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1. Introduction

The main goal of the Voevodsky theory on framed correspondences (see [20,
Introduction]) is to suggest a new approach to the stable motivic homotopy
theory SH (k) over a field k. This approach is more amenable to explicit
calculations. Recall that Voevodsky [20, Section 2] invented a category of
framed correspondences Fr,(k) whose objects are those of Sm/k and mor-
phisms sets F'r.(X,Y) = Up>oFr,(X,Y) are defined by means of certain
geometric data. The elements of Fr,(X,Y) are called framed correspon-
dences of level n. Definitions of Fr.(k) and stable framed correspondences
Fr(X,Y) are given in Section 2. In [20] framed presheaves of sets (respec-
tively Nisnevich framed sheaves) are defined and their basic properties are
proved. Based on the notes [20] the theory of big framed motives of bis-
pectra is introduced and studied in [8]. The big framed motive functor of
[8] converts the classical motivic stable homotopy theory into an equiva-
lent local theory of framed bispectra. Thus it gives a new approach to the
classical Morel-Voevodsky stable motivic homotopy theory SH (k) over an
infinite perfect field k. It also has several important computational appli-
cations (see [8]). Particularly, an explicit computation of the suspension
spectra/bispectra of smooth algebraic varieties (or, more generally, of sim-
plicial smooth schemes Y*) in terms of motivic spaces with framed corre-
spondences of the form Fr(A® x — Y*) is given in [8]. If the motivic space
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Fr(A®* x —,Y*) is locally connected in the Nisnevich topology, then it is
isomorphic in H1 (k) to the motivic space Qp?XgP (YY) (see [8]). Moreover,
the motivic space Fr(A® x —, Y*) is Al-local. This result can be regarded
as a motivic counterpart of the Segal theorem [17, 3.5].

Theorem 1.1 stated below is the core of the theory of big framed motives
of [8]. The main goal of this paper is to prove the theorem. Its equivalent
form, Theorem 2.9, states that for any Al-invariant quasi-stable radditive
framed presheaf of Abelian groups F, the associated Nisnevich sheaf Fpg
is strictly Al-invariant and quasi-stable whenever the base field k is infinite
perfect of characteristic different from 2. The fact that Theorem 1.1 and
Theorem 2.9 are equivalent is explained in Remark 2.18.

We should stress that the original Voevodsky theorem [22, Theorem
3.1.12] as well as similar results from [4, 11] are not suitable for the theory
of big framed motives. The main reason for that is this: bigraded presheaves
of Al-homotopy groups of a bispectrum E € SH (k) are naturally Fr,(k)-
presheaves (i.e. framed presheaves), however they are in no reasonable way
presheaves with transfers in the sense of [22] or [4, 11]. It follows from [2]
that bigraded sheaves of stable A'-homotopy groups of a bispectrum E €
SH (k) are naturally Cor-sheaves. But even this is not sufficient to develop
the big framed motives theory. To prove [22, Theorem 3.1.12], Voevodsky
used the standard triple machinery [21] developed by him as well as [22,
Proposition 3.1.11]. We should also stress that the standard triple machinery
of Voevodsky does not work at all to prove Theorem 1.1. However, the
present paper is definitely inspired by Voevodsky’s paper [21].

In the rest of the introduction we state Theorem 1.1. To this end, we
choose a field k and write Sm/k for the category of smooth schemes over k.
By Definition 2.11, for any pair X,Y € Sm/k each element a € Fr,(X,Y)
has its support Z,. It is a closed subset in X x A™ which is finite over X and
determined by a uniquely. If the support Z, of an element a € Fr,(X,Y) is
a disjoint union of Z; and Zs, then the element a determines uniquely two
elements a1 and a2 in Fr,(X,Y) such that the support of a; is Z;. (this is
explained in Definition 2.11). Therefore one can form the subgroup A(X,Y)
of the free abelian group Z[Fr,(X,Y)] generated by elements of the form
l-a—1-a; —1-ag, where a € Fr,(X,Y) runs over those elements whose
support Z, is a disjoint union of Z; and Zs, and a1, as are the elements as
above determined by a.

The main result, Theorem 1.1, is stated in terms of ZF,-presheaves of
abelian groups on smooth algebraic varieties Sm/k. Recall that ZF, (k) is
defined in [8, Definition 8.3] as an additive category whose objects are those
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of Sm/k and Hom-groups are defined as follows (see Definition 2.11). We
set for every n > 0 and X, Y € Sm/k,

ZF (X,Y) = Z[Fro(X,Y)]JA(X,Y).

In other words, ZF,(X,Y) is a free abelian group generated by the framed
correspondences of level n with connected supports. We then set

Homzp, 1) (X,Y) := @D ZF,(X,Y).

n>0

By a presheaf of Abelian groups on ZF,(k) we mean an additive functor
ZF,(k)°® — Ab.

By definition, a ZFj(k)-presheaf F of Abelian groups is stable if for any
k-smooth variety the pullback map o% : F(X) — F(X) equals the identity
map, where ox = (X x 0, X x Al t;prx) € ZF1 (X, X). In turn, F is quasi-
stable if for any k-smooth variety the pullback map o% : F(X) — F(X) is
an isomorphism.

The main result of the paper is as follows.

Theorem 1.1. For any A'-invariant quasi-stable ZF, (k)-presheaf of Abelian
groups F, the associated Nisnevich sheaf Fpis is Al-invariant quasi-stable
ZF,(k)-presheaf of Abelian groups whenever the base field k is infinite of
characteristic different from 2. Moreover, if the base field k is infinite perfect
of characteristic different from 2, then all Nisnevich cohomology presheaves
H? (X, Fuis) are canonically ZF,(k)-presheaves. All these ZF(k)-presheaves
are Al-invariant and quasi-stable. Furthermore, the same statements are
true in characteristic 2 if we also suppose that the framed presheaf of abelian

groups F is a presheaf of Z[1/2]-modules.

Throughout the paper the base field k is supposed to be infinite. We also
employ the following notation:

e all schemes are separated Noetherian k-schemes, all morphisms of
schemes are k-morphisms;

e Sm/k is the category of smooth k-schemes of finite type;

e we refer to the objects of Sm/k as k-smooth schemes or smooth k-
schemes;

e Sm//k is the category of essentially smooth k-schemes. Following [10],
by an essentially smooth k-scheme we mean a Noetherian k-scheme X
which is the inverse limit of a left filtering system (X;);c; with each
transition morphism X; — X; being an étale affine morphism between
smooth k-schemes;
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e by an affine essentially smooth k-scheme we mean a k-scheme of the
form Spec(Ayr), where A is a smooth k-algebra of finite type and
M C A is a multiplicative system;

e by a quasi-affine essentially smooth k-scheme we mean an open sub-
scheme of an affine essentially smooth k-scheme;

e EssSm/k is the category of quasi-affine essentially smooth k-schemes.

2. Recollections on Voevodsky’s framed correspondences

In this section we collect basic facts for framed correspondences and framed
presheaves in the sense of Voevodsky [20]. We start with preparations.

Let S be a scheme and Z be a closed subscheme. Recall that an étale
neighborhood of Z in S is a triple (W, n: W — S, s : Z — W) satistying the
conditions:

(i) 7 is an étale morphism:;
(ii) mos coincides with the inclusion Z < S (thus s is a closed embedding);

(il}) (1)71(2) = s(2).

A morphism between two étale neighborhoods (W, m,s) — (V,7,t) of Z in
S is a morphism p : W — V such that 7o p = 7 and po s = t. Note that
such p is automatically étale.

Definition 2.1 (Voevodsky [20]). For k-smooth schemes Y, X and n > 0
an explicit framed correspondence ® of level n consists of the following data:

1. a closed subset Z in A, which is finite over Y’;

2. an etale neighborhood p : U — Ay, of Z in A};

3. a collection of regular functions ¢ = (p1,...,9,) on U such that
s = 0} = 2,

4. a morphism g : U — X.

The subset Z will be referred to as the support of the correspondence. We
shall also write triples ® = (U, ¢; g) or quadruples ® = (Z,U, ¢; g) to denote
explicit framed correspondences.

Two explicit framed correspondences ® and @’ of level n are said to be
equivalent if they have the same support and there exists an open neighbor-
hood V' of Z in U x» U’ such that on V, the morphism g o pr agrees with
g opr’ and ¢ o pr agrees with ¢/ opr’. A framed correspondence of level n is
an equivalence class of explicit framed correspondences of level n.

We let Fr,(Y,X) denote the set of framed correspondences of level n
from Y to X. We consider it as a pointed set with the basepoint being the
class 0,, of the explicit correspondence with U = (.
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As an example, the set Fro(Y, X) coincides with the set of pointed mor-
phisms Y, — X . In particular, for a connected scheme X one has

FT‘()(Y,X) = HomSm/k(Y, X) U {00}

If f:Y" — Y is a morphism in Sm/k and ® = (U, ¢;g) an explicit
framed correspondence of level n from Y to X then

[ (@) =U"=UxyY' popr;gopr)

is an explicit framed correspondence of level n from Y’ to X.

Remark 2.2. Let & = (Z,AL £ U,p:U = A?,g:U — X) € Fr, (Y, X)
be an explicit framed correspondence of level n. It can more precisely be
written in the form

((a17a27 cee 7an)7fa Za U7 (@179027 .- 7@”)79) € FT'n(Y,X),

where

¢ Z C AY is a closed subset finite over Y,

o an etale neighborhood ((a1,2,...,00), f) =p: U = Al XY of Z,

o a collection of regular functions ¢ = (¢1,...,9,) on U such that
Mz {pi =0} = Z;

¢ a morphism g : U — X.

We shall usually drop ((a1,ag,...,ay), f) from notation and just write

(Za U) (80178027‘ . 7@071)79) = ((Oél,O[Q, e 7Oén),f, Za U) (@179027‘ . 7¢n)7g)

The following definition is to describe compositions of framed correspon-
dences.

Definition 2.3. Suppose Y, X and S are k-smooth schemes. Let

a= ((al,OJZ,...,an),f,Z,U, (§0179027"'7§0n)7g)

be an explicit correspondence of level n from Y to X and let

b= ((ﬁlvﬁ?w . 'aﬁm)af/aZ,aU/a (wlaw% e ,dJm),g,) S F?"m(X, S)
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be an explicit correspondence of level m from X to S. We define their com-
position as an explicit correspondence of level n +m from Y to S by

((a17a27"')anaﬂl7/82)° "aﬁm)afopluz Xx Z,7U XX Ulv
(9017()027"'7¢n7¢17w27"'7¢m)7glop2)'

Clearly, the composition of explicit correspondences respects the equivalence
relation on them and defines associative maps

Fro(Y,X) x Frp(X,S) = Froam(Y,5).

Given Y, X € Sm/k, denote by F'r, (Y, X) the pointed set \/,, F'r (Y, X).
The composition of framed correspondences defined above gives a category
Fri (k). Its objects are those of Sm/k and the morphisms are given by
the pointed sets Fr (Y, X), Y, X € Sm/k. Since the naive morphisms of
schemes can be identified with certain framed correspondences of level zero,
we get a canonical functor

Sm/k — Fr (k).

The category Fr (k) has the empty scheme as zero object. One can easily see
that for a framed correspondence ® : Y — X and a morphism f:Y’ =Y,
one has f*(®) =®o f.

There is also a subcategory Fro(k) of the category Fri (k). Its objects
are those of Sm/k and the morphisms are given by the sets Fro(Y, X),
Y, X € Sm/k.

Definition 2.4 (Voevodsky [20]). Define A! to be Spec(k[t]). Given any k-
smooth scheme X, there is a distinguished morphism ox = (X <Al ¢, prx) €
Fri(X,X). It is worth to mention that for any f € Fro(Y,X) one has
oxof=fooy.

Voevodsky defined a category Fr.(k) in [20] whose objects are those of
Sm/k and Hom-sets are given by Fr.(Y, X) = U,>0Fr,(X,Y). There is an
obvious functor p : Fr.(k) — Fry(k), which is the identity on objects. We
prefer to work with the category Fry (k) since it has a zero object.

Definition 2.5. A framed presheaf F on Sm/k is a contravariant functor
from Fri (k) to the category of sets. A pointed framed presheaf F on Sm/k
is a contravariant functor from F'ry (k) to the category of pointed sets.

A framed presheaf F on Sm/k is called radditive if F()) = x and F(X; U
X9) = F(X1) x F(X32). A framed Nisnevich sheaf on Sm/k is a framed
presheaf F such that its restriction to Sm/k is a Nisnevich sheaf.
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A framed presheaf F of Abelian groups on Sm/k is a contravariant
functor from Fry (k) to the category of Abelian groups. A framed presheaf
F of Abelian groups on Sm/k is radditive if F() = 0 and F(X; U X3) =
F(X1) x F(X2). A framed Nisnevich sheaf of Abelian groups on Sm/k is a
framed presheaf of Abelian groups F such that its restriction to Sm/k is a
Nisnevich sheaf.

Finally, a framed presheaf F is homotopy invariant or Al'-invariant if
for any X € Sm/k and the projection pry : A! x X — X the map P -
F(X) — F(A! x X) is a bijection. A framed Nisnevich sheaf is Al-invariant
if it is Al-invariant as a framed presheaf.

Remark 2.6. The category of presheaves F of Abelian groups on F'r.(k)
such that F(@) = 0 is equivalent to the category of presheaves of abelian
groups G on Fr (k) with the property G(0) = 0. The equivalence is given by
the functor G — G o p. Particularly, this comment is applicable to radditive
framed presheaves of Abelian groups. By Corollary 2.16 below the category
of radditive framed presheaves of Abelian groups is a Grothendieck category.
Therefore we can apply the standard homological algebra to it.

Voevodsky uses in [20] the term “global framed functors” for our rad-
ditive framed presheaves of sets. Note that the representable presheaves on
Fry (k) are not radditive.

Definition 2.7 (Voevodsky [20]). A framed presheaf F is stable if for any
k-smooth scheme the pullback map o% : F(X) — F(X) equals the identity
map, where ox = (X x0, X x Al t;prx). In turn, F is quasi-stable if for any
k-smooth scheme the pull-back map o% : F(X) — F(X) is an isomorphism.
Stable and quasi-stable framed presheaves of Abelian groups are defined in
a similar fashion.

Lemma 2.8 (Voevodsky [20], Lemma 4.5). For every radditive framed
presheaf of Abelian groups F the associated sheaf in the Nisnevich topol-
ogy has a unique structure of a framed presheaf of Abelian groups such that
the map F — Fuis 8 a map of framed presheaves of Abelian groups.

It is useful to have the following equivalent formulation of Theorem 1.1
in terms of framed raddive presheaves.

Theorem 2.9. For any A'-invariant quasi-stable framed radditive presheaf
of Abelian groups F, the associated Nisnevich sheaf Fpis is Al-invariant
quasi-stable framed presheaf of Abelian groups whenever the base field k is
infinite of characteristic different from 2. Moreover, if the base field k is infi-
nite perfect of characteristic different from 2, then all Nisnevich cohomology

presheaves X +— H (X, Funis) are canonically framed radditive presheaves.
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Furthermore, all these cohomology framed presheaves are A'-invariant and
quasi-stable. Also, the same statements are true in characteristic 2 if we
suppose that the framed presheaf of abelian groups F is a presheaf of 7Z[1/2]-
modules.

Remark 2.10. The fact that Theorems 2.9 and 1.1 are equivalent is dis-
cussed in Remark 2.18.

The nearest aim is to define all notions related to Theorem 1.1. If the
support Z of a framed correspondence a = (Z,U,p;g) € Fr,(Y,X) is a
disjoint union Z’ LU Z”, then « gives two framed correspondences

CLI = (ZIJU\Z”790|U\Z”;g|U\Z”) and a” = (Z/I,U\ZI7Q0|U\Z/;Q|U\Z/)

in F'r, (Y, X). Based on this observation, recall the definition of the category
of linear framed correspondences ZF (k) introduced in [8, Definition. 8.3].

Definition 2.11. Let Y and X be k-smooth schemes. Let Z[Fr, (Y, X)]
be the free abelian group generated by the set F'r,(Y,X). Denote by A
its subgroup generated by elements of the form (Z U Z',U, p;9) — (Z,U \

Z' olinzs 9lonzg) — (2, U\ Z,plonz, gl z)- Set,
LE,(X,Y) = Z[Fry(X,Y)]/A.

We shall also refer to the latter relation as the additivity property for sup-
ports. In other words, it says that for a framed correspondence a in Fr,, (Y, X)
whose support is a disjoint union Z’LIZ"” the element 1-a in ZF, (Y, X) equals
the sum 1-a’ +1-a” of the elements with supports Z’ and Z” respectively.

The elements of ZF, (Y, X) are called linear framed correspondences of
level m or just linear framed correspondences. It is worth mentioning that
ZF,(Y,X) is a free abelian group generated by the elements of F'r, (Y, X)
with connected support.

Denote by ZF, (k) the additive category whose objects are those of Sm/k
with Hom-groups defined as

Homgp, ) (Y, X) = @D ZF, (Y, X).

n>=0

The composition is induced by the composition in the category Fr (k). The
direct sum of X and X’ is the disjoin union X L X’. There is a canonical
functor Sm/k — ZF, (k) which is the identity on objects and which takes a
regular morphism f : Y — X to the linear framed correspondence 1-(Y,Y x
AO,pTAo, fo p?”y) S ZFo(k).
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Remark 2.12. We will often write ZF, for ZF.(k) dropping (k) from
notation. For any X,Y in Sm/k one has the equality ZF,(—, X UY) =
ZF,(—, X) @ ZF,(-,Y).

Definition 2.13. By a presheaf of Abelian groups on ZF,(k) we shall mean
an additive contravariant functor from ZF (k) to the category of Abelian
groups Ab.

A ZF,(k)-Nisnevich sheaf of Abelian groups is a ZF,(k)-presheaf of
Abelian groups such that its restriction to Sm/k is an ordinary Nisnevich
sheaf.

A ZF,(k)-presheaf F of Abelian groups is homotopy invariant or A®-
invariant if for any X € Sm/k the projection prx : A x X — X induces
an isomorphism p% : F(X) — F(A! x X). A Nisnevich ZF,(k)-sheaf is
Al-invariant if it is Al-invariant as a ZF,(k)-presheaf.

The canonical maps Fry(X,Y) — Homgp, )(X,Y) define a functor
R : Fri(k) = ZF.(k), which is the identity on objects. We often write ox
for 1-ox € ZF1 (X, X).

Definition 2.14. A ZF,(k)-presheaf F of Abelian groups is called stable
(respectively quasi-stable), if the framed presheaf F o R is stable (respec-
tively quasi-stable). It is worth mentioning that for any ZF,(k)-presheaf F
of Abelian groups the framed presheaf F o R is radditive.

Lemma 2.15. The functor G — GoR is an equivalence between the category
of radditive framed presheaves of Abelian groups on Sm/k and the category
of ZF.(k)-presheaves of Abelian groups.

Proof. Let F be a radditive framed presheaf of Abelian groups on Sm/k.
Let us show that there is a unique ZF,(k)-presheaf of Abelian groups F’
such that F = F’ o R. Consider k-smooth schemes V7, V5 and their disjoint
union V' = V; U V4 as objects of the category Fro(k). Let i, : V,, = V be the
inclusion for » = 1,2 and p, : V' — V,. be the projection. So, p,|y. = id and
prly, is the zero morphism for s # r. The radditivity of F guarantees that
(iyop1)* + (ig o p2)* =idy, : F(V) — F(V).

Take (V,¢;9) € Frp(Y,X) with V. = V3 U Vo. Then (V,p;9) = go
(V,p5idy) and (Vy, ¢y ;idy.) = pro (V,;idy) for r = 1,2. Therefore,
(V,pyidy)* = (Vi, @lvysidv, )" o i] + (Va, lvysidy, )™ 0 5. Hence (V, 3 9)" =
Vi, plvisidv,)* o g7 + (Va, lwisidy,)* 0 g5 = (Vi, olvis 1) + (Va, ¢lv,5 92)7,
where g, = goi, forr=1,2.

If the support Z of an element (W, p;g) € Fry(Y, X) is a disjoint union
Z1 U Zy, then (W, ¢;9) = (V,¢lviglv) € Fro(Y, X), where V = (W \ Z2) U
(W\ Z1). The computations above show that for the group A from Definition
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2.11 and any element a € A the map a* : F(X) — F(Y) is the zero map.
Hence F = F' o R for a unique ZF,(k)-presheaf F’ of Abelian groups.

If G is a ZF,(k)-presheaf of Abelian groups, then G o R is a radditive
framed presheaf of Abelian groups. The proof is completed. O

Corollary 2.16. The category of radditive framed presheaves of Abelian
groups is a Grothendieck category.

Proof. The category of ZF,(k)-presheaves of Abelian groups is plainly a
Grothendieck category. Lemma 2.15 completes the proof. O

The comment in Definition 2.14 together with Lemmas 2.8 and 2.15
imply the following

Corollary 2.17. For every ZF,(k)-presheaf of Abelian groups F the asso-
ciated sheaf in the Nisnevich topology has a unique structure of a ZFy(k)-
presheaf of Abelian groups such that the map F — Fpis is a map of ZFy(k)-
presheaves of Abelian groups.

Remark 2.18. Lemma 2.15 together with Lemma 2.8 show that Theorem
2.9 is equivalent to Theorem 1.1.

In the rest of this section we extend Definition 2.1 to make it suitable
for lots of our computations.

Definition 2.19 (Voevodsky [20]). For any Y € Sm//k, X € Sm/k and
n = 0, an explicit framed correspondence ® of level n from Y to X consists
of the following data:

1. a closed subset Z in A}, which is finite over Y;

2. an etale neighborhood p : U — AY. of Z in AY;

3. a collection of regular functions ¢ = (p1,...,9,) on U such that
Mim{pi = 0} = Z;

4. a morphism g : U — X.

The subset Z will be referred to as the support of the correspondence. We
shall also write triples ® = (U, ¢; g) or quadruples ® = (Z, U, ¢; g) to denote
explicit framed correspondences.

Two explicit framed correspondences ® and ®’ of level n are said to be
equivalent if they have the same support and there exists an open neighbor-
hood V of Z in U xax U’ such that on V, the morphism g o pr agrees with
g opr’ and ¢ o pr agrees with ¢’ opr’. A framed correspondence of level n is
an equivalence class of explicit framed correspondences of level n.
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We let Fr,, (Y, X) denote the set of framed correspondences of level n
from Y to X. We consider it as a pointed set with the basepoint being the
class 0,, of the explicit correspondence with U = ). As an example, the sets
Fro(Y, X) coincide with the set of pointed k-morphisms Y, — Xy. If f :
Y1 — Y is a k-morphism of essentially k-smooth schemes and ® = (U, ¢; g)
an explicit framed correspondence of level n from Y to X then

fH(®@) := (U1 =U xy Y1,p0pr;gopr)

is an explicit framed correspondence of level n from Y; to X. The as-
signment ® +— f*(®) respects the equivalence relation and defines a map
[ Frp(Y,X) = Frp(Y1,X). We will write ® o f for f*(®).

If f1:Y5 — Y is another k-morphism of essentially k-smooth schemes,
then

(Pof)ofi=Po(fof1)

If Y is an essentially k-smooth scheme, X, S are Sm/k, then repeat-
ing literally Definition 2.3 we get a pairing Fr,(Y,X) x Frp(X,S) —
Froim(Y,S). If X,S,T are k-smooth schemes, a € Fr,(Y,X), b €
Frn(X,S),c € Fr,(S,T), then (aob)oc = ao(boc). Note that if Y € Sm/k,
then Definitions 2.1 and 2.19 coincide.

Definition 2.20. Let Y be in Sm//k and X be in Sm/k. Set

o ZF,(Y,X) := Z[Fr,(Y,X)]/A, where A is a subgroup generated by
the elements

(ZUZ',U,p;9) = (Z,U\Z', plinzs 9linz) — (2", U\ Z, plinz, 9lonz)-

The groups have the same functorial properties as the pointed sets
Fr,(Y, X).

Note that if Y € Sm/k, then Definitions 2.11 and 2.20 coincide.

For an affine k-smooth scheme Y and a multiplicative set M C k[Y] set
Yy = Spec(k[Y]ar). For any m € M let f,, : Yoy — Yy, be the canonical
map. Let X be in Sm/k. Then the family of maps f : Fr,(Ym, X) —
Fr,(Ya, X) defines a map canys : colimpy,epns Frp(Yi, X) — Fr,(Yu, X).
Let Yy C Y be an open subset and let Yy pr = Yy N Y.

Lemma 2.21. Let Y, X € Sm/k, Y be an affine k-variety and M be
a multiplicative system. Then the map canp : colimy,ens Fro (Yo, X) —
Fr,(Ya, X) is a bijection of pointed sets. The same is true if we replace Yas
by Yo,m, where Yo C'Y is an open subset.



Homotopy invariant presheaves with framed transfers 13

Proof. We first prove that the map in question is injective. Suppose Y is an
affine k-variety. Let m be in M and (Z, Vin, ©m; 9m), (Zhws Virs @i Gin) €
Fr, (Y, X) be such that their images in Fr,, (Y, X) coincide. Firstly, this
yields that (Z,,)ar = (Z),)am in Yar x A, Thus enlarging m, we may assume
that Z,,, = Z/,. In this case V},, and V,, are both étale neighborhoods of Z,, in
Y, x A", Refining V,, and V!, we may assume that V,,, = V\.. Set V = (V;,,) ;s
and Z = (Zy,)m. Then we know that (Z,V,elv;glv) = (Z,V,¢'|v;¢'|v) in
Frp(Ya, X). Thus there is a refinement m : W — V of the neighborhood
V of Z such that 7*(¢|v) = 7*(¢'|v) and 7*(g|v) = 7*(¢'|v). Since 7* :
IV, 0y) - T'(W,Ow) and ©* : Mory(V,X) — Mory(W, X) are injective,
we see that p|y = ¢'|y and g|y = ¢'|y. Enlarging m € M we may assume
that the maps k[Vy,] — I'(V,0v) and Morg(Vy,, X) — Mori(V,X) are
injective. We see that ¢ = ¢/ and g = ¢’. This completes the proof of the
injectivity in the case of affine Y. The proof of the injectivity for the case
of an open Yy C Y is similar.

