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The index and nullity of the Lawson surfaces ξg,1

Nikolaos Kapouleas and David Wiygul

We prove that the Lawson surface ξg,1 in Lawson’s original nota-
tion, which has genus g and can be viewed as a desingularization
of two orthogonal great two-spheres in the round three-sphere S3,
has index 2g + 3 and nullity 6 for any genus g ≥ 2. In particular
ξg,1 has no exceptional Jacobi fields, which means that it cannot
“flap its wings” at the linearized level and is C1-isolated.

1. Introduction

The general framework and brief discussion of the results

Determining the index and nullity of complete or closed minimal surfaces
is a difficult problem which has been fully solved only in a few cases; see
for example [15–17]. The index plays an important role in min-max the-
ory [18]; this provides partial motivation for our result. In this article we
prove Theorem 6.21, which determines (for the first time) the index and
the nullity of the Lawson surfaces ξg,1 [13] with g ≥ 2. These are the Law-
son surfaces which have genus g and can be viewed as desingularizations of
two orthogonal great two-spheres in the round three-sphere S3 in the sense
of [10, Definition 1.3]. The index determined is consistent with (but larger
than) a lower bound established by Choe [5]. We prove that the nullity is 6
and so there are no exceptional Jacobi fields, which means by Corollary 6.23
that these surfaces cannot “flap their wings” at the linearized level and are
C1-isolated. This provides a partial answer to questions asked in [10, Section
4.2].

The ideas of our proof originate with work of NK on the approximate
kernel for Scherk surfaces [9, 10]. Our approach requires a detailed under-
standing of the elementary geometry of S3 and of the surfaces involved,
especially their symmetries. The proof makes heavy use also of Alexandrov
reflection in the style of Schoen’s [20]. The Courant nodal theorem [8] and
an argument of Montiel-Ros [14] play essential roles as well.

In ongoing work, we hope to extend this result to determine the in-
dex and nullity of more embedded closed minimal surfaces in the round
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three-sphere, including the remaining Lawson surfaces. Another interesting

problem, which could not be posed until the determination of the index of

the Lawson surfaces ξg,1, is motivated by the characterization of the Clifford

torus by Fischer-Colbrie (unpublished) and (independently) by Urbano [21]

as the only closed minimal surface in S3, besides the great sphere, which

has index ≤ 5, and also by some recent results for minimal surfaces in R3

[3,4]: the problem is to classify all closed minimal surfaces in S3 which have

index ≤ 7 (the index of the Lawson surface of genus two), or more generally

≤ 2g + 3 (the index of the Lawson surface ξg,1) for small g.

Notation and conventions

We denote by S3 ⊂ R4 the unit 3-dimensional sphere.

Definition 1.1. For any A ⊂ S3 ⊂ R4 we denote by Span(A) the span of

A as a subspace of R4 and by S(A) := Span(A) ∩ S3.

Given now a vector subspace V of the Euclidean space R4, we denote

by V ⊥ its orthogonal complement in R4, and we define the reflection in R4

with respect to V , RV : R4 → R4, by

(1.2) RV := ΠV −ΠV ⊥ ,

where ΠV and ΠV ⊥ are the orthogonal projections of R4 onto V and V ⊥

respectively. Alternatively RV : R4 → R4 is the linear map which restricts

to the identity on V and minus the identity on V ⊥. Clearly the fixed point

set of RV is V .

Definition 1.3 (Reflections RA). Given any A ⊂ S3 ⊂ R4, we define A⊥ :=

(Span(A) )⊥ ∩ S3 and RA : S3 → S3 to be the restriction to S3 of RSpan(A).

Occasionally we will use simplified notation: for example for A as before

and p ∈ S3 we may write S(A, p) and RA,p instead of S(A∪{p}) and RA∪{p}
respectively.

