same arguments prove the relation

(36) [[α]] = [[σN
X ]] ◦ [[f ◦ s]] ∈ ZFN ((W,W ◦), (X,X◦)).

This proves Theorem 14.3.

Theorems 14.4 and 14.5 are proved at the end of this section. Some
preparations are necessary for them. Let A be a finitely generated k-smooth
algebra, S = Spec(A), S0 ⊂ S be its open subset, M ⊂ A be a multiplicative
system, Y = Spec(AM ), Y 0 = S0 ∩ Y . Then Y 0 ⊂ Y is an open subset. For
the rest of the section we fix these essentially k-smooth schemes Y and Y 0.
We also choose and fix a k-smooth scheme X, its open subset X0 and a
k-scheme morphism h : Y → X such that h(Y 0) ⊂ X0. We write k[Y ] for
the k-algebra AM . We begin with the following obvious

Lemma 14.9. Let Y , X and h : Y → X be as above. Let k[Y ] be the ring
of regular functions on Y . Let n > 0 and a ∈ k[Y ]×. Let p(t), q(t) ∈ k[Y ][t]
be two polynomials of degree n with the leading coefficient a. Let

(Z(p), Y × A1, p(t), h ◦ prY ) and (Z(q), Y × A1, q(t), h ◦ prY ) ∈ Fr1(Y,X)

be two framed correspondences. Let Zs ⊂ A1×Y ×A1 be the vanishing locus
of the polynomial p(t) + s(q(t) − p(t)) ∈ k[Y ][s, t] (here s is the homotopy
parameter). Let

Hs := (Zs,A
1 × Y × A1, p(t) + s(q(t)− p(t)), h ◦ prY ) ∈ Fr1(A

1 × Y,X).

Then one has equalities in Fr1(Y,X):

H0 = (Z(p),A1, p(t), h◦prY ) and H1 = (Z(q),A1, q(t), h◦prY ) ∈ Fr1(Y,X).

Under the notation introduced above Lemma 14.9 and under the hy-
potheses of Lemma 14.9 the framed correspondences

(Z(p), Y × A1, p(t), h ◦ prY )|Y 0

and

(Z(q), Y × A1, q(t), h ◦ prY )|Y 0 ∈ Fr1(Y
0, X)
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run inside X0 in the sense of Definition 4.3. Therefore following notation

from that definition, they define elements 〈〈Z(p), Y × A1, p(t), h ◦ prY 〉〉,
〈〈Z(q), Y × A1, q(t), h ◦ prY 〉〉 ∈ ZF1((Y, Y

0), (X,X0)). The framed corre-

spondence (Hs)|A1×Y 0 runs inside X0. Hence it defines an element

〈〈Hs〉〉 ∈ ZF1(A
1 × (Y, Y 0), (X,X0)).

Clearly, 〈〈H0〉〉 = 〈〈Z(p), Y × A1, p(t), h ◦ prY 〉〉, 〈〈H1〉〉 = 〈〈Z(q), Y ×
A1, q(t), h ◦ prY 〉〉 in ZF1((Y, Y

0), (X,X0)).

We have thus proved the following

Lemma 14.10. Under the notation introduced above Lemma 14.9 and un-

der the notation and the hypotheses of Lemma 14.9 and the notation from

Definition 4.3 the following equality holds:

[[Z(p), Y × A1, p(t), h ◦ prY ]] = [[Z(q), Y × A1, q(t), h ◦ prY ]]
∈ ZF 1((Y, Y

0), (X,X0)).

Let Y be as above Lemma 14.9. Let k[Y ] be the ring of regular functions

on Y . Let n > 0 and p(t) = tnR(t), where R(t) = r0 + r1t + ... + rN tN ∈
k[Y ][t] is a polynomial such that rN and r0 are both in k[Y ]×. Let U =

(Y × A1)R(t) ⊂ Y × A1 be the principal open subset corresponding to R(t).

One has R(t) = r0 + tR1(t). Consider the polynomial

h(s, t) = sR(t)tn + (1− s)r0t
n ∈ k[s, t].

Then h(s, t) = tn ·(r0+t·R1(t)·s). If S is the vanishing locus of r0+t·R1(t)·s,
then S ∩ A1 × Y × 0 = ∅. Hence for the zero locus Z(h) of h one has

Z(h) = (A1 × Y × 0) � S. Set,

HR
s := (A1 × Y × {0}, (A1 × U) \ S, sR(t)tn + (1− s)r0t

n, h ◦ prY ◦ prU )
∈ Fr1(A

1 × Y,X).

The following lemma is inspired by [1, Lemma 4.13].

Lemma 14.11. Let Y , X and f : Y → X be as above Lemma 14.9. Let k[Y ]

be the ring of regular functions on Y . Let a ∈ k[Y ], n > 0 and q(t) = (t −
a)nQ(t), where Q(t) ∈ k[Y ][t] is a polynomial such that its leading coefficient

and Q(a) are both in k[Y ]×. Let U = (Y ×A1)Q(t) ⊂ Y ×A1 be the principal
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open subset corresponding to Q(t). Then there is a framed correspondence

HQ
s ∈ Fr1(A

1 × Y,X) such that in Fr1(Y,X) one has equalities

HQ
1 = (Z(t− a), U, q(t);h ◦ prY )

and

HQ
0 = (Z(t− a), Y × A1, Q(a)(t− a)n;h ◦ prY ).

Proof. We may assume that a = 0. Then take HR
s just as above with R(t) =

Q(t + a). Clearly, HR
1 = (Y × {0}, U,R(t)tn, h ◦ prY ) and HR

0 = (Y ×
{0}, U,R(0)tn, h ◦ prY ) in Fr1(Y,X). Whence follows the lemma.

Under the hypotheses of Lemma 14.11 let Y 0 ⊂ Y , X0 ⊂ X be open
subsets as just above Lemma 14.9. Then the framed correspondences

(Z(t− a), U, q(t);h ◦ prY )|Y 0 ∈ Fr1(Y
0, X)

and

(Z(t− a), Y × A1, Q(a)(t− a)n;h ◦ prY )|Y 0 ∈ Fr1(Y
0, X)

run inside X0 in the sense of Definition 4.3. Thus following notation from
that definition, they define elements

〈〈Z(t− a), U, q(t);h ◦ prY 〉〉, 〈〈Z(t− a), Y × A1, Q(a)(t− a)n;h ◦ prY 〉〉
∈ ZF1((Y, Y

0), (X,X0)).

Lemma 14.12. Under the notation and hypotheses of Lemma 14.11 let
Y 0 ⊂ Y , X0 ⊂ X be open subsets as above Lemma 14.9. Then under the
notation from Definition 4.3 one has

[[Z(t− a), U, q(t);h ◦ prY ]] = [[Z(t− a), Y × A1, Q(a)(t− a)n;h ◦ prY ]]
∈ ZF 1((Y, Y

0), (X,X0)).

Proof. We may assume that a = 0. Let R(t) = Q(t+a) ∈ k[Y ][t] be as in the
proof of Lemma 14.11. Clearly, the element HR

s |A1×Y 0 : A1 × Y 0 → X runs
inside X0 in the sense of Definition 4.3. Hence following that definition, it
defines an element 〈〈HR

s 〉〉 ∈ ZF1(A
1× (Y, Y 0), (X,X0)). One has equalities

in ZF1((Y, Y
0), (X,X0)):

〈〈HR
0 〉〉 = 〈〈Y × 0, Y × A1, R(0)tn;h ◦ prY 〉〉
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and

〈〈HR
1 〉〉 = 〈〈Y × 0, U,R(t)tn;h ◦ prY 〉〉.

This proves the lemma.

Corollaries 14.13, 14.14, Proposition 14.15 and their proofs are inspired
by [14, Lemma 7.3].

Corollary 14.13. Suppose char k �= 2. Under the notation and hypotheses
of Lemma 14.11 let Y 0 ⊂ Y , X0 ⊂ X be open subsets as above Lemma 14.9.
Let λ ∈ k[Y ]×. Then under the notation from Definition 4.3

[[(Y × 0, Y × A1, λ · t2;h ◦ prY )]] = [[(Y × 0, Y × A1, t2;h ◦ prY )]]

in ZF 1((Y, Y
0), (X,X0)).

Proof. For brevity we drop h ◦ prY from the notation. By Lemma 14.10 one
has an equality [[(Y × 0, Y × A1, t2)]] = [[(Y × 0, Y × A1, (t − 1)(t + 1))]]
in ZF 1((Y, Y

0), (X,X0)). By the additivity relation from Lemma 4.6 and
Lemma 14.12 one has

[[(Y ×0, Y ×A1, (t−1)(t+1))]] = [[(Y ×0, Y ×A1, 2t)]]+[[(Y ×0, Y ×A1,−2t)]]

in ZF 1((Y, Y
0), (X,X0)). Similarly, [[(Y × 0, Y ×A1, λ · t2)]] = [[(Y × 0, Y ×

A1, λ · (t− λ−1) · (t+ λ−1))]] and

[[(Y × 0, Y × A1, λ · (t− λ−1) · (t+ λ−1))]] =

= [[(Y × 0, Y × A1, 2t)] + [(Y × 0, Y × A1,−2t)]]

in ZF 1((Y, Y
0), (X,X0)). This proves the corollary.

Corollary 14.14. Suppose char k �= 2. Under the notation and hypotheses
of Lemma 14.11 let Y 0 ⊂ Y , X0 ⊂ X be open subsets as above Lemma 14.9.
Let λ ∈ k[Y ]×. Then under the notation from Definition 4.3 one has an
equality in ZF 1((Y, Y

0), (X,X0))

[[(Y × 0, Y × A1, λ2 · t;h ◦ prY )]] + [[(Y × 0, Y × A1, λ · t2;h ◦ prY )]] =
= [[(Y × 0, Y × A1, t3;h ◦ prY )]].

Proof. For brevity we drop h ◦ prY from the notation. By Lemma 14.10 one
has an equality [[(Y × 0, Y × A1, t3)]] = [[(Y × 0, Y × A1, t3 + λ · t2)]] in
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ZF 1((Y, Y
0), (X,X0)). By the additivity relation from Lemma 4.6 one has

an equality in ZF 1((Y, Y
0), (X,X0)):

[[(Y × 0, Y × A1, t3 + λ · t2)]] =
[[(Y × 0, (Y ×A1)t+λ, (t+ λ) · t2)]] + [[{t+ λ = 0}, (Y ×A1)t2 , t

2(t+ λ))]].