To prove surjectivity, we need some preparations. Let d > 0 be an integer
and Hilby := Hilbg(P™) be the Hilbert scheme of closed subschemes in P”
of degree d over k. By [9, Theorem 3.2] it is a projective k-scheme. Let
Zun C Hilbg x P™ be the universal closed subscheme which is flat, finite and
of degree d over Hilby. If T is a Noetherian k-scheme and f : T — Hilby
is a morphism, then T" X g, Zun is a closed subscheme in 7' x P™ which
is finite, flat of degree d over T'. Vice versa, for any T as above, any closed
subscheme S in T x P™ which is finite, flat of degree d over T, there is a
unique morphism fg : T' — Hilbg such that the closed subschemes S and
T X mgip, Zun coincide in T' x P™.

For a point s € Hilby let Z5 = s X g, Zun be the fibre of Z,,, over s.
It is a closed subscheme in Py, of degree d over k(s). Let Pn=1 = P* — A",
Let Hilby(A™) = {s € Hilbg : Z,NP"~! = (}. Then Hilby(A™) is an open
subset in Hilby. Set Z(A") = Z,, N Hilbg(A™) x P". Clearly, Z(A") = Z,,N
Hilbg(A™) x A™. Write in : Hilby(A™) — Hilby for the open embedding.

Suppose Y is an affine k-variety. Without loss of generality we may as-
sume that Y is irreducible. Let (Z, 7 : V — Y x A", ; g) be in Fry, (Y, X).
We need to find (Z, Vin, Y gm) € Frp(Yim, X) for some m € M which is
a lift of (Z,V,p;9) € Frp(Ya, X).

We may assume that V is an affine Yj;-scheme. Since V is an étale
neighborhood of Z in Y3y x A" we are given with a closed embedding s :
Z — V. Let I be the ideal in I'(V, Oy ) generated by ¢1, ..., ¢,. Since (Z, 7 :
V — Yy x A", ¢;g) is in Fry,(Yar, X) we know that the closed subsets s(Z)
and {¢1 = ... = ¢, = 0} of V coincide. Write Z for the closed subscheme
of V defined by I. It is easy to check that |z : Z — Yas x A" is a closed
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embedding. We will write S for the closed subscheme 7(2Z) of Y3 x A™. We

will also write § : S — V for the scheme morphism S M) Z = V.

Clearly, 5|z = s, (V,7,5) is an étale neighborhood of S in Y x A™ and Z
(regarded as a scheme with the reduced scheme structure) is the maximal
closed reduced subscheme of S.

Since Z is finite over Yj; the schemes Z and S are also finite over Yj,.
Since the scheme Z is a locally complete intersection over Yy, it is flat over
Y, and hence so is S. Since S is finite over Y} it remains closed if we regard
it as a subscheme in Yj; x P™. So, the closed subscheme S of Yj; x P" is finite,
flat of some degree d > 0 over Y;;. As explained above there is a unique
morphism fg : Yyr — Hilbg such that the closed subschemes Yas X i, Zun
and S of the scheme Y;; x P" coincide.

The inclusion S C Ya; x A" yields that fg = ino f for a unique morphism
Yy — Hilbg(A") and S = Yy X gp,an) Z2(A") as closed subschemes
in Y3y x A", Since the k-scheme Hilby(A™) is of finite type, by [19, Ap-
pendix C.5.1] there is an m € M and a morphism f,, : Y, — Hilby(A")
such that f = fily,. Set Sm = Yo Xgp,an) Z(A") C Yy x A" Then
S = (Sm)m. For any m’ € M such that m’ = m - my with m; € M, set
Smr = (Sm)m. Enlarging m € M we may assume that there is an étale
neighborhood (Vj,,, mp, $m) of Sy, in Y, x A™ such that V,, is an affine
Y., X A"-scheme and (Vi, T, $m)m = (V, 7, §). For any m’ € M such that
m' = m-mq with m; € M set Vi, Ty 8mr) = (Vi Tmy, Sm)me- Then
(Ven/s Ty, 8y ) 18 an étale neighborhood of Sy, in Yy, x A™.

Let I, C k[V,y] be the ideal defining the closed subscheme 5y, (Sy.)
of the scheme V.. Enlarging m € M once again we can find 91, ...¢, €
I, such that their restrictions to V coincide with ¢1,...,, respectively.
Since V.= (Vin)m, S = (Sm)am and § = (8,,) s we have the equality I =
(Im) . Thus enlarging m € M, we may assume that the ideal I,,, C k[V},]
is generated by the functions 1]y, ,...¢n |y, . Since X is a k-scheme of finite
type we can enlarge m € M once again and find a morphism g, : V,,, &> X
such that gn,|yv : V — X coincides with g. Let Z,,, be the maximal closed
reduced subscheme of the scheme S,, and s,, := 55|z, : Zm — Vin. Then
(Vin, Tm, Sm) is an étale neighborhood of Z,, in Y,,, x A". We now see that
(Zmiy Viny Um; gm) € Frop(Y, X) is a lift of (Z,V, ¢;¢g). This completes the
proof of surjectivity for an affine Y.

The proof of surjectivity for the case of an open Yy C Y is a bit more
technical, but it is shown in the same fashion. The key is to use the Hilbert
scheme Hilby(A™). We leave this part of the proof to the reader. O

The following fact immediately follows from Lemma 2.21.
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Corollary 2.22. Under the assumptions of Lemma 2.21 the following map
1 an isomorphism

canyy : colimy,eps ZF, (Y, X) — ZF, (Y, X).

The same is true if we replace Yy with Yo v, where Yo C Y is an open
subset.

Let Y, X be in Sm/k and y € Y be a point. Consider the henselization
Yyh at y of the local scheme Y, := SpecOy,,. For an étale neighborhood
(Vim: V= Y,s:y—=V)let fy: Yyh — V be the canonical map and
fi+ Fro(V,X) — Fry(Y,!, X) be the induced map. Then the family of
pointed sets maps fy, defines a map

cany,y : colim(y . o Frp(V, X) — Frn(Yyh, X),

where the colimit is taken over the co-filtered category of étale neighbor-
hoods of y in Y. Arguing as in the proof of Lemma 2.21 we get the following

Lemma 2.23. Let Y, X be in Sm/k and y € Y be a point. Then the map
cany,y 18 an isomorphism.

Corollary 2.24. Under the assumptions of Lemma 2.23 the following map
s an isomorphism

cany,y : colimy. . o ZF,(V, X) = ZF, (Y}, X).

Remark 2.25. Lemma 2.23 and Corollary 2.24 show that the pointed set
Frn(Yyh,X ) (respectively the group ZFn(Yyh,X )) coincides with the Nis-
nevich stalk at the point y € Y of the presheaf Fr,(—, X) on Sm/k (respec-
tively of the presheaf ZF),(—, X ) on Sm/k).

3. A few theorems

The main goal of this section is to state a few theorems on preshaves with
framed transfers. As an application, we deduce the following result (which
is the first assertion of Theorem 1.1).

Theorem 3.1. For any Al'-invariant quasi-stable ZF,-presheaf of abelian
groups F, the associated Nisnevich sheaf Fpis is Al-invariant and quasi-
stable ZF-presheaf if the characteristic of the base field k is different from
2. If the characteristic of k equals 2 and F is an A'-invariant quasi-stable
ZFy-presheaf of Z[1/2]-modules, then the associated Nisnevich sheaf Fyis is
Al-invariant and quasi-stable ZF,-presheaf of Z[1/2]-modules.
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We need some definitions. We will write (V,¢;g) for an element a in
Fry(Y, X). We also write Z, to denote the support of (V, p; ¢g). It is a closed
subset in Y x A™ which is finite over Y and which coincides with the common
vanishing locus of the functions ¢y, ..., vy, in V. Next, by (V, ¢; g) we denote
the image of the element 1- (V,¢;g) in ZF,(Y, X).

In what follows by SmOp/k we mean a category whose objects are pairs
(X,V), where X € Sm/k and V is an open subset of X. For (Y,W) and
(X,V) in SmOp/k a morphism between them is a morphism f :Y — X
in Sm/k such that f(W) C V. By Sm’/Op/k we mean a category whose
objects are pairs (Y, W), where Y € Sm//k and W is an open subset of Y.
Morphisms in Sm/Op/k are defined similar to morphisms in SmOp/k. The
category SmOp/k is a full subcategory of the category Sm’Op/k.

Definition 3.2. Define ZF!" (k) as an additive category whose objects are
those of SmOp/k and Hom-groups are defined as follows. We set for every
n >0 and (Y,W),(X,V) € SmOp/k:

ZEP (Y, W), (X, V) = ker[ZF,(Y, X) & ZF.(W, V) 2225 75, (W, X)),

where iy : W — Y is the embedding and ix : V — X is the embedding.
In other words, each group ZF} ((Y,W),(X,V)) consists of pairs (a,b) €
ZF, (Y, X)®ZF,(W,V) such that ix ob = aoiy. By definition, the composite
(a,b) o (a/,) is the pair ((aod’),(bod')).

We define ZF,(k) as an additive category whose objects are those of
Sm/k and Hom-groups are defined as follows. We set for every n > 0 and
X,Y € Sm/k:

o
o~

ZF,(Y,X) = Coker[ZF,(A' x Y, X) =5 ZF,(Y, X)].

Next, one defines ZF" (k) as an additive category whose objects are
those of SmOp/k and Hom-groups are defined as follows. We set for every
n >0 and (X, V), (Y, W) € SmOp/k:

ZF; (Y, W), (X,V)) =
= Coker[ZFI" (A" x (Y, W), (X, V) “=5% ZFP (Y, W), (X, V)].

Definition 3.3. Using Definition 2.20 and literally repeating Definition 3.2,
define groups

ZF.(Y, X),ZFI"((Y,W), (X, V)),ZF, (Y, W), (X, V))
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with (Y, W) € Sm'Op/k and (X,V) € SmOp/k. These groups are covari-
antly functorial in morphisms of ZF, (k), ZF'" (k) and ZF" (k) respectively.
These groups are also contravariantly functorial in morphisms of Sm’/k and
in Sm/Op/k respectively.

Notation 3.4. Let (Y,Y") be Sm/Op/k and (X, X°) be in SmOp/k. Given
a € ZF,(Y, X), denote by [a] its class in ZF.(Y, X).

Similarly, if r = (a,b) € ZFY"((Y, YY), (X, X)), then we will write [[r]]
to denote its class in ZF" ((Y,Y9), (X, X9)).

Let (V,¢;g) bein Fr,(Y,X). If i : Y% < Y is open in Y, X? is open in
X and ¢g(Z°%) c X° with Z° the support of (V,;g) o i, then ((V,p;g)) will
stand for the element

(<V> 905.9)? <V07 800590» S ZFn((K Yo)v (X> XO))a

where VO := (YO xy V) Ng71(X?), ¢" = @lyo, g® = glyo.
We will also write [V ¢; g] to denote the class of (V, ¢; g) in ZF,(Y, X). In
turn, [[V, ¢; g]] will stand for the class of ((V, @; g)) of ZF" ((Y,Y?), (X, X)).

Remark 3.5. Clearly, the category ZF.(k) is a full subcategory of ZF!" (k)
via the assignment X + (X,0). Similarly, the category ZF.(k) is a full
subcategory of ZF" (k) via the assignment X — (X, 0).

In what follows we will also use the following groups.

Definition 3.6. Let (X, X°) be in SmOp/k. Let Y € Sm//k and Y° C Y
be an open subset. Let j : (X?, X0) < (X, X°) be the open embedding. For
any integer n > 0 set

ZFn((Y’ YO)’ (Xa XO)) =
— Cokerlj, : ZFA((¥, ¥°), (X°, X°)) = ZFo((¥, V), (X, X)),

where j, takes r to jor.

These groups are contravariantly functorial with respect to morphisms
f: (7, YY) = (Y, Y% in Sm/Op/k. They are also covariantly functorial with
respect to morphisms in ZF" (k). Namely, if s € ZF" ((X,X9),(S,S9)),
then the rule r — s o r induces a homomorphism

sv: ZFp((Y,Y9), (X, X°)) = ZF i (Y. Y0), (S, 59).

Notation 3.7. Let (Y,Y?) be in Sm'Op/k and (X, X°) be in SmOp/k. If

r = (a,b) belongs to ZFy ((Y,Y?), (X, X?)), then we will write [[r]] for its
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class in ZEn,((Y,Y?), (X, X°)). For any morphism £ : (Y1, Y?) = (V,Y?) in
Sm/Op/k and any s € ZF" (X, X°),(S,5°)) set

[ o [l = (), sl o [Ir]] = s ([N

in ﬁn((Yl,Ylo), (X, X9)) and ﬁern((Y, YY), (S, S?)) respectively.

Given (X, X?) in SmOp/k, we will write ((cx)) for the morphism (1 -
ox,1-ox0)in ZF1 (X, X9), (X, X?)), [[ox]] will denote the class of {{ox))
in ZF1((X, X°), (X, X9)), and [[ox]] is its class in ﬁn((X, X9 (X, X9)).

The class of the element [[V, ¢;¢]] in ﬁn((Y, Y9), (X, XY)) will be de-

noted by [[V; ¢; g]].

Construction 3.8. Let F be an Al-invariant ZF, (k)-presheaf of abelian
groups. Then the assignments (X, V) — F(X,V) = F(V)/Im(F(X)) and

(a,0) = [(a,0)" = b" : F(V)/Im(F(X)) = F(W)/Im(F(Y))],

for any (a,b) € ZF,((Y,W),(X,V)) define a presheaf FP" on the category
ZF" (k).
The nearest aim is to formulate a series of theorems (each of which is

of independent interest), which are crucial for the proof of Theorem 1.1. To
formulate these theorems, we use notation and definitions from this section.

Theorem 3.9 (Injectivity on the affine line). Let U C A} be an open subset
and let i : V — U be a non-empty open subset. Then there is a morphism
r € ZF (U, V) such that [i] o [r] = [oy] in ZF1(U,U).

Theorem 3.10 (Excision on the affine line). Let U C A} be an open subset.
Leti: V < U be an open inclusion with V non-empty. Let S C V be a proper
closed subset. Then there are morphisms r € ZF,((U,U—-2S),(V,V —=25)) and
leZFL((U,U = 8),(V,V = 95)) such that

Joltrll=1lovl] and ] o [l = [lov]]

in ﬁl((U,U—S), (U,U—-S)) and ﬁl((V,V—S), (V,V —8)) respectively.

Theorem 3.11 (Injectivity for local schemes). Let X € Sm/k be irre-
ducible, x € X be a point, U = Spec(Ox ), D & X be a closed subset. Then
there exists an integer N and an element r € ZFn(U, X — D) such that

1] 0[] = [oX] o [can]
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in ZEn(U, X) with j : X — D < X the open inclusion and can : U — X
the canonical morphism.

Theorem 3.12 (Excision on the relative affine line). Let W € Sm/k be an
affine variety. Let i : V = (Atl/v)f C A%/V be an affine open subset, where
f € k[W][t] is @ monic polynomial such that f(0) € k[W]*. Then there are
morphisms

r € ZF (A, Aly —0x W), (V,V =0 xW)) and
1 € ZF ((Aly, Ay — 0 x W), (V,V —0 x W))

such that

[l el =Toa, ]l and [l [[d] = [ov]

in ZFy (AL, AL, — 0 x W), (AL, AL, — 0 x W)) and ZF1((V,V — 0 x
W), (V,V —0x W)) respectively.

—

To formulate two further theorems concering étale excision properties, we
need some preparations. Let X, X’ be in Sm/k and let both be irreducible.
Suppose V' C X and V' C X’ are open subschemes. Let

Vl X/

-

V—X

be an elementary distinguished square in the sense of [13, Definition 3.1.3].
This means that II is etale, the square is cartesian and, moreover, if S =
X —V and 8 = X’ — V' are closed subschemes equipped with reduced
structures, then II induces a scheme isomorphism S’ — S. Let x € S and
' € S’ be two points such that II(z') = x. Let U = Spec(Ox ) and
U’ = Spec(Ox 5). Let m: U" — U be the morphism induced by II.

Theorem 3.13 (Injective étale excision). Under the notation above there is
an integer N and an element r € ZFn((U,U — S), (X', X" = 5")) such that

([T} o {[r]

in ﬁN((U, U-9),(X,X —5)), where can : U — X is the canonical mor-
phism.

I
&
ok
(@]
N
Q
=)

The statements of the next theorem depend on the characteristic of the
base field k.
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Theorem 3.14 (Surjective étale excision). Under the above notations sup-
pose in addition that S is k-smooth and k is of characteristic different from 2.
Then there is an integer N and an element | € ZFn((U,U-S5), (X', X'=S5"))
such that

[ o [[x]] = [lo§.]] © [[ear]
in ﬁN((U’,U’ - 9, (X", X" = 5") with can’ : U — X' the canonical
morphism.

If the charcteristic of k is 2, then there is an integer N and an element
l € ZFN((U,U = 5), (X', X" = 5")) such that

2- [ e ln]l =2 [[oF])] o [[car’]]

in ZEN (U, U — ), (X', X' — S")).

To formulate Theorem 3.15 it is convenient to give the following com-
ments. Consider the inclusion of categories inc : Sm/k — Sm’/k, where
Sm//k is the category of essentially smooth schemes over k. Then for any
presheaf G of Abelian groups on Sm/k the restriction of the presheaf inc,(G)
on Sm'/k to Sm/k equals G (that is inc*(inc.(G)) = G on Sm/k ). For any
essentially smooth scheme Y over k& we will use notation G(Y') instead of
incy(G)(Y). Any ZF,(k)-presheaf F can be regarded as a Sm/k-presheaf.
So this comment is applicable to the presheaf F|g,,/; and allows to state
items (3) and (3’) of Theorem 3.15.

Let (X,V),(X',V') € SmOp/k be the pairs from the elementary dis-
tinguished square above. The assignments X, — F?"(Xo, XoNV), X{ —
FP(X(, X, N V') are Zariski presheaves on X and on X’ respectively. So
they have Zariski stalks at the points z and 2’ respectively. The morphism
IT: X’ — X induces the pull-back map between these stalks. It is written
as [[7]]* in the item (5) of Theorem 3.15.

We are now in a position to state the following

Theorem 3.15. For any A'-invariant quasi-stable ZF,-presheaf of abelian
groups F the following statements are true:

(1) under the assumptions of Theorem 3.9 the map i* : F(U) — F(V) is
injective;
(2) under the assumptions of Theorem 3.10 the map

(L) : FU = 8)/FU) = F(V = 5)/F(V)

s an isomorphism;
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(3) under the assumptions of Theorem 3.11 the map
n*: F(U) — F(Spec(k(X)))

is injective, where n : Spec(k(X)) — U is the canonical morphism;
(8°) under the assumptions of Theorem 3.11 let U be the henselization of
U at x and let k(UP) be the function field on UP. Then the map

my « F(UL) — F(Spec(k(UL)))

is injective, where ny, : Spec(k(UR)) — UM is the canonical morphism;
(4) under the assumptions of Theorem 3.12 the map

[[i]]* : F(AL — 0 x W)/F(A) = F(V —0x W)/Im(F(V))

is an isomorphism;
(5) under the assumptions of Theorems 3.13 and 3.14 the map

[x]]" - F(U = 8)/F(U) - FU' = 5)/FU)

is an isomorphism whenever the characteristic of k is different from

2.

If the characteristic of k is 2 and the presheaf F is a presheaf of 7Z[1/2]-
modules, then the map

(=] : F(U = 8)/F(U) = FU' - ) /FU)

is an isomorphism.

Remark 3.16. By [22, Proposition 3.1.11] any presheaf with transfers in
the sense of [22] is a pretheory in the sense of [21, Definition 3.1]. This allows
Voevodsky to conclude that all results from [21] are applicable to homotopy
invariant presheaves with transfers. This is a reason to make a link between
the preceding theorem and some results from [21].

The assertions (1) and (2) are similar to some assertions from the proof
of [21, Theorem 4.15]. The assertion (3) is similar to [21, Corollary 4.18].
The assertion (4) (together with Corollary 3.19 below) is reminiscent of [21,
Proposition 4.11]. The assertion (5) is similar to [21, Corollary 4.13].

Theorem 3.15 is derived from Theorems 3.9-3.14 as we will show be-
low in this section. In turn, Theorems 3.9, 3.10 and 3.12 will be proved in
Sections 6 and 7 respectively. Theorem 3.11 will be derived from Theorem
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14.3 in Section 9. In turn, Theorem 14.3 will be proved in Section 14. In
Section 11, Theorem 3.13 will be derived from Proposition 10.9 and Theo-
rem 14.3 (Theorem 14.3 will be proved in Section 14). Proposition 10.9 will
be proved in Section 15. In Section 13, Theorem 3.14 will be derived from
Proposition 12.6 and Theorems 14.4-14.5. In turn, Theorems 14.4-14.5 will
be proved in Section 14. Proposition 12.6 will be proved in Section 15.

To derive all assertions of Theorem 3.15 except (1), (2) and (4) we need
a couple of lemmas.

Lemma 3.17. Under the hypotheses of Lemma 2.21 the following map is
an tsomorphism

canyy : colimpens ZFy (Yo, X) — ZF,(Yar, X).

The same is true if we replace Yy with Yo v, where Yo C Y is an open
subset.

Proof. By Corollary 2.22 one has ZF,(A! x Yas, X) = colim,cpr ZF, (A x
Y, X) and ZF,, (Y, X) = colimy,epfZFy, (Y, X). This proves the lemma.
O

Lemma 3.18. Under the hypotheses of Lemma 2.21 the following maps are
isomorphisms:

canpyr - COhmmEM ZFH((YmayvO,m)a (Xa XO)) — ZFH((YMa YE),M)7 (Xv XO))a

canyy : colimpmens ZFy (Yo, Yo.m), (X, X0)) = ZF.((Yar, Your), (X, Xo)),

cany : colimpyens ZFy ((Yin, Yom), (X, Xo)) = ZFn((Yar, Yo.ur), (X, Xo)).-
Proof. Prove the first assertion. For any pair (S, Sp) in EssSmOp/k one has

ZEF,((S, S0), (X, Xo)) = ker|ZEFy (S, X) @ ZF,(So, Xo) 22 ZFy(Sp, X)]
by Definition 3.2. Therefore ZF,, (Y, Yo,m), (X, Xo)) = ker[ZF,(Yar, X) &
ZF, (YoM, Xo) = ZF,(Yo,m, X)] and for any m € M, we have

ZFTL((YWL) Yb,m)’ (Xu XO)) =
= Ket[ZE, (Y, X) @ ZEy (Yo, Xo) — ZEy(Yom, X)].

Corollary 2.22 completes the proof of the first assertion.
The second assertion follows from the first assertion in the same fashion
as Lemma 3.17 was derived from Corollary 2.22. To prove the third assertion,

recall that for any (S, Sp) € FssSmOp/k one has ZF,((S,Sy), (X, Xo)) =
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Coker[j, : ZF,,((S, So), (X0, X0)) = ZF,((S,S0), (X, Xo))] by Definition 3.6.
Hence ZF,((Yar, Yo.ur), (X, Xo)) = Coker|[js : ZF,((Yar, Yo.ur), (Xo, Xo)) —
ZF((Yar, Your), (X, X0))] and for any m € M, ZFn((Ym, Yom), (X, X0)) =
Coker[ji : ZFn((Yim, Yom), (X0, X0)) = ZFn((Yon, Yom), (X, X0))]. Apply-
ing the second part of the lemma, we complete the proof of the third asser-
tion. ]

Reducing Theorem 3.15 to Theorems 3.9-3.14. Theorem 3.9 implies the as-
sertion (1). To prove the assertion (2), use Construction 3.8 and apply The-
orem 3.10. To prove the assertion (4), use Construction 3.8 and apply The-
orem 3.12.

Let us prove assertion (3). Let a € F(U) be such that n*(a) = 0. Shrink-
ing X, one can find an element o’ € F(X) such that d'|y = a. Since
| spec(k(x)) = 0, there is a closed subset D & X such that a'|[x_p = 0.
By Theorem 3.11, Corollary 2.22 and Lemma 3.17 there are a Zariski open
subset U; containing = and a morphism r; € ZFy(Uy, X — D) such that
[j] o [r1] = [o¥] o [in] in ZFn(Uy,X) (here in : Uy < X is the em-
bedding). Since o oin = ino 0[1}7 and F is Al-invariant, we have 0 =
ri(7*(a)) = (of))*(in*(a )) Since F is quasi-stable, we have in*(a’) = 0
and a = d'|y = in*(d’|y) = 0. The assertion (3) is proved. The assertion (3’)
is a simple consequence of the assertion (3).