Note that the set of fixed points of RA above is S(A) as in notation

1.1, which is S3, or a great two-sphere, or a great circle, or the set of two

antipodal points, or the empty set, depending on the dimension of Span(A).

Following now the notation in [6], we have the following.

Definition 1.4 (The cone construction). For p, q ∈ S3 which are not an-

tipodal we denote the minimizing geodesic segment joining them by pq. For
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A,B ⊂ S3 such that no point of A is antipodal to a point of B we define the
cone of A and B in S3 by

A××B :=
⋃

p∈A, q∈B
pq.

If A or B contains only one point we write the point instead of A or B
respectively; we have then p××q = pq for any p, q ∈ S3 which are not antipo-
dal. More generally, given linearly independent p1, · · · , pk ∈ S3, we define
inductively for k ≥ 3 p1 · · · pk := pk××p1 · · · pk−1.

If G is a group acting on a set B and if A is a subset of B, then we refer
to the subgroup

(1.5) StabG(A) := {g ∈ G | gA = A}

as the stabilizer of A in G. When A is a subset of the round 3-sphere, we
will set

(1.6) GA
sym := StabO(4)A.

In the next definition we find it convenient to work with piecewise-
smooth functions on a domain in a surface. By this we mean that each
such function is continuous on the domain, the domain can be subdivided
into domains by a finite union of piecewise-smooth embedded curves, and on
the closure of each of these domains the function is smooth. We use C∞

pw(U)
to denote the space of piecewise-smooth functions on a domain U .

Definition 1.7 (Eigenvalues). We assume given a compact domain U in
a smooth surface equipped with a Riemannian metric g, a smooth function
f on U , and a linear space of piecewise-smooth functions V ′ ⊂ C∞

pw(U)
which is invariant under the Schrödinger operator L = Δg + f defined on

U . We define λi(V
′,L) to be the ith eigenvalue, where we are counting in

non-decreasing order and with multiplicity. (Note also that we follow the
conventions which make the eigenvalues of the Laplacian on a closed surface
nonnegative.) Moreover for λ ∈ R we denote by #<λ(V

′,L), #=λ(V
′,L),

and #≤λ(V
′,L), the number of eigenvalues λi(V

′,L) which are < λ, or = λ,
or ≤ λ, respectively. We also define the index of L on V ′, Ind(V ′,L) :=
#<0(V

′,L), and the nullity of L on V ′, Null(V ′,L) := #=0(V
′,L). Finally

note that we may omit L from the notation when it can be inferred from the
context.



366 Nikolaos Kapouleas and David Wiygul

Definition 1.8 (Eigenvalue equivalence). Suppose L, U , and V ′ are as in
1.7 and L′, U ′, and V ′′ satisfy correspondingly the same conditions. We
define V ′ ∼L,L′ V ′′—or V ′ ∼ V ′′ if the operators are understood from the
context—to mean that there is a linear isomorphism F : V ′ → V ′′ such that
the following holds: ∀f ′ ∈ V ′, f ′ is an eigenfunction with respect to L if and
only if F(f ′) is an eigenfunction with respect to L′ of the same eigenvalue
as f . We say then that L on V ′ and L′ on V ′′ are eigenvalue equivalent.

Note that clearly if 1.8 holds, then ∀i ∈ N we have λi(V
′,L) = λi(V

′′,L′).
In this article we will say that a function satisfies the Dirichlet condition on
a curve if it vanishes there and the Neumann condition if its derivative along
the normal to the curve vanishes.

Definition 1.9 (Eigenvalues for mixed Dirichlet and Neumann boundary
conditions). Suppose L and U are as in 1.7 and moreover the boundary ∂U
is piecewise-smooth and can be decomposed as ∂U = ∂DU ∪ ∂NU—note that
∂DU , ∂NU can be empty. We define then the following for i ∈ N and λ ∈ R:
(i) C∞

pw[U ; ∂DU, ∂NU ] to be the space of piecewise-smooth functions on U
which satisfy the Dirichlet condition on ∂DU and the Neumann condition
on ∂NU ;
(ii) λi[L, U ; ∂DU, ∂NU ] := λi(L, C∞

pw[U ; ∂DU, ∂NU ] );
(iii) #<λ[L, U ; ∂DU, ∂NU ] := #<λ(L, C∞

pw[U ; ∂DU, ∂NU ] ) and similarly for
“= λ” and “≤ λ”.