By Lemma 14.12 one has equalities in ZF 1((Y, Y
0), (X,X0)):

[[(Y × 0, (Y × A1)t+λ, (t+ λ) · t2)]] = [[(Y × 0, (Y × A1), λ · t2)]]

and

[[{t+ λ = 0}, (Y × A1)t2 , t
2(t+ λ))]] = [[Y × 0, (Y × A1), λ2 · t)]].

Whence follows the corollary.

Proposition 14.15. Suppose char k �= 2. Under the notation and hypotheses
of Lemma 14.11 let Y 0 ⊂ Y , X0 ⊂ X be open subsets as above Lemma 14.9.
Let λ ∈ k[Y ]×. Then under the notation from Definition 4.3 one has an
equality in ZF 1((Y, Y

0), (X,X0))

[[(Y ×0, Y ×A1, λ2 · t;h◦prY )]] = [[(Y ×0, Y ×A1, t;h◦prY )]] = [[σX ]]◦ [[h]].

Proof. For brevity we drop h ◦ prY from the notation. The second equality
is obvious. Let us prove the first one. By Corollary 14.14 one has

[[(Y × 0, Y × A1, λ2 · t)]] + [[(Y × 0, Y × A1, λ · t2)]] =
= [[(Y × 0, Y × A1, t)]] + [[(Y × 0, Y × A1, t2)]]

in ZF 1((Y, Y
0), (X,X0)). Corollary 14.13 now completes the proof of the

proposition.

Proof of Theorem 14.4. Take h = f ◦ s. Repeating literally the proof of
Theorem 14.3, one gets an equality
(37)
[[α]] = [[σN−1

X ]]◦[[W×0,W×A1, J ·t; (f◦s)◦prW ]] ∈ ZFN ((W,W ◦), (X,X◦)).

By assumptions of the theorem J = λ2 for a unit λ ∈ k[W ]×. By Proposition
14.15 one has an equality [[W×0,W×A1, J ·t; (f ◦s)◦prW ]] = [[σX ]]◦[[f ◦s]]
in ZFN ((W,W ◦), (X,X◦)). This proves the theorem.
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Proposition 14.16. Suppose char k = 2. Under the notation and hypotheses
of Lemma 14.11 let Y 0 ⊂ Y , X0 ⊂ X be open subsets as above Lemma
14.9. Let μ ∈ k[Y ]×. Then under the notation from Definition 4.3 one has
equalities in ZF 1((Y, Y

0), (X,X0))

2 · [[(Y × 0, Y × A1, μ · t;h ◦ prY )]] = 2 · [[(Y × 0, Y × A1, t;h ◦ prY )]] =
= 2 · ([[σX ]] ◦ [[h]]).

Proof. The second equality is obvious. Let us prove the first one. For brevity
we drop h ◦ prY from the notation. By Lemma 14.10 one has an equality
[[(Y ×0, Y ×A1, t2)]] = [[(Y ×0, Y ×A1, t(t+μ))]] in ZF 1((Y, Y

0), (X,X0)).
By the additivity relation from Lemma 4.6 and Lemma 14.12 one has

[[(Y ×0, Y ×A1, t(t+μ))]] = [[(Y ×0, Y ×A1, μt)]]+[[(Y ×0, Y ×A1, μt)]] =

= 2 · [[(Y × 0, Y × A1, μt)]]

in ZF 1((Y, Y
0), (X,X0)). Thus,

2 · [[(Y × 0, Y × A1, μt)]] = [[(Y × 0, Y ×A1, t2)]] = 2 · [[(Y × 0, Y × A1, t)]].

This proves the proposition.

Proof of Theorem 14.5. Repeating literally the proof of Theorem 14.3, one
gets an equality
(38)
[[α]] = [[σN−1

X ]]◦[[W×0,W×A1, J ·t; (f◦s)◦prW ]] ∈ ZFN ((W,W ◦), (X,X◦)).

By Proposition 14.16 one has 2 · [[W × 0,W × A1, J · t; (f ◦ s) ◦ prW ]] =
2 · ([[σX ]]◦ [[f ◦ s]]) ∈ ZFN ((W,W ◦), (X,X◦)). This proves the theorem.

15. Constructing h′
θ, F and hθ from Propositions 12.6

and 10.9

In the first part of this section we construct the functions h′θ, F from Propo-
sition 12.6 and prove this proposition. In the second part of this section we
construct the function hθ from Proposition 10.9 and prove this proposition
as well.

Let X and X ′ be as in Remark 10.4 and let q : X → B be the almost
elementary fibration from Remark 10.4. Since q : X → B is an almost ele-
mentary fibration there is a commutative diagram of the form (see Definition
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8.1)

(39) X

q

j
X

q

X∞
i

q∞

B

with morphisms j, q, i, q∞ satisfying the conditions (i)–(iv) from Defini-
tion 8.1.

The composite morphism X ′ Π−→ X
j−→ X̄ is quasi-finite. Let X̄ ′ be the

normalization X ′
n of X̄ in Spec(k(X ′)). Let Π̄ : X̄ ′ → X̄ be the canonical

morphism (it is finite and surjective). Then (Π̄)−1(X) coincides with the
normalization X ′

n of X in Spec(k(X ′)). Let f ∈ k[X ′
n] be from Definition

10.2. Let Y ′ = {f = 0} be the corresponding effective Cartier divisor of X ′
n

from that definition. The morphism (q ◦ (Π̄|Π̄−1(X)))|Y ′ : Y ′ → B is finite,

since q|Y : Y → B is finite and Π̄ is finite. Thus Y ′ is closed in X̄ ′. Since Y ′

is in (Π̄)−1(X) it has the empty intersection with (Π̄)−1(X∞). Hence

X ′ = X̄ ′ − ((Π̄)−1(X∞) � Y ′).

Both (Π̄)−1(X∞) and Y ′ are Cartier divisors in X̄ ′. The Cartier divisor
(Π̄)−1(X∞) is ample. Thus the Cartier divisor D′ := (Π̄)−1(X∞) � Y ′ is
ample as well and (q ◦ Π̄)|D′ : D′ → B is finite.

Set Γ̄ = X̄ ′ (Π̄,id)−−−−→ X̄ ×B X̄ ′ (the transpose of the graph of the B-
morphism Π̄). The projection X̄ ×B X̄ ′ → X̄ ′ is a smooth morphism, since
q̄ is smooth. The morphism (Π̄, id) is a section of the projection. Hence Γ̄ is
a Cartier divisor in X̄ ×B X̄ ′.

Set Γ = pr−1
X̄

(U) ∩ Γ̄ ⊂ U ×B X̄ ′. Then Γ ⊂ U ×B X̄ ′ is a Cartier
divisor. The scheme U ′ is contained in Γ as an open subscheme via the
inclusion (π, can′), where can′ : U ′ → X ′ is the canonical morphism. The
composite morphism prU ◦ (π, can′) : U ′ → U coincides with π : U ′ → U .
Thus prX̄ |Γ : Γ → U is étale at the points of U ′.

Lemma 15.1. Set Γ′ = U ′ ×U Γ ⊂ U ′ ×U U × X̄ ′ = U ′ ×B X̄ ′. Then
Γ′ ⊂ U ′ ×B X̄ ′ is a Cartier divisor. Moreover,

Γ′ = Δ(U ′) �G′

and G′ ∩ (U ′ ×B S′) = ∅, where S′ ⊂ X ′ is the closed subscheme from
Section 10.
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Proof. Consider the diagonal morphism Δ : U ′ → U ′ ×B X̄ ′. It lands in

U ′×UΓ = Γ′ and it is a section of the projection U ′×UΓ → U ′. The morphism

Γ → U is étale at all points of U ′. Hence the morphism Γ′ = U ′ ×U Γ → U ′

is étale at all points of U ′ ×U U ′. Particularly, it is étale along the diagonal

Δ(U ′). Hence the morphism Δ : U ′ → U ′ ×U Γ is étale. Thus Δ(U ′) is an

open subset of U ′ ×U Γ = Γ′. Since Δ(U ′) is a closed subset of Γ′, hence
Γ′ = Δ(U ′) �G′.

We now prove that G′ ∩ (U ′ ×B S′) = ∅. For that consider the closed

subscheme S of the scheme X from Section 10 and recall that S and S′ are
reduced schemes and the morphism Π|S′ : S′ → S is a scheme isomorphism.

There is a chain of inclusions of subsets

(π× id)(G′∩U ′×B S′) ⊂ (π× id)(G′)∩U×B S′ ⊂ Γ∩ (U×B S′) ⊂ Γ(π|S′∩U′ ),

where Γ(π|S′∩U′ ) is the graph of π|S′∩U ′ : S′ ∩ U ′ → U . One has an equality

((π × id)|U ′×BS′)−1(Γ(π|S′∩U′ )) = Δ(S′ ∩ U ′).

Thus G′ ∩ (U ′ ×B S′) ⊂ Δ(S′ ∩ U ′). Finally,

G′ ∩ (U ′ ×B S′) ⊂ G′ ∩Δ(S′ ∩ U ′) ⊂ G′ ∩Δ(U ′) = ∅.

Remark 15.2. It is easy to check that Γ ∩ U ×B S′ = δ(S′ ∩ U ′), where
δ(s′) = (π(s′), s′).

Definition 15.3. Set D′ = U ×B D′ and D′′ = U ′ ×U D′ = U ′ ×B D′. They
are Cartier divisors on U ×B X̄ ′ and U ′ ×B X̄ ′ respectively. Note that the

scheme D′ is finite over U and the scheme D′′ is finite over U ′.

Let s0 ∈ Γ(U ×B X̄ ′,L(D′)) be the canonical section of the invertible

sheaf L(D′) (its vanishing locus is D′). Let sΓ ∈ Γ(U ×B X̄ ′,L(Γ)) be the

canonical section of the invertible sheaf L(Γ) (its vanishing locus is Γ). Let

sΔ(U ′) ∈ Γ(U ′ ×B X̄ ′,L(Δ(U ′)) be the canonical section of the invertible

sheaf L(Δ(U ′)) (its vanishing locus is Δ(U ′)). Let sG′ ∈ Γ(U ′×B X̄ ′,L(G′))
be the canonical section of the invertible sheaf L(G′) (its vanishing locus is

G′).