We use Construction 3.8 in the rest of the proof. Prove the assertion (5).
Prove its first part when char(k) # 2. Let us verify injectivity of [[7]]*. Let
a € FP"(U,U — S) be such that [[x]]*(a) =0 in FP"(U',U’ — S’). Replacing
X with an open X7 C X, we may assume that a = a1|,y_g) for an element
al € ‘/—.'pT(Xl,Xl — S) Set X{ = H_l(Xl) and II; = H|X{ : X{ — X7. Then
the square consisting of X1, X1, X| —S5’, X1 — S and the obvious morphisms
including II; is an elementary distinguished square. For any open X5 in X3
write ag for a1f(x, x,—g)- Since II is étale it is an open morphism. Replacing
X with a neighborhood X} of the point 2’ € X" and setting Xy = II; (X})
we may assume that [[IIo]]*(az) = 0, where II, = II|x; : X35 — X3. One
can check that the square consisting of X5, Xo, X) — S’, Xo — S and the
obvious morphisms including Il5 is an elementary distinguished square. Us-
ing Theorem 3.13 and Lemma 3.18 one can find a neighborhood U; C X5
of the point x € X, morphisms r € ZF(Uy,U; — S), (X5, X5 — 5")),
be ZFl((Ul, U, — S), (X2 — S, Xy — S)) such that

[TLa]] o [[r1]] = [lox.] o [[Inl] + [[J]] o [[B]] € ZF1((U1, U1 = 8), (X2, X2 — 8)),

where In : (Ul,Ul—S) — (XQ,XQ—S), J: (XQ—S,XQ—S) — (XQ,XQ—S)
are embeddings. Clearly, FP"(Xy — S, X2 — S) = 0. Since [[ox,]] o [In]] =
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[In]] o [[ow,]] and [[II2]]*(a2) = 0 in FP" (X}, X5 — S), we have

0 = [[m]]*([I2])"(a2)) = [lov,]]* ([n]]" (a2))-

Since F is quasi-stable we get equalities az|, v,—s) = [[n]]*(a2) = 0 in
FP(Ur, Uy = S). Thus, a = a1|yr—s) = a2wu—s) = 0.

Let us verify that [[7]]* is surjective. Take an element a € FP"(U', U’ —
S"). Replacing X’ with an open X| C X’ we may assume that a =
a1l pr—gry for some a1 € FP'(X], X — 9'). Set Xy = II(X7) and II; =
| x; : X{ = Xi. Then the square consisting of X7, X;,X| — 58, X; — S
and the obvious morphisms including II; is an elementary distinguished
square. Since F is quasi-stable there is an element o} € FP"(X], X| — 5’)
such that a1 = [[ox;]]*(a]). Using Theorem 3.14 and Lemma 3.18 one
can find neighborhoods Us, U, C T~1(U;) of points z € X, 2/ € X'
respectively and morphisms ly € ZF((U, Uz — S),(X1,X1 — 5')), ¢ €
ZF (U5, U5 — 8", (X] — 5", X1 —5)) such that

[[12]] o [[m2]] = [loxs ] o [[in]] + [[)] o [[el] € ZF1 (U3, U3 — §'), (X1, X1 = 5")),

where in : (U5, U)—S") — (X],X{—=95),7: (X'=5",X'-85") — (X{, X]-5")
are embeddings and w3 = II|yy; : Uy — Us. Clearly, FP"(X] -5, X{—-S") = 0.
Thus we have

[[a]]* ([[I2]] (1)) = [[in]]" ([lox; ] (a1)) = [[in]]"(a1) € F*" (U3, Up — 5.

Set a = [[l2]]*(a}). Then,

a=ailw y—sy = ([[in]]"(a)| v v—s)=
= ([[m]* (@)W v—sy = [[*]]" (@l w,r—s))-

The surjectivity of [[7]]* is proved. The case when char(k) # 2 of the asser-
tion (5) is proved. If char(k) = 2 the proof is similar. O

Reducing Theorem 3.1 to Theorem 3.15. We provide the reduction for fields
of characteristic not 2 and leave the reader the case of characteristic 2. By
Corollary 2.17 the sheaf Fyis has a unique structure of a ZF, (k)-presheaf of
Abelian groups such that the morphism F — F;s is a morphism of ZF,(k)-
presheaves.

We now prove that Fys is Al-invariant. Firstly, (1) and (2) imply F|a:
is a Zariski sheaf. Using (5) applied to X = A!, one shows that for any open
V in Al one has Fpois(V) = F(V).
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Now consider the following Cartesian square of schemes

Spec(k(X)) +—— X
10,k (X) lio,x

1 nxid
Ak

1
x) X x A
Evaluating the Nisnevich sheaf F ;s on this square, we get a square of abelian
groups

*

Fuis(Spec(k(X))) +—— Fuis(X)
iéJ«(X)T Tié,x
fniS(Ai(X)) M ]rnis(X X Al)

The map ij  is plainly surjective. It remains to check its injectivity.
The map (n x id)* is injective (apply Theorem 3.15(3’)). We have already
proved above that Fnis(A}C(X)) = 'F(A}c(x))‘ Since Fris(Spec(k(X)) =
F(Spec(k(X)), we see that the map i k(x) 18 an isomorphism. Thus the
map i y is injective.

Now prove that Fy;s is quasi-stable. Let F be a ZF,(k)-presheaf. The
property ox o f = f oox from Definition 2.4 yields the following: the as-
signment X — (0% : F(X) — F(X)) is an endomorphism of the presheaf
Flsm k- Denote it by o. If F is quasi-stable, then o acts as an isomor-
phism on Nisnevich stalks of the presheaf F. We already know that Fu is
a ZF.(k)-presheaf of Abelian groups. Lemma 2.8 yields that o acts as an
isomorphism on Nisnevich stalks of Fpis. Thus for any X € Sm/k the map
ox : JFnis(X) = Fnis(X) is an isomorphism. Hence Fyis is quasi-stable as
required. O

We finish the section by proving the following useful statement, which
is a consequence of Theorem 3.15(4):

Corollary 3.19. Let X € Sm/k, v € X be a point, W = Spec(Ox ). Let
V = Spec(Ow xat (2,0)) and can :V — W x Al be the canonical embedding.
Let F be an A'-invariant quasi-stable ZF,-presheaf of abelian groups. Then
the pullback map

[[can]]* : F(W x (A' = {0}))/F(W x Al) = F(v —= W x {0})/F(V)

is an isomorphism (both quotients make sense: the second quotient makes
sense due to Theorem 3.15(3), the first one makes sense due to homotopy
invariance of F).
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Proof. Consider the category, C, of Zariski neighborhoods of W x 0 in W x P!
as well as the presheaf V — F(V — W x 0)/Im(F(V)) on C. Write G(V)
for F(V =W x 0)/Im(F(V)) and G(V) for F(V — W x 0)/F(V). Clearly,
the category C is cofiltered. By definition, one has

F(V) =colim F(V) and F(V—-W x0)=colim F(V —W x0),

where V runs over all Zariski neighborhoods of W x 0 in W x P!. Thus
G(V) = colim G(V). For any closed subset D C W x P! of pure codimension

one (including the empty D as well) and any section H C W x P! of the
projection py : W x PL — W with HND =0 = (W x 0)N (H U D) set

Vap =W xP' — (HUD).

Let C’ be the full subcategory of C consisting of objects of the form Vy p.
Since the base field k is infinite and W is regular local, then the subcategory
C’ is cofinal in C. Thus G(V) = colim G(Vg p), where Vi p runs over the
category C'. Let Vi, p,,Va,,p, € C' be such that Vi, p, C Vi, p, and let
a: Vy, p, = VH, p, be the inclusion.

We claim that the pullback map [[o]]* : G(VH, p,) = G(VH, p,) is an
isomorphism. To prove this claim, set D = Hy U D1 U Ho U D5 and find a
section H C W x P! of the projection py such that HND = () = (W x0)NH.
Using a projective change of coordinates on W x P!, we may assume that
H =W x oo and W x 0 remains the same. Consider the open inclusions

B
VHz,Dz N VHl,Dl SWx Al = VH7@

and set v = Boa. By Theorem 3.15(4) the maps [[3]]* : G(Vy ) — G(Vu, D,)
and [[7]]* : G(Vip) = G(Vu,,p,) are isomorphisms. Thus the map [[a]]* is
an isomorphism in this case, too. This proves the claim.

Thus for any Vi p € C' the map G(Vy,p) — G(V) is an isomorphism.
Particularly, the map [[can]]* : G(W x A') — G(V) is an isomorphism. This
proves the corollary. O

4. Notation and agreements

In this section we follow definitions, notation and constructions from Sec-
tions 2 and 3. We suppose in this section that Y € Sm’/k and X € Sm/k.
Particularly, Y can be in Sm/k.
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Notation 4.1. We are recalling earlier defined notation for the convenience
of the reader. Given a € Fr,(Y, X), we write (a) for the image of 1-a in
ZF,(Y, X) and write [a] for the class of (a) in ZF, (Y, X). We will write Z,
for the support of a (it is a closed subset in Y x A™ which is finite over Y
and determined by the element a uniquely). Also, we will often write

(VaaSOa Ve — An;Qa Ve — X) or just (VaaSOa;ga)

for a representative of the morphism a (here (V,,p:V, = Y X A" s: Z, —
V,) is an étale neighborhood of Z, in Y x A"™).

Remark 4.2. If the support Z, of an element a = (V, ¢; g) € Fr,(Y, X) is
a disjoint union of Z; and Zs, then the element a determines two elements
ap and ag in Fr,(Y,X). Namely, a1 = (V — Z2,¢|y—z,;9lv-z,) and as =
(V= Z1,¢|lv-2z,;9lv-2z,). Moreover, by definition of ZF, (Y, X) one has the
equality

(a) = (a1) + (az)
in ZF,(Y, X).

Definition 4.3. Let iy : Y/ < Y and ix : X’ < X be open embeddings.
Let a € Fr,(Y,X). We say that the restriction aly: of a to Y’ runs inside
X" if there is @’ € Fr,(Y', X') such that

(1) iXoa’:aoiy

in Fro(Y’, X).

It is easy to see that if there is an element o’ satisfying condition (1), then
it is unique. In this case the pair (a, a’) is an element of ZF,, ((Y,Y"), (X, X")).
For brevity we will write ((a)) for (a,d’) € ZF,((Y,Y’), (X, X")) and write
[[a]] to denote the class of ({(a)) in ZF,((Y,Y’), (X, X")).

Lemma 4.4. Letiy : Y < Y and ix : X' < X be open embeddings. Let
a€ Frp(Y,X). Let Z, CY x A" be the support of a. Set Z!, = Z,NY' x A™.
Then the following are equivalent:

(1) 9a(Z;) C X';
(2) the element aly: runs inside X'.

Proof. (1) = (2). Set V' = py,' Mg~ (X"), where py = pryop, : V — Y x A"
Then o := (V', ¢|y);glv) € Frp(Y', X') satisfies condition (1).

(2) = (1). If a|]ys runs inside X', then for some o' = (V',¢';¢') €
Fr,(Y', X")) equality (1) holds. In this case the support Z’ of a’ must co-
incide with Z/, = Z, N Y’ x A™ and g,|z = ¢'|z. Since ¢'(Z’) is a subset of
X', then ¢,(Z)) = g9a(Z') C X'. O
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Corollary 4.5. Letiy : Y — Y andix : X' — X be open embeddings. Let
ho = (Vg, vo; 90) € Fra(A' x Y, X). Suppose Zy, the support of hy, is such
that for Zy .= ZgNAL XY’ x A™ one has go(Z4) C X'. Letig,i1: Y — Al xY
be the 0- and 1-sections respectively and set hg = hgoig, h1 = hgoiy. Then hy,
ho, h1 define elements ((hy)) € ZF,(A' x (Y,Y"), (X, X")), {{(ho)), ({h1)) €
ZF”((K Y,)a (Xa X/)) with

[[ho] = [[ha]]
in ZF,((Y,Y"), (X, X")).
Lemma 4.6 (A disconnected support case). Let iy : Y < Y and ix :
X" < X be open embeddings. Let a € Fr,(Y,X) and let Z, CY x A™ be
the support of a. Set Z!, = Z,NY' x A™. Suppose that Z, = Zg1 U Zy 2. For
i =1,2 set V; =V, — Z,; with j € {1,2} and j # i. Also, set v; = @qly,
and g; = galy,. Suppose aly: runs inside X', then

(1) for each i = 1,2 the element a; := (V;, ¢i; g:) is such that a;|y: runs
inside X';
(2) ((a)) = ({a1)) + ({a2)) in ZF,((Y,Y"), (X, X")).

5. Some homotopies

Suppose U, W C A,lg are open and non-empty.

Lemma 5.1. Letag = (V,p;90) € Fri(U, W), a1 = V,¢;01) € Fri(U,W).
Denote their common support by Z. If golz = g1lz, then lag] = [a1] in
ZF, (U, W).

Proof. Consider a function gg = (1 — 0)go + g1 : A x V — Al and set
Vo = gy (W), g = popry : Vg — AL. Next, consider a homotopy

(2) hy = (Vg,tpg;gg) S FTl(Al x U, W)

The support of hg equals Al x Z ¢ A! x U x Al. Clearly, hy = ag and
hl =aj. O

Corollary 5.2. Under the assumptions of Lemma 5.1 let U' C U and W' C
W be open subsets. Suppose that agly: runs inside W’'. Then aq|y: runs
inside W', the restriction hg|arxy: of the homotopy hg runs inside W' and

[[ao]] = [[aa]]

in ZFE1((U,U"), (W, W")).
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Lemma 5.3. Let ag = (V,pup;9) € Fri(UW) and a1 = (V,pu1;9) €
Fri(U, W), where ug,u; € k[V] are both invertible. In this case the supports

of ag and a1 coincide. Denote their common support by Z. Suppose up|z =
ui|z, then [ag) = [a1] in ZF,(U,W).

Proof. Set ug = (1 — 0)ug + Ouy € k[Ar x V). Clearly, ug|pixz = priy(ug) =
priy(u1) € k[A! x Z]. Let Vg = {ug # 0} C Al x V. Set,

(3) hg = (Vg, ugp; g o pry) € Fri(Al x U,W).

The support of hg equals A' x Z C Al x U x Al. Clearly, hg = ap and
hl = ai. O

Corollary 5.4. Under the assumptions of Lemma 5.3, let U' C U and
W' C W be open subsets. Suppose ag|ly: runs inside W'. Then ai|y: runs
inside W', the restriction hg|arxys of the homotopy hg from the proof of
Lemma 5.3 runs inside W' and

[lao]] = [[aa]]
in ZFA((U, U"), (W, W")).

Lemma 5.5. Let U C A} be non-empty open as above and Fy(Y), F1(Y) €
E[U|Y]. Suppose degy (Fp) = degy (F1) = d > 0 and their leading coeffi-
cients coincide and invertible in k[U]. Then,

[U x AY, Fo(Y),pru] = [U x A, Fy(Y),pry] € ZF,[U,U].

Proof. Set Fy(Y) = (1—-0)Fo(Y)+0F1(Y) € k[U][6,Y]. Consider the mor-
phism

(4) hg = (A' x U x Al Fp; pryy) € Fri(A' x U, U).

Clearly, hg = (U x AL, Fy(Y),pry) and hy = (U x AL, Fi(Y),pry). This
proves the lemma. ]

Corollary 5.6. Under the assumptions of Lemma 5.5 let U' C U be an
open subset. Then

(UXAl,Fo(Y),pTU”U/, (UXAlaFl(Y)7pTU)’U'

run inside U', the restriction hg|p1xy: of the homotopy hy from the proof of
Lemma 5.5 runs inside W' = A x U and

[U x AY, Fo(Y), prul] = [[U x A, Fy(Y), pro]
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in ZF1((U,U"), (U,U")).

Proposition 5.7. Let U C A} and U’ C U be open subsets. Let t € k[A!]
be the standard parameter on A}. Set X := (t ® 1)|uxv € k[U x U] and
Y = 1®t)|uxv € kU x U]. Then for any integer n > 1, one has an
equality

[U x U, (Y = X)L pa]] = [[U x U, (Y = X)*, pa]] + [[ov]

in ZF,((U,U"), (U, U")).
Proof. Let m > 1 be an integer. Then

[[Ux U, (Y = X)"pa]] = [[Ux U, (Y = X)",pr]] =
= [[Ux AL (Y = X)"™ pi]] = [[U x AL Y™, pi]]
in ZF1((U,U"),(U,U")). The first equality follows from Corollary 5.2, the

third one follows from Corollary 5.6, the middle one is obvious.
There is a chain of equalities in ZF,((U,U’), (U,U")):

[U x AL, Y2 )] = [U x AL, Y2 (Y + 1);p1]] =

= [[U x (A" = {=1}),Y*"(V + 1);pa]] + [[U x (A" = {0}),Y*"(Y + 1); p1]] =
= [Vo. Y™ ipll + [V, (Y + 1);pa]] =
=[[U x ALY pi]] + [[U x A', (Y + 1); pa]].

Here the first equality holds by Corollary 5.6, the second one holds by Lemma
4.6, the third one holds by Corollary 5.4, the forth one is obvious (replace-
ment of neighborhoods).

Continue the chain of equalities in ZF1((U,U"), (U,U")) as follows:

[U > ALYZ:pi] + [[U x AL (Y + 1);pi]] =
=[[U x AL (Y = X)*";pi]] + [[U x ALY p1]] =
= [[Ux ALY = X)*;pu)] + [lov]] = [U x U, (Y = X)*"; pa]] + [lov]] =
= [[U < U,(Y = X)*™;po]] + [[ov]]-
Here the first equality holds by Corollary 5.6, the second one holds by the

definition of oy (see Notation 3.7), the third one is obvious, the fouth one
holds by Corollary 5.2. We have proved the equality

(6) [U x AL Y2 py]] = [[U x U, (Y = X)*5 pa]] + [[ow].
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Combining that with the equality (5) for m = 2n + 1 we get the desired
equality

[Ux U, (Y = X)*"Lipo]] = [[U x U, (Y — X)*"; pa]] + [[ow]]
in ZF1((U,U"), (U,U")). This proves the proposition. O
6. Injectivity and excision on affine line

The aim of this section is to prove Theorems 3.9 and 3.10.

Lemma 6.1. Let U C A! be open and non-empty. Let A = A}g —U. Let
Go(Y),G1(Y) € k[U|[Y] be such that

(1) degy (Go) = degy (G1);

(2) both are monic in'Y, that is the leading coefficients equal one;

(3) Goluxa, Giluxa are both invertible and Goluxa = Giluxa € k[U X

Al*.
Then
[U x U, Goip2] = [U x U, G1; pa

m ﬁl (U, U) .
Proof. One has a homotopy hg = (Al x U x U,Gy,pa) € Fri(A' x U,U),
where Gy = (1 —0)Go + 0G; and proy : Al x U x U — U is the projection
onto the second copy of U. Its restriction to 0 x U and to 1 x U coincides
with morphisms (U x U, Go; p2) and (U x U, G1; p2) respectively. This proves
the lemma. O

Proof of Theorem 3.9. Under the assumptions of this theorem set A = A,}: —
U and B = U — V. For each big enough integer m > 0 find a polynomial
Fo(Y) € k[U][Y] such that F,,,(Y) is of degree m with the leading coefficient
equal 1 and such that

(i) Fm(Y)luxa = —X)"uxa € k[U x A]™;
(i) Fpn(Y)|uxp =1 € k[U x B]*.

Taken > 0 and set r = (U XV, Fopy1;pry) — (U XV, Fop;pry) € ZFy (U, V).
Then one has a chain equalities in ZF1 (U, U):

[ o [r] = [U x U, Fany1;p2] — [U x U, Fop;p2] =

= [UxU (Y =X)L po] — [U x U, (Y — X)?™: py] = [ov].

Here the first equality is obvious, the second one holds by Lemma 6.1, the
third one holds by Proposition 5.7. This proves the theorem. ]
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Corollary 6.2 (of Lemma 6.1). Under the conditions and notation of
Lemma 6.1 let S C U be a proper closed subset. In addition to the con-
ditions (1) — (3) suppose that the following two conditions hold:

(4) Go(Y)luxs = G1(Y)|uxs,
(5) Go(Y)|(w—g)xs is invertible.

Then one has an equality
[[U XU, Go; pa]] = [[U x U, G1; p2]]

in ZF, (U, U — S), (U, U — S)).

Proof of the corollary. The support Zy of the homotopy hg from the proof
of Lemma, 6.1 coincides with the vanishing locus of the polynomial Gy. Since
Golarx(U—g)xs is invertible, then ZgNA! x (U —5) x S = (). By Lemma 4.4
the homotopy hg|a:x(—g) Tuns inside U — S. Hence

(U x U, Go; p2]] = [[hol] = [[m]] = [[U x U, G1; pa]]

in ZF1((U,U — 8),(U,U — 8)). In fact, the second equality here holds by
Corollary 4.5. The first and the third equalities hold since for ¢ = 0,1 one
has hi:(UXU,GZ';pQ) in F’I“l(U,U). |

Proof of Theorem 3.10. Firstly, we construct a morphism r € ZF,((U,U —

S)), (V,V — 8)) such that for its class [[r]] in ZF1((U,U — 9)),(V,V = 9))
one has

(7) [é) o [[r]) = [[ov]]

in ZF1((U,U - 5)),(U,U — 5)).

To this end, set A = A,lg — U, B=U-V.Recall that S C V is a
proper closed subset. Take any big enough integer m > 1 and find a monic
polynomial F,(Y') of degree m satisfying the following properties:

(i) Frn(Y)|uxa = (Y — X)"|uxa € kU x A]*;
(i) Fn(Y)|luxs =1 € k[U x BJ*;
(iii) Frn(Y)|uxs = (Y — X)™|uxs € k[U x S].
Note that Fi,(Y)|[—s)xs € k[(U — S) x S]*. Hence by Lemma 4.4 the

morphism (U x V, Fp,;pry) € Fri(U,V) being restricted to U — S runs
inside V' — S. Thus using Definition 4.3 we get a morphism

(U % V, Ep:pry)) € ZE (U, U — S)), (V,V — S)).
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For that morphism one has equalities
[d] o [[U x V, Fpsprv]] = [[U X U, Fi;pa]] = [[U x U, (Y — X)™; pa]]

in ZF1((U,U-2S)), (U,U—S)). Here the first equality is obvious, the second
one follows from Corollary 6.2. Take a big enough integer n. Set

r = ((UXV, Fapi1;pry)) — (U XV, Fop;pry)) € ZF1 (U, U-S)), (V,V=25)).
We claim that [[i]] o [[7]] = [[ov]] in ZF1((U, U — S)), (U, U — S)). In fact,
[[d] o [[r]] = [[U x U, (Y = X)*" 5 pal] — [[U x U, (Y = X)**; p2]] = [[ov]].

The first equality is proven a few lines above and the second one follows
from Proposition 5.7. We see that equality (7) holds.

We now find morphisms | € ZF((U,U — 5)),(V,V — 5)) and g €
ZF((V,V = 8)),(V =8,V —5)) such that

(8) [} o [[2] = [l5]] o [lg]] = [lov]]

in ZF1(V,V = 9)),(V,V = 95)). Here j : (V — S,V —8) = (V,;V - 9) is
the inclusion. Clearly, equality (8) yields [[I]] o [[i] = [[ov]] € ZF1(V,V —
S))a (Va V- S))

Set A’ = AL — U, B = U —V and recall that S C V is a proper
closed subset. Take an integer m big enough and find a polynomial F,,,(Y) €
k[U][Y] of degree m, monic in Y, such that

(1) Fn(Y)luxar = (Y = X)|uxar € k[U x AT
(ii) En(Y)|uxs =1 € k[U x B]*;
(iii) Fp(V)|uxs = (Y — X)|uxs € k[U x S].

Note that F(Y)|—s)xs € k[(U — S) x S]*. Hence by Lemma 4.4 the
morphism (U x V, Fy;pry) € Fri(U,V) being restricted to U — S runs
inside V' — S. Thus, using Definition 4.3, we get a morphism

l= <<U X VaFm;prV» S ZFI((Uv U-— S))a (V7 V- S))
To construct the desired morphism g, find a polynomial E,,_; € k[V][Y] of
degree m — 1, monic in Y, such that

(i) Em-1(Y)|yxa = luxa € k[V x A%,
(i) Em_1(Y)lvxs = (Y — X)~! € K[V x B]*;
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(iii") Epm—1(Y)|vxs = llvxs € k[U x S];
(V") Em-1(Y)|aq) = Law) € k[A(V)].

Let G C V x A} be a closed subset defined by E,,_1(Y) = 0. By conditions
(i) — (iv') one has G C V x (V = S) and GNA(V) = 0. Set ¢ = (V x
(V=) — AV, (Y — X)Eyr (V)): prv—s) € ZE(V.V — S). Since ¢'ly—s ¢
ZF\(V — S,V — 5), we get a morphism

(9) 9=1(9.9v-s) € ZF((V,V = 5)),(V = 5,V = 9)).

Claim 6.3. Equality (8) holds for the morphisms | and g defined above.

Note firstly that Lo ((i)) = (V X V, E,,(Y)|vxv;pra)) € ZEy((V,V —
S),(V,V — S)). Applying Corollary 6.2 to the case V. C A!, § C V and
A := A" U B, we get an equality

[V X V. Fn(Y)lvxvipra]] = [[V X V(Y = X)Ep1(Y); pra]]

in ZF((V,V-5),(V,V—38)). By Lemma 4.6 and the fact that GNA(V) = 0,
one has

[V xV,(Y = X)Ey 1(Y);pra]] =
[V XV =G, Ena(Y = X);pro]] + [[V XV = A(V), (Y = X)Ep—1;pr2]] =
=[[VxV =G, En1(Y — X);pra2]] + [[5]] o [[9]]
in ZF1((V,V = 5)), (V,V = 5)).

One has a chain of equalities

[VXV =G En1(Y=X)pro]] =[[VxV =G, (Y — X);pro]] =
= [V x V(Y = X)ipra]] = [[V x ALY pri]] = [[ov]].
The first equality holds by condition (iv') and Corollary 5.4. The second
one is obvious. The third one is equality (5) for m = 1 from the proof of

Proposition 5.7. The forth one is the definition of ((oy)) (see Definition 2.4
and Notation 3.7). Combining altogether, we get a chain of equalities

(1) o [[i]] = [V XV, En(Y) v v pra]] =
= [V xV, (Y = X)Em1(Y); prall = [lov]] + [[7]] o [lg]],

which proves the claim. The theorem now follows. O
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7. Excision on relative affine line

Proof of Theorem 3.12. Let U = A%,V, let V" C U be the open V from The-
orem 3.12. Let S = 0 x W. Note that S C V. Set A = AII/V -U =0,
B =U—-V ={f =0}. Then B is finite over W, since f is monic. Note that
BN (0xW)=0.