2. Basic spherical geometry

Rotations along or about great circles

Note that by 1.3, C⊥ is the great circle furthest from a given great circle C
in S3. (Note that the points of C⊥ are at distance π/2 in S3 from C and any
point of S3 \C⊥ is at distance < π/2 from C). Equivalently C⊥ is the set of
poles of great hemispheres with equator C; therefore C and C⊥ are linked.
The group GC∪C⊥

sym contains GC
sym = GC⊥

sym (which includes arbitrary rotation
or reflection in the two circles) and includes also orthogonal transformations
exchanging C with C⊥.

Definition 2.1 (Rotations Rφ
C , R

C
φ and Killing fields KC , K

C). Given a

great circle C ⊂ S3, φ ∈ R, and an orientation chosen on the circle C⊥, we
define the following:
(i) the rotation about C by angle φ is the element Rφ

C of SO(4) preserving C
pointwise and rotating the circle C⊥ along itself by angle φ (in accordance
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with its chosen orientation);

(ii) the Killing field KC on S3 and the normalized Killing field K̃C on S3 \C
are given by KC

∣∣
p
:= ∂

∂φ

∣∣∣
φ=0

Rφ
C(p) ∀p ∈ S3 and K̃C

∣∣∣
p

:=
KC |

p

|KC |
p| ∀p ∈

S3 \ C.

Assuming now an orientation chosen on C we define the following:

(iii) the rotation along C by angle φ is RC
φ := Rφ

C⊥ ;

(iv) the Killing field KC := KC⊥ on S3 and the normalized Killing field

K̃C := K̃C⊥ on S3 \ C⊥.

Note that RC
φ = Rφ

C⊥ resembles a translation along C, while in the vicin-

ity of C⊥ it is a rotation. Note also that KC is defined to be a rotational

Killing field around C, vanishing on C and equal to the unit velocity on C⊥.

Lemma 2.2 (Orbits). For KC as in 2.1, the orbits of KC (that is its flow-

lines) are planar circles and ∀p ∈ C each orbit intersects the closed hemi-

sphere C⊥××p exactly once. Moreover the intersection (when nontrivial) is

orthogonal.

Proof. This is straightforward to check already in R4 with the hemisphere

C⊥××p replaced by the half-three-plane containing p and with boundary

Span(C⊥). By restricting then to S3 the result follows.

This lemma allows us to define a projection which effectively identifies

the space of orbits in discussion with a closed hemisphere:

Definition 2.3 (Projections by rotations). For C and p as in 2.2 we define

the smooth map ΠC
p : S3 → C⊥××p by requiring ΠC

p x to be the intersection

of C⊥××p with the orbit of KC containing x, for any x ∈ S3.

Definition 2.4 (Graphical sets). A set A ⊂ S3 is called graphical with

respect to KC (with C as above) if each orbit of KC intersects A at most

once. If moreover A is a submanifold and there are no orbits of KC which

are tangent to A, then A is called strongly graphical with respect to KC .

The geometry of totally orthogonal circles

We fix now some C and C⊥ as above, and orientations on both. (Of course,

after choosing an orientation on C, choosing an orientation on C⊥ is equiv-

alent to choosing an orientation on S3.) We define ∀φ ∈ R the points

(2.5) pφ = pφ[C] := Rφ
C⊥ p0 ∈ C, pφ = pφ[C] := Rφ

C p0 ∈ C⊥,
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where p0, p
0 are arbitrarily fixed points on C and C⊥ respectively. Note that

we will routinely omit [C] when understood from the context. Using 1.1 we
further define ∀φ ∈ R the great spheres

(2.6) Σφ = Σφ[C] := S(C, pφ), Σφ = Σφ[C] := S(C⊥, pφ),

and ∀φ, φ′ ∈ R the great circles

(2.7) Cφ′

φ = Cφ′

φ [C] := S( pφ, p
φ′
).