Notation 15.4. Set I ′ = L(−D′), I ′′ = L(−D′′). They are the ideal sheaves

defining the Cartier divisors D′ and D′′ respectively. Denote by J ′ the ideal

sheaf defining the closed subscheme U ×B S′ of U ×B X̄ ′. Denote by J ′′ the
ideal sheaf defining the closed subscheme U ′ ×B S′ of U ′ ×B X̄ ′.
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By Serre’s vanishing theorem there is an integer n � 0 such that the
following cohomology groups vanish: H1(U ×B X̄ ′, J ′ ⊗ I ′ ⊗ L(nD′)) and
H1(U ′ ×B X̄ ′, J ′′ ⊗ I ′′ ⊗ L(nD′′ −Δ(U ′))).

The fact that these cohomology groups vanish guaranties the existence
of sections s1 and t′0 from Constructions 15.5 and 15.7 below.

Construction 15.5. Find a section s1 ∈ Γ(U ×B X̄ ′,L(nD′)) such that:
(1) s1|U×BS′ = r1⊗(sΓ|U×BS′), where r1 ∈ Γ(U×BS

′,L(nD′−Γ))|U×BS′)
has no zeros;

(2) s1|D′ has no zeros.

Construction 15.6. Set t1 := (π × id)∗(s1) ∈ Γ(U ′ ×B X̄ ′,L(nD′′)). Then
(1′) t1|U ′×BS′ = r′1 ⊗ (sΔ(U ′)|U ′×BS′)⊗ (sG′ |U ′×BS′),

where r′1 equals ((π × id)|U ′×BS′)∗(r1) ∈ Γ(U ′ ×B S′,L(nD′′ − Γ′)|U ′×BS′);
(2′) t1|D′′ has no zeros.

The second property of t1 is obvious. To prove the first one recall that
Γ′ = Δ(U ′) �G′ by Lemma 15.1. Hence (π × id)∗(sΓ) = sΔ(U ′) ⊗ sG′ .

Construction 15.7. Construct a section t0 ∈ Γ(U ′ ×B X̄ ′,L(nD′′)) of the
form t0 = t′0 ⊗ sΔ(U ′), where t′0 ∈ Γ(U ′ ×B X̄ ′,L(nD′′ −Δ(U ′))) satisfies the
following conditions:

(1′′) t′0|D′′ = (t1|D′′)⊗ (sΔ(U ′)|D′′)−1;
(2′′) t′0|U ′×BS′ = r′1 ⊗ (sG′ |U ′×BS′), where r′1 is from Construction 15.6.

Lemma 15.8. The following properties are true:
(1′′′) t0|D′′ = t1|D′′ and both sections have no zeros on D′′;
(2′′′) t0|U ′×BS′ = t1|U ′×BS′ and both sections have no zeros on (U ′ −

S′)×B S′.

Indeed, the first equality is obvious. The second one follows from the
chain of equalities

t0|U ′×BS′ = (t′0|U ′×BS′)⊗ (sΔ(U ′)|U ′×BS′) =

= r′1 ⊗ (sG′ |U ′×BS′)⊗ (sΔ(U ′)|U ′×BS′) = t1|U ′×BS′ .

Definition 15.9. Let s′0 := (π × id)∗(s0) ∈ Γ(U ′ ×B X̄ ′,L(D′′)). Set,

h′θ =
((1− θ)t0 + θt1)|A1×U ′×BX′

(s′0)
⊗n|A1×U ′×BX′

∈ k[A1 × U ′ ×B X ′]

and

F =
s1|U×BX′

(s0)⊗n|U×BX′
∈ k[U ×B X ′].
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Proof of Proposition 12.6. Let pr23 : A1 × U ′ ×B X̄ ′ → U ′ ×B X̄ ′ be the
projection. Consider two sections (1 − θ)t0 + θt1 and (s′0)

⊗n of the line
bundle pr∗23(L(n ·D′′)) on A1×U ′×B X̄ ′. By Lemma 15.8 these two sections
have no common zeros. Thus one has morphism

[pr, (1− θ)t0 + θt1 : (s
′
0)

⊗n] : A1 × U ′ ×B X̄ ′ → A1 × U ′ × P1,

where pr : A1 × U ′ ×B X̄ ′ → A1 × U ′ is the projection. This morphism is
quasi-finite and projective. Hence it is finite and surjective. It follows that
any of its base changes is finite and surjective. Particularly, the morphism
(pr, h′θ) : A1 × U ′ × X ′ → A1 × U ′ × A1 is finite and surjective, because
the closed subset {(s′0)⊗n = 0} in A1 × U ′ ×B X̄ ′ coincides with the one
A1 × D′′. This proves the assertion (a) of Proposition 12.6. The assertion
(e) of Proposition 12.6 is proved in the same fashion. Lemma 15.1 yields the
assertion (b). Lemma 15.8(2”’) yields the assertion (d). The assertion (c)
follows from the construction of F and h′1. The property (1) of the section
s1 yields the assertion (f), whence follows the proposition.

In the rest of the section under the hypotheses of Proposition 10.9 we
will construct a function hθ ∈ k[A1 × U ×B X] and prove Proposition 10.9.

Let X and X ′ be as in Remark 10.4 and let q : X → B be the almost
elementary fibration from Remark 10.4. Let X̄, j : X → X̄ and X∞ and
i : X∞ → X̄ be as in the diagram (39). So, they satisfy the conditions
(i)–(iv) from Definition 8.1.

The composite morphism X ′ Π−→ X
j−→ X̄ is quasi-finite. Let X̄ ′ be the

normalization of X̄ in Spec(k(X ′)). Let Π̄ : X̄ ′ → X̄ be the canonical
morphism (it is finite and surjective). Let X∞ ⊂ X̄ be the Cartier divisor
from diagram (39). Set X ′

∞ := (Π̄)−1(X∞) (scheme-theoretically). Then X ′
∞

is a Cartier divisor on X̄ ′. Set

E := U ×B X∞ and E′ := U ×B X ′
∞.

These are Cartier divisors on U ×B X̄ and U ×B X̄ ′ respectively and (id×
Π̄)∗(E) = E′.

Choose an integer n � 0. Find a section r1(n) ∈ Γ(U ×B S,L(nE −
Δ(U)|U×BS) which has no zeros. Let sΔ(U) ∈ Γ(U ×B X̄,L(Δ(U)) be the
canonical section of the invertible sheaf L(Δ(U)) (its vanishing locus is
Δ(U)). To define the desired function hθ, we need the following

Construction 15.10. For any integer n � 0 find a section s′1(n) ∈ Γ(U×B

X̄ ′,L(nE′)) having properties as follows.
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(1) The Cartier divisor Z ′
1(n) := {s′1(n) = 0} has the following properties:

(1a) Z ′
1(n) ⊂ U ×B X ′;

(1a′) the Cartier divisor Z ′
1(n) is finite and étale over U ;

(1b) the morphism i = (id×Π)|Z′
1(n)

: Z ′
1(n) → U×BX is a closed embedding.

Denote by Z1(n) the closed subscheme i(Z ′
1(n)) of the scheme U ×B X.

(2) s′1(n)|U×BS′ = (id× Π̄)∗(sΔ(U))|U×BS′ ⊗ ((id×Π)|U×BS′)∗(r1(n)).

Proof. The main difficulty is to achieve the property (1b). For any integer
n � 0, set

vfin(n) = (id× Π̄)∗(sΔ(U))|U×BS′ ⊗ ((id×Π)|U×BS′)∗(r1(n))

∈ Γ(U ×B S′,L(nE′)|U×BS′).

For any n > 0 choose a section v∞(n) ∈ Γ(E′,L(nE′)|E′) having no zeros.
This is possible, because E′ is a semi-local scheme. Set T ′ = U ×B S′ � E′.
Let v(n) ∈ Γ(T ′,L(nE′)|T ′) be the unique section such that v(n)|U×BS′ =
vfin(n) and v(n)|E′ = v∞(n). Set v̄(n) = v(n)|x×BT ′ .

Firstly, for any integer n � 0 we will find a section s̄(n) ∈ Γ(x ×B

X̄ ′,L(nE′)|x×BX̄′) such that the Cartier divisor Z̄(n) := {s̄(n) = 0} is finite
and étale over x, Z̄(n) ⊂ x ×B X ′, the morphism (id × Π)|Z̄(n) : Z̄(n) ↪→
x×B X is a closed embedding and s̄(n)|x×BT = v̄(n).

Then we patch s̄(n) and v(n) to get a section sext(n) of L(nE′)|T ′∪x×BX̄′

such that the restriction of sext(n) to T ′ coincides with v(n) and the re-
striction of sext(n) to x ×B X̄ ′ coincides with s̄(n). Finally, using Serre’s
vanishing theorem for n � 0, we lift the section sext(n) to a section s′1(n) ∈
Γ(U ×B X̄ ′,L(nE′)). The latter section s′1(n) is the desired one as one can
easily check.

The nearest aim is to find the desired section s̄(n). This requires some
cohomological computations. Consider k(x)-schemes Y = x ×B X, Y ′ =
x ×B X ′, Ȳ ′ = x ×B X̄ ′, T ′

x = x ×B T ′. Write E′
x for the effective Cartier

divisor E′|Ȳ ′ on Ȳ ′. Set Y ′
0 = Ȳ ′ − T ′

x = Y ′ − x ×B S′. Consider H0(n) :=
H0(Ȳ ′,L(nE′

x)) = Γ(Ȳ ′,L(nE′
x)). Also, consider the restriction map

rn : H0(n) → H0(Tx,L(nE′
x)|T ′

x
).

By Serre’s vanishing theorem this map is surjective for n � 0. Denote by
H0(n)v̄(n) the affine subspace r−1

n (v̄(n)) in H0(n). For n � 0 the dimension
h0(n)v̄(n) of this affine k(x)-subspace coincides with the dimension h0(nE′

x−
T ′
x) of H

0(Ȳ ′,L(nE′
x − T ′

x)) over k(x).
Let y ∈ Y ′

0 be a point (not necessarily closed). Set Yy = Y ×x y, Ȳ ′
y =

Ȳ ′ ×x y, T
′
y = T ′

x ×x y. Write E′
y for the Cartier divisor E′

x ×x y on Ȳ ′
y . Let
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δy : y → Ȳ ′
y be the diagonal embedding. Set H0(n, y) := H0(Ȳ ′

y ,L(nE′
y −

2δy(y))). Also, consider the restriction map

rn,y : H0(n, y) → H0(T ′
y,L(nE′

y − 2δy(y))|T ′
y
).