Repeat literally the proof of Theorem 3.10 replacing fibre products over
Spec(k) by fibre products over W. For instance, replace A}c X A,lc from Section
6 by All/V XWwW All/V ]

8. Almost elementary fibrations

In this section we recall a modification of a result of M. Artin from [3]
concerning the existence of nice neighborhoods. The following notion (see
[16, Definition 2.1]) is a modification of that introduced by Artin in [3, Exp.
XI, Déf. 3.1].

Definition 8.1. (/16]) An almost elementary fibration over a scheme B is
a morphism of schemes p : X — B which can be included in a commutative
diagram

(10) X1 X x,
\E /
B

of morphisms satisfying the following conditions:

(i) j is an open immersion dense at each fibre of 7, and X = X — X;
(ii) g is smooth projective all of whose fibres are geometrically irreducible
of dimension one;
(iil) goo is a finite flat morphism all of whose fibres are non-empty;
(iv) the morphism i is a closed embedding and the ideal sheaf Ix  C Ox
defining the closed subscheme X, in X is locally principal.

Proposition 8.2 ([16]). Let k be an infinite field, X be a smooth geo-

metrically irreducible affine variety over k, x1,xo,...,x, € X be closed
points. Then there exists a Zariski open neighborhood X° of the family
{x1,22,...,2,} and an almost elementary fibration p : X° — S, where

S is an open subscheme of the projective space Pglmx*l. If, moreover, Z is
a closed codimension one subvariety in X, then one can choose X° and p in

such a way that p|zn xo : ZN X" — S is finite surjective.
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Proposition 8.3 ([16]). Letp: X — S be an almost elementary fibration. If
S is a regular semi-local irreducible scheme, then there exists a commutative
diagram of S-schemes

(11) X X : Y
Alxs—™ plyge '  fso}xS

with T a finite surjective morphism such that the left hand side square is
Cartesian. Here j and i are the same as in Definition 8.1, while prgom = p,
where prg is the projection A x § — S.

In particular, m : X — A' x S is a finite surjective morphism of S-
schemes, where X and A' x S are regarded as S-schemes via the morphism
p and the projection prg, respectively.

9. Reducing the injectivity for local schemes to
Theorem 14.3

In this section we follow definitions, notation and constructions from Sec-
tions 2 and 3. In particular, we can work with pointed sets F'r,, (Y, X) and
abelian groups ZF,, (Y, X), ZF, (Y, X), with Y € EssSm/k and X € Sm/k.
The main aim of this section is to prove Theorem 3.11. Let X € Sm/k be ir-
reducible, z € X be a point, U = Spec(Ox ), i : D < X be a proper closed
subset. Let j : X — D — X be the open inclusion. Under the notation of
Theorem 3.11 we will find an integer N and an element r € ZFn (U, X — D)
such that

1] 0[] = [oX] o [can]

in ZF n(U, X) (see Definition 9.8). For this we need some preparations as
well as Theorem 14.3.

Let X’ C X be an open subset containing the point x and let D' =
X'ND. Clearly, if we solve a similar problem for the triple U, X’ and X' —D’,
then we solve the problem for the given triple U, X and X — D. So, we may
shrink X appropriately. In particular, we may assume that the canonical
sheaf wx y, is trivial, i.e. is isomorphic to the sheaf Ox. Let d = dim X.

Shrinking X further (and replacing D with its trace) and using Propo-
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sitions 8.2 and 8.3, we can find a commutative diagram of the form

(12) Al x B<" X d D
prs Pl plp
B

where p : X — B is an almost elementary fibration in the sense of [16], B
is an affine open subset of the projective space Pz_l, v is a finite surjective
morphism, p|p is a finite morphism.

The canonical sheaf wy /; remains trivial. Since p is an almost elementary
fibration, then it is a smooth morphism such that for each point b € B the
fibre p~1(b) is a k(b)-smooth absolutely irreducible affine curve. Since v is
finite, then the B-scheme X is affine.

Set U = Spec(Oxz), X =U xp X, D =U xp D. There is an obvious
morphism A = (id, can) : U — X. It is a section of the projection py : X —
U. Let px : X — X be the projection to X. The base change of diagram
(12) gives a commutative diagram of the form

(13) Al x U <2 X" D
pul
pru %
U

where py : X — U is an almost elementary fibration over U in the sense
of Definition 8.1, i is a closed embedding, Y is a finite surjective morphism,
pulp is a finite morphism. Since wx/k 1s trivial and U is local and essentially
k-smooth, the relative canonical sheaf wy 7 is trivial, i.e. isomorphic to the
structure sheaf Ox.

Lemma 9.1 ([15], Lemma 10.1). Given the commutative diagram (13), there
is a finite surjective morphism Hy = (py, hg) : X — Al x U of U-schemes
such that for the closed subschemes Dy := H9_1(1 xU) and Dy := He_l(Ox U)
of X one has

(i) D1 C X — D;
(i) Do = A(U) UD{ (equality of schemes) and Dy C X — D.

Now regard X as an affine A! x U-scheme via the morphism Hy. And
also regard X as an X-scheme via px.

Lemma 9.2. There is an integer N > 0, a closed embedding X — A x
U x AN of A x U-schemes, an étale affine neighborhood (V,p:V — Al x
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UxAN s: X V) of X in A x U x AN, functions @1, ..., on € k[V] and
a morphism r : VYV — X such that:

(i) the functions ¢1,...,pN generate the ideal Iyxy in k[V] defining the
closed subscheme s(X) of V;
(ii) ros=ridy;
(iii) the morphism r is a U-scheme morphism if V is regarded as a U-
scheme via the morphism pryop and X is regarded as a U-scheme via
the morphism py .

Proof. Since Hy is a finite morphism, then for some integer N > 1 there
is a closed embedding of U-schemes in : X < Al x U x AN. Consider the
short exact sequence of vector bundles on A defining the normal bundle
N = Nyxuxar/x:

(14) {0} = Ty = A x X x AN = Tipuanyvle = N — {0}

Since Hy is finite, the scheme X is affine. As mentioned above the bundle
Ty is trivial. Thus the bundle N is stably trivial. Increasing the integer
N we may assume that the bundle A is trivial. Since the scheme X is
affine, there is a linear section t : N' — Al x X x AN of the morphism
q. Let gy : N — X be the projection on X. There are two morphisms of
U-schemes:

inoqy: N — Al x U x AN and (id x py x id) ot : N — Al x U x AV,
Regarding A" x U x AN as a vector bundle over U we have a morphism
+: (A x U x AY) xp (A x U x AY) = Al x U x AV,

Set p' = inoqy +(idxpy xid)ot : N'— Al x U x AN It is easy to check that
p is étale along so(X), where s : X — N is the zero section of N. Hence
p is étale in an affine neighborhood V' of s¢(X). Since p' o sg = in : X —
Al x U x AN hence (p') " (in(X)) = so(X)LUY . Hence there is an open affine
subscheme V in V' containing sq(X) such that (p'|y)~1(in(X)) = so(X). Set
p=ply:V—=A xUxAN. Set s =59: X — V.

Clearly, (V,p:V — Al x U x AN s : X < V) is an étale neighborhood
of in(X) in A' x U x AN. We will write in this proof X for in(X).

Set r = (qx)|y : V — X. Since the bundle N is trivial we can choose
a trivialization N' = X x AN. The trivialization gives functions 1, ..., 0N
which generate the ideal I,y) in k[V] defining the closed subscheme so(X)
of V.
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Clearly, r o s = idy. Also, the morphism r is a U-scheme morphism if V
is regarded as a U-scheme via the morphism pry o p and & is regarded as a
U-scheme via the morphism py. Whence follows the lemma. ]

By Lemma 9.1, Dy = A(U)UD}. Set Vo = p~L(0xU x AY). For a suitable
affine open neighborhood Wy of s(A(U)) in Vy the triple (W, plw, : Wo —
Ux AN, slaw) : A(U) < W) is an étale neighborhood of A(U) in U x AN,

Remark 9.3. By Lemma 9.2 the functions ¢1|w,, ..., onN|w, generate the
ideal I defining the closed subscheme s(A(U)) of the scheme W. In partic-
ular, the family

(901‘1/\/0)7 i) (@N‘Wo) S I/I2

is a free basis of the free k[U]-module I /I?. Another basis of the k[U]-module
I/1? is the family

(tl — A*(h))’y\}m ceey (tN — A*(tN))|Wo S I/I2.

Let A € GLy(k[U]) be a unique matrix which converts the second free
basis to the first one and let J := det(A) be its determinant. Replacing ¢
by J ', we may and will assume below in this section that J = 1 € k[U].
This is useful to apply Theorem 14.3 below.

Set Vi = p~1(1 x U x AN)nr~1(X — D). Then s(D;) C V;. In fact,
(ros)(D1) =Dy C X —Dand p(D1) C1xU x AN, Thus V; # 0.

Construction 9.4 (Etale neighborhood of D1). The morphism p|ixyxan :
p 11 x U x AN) — 1 x U x AN s étale and the inclusion iy : Vi <
p~ 1 (1 x U x AN) is open. Set p1 = (p|lixuxa~)oii. Then the triple

(V1,,01 :V1—>1XU><AN,81:S‘D1 :D1—>V1)

is an étale neighborhood of Dy in 1 x U x AN, Let ry = 7|y, : V) = X —D.

Definition 9.5. We set a1 = (D1, Vi, 01|y, - ©N|v; (Px)|x—p 0 11) €
Fry(U,X — D).

Set Vi = p~ 10 x U x AN)Nr~Y(X — D). Then s(D)) C V). In fact,
(ros)(Dh) =Dy C X —D and p(D})) C 0x U x AN. Thus V), # 0. The
functions ¢1, ..., pn define s(X) in V), so their restriction to V| define s(X' N
0 x U x AN) = s(AU)UD}). Set Vi = Vi — s(AU)).
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Construction 9.6. The morphism ploxyxar @ p (0 x U x AN) — 0 x
U x AN is étale and the inclusion io : Vi < p~1(0 x U x AN) is open. Set
po = (ploxuxan) o ig. Then the triple

Vi, po: V] = 0xUxAN sp=s

/ "
D} :DO — VO)

is an étale neighborhood of D}y in 0 x U x AN. Let ro =r

vy ZV6/—>X—D.

Definition 9.7. We set ag = (Dy, V{, ¢1
Fry(U, X — D).

Vs ©N|vyrs (px)|x—p 0 T0) €

Definition 9.8. Set r = (a1) — (ao) € ZFn(U, X — D).
Claim 9.9. One has an equality [j] o [r] = [0¥] o [can] € ZF N (U, X).

In fact, take the element hg = (X, V, @1, ..., on; pxor) € Fry(AlxU, X).
By Lemma 9.1 the support of hg is the closed subset A(U) U Dj. Thus by
Lemma 4.2 (hg) is the sum of two summands. Namely,

(ho) = j o (ao) + (A(U), Wo, ©1|Ws, ---» ©N|ws: Px © (TIy))

in ZFn(U,X). By Remark 9.3 and Theorem 14.3 for the second summand
one has

[AU), Wo, ©1lwes -+ @ lwai px 0 (rlw,)] = [0X] 0 [px 07w, © (s|a@ 0 A)] =

= [oX] o [px 0 A] = [oX] o [can]

in ZFn(U, X). Clearly, hy = joay in Fry(U, X). Thus one has a chain of
equalities
(4]  [a1] = [h] = [ho] = [j] © [ao] + [0X] o [can]

in ZF (U, X). This reduces the claim to Theorem 14.3. Thus we have de-
rived Theorem 3.11 from Theorem 14.3.

10. Preliminaries for the injective part of the étale excision

In this section we follow definitions, notation and constructions from Sec-
tions 2 and 3. In particular, we can work with pointed sets Fr,(Y,X)
and abelian groups like ZF, ((Y,Y"), (X, Y?)), ZF,((Y,Y"), (X, X?)), where
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(Y, YY) € EssSm/k and (X, X°) € Sm/k. Let X, X’ be irreducible smooth
k-schemes. Let V C X and V' C X’ be open subschemes. Suppose

VIH'X/

b

VX

is an elementary distinguished square in the sense of [13, Definition 3.1.3].
Let S = X—V and S’ = X'~V be closed subschemes equipped with reduced
structures. Let z € S and 2/ € S’ be two points such that II(z") = z. Let
U = Spec(Ox ) and U’ = Spec(Ox »). Let w: U’ — U be the morphism
induced by II.

To prove Theorem 3.13, it suffices to find elements a € ZFn((U,U —
S)), (X', X" —8") and bg € ZFN((U,U — S)),(X — S, X — S)) such that

(15) [111] o [[a]] - [lj]] © [[bc]] = [[0X]] o [[can]]

in ZEN(U,U — 9)),(X,X —9)). Here j : (X — S, X —9) = (X, X —9)
and can : (U, U — S) — (X,X — S) are inclusions. In this section we
do some preparations to construct the desired elements a € ZFyn((U,U —
), (X', X"'—5") and bg € ZFN((U,U — S)), (X —S,X —5)) in Section 11
satisfying (15).

Let in : X° < X and in/ : (X’)° < X' be open such that

x
) l'/ c ()(/)O7
3) I((X7)°) C X°,
) the square
Vl N (Xl)o (X/)o
l lm(x,)o
VNnXe——— X°

is an elementary distinguished square.

Suppose a° € ZFy((U,U — S)), ((X")°, (X')° = 8")), b3, € ZFN((U, U —
S)), (X°—S, X°—S)) are such that for the inclusions j° : (X°—S, X°—S5) —
(X°,X°—29) and canx. : (U,U —S) — (X°, X°—S) one has

(16) ([ xyell o [la®]] = [0 o [[bg]) = [[oke]] o [leanx]].
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Then the elements a = in’ 0 a® and bg = in o by, satisfy (15). Thus if we
shrink X and X’ in such a way that properties (1) — (4) are fulfilled and
find appropriate elements a° and by, then we find a and bg satisfying (15).

Remark 10.1. One way of shrinking X and X’ such that properties (1)—(4)
are fulfilled is as follows. Replace X by an affine open X° containing x and
then replace X’ by (X')° = II-}(X°).

Let X/ be the normalization of X in Spec(k(X')). Let II,, : X, — X
be the corresponding finite morphism. Since X’ is k-smooth it is an open
subscheme of X/. Let Y = X/ — X’. Tt is a closed subset in X . Since
II|g : 8" — S is an isomorphism of schemes, then S’ is closed in X),. Thus
S"NY” = (). Hence there is a function f € k[X]] such that f|y» = 0 and
flsr = 1.

Definition 10.2. Set X, ., = (X)), Y ={f =0}, Y =1I,(Y,.,) C X.
Note that X/, is an affine k-variety as a principal open subset of the affine
k-variety X, . We regard Y’ as an effective Cartier divisor of X,. The subset

Y is closed in X, because II,, is finite. Set e, = 11| x-

new

Remark 10.3. We note that II,,2, (S) = S’ and the open subsets X° = X
(X")° = X/, C X' satisfy the properties (1) — (4). Thus, we may change

notation and write X’ for X/ _, .

Remark 10.4. Shrinking X and X’ as described in Remark 10.1, changing
notation again, and using Proposition 8.3, one can find an almost elementary
fibration ¢ : X — B in the sense of Definition 8.1 (here B is affine open in
P"~1) such that glyus : Y US — B is finite, wp,, = Op, wx ), = Ox.

The scheme X’ will be regarded below as a B-scheme via the morphism
q oIl

Remark 10.5. If ¢ : X — B is the almost elementary fibration from Re-
mark 10.4, then Q}(/B = Ox. In fact, wx/, = ¢*(wp/r)®wx/p- Thus wy/p =
Ox. Since X/B is a smooth relative curve, then Q%{/B =wy/p = Ox.

If, furthermore, j : X < B x A% is a closed embedding of B-schemes,
then one has [NV (j)] = (IV — 1)[Ox] in Ko(X), where N (j) is the normal
bundle to X for the imbedding j.

Thus by increasing the integer N, we may assume that the normal bundle
N (j) is isomorphic to the trivial bundle O 1.

Repeating arguments from the proof of Lemma 9.2 we get the following

Proposition 10.6. Let q : X — B be the almost elementary fibration from
Remark 10.4. Then there are an integer N = 0, a closed embedding X —
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B x AN of B-schemes, an étale affine neighborhood (V,p:V — B x AN s
X < V) of X in B x AN, functions o1,...,on_1 € k[V] and a morphism
r:V — X such that:

(i) the functions @1, ..., pn—1 generate the ideal Iy xy in k[V] defining the
closed subscheme s(X) of V;
(i) ros=ridx;
(iii) the morphism r is a B-scheme morphism if V is regarded as a B-
scheme wvia the morphism pry o p, and X is regarded as a B-scheme
via the morphism q.

Definition 10.7. Let z € S, 2’ € S’ be such that II(2') = x. Set U =
Spec(Ox ). There is an obvious morphism A = (id,can) : U — U xp X. It
is a section of the projection pyy : U xg X — U. Let px : U xp X — X be
the projection onto X. Let 7 : U" — U be the restriction of II to U’.

Notation 10.8. In what follows we will write U x X to denote U xpg X,
U x X' to denote U xp X', U’ x X' to denote U’ xpg X', etc. Here X' is
regarded as a B-scheme via the morphism ¢ o I1.

The following proposition will be proved in Section 15.

Proposition 10.9. Under the conditions of Remark 10.4 and Notation 10.8
there is a function hg € k[A' x U x X] (0 is the parameter on the left
factor A1) such that the following properties hold for the functions hg, hy =

holixuxx and ho := hgloxuxx:

(a) the morphism (pr,hg) : Al x U x X — Al x U x Al is finite surjective,
and hence the closed subscheme Zy := hy*(0) C Al x U x X is finite
flat and surjective over At x U;

(b) for the closed subscheme Zy := hy'(0) one has Zy = A(U)UG (an
equality of closed subschemes) and G C U x (X — 5);

(¢) the closed subscheme (idy xI1)*(hy) = 0 is a disjoint union of the form
Z1UZy and m := (idy x I1)| z; identifies Z{ with the closed subscheme
Z1 = {hl = 0},‘

(d) Zgn Al x (U —S) x S =0 or, equivalently, ZgyN Al x (U —S) x X C
Al x (U - 9) x (X - 9).

Remark 10.10. Item (d) yields the following inclusions: Zg N Al x (U —
S)xX CALx(U-9)x(X-8), Zyn(U-S)xX C (U-S)x(X—29), and
ZiNU-=89)xX c((U-S8)x (X —25). Applying item (c), we get another
inclusion: Z] N (U - S)x X' Cc (U-95) x (X' —9).
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11. Reducing Theorem 3.13 to Proposition 10.9

As ususal we follow definitions, notation and constructions from Sections 2
and 3. In this section we construct the desired elements a € ZFy((U,U —
S)), (X', X" = 8") and bg € ZFN((U,U — 5)), (X — S, X — S)) satisfying
the relation (15). To construct b € Fry (U, X), we first construct its support
in U x AN for some integer N, then we construct an étale neighborhood of
the support in U x AV, then one constructs a framing of the support in the
neighborhood, and finally one constructs b itself. In the same manner we
construct a € Fry (U, X') and a homotopy H € Fry(A! x U, X) between
IToa and b. Using the fact that the support Zy of b is of the form A(U)U G
with G C U x (X — 5), we get an equality

(b) = (b1) + (b2)

in ZFN (U, X). Then we prove that [b1] = [0¥]o[can] and [bs] factors through
X — 5. Moreover, we are able to work with elements of pairs. These will
end up with the equality (15) and will complete the proof of Theorem 3.13
at the very end of the section. We will use systematically the data from
Proposition 10.6 in this section (the details are given below).

Under the assumptions and notation of Proposition 10.6, Lemma 10.6
and Remark 10.3, set V' = X’ xg V. So we have a Cartesian square

vy

x 1o x,

where 1’ and II' are the projections to the first and second factors respec-
tively. The section s : X — V defines a section s’ = (id,s) : X' — V' of
r’. For brevity, we will write below U x V to denote U xg V, U x V' for
UxpgV, andidxpforidxpgp:UxgV — U xp (B xA") =U x AV, Let
py : U XV — V be the projection.

Let X C B x AN be the closed inclusion from Proposition 10.6. Taking
the base change of the latter inclusion by means of the morphism U — B,
we get a closed inclusion U x X C U x AV,

Under the notation from Proposition 10.6 and Proposition 10.9, we now
construct an element b € Fry(U, X). Let Zy C U x X be the closed subset
from Proposition 10.9. Then one has the closed inclusions

AUYUG=2ZycUxX cUxAN.
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Let ing : Zg C U x X be the closed inclusion. Define an étale neighborhood
of Zy in U x AN as follows:

(17) (U xV,idxp:UxV —=U x AN, (id x s)oing: Zg — U x V).

We will write A(U)UG = Zy C U x V for ((id x s) oing)(Zy) C U x V. Let
f € k[U x V] be a function such that f|g = 0 and f[s) = 1. Then A(U)
is a closed subset of the affine scheme (U x V).

Definition 11.1. Under the notation from Proposition 10.6 and Proposition
10.9, set

V = (Zo,UxV,p5(01) s D3 (on—1), (idXx7)*(ho); prxo(idxr)) € Fry(U, X).

We will sometimes write below (Zy, U x V, p},(¢), (id x1)*(ho); prx o (id x 1))
to denote the element b'.

To construct the desired element b € Fry(U, X), we need to modify
slightly the function pj,(¢1) in the framing of Zy. By Proposition 10.6 and
item (b) of Proposition 10.9, the functions

Py (@1)s - DY (oN—1), (id x )" (ho)

generate the ideal I(jqx ) (a(w)) in k[(U x V)] defining the closed subscheme
A(U) of the scheme (Ux V). Let t,ta,...,ty € k[UxAYN] be the coordinate
functions. For any i = 1,2,..., N, set t; = t; — (ti|aw)) € k[U x AN]. Then
the family

(1, t9, .., ty) = (id x p)"(t1), (id x p)*(t3), ..., (id x p)*(t)

also generates the ideal I = I(jgxs)a)) in k[(U x V)y]. This holds, be-
cause (17) is an étale neighborhood of Zy in U x AYN. By Remark 10.5 the
k[U] = k[(id x s)(A(U))]-module I/I? is free of rank N. Thus the families
(t],t5, ..., t%) and (p§(@1), .., PH(0N—1), (id x 7)*(ho)) are two bases of the
free k[((id x s) o A)(U))]-module I/I%. Let J € k[U]* be the Jacobian of
a unique matrix A € My (k[U]) which transforms the first free basis to the
second one. Set,

P =g (1 € KV,

where gy = pry o (id x p) : V — U. Let A™" € Mpy(k[U]) be a unique
matrix changing the first free basis to the basis

(05 (07), 55 (02), -, 3 (0N —1), (id X 7)*(ho)).
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Then the Jacobian J™" of A™" is equal to 1:
(18) J =1 € k[U]*.
We will write

(1/117 ¢27 o 71/)]\/'71) for (p%{)(so?ew)ap;(SOQL 7p*V(Q0N71))

Definition 11.2. Under the notation from Proposition 10.6 and Proposition
10.9 set

b= (ZOa U x Vﬂl)lv "'7¢N—17 (Zd X r)*(hO);er o (Zd X 7")) € FTN(U7X)
For brevity, we will sometimes write
b= (Zo,U xV,py), (id x r)*(ho); prx o (id x r)).

Under the notation from Proposition 10.6 and Proposition 10.9 we now
construct an element a € Fry(U, X). Let Z; C U x X be the closed subset
from Proposition 10.9. Then one has closed inclusions

ZyCcUx X cUx AN,

Set (Ux X")o = (U x X")—Z} and (U x V') = (id x ') "1((U x X'),). Let
iny: Z; CU x X and inf : Z{ C (U x X'), be closed inclusions. Set,

To = (Zd X 74/)|(U><V/)0 : (U X V,)o — (U X X/)o.

Using the notation of Proposition 10.6 and Proposition 10.9 (item (c)), define
an étale neighborhood of Z; in U x AN as follows:

(U x Vo,(id x p) o (id x ') : (U x V')o = U x AV,

19
(19) (id x s') oinf om™ : Zy — (U x V'),).

Definition 11.3. Under the notation of Proposition 10.6 and Proposi-
tion 10.9 set

a =
(Z1, (U x V"o, (id x IU)* (2h1), ..., (id x T')*(¢y—1), 75 (id x I1)*(hy); prx: o7o)
S FTN(U, X/).
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For brevity, we will sometimes write
a=(Z1,(U x V), (id x IU')* (), r%(id x T1)*(h1); prx: o o).

Under the notation of Proposition 10.6 and Proposition 10.9, let us con-
struct now a element Hy € Fry(A! x U, X). Let Zy C A' x U x X be the
closed subset from Proposition 10.9. Then one has closed inclusions

Zg CA'xUx X c A x U x AN,

Let ing : Zg C A' x U x X be the closed inclusion. Define an étale neigh-
borhood of Zy in Al x U x AN as follows:
(A'xUxVyidxidxp: Al xUxV— Al x U x AV,

(20) L
(idXidXS)Oiﬂg:Ze—)A XUXV).

Definition 11.4. Under the notation of Propositions 10.6 and 10.9 we set

Hy = (Zg, A' x U x V, 91, ..., thn_1, (id x id x 7)*(hg); prx o (id x id x 1))
€ Fry(A' x U, X).
We will sometimes write below (Zy, Al x U x V4, (id x id x r)*(hg); prx o
(id x id x r)) to denote the element Hy.
Lemma 11.5. One has equalities Hy = b, Hy =l oa in Fry(U, X).

Proof. The first equality is obvious. To check the second one, consider
Hy = (Z1,U x V¢, (id x r)*(h1);prx o (id x r)) € Fry(U, X).