Definition 2.8 (Coordinates on R4). Given C as above and points as in
2.5, we define coordinates (x1, x2, x3, x4) on R4 ⊃ S3 by requiring that

p0 = (1, 0, 0, 0), pπ/2 = (0, 1, 0, 0), p0 = (0, 0, 1, 0), pπ/2 = (0, 0, 0, 1).

Lemma 2.9 (Basic geometry related to C and C⊥). The following hold
∀φ, φ′, φ1, φ

′
1, φ2, φ

′
2 ∈ R.

(i) pφ+π = −pφ and pφ+π = −pφ. Similarly Σφ+π = Σφ and Σφ+π = Σφ.

(ii) Cφ′

φ ∩ C = {pφ, pφ+π} and Cφ′

φ ∩ C⊥ = {pφ′
, pφ

′+π} with orthogonal in-

tersections. Moreover Cφ′

φ = pφpφ
′ ∪ pφ′pφ+π ∪ pφ+πpφ

′+π ∪ pφ′+πpφ.

(iii) C××pφ and C⊥××pφ are closed great hemispheres with boundary C and
C⊥ and poles pφ and pφ respectively.
(iv) Σφ = (C⊥××pφ) ∪ (C⊥××pφ+π) and Σφ = (C××pφ) ∪ (C××pφ+π).
(v) Σφ ∩ C⊥ = {pφ, pφ+π} and Σφ ∩ C = {pφ, pφ+π} with orthogonal inter-
sections.
(vi) Cφ′

φ = Σφ ∩ Σφ′
with orthogonal intersection.

(vii)
(
Cφ′

φ

)⊥
= C

φ′+π/2
φ+π/2 .

(viii) Σφ ∩ Σφ′
= C unless φ = φ′ (mod π) in which case Σφ = Σφ′

. Simi-
larly Σφ∩Σφ′ = C⊥ unless φ = φ′ (mod π) in which case Σφ = Σφ′. In both
cases the intersection angle is φ′ − φ (mod π).

(ix) C
φ′

1

φ1
∩ C

φ′
2

φ2
= ∅ unless φ1 = φ2 (mod π) or φ′

1 = φ′
2 (mod π). If

both conditions hold then C
φ′

1

φ1
= C

φ′
2

φ2
. If only the first condition holds then

C
φ′

1

φ1
∩C

φ′
2

φ2
= {pφ1

, pφ1+π} with intersection angle equal to φ′
2 − φ′

1 (mod π).

If only the second condition holds then C
φ′

1

φ1
∩C

φ′
2

φ2
= {pφ2 , pφ2+π} with inter-

section angle equal to φ2 − φ1 (mod π).

Proof. It is straightforward to verify all these statements by using the coor-
dinates defined in 2.8.
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Definition 2.10 (Symmetries of Killing fields). We call a Killing field K

even (odd) under an isometry R if it satisfies R∗ ◦ K = K ◦ R (R∗ ◦ K =

−K ◦ R).

Lemma 2.11 (Symmetries of some Killing fields). ∀φ, φ′ ∈ R the following

hold.

(i) KC is odd under RΣφ and R
Cφ′

φ

and even under RΣφ
.

(ii) KC⊥ is odd under RΣφ
and R

Cφ′
φ

and even under RΣφ .

(iii) K
Cφ′

φ

is odd under RΣφ
and R

Σφ′ and even under RΣφ+π/2
and R

Σ
φ′+π/2.