Show that there exists an n0 > 0 such that for all n � n0 and all y ∈ Y the
map rn,y is an epimorphism. Take locally free sheaves Fn = p∗

Ȳ ′(L(nE′
x−T ′

x))
and Gn = Fn⊗L(−2 ·Δ(Y ′

0)) on Y ′
0 × Ȳ ′. It follows from [12, Ch. II, Section

5, Corollary 2] that

H1(Y ′
0 × Ȳ ′,Gn)⊗k[Y ′

0 ]
k(y) = H1(Ȳ ′

y ,L(nE′
y − T ′

y − 2 · δy(y))).

By Serre’s vanishing theorem there exists n0 > 0 such that for any n � n0

one has H1(Y ′
0 × Ȳ ′,Gn) = 0. Hence H1(Ȳ ′

y ,L(nE′
y − T ′

y − 2 · δy(y))) = 0 for
any n � n0. Thus rn,y is surjective for any n � n0. Let sy ∈ H0(Ȳ ′

y ,L(δy(y)))
be the canonical section of the line bundle L(δy(y)) on Ȳ ′

y . Multiplication by
s⊗2
y identifies H0(Ty,L(nE′

y − 2δy(y))|T ′
y
) with H0(Ty,L(nE′

y)|T ′
y
), because

sy has no zeros on T ′
y. Let w̄(n, y) be a unique element in H0(T ′

y,L(nE′
y −

2δy(y))|T ′
y
) such that s⊗2

y ⊗ w̄(n, y) = v̄(n). Denote by H0(n, y)w̄(n,y) the

affine k(y)-subspace r−1
n,y(w̄(n, y)) in the k(y)-vector space H0(n, y). For n �

n0 the dimension h0(n, y)w̄(n,y) of H0(n, y)w̄(n,y) over k(y) coincides with
the dimension h0(nE′

y − T ′
y − 2δy(y)) of H

0(Ȳ ′
y ,L(nE′

y − T ′
y − 2δy(y))) over

k(y). Since H1(Ȳ ′
y ,L(nE′

y − T ′
y − 2 · δy(y))) = 0 for any n � n0, we have

h0(nE′
y − T ′

y − 2δy(y)) = h0(nE′
y − T ′

y)− 2. Thus for any n � n0 we have

(40) h0(n, y)w̄(n,y) = h0(n)v̄(n) − 2.

Now regard H0(n)v̄(n) as a k(x)-scheme and for any point y ∈ Y ′
0 write

H0(n)v̄(n)⊗k(x)k(y) for the corresponding k(y)-scheme. Consider the scheme
Y ′
0 × H0(n)v̄(n) and its closed subset Inc2(n) = {(y, t) : divy(t) � 2}. We

claim that for any n � n0 one has

(41) dim(Inc2(n)) = h0(n)v̄(n) − 1.

In fact, if n � n0, then for any y ∈ Y ′
0 the fibre of Inc2(n) over y is the affine

k(y)-subspace H0(n, y)w̄(n,y) in the affine k(y)-space H0(n)v̄(n) ⊗k(x) k(y).
Since dim(Y ′

0) = 1, the equality (40) shows that the equality (41) is true.
Let p2 : Y ′

0 × H0(n)v̄(n) → H0(n)v̄(n) be the projection. Then the equality

(41) shows that for all n � n0 the Zariski closure p2(Inc2(n)) is a proper
closed subset in H0(n)v̄(n).
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Now consider the scheme (Y ′
0 ×Y Y ′

0 −Δ(Y0))×H0(n)v̄(n) and its closed
subset Inc1(n) = {(y1, y2, t) : t(y1) = 0 = t(y2)}. We claim that for any
integer n � 0 one has dim(Inc1(n)) = dim(H0(n)v̄(n)) − 1. This equal-
ity is proved in the same way as the equality (41). A crucial point in
the proof of the latter equality is that dim(Y ′

0 ×Y Y ′
0 − Δ(Y0)) = 1. Let

q2 : Inc1(n) → H0(n)v̄(n) be the projection. Then for any n � n1 the Zariski

closure q2(Inc1(n)) is a proper closed subset in H0(n)v̄(n). Set

V (n) = H0(n)v̄(n) − q2(Inc1(n)) ∪ p2(Inc2(n)),

where the bar means the Zariski closure. Then V (n) is a non-empty open
subset of H0(n)v̄(n). Let s̄(n) ∈ V (n) be a k(x)-rational point. The Cartier
divisor Z̄(n) := {s̄(n) = 0} is contained in Y ′

0 ⊂ Y ′ and the scheme Z̄(n)
is étale over Spec(k(x)), because s̄(n) is not in p2(Inc2(n)). Let k(x) be
the algebraic closure of k(x). Then for any two different points y1, y2 ∈
Supp(Z̄(n)⊗k(x) k(x)) one has

(Π⊗k(x) k(x))(y1) �= (Π⊗k(x) k(x))(y2)

in Y ⊗k(x) k(x), because s̄(n) is not in q2(Inc1(n)). Hence the morphism
(id× Π)|Z̄(n) : Z̄(n) → Y is a closed embedding. Moreover, s̄(n)|Tx

= v̄(n).
Since Tx = x×B T , we have found the desired section s̄(n).

Next, patching s̄(n) and v(n) we get a section sext(n) of L(nE′)|T ′∪x×BX̄′

such that sext(n)|T ′ = v(n) and sext(n)|x×BX̄′ = s̄(n). If n � 0, then by
Serre’s vanishing theorem we can lift the section sext(n) to a section s′1(n) ∈
Γ(U ×B X̄ ′,L(nE′)). The latter section s′1(n) is the desired one as one can
easily check.

Lemma 15.11. Let n � 0 and Z1(n) be as in Construction 15.10. Proper-
ties (1a), (1a′) and (1b) yield the following property:
(1c) one has a scheme equality (id× Π̄)−1(Z1(n)) = Z ′

1(n) � Z̄ ′
2(n).

Proof. The morphism id × Π : U ×B X ′ → U ×B X is étale. It follows
that the morphism (id × Π)|(id×Π)−1(Z1(n)) : (id × Π)−1(Z1(n)) → Z1(n) is
étale. Since i : Z ′

1(n) → Z1(n) is an isomorphism, hence the étale mor-
phism (id × Π)|(id×Π)−1(Z1(n)) has a section whose image is Z ′

1(n). Thus
(id×Π)−1(Z1(n)) = Z ′

1(n) � Z ′
2(n). The property (1a′) shows now that

(id× Π̄)−1(Z1(n)) = Z ′
1(n) ∪ Z̄ ′

2(n),

where Z̄ ′
2(n) is the closure of Z ′

2(n) in U × X̄ ′. One has Z ′
1(n) ∩ Z̄ ′

2(n) ⊂
(U×BX ′)∩ Z̄ ′

2(n) = Z ′
2(n). Hence Z ′

1(n)∩ Z̄ ′
2(n) ⊂ Z ′

1(n)∩Z ′
2(n) = ∅. Thus

(id× Π̄)−1(Z1) = Z ′
1(n) � Z̄ ′

2(n).
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Lemma 15.12. Let n � 0 and Z̄2(n) be as Lemma 15.11. Then one has
Z̄ ′
2(n) ∩ U ×B S′ = ∅.

Proof. One has a chain of inclusions

(id× Π̄)((U ×B S′)∩ Z̄ ′
2(n)) ⊂ (id× Π̄)((U ×B S′)∩ (id× Π̄)−1(Z1(n))) =

= (U ×B S) ∩ Z1(n).

This inclusion and the fact that the morphism (id×Π)|U×BS′ : U ×B S′ →
U×B S is an isomorphism yield the following inclusions (U×B S′)∩ Z̄ ′

2(n) ⊂
(U ×B S′) ∩ Z ′

1(n) ⊂ Z ′
1(n). Since U ×B S′ ∩ Z̄ ′

2(n) ⊂ Z̄ ′
2(n), we see that

U ×B S′ ∩ Z̄ ′
2(n) ⊂ Z ′

1(n) ∩ Z̄ ′
2(n) = ∅ by Lemma 15.11.

Note that the Cartier divisor Z1(n) in U×BX̄ is equivalent to the Cartier
divisor dnE, where d = [k(X ′) : k(X)]. Let s1(n) ∈ Γ(U ×B X̄,L(Z1(n))) be
the canonical section (its vanishing locus is Z1(n)). By property (1c) from
Lemma 15.11 one has an equality

(42) (id× Π̄)∗(s1(n)) = (s′1(n)⊗ s′2(n)) · μ(n),

where μ(n) ∈ k[U ]× and s′2(n) ∈ Γ(U ×B X̄ ′,L(Z̄ ′
2(n))) is the canonical

section of the line bundle L(Z̄ ′
2(n)).

Definition 15.13. For n � 0 set t1(n) = s1(n) ∈ Γ(U ×B X̄,L(Z1(n))) =
Γ(U ×B X̄,L(dnE)).

Similar to Construction 15.7 we are able to do the following

Construction 15.14. For n � 0 construct a section t0(n) ∈ Γ(U ×B

X̄,L(dnE)) of the form t0(n) = sΔ(U) ⊗ t′0(n), where t′0(n) ∈ Γ(U ×B

X̄,L(dnE −Δ(U))) and sΔ(U) ∈ Γ(U ×B X̄,L(Δ(U))) is the canonical sec-
tion (its vanishing locus is Δ(U)) and t′0(n) has the following properties:
(1′) t′0(n)|E = (t1(n)|E)⊗ (sΔ(U)|E)−1;
(2′) ((id×Π̄)|U×BS′)∗(t′0(n)|U×BS) = ((id×Π)|U×BS′)∗(r1(n))⊗(s′2(n)|U×BS′)·
(μ(n)|U×BS′), where r1(n) is defined just above Construction 15.10, s′2(n)
and μ(n) ∈ k[U ]× are defined just above the present construction (since
U×BS

′ ∼= U×BS, then condition (2′) on t′0(n) is a condition on t′0(n)|U×BS).