Here we use (U x V,idx p: UxV — U x AN (id x s)oiny : Z1 — U x V) as
an étale neighborhood of Z; in U x AN. Take another étale neighborhood
of Z; in U x AN

(U x Vo, (id x p) o (id x II') : (U x V')o — U x AV,
(id x s') oinf om™ : Z1 — (U x V'),)
and the morphism id x II' : (U x V')o — U x V regarded as a morphism of
étale neighborhoods. Refining the étale neighborhood of Z; in the definition

of Hy by means of that morphism, we get a framed correspondence H| = H;
of level N, which has the form

(Z1, (U x V), (id x IU'Y* (), (id x IU)* (id x 1)* (hy ); prr o (id x 1) o (id x IT'))..
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Note that
(id x TU)*(id x r)*(h1) = 72 (id x 11)*(hy)
and
prx o (id x r)o (id x IT') = o prx o ro.
Thus, H; = H; =1loa in Fry(U, X). O

The following lemma follows from Lemma 4.4 and Remark 10.10.

Lemma 11.6. The elements aly_s, blu—s, Hola1xw—s) and Il|x/ s run
inside X' — S', X — 8, X — S and X — S respectively.

By the preceding lemma and Definition 4.3 the elements a, b, Hy and 11
define elements

((a)) € ZFN((U,U = 9), (X', X" = §)),

() € ZEN((U.U = 5), (X, X = 5)),
(Ho)) € ZEw(A! x (UU = 5), (X, X = 5)),
((I)) € ZFN (X', X' = §'), (X, X = 9)).
Lemma 11.5 and Definition 4.3 yield equalities
() o ((a)) = (H)) and ((Ha)) = ()
in ZFn((U,U — 8), (X, X — S)).

Corollary 11.7. One has an equality [[I1]] o [[a]] = [[b] in ZFN((U,U —
S), (X, X = 9)).

Proof of Corollary 11.7. In fact, by Corollary 4.5 one has a chain of equali-
ties

()] o [la]] = [[H1]] = [[Ho]] = [[b]]
in ZFn((U,U - S), (X, X — 5)). O

Reducing Theorem 3.13 to Proposition 10.9. The support Zy of b is the dis-
joint union A(U) U G. Thus, by Lemma 4.6 one has an equality

((0)) = ((b1)) + ((b2))
in ZEy((U,U - S), (X, X — 5)), where

b = (A(U), (U X V)f,wl, ---,wN—la (’Ld X T)*(ho);pTX o (Zd X ’I”)),
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b2 = (G, (U XV — A(U),¢1, ...,IbN,l, (Zd X T)*(ho);pTX o (’Ld X ’I”))

By Proposition 10.9 one has G C U x (X — 5). Thus by = j o bg for an
obvious element bg € Fry(U, X —S). Also,

{{b2)) = ((4)) © {(ba)) € ZFN((U,U = 5), (X, X = 5)),

where j: (X — 5, X —5) — (X, X — 5) is a natural inclusion. By the latter
comments and Corollary 11.7 one gets an equality

[TM] e [[a]] = [l5]] o [ba]] = [[ba]

in ZF (U, U — 8), (X, X —5)). To prove equality (15), and hence to prove

Theorem 3.13, it remains to check that [[b1]] = [[o}]] o [[can]]. Recall that
one has equality (18). Thus the equality [[b1]] = [[o}]] o [[can]] holds by
Theorem 14.3. This finishes the proof of Theorem 3.13. O

12. Preliminaries for the surjective part of the étale excision

As ususal we follow definitions, notation and constructions from Sections 2
and 3. Let X, X’ be irreducible k-smooth schemes. Let V C X and V' C X’
be open subsets. Let

VI X/

|

VX

be an elementary distinguished square in the sense of [13, Definition 3.1.3].
Let S = X—V and S’ = X'~V be closed subschemes equipped with reduced
structures. Let z € S and 2/ € S’ be two points such that II(z") = z. Let
U = Spec(Ox ) and U’ = Spec(Ox »). Let m: U’ — U be the morphism
induced by II.

To prove Theorem 3.14 it suffices to find elements a € ZFyn((U,U —
S)), (X', X'—S8") and b € ZFN((U',U'—=5")),(X'—5', X' —S")) such that
in the characteristic different from 2 the following equality holds:

(21) [[a]] o {[]] =[] o [ba]] = [[oX 1) o [[can’]].

If the characteristic of k is 2 then the following equality holds in ZF 5 (U’, U’ —
SN, (X', X' —8"):

(22) 2 [[al] o [[]] =2~ [ljl] o [Ibg]] = 2 [[oX]] o [[can’]].
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Here j : (X' -5, X' - 5) - (X', X' = 5') and can’ : (U, U' = 5") —
(X', X" — 5’) are inclusions. In this section we do some preparations to
construct the desired elements

a € ZFN((U,U - S)), (X', X' —5")

and
bg € ZFN((U, U= 8"), (X' = 5", X" - 5"))

in Section 13 satisfying (21) in the characteristic different from 2, and sat-
isfying (22) if the characteristic of k is 2. Our preparations are independent
of the characteristic of the base field k.

Replace X by an affine open neighborhood in : X° — X of the point
z. Replace X’ by (X')° := II"1(X°) and write in’ : (X')° — X' for the
inclusion. Replace V by VNX° and V'’ with V/N(X")°. Let canl, : U — (X')°
be the canonical inclusion. Let j° : ((X°)—5",(X")°=5") = ((X')°, (X')° —
S’) be an inclusion of pairs. If we find

a® € ZEN((U,U = 9)), (X)°, (X)° = 5"))

and

by € ZEN((U,U' = 9)), (X)° = 8, (X')° = §"))
such that
(23) [[a®]) o [[7)] = [[5°]) o [[b&]] = [[o{xe]] © [[cant]],

then the elements a = in’ 0 a® and bg = in' o by, satisfy condition (21). Thus
we may assume that X is an affine variety.

Let X/ be the normalization of X in Spec(k(X')). Let II,, : X/, — X
be the corresponding finite morphism. Since X’ is k-smooth it is an open
subscheme of X/. Let Y = X] — X’. It is a closed subset in X . Since
g : S — S is a scheme isomorphism, then S’ is closed in X/. Thus
S"NY” = (). Hence there is a function f € k[X]] such that f|y» = 0 and

S

Remark 12.1. In this section we use agreements and notation from Defini-
tion 10.2 and Remark 10.3. Particularly, we may change notation and write
X' for X/

new:*

g =1

Remark 12.2. Shrinking X and X’ exactly as in Remark 10.4 and changing
notation again, consider the almost elementary fibration ¢ : X — B from
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Remark 10.4. Then Qk//B = Ox:. In fact, by Remark 10.5 Q.1></B =wy/B =
Ox. The morphism II : X’ — X is étale. Thus Q%,/B >~ Oxo.

Since X’ is an affine k-variety, there is a closed embedding j : X' —
B x AN of B-schemes. Choose and fix such an embedding j. Since X’ is
affine k-smooth, hence [N (j)] = (N — 1)[Ox] in Ko(X'), where N (j) is the
normal bundle to X’ associated with the imbedding j.

Thus by increasing the integer N, we may assume that the normal bundle
N (j) is isomorphic to the trivial bundle O, .

Repeating arguments from the proof of Lemma 9.2, we get the following

Proposition 12.3. Let g : X — B be the almost elementary fibration from
Remark 12.2 and let X' be as in Remark 12.2. Then there are an integer
N >0, a closed embedding j : X' — B x AN of B-schemes, an étale affine
neighborhood (V",p" : V" — B x AN, s" : X' < V") of X' in B x AV,
functions ', ..., ¢y, € k[V"] and a morphism " : V" — X' such that:

(i) the functions ¢y, ..., pn_; generate the ideal Iy (xry in k[V"] defining
the closed subscheme s"(X') of V";
(i1) " os" =idx:;
(11i) the morphism r" is a B-scheme morphism if V" is regarded as a B-
scheme wvia the morphism pry o p” and X' is regarded as a B-scheme
via the morphism q oIl from Lemma 10.4.

Definition 12.4. Let z € S, 2/ € S’ be such that II(z') = . We put U =
Spec(Ox ;). There is an obvious morphism A" = (id, can) : U' — U’ xp X'.
It is a section of the projection py : U'xg X' — U'. Let px/ : U' xp X' — X’
be the projection onto X’. Let 7 : U’ — U be the restriction of II to U’.

Notation 12.5. We regard X as a B-scheme via the morphism ¢ and regard
X' as a B-scheme via the morphism ¢ o II. In what follows we write U x X’
for U xg X', U' x X' for U xg X', A' x U' x X' for A x U’ xp X' etc.

The following proposition will be proved in Section 15.

Proposition 12.6. Under the conditions of Remark 12.2 and Notation 12.5
there are functions F € k[Ux X'] and hjy € k[A'xU'x X'] (6 is the parameter
on the left factor Al) such that the following properties hold for the functions
hle, hll = h/9|1><U/><X/ and h6 = h,9|0><U/><X/.'

(a) the morphism (pr,hp) : Al x U' x X' — Al x U' x Al is finite and

surjective, hence the closed subscheme Zj = (hy)~1(0) C Al x U’ x X'
is finite flat and surjective over A' x U';
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(b) for the closed subscheme Z}) := (h{)~1(0) one has Z) = A'(U") UG’
(an equality of closed subschemes) and G' C U' x (X' — 5');

(¢c) By = (7 x idx/)*(F) (we write Z{ to denote the closed subscheme
(B = 0});

(d) ZynAl x (U'—S") x S" = 0 or, equivalently, Zyn Al x (U'—S")x X' C
Al x (U - 8 x (X' = 5);

(e) the morphism (pry, F) : U x X' — U x Al is finite surjective, and
hence the closed subscheme Z1 := F~Y(0) C U x X' is finite flat and
surjective over U;

(f) ZyN(U—8) xS =0 or, equivalently, Zy N (U —S) x X' C (U—-S) x
(X' - 9.

Remark 12.7. Item (d) yields the following inclusions:

o ZHpNAl x (U =S x X' C Al x (U' - 8) x (X' - 9');
o ZIN(U =Sy x X' € (U' = &) x (X' — §);
o ZIN(U - §) x X' C (U - 8) x (X' — &),

Applying (f), we get another inclusion: Z1N(U—-S)x X' € (U-5)x(X'=5").
13. Reducing Theorem 3.14 to Propositions 12.3 and 12.6

We follow here definitions, notation and constructions from Sections 2 and
3. We suppose in this section that S C X is k-smooth. In the present section
we construct the desired elements a € ZFn((U,U — S)), (X', X' — 5")) and
bg € ZEN(U', U= 8")), (X' = 5", X' = 5")) satisfying (21) in the character-
istic different from 2, and satisfying (22) if the characteristic equals 2. This
construction does not depend on the characteristic of the base field k.

To construct an element a € Fry (U, X'), we first construct its support
in U x AN for some integer N, then we construct an étale neighborhood
of the support in U x AN, then one constructs a framing of the support in
the neighborhood and finally one constructs a itself. In the same fashion
we construct an element b € Fry(U’, X') and a homotopy H € Fry(A! x
U’, X') between aom and b. Using the fact that the support Z|, of b is of the
form A'(U') U G’ with G C U’ x (X' — 5’), we get a relation

(b) = (b1) + (b2)

in ZFn(U’, X'). Then we prove that [o¥,]o[b;] = [can’] if char k # 2 and [by]
factors through X’ —S’. If char k = 2 we prove that 2-[b1] = 2-([o¥.]o[can/])
and [by] factors through X’ —S’. Moreover, we are able to work with elements
of pairs. In this section we will use systematically Propositions 12.3 and 12.6
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and Notation 12.5. These will end up with the equalities (21), (22) and will
complete the proof of Theorem 3.14 at the very end of the section (details
are given below).

Let X’ € B x AN be the closed inclusion from Proposition 12.3. Taking
the base change of the latter inclusion by means of the morphism U — B,
we get a closed inclusion U xg X' C U xg (B x AN) = U x AN, Recall (see
Notation 12.5) that we regard X as a B-scheme via the morphism ¢ and
regard X’ as a B-scheme via the morphism ¢ o II. In what follows we write
UxX' forUxg X', U x X' for U xg X', Ux V" for U xgV", U x V" for
U' xg V", and id x p for id xg p: U xg V" = U xp (B x A") = U x AN,
Let py : U x V — V be the projection.

Under the notation from Proposition 12.3 and Proposition 12.6, con-
struct now an element b € Fry(U’, X’). Let Zy C U’ x X’ be the closed
subset from Proposition 12.6. Then one has closed inclusions

ANUYUG =Z, cU x X' cU x AV,

Let ing : Z), C U’ x X’ be a closed inclusion. Define an étale neighborhood
of Z}y in U’ x AN as follows:

(24) (U’ x V" idx " U' x V"' — U x AN, (id x 8") oing : Z), — U’ x V").
We will write A'(U')UG' = Z), C U’ x V" for ((id x s")oing)(Z}) c U' xV".

Let f € k[U" x V"] be a function such that f|g: =0 and f|a/) = 1. Then
A'(U") is a closed subset of the affine scheme (U’ x V).

Definition 13.1. Under the notation from Proposition 10.6 and Proposi-
tion 10.9, set

=

(Zh, U< V" (70 xid) (D50 (01), oy Do (P 1)), (idx 7Y (hg); prxs o (id x r"))
S FTN(U/, XI).

Here pyr : U x V" — V" is the projection. Below we will sometimes write
(Z, U x V", (7 xid)*(p}n (")), (id x r"")*(hg); prxe o (id x r'")) to denote the
element o'

To construct the desired element b € Fry(U’, X'), we slightly modify the

function p},, (¢}) in the framing of Z{). By Proposition 12.3 and Proposition
12.6(b), the functions

(m % id)* (pyr (1)), ---, (X id) " (pyn (P —1)), (id x 17)" (hg)
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generate an ideal I(;gxsv)ar @)y in k[(U" x V");] defining the closed sub-
scheme A/(U’) of the scheme (U’ x V")¢. Let t1,ta,...,tx € k[U’' x AN] be
the coordinate functions. For any i = 1,2,..., N, set t; = t; — (ti|a/)) €
E[U’ x AN]. Then the family

(t1,t, . th) = (id x p")"(t1), (id x p")*(t), ..., (id x p")"(t)

also generates the ideal I = I;qxsny(ar@ry) in k[(U" x V");]. This holds,
because (24) is an étale neighborhood of Zj) in U x AN. By Remark 12.2
the k[U'] = k[(id x s")(A'(U"))]-module I/I? is free of rank N. Thus the
families

(1,85, ty) and (P} (1), -, P (Ply_y), (id x 17)*(hpy))

are two bases of the free k[((id x s") o A")(U’))]-module I /I?. Let J € k[U']*
be the Jacobian of a unique matrix A € My (k[U’]) converting the first basis
to the second one. There is an element A\ € k[U] such that A|sny = J|snu
(we identify here S’ N U’ with S N U via the morphism 7|gny). Clearly,
A € k[UJ*. Set,

()" = qi;(J 1)) € KV,

where g = pry o (id x p”) : V' — U. Let A" € My(k[U]) be a unique
matrix which converts the first basis to the basis

(P (1)), e Py (P 1), (id X 7)) (Rgy ).
Then the Jacobian J"" € k[U']* of A™" has the property:

(25) T gy =1 € k[S' N U].

We will write (1/]17 ¢27 cee 7¢N71) for (p;”((goll)new)J "‘7pT)”(90§V—1))'

Definition 13.2. Under the notation from Proposition 12.3 and Proposi-
tion 12.6, set

b:=
(Z0, 0" V" (10 xid) (1), ooy (1 X 3d)* (1), (Gd X ) (Bh); prs o (id x 7))
€ F?“N(U,, X’).

We often write for brevity b = (Zj, U’ x V", (7 xid)*(¢), (idxr")*(h{); prx: o
(id x r'")).
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Under the notation from Proposition 12.3 and Proposition 12.6 we now
construct an element a € Fry (U, X'). Let Z; C U x X’ be the closed subset
from Proposition 12.6. Then one has closed inclusions

7y cUx X' cUx AN,

Let inq : Z1 C U x X be the closed inclusion. Define an étale neighborhood
of Z1 in U x AN as follows:

(26) (U x V" idx p":U x V"= U x AV, (id x §")oiny : Zy < U x V").

Definition 13.3. Under the notation from Proposition 12.3 and Proposi-
tion 12.6 set

a=(Z1,UxV" 41, ...,0¥n_1, (idx ") (F);prx o (idy x ")) € Fry(U, X")
We will sometimes write (Z1,U x V" 1, (id x r"")*(F); prx: o (idy x ")) to
denote a.

Under the notation from Proposition 12.3 and Proposition 12.6 we now
construct an element Hy € Fry(A! x U’, X'). Recall that under that nota-
tion we write Al x U’ x X’ for A x U’ xg X'. Let Zj C Al x U’ x X’ be
the closed subset from Proposition 12.6. Then one has closed inclusions

Zy CA' x U x X' C A x U’ x AV,

Let ing : Zj C A x U’ x X' be the closed inclusion. Define an étale neigh-
borhood of Zj in Al x U’ x AV as follows:

o (AL x U'x V" AL x U’ x V" 29207 AL g7 < AN,
(id xid x §") oing : Zy — A x U' x V").

Definition 13.4. Under the notation from Proposition 12.3 and Proposi-
tion 12.6, set Hy to be equal to
(Zp, A x U x V" pr*((m x id)* (1)), (id x id x 7")*(hly); prx- o (id x id x r""))

from Fry (Al x U, X'), where pr : Al x U’ x V" — U’ x V" is the projection.

Lemma 13.5. One has equalities Hy =b, Hy = aox in Fry(U', X’).
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Proof. The first equality is obvious. Let us prove the second one. By Propo-
sition 12.6 one has b} = (7 x idx/)*(F). Thus one has a chain of equalities
in Fry(U', X'):

aoTm =
(Z1, U xV" (mwxidyn ) *(¥),(mxidyn ) * ((idy xr")*(F)); prxo(idy xr")o(m xidyr)) =
(Z{, U/XVN, (ﬂ'XZ'dV//)*(i/)), (idU/ XT//)*((FXidX/)*(F));pTX/O(TrXidX/)O(idU/ XTN)
= (Zi, U’ x V”, (7‘( X idy//)*(ﬂ)), (idU/ X TI/)*(hll);pTX/ o (idU/ X 7"”)) = Hl,
as required. O

The following lemma follows from Lemma 4.4 and Remark 12.7.

Lemma 13.6. The elements aly—s, blu—s', Hglarx@r—sy and w|y:—s run
inside X' — 5", X' —S' X' —S" and U — S respectively.

By the preceding lemma and Definition 4.3 the elements a, b, Hy and 7
define elements

<<CL>> € ZFN((Uﬂ U-— S)? (leXl - S/))v
(b)) e ZFN (U, U= 8'), (X', X = 5)),
((Hp)) € ZFn(A' x (U,U' — 8, (X', X' - ")),
(m))y € ZFN (U, U = S, (U,U - 9)).
Lemma 13.5 and Definition 4.3 yield equalities

({a)) o ({m)) = ((H1)) and ((Ho)) = ((b))
in ZFy((U',U' = §), (X', X' — §")).

Corollary 13.7. There is a relation [[a]] o [[x]] = [[b]] in ZFy((U', U’ —
Sl)’ (X/a X'~ S/))

Proof of Corollary 13.7. In fact, by Corollary 4.5 one has a chain of equali-
ties

[[a]] o [[x]] = [[H1]] = [[Ho]] = [[b]
in ZFN((U',U" — 8'), (X', X' — §")). O

Reducing Theorem 3.14 to Propositions 12.6. The support Zy of b is the dis-
joint union A’(U’) U G'. Thus, by Lemma 4.6 one has,

(b)) = ((b1)) + {(b2))
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in ZEN((U',U" = 8"), (X', X" — 5")), where

by = (AU, (U x V”)f,¢1, ey ON—1, (id x ") (hg); prx: o (id x ")),
be = (G, (U x V' — AU), b1, ..., vn_1, (id x 7")*(hg); prx: o (id x "))

and the function f is defined just above Definition 13.1. By Proposition
12.6 one has G’ C U’ x (X' —8"). Thus by = j o be for the obvious element
ber € Fry(U', X' = 5"). Also,

((b2)) = ((3)) o {{ba)) € ZFN((U", U = §), (X', X" = 5)),

where j : (X' =S5 X' - 5") — (X', X' — 5’) is a natural inclusion. By the
latter comments and Corollary 13.7 one gets,

(28) [[a]] o [[#]] = {l7]] o [[be]] = [[b]]

in ZEn((U,U" — 8"), (X', X" — §")). Suppose now chark = 2. Then by
Theorem 14.5 one has

(29) 2 [[ba]] = 2 ([[lo]] © [[ean]))

in ZFN((U',U" — 8", (X', X" — S")). Hence the equality (28) yields the re-
lation (22). So Theorem 3.14 follows for the case when char k = 2.

Suppose now char k # 2. To prove the equality (21), and hence to prove
Theorem 3.14 in this case, it remains to check that [[b1]] = [[o¥.]] o [[can/]].

Recall that one has equality (25). Let us consider the étale k[U’]-algebra
k[U'[t]) (82 — Jmew). Set U’ = Spec(k[U"][t]/(t* — J"v)). Since 2’ € ' NU,
we have equality J""(z') = 1. Thus there are exactly two points z”, z/ in
U’, which are over the point z'. Set U” = Spec(Op, ). Let U= U
be the canonical morphism. Set S” = (7/)~1(S’NU’). The morphism 7’| g :
S" — S'NU’ is an isomorphism, since Jg%;, = 1. Note that (7’)*(J"") is a
square in k[U”]*. Thus by Theorem 14.4 one has an equality [[b1]] o [[7]] =
[[eX]o[[can/]]o[[#"]] in ZF N ((U",U"—S"), (X', X'—S")). Applying Theorem
3.13 to the morphism 7’ : U” — U’, we see that for an integer M > 0 one
has an equality

[loX]) o [[ba]] = [[oX, "] o [[can']] € ZFaren (U, U" = 5"), (X', X' = 5)).
Thus,

[lox]] o [[al] o [[x]] = [lox']] o [[]] o [[be]] =
= [[oX M) o [[ean'] € ZFan (U, U" = 8", (X', X' = ).
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Note that ((o¥')) o (7)) = ((j)) o ((o¥_g)) € ZFu((X' - &', X" = &),
(X, X" — 5"). Set anew = [[0¥]] o [[a]], b¥ = 0¥ 4 obg, N(new) =
M + N. Having these the following equality holds:

[lanca]] o [[x]] = [13]) @ [1625) = [lox." 1] o [[can’]]

EZF yin((U, U -8, (X, X' - 9").

The latter equality is of the form (21). Thus, Theorem 3.14 is proved in the
characteristic not 2. g

14. Three useful theorems

We follow definitions, notation and constructions from Sections 2 and 3.
Let Y,Y; € EssSm/k be essentially k-smooth schemes, Z C Y, Z; C Y7 be
closed subsets. Let f : Y1 — Y be a k-morphism such that Z; C f~1(Z). For
an étale neighborhood (V,7:V = Y,s: Z - V)of ZinY set V1 =Y xy V.
Let 71 : Vi — Y] be the projection and let s1 = (i1, f|z,) : Z1 — Vi, where
i1 : Z1 < Y7 is the inclusion. Then (Vi,71, s1) is an étale neighborhood of
Zy in Y;. We often will write (f*(V), f*(p), f*(s)) for (V1,p1,s1). Denote
by f* : f*(V) = Vi — V the projection. The following properties of this
construction are straightforward:

Lemma 14.1. (1) If f = idy, then (f*(V), f*(n), f*(s)) = (V,m,s) and
" = idy.
(2) Given a morphism f1 : Yo — Y1 in EssSm/k and a closed subset
Zy C Yo with Zy C f;1(Z1) one has (fo f1)™ = fro b (fofi)*(V) — V.
(3) Ifi: Z — Y is a closed subset, Y1 = Z, f =1, theni*(w) : i*(V) — Z
identifies (i*(V),i*(m),1*(s)) with (Z,idz,idyz). So, we write Z for i*(V').
(4) If Z from the previous item is also in EssSm/k, p:Y — Z is a
morphism in EssSm/k, then (poi)*(V) =p*(i*(V)) =p*(Z) =Y.

Let W € EssSm/k and let (W, pg: W — W x AN sq: W — W) be an
étale neighborhood of W x 0 in W x AY. The nearest aim is to formulate
and prove Lemma 14.2 below.

Let fo: Al x W x AN — W x AN be a morphism given by (6, w,y) —
(w,0 - y). Since A* x W x 0 C f,'(W x 0) we see that f5(W) is an étale
neighborhood of A'x W x0in A x W x AN . Consider the étale neighborhoods
idxp: A x W = AV x W x AN of AL x W x 0in A x W x AN, Then

Wo = f3(W) Xatswsxan (A1 X W) = fE(W) X W
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is an étale neighborhood of A' x W x 0 in A" x W x AN. There are two
morphisms

Hp: Wo 2% f200) 25 W and pry - Wo — W

Let ig : W x A" < Al x W x AN be the inclusion taking (w, z) to (0,w, 2).
Note that fy o ig = ing o prw, where ing : W — W x AN takes w to (w, 0
and pry is the projection. Thus, i§(fy(W)) = priy (inf(W)) = priyy (W) =
W x AN, Clearly, i5(A! x W) = W. So,

Wo == is(Wg) = (W x AN) Xypean W = W.

It is easy to check that Hy = Hply, : W — W equals W PR, w2 W,
Clearly, prw|w, = idw.