Moreover Σφ+π/2 and Σφ′+π/2 are preserved under the flow of K
Cφ′

φ

and

contain the fixed points ±pφ
′ ∈ Σφ+π/2 and ±pφ ∈ Σφ′+π/2 and the geodesic

orbit C
φ′+π/2
φ+π/2 = Σφ+π/2 ∩ Σφ′+π/2.

Proof. For any great circle C ′ we have that KC′ is even (odd) with respect

to a reflection R if and only if R(C ′⊥) = C ′⊥ and R respects (reverses)

the orientation of C ′⊥. Applying this it is straightforward to confirm the

lemma.

3. Tessellations of S3

Lawson tessellations

Our purpose is to study the Lawson surfaces ξm−1,1 [13], which have genus

g = m − 1 and can be viewed as desingularizations of Σπ/4 ∪ Σ−π/4, where

m ≥ 3, m ∈ N. With this goal it is helpful to introduce the notation

(3.1)
ti′ :=(2i′ − 1)

π

2m
∈ R, tj

′
:=(2j′ − 1)

π

4
∈ R,

qi′ :=pti′ ∈ C, qj
′
:=pt

j′ ∈ C⊥,
∀i′, j′ ∈ 1

2
Z.

Note that we have then 2m points qi for i ∈ Z subdividing C into 2m equal

arcs of length π/m each, and 4 points qj for j ∈ Z subdividing C⊥ into 4

arcs of length π/2 each. qi+ 1

2
is the midpoint of qiqi+1 for each i ∈ Z and

qj+
1

2 is the midpoint of qjqj+1 for each j ∈ Z.

We define now ∀i, j ∈ Z compact domains Ωi,Ω
j ,Ωj

i by

(3.2)
Ωi := C⊥×× qiqi+1 , Ωj := C×× qjqj+1 ,

Ωj
i := Ωi ∩ Ωj = qiqi+1qjqj+1 .
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Clearly we have then the decompositions with disjoint interiors

(3.3) S3 =

2m−1⋃
i=0

Ωi =

3⋃
j=0

Ωj =

2m−1⋃
i=0

3⋃
j=0

Ωj
i .

Note that

(3.4)
Ωi = R

(i−i′) π

m

C⊥ Ωi′ , Ωj = R
(j−j′)π

2

C Ωj′ ,

Ωj
i = R

(i−i′) π

m

C⊥ R
(j−j′)π

2

C Ωj′

i′ .

Moreover we have

(3.5) ∂Ωi = C⊥××{qi, qi+1}, ∂Ωj = C××{qj , qj+1}.

Lemma 3.6 (Properties of Ωj
i ). ∀i, j ∈ Z, Ωj

i is a spherical tetrahedron and
satisfies the following.
(i) Its faces are the spherical triangles qiqjqj+1 , qi+1qjqj+1 , qiqi+1qj , and
qiqi+1qj+1 .
(ii) Its dihedral angles are all π/2 except for the one along qjqj+1 which is
π/m.

(iii) It is bisected by the spherical triangles qi+ 1

2
qjqj+1 and qiqi+1q

j+ 1

2 and

its symmetries are given by (RS3 is the identity map on S3)

(3.7) GΩj
i

sym = {RS3 ,RΣiπ/m
,RΣ

jπ/2 ,RC
jπ/2

iπ/m

} � Z2 × Z2.

(iv) It is convex in the sense that xy ⊂ Ωj
i ∀x, y ∈ Ωj

i .

Proof. It is straightforward to check all these statements by using the defi-
nitions and for (iii) that m > 2.