Proof. Set T = U ×B S � E. If n � 0, then by Serre’s vanishing theorem
the restriction map

Γ(U ×B X̄,L(dnE −Δ(U))) → Γ(T,L(dnE −Δ(U))|T )

is surjective. This completes the proof.
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Lemma 15.15. For n � 0 the following statements are true:
(1′′) t0(n)|E = t1(n)|E and both sections have no zeros on E;
(2′′) t0(n)|U×BS = t1(n)|U×BS and both sections have no zeros on (U−S)×B

S;
(3′′) t′0(n)|U×BS has no zeros.

Proof. Indeed, the first equality is obvious. To prove the second one, it
suffices to prove the equality

((id× Π̄)|U×BS′)∗(t0(n)|U×BS) = ((id× Π̄)|U×BS′)∗(t1(n)|U×BS).

This equality is a consequence of the following chain of equalities:

((id× Π̄)|U×BS′)∗(t0(n)|U×BS) =

(id× Π̄)∗(sΔ(U))|U×BS′ ⊗ ((id×Π)|U×BS′)∗(r1(n))⊗ (s′2(n)|U×BS′) · (μ(n)|U×BS′) =
= s′1(n)|U×BS′ ⊗ (s′2(n)|U×BS′) · (μ(n)|U×BS′) = ((id× Π̄)|U×BS′)∗(t1(n)|U×BS).

The first equality holds by property (2′) from Construction 15.14, the second
equality holds by property (2) from Construction 15.10. The third equality
follows from the relation (42). The assertion (3”) follows from Lemma 15.12
and Construction 15.14(2’).

Definition 15.16. Choose n � 0 and set

hθ =
((1− θ) · t0(n) + θ · t1(n))|A1×U×X

(s⊗dn
E )|A1×U×X

∈ k[A1 × U ×B X],

where sE ∈ Γ(U ×B X̄,L(E)) is the canonical section.

Proof of Proposition 10.9. Let pr23 : A1 × U ×B X̄ → U ×B X̄ be the pro-
jection. Consider two sections (1− θ) · t0(n) + θ · t1(n) and s⊗dn

E of the line
bundle pr∗23(L(dnE)) on A1 ×U ×B X̄. By Lemma 15.15 these two sections
have no common zeros. Thus one has a morphism

[pr12, (1− θ) · t0(n) + θ · t1(n) : s⊗dn
E ] : A1 × U ×B X̄ → A1 × U × P1,

where pr12 : A1 × U ′ ×B X̄ ′ → A1 × U ′ is the projection. This morphism is
quasi-finite and projective. Hence it is finite and surjective. It follows that
any of its base changes is finite and surjective. Particularly, the morphism
(pr12, hθ) : A

1 × U ×X → A1 × U × A1 is finite and surjective, because the
closed subset {s⊗dn

E = 0} in A1 × U ×B X̄ coincides with the one A1 × E.
This proves the assertion (a) of Proposition 10.9.

Lemma 15.15 yields the assertion (d) of Proposition 10.9. The prop-
erty (1b) from Construction 15.10 and Lemma 15.11 yields the assertion
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(c) of Proposition 10.9. Lemma 15.12 and the property (2’) from Construc-
tion 15.14 yield the assertion (b) of Proposition 10.9. Proposition 10.9 fol-
lows.

16. Nisnevich cohomology with coeffitients in a ZF∗-sheaf

Lemma 16.1. The category of Nisnevich sheaves of Abelian groups with
ZF∗-transfers is a Grothendieck category.

Proof. The category of presheaves of Abelian groups with ZF∗-transfers is
plainly a Grothendieck category. Since for every radditive framed presheaf
of Abelian groups F the associated sheaf in the Nisnevich topology has a
unique structure of a framed presheaf such that the map F → Fnis is a map
of framed presheaves by Corollary 2.17, our lemma is now proved similar
to [7, 6.4].

The main purpose of this section is to prove the following

Proposition 16.2. For any Nisnevich sheaf F with ZF∗-transfers, any in-
teger n and any k-smooth scheme X, there is a natural isomorphism

Hn
Nis(X,F) = Extn(ZF∗(X)Nis,F),

where the Ext-groups are taken in the Grothendieck category of Nisnevich
sheaves with ZF∗-transfers.

Recall that for a morphism f : Y → X we denote by Č(f) or Č(Y ) the
Cech simplicial object defined by f .

Lemma 16.3 ([20], Theorem 4.4). Let f : Y → X be an etale (respectively
Nisnevich) covering of a k-smooth scheme X. Then for any n the map of
simplicial presheaves

Frn(−, Č(Y )) → Frn(−, X)

is a local equivalence in the etale (respectively Nisnevich) topology.

Definition 16.4. For any U ∈ Sm′/k and X ∈ Sm/k define Fm(U,X) ⊂
Frm(U,X) as a subset consisting of (Z,W,ϕ; g) ∈ Frm(U,X) such that Z
is connected.

Clearly, the set Fm(U,X) − ∅m is a free basis of the abelian group
ZFm(U,X). However, the assignment U �→ Fm(U,X) is not a presheaf even
on the category Sm/k.
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Applying the proof of [20, Theorem 4.4] one can conclude that the fol-
lowing lemma holds:

Lemma 16.5. Let f : Y → X be an etale (respectively Nisnevich) covering
of a k-smooth scheme X. Then for any local essentially k-smooth henselian
scheme U and for any integer n � 0 the map of pointed simplicial sets

Fn(U, Č(Y )) → Fn(U,X)

is a weak equivalence.

Corollary 16.6. Let f : Y → X be an etale (respectively Nisnevich) cov-
ering of a k-smooth scheme X. Then for any n the maps of simplicial
presheaves

ZFn(−, Č(Y )) → ZFn(−, X), ZF∗(−, Č(Y )) → ZF∗(−, X)

are local equivalences in the Nisnevich topology.

Corollary 16.7. Let I be an injective object in the category of Nisnevich
sheaves with ZF∗-transfers. Then for any k-smooth scheme X and for all
i > 0, one has H i

Nis(X, I) = 0.

Proof. Using the preceding corollary, our proof is similar to that of [18,
1.7].

Proof of Proposition 16.2. Corollary 16.7 implies the proposition.

Proposition 16.2 implies the following useful

Corollary 16.8. For any Nisnevich sheaf F with ZF∗-transfers and any
integer n, the presheaf X �→ Hn

Nis(X,F) has a canonical structure of a
ZF∗-presheaf.

In fact, this holds for the presheaf X �→ Extn(ZF∗(X)Nis,F).

17. Homotopy invariance of cohomology presheaves

In this section we prove Theorems 17.15 and 17.16. They complete the proof
of Theorem 1.1, which is the main result of the paper. Each statement in
this section except Lemma 17.3 is split in two parts depending on whether
the characteristic of the base field does not equal 2 or equals 2. We will
only prove the case when the characteristic is not 2, because the case when
char k = 2 is proved similarly and is left to the reader. Throughout this
section the base field k is supposed to be infinite and perfect.
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We refer the reader to [6] or [5] for the definition and basic properties
of the henselization Y h

Z of an affine scheme Y ∈ Sm′/k along a closed sub-
scheme Z. If y ∈ Y is a point we sometimes write Yy for Spec(OY,y) and Y h

y

for (Yy)
h
y . All k-schemes of the form Y h

Z we work with in this section belong
to the category Sm′/k.

Definition 17.1. Let G be a homotopy invariant presheaf of abelian groups
with ZF∗-transfers. Then the presheaf X �→ G−1(X) := G(X × (A1 −
0))/G(X) is also a homotopy invariant presheaf of abelian groups with ZF∗-
transfers. If the presheaf G is a Nisnevich sheaf, then the presheaf G−1 is also
a Nisnevich sheaf. If the presheaf G is quasi-stable, then so is the presheaf
G−1.

If G is a presheaf on Sm/k and Y is a k-smooth scheme, then denote by
G|Y the restriction of G to the small Nisnevich site of Y .

Consider the inclusion of categories inc : Sm/k → Sm′/k where Sm′/k
is the category of essentially smooth schemes over k. Then for any presheaf
G of Abelian groups on Sm/k the restriction of the presheaf inc∗(G) on
Sm′/k to Sm/k equals G (that is inc∗(inc∗(G)) = G on Sm/k). For any
essentially smooth scheme Y over k we will use notation G(Y ) instead of
inc∗(G)(Y ).

Let Y ∈ Sm′/k. Since Y is Noetherian it makes sense to consider the
small Nisnevich site YNis. We will write G|Y for the presheaf W �→ G(W )
on YNis. Particularly, this notation will be used for Y ∈ Sm/k. One can
show that for any Y ∈ Sm′/k the presheaf G|Y is a Nisnevich sheaf on YNis

whenever G is a Nisnevich sheaf on Sm/k.
For any closed subset Z in Y , any integer n and any Nisnevich sheaf G

of abelian groups on the small Nisnevich site YNis of Y write Hn
Z(Y,G) for

the Nisnevich cohomology with support on Z.
The following useful result will be used in this section several times

(cf. [19, Lemma E.6]).

Proposition 17.2. Let Y be in Sm′/k. Write Y as a filtered limit limYi
over a small filtered category I, where Yi are in Sm/k and the transition
morphisms ϕij : Yi → Yj are affine étale morphisms. Let F be a Nisnevich
sheaf on Sm/k. Then for any integer n � 0 the canonical map

colimi∈I H
n
Nis(Yi,F|Yi

) → Hn
Nis(Y,F|Y )

is an isomorphism. More generally, for any i ∈ I let ϕi : Yi → Y be the
canonical morphism. Let Z ⊂ Y be a closed subset. Then there is an i ∈ I
and a closed subset Zi in Yi such that Z = ϕ−1(Zi). Moreover, if for any
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j ∈ I with i � j we write Zj for ϕ−1
ji (Zi), then for any integer n � 0 the

canonical map

colimi�j∈I H
n
Zj
(Yj ,F|Yj

) → Hn
Z(Y,F|Y )

is an isomorphism.

Proof. The proof is like that for the Zariski topology case and is quite stan-
dard. Therefore we will only sketch the proof. For any Y ∈ Sm′/k and a
Nisnevich sheaf G of abelian groups on YNis we say that G is flasque if for
any V ∈ YNis and any Zariski open subset W in V the restriction map
G(V ) → G(W ) is an epimorphism. It is easy to check the following: (1) for
any flasque sheaf G on YNis and any n > 0 the group Hn

Y (Y,G) vanishes; (2)
for any injective Nisnevich sheaf of abelian groups I on Sm/k the Nisnevich
sheaf I|Y on YNis is flasque.