Let iy : WxA™ < A'xTW x AN be the inclusion taking (w, 2) to (1, w, 2).
Note that fy oy = idw. Thus, i}(f;(W)) = W. Clearly, i} (A x W) = W.
So, if(Wp) = W Xywxan W. Let Wi = A(W) be the diagonal. It is a finer
étale neighborhood of W x 0 in W x AN. We write W for W,. Clearly,
Hy = Hplwy, : W — W and prw|w, : W — W are the identity maps. We
have thus proved the following

Lemma 14.2. Let W € EssSm/k and let (W,po : W — W x AN s :
W — W) be an étale neighborhood of W x 0 in W x AN (particularly, ing =
p0 © 80). Suppose X is a k-smooth scheme and (W x O, W, ;9 : W — X) €
Frn(W,X). Set hg = (A" x W x 0, Wy, opryy; go Hg) € Fry(Al x W, X).
Then one has:

((1) hl = (W X O7W7Q/),g) € FTN(WX)}

(b) ho = (W x 0,W, ;g o 59 0 pw) € Fry(W,X), where pyy = (W £

W x AN 2% ),

If We C W is open, X° C X is open and g(W®° x 0) C X°, then hg|arxwo
runs inside X°.
Theorem 14.3. Let W € EssSm/k be a local scheme and let N > 1 be an

integer. Leti: W — W x AN be a section of the projection pryy : W x AN —
W. Let

(Wo,p:Wo—)WXAN,S:W%WQ)
be an étale neighborhood of i(W) in W x AN (particularly, i = poos). Let X

be a k-smooth scheme. Suppose Wy is an affine essentially k-smooth scheme.
Let

a= (W), Wo,p1,...,on; [ : Wo = X) € Fry(W, X),
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be a N-framed correspondence such that the functions (¢1,...,onN) generate
the ideal I = Iy of those functions in kW], which vanish on the closed
subset s(W). Let A € My (k[W]) be the unique matriz transforming the basis
(tr — (t1liwy)s - - -t — (Enliw)) of the free k[W]-module I/1? to the basis
(@1,...,0Nn) of the same k[W]|-module. Let J = det(A) € k[W]* be the
determinant of A. Suppose that J =1 € k[W]*. Then,

(30) [a] = [0X] o [f o s] € ZFN(W, X).

IfWe° C W is Zariski open and X° C X is Zariski open and f(s(W°)) C X°,
then

(31) [[a]] = [[oX)) o [[f o s]] € ZF N (W, W?), (X, X°)).

Theorem 14.4. Suppose chark # 2. Let W € EssSm/k be a local scheme
and N > 1 be an integer. Let X be a k-smooth scheme. Leti: W — W x AN,
a€ Fry(W, X), Ae My(k[W]), J :=det(A) € k[W]*, s : W — W, be the
same as in Theorem 14.3. Suppose that J € k[W|* is a square. Then,

(32) [a] = [0X] o [f o s] € ZFN(W, X).

IfWe° C W is Zariski open and X° C X is Zariski open and f(s(W°)) C X°,
then

(33) [[a]] = [[oXN) o [[f o s]] € ZFN (W, W®), (X, X°)).

Theorem 14.5. Suppose that chark = 2. Let W € EssSm/k be a local
scheme and N > 1 be an integer. Let X be a k-smooth scheme. Let i :
W — W x AN, a € Fry(W,X), A € My(k[W]), J := det(A) € k[W]*,
s: W —= W,y be the same as in Theorem 14.3. Then,

(34) 2-[a] =2-([0X]o[fos] ) € ZFN(W, X).

IfWe C W is Zariski open and X° C X is Zariski open and f(s(W°)) C X°,
then

(35)  2-[la]] =2 ([[oX]]o[lf o)) ) € ZEN((W,W°), (X, X")).

To prove these three theorems, we need several elementary lemmas.
Their proofs are left to the reader. Below in this section we assume that
W € EssSm/k and W = Spec(R) for a k-algebra R. Also, we consider an
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étale neighborhood (W, po, sg) of W x 0 in W x AY such that W is of the
form Spec(R) for an étale R[ty, ..., tx]-algebra R. We write k[W] for R and
k(W] for R.

Lemma 14.6. Let W,po : W — W x AN sqg : W — W) be the étale
neighborhood of W x0 in W x AN . Let (W x0, W, 1; gosgopw) € Fry(W, X),
where g and pyw : W — W are the morphisms from Lemma 14.2. Let Ay €
GLN(k[W][0]) be a matriz such that Ay = id. Set A :== Ay € GLy(k[W)).
Let pr : A' x W — W be the projection. Take the row (¢, ...,) =
(1, .., N) - Py (A) in kW] and take the N-framed correspondence

hg := (AL x W x 0, Al x W, Wg;gosgopw opr) € Fry(Al x W, X),

where g is the row (pr*(Y1),...,pr*(¥n)) - (id x pw)*(Ap) in k[Al x W].

Then one has:

(a) ho = (W x 0,W,9;gospopw);

(b) hl = (W X O’val;go S0 OPW)
If We C W is open, X° C X is open and g(W° x 0) C X°, then hg|pixwe
runs inside X°.

Lemma 14.7. Let W,po : W — W x AN sqg : W — W) be the étale
neighborhood of W x0 in W x AN . Let (W x0, W, 1; gosgopw) € Fry(W, X)
be as in Lemma 14.6. Suppose the functions i1,...,1¥N generate the ideal
I C kW] consisting of all the functions vanishing on the closed subset W x 0.
Furthermore, suppose that for anyi = 1,..., N one has that ¢; = t; in I/I?.
Set g; = (1 — 0)p; + 0t; € K[AY x W] and g := (g1, ..,%onN). Set

hg := (AL x W x 0, Al x W, 10y, g 0 50 0 pw o pr) € Fry(Al x W, X).

Then one has:

((1) hO = (W X O7W7Q/);go S0 OPW);

(b) by = (W x 0,W x AN t1,... ty;g0s00prw) =of o0gosg.

If We C W is open, X° C X is open and g(W° x 0) C X°, then hg|pixwe
runs inside X°.

Let i : W — W x AN, W, p,s) be as in Theorem 14.3 and let T :
W x AN — W x AN be the morphism taking a point (w,v) to the point
(w,v+i(w)). Then (T*(Wp), T*(p), T*(s)) is an étale neighborhood of W x 0
in W x AN, Write W for T*(Wy), so for T*(s) and po for T*(p). If T™ :
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W = T*(Wy) — Wy is the projection as in the beginning of this section,
then s = T o T*(s) = T™ o s.

Lemma 14.8. Suppose that i : W — W x AN, Wy, p,s), X and a =
(W), Wo, 01, on; f) € Fry(W, X) are as in Theorem 14.3. Then one
has,

[a] = [W x 0, W, 1 oT”b,...,cpN oT”b;foT"b] c ﬁN(VV,X)-

Moreover, if W° C W is open and if X° C X is any open such that
g(s(W?)) C X°, then one has,

[[a]] = [[WXx0,W, 10T, ... ponoT™; foT™]|] € ZF (W, W°), (X, X°)).
Proof of Theorem 14.3. By Lemma 14.8 one has an equality in ZF (W, X)
[a] = [W x O,W,wl,...ﬂ/}N;foT”b]’

where 1); = @; 0 T™ fori=1,...,N. Set g = foT™: W — X. By Lemma
14.2 one has an equality in ZF n(W, X)

(W x 0, W, 91,...,%N; g] = [W x 0, W,4; g 0 59 0 pw].
Thus one has
[a] = [W x 0,W,9; g0 so0pw] € ZF y(W, X).

Clearly, the functions (¢1,...,1¥n) generate the ideal Iy = Iy «o of those
functions in k[WV] that vanish on the closed subset W x0. Let A" € My (k[W])
be the unique matrix that transforms the basis (t1,...,tx) of the free k[W]-
module Ip/I2 to the basis (¢1,...,¢n) of the same k[W]-module. Clearly,
det(A") = det(A). Thus det(A’) = 1 € k[W]. The ring k[W] is local. Thus
A’ belongs to the group of elementary N x N matrices over k[W]. Hence
there is a matrix Ag € My (k[W][f]) such that Ay = id and A; = (A')~! €
GLn(k[W]). By Lemma 14.6 one has an equality

[W X 0’W7¢39050 Opw] = [W X O,W,ﬂJl,gOSo OPW] € ﬁN(VVﬂX)
with the row #1,...,¢) as in Lemma 14.6. By construction, for any i =
1,..., N the function ¢! has the property: ¢} = #; in Ip/I?. By Lemma 14.7

one has an equality

(W x 0,W,9,gosgopw]=[oX]o[gose] € ZFEN(W, X).
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Since s = T™ 0 59 and g = f o T™, we have equalities g o s = f o s and
[a] = [0X] o [g 0 s0] = [0X] o [f 0 5] € ZEN(W, X).

If We C W is Zariski open and X° C X is Zariski open and f(s(W°)) C
X°, then the same arguments prove the relation

(36) [[a]) = [[oX]] o [[f o s]] € ZFN((W, W?), (X, X?)).

This proves Theorem 14.3. O

Theorems 14.4 and 14.5 are proved at the end of this section. Some
preparations are necessary for them. Let A be a finitely generated k-smooth
algebra, S = Spec(A), S° C S be its open subset, M C A be a multiplicative
system, Y = Spec(Ayr), YO = S°NY. Then Y? C Y is an open subset. For
the rest of the section we fix these essentially k-smooth schemes Y and Y.
We also choose and fix a k-smooth scheme X, its open subset X° and a
k-scheme morphism h : Y — X such that (YY) C X°. We write k[Y] for
the k-algebra Ajs. We begin with the following obvious

Lemma 14.9. Let Y, X and h: Y — X be as above. Let k[Y]| be the ring
of regqular functions on'Y. Let n > 0 and a € k[Y]*. Let p(t),q(t) € k[Y][t]
be two polynomials of degree n with the leading coefficient a. Let

(Z(p),Y x Al,p(t),hopry) and (Z(q),Y x Al,q(t),hopry) € Fri(Y, X)
be two framed correspondences. Let Zy C A x Y x Al be the vanishing locus
of the polynomial p(t) + s(q(t) — p(t)) € k[Y][s,t] (here s is the homotopy
parameter). Let

Hy = (Zs, A X Y x AL p(t) + s(q(t) — p(t)), hopry) € Fri(A' x Y, X).
Then one has equalities in Fry(Y,X):

Hy = (Z(p), A',p(t), hopry) and H = (Z(q), A, q(t), hopry) € Fri(Y, X).

Under the notation introduced above Lemma 14.9 and under the hy-
potheses of Lemma, 14.9 the framed correspondences

(Z(p),Y x A, p(t), hopry)|yo

and
(Z(q),Y x Al q(t),h o pry)|ye € Fri(Y°, X)
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run inside X in the sense of Definition 4.3. Therefore following notation
from that definition, they define elements ((Z(p),Y x Al p(t),h o pry)),
{Z(q),Y x Al q(t),hopry)) € ZF((Y,Y?), (X, X")). The framed corre-
spondence (Hy)|a1xyo runs inside X°. Hence it defines an element

(HJ) € ZR(A" x (V,Y?), (X, X?)).

Clearl}I7 <<H0>> = <<Z(p),y X Al,p(t)J’L o pTY>>7 <<H1>> = <<Z(Q)7Y X
Ava(t)v h OpTY>> in ZFI((Y> Yo)a (Xa XO))
We have thus proved the following

Lemma 14.10. Under the notation introduced above Lemma 14.9 and un-
der the notation and the hypotheses of Lemma 14.9 and the notation from
Definition 4.3 the following equality holds:

[[Z(p),Y x A, p(t),hopry]] = [[Z(q),Y x AL, q(t), h o pry]]
€ ZF1((Y,Y"), (X, X9)).

Let Y be as above Lemma 14.9. Let k[Y] be the ring of regular functions
on Y. Let n > 0 and p(t) = t"R(t), where R(t) = ro +rit + ... + rytl €
E[Y][t] is a polynomial such that ry and rg are both in k[Y]*. Let U =
(Y x Al) R CY X A' be the principal open subset corresponding to R(t).
One has R(t) = o + tR1(t). Consider the polynomial

h(s,t) = sR(t)t" + (1 — s)rot" € ks, t].

Then h(s,t) = t"-(ro+t-Ry(t)-s). If S is the vanishing locus of ro+t- Ry (t)-s,
then SN A! x Y x 0 = (). Hence for the zero locus Z(h) of h one has
Z(h) = (A' x Y x 0)U S. Set,

HE .= (A x Y x {0}, (A! x U)\ S, sR(t)t" 4 (1 — s)rot™, h o pry o pry)
€ Fri(A' x Y, X).

The following lemma is inspired by [1, Lemma 4.13].

Lemma 14.11. LetY, X and f : Y — X be as above Lemma 14.9. Let k[Y]
be the ring of reqular functions on'Y. Let a € k[Y], n > 0 and q(t) = (t —
a)"Q(t), where Q(t) € k[Y][t] is a polynomial such that its leading coefficient
and Q(a) are both in k[Y]*. Let U = (Y x Al) gy C Y x Al be the principal
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open subset corresponding to Q(t). Then there is a framed correspondence
HY € Fri(A' x Y, X) such that in Fr(Y,X) one has equalities

HP = (Z(t - a),U,q(t); ho pry)
and
HY = (Z(t —a),Y x AY, Q(a)(t — a)"; ho pry).

Proof. We may assume that a = 0. Then take HF just as above with R(t)
Q(t + a). Clearly, HI' = (Y x {0},U,R(t)t",h o pry) and Hf = (Y
{0}, U, R(0)t", h o pry) in Fri(Y, X). Whence follows the lemma.

O x|

Under the hypotheses of Lemma 14.11 let Y? C Y, X? C X be open
subsets as just above Lemma 14.9. Then the framed correspondences

(Z(t - CL),U,(](t);hOpTy)‘YO € FTI(Y07X)

and
(Z(t - a),Y x AL, Qa)(t — a)"s h o pry)lyo € Fry(Y", X)

run inside X© in the sense of Definition 4.3. Thus following notation from
that definition, they define elements

(Z(t —a),U,q(t);hopry)), ((Z(t — a),Y x AL, Q(a)(t — a)"; ho pry))
€ ZF (Y, YY), (X, X9)).

Lemma 14.12. Under the notation and hypotheses of Lemma 14.11 let
YO Cc Y, X% C X be open subsets as above Lemma 14.9. Then under the
notation from Definition 4.3 one has

[Z(t = a),U,q(t); hopry]] = [[Z(t — a),Y x A',Q(a)(t — a)"; h o pry]|
e ZF1((Y,Y?), (X, X9)).

Proof. We may assume that a = 0. Let R(t) = Q(t+a) € k[Y][t] be as in the
proof of Lemma 14.11. Clearly, the element HSR|A1Xyo A x Y0 - X runs
inside X" in the sense of Definition 4.3. Hence following that definition, it
defines an element ((HX)) € ZFi (A x (Y,Y?), (X, X?)). One has equalities
in ZF1((Y,Y?), (X, X°):

((Hgh) = (Y x 0,Y x AL, R(0)t"; ho pry))
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and
((H{Y)) = ((Y x 0,U, R(t)t"; h o pry)).
This proves the lemma. O

Corollaries 14.13, 14.14, Proposition 14.15 and their proofs are inspired
by [14, Lemma 7.3].

Corollary 14.13. Suppose chark £ 2. Under the notation and hypotheses
of Lemma 14.11 let Y° C Y, X° C X be open subsets as above Lemma 14.9.
Let X € k[Y]*. Then under the notation from Definition 4.3

(Y % 0,Y x A", A~ hopry)]| = [[(¥ x 0,Y x A, %5 ho pry )]

in ZF1((Y,Y?), (X, XY)).

Proof. For brevity we drop hopry from the notation. By Lemma 14.10 one
has an equality [[(Y x 0,Y x AL #%)]] = [[(Y x 0,Y x AL, (t — 1)(¢t + 1))]]
in ZF1((Y,Y?), (X, X?)). By the additivity relation from Lemma 4.6 and
Lemma 14.12 one has

(Y <0,V xAL, (t=1)(t+1))]] = [[(Y x0,Y x AL, 20)]]+[[(Y x0,Y x A, —2t)]]

in ZF1((Y, YO)
ALXN-(t— AT

(X, X9)). Similarly, [(Y x0,Y x AL X-t3)]] = [[(Y x0,Y x
Y- (t+A7Y)]] and

[(V % 0,Y x AL X-(t= A1) - (t+ A7) =
= [[(Y x0,Y x AL, 20)] + [(Y x 0,Y x A, —2t)]]

in ZF1((Y,Y?), (X, X9)). This proves the corollary. O

Corollary 14.14. Suppose chark # 2. Under the notation and hypotheses
of Lemma 14.111et Y° C Y, XY C X be open subsets as above Lemma 14.9.
Let A\ € k[Y]*. Then under the notation from Definition 4.3 one has an
equality in ZF1((Y,Y?), (X, X?))

[V x0,Y x ALA2-t;hopry)]] +[[(Y x0,Y x AL X-t% hopry)]] =
= [[(Y x 0,Y x AL, #% h o pry)]].

Proof. For brevity we drop h o pry from the notation. By Lemma 14.10 one
has an equality [[(Y x 0,Y x AL #3)]] = [[(Y x 0,Y x AL #3 + X - #?)]] in
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ZF1((Y,Y?), (X, X?)). By the additivity relation from Lemma 4.6 one has
an equality in ZF;((Y,Y?), (X, X%)):

(Y x0,Y x AL 2+ X-12)]] =
[(Y %0, (Y x AN, (84 2) - )] 4 [{t + X = 0}, (Y x A, (¢ + A))]]-

By Lemma 14.12 one has equalities in ZF1((Y,Y"?), (X, X?)):

[V x 0, (Y x A, (E+A) - )] = [[(V x 0, (Y x AT, A £2)]]
and

[t + A =0}, (Y x A, 22t + )] = [V x 0,(Y x A1), A2 1)]].

Whence follows the corollary. O

Proposition 14.15. Suppose char k # 2. Under the notation and hypotheses
of Lemma 14.111et Y? C Y, X° C X be open subsets as above Lemma 1.9.
Let A € k[Y]*. Then under the notation from Definition 4.3 one has an
equality in ZF1((Y,Y?), (X, X"))

[1(Y x0,Y x A", X2t hopry)]] = [[(Y x0,Y x A1, t; hopry)]] = [lox]]o [[A]]

Proof. For brevity we drop h o pry from the notation. The second equality
is obvious. Let us prove the first one. By Corollary 14.14 one has

(Y x0,Y x ALAZ- )]+ [[(Y x0,Y x AL X -] =
=[[(Y x0,Y x AL )]+ [[(Y x 0,V x A #?)]]

in ZF1((Y,Y?), (X, X?)). Corollary 14.13 now completes the proof of the
proposition. ]

Proof of Theorem 14.4. Take h = f o s. Repeating literally the proof of
Theorem 14.3, one gets an equality

(37)

[[o]] = [[oX ' ]o[[Wx0, Wx AL, Jt; (fos)oprw]] € ZF (W, W°), (X, X°)).

By assumptions of the theorem .J = A\? for a unit A\ € k[W]*. By Proposition
14.15 one has an equality [[W x 0, W x AL, J-t; (fos)oprw]] = [[ox]]o[[fos]]
in ZF y((W,W°), (X, X°)). This proves the theorem. O
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Proposition 14.16. Suppose char k = 2. Under the notation and hypotheses
of Lemma 14.11 let YO C Y, X° C X be open subsets as above Lemma
14.9. Let u € k[Y]*. Then under the notation from Definition 4.3 one has
equalities in ZF1((Y,Y?), (X, X0))

2-[[(Yx0,Y x AL - t;hopry)]] =2-[[(Y x0,Y x AL t;hopry)]] =
=2 ([[ox]] o [[A]])-

Proof. The second equality is obvious. Let us prove the first one. For brevity
we drop h o pry from the notation. By Lemma 14.10 one has an equality
[(Y x0,Y x AL )] = [[(Y x0,Y x AL t(t+ )] in ZF1((Y,Y), (X, X©)).
By the additivity relation from Lemma 4.6 and Lemma 14.12 one has

(VY x0,Y x AL t(t+p)]] = [[(Y x0,Y x AL, ut)]]+[[(Y x0,Y x AL, ut)]] =
=2-[[(Y x0,Y x A, ut)]]

in ZF1((Y,Y?), (X, X")). Thus,
2-[[(Y x0,Y x AL, ut)]] = [[(Y x 0,V x AL, )] =2 [[(Y x0,Y x AL )]].

This proves the proposition. O

Proof of Theorem 14.5. Repeating literally the proof of Theorem 14.3, one
gets an equality

(38)

[[a]] = [[oX e [[Wx0, Wx AL, Jt; (fos)oprw]] € ZEn((W,W°), (X, X°)).

By Proposition 14.16 one has 2 - [[W x 0, W x AL J - t;(fos)opry]] =
2-([lex]]e[[fos]]) € ZF N (W, W°), (X, X°)). This proves the theorem. [J

15. Constructing hy, F' and hy from Propositions 12.6
and 10.9

In the first part of this section we construct the functions hj, F' from Propo-
sition 12.6 and prove this proposition. In the second part of this section we
construct the function hg from Proposition 10.9 and prove this proposition
as well.

Let X and X’ be as in Remark 10.4 and let ¢ : X — B be the almost
elementary fibration from Remark 10.4. Since ¢ : X — B is an almost ele-
mentary fibration there is a commutative diagram of the form (see Definition
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8.1)
(39) X 7 Xt x,
\a /
B

with morphisms j, G, i, g satisfying the conditions (i)—(iv) from Defini-
tion 8.1. }

The composite morphism X' L x4 Xis quasi-finite. Let X’ be the
normalization X/, of X in Spec(k(X')). Let IT : X’ — X be the canonical
morphism (it is finite and surjective). Then (IT)~!(X) coincides with the
normalization X/ of X in Spec(k(X’)). Let f € k[X]] be from Definition
10.2. Let Y/ = {f = 0} be the corresponding effective Cartier divisor of X},
from that definition. The morphism (g o (1:[|1=[_1(X)))|y/ :Y" — B is finite,
since ¢qly : Y — B is finite and II is finite. Thus Y is closed in X'. Since Y’
is in (IT)~!(X) it has the empty intersection with (II)~!(X). Hence

X' = X' — () (X)) UY).

Both (1)} (Xo) and Y’ are Cartier divisors in X'. The Cartier divisor
(T)~!(Xoo) is ample. Thus the Cartier divisor D' := ()~ (Xoo) LY is
ample as well and (q o II)|p/ : D" — B is finite.

Set T = x/ W9 % xpg X' (the transpose of the graph of the B-
morphism II). The projection X xp X’ — X’ is a smooth morphism, since
q is smooth. The morphism (I, id) is a section of the projection. Hence I is
a Cartier divisor in X xpg X'

Set I' = pr;—(l(U) NT C U xp X' Then I' C U xp X’ is a Cartier
divisor. The scheme U’ is contained in I' as an open subscheme via the
inclusion (7, can’), where can’ : U’ — X' is the canonical morphism. The
composite morphism pry o (m,can’) : U — U coincides with 7 : U’ — U.
Thus prg|r: I' — U is étale at the points of U’.

Lemma 15.1. Set I' = U xy I’ c U xyp U x X' = U' xg X'. Then
I c U xg X' is a Cartier divisor. Moreover,

I'=AU) UG

and G' N (U xp S') = 0, where S" C X' is the closed subscheme from
Section 10.
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Proof. Consider the diagonal morphism A : U’ — U’ xp X'. It lands in
U’'xyT’ = IV and it is a section of the projection U’ xI" — U’. The morphism
I' — U is étale at all points of U’. Hence the morphism IV = U’ xy I’ — U’
is étale at all points of U’ xyy U’. Particularly, it is étale along the diagonal
A(U’). Hence the morphism A : U’ — U’ xy I' is étale. Thus A(U’) is an
open subset of U’ xy I' = I". Since A(U’) is a closed subset of I, hence
I"'=AU)UG.

We now prove that G' N (U’ xp S") = (). For that consider the closed
subscheme S of the scheme X from Section 10 and recall that S and S’ are
reduced schemes and the morphism Il|g : 8" — S is a scheme isomorphism.
There is a chain of inclusions of subsets

(7 xid)(G'NU' x5 ') C (wxid)(G')NU x5S CTN(UxpS) C T

T|sinur )

snur :S"NU" — U. One has an equality

where I ) is the graph of

s'nu’

(7 X id)|trx55) ™ Tl grn) = A" NT").
Thus G’ N (U' xp S’) C A(S'NU’). Finally,
G'NU xpS)cGNAWS' NU)cG NAU) =0. O

Remark 15.2. It is easy to check that TNU xg S = §(S" NU’), where
o(s') = (n(s), s').

Definition 15.3. Set D' = U xg D' and D" = U’ xy D' = U’ xg D'. They
are Cartier divisors on U x g X’ and U’ x g X’ respectively. Note that the
scheme D’ is finite over U and the scheme D” is finite over U’.

Let so € I'(U xp X', L(D’)) be the canonical section of the invertible
sheaf £(D') (its vanishing locus is D). Let sp € I'(U xg X', L(I')) be the
canonical section of the invertible sheaf £(I") (its vanishing locus is I'). Let
sawr) € (U xp X', L(A(U")) be the canonical section of the invertible
sheaf L(A(U")) (its vanishing locus is A(U’)). Let s € T'(U' xp X', L(G"))
be the canonical section of the invertible sheaf £(G’) (its vanishing locus is
G).

Notation 15.4. Set I’ = L(—D’), I” = L(—D"). They are the ideal sheaves
defining the Cartier divisors D’ and D" respectively. Denote by J’ the ideal

sheaf defining the closed subscheme U x5 S’ of U x5 X'. Denote by J " the
ideal sheaf defining the closed subscheme U’ xg S’ of U’ xp X'.
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By Serre’s vanishing theorem there is an integer n > 0 such that the
following cohomology groups vanish: H'(U xg X', J' ® I' ® L(nD’')) and
HY U xg X', J"®I"® L(nD" — A(U"))).

The fact that these cohomology groups vanish guaranties the existence
of sections s; and ¢;, from Constructions 15.5 and 15.7 below.