3.6.iii motivates us to define ∀i, j ∈ Z, by modifying 3.2, compact do-
mains Ωi±,Ωj±,Ωj±

i± by

(3.8)

Ωi± := C⊥×× qi+ 1

2
qi+ 1

2
± 1

2
, Ωj± := C×× qj+

1

2qj+
1

2
± 1

2 ,

Ωj±
i± := Ωi± ∩ Ωj± = qi+ 1

2
qi+ 1

2
± 1

2
qj+

1

2 qj+
1

2
± 1

2 ,

Ωj±
i := Ωi ∩ Ωj± = qiqi+1q

j+ 1

2 qj+
1

2
± 1

2 ,

Ωj
i± := Ωi± ∩ Ωj = qi+ 1

2
qi+ 1

2
± 1

2
qjqj+1 .
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We have then various decompositions with disjoint interiors, for example

(3.9) Ωj
i = Ωj−

i− ∪ Ωj−
i+ ∪ Ωj+

i− ∪ Ωj+
i+ , Ωj

i+ = Ωj−
i+ ∪ Ωj+

i+ .

Note also that

(3.10) Ωj−
i+ = RΣ

jπ/2Ωj+
i+ , Ωj+

i− = RΣiπ/m
Ωj+
i+ , Ωj−

i− = RC
jπ/2

iπ/m

Ωj+
i+ .

Moreover all four tetrahedra Ωj±
i± have pi π

m
pj

π

2 = qi+ 1

2
qj+

1

2 as a common edge

and adjacent ones have common faces given by Ωj+
i− ∩ Ωj−

i− = qi+ 1

2
qiq

j+ 1

2 ,

Ωj+
i+ ∩ Ωj−

i+ = qi+ 1

2
qi+1q

j+ 1

2 , Ωj−
i− ∩ Ωj−

i+ = qi+ 1

2
qj+

1

2qj , and Ωj+
i− ∩ Ωj+

i+ =

qi+ 1

2
qj+

1

2 qj+1 .

Subdividing S3 with mutually orthogonal two-spheres

Note that by 2.9.vi,viii Σ0, Σπ/2, Σ0, and Σπ/2 form a system of four mutually

orthogonal two-spheres in S3. We will later study the subdivisions these two-

spheres effect on S3 and the Lawson surfaces. To this end we define Ω±∗
∗∗ ,

Ω∗±
∗∗ , Ω

∗∗
±∗, and Ω∗∗

∗± to be the closures of the connected components into

which S3 is subdivided by the removal of Σ0, Σπ/2, Σ0, or Σπ/2 respectively,

chosen so that

(3.11) p±π/2 ∈ Ω±∗
∗∗ , p

π

2
∓π

2 ∈ Ω∗±
∗∗ , p±π/2 ∈ Ω∗∗

±∗, pπ

2
∓π

2
∈ Ω∗∗

∗±.

To further subdivide we replace ∗’s by ± signs to denote the corresponding

intersections of these domains; for example we have

(3.12) Ω−∗
+− := Ω∗∗

+∗ ∩ Ω∗∗
∗− ∩ Ω−∗

∗∗ .

Clearly we have

(3.13) ∂Ω±∗
∗∗ = Σ0, ∂Ω∗±

∗∗ = Σπ/2, ∂Ω∗∗
±∗ = Σ0, ∂Ω∗∗

∗± = Σπ/2.

Lemma 3.14 (Elementary geometry of Ω++
++). Ω++

++ is the spherical tetra-

hedron p0pπ/2p0pπ/2 and satisfies the following.

(i) Its faces are the spherical triangles pπ/2pπ/2p0 ⊂ Σπ/2, pπ/2pπ/2p0 ⊂
Σπ/2, p0pπ/2p0 ⊂ Σ0, p0pπ/2p0 ⊂ Σ0. All angles of all faces are π/2.
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(ii) All its edges have length π/2 and its dihedral angles are all π/2.

(iii) Its symmetry group is isomorphic to the symmetric group on its ver-

tices. Ω++
++ is bisected by six spherical triangles including pπ/4p0pπ/2 and

p0pπ/2pπ/4 and its symmetries include RΣπ/4
, RΣ

π/4, and RC
π/4

π/4

.