The property (1) shows that the groups Hn
Nis(Y,G) can be computed

using flasque resolutions. Take a Nisnevich sheaf F of abelian groups on
Sm/k. Let 0 → F → I• be its injective resolution on the big Nisnevich site
(Sm/k)Nis. Then for any integer n � 0 the Nisnevich sheaf I|Y is flasque
and for any i ∈ I the Nisnevich sheaf I|Yi

is flasque. Thus

Hn
Nis(Y,F|Y ) = Hn(I(Y •)) = Hn(colimi∈II•(Yi)) =

= colimi∈IH
n(I•(Yi)) = colimi∈IH

n
Nis(Yi,F|Yi

).

This proves the first assertion.
To prove the second one consider a long exact sequence

Hn
Nis(Y,F|Y ) → Hn

Nis(Y − Z,F|Y−Z) → Hn+1
Z (Y,F|Y ) →

→ Hn+1
Nis (Y,F|Y ) → Hn+1

Nis (Y − Z,F|Y−Z),

and for any j ∈ I with i � j consider similar sequences corresponding to the
pair (Yj , Zj). The first assertion of the proposition now implies the second
one.

For any Y ∈ Sm′/k, any closed subset Z in Y , any integer n and any
Nisnevich sheaf G of abelian groups on the Nisnevich site YNis of Y consider
the presheaf Y ′ �→ Hn

Z′(Y ′, G), where Z ′ = Y ′×Y Z. We will write Hn
Z(Y,G)

for the associated Nisnevich sheaf on YNis.

Lemma 17.3. For any A1-invariant quasi-stable ZF∗-sheaf of abelian groups
F , any k-smooth scheme Y and any k-smooth divisor D in Y the canonical
morphism H1

D(Y,F) → H0
Nis(Y,H1

D(Y,F)) is an isomorphism.
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Proof. The local-global spectral sequence yields an exact sequence

H1
Nis(Y,H0

D(Y,F)) → H1
D(Y,F) →
→ H0

Nis(Y,H1
D(Y,F)) → H2

Nis(Y,H0
D(Y,F)).

By Theorem 3.15(3’) all Nisnevich stalks of the sheaf H0
D(Y,F) vanishes.

Thus the sheaf H0
D(Y,F) vanish. This proves the lemma.

Proposition 17.4. Let S ∈ Sm/k, s ∈ S be a point, V := Spec(OS,s),

W = V h
s . Let V := Spec(OW×A1,(s,0)) and can : V ↪→ W × A1 be the

canonical embedding. Let F be an A1-invariant quasi-stable ZF∗-presheaf of
abelian groups. Then the pull-back map

[[can]]∗ : F(W × (A1 − {0}))/F(W × A1) → F(V −W × {0})/F(V)

is an isomorphism.

Proof. For any étale neighborhood Vi of the point s in V let si be the unique

point in Vi lying over s. Set Wi = Spec(OVi,si) and Vi = Spec(OWi×A1,(si,0)).

Then W = limWi and V = limVi. Consider the quotients F(Wi × (A1 −
{0}))/F(Wi×A1) and F(Vi−Wi×{0})/F(Vi). Both quotients make sense:

the first quotient makes sense due to A1-invariance of F , the second one

makes sense due to Theorem 3.15(3). Thus, the quotients F(W × (A1 −
{0}))/F(W × A1) and F(V −W × {0})/F(V) make sense as well. For any

i the map

[[cani]]
∗ : F(Wi × (A1 − {0}))/F(Wi × A1) → F(Vi −Wi × {0})/F(Vi)

is an isomorphism by Corollary 3.19. Since [[can]]∗ = colimi∈I [[cani]]
∗ we

see that the map [[can]]∗ is an isomorphism.

Consider smooth k-schemes Xl, Xr and D. Let il : D → Xl and ir :

D → Xr be closed embeddings. Let (Xm, πl : Xm → Xl, sl : D → Xm) and

(Xm, πr : Xm → Xr, sr : D → Xm) be étale neighborhoods of il(D) in Xl

and ir(D) in Xr respectively. These data are called geometric data if sl = sr.

In this case πr ◦ sl = ir. We also write a zigzag

D
il−→ Xl

πl←− Xm
πr−→ Xr

ir←− D

to denote the geometric data.
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Definition 17.5. We will say that geometric data Xl, Xm, Xr, D, il, ir,

(Xm, πl, sl), (Xm, πr, sl) are Voevodsky’s data if Xr = D × A1 and ir : D →
Xr = D × A1 is the zero section. Clearly, in this case il(D), sl(D) = sr(D)

are smooth divisors in Xl and Xm respectively. We also denote Voevodsky’s

data by writing a tuple (D,Xl, Xm, Xr, ...).

If (D,Xl, Xm, Xr, ...) are Voevodsky’s data, then for any Y ∈ Sm/k the

data (Y ×D,Y ×Xl, Y ×Xm, Y ×Xr, ...) are Voevodsky’s data as well.

If (D,Xl, Xm, Xr, ...) are Voevodsky’s data and X ′ → X is an étale

morphism, then the data (X ′×XD,X ′×XXl, X
′×XXr, ...) are Voevodsky’s

data. Voevodsky’s data (D,Xl, Xm, Xr, ...) can be written as the following

zigzag (with ir is the zero section)

D
il−→ Xl

πl←− Xm
πr−→ D × A1 ir←− D.

Suppose F is a Nisnevich sheaf of abelian groups on Sm/k. Consider

three Nisnevich sheaves Hl := H1
il(D)(Xl,F), Hm := H1

sl(D)(Xm,F) =

H1
sr(D)(Xm,F) and Hr := H1

ir(D)(Xr,F) on the small Nisnevich sites of

Xl, Xm and Xr respectively.

Lemma 17.6. For any geometric data Xl, Xm, Xr, D, il, ir (Xm, πl, sl),

(Xm, πr, sl) above Definition 17.5, there is a natural sheaf isomorphism

i∗l (Hl) ∼= i∗r(Hr) on the small Nisnevich site of D. Particularly, this holds if

these geometric data are Voevodsky’s data.

Proof. Clearly, π∗
l (Hl) ∼= Hm

∼= π∗
r (Hr). Thus we now have a chain of canon-

ical isomorphisms i∗l (Hl) = s∗l (π
∗
l (Hl)) = s∗l (π

∗
r (Hr)) = i∗r(Hr).

The following lemma follows from the proof of [21, Theorem 4.14].

Lemma 17.7. For any X ∈ Sm/k, any smooth divisor D in X and any

point x ∈ X there is a Zariski neiborhood Xl of the point x that can be fit

in Voevodsky’s data (D ∩Xl, Xl, Xm, (D ∩Xl)× A1, ...).

Remark 17.8. Let T ∈ Sm/k and i : S ↪→ T be a k-smooth closed sub-

scheme, j : T − S ↪→ T be the open subscheme. Let G be a Nisnevich sheaf

of abelian groups on the small Nisnevih site of T . Then the sequence of Nis-

nevich sheaves G
adj−−→ j∗j∗(G) → H1

S(T,G) → 0 on T is exact and induces a

sheaf isomorphism ∂ : cokerT,S := coker(adj)Nis
∼= H1

S(T,G).

Proposition 17.9. Let D ∈ Sm/k, iD : D ↪→ D × A1 be the zero section,

jD : D×(A1−0) ↪→ D×A1 be the open embedding. Let G be an A1-invariant
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quasi-stable ZF∗-Nisnevich sheaf. Then there is a natural Nisnevich sheaf
isomorphism on the small Nisnevich site DNis of D

ϕD : G−1|D ∼= i∗D(cokerD×A1,D).

If char k = 2, then the same statement is true if we assume that the ZF∗-
sheaf F is a sheaf of Z[1/2]-modules.

Proof. Consider G, j∗D(G) and jD,∗j∗D(G) as presheaves on the small site
DNis. Take the adjuction morphism aD : G → jD,∗j∗D(G) and let coker(aD)
be its cokernel in the category of presheaves on DNis. Clearly, cokerD×A1,D

is the Nisnevich sheaf associated with the presheaf coker(aD).
Recall that G−1(U) = G(U×(A1−0))/G(U×A1) for any U ∈ DNis. For

any a ∈ G−1(U) let ã ∈ G(U × (A1 − 0)) be a lift of a. Translating literally
the proof of [21, Proposition 4.11] to the context of the Nisnevich site DNis,
we get a presheaf morphism ϕD : G−1|D → i∗D(coker(aD)) on DNis. For any
a ∈ G−1(U) the element ϕD(a) ∈ i∗D(coker(aD))(U) is the class of the pair
(U × A1, ã), where ã ∈ G(U × (A1 − 0)).

To prove that the corresponding morphism ϕnis
D of the associated sheaves

in the Nisnevich topology on D is an isomorphism, it sufficient to show
that ϕD is an isomorphism on Nisnevich stalks. Take any point x ∈ D and
note that if V = (D × A1)h(x,0), then V contains Dh

x as a closed subscheme

(namely as the zero section). Furthermore V = (Dh
x × A1)h(x,0) = Vh

(x,0),

where V = Spec(ODh
x×A1,(x,0)). We need to check that the homomorphism

(43) G(Dh
x × (A1 − 0))/G(Dh

x × A1) → G(Vh
x −Dh

x × 0)/G(Vh
x )

is a group isomorphism. This homomorphism is a composition of the homo-
morphism G(Dh

x × (A1 − 0))/G(Dh
s × A1) → G(V −Dh

x × 0)/G(V) and the
homomorphism G(V −Dh

x × 0)/G(V) → G(Vh
(x,0) −Dh

x × 0)/G(Vh
(x,0)). The

first one is an isomorphism by Proposition 17.4. Applying Theorem 3.15(5)
and standard colimit arguments, one can show that the second homomor-
phism is an isomorphism as well.