Construction 15.5. Find a section s1 € T'(U xp X', L(nD')) such that:
(1) s1luxps: = mM1@(sr|uxys), wherery € T(UxpS', L(nD'—T))|ux z57)
has no zeros;
(2) si|pr has no zeros.

Construction 15.6. Set t; := (7 x id)*(s1) € [(U’' xg X', L(nD")). Then
(1) il ps =11 @ (Sa@wn|vrxzs) @ (sa/|vrxps),

where ) equals ((m X id)|yx ) (r1) € DU xp S, L(ND" —T") | xps);
(2") t1|pr has no zeros.

The second property of ¢; is obvious. To prove the first one recall that
I = A(U") UG by Lemma 15.1. Hence (7 x id)*(sT) = saw) @ sg'-

Construction 15.7. Construct a section tg € T'(U' xg X', L(nD")) of the
Jorm tg =t @ spr), where ty € D(U' xp X', L(nD" — A(U"))) satisfies the
following conditions:

(1") tylpr = (t1lpr) @ (sa@wn o)~

2") thlurxss =71 @ (ser|vxps ), where 7 is from Construction 15.6.

Lemma 15.8. The following properties are true:
(1" to|pr = t1|pr and both sections have no zeros on D”;
(2///) to
S ,) XB S’
Indeed, the first equality is obvious. The second one follows from the
chain of equalities

Uxps = ti|lurxgs and both sections have no zeros on (U’ —

toluxps = (tolurxss) @ (Sa@)lvrxss) =

=71 ® (s¢'|Urxps) ® (SA(U') Urxps') = ti|urxzsr

Definition 15.9. Let s} := (7 x id)*(so) € ['(U’ xp X', L(D")). Set,

]. _6 t 075 1 ’ ’
hpy = ( ,)O+ Dlat v x € k[A' x U xp X'
(50)®" | arxU x5 X7

and
e 51|Ux 5 X7

= c klU x5 X".
o) o < MU 2 X
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Proof of Proposition 12.6. Let prog : Al x U xg X' — U’ xg X' be the
projection. Consider two sections (1 — 0)tg + 6¢; and (s))®" of the line
bundle pri;(L(n-D")) on Al x U’ x g X’. By Lemma 15.8 these two sections
have no common zeros. Thus one has morphism

[pr, (1 — O)to + 0ty : (s5)%7] - Al x U xp X' — Al x U’ x P!,

where pr : Al x U' xgp X’ — Al x U’ is the projection. This morphism is
quasi-finite and projective. Hence it is finite and surjective. It follows that
any of its base changes is finite and surjective. Particularly, the morphism
(prihy) : A x U x X" — Al x U’ x A! is finite and surjective, because
the closed subset {(s{)®" = 0} in A! x U’ xp X' coincides with the one
Al x D". This proves the assertion (a) of Proposition 12.6. The assertion
(e) of Proposition 12.6 is proved in the same fashion. Lemma 15.1 yields the
assertion (b). Lemma 15.8(2”’) yields the assertion (d). The assertion (c)
follows from the construction of F' and h). The property (1) of the section
s1 yields the assertion (f), whence follows the proposition. O

In the rest of the section under the hypotheses of Proposition 10.9 we
will construct a function hy € k[A! x U xp X] and prove Proposition 10.9.

Let X and X’ be as in Remark 10.4 and let ¢ : X — B be the almost
elementary fibration from Remark 10.4. Let X, j : X — X and X, and
i : Xoo — X be as in the diagram (39). So, they satisfy the conditions
(i)—(iv) from Definition 8.1.

The composite morphism X’ L x4 Xis quasi-finite. Let X’ be the
normalization of X in Spec(k(X’)). Let II : X’ — X be the canonical
morphism (it is finite and surjective). Let X, C X be the Cartier divisor
from diagram (39). Set X’ := (I1) "} (X) (scheme-theoretically). Then X/ _
is a Cartier divisor on X’. Set

E::UXBXOO and E/Z:UXBX!)O.

These are Cartier divisors on U xp X and U x g X' respectively and (id x
*(E)=FE.

Choose an integer n > 0. Find a section r1(n) € I'(U xp S, L(nE —
A(U)|ux,s) which has no zeros. Let saqy € T'(U xp X, L(A(U)) be the
canonical section of the invertible sheaf L(A(U)) (its vanishing locus is
A(U)). To define the desired function hy, we need the following

Construction 15.10. For any integer n >> 0 find a section s1(n) € I'(U x
X', L(nE")) having properties as follows.
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(1) The Cartier divisor Z1(n) := {s}(n) = 0} has the following properties:
(10) Z{(n) C U xp X’;

(1a') the Cartier divisor Z1(n) is finite and étale over U;

(1b) the morphism i = (idx11)|z: ) : Z1(n) = UxpX is a closed embedding.
Denote by Z1(n) the closed subscheme i(Zj(n)) of the scheme U xp X.

(2) s1(M)|vxps = (id x I*(sa@))vxss @ ((d XID]ux,s)* (r1(n)).
Proof. The main difficulty is to achieve the property (1b). For any integer
n > 0, set

vrin(n) = (id x )" (sa@)|vx s @ ((id XTIy 5)* (r1(n))
S F(U XB S,,E(TLE,”UXBS/).

For any n > 0 choose a section veo(n) € I'(E', L(nE")|g) having no zeros.
This is possible, because E’ is a semi-local scheme. Set 7" = U xg S’ U E'.
Let v(n) € T'(T', L(nE")|7/) be the unique section such that v(n)|yx,s =
Vin(n) and v(n)|p = voo(n). Set V(n) = v(n)|zx 17

 Firstly, for any integer n > 0 we will find a section 5(n) € I'(z xp
X', L(nE")|,« %) such that the Cartier divisor Z(n) := {5(n) = 0} is finite
and étale over z, Z(n) C x xp X', the morphism (id x II)|z(,) : Z(n) —

x xp X is a closed embedding and 5(n)|;x,7 = 9(n).

Then we patch 5(n) and v(n) to get a section sezt(n) of LINE")|pipy , 3
such that the restriction of s..¢(n) to T coincides with v(n) and the re-
striction of sezt(n) to x xp X’ coincides with 5(n). Finally, using Serre’s
vanishing theorem for n > 0, we lift the section s¢.¢(n) to a section s} (n) €
L(U xp X', L(nE")). The latter section s|(n) is the desired one as one can
easily check.

The nearest aim is to find the desired section §(n). This requires some
cohomological computations. Consider k(z)-schemes ¥ = z xp X, Y/ =
rxp XY =2 xp X', T, =2 xg T'. Write E, for the effective Cartier
divisor E'ly, on Y. Set Y] = Y' — T/ =Y’ —x x5 S'. Consider H(n) :=
HY(Y', L(nEL)) =T(Y', L(nE.)). Also, consider the restriction map

n i H(n) — H(Ty, L(nEL)| 7).

By Serre’s vanishing theorem this map is surjective for n > 0. Denote by
H(n)5(n) the affine subspace 7,1 (0(n)) in H%(n). For n > 0 the dimension
h®(n)g(n) of this affine k( )-subspace coincides with the dimension h°(nE’, —
T!) of HY(Y',L(nE" —T")) over k(x).

Let y € Y be a point (not necessarily closed). Set Y, =Y X, y, Y’
Y %oy, T, =T} X, y. Write E;, for the Cartier divisor E, x, y on Y}. Let
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Oy 1y — Yy’ be the diagonal embedding. Set H%(n,y) := HO(Yy’,[,(nEZ’J -
26,(y))). Also, consider the restriction map

Thy : Ho(n,y) — HO(T?;, E(nE; — 25y(y))\Té).

Show that there exists an ng > 0 such that for all n > ng and all y € Y the
map 7y, is an epimorphism. Take locally free sheaves F,, = p§., (L(nE,—1T7))
and G, = F,, @ L(—2-A(Y])) on YJ x Y. It follows from [12, Ch. II, Section
5, Corollary 2] that

HY(Yy x Y, Gp) @y k(y) = H' (Y, L(nE,, — T, — 2 6,()))-

By Serre’s vanishing theorem there exists ng > 0 such that for any n > ng
one has H'(Yy x Y’,G,) = 0. Hence H*(Y,), L(nE; — T, —2-6,(y))) = 0 for
any n > ng. Thus 7, is surjective for any n > ng. Let s, € H°(Y,), L(5,(y)))
be the canonical section of the line bundle £(d,(y)) on Y,. Multiplication by
52 identifies H(T,, L(nE;, — 20y (y))|r;) with HY(T,, L(nEy)|T;), because
sy has no zeros on T}. Let w(n,y) be a unique element in H(T}, L(nE, —
20y(y))|T;) such that 3?2 ® w(n,y) = 0(n). Denote by H°(n,y)p(n,y) the
affine k(y)-subspace r,, | (w(n,y)) in the k(y)-vector space H°(n,y). For n >
ng the dimension ho(n,y)@(my) of Ho(n,y)u—,(nw over k(y) coincides with
the dimension h%(nE;, — T, — 26,(y)) of HO(Y,, L(nE, — T, — 26,(y))) over
k(y). Since H'(Y,, L(nE;, — T, — 2 - 6,(y))) = 0 for any n > ng, we have
W (nE, — T, — 26,(y)) = h°(nE; — T,) — 2. Thus for any n > ny we have

(40) ho(nv y)w(n,y) = ho(n)ﬂ(n) —2.

Now regard H(n)y(, as a k(z)-scheme and for any point y € Y write
HO (1) 5(n) @k(x) k(y) for the corresponding k(y)-scheme. Consider the scheme
Yy x H%(n)y(, and its closed subset Incay(n) = {(y,t) : divy(t) > 2}. We
claim that for any n > ng one has

(41) dim(Incy(n)) = ho(n)l—,(n) -1

In fact, if n > ng, then for any y € Y{ the fibre of Incy(n) over y is the affine
k(y)-subspace H(n,y)g(ny) in the affine k(y)-space HO(n)g(m) @z k(y)-
Since dim(Yy) = 1, the equality (40) shows that the equality (41) is true.
Let po @ Yy % Ho(n)ﬁ(n) — Ho(n)ﬁ(n) be the projection. Then the equality
(41) shows that for all n > ng the Zariski closure pa(Incy(n)) is a proper
closed subset in H O(n)ﬁ(n).
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Now consider the scheme (Y xy Yy — A(Yp)) X H%(n)g(,) and its closed
subset Inci(n) = {(y1,y2,t) : t(y1) = 0 = t(y2)}. We claim that for any
integer n > 0 one has dim(Inci(n)) = dim(HO(n)q—)(n)) — 1. This equal-
ity is proved in the same way as the equality (41). A crucial point in
the proof of the latter equality is that dim(Y] xy Yy — A(Yp)) = 1. Let
g2 : Inci(n) — H%(n)g(,) be the projection. Then for any n > ny the Zariski

closure g2(Inci(n)) is a proper closed subset in H%(n)g(,). Set

V(n) = H(n)sm) — 2(Inci(n)) U pa(Inca(n)),

where the bar means the Zariski closure. Then V(n) is a non-empty open
subset of Ho(n)ﬂ(n). Let s(n) € V(n) be a k(x)-rational point. The Cartier
divisor Z(n) := {8(n) = 0} is contained in Y] C Y’ and the scheme Z(n)
is étale over Spec(k(x)), because §(n) is not in pa(Inca(n)). Let k(x) be
the algebraic closure of k(x). Then for any two different points yi,y2 €

Supp(Z(n) @) k(z)) one has

(I ®p(a) k(z))(y1) # (1 Qk(x) k(x)) (1)

in Y ®j(s) k(x), because 5(n) is not in ga(Inci(n)). Hence the morphism
(id x )| z¢) : Z(n) = Y is a closed embedding. Moreover, 5(n)|r, = v(n).
Since T, = x xp T, we have found the desired section 5(n).

Next, patching 5(n) and v(n) we get a section sezt(n) of L(NE")| 7 ey o %0
such that sey¢(n)|r = v(n) and sepi(n)|,x,x = 5(n). If n > 0, then by
Serre’s vanishing theorem we can lift the section se;:(n) to a section s} (n) €
L(U xp X', L(nE")). The latter section s(n) is the desired one as one can
easily check. O

Lemma 15.11. Let n > 0 and Z1(n) be as in Construction 15.10. Proper-
ties (1a), (1a’) and (1b) yield the following property: B
(1c) one has a scheme equality (id x I1)~1(Z1(n)) = Z{(n) U Z(n).

Proof. The morphism id x IT : U xg X' — U xpg X is étale. It follows
that the morphism (id X II)|Gaxim-1(z,(ny) © (id X )71 (Z1(n)) = Z1(n) is
étale. Since i : Zj(n) — Zi(n) is an isomorphism, hence the étale mor-
phism (id x II)|(gx11)-1(2,(n)) has a section whose image is Zj(n). Thus
(id x I)~Y(Z1(n)) = Z}(n) U Z5(n). The property (1a’) shows now that

(id x )~} (Z1(n)) = Z1(n) U Zj(n),
where Z4(n) is the closure of Zi(n) in U x X'. One has Zj(n) N Z4(n) C

(U xpX")NZj(n) = Zj(n). Hence Z{(n) N Zy(n) C Z{(n)NZ5(n) (2)2 Thus
(id x I)~Y(Z1) = Z1(n) U Z4(n). O



76 Grigory Garkusha and Ivan Panin

Lemma 15.12. Let n > 0 and Z5(n) be as Lemma 15.11. Then one has
Zh(n)NU xp S’ = 0.

Proof. One has a chain of inclusions

(id x (U x5 §') 0 Z4(n)) C (id x T)((U x5 §') 1 (id x T)~L(Zy(n))) =
= (U X B S) N Zl(n).

This inclusion and the fact that the morphism (id x II)|yx .5 : U xp S" —
U x g S is an isomorphism yield the following inclusions (U x g S") N Z4(n) C
(U xp SN Zj(n) € Z;(n). Since U xp S' N Zh(n) C Z4(n), we see that
U xpgS'NZin)C Zy(n)N Zy(n) = 0 by Lemma 15.11. O

Note that the Cartier divisor Z1(n) in U x g X is equivalent to the Cartier
divisor dnE, where d = [k(X') : k(X)]. Let s1(n) € T(U xg X, L(Z1(n))) be
the canonical section (its vanishing locus is Zj(n)). By property (1c¢) from
Lemma 15.11 one has an equality

(42) (id x I)" (s1(n)) = (s1(n) ® s(n)) - p(n),

where pu(n) € k[U]* and sh(n) € T(U xp X', £(Z5(n))) is the canonical

section of the line bundle £(Z}(n)).

Definition 15.13. For n > 0 set t1(n) = s1(n) € T(U x5 X, L(Z1(n))) =
(U xp X, L(dnE)).

Similar to Construction 15.7 we are able to do the following

Construction 15.14. For n > 0 construct a section to(n) € I'(U xp
X, L(dnE)) of the form to(n) = saw) ® ty(n), where ty(n) € T(U xp
X, L(dnE — A(U))) and sawy € T'(U xp X, L(A(U))) is the canonical sec-
tion (its vanishing locus is A(U)) and t((n) has the following properties:
(1) th(n) | = (1)) © (580 |) "

(21) ((dxID)[urx 5)" (o (M)l 55) = ((d XTD[orx,50)* (r1(n))©(s5(1) [0 557)-
(u(n)|Uxzs), where r1(n) is defined just above Construction 15.10, sh(n)
and p(n) € k[U]* are defined just above the present construction (since
UxpS' =2 UxpgS, then condition (2") onty(n) is a condition onti(n)|ux,s)-

Proof. Set T'=U xp SUE. If n > 0, then by Serre’s vanishing theorem
the restriction map

LU xg X, L(dnE — A(U))) — I(T, L(dnE — A(U))|r)

is surjective. This completes the proof. O



Homotopy invariant presheaves with framed transfers 7

Lemma 15.15. For n > 0 the following statements are true:
(1") to(n)|g = t1(n)|g and both sections have no zeros on E;
(2") to(n)|uxzs = t1(n)|uxps and both sections have no zeros on (U—S)xp
S.

)
(3") th(n)|ux s has no zeros.

Proof. Indeed, the first equality is obvious. To prove the second one, it
suffices to prove the equality

((id x ID) |y x ps)* (to () [Ux p5) = ((id X I)|trx )" (t1(0) [ 59)-
This equality is a consequence of the following chain of equalities:
((id x M) 5s1)* (to(n)|ux ps) =

(id > D) (sa )| x s @ ((id XID)[vrx p5) " (r1(n)) @ (55 (1) [ ) - (1(0) | ps7) =
= s1()|uxps @ (s5(n)|uxps) - (WM)|uxps) = ((id x Muxgs) (t1(0)uxss)-
The first equality holds by property (2’) from Construction 15.14, the second
equality holds by property (2) from Construction 15.10. The third equality
follows from the relation (42). The assertion (3”) follows from Lemma 15.12
and Construction 15.14(27). O

Definition 15.16. Choose n > 0 and set

hy — (1 =0)-to(n) +0-t1(n))|arxuxx € kA x U x5 X],

(829 a1 xrxx

where sp € I'(U xp X, L(F)) is the canonical section.

Proof of Proposition 10.9. Let prog : A' x U xg X — U xpg X be the pro-
jection. Consider two sections (1 — 0) - to(n) + 0 - t1(n) and s$™ of the line
bundle pri;(L(dnE)) on Al x U xp X. By Lemma 15.15 these two sections
have no common zeros. Thus one has a morphism

prio, (1 —0) - to(n) +60-t1(n) : s29 Al x U xp X —» A x U x P!,
E

where pris : Al x U’ xg X' — A! x U’ is the projection. This morphism is
quasi-finite and projective. Hence it is finite and surjective. It follows that
any of its base changes is finite and surjective. Particularly, the morphism
(prio, he) : A x U x X — Al x U x Al is finite and surjective, because the
closed subset {s%dn =0} in A! x U xp X coincides with the one A! x E.
This proves the assertion (a) of Proposition 10.9.

Lemma 15.15 yields the assertion (d) of Proposition 10.9. The prop-
erty (1b) from Construction 15.10 and Lemma 15.11 yields the assertion
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(c) of Proposition 10.9. Lemma 15.12 and the property (2’) from Construc-
tion 15.14 yield the assertion (b) of Proposition 10.9. Proposition 10.9 fol-
lows. O

16. Nisnevich cohomology with coeffitients in a ZF-sheaf

Lemma 16.1. The category of Nisnevich sheaves of Abelian groups with
ZF,-transfers is a Grothendieck category.

Proof. The category of presheaves of Abelian groups with ZF,-transfers is
plainly a Grothendieck category. Since for every radditive framed presheaf
of Abelian groups F' the associated sheaf in the Nisnevich topology has a
unique structure of a framed presheaf such that the map F' — Fy;s is a map
of framed presheaves by Corollary 2.17, our lemma is now proved similar
to [7, 6.4]. O

The main purpose of this section is to prove the following

Proposition 16.2. For any Nisnevich sheaf F with ZF,-transfers, any in-
teger n and any k-smooth scheme X, there is a natural isomorphism

H]T\l/zs(X)F) :Eth(ZF*(X)Nisvf)v

where the Ext-groups are taken in the Grothendieck category of Nisnevich
sheaves with ZF,-transfers.

Recall that for a morphism f: Y — X we denote by C(f) or C(Y) the
Cech simplicial object defined by f.

Lemma 16.3 ([20], Theorem 4.4). Let f: Y — X be an etale (respectively
Nisnevich) covering of a k-smooth scheme X. Then for any n the map of
simplicial presheaves

Fr (=, C(Y)) = Fruo(—, X)

is a local equivalence in the etale (respectively Nisnevich) topology.

Definition 16.4. For any U € Sm//k and X € Sm/k define F,,(U, X) C
Frp(U,X) as a subset consisting of (Z, W, ¢;g9) € Fry (U, X) such that Z
is connected.

Clearly, the set F,,(U,X) — (,, is a free basis of the abelian group
ZF, (U, X). However, the assignment U +— F,,(U, X) is not a presheaf even
on the category Sm/k.
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Applying the proof of [20, Theorem 4.4] one can conclude that the fol-
lowing lemma holds:

Lemma 16.5. Let f: Y — X be an etale (respectively Nisnevich) covering
of a k-smooth scheme X. Then for any local essentially k-smooth henselian
scheme U and for any integer n = 0 the map of pointed simplicial sets

F(U,C(Y)) = F,(U, X)

1s a weak equivalence.

Corollary 16.6. Let f : Y — X be an etale (respectively Nisnevich) cov-
ering of a k-smooth scheme X. Then for any n the maps of simplicial
presheaves

ZFn<_7é(Y)) %ZFn(_aX)v ZF*(_vé(Y)) _>ZF*(_7X)

are local equivalences in the Nisnevich topology.

Corollary 16.7. Let I be an injective object in the category of Nisnevich
sheaves with ZFy-transfers. Then for any k-smooth scheme X and for all
i >0, one has Hy,, (X,I) = 0.

Proof. Using the preceding corollary, our proof is similar to that of [18,
1.7). 0

Proof of Proposition 16.2. Corollary 16.7 implies the proposition. OJ
Proposition 16.2 implies the following useful

Corollary 16.8. For any Nisnevich sheaf F with ZF,-transfers and any
integer n, the presheaf X — HY, (X, F) has a canonical structure of a
Z.F,-presheaf.

In fact, this holds for the presheaf X — Ext"(ZF.(X)nis, F)-
17. Homotopy invariance of cohomology presheaves

In this section we prove Theorems 17.15 and 17.16. They complete the proof
of Theorem 1.1, which is the main result of the paper. Each statement in
this section except Lemma 17.3 is split in two parts depending on whether
the characteristic of the base field does not equal 2 or equals 2. We will
only prove the case when the characteristic is not 2, because the case when
chark = 2 is proved similarly and is left to the reader. Throughout this
section the base field k is supposed to be infinite and perfect.
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We refer the reader to [6] or [5] for the definition and basic properties
of the henselization Y} of an affine scheme Y € Sm//k along a closed sub-
scheme Z. If y € Y is a point we sometimes write Y, for Spec(Oy,,) and Y,
for (Yy);‘ All k-schemes of the form Y} we work with in this section belong
to the category Sm'/k.

Definition 17.1. Let G be a homotopy invariant presheaf of abelian groups
with ZF,-transfers. Then the presheaf X — G_1(X) := G(X x (Al —
0))/G(X) is also a homotopy invariant presheaf of abelian groups with ZF-
transfers. If the presheaf G is a Nisnevich sheaf, then the presheaf G_; is also
a Nisnevich sheaf. If the presheaf GG is quasi-stable, then so is the presheaf
G_1.

If G is a presheaf on Sm/k and Y is a k-smooth scheme, then denote by
G|y the restriction of G to the small Nisnevich site of V.

Consider the inclusion of categories inc : Sm/k — Sm'/k where Sm'/k
is the category of essentially smooth schemes over k. Then for any presheaf
G of Abelian groups on Sm/k the restriction of the presheaf inc.(G) on
Sm'/k to Sm/k equals G (that is inc*(inc«(G)) = G on Sm/k). For any
essentially smooth scheme Y over k we will use notation G(Y') instead of
inc(G)(Y).

Let Y € Sm//k. Since Y is Noetherian it makes sense to consider the
small Nisnevich site Yy;s. We will write G|y for the presheaf W — G(W)
on Yy;s. Particularly, this notation will be used for Y € Sm/k. One can
show that for any Y € Sm//k the presheaf G|y is a Nisnevich sheaf on Yy
whenever G is a Nisnevich sheaf on Sm/k.

For any closed subset Z in Y, any integer n and any Nisnevich sheaf G
of abelian groups on the small Nisnevich site Yy;s of Y write H7(Y, G) for
the Nisnevich cohomology with support on Z.

The following useful result will be used in this section several times
(cf. [19, Lemma E.6]).

Proposition 17.2. Let Y be in Sm//k. Write Y as a filtered limit limY;
over a small filtered category I, where Y; are in Sm/k and the transition
morphisms p;; : Y; — Y are affine étale morphisms. Let F be a Nisnevich
sheaf on Sm/k. Then for any integer n > 0 the canonical map

COhmieI H}%fzs (Y;, F

Yi) - HR[ZS(Y7‘F‘Y)

is an isomorphism. More generally, for any ¢ € I let ¢; 1 Y; = Y be the
canonical morphism. Let Z C'Y be a closed subset. Then there is an i € [
and a closed subset Z; in Y; such that Z = p~1(Z;). Moreover, if for any



Homotopy invariant presheaves with framed transfers 81

j € I with i < j we write Z; for go;il (Zi), then for any integer n > 0 the
canonical map

colimigjer Hy (Yj, Fly,) = Hz(Y, Fly)

s an isomorphism.

Proof. The proof is like that for the Zariski topology case and is quite stan-
dard. Therefore we will only sketch the proof. For any Y € Sm//k and a
Nisnevich sheaf G of abelian groups on Yy;s we say that G is flasque if for
any V € Yn;s and any Zariski open subset W in V the restriction map
G(V) — G(W) is an epimorphism. It is easy to check the following: (1) for
any flasque sheaf G on Yy;s and any n > 0 the group Hy: (Y, G) vanishes; (2)
for any injective Nisnevich sheaf of abelian groups Z on Sm/k the Nisnevich
sheaf Z|y on Yy;s is flasque.

The property (1) shows that the groups Hpy, (Y, G) can be computed
using flasque resolutions. Take a Nisnevich sheaf F of abelian groups on
Sm/k. Let 0 — F — Z° be its injective resolution on the big Nisnevich site
(Sm/k)nis. Then for any integer n > 0 the Nisnevich sheaf Z|y is flasque
and for any ¢ € I the Nisnevich sheaf Z|y, is flasque. Thus

Hys(Y, Fly) = HY(Z(Y®)) = H"(colim;eZ°(Y;)) =
= colim;ef H"(Z*(Y;)) = colim;er Hy,s(Yi, Fly;)-

This proves the first assertion.
To prove the second one consider a long exact sequence

Hiio (Y, Fly) = Hiyi (Y — Z,Fly—z) = HyPY(Y, Fly) =
— HytHY, Fly) = HYEN(Y — Z,Fly_z),

and for any j € I with ¢ < j consider similar sequences corresponding to the
pair (Y}, Z;). The first assertion of the proposition now implies the second
one. O

For any Y € Sm’/k, any closed subset Z in Y, any integer n and any
Nisnevich sheaf G of abelian groups on the Nisnevich site Yy;s of Y consider
the presheaf Y’ — H7, (Y, G), where Z' =Y' xy Z. We will write H% (Y, G)
for the associated Nisnevich sheaf on Yy;s.