Proof. It is straightforward to verify all these statements by using the defi-

nitions.

Lemma 3.15 (Some decompositions). We have the following.

(i) Ω++
∗∗ = ∪2m−1

i=0 (Ω0+
i ∪ Ω1−

i ).

(ii) Ω++
+∗ = Ω++

++∪RΣπ/2
Ω++
++ = Ω0+

0+∪Ω1−
0+∪

(
∪m−1
i=1 (Ω0+

i ∪ Ω1−
i )

)
∪Ω0+

m−∪Ω1−
m−.

(iii) Ω++
++ = Ω0+

0+∪Ω1−
0+∪

⎧⎪⎨⎪⎩
(
∪

m

2
−1

i=1 (Ω0+
i ∪ Ω1−

i )
)
∪ Ω0+

m

2
− ∪ Ω1−

m

2
− if m ∈ 2Z,(

∪
m−1

2

i=1 (Ω0+
i ∪ Ω1−

i )
)

if m ∈ 2Z+ 1.

Proof. It is straightforward to verify all these statements by using the defi-

nitions.

The coordinate Killing fields

Using the coordinates defined in 2.8, we endow R4 with its standard orien-

tation dx1 ∧ dx2 ∧ dx3 ∧ dx4, and we endow the six coordinate 2-planes with

the orientations

(3.16)
dx1 ∧ dx2, dx3 ∧ dx4, dx1 ∧ dx4,

dx2 ∧ dx3, dx1 ∧ dx3, and dx4 ∧ dx2.

Note that these orientations have been chosen so that one obtains the ori-

entation of R4 upon taking the wedge product (in either order) of the ori-

entation forms of a pair of orthogonally complementary 2-planes.

In turn we orient each coordinate unit circle by taking the interior prod-

uct of its outward unit normal with the orientation form of the 2-plane it

spans. These choices are consistent with the convention that for any ori-

ented great circle C ′ we orient C ′⊥ so that the wedge product of the two

corresponding 2-plane orientations will yield the standard orientation on R4.

Thus
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(3.17)

KC⊥(x) = KC(x) = x1 pπ/2 − x2 p0

KC(x) = KC⊥
(x) = x3 pπ/2 − x4 p0,

KC
π/2

π/2

(x) = KC0
0 (x) = x1 p0 − x3 p0,

KC0
0
(x) = KC

π/2

π/2 (x) = x4 pπ/2 − x2 pπ/2,

KC
π/2
0

(x) = KC0
π/2(x) = x2 p0 − x3 pπ/2, and

KC0
π/2

(x) = KC
π/2
0 (x) = x1 pπ/2 − x4 p0.

Lemma 3.18 (Rotating around C0
0 , C

π/2
0 , C0

π/2, C
π/2
π/2 and Ω++

+±). We have

the following (recall 2.1 and 3.17).

(i) R
π/2
C0

0
pπ/2 = pπ/2, K̃C0

0
(Ω++

+∗ \ C0
0 ) = pπ/2p−π/2 .

(ii) R
π/2

Cπ/2
0

pπ/2 = p0, K̃C
π/2
0

(Ω++
+∗ \ Cπ/2

0 ) = p0p−π/2 .

(iii) R
π/2
C0

π/2

p0 = pπ/2, R
π/2
C0

π/2

pπ/2 = pπ,

K̃C0
π/2

(Ω++
++ \ C0

π/2) = pπ/2pπ , K̃C0
π/2

(Ω++
+− \ C0

π/2) = pπp−π/2 .

(iv) R
π/2

C
π/2

π/2

p0 = p0, R
π/2

C
π/2

π/2

p0 = pπ,

K̃Cπ/2

π/2

(Ω++
++ \ Cπ/2

π/2 ) = p0pπ , K̃Cπ/2

π/2

(Ω++
+− \ Cπ/2

π/2 ) = pπpπ .