The proof of the latter proposition has the following

Corollary 17.10. Let G be an A1-invariant quasi-stable ZF∗-presheaf. Sup-
pose the associated Nisnevich sheaf Gnis vanishes. Then for any X,S ∈
Sm/k, any smooth divisor D ⊂ X, any points x ∈ D and z ∈ S × D one
has G(Xh

x −Dh
x) = 0 and G((S ×X)hz − (S ×D)hz ) = 0. If char k = 2, then

the same statement is true if the ZF∗-sheaf F is a sheaf of Z[1/2]-modules.
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Proof. The second assertion follows from the first one. Indeed, apply the
first assertion to the pair (S ×X,S ×D). We now prove the first assertion.
The assertion is local for the Zariski topology on X. Using Lemma 17.7
and shrinking X, we may assume that there are Voevodsky’s data D,X =
Xl, Xm, Xr = D × A1. Let y = sl(x), then y = sr(x, 0). Let Dm = sl(D).
Set V = (D × A1)h(x,0). Then V contains Dh

x as a closed subscheme (as the

zero section). Clearly,

G(Xh
x −Dh

x)
∼= G((Xm)hy − (Dm)hy)

∼= G(V −Dh
x).

SinceG(V ) = 0 we haveG(V−Dh
x) = G(V−Dh

x)/G(V ). The homomorphism
(43) is an isomorphism and Vh

(x,0) = V . Thus G(V −Dh
x)/G(V ) ∼= G(Dh

x ×
(A1 − 0))/G(Dh

x × A1). Since G is A1-invariant and Gnis = 0 we see that
G(Dh

s ×A1) = 0. It remains to check that G(Dh
x×(A1−0)) = 0. The presheaf

X �→ G′(X) = G(X×(A1−0)) is an A1-invariant quasi-stable ZF∗-presheaf.
By Theorem 3.15(3’) the map G′(Dh

x) → G′(Spec(K)) is injective, where K
is the field of fractions for the henselian ring Oh

D,x. One has G′(Spec(K)) =

G((A1 − 0)K). The latter group embeds into G(Spec(K(t))) by Theorem
3.15(1). The latter group vanishes because GNis = 0.

Proposition 17.11. Suppose char k �= 2. Let X ∈ Sm/k and i : D ↪→ X be
a smooth divisor in X. Let F be an A1-invariant quasi-stable ZF∗-sheaf of
abelian groups. Then the pull-back map

pr∗X : H0
Nis(X,H1

D(X,F)) → H0
Nis(A

1 ×X,H1
A1×D(A

1 ×X,F))

is an isomorphism. If char k = 2, then the same statement is true if the
ZF∗-sheaf F is a sheaf of Z[1/2]-modules.

Proof. This statement is local for the Zariski topology onX. ShrinkingX we
may assume that there are Voevodsky’s data D,X = Xl, Xm, Xr = D×A1.
This time we write iD : D → D × A1 for the 0-section. By the comment
from Definition 17.5 the data Y ×D,Y ×X = Y ×Xl, Y ×Xm, Y ×Xr =
(Y ×D)×A1 are also Voevodsky’s data. Using these data, Proposition 17.9,
Remark 17.8 and Lemma 17.6, we get a chain of sheaf isomorphisms on the
small site (Y ×D)Nis

F−1|Y×D
∼= (idY × iD)

∗(cokerY×D×A1,Y×D) ∼=
∼= (idY × iD)

∗(H1
Y×D×0(Y ×D × A1,F)) ∼=

∼= (idY × i)∗(H1
Y×D(Y ×X,F)).
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Since the adjunction mapH1
Y×D(Y ×X,F) → (idY ×i)∗(idY ×i)∗(H1

Y×D(Y ×
X,F)) is a sheaf isomorphism, we get a natural sheaf isomorphism on the

small Nisnevich site of Y ×X

(44) (idY × i)∗(F−1|Y×D) ∼= H1
Y×D(Y ×X,F).

Taking global sections we get a group isomorphism, natural in Y ,

αY×D : F−1(Y ×D) → H0(Y ×X,H1
Y×D(Y ×X,F)).

The functoriality of this isomorphism with respect to Y means that for the

projections prD : Y ×D → D and prX : Y ×X → X one has αY×D ◦ pr∗D =

pr∗X ◦αD. To complete the proof, take Y = A1 and use the A1-invariance of

the sheaf F−1.

Corollary 17.12. Suppose char k �= 2. Let X ∈ Sm/k and D be a smooth

divisor in X. Let F be an A1-invariant quasi-stable ZF∗-sheaf of abelian

groups. Let x ∈ D be a point. Then the map

H1
Nis(X

h
x × A1,F) → H1

Nis((X
h
x −Dh

x)× A1,F)

is injective. If char k = 2, then the same statement is true if the ZF∗-sheaf
F is a sheaf of Z[1/2]-modules.

Proof. By Lemma 17.3 and Proposition 17.11 for any étale morphism X ′ →
X and D′ = X ′×X D the pullback map H1

D′(X ′,F) → H1
A1×D′(A1×X ′,F)

is an isomorphism. Thus the map H1
Dh

x
(Xh

x ,F) → H1
A1×Dh

x
(A1 × Xh

x ,F) is

an isomorphism. The map ∂ : F(Xh
x − Dh

x) → H1
Dh

x
(Xh

x ,F) is an epimor-

phism, because H1
Nis(X

h
x ,F) = 0. Therefore the map F(A1× (Xh

x −Dh
x)) →

H1
A1×Dh

x
(A1 ×Xh

x ,F) is an epimorphism. This proves the corollary.

Proposition 17.13. Let char k �= 2 and K be a field such that Spec(K) ∈
Sm′/k. Let F be an A1-invariant quasi-stable ZF∗-sheaf of abelian groups.

Then H1
Nis(A

1
K ,F) = 0. If char k = 2, then the same statement is true if

the ZF∗-sheaf F is a sheaf of Z[1/2]-modules.

Proof. Let a ∈ H1
Nis(A

1
K ,F). We want to prove that a = 0. The Nisnevich

topology is trivial at the generic point of the affine line A1
K . Therefore there

is a Zariski open subset U in A1
K such that the restriction of a to U vanishes.

Let Z be the complement of U in A1
K regarded as a closed subscheme with

the reduced structure (it consists of finitely many closed points). Let V :=
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�z∈Z(A1)hz , where each summand is the henselization of the affine line at
z ∈ Z. Then the cartesian square

V − Z V

Π

U A1
K

gives rise to a long exact sequence

F(U)⊕ F(V ) → F(V − Z)
∂−→ H1

Nis(A
1
K ,F) → H1

Nis(U,F)⊕H1
Nis(V,F).

The left arrow is surjective by Theorem 3.15 (items (2), (5)). The group
H1

Nis(V,F) vanishes by the choice of V . Thus the map H1
Nis(A

1
K ,F) →

H1
Nis(U,F) is injective, and hence a = 0.

Proposition 17.14. Suppose the base field k is infinite and perfect with
char k �= 2. Let F be an A1-invariant quasi-stable ZF∗-sheaf of Abelian
groups. Let X be a k-smooth scheme and let a ∈ H1

Nis(X × A1,F) be
an element such that its restriction to X × {0} vanishes. Then a = 0. If
char k = 2, then the same statement is true if the ZF∗-sheaf F is a sheaf of
Z[1/2]-modules.

Proof. Let p : X×A1 → X be the projection. Since the sheaf F is homotopy
invariant we have p∗(F|X×A1) = F|X . Consider the exact sequence

0 → H1
Nis(X, p∗(F|X×A1))

α−→ H1
Nis(X × A1,F|X×A1)

β−→
→ H0

Nis(X,R1p∗(F|X×A1)).

Let i0 : X → X × A1 be the zero section. The identification p∗(F|X×A1) =
F|X implies the map α is just the pullback map p∗. Thus i∗0 ◦ α = i∗0 ◦ p∗ =
id : H1

Nis(X,FX) → H1
Nis(X,FX). Set,

A := Ker[i∗0 : H
1
Nis(X × A1,F|X×A1) → H1

Nis(X,F|X)].

We now show that ker(β) ∩ ker(i∗0) = {0}. Indeed, if a ∈ ker(β), then a =
α(a′) for some a′ ∈ H1

Nis(X, p∗(F|X×A1)). If a is also in ker(i∗0), then 0 =
i∗0(a) = i∗0(α(a

′)) = a′. Thus a′ = 0 and a = 0.
Since ker(β|A) = ker(β) ∩ ker(i∗0) = {0}, it follows that the map β|A :

A → H0
Nis(X,R1p∗(F|X×A1)) is injective. The stalk of the sheaf R1p∗(F)

at a point x ∈ X is H1
Nis(X

h
x × A1,F), where Xh

x = Spec(Oh
X,x) is the
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henselization of the local scheme Spec(OX,x) at x. By Proposition 17.13

there is a closed subset Z in X such that β(a)|X−Z = 0. Since the field k is

perfect, there is a proper closed subset Z1 ⊂ Z such that Z−Z1 is k-smooth.

Then Z − Z1 is a k-smooth closed subscheme in X − Z1.

We claim that a1 := a|(X−Z1)×A1 = 0. By assumption, a1|(X−Z1)×0 =

0. Thus it suffices to check that all Nisnevich stalks of the element β(a1)

vanish. Let x ∈ X − Z1 be a point. If x ∈ X − Z then β(a1)x = 0, because

β(a1)|X−Z = 0. If x ∈ Z − Z1 then shrinking X − Z1 around x we may

assume that there is a k-smooth divisor D in X − Z1 containing Z − Z1.

We now have β(a1)|X−D = 0, because β(a1)|X−Z = 0. Now Corollary 17.12

shows that β(a1)x = 0. We have proved that a1 = 0.

Now there is a proper closed subset Z2 ⊂ Z1 such that Z1 − Z2 is

k-smooth (we use here that k is a perfect field). Then Z1 − Z2 is a k-

smooth closed subscheme in X − Z2. Arguing just as above, we conclude

that a2 := a|(X−Z2)×A1 = 0.

Continuing this process finitely many times, we find a strictly decreasing

chain of closed subsets X ⊃ Z1 ⊃ Z2 ⊃ ... ⊃ Zn = ∅ in X such that for

any integer i = {1, 2, ..., n} one has a|(X−Zi)×A1 = 0. Taking i = n we get

a = a|(X−Zn)×A1 = 0.

Theorem 17.15. Suppose the base field k is infinite and perfect with

char k �= 2. If F is an A1-invariant quasi-stable ZF∗-sheaf of abelian groups,

then the ZF∗-presheaf of abelian groups X �→ H1
Nis(X,F) is A1-invariant

and quasi-stable. If char k = 2, then the same statement is true if the ZF∗-
sheaf F is a sheaf of Z[1/2]-modules.