Lemma 17.3. For any A'-invariant quasi-stable ZF,-sheaf of abelian groups
F, any k-smooth scheme Y and any k-smooth divisor D in'Y the canonical
morphism Hp(Y,F) — HY,; (Y, HL(Y,F)) is an isomorphism.
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Proof. The local-global spectral sequence yields an exact sequence

Hy;o (Y, Hp(Y. F)) = Hp(Y, F) —

By Theorem 3.15(3") all Nisnevich stalks of the sheaf H% (Y, F) vanishes.
Thus the sheaf H% (Y, F) vanish. This proves the lemma. O

Proposition 17.4. Let S € Sm/k, s € S be a point, V = Spec(Os),
W = VI Let V = Spec(Owxat (s0)) and can @V — W x Al be the
canonical embedding. Let F be an A'-invariant quasi-stable ZF,-presheaf of
abelian groups. Then the pull-back map

[[can]]* : F(W x (AL — {0}))/F(W x AY) = F(V =W x {0})/F(V)

18 an isomorphism.

Proof. For any étale neighborhood V; of the point s in V' let s; be the unique
point in V; lying over s. Set W; = Spec(Oy; s,) and V; = Spec(Ow, xa1,(s,,0))-
Then W = limW; and V = limV;. Consider the quotients F(W; x (Al —
{0}))/F(W; x Al) and F(V; — W; x {0})/F(V;). Both quotients make sense:
the first quotient makes sense due to Al-invariance of F, the second one
makes sense due to Theorem 3.15(3). Thus, the quotients F(W x (A! —
{0}))/F(W x A') and F(V — W x {0})/F(V) make sense as well. For any
1 the map

[[cani]]* : F(W; x (AY — {0}))/F(W; x AY) = F(V; — W; x {0})/F(Vy)

is an isomorphism by Corollary 3.19. Since [[can]]* = colim;er[[can;]]* we
see that the map [[can]]* is an isomorphism. O

Consider smooth k-schemes X;, X, and D. Let 4; : D — X; and 4, :
D — X, be closed embeddings. Let (X,,,m : X, — Xi,8: D — X,,,) and
(X, 2 Xy = X0y 8, 1 D — X)) be étale neighborhoods of 4;(D) in X
and i, (D) in X, respectively. These data are called geometric data if s; = s,.
In this case m,. o s; = i,.. We also write a zigzag

D% X <4 X ™ X, <= D

to denote the geometric data.
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Definition 17.5. We will say that geometric data X;, X,,, X, D, i, i,
(X 71, 81), (Xom, 7, 81) are Voevodsky’s data if X, = D x At and i : D —
X, = D x Al is the zero section. Clearly, in this case i;(D), s;(D) = s,(D)
are smooth divisors in X; and X, respectively. We also denote Voevodsky’s
data by writing a tuple (D, X;, X, X, ...).

If (D, X;, X, X, ...) are Voevodsky’s data, then for any Y € Sm/k the
data (Y x DY x X;,Y x X,,,, Y x X, ...) are Voevodsky’s data as well.

If (D, X}, X, X,,...) are Voevodsky’s data and X’ — X is an étale
morphism, then the data (X' x x D, X' x x X;, X' X x X, ...) are Voevodsky’s
data. Voevodsky’s data (D, X;, X;,,, X, ...) can be written as the following
zigzag (with ¢, is the zero section)

DX, & X, T D x Al {2 D.

Suppose F is a Nisnevich sheaf of abelian groups on Sm/k. Consider
three Nisnevich sheaves H; = ’Hill(D)(Xl,]:), Hpy = /H;(D)(Xm?]:) =
’H;(D)(Xm,]-') and H, = H}T(D) (Xr,F) on the small Nisnevich sites of
X;, X and X, respectively.

Lemma 17.6. For any geometric data X;, Xy, Xy, D, iy, iy (X, 71, 81),
(Xm, Ty 81) above Definition 17.5, there is a natural sheaf isomorphism
if (Hi) = i3 (Hr) on the small Nisnevich site of D. Particularly, this holds if
these geometric data are Voevodsky’s data.

Proof. Clearly, nf (H;) = My, = 7y (Hy). Thus we now have a chain of canon-
ical isomorphisms i} (H;) = sj (7] (H1)) = s (7 (Hr)) = iy (Hr)- O

The following lemma follows from the proof of [21, Theorem 4.14].

Lemma 17.7. For any X € Sm/k, any smooth divisor D in X and any
point x € X there is a Zariski neiborhood X; of the point x that can be fit
in Voevodsky’s data (D N Xp, X7, Xom, (DN X)) x AL ).

Remark 17.8. Let T € Sm/k and i : S — T be a k-smooth closed sub-
scheme, j: T'— S < T be the open subscheme. Let G be a Nisnevich sheaf
of abelian groups on the small Nisnevih site of T'. Then the sequence of Nis-
nevich sheaves G % Jx*(G) = HL(T,G) — 0 on T is exact and induces a
sheaf isomorphism 9 : cokery, s := coker(adj)nis = HE(T, G).

Proposition 17.9. Let D € Sm/k, ip : D < D x A! be the zero section,
jp : Dx(A'—0) < D x A! be the open embedding. Let G be an A'-invariant
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quasi-stable ZF-Nisnevich sheaf. Then there is a natural Nisnevich sheaf
isomorphism on the small Nisnevich site Dy;s of D

op : G_1|p = ip(cokerpxar,p).

If char k = 2, then the same statement is true if we assume that the ZF-
sheaf F is a sheaf of Z[1/2]-modules.

Proof. Consider G, j;,(G) and jp.j;(G) as presheaves on the small site
Dps. Take the adjuction morphism ap : G — jp «j},(G) and let coker(ap)
be its cokernel in the category of presheaves on D y;s. Clearly, cokerpyar p
is the Nisnevich sheaf associated with the presheaf coker(ap).

Recall that G_1(U) = G(U x (A1 —0))/G(U x Al) for any U € Dy;s. For
any a € G_1(U) let a € G(U x (A! —0)) be a lift of a. Translating literally
the proof of [21, Proposition 4.11] to the context of the Nisnevich site Dy;s,
we get a presheaf morphism ¢p : G_1|p — i},(coker(ap)) on Dy;s. For any
a € G_1(U) the element ¢p(a) € i},(coker(ap))(U) is the class of the pair
(U x Al,a), where a € G(U x (Al —0)).

To prove that the corresponding morphism @%is of the associated sheaves
in the Nisnevich topology on D is an isomorphism, it sufficient to show
that ¢p is an isomorphism on Nisnevich stalks. Take any point x € D and
note that if V.= (D x Al)l&o), then V contains D as a closed subscheme
(namely as the zero section). Furthermore V = (D} x Al)?x’o) = V(hm,o)’
where V = Spec(Opnyar (z,0))- We need to check that the homomorphism
(43)  G(D!x (A'-0))/G(DE x A') = G(VI — D! x 0)/G(V!)
is a group isomorphism. This homomorphism is a composition of the homo-
morphism G(D! x (A! —0))/G(D! x A') — G(V — DI x 0)/G(V) and the
homomorphism G(V — D! x 0)/G(V) — G(V&O) — DI x O)/G(V&’O)). The
first one is an isomorphism by Proposition 17.4. Applying Theorem 3.15(5)
and standard colimit arguments, one can show that the second homomor-
phism is an isomorphism as well. O

The proof of the latter proposition has the following

Corollary 17.10. Let G be an A'-invariant quasi-stable ZF,-presheaf. Sup-
pose the associated Nisnevich sheaf Gn;s vanishes. Then for any X,S €
Sm/k, any smooth divisor D C X, any points x € D and z € S x D one
has G(X! — D! =0 and G((S x X)" — (S x D)*) = 0. If chark = 2, then
the same statement is true if the ZFy-sheaf F is a sheaf of Z[1/2]-modules.
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Proof. The second assertion follows from the first one. Indeed, apply the
first assertion to the pair (S x X, S x D). We now prove the first assertion.
The assertion is local for the Zariski topology on X. Using Lemma 17.7
and shrinking X, we may assume that there are Voevodsky’s data D, X =
X1, Xm, X, = D x Al. Let y = sy(z), then y = s.(x,0). Let D, = s;(D).
Set V = (D x Al)?x,o)' Then V contains D? as a closed subscheme (as the
zero section). Clearly,
G(X} — D) = G((Xm)y — (Dm)y) = G(V — Dy).

Since G(V) = 0 we have G(V—-D!) = G(V—D"!)/G(V). The homomorphism
(43) is an isomorphism and V&O) = V. Thus G(V — Dﬁ)/G(V) = G(Di} X
(A' —0))/G(D" x A'). Since G is Al-invariant and G,;s = 0 we see that
G(D!x A') = 0. It remains to check that G(D? x (A —0)) = 0. The presheaf
X = G'(X) = G(X x (A1 -0)) is an Al-invariant quasi-stable ZF,-presheaf.
By Theorem 3.15(3’) the map G’(D") — G'(Spec(K)) is injective, where K
is the field of fractions for the henselian ring O%,x' One has G'(Spec(K)) =
G((A' — 0)k). The latter group embeds into G(Spec(K(t))) by Theorem
3.15(1). The latter group vanishes because G ;s = 0. O

Proposition 17.11. Suppose chark # 2. Let X € Sm/k andi: D — X be
a smooth divisor in X. Let F be an A'-invariant quasi-stable ZF,-sheaf of
abelian groups. Then the pull-back map

p’l“ﬁ( : H]Q/zs(Xa /H})(Xa ‘F)) — H]Q/ZS(Al X Xa /H}MXD(AI X Xv ]:))

is an isomorphism. If chark = 2, then the same statement is true if the
ZF,-sheaf F is a sheaf of Z[1/2]-modules.

Proof. This statement is local for the Zariski topology on X. Shrinking X we
may assume that there are Voevodsky’s data D, X = X;, X;n, X, = D x Al
This time we write ip : D — D x Al for the 0-section. By the comment
from Definition 17.5 the data Y x DY x X =Y x X, Y x X,,,,Y x X, =
(Y x D) x A! are also Voevodsky’s data. Using these data, Proposition 17.9,
Remark 17.8 and Lemma 17.6, we get a chain of sheaf isomorphisms on the
small site (Y x D) pnis
F-ilyxp = (idy x ip)*(cokeryxpxatyxp) =
= (idy x ip)*(Hy xpxo(Y x D x Al,F)) =

= (idy x i)*(Hyp(Y x X, F)).
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Since the adjunction map Hi-, (Y x X, F) — (idy x4).(idy xi)*(Hi, p (Y %
X, F)) is a sheaf isomorphism, we get a natural sheaf isomorphism on the
small Nisnevich site of ¥ x X

(44) (idy X 0)+(F-1lyxp) = Hyp(Y x X, F).
Taking global sections we get a group isomorphism, natural in Y,
ayxp : F_1(Y x D) = HYY x X, Hi p(Y x X, F)).

The functoriality of this isomorphism with respect to Y means that for the
projections prp : Y x D — D and prx : Y x X — X one has ayxpoprpy =
pry o ap. To complete the proof, take Y = Al and use the Al-invariance of
the sheaf F_;. O

Corollary 17.12. Suppose chark # 2. Let X € Sm/k and D be a smooth
divisor in X. Let F be an Al-invariant quasi-stable ZF,-sheaf of abelian
groups. Let x € D be a point. Then the map

Hy;o(Xg x AL F) = Hy (X3 — Dy) x AL F)

is injective. If char k = 2, then the same statement is true if the ZFy-sheaf
F is a sheaf of Z[1/2]-modules.

Proof. By Lemma 17.3 and Proposition 17.11 for any étale morphism X' —
X and D' = X’ x x D the pullback map H}, (X', F) — H}, p (Al x X', F)
is an isomorphism. Thus the map Héh(Xh F) = Hiy pn (Al x XP F) is
an isomorphism. The map 0 : F(X} — D) — H}), (XQ:F) is an epimor-
phlsm because H,; (X!, F) = 0. Therefore the mag F(Ax (XF—DM)) —

H}, Dh(Al x X!, F) is an epimorphism. This proves the corollary. O

Proposition 17.13. Let chark # 2 and K be a field such that Spec(K) €
Sm//k. Let F be an A'-invariant quasi-stable ZF,-sheaf of abelian groups.
Then HY, (A, F) = 0. If chark = 2, then the same statement is true if
the ZF-sheaf F is a sheaf of Z[1/2]-modules.

Proof. Let a € Hy, (AL, F). We want to prove that a = 0. The Nisnevich
topology is trivial at the generic point of the affine line A}(. Therefore there
is a Zariski open subset U in A}( such that the restriction of a to U vanishes.
Let Z be the complement of U in A}( regarded as a closed subscheme with
the reduced structure (it consists of finitely many closed points). Let V :=
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U.ez(AY)", where each summand is the henselization of the affine line at

z € Z. Then the cartesian square

V-Z——=V
| b
U AL

gives rise to a long exact sequence
FO)® F(V) = F(V = 2) % Hy,(hk, F) = Hyyo (U, F) @ Hy, (V. F).

The left arrow is surjective by Theorem 3.15 (items (2), (5)). The group
HJ,.(V,F) vanishes by the choice of V. Thus the map Hy, (AL, F) —
HY, (U, F) is injective, and hence a = 0. O

Proposition 17.14. Suppose the base field k is infinite and perfect with
chark # 2. Let F be an A'-invariant quasi-stable ZF,-sheaf of Abelian
groups. Let X be a k-smooth scheme and let a € Hi, (X x AL, F) be
an element such that its restriction to X x {0} vanishes. Then a = 0. If
char k = 2, then the same statement is true if the ZFy-sheaf F is a sheaf of
Z[1/2]-modules.

Proof. Let p: X x Al — X be the projection. Since the sheaf F is homotopy
invariant we have p,(F|xxa:) = F|x. Consider the exact sequence

0 = HYo (X, pu(Flxwar)) 2 Hiso(X x AL Flysn) D
s HYo (X, R'po(Flxwnr)-

Let ip : X — X x A! be the zero section. The identification p,(F|xxa1) =
F|x implies the map « is just the pullback map p*. Thus ijoa = iop* =
id : Hy; (X, Fx) — Hi, (X, Fx). Set,

A= Kerlity: Hy;s(X x AY, Flxxar) = Hyi(X, Flx)).

We now show that ker(5) N ker(if) = {0}. Indeed, if a € ker(3), then a =
a(a’) for some a' € Hy, (X, ps(Flxxar)). If a is also in ker(if), then 0 =
ig(a) = ij(a(a’)) = a’. Thus ¢’ =0 and a = 0.

Since ker(8]a) = ker(8) Nker(is) = {0}, it follows that the map S|4 :
A — HY, (X, R'p.(F|xxar)) is injective. The stalk of the sheaf R'p,(F)
at a point x € X is Hi, (X! x AL, F), where X! = S’pec((’)?(’x) is the
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henselization of the local scheme Spec(Ox,) at z. By Proposition 17.13
there is a closed subset Z in X such that (a)|x—z = 0. Since the field k& is
perfect, there is a proper closed subset Z1 C Z such that Z — Z; is k-smooth.
Then Z — Z; is a k-smooth closed subscheme in X — Z;.

We claim that a1 := a|(x_z,)xar = 0. By assumption, a1|(x_z,)x0 =
0. Thus it suffices to check that all Nisnevich stalks of the element 3(a;)
vanish. Let z € X — Z; be a point. If x € X — Z then f(a1), = 0, because
Bla1)|x—z = 0. If x € Z — Z; then shrinking X — Z; around x we may
assume that there is a k-smooth divisor D in X — Z; containing Z — Z;.
We now have f(a1)|x—p = 0, because f(a1)|x—z = 0. Now Corollary 17.12
shows that $(a1), = 0. We have proved that a; = 0.

Now there is a proper closed subset Zo C Z; such that Z; — Z5 is
k-smooth (we use here that k is a perfect field). Then Z; — Zs is a k-
smooth closed subscheme in X — Z,. Arguing just as above, we conclude
that az := al(x_z,)xa1 = 0.

Continuing this process finitely many times, we find a strictly decreasing
chain of closed subsets X D Z; D Z3 D ... D Z, = 0 in X such that for
any integer i = {1,2,...,n} one has a|x_z,)xa1 = 0. Taking i = n we get
a=alx_z,)xa = 0. O

Theorem 17.15. Suppose the base field k is infinite and perfect with
chark # 2. If F is an A'-invariant quasi-stable ZF,-sheaf of abelian groups,
then the ZF.-presheaf of abelian groups X H}ViS(X, F) is Al-invariant
and quasi-stable. If char k = 2, then the same statement is true if the ZF-
sheaf F is a sheaf of Z[1/2]-modules.

Proof. By Corollary 16.8 the presheaf X — Hj, (X, F) has a canoni-
cal structure of a ZF,-presheaf. Let X be a k-smooth scheme. Let ox €
Fri(X,X) be the distinguished morphism of level one. The assignement
X = (0% : F(X) = F(X)) is an endomorphism of the Nisnevich sheaf
Flsm /k- Thus for each n it induces an endomorphism of the cohomology
presheaf o* : H"(—,F) — H"(—,F). Since ¢* acts on F as an isomor-
phism, it acts as an isomorphism on the presheaf H"(—, F). We see that the
ZF,-presheaf H"(—, F) is quasi-stable.

To show that the presheaf X — Hx, (X, F) is Al-invariant, note that
the pullback map i : Hx, (X x AL, F) — HY, (X, F) is surjective. It is also
injective by Proposition 17.14. Our theorem now follows. O

Theorem 17.16. Suppose the base field k is infinite and perfect with
chark # 2. Let F be an Al-invariant quasi-stable ZF,-sheaf of abelian
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groups. Then for any integer n > 2, the presheaf X — Hy, (X, F) is an Al-
mvariant and quasi-stable ZF,-presheaf of abelian groups. If char k = 2, then
the same statement is true if the ZFy-sheaf F is a sheaf of Z[1/2]-modules.

Proof. We can apply the same arguments as in the proof of Theorem 17.15
to show that the presheaf X — HY, (X,F) is a ZF,-presheaf of abelian
groups, which is, moreover, quasi-stable.

It remains to check that the presheaf is homotopy invariant. We may
assume till the end of the proof that each presheaf X — HY;, (X, F) with
j < n is an Al-invariant quasi-stable ZF,-presheaf.

In order to complete the proof of the theorem, we shall need the following
lemma.

Lemma 17.17. Suppose the base field k is infinite and perfect with char k #
2. Let X be in Sm/k, i : D — X be a k-smooth divisor and x € D be a
point. Then for any A'-invariant quasi-stable ZF,-sheaf of abelian groups F
and any n = 2 one has

Hpyn (X2 x AL F) = 0.

If char k = 2, then the same statement is true if the ZFy-sheaf F is a sheaf
of Z[1/2]-modules.

Proof. The main part of the proof is dedicated to verifying the following
claim: the pullback map p%, Hg:,(ng,]:) = Hpop (Xh x Al F) is an
isomorphism. Afterwards we prove that Hp, (X2, F)=0.

Using Proposition 17.2, the above claim reduces to showing the following
assertion: for any X € Sm/k, any k-smooth divisor D in X and any point
z € D the pullback map py : Hp (Xy, F) — Hp 40 (Xe X AL F) is an
isomorphism. . / '

Firstly, we consider any Y € Sm/k and any k-smooth divisor £ C Y.
We now use the notation introduced above Lemma 17.3. Analyzing the local
global spectral sequence of the form

Hyi (Y, 1L (Y, F)) = H7 (Y, F),

we will show that H(Y,F) is naturally isomorphic to Hy !} (Y, HE(Y, F)).
The nearest aim is to show the following computational claim: for any inte-
gers 0 < j < n with j # 1 the Nisnevich sheaves H7,(Y, F) on the small site
Ynis vanish. ‘
Consider the case j = 0. Obviously, the stalk of the sheaf H7,(Y,F)
vanishes at every point z € Y — E. Let z € E then the stalk at z equals
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Hy, (Y], F). Since Hp, (Y], F) = ker[F(Y}') — F(Y] — EL)], Theorem
3.15(3’) implies that the stalk at z vanishes. This proves the computational
claim for 5 = 0. '

Let 2 < j < n. Obviously, the stalks of the sheaf H7,(Y,F) vanish at
every point z € Y — E. If 2 € E then the stalk of this sheaf at the point
z is equal to the group HJ{JQ,(YZh,f). Since HY, (Y)', F) = 0 one has the

equality Hy, (Y2, F) = HiG, (Y = BL, F)/Tm[HL (Y], F)]. Since j —1 <
n the presheaf Y — G(U) := H]JV_ZSI(U, F) is an Al-invariant quasi-stable
ZF-presheaf. Since j — 1 > 0 the associated Nisnevich sheaf G5 vanishes.
Thus, G(Y — E") = 0 by Lemma 17.10. This completes the proof of the
computational claim.

The computational claim shows that the only nonzero term of the second
page of the above spectal sequence lying on the diagonal ¢ + j = n is the
group Hy 1Y, HL(Y, F)). Moreover, there are no incoming differentials to
this term and no outcoming differentials from this term. We see that the
canonical map H ;. (Y, H5(Y,F)) — HR(Y,F) is an isomorphism.

The assertion that p% : Hp (Xu, F) = Hp 0(Xe x A F) is an
isomorphism is local for the Zariski topology on X. Thus shrinking X, we
may assume that there are Voevodsky’s data D, X = X;, Xpn, X, = D x Al
Let in : D — X be the closed embedding and I = in x idy:. We have
isomorphisms I.(F_1) 2 Hh (X x AL F) and in.(F_1) 2 HL (X, F) of
the form (44) on the small Nisnevich sites of X x Al and X respectively.
They give rise to a commutative diagram

HY NX, HE (X, F)) HY NX, inw (F_1)) ————— HE N(D, F_1)

Hm N (X x A HY (X X AN F)) —— HR (X X AN L(Foy)) —— Hy H(D x AN, Foq)

The right vertical map is an isomorphism by the inductive assumption, and
hence so is the map p% : Hy, H(X, HE(X, F)) — Hi HX x AL MY, ,0(X %
Al F)). As we have shown above the first of these groups is naturally isomor-
phic to H} (X, F). The second group is naturally isomorphic to Hp, 4, (X x
Al F). Thus the map p% : HE(X,F) — HB . (X x AL, F) is an isomor-
phism.

If D, X = X}, X,n, X, = D x A! are Voevodsky’s data, then for any non-
empty Zariski open X° in X and D? := DN X° the data D?, X©, Wl_l(XO) N
7, 1(DY x Al), D° x A! are Voevodsky’s data as well. This observation and
Proposition 17.2 imply the pullback map

P, Hp (Xo, F) = Hpy 40 (Xe x AL F)
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is an isomorphism. Since p% is an isomorphism for any X € Sm /k, any k-
smooth divisor D in X and any point x € D, we conclude that the pullback
map pin : HDh (XM F)— HE oo (X! x A, F) is an isomorphism.

It remains to check that ﬁgh(xg},]-") = 0. Since HY, (X! F) =0 =
HY (XE, F), we sce that HYy, (X!~ D!, F) = Hp, (X, F). By induction,

T
the presheaf U +— G(U) := Hy (U, F) is an Al-invariant quasi-stable ZF,-
presheaf. Since n—1 > 0 the associated Nisnevich sheaf G;s vanishes. Thus,
G(X} — D}) = 0 by Lemma 17.10. Hence 0 = G(X}' — DY) = Hp, (X}, F).
This completes the proof of the lemma. O

Returning to the proof of Theorem 17.16, let X be in Sm/k,i: D — X
be a k-smooth divisor and x € D be a point. By Lemma 17.17 the map

(45) Hpyio(X3 % AL F) = Hio(Xy = Dy) x AL F)

is injective.

Next, we claim that for a k-smooth scheme X and the projection p :
X x A' = X the Nisnevich sheaves R’p,(F) vanish for j =1,..,n— 1. In
fact, such a sheaf is associated with the presheaf U — H%, (U x Al F).
The presheaf U HJ]\, (U, F) is Al-invariant. Thus H{VZS(U x AL F) =

HY,, (U, F). Since j > 1 the associated Nisnevich sheaf vanishes. This proves

the claim.

Since the Nisnevich sheaves R/p,(F) vanish for j = 1,...,n — 1, one has
an exact sequence

0 = Hyo (X, pe(F)) S Hio (X x AL F) S HY (X, R'pa(F)).

Set A := Ker[i : HY, (X x AL, F) — H%. (X, F)]. Arguing as in the proof
of Proposition 17.14, we conclude that the map 8|4 : A — HY;, (X, R"p.(F))
is injective. Arguing again as in the proof of Proposition 17.14 and using the
fact that the map (45) is injective, we get the following

Lemma 17.18. Suppose the base field k is infinite and perfect with char k #
2. Let F be an A'-invariant quasi-stable ZF,-sheaf of Abelian groups. Let
X be a k-smooth scheme and let a € HY, (X x A, F) be an element such
that its restriction to X x {0} vanishes. Then a = 0. If char k = 2, then the
same statement is true if the ZFy-sheaf F is a sheaf of Z[1/2]-modules.

Finally, the pullback map if : HY, (X x AN, F) — HY, (X, F) is sur-
jective by functoriality. By Lemma 17.18 it is also injective. This completes
the proof of Theorem 17.16. O
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