Proof. By Corollary 16.8 the presheaf X �→ H1
Nis(X,F) has a canoni-

cal structure of a ZF∗-presheaf. Let X be a k-smooth scheme. Let σX ∈
Fr1(X,X) be the distinguished morphism of level one. The assignement

X �→ (σ∗
X : F(X) → F(X)) is an endomorphism of the Nisnevich sheaf

F|Sm/k. Thus for each n it induces an endomorphism of the cohomology

presheaf σ∗ : Hn(−,F) → Hn(−,F). Since σ∗ acts on F as an isomor-

phism, it acts as an isomorphism on the presheaf Hn(−,F). We see that the

ZF∗-presheaf Hn(−,F) is quasi-stable.

To show that the presheaf X �→ H1
Nis(X,F) is A1-invariant, note that

the pullback map i∗0 : H
1
Nis(X×A1,F) → H1

Nis(X,F) is surjective. It is also

injective by Proposition 17.14. Our theorem now follows.

Theorem 17.16. Suppose the base field k is infinite and perfect with

char k �= 2. Let F be an A1-invariant quasi-stable ZF∗-sheaf of abelian
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groups. Then for any integer n � 2, the presheaf X �→ Hn
Nis(X,F) is an A1-

invariant and quasi-stable ZF∗-presheaf of abelian groups. If char k = 2, then
the same statement is true if the ZF∗-sheaf F is a sheaf of Z[1/2]-modules.

Proof. We can apply the same arguments as in the proof of Theorem 17.15
to show that the presheaf X �→ Hn

Nis(X,F) is a ZF∗-presheaf of abelian
groups, which is, moreover, quasi-stable.

It remains to check that the presheaf is homotopy invariant. We may
assume till the end of the proof that each presheaf X �→ Hj

Nis(X,F) with
j < n is an A1-invariant quasi-stable ZF∗-presheaf.

In order to complete the proof of the theorem, we shall need the following
lemma.

Lemma 17.17. Suppose the base field k is infinite and perfect with char k �=
2. Let X be in Sm/k, i : D ↪→ X be a k-smooth divisor and x ∈ D be a
point. Then for any A1-invariant quasi-stable ZF∗-sheaf of abelian groups F
and any n � 2 one has

Hn
Dh

x×A1(Xh
x × A1,F) = 0.

If char k = 2, then the same statement is true if the ZF∗-sheaf F is a sheaf
of Z[1/2]-modules.

Proof. The main part of the proof is dedicated to verifying the following
claim: the pullback map p∗Xh

x
: Hn

Dh
x
(Xh

x ,F) → Hn
Dh

x×A1(Xh
x × A1,F) is an

isomorphism. Afterwards we prove that Hn
Dh

x
(Xh

x ,F) = 0.
Using Proposition 17.2, the above claim reduces to showing the following

assertion: for any X ∈ Sm/k, any k-smooth divisor D in X and any point
x ∈ D the pullback map p∗Xx

: Hn
Dx

(Xx,F) → Hn
Dx×A1(Xx × A1,F) is an

isomorphism.
Firstly, we consider any Y ∈ Sm/k and any k-smooth divisor E ⊂ Y .

We now use the notation introduced above Lemma 17.3. Analyzing the local
global spectral sequence of the form

H i
Nis(Y,H

j
E(Y,F)) =⇒ H i+j

E (Y,F),

we will show that Hn
E(Y,F) is naturally isomorphic to Hn−1

Nis (Y,H1
E(Y,F)).

The nearest aim is to show the following computational claim: for any inte-
gers 0 � j � n with j �= 1 the Nisnevich sheaves Hj

E(Y,F) on the small site
YNis vanish.

Consider the case j = 0. Obviously, the stalk of the sheaf Hj
E(Y,F)

vanishes at every point z ∈ Y − E. Let z ∈ E then the stalk at z equals
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H0
Eh

z
(Y h

z ,F). Since H0
Eh

z
(Y h

z ,F) = ker[F(Y h
z ) → F(Y h

z − Eh
z )], Theorem

3.15(3’) implies that the stalk at z vanishes. This proves the computational
claim for j = 0.

Let 2 � j � n. Obviously, the stalks of the sheaf Hj
E(Y,F) vanish at

every point z ∈ Y − E. If z ∈ E then the stalk of this sheaf at the point
z is equal to the group Hj

Eh
z
(Y h

z ,F). Since Hj
Nis(Y

h
z ,F) = 0 one has the

equality Hj
Eh

z
(Y h

z ,F) = Hj−1
Nis (Y

h
z −Eh

z ,F)/Im[Hj−1
Nis (Y

h
z ,F)]. Since j − 1 <

n the presheaf Y �→ G(U) := Hj−1
Nis (U,F) is an A1-invariant quasi-stable

ZF∗-presheaf. Since j − 1 > 0 the associated Nisnevich sheaf Gnis vanishes.
Thus, G(Y h

z − Eh
z ) = 0 by Lemma 17.10. This completes the proof of the

computational claim.
The computational claim shows that the only nonzero term of the second

page of the above spectal sequence lying on the diagonal i + j = n is the
group Hn−1

Nis (Y,H1
E(Y,F)). Moreover, there are no incoming differentials to

this term and no outcoming differentials from this term. We see that the
canonical map Hn−1

Nis (Y,H1
E(Y,F)) → Hn

E(Y,F) is an isomorphism.
The assertion that p∗Xx

: Hn
Dx

(Xx,F) → Hn
Dx×A1(Xx × A1,F) is an

isomorphism is local for the Zariski topology on X. Thus shrinking X, we
may assume that there are Voevodsky’s data D,X = Xl, Xm, Xr = D×A1.
Let in : D ↪→ X be the closed embedding and I = in × idA1 . We have
isomorphisms I∗(F−1) ∼= H1

D×A1(X × A1,F) and in∗(F−1) ∼= H1
D(X,F) of

the form (44) on the small Nisnevich sites of X × A1 and X respectively.
They give rise to a commutative diagram

Hn−1
Nis (X,H1

D(X,F))
∼=

p∗X

Hn−1
Nis (X, in∗(F−1))

p∗X

∼=
Hn−1

Nis (D,F−1)

p∗X

Hn−1
Nis (X × A

1,H1
D×A1

(X × A
1,F))

∼=
Hn−1

Nis (X × A
1, I∗(F−1))

∼=
Hn−1

Nis (D × A
1,F−1)

The right vertical map is an isomorphism by the inductive assumption, and
hence so is the map p∗X : Hn−1

Nis (X,H1
D(X,F)) → Hn−1

Nis (X×A1,H1
D×A1(X×

A1,F)). As we have shown above the first of these groups is naturally isomor-
phic to Hn

D(X,F). The second group is naturally isomorphic to Hn
D×A1(X×

A1,F). Thus the map p∗X : Hn
D(X,F) → Hn

D×A1(X × A1,F) is an isomor-
phism.

If D,X = Xl, Xm, Xr = D×A1 are Voevodsky’s data, then for any non-
empty Zariski open X0 in X and D0 := D∩X0 the data D0, X0, π−1

l (X0)∩
π−1
r (D0 × A1), D0 × A1 are Voevodsky’s data as well. This observation and

Proposition 17.2 imply the pullback map

p∗Xx
: Hn

Dx
(Xx,F) → Hn

Dx×A1(Xx × A1,F)
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is an isomorphism. Since p∗Xx
is an isomorphism for any X ∈ Sm/k, any k-

smooth divisor D in X and any point x ∈ D, we conclude that the pullback
map p∗Xh

x
: Hn

Dh
x
(Xh

x ,F) → Hn
Dh

x×A1(Xh
x × A1,F) is an isomorphism.

It remains to check that Hn
Dh

x
(Xh

x ,F) = 0. Since Hn
Nis(X

h
x ,F) = 0 =

Hn−1
Nis (X

h
x ,F), we see that Hn−1

Nis (X
h
x −Dh

x ,F) = Hn
Dh

x
(Xh

x ,F). By induction,

the presheaf U �→ G(U) := Hn−1
Nis (U,F) is an A1-invariant quasi-stable ZF∗-

presheaf. Since n−1 > 0 the associated Nisnevich sheaf Gnis vanishes. Thus,
G(Xh

x −Dh
x) = 0 by Lemma 17.10. Hence 0 = G(Xh

x −Dh
x) = Hn

Dh
x
(Xh

x ,F).
This completes the proof of the lemma.

Returning to the proof of Theorem 17.16, let X be in Sm/k, i : D ↪→ X
be a k-smooth divisor and x ∈ D be a point. By Lemma 17.17 the map

(45) Hn
Nis(X

h
x × A1,F) → Hn

Nis((X
h
x −Dh

x)× A1,F)

is injective.
Next, we claim that for a k-smooth scheme X and the projection p :

X × A1 → X the Nisnevich sheaves Rjp∗(F) vanish for j = 1, ..., n − 1. In
fact, such a sheaf is associated with the presheaf U �→ Hj

Nis(U × A1,F).

The presheaf U �→ Hj
Nis(U,F) is A1-invariant. Thus Hj

Nis(U × A1,F) =

Hj
Nis(U,F). Since j � 1 the associated Nisnevich sheaf vanishes. This proves

the claim.
Since the Nisnevich sheaves Rjp∗(F) vanish for j = 1, ..., n− 1, one has

an exact sequence

0 → Hn
Nis(X, p∗(F))

α−→ Hn
Nis(X × A1,F)

β−→ H0
Nis(X,Rnp∗(F)).

Set A := Ker[i∗0 : H
n
Nis(X ×A1,F) → Hn

Nis(X,F)]. Arguing as in the proof
of Proposition 17.14, we conclude that the map β|A : A → H0

Nis(X,Rnp∗(F))
is injective. Arguing again as in the proof of Proposition 17.14 and using the
fact that the map (45) is injective, we get the following

Lemma 17.18. Suppose the base field k is infinite and perfect with char k �=
2. Let F be an A1-invariant quasi-stable ZF∗-sheaf of Abelian groups. Let
X be a k-smooth scheme and let a ∈ Hn

Nis(X × A1,F) be an element such
that its restriction to X × {0} vanishes. Then a = 0. If char k = 2, then the
same statement is true if the ZF∗-sheaf F is a sheaf of Z[1/2]-modules.

Finally, the pullback map i∗0 : Hn
Nis(X × A1,F) → Hn

Nis(X,F) is sur-
jective by functoriality. By Lemma 17.18 it is also injective. This completes
the proof of Theorem 17.16.
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