Proof. All claims follow easily from (3.17) and Definition 2.1.

Some quadrilaterals in S3

We consider now ∀i, j ∈ Z the spherical quadrilateral Qj
i ⊂ ∂Ωj

i consisting

of the four edges of the spherical tetrahedron Ωj
i not contained in C or C⊥;

that is

(3.19) Qj
i := qiqj ∪ qjqi+1 ∪ qi+1qj+1 ∪ qj+1qi.

For ease of reference we define the set of vertices of Qj
i (the same as the set

of vertices of Ωj
i )

(3.20) Q/ j
i := {qi, qi+1, q

j , qj+1}.

Recall that by 3.7 ∀i, j ∈ Z the circle S(qi+ 1

2
, qj+

1

2 ) = C
jπ/2
iπ/m is an axis

of symmetry of Ωj
i . It is natural then to call this circle the “axis” of Ωj

i and
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study rotations along it as in the following lemma. We also define

(3.21)
∂+Ω

j
i := qiqjqj+1 ∪ qi+1qjqj+1 ,

∂−Ω
j
i := qiqi+1qj ∪ qiqi+1qj+1 ,

and by 3.6 we have then

(3.22) ∂Ωj
i = ∂+Ω

j
i ∪ ∂−Ω

j
i and Qj

i = ∂+Ω
j
i ∩ ∂−Ω

j
i .

Lemma 3.23 (Ωj
i and rotations along its axis). The following are true

∀i, j ∈ Z and each orbit O of KC̃ , where C̃ := (C
jπ/2
iπ/m)⊥ = C

jπ/2+π/2
iπ/m+π/2.

(i) (Rt
C̃
Ωj
i ) ∩ Ωj

i = ∅ for t ∈ (−3π/2,−π/2) ∪ (π/2, 3π/2). Moreover either

(R
±π/2

C̃
Ωj
i ) ∩ Ωj

i = {qi+ 1

2
} or (R

±π/2

C̃
Ωj
i ) ∩ Ωj

i = {qj+ 1

2 } (depending or the

orientation of C
jπ/2
iπ/m and the sign).

(ii) For each Ωj±
i± either O ∩ Ωj±

i± = O ∩ Ωj
i or O ∩ Ωj±

i± = ∅.
(iii) If O∩Ωj

i �= ∅, then (recall 3.21) O∩∂±Ω
j
i = {x±} for some x± ∈ ∂±Ω

j
i .

Moreover O∩Ωj
i is a connected arc (possibly a single point) whose endpoints

are x+ and x−.
(iv) If O ∩Qj

i �= ∅, then x+ = x− ∈ Qj
i and O ∩ Ωj

i = {x+}.
(v) If O ∩ (Ωj

i \ Q/ j
i ) �= ∅, then O intersects each face of Ωj

i containing x+
(x−) transversely.

(vi) Πj
i (Ω

j
i ) ⊂ C

jπ/2+π/2
iπ/m+π/2××piπ/m is homeomorphic to a closed disc with

boundary Πj
i (Q

j
i ), where Πj

i := Π
C

jπ/2

iπ/m

piπ/m
is defined as in 2.3 (recall also

piπ/m = qi+ 1

2
).

Proof. We can clearly assume without loss of generality that i = j = 0. To

prove (i) note that H := p0××C
π/2
π/2 and H ′ := p0××C

π/2
π/2 are orthogonal closed

hemispheres with common boundary C
π/2
π/2 , intersecting C0

0 orthogonally at

p0 and p0 respectively, and satisfying R
π/2

C̃
(H ′) = H. Moreover q0q1 ⊂ H

and q0q1 ⊂ H ′ with both geodesic segments avoiding the boundary C
π/2
π/2 .

Since two orthogonal hyperplanes separate R4 into four convex connected

components, (i) follows easily. Because each of the bisecting spheres Σ0 and

Σ0 is preserved by the family R
C0

0

t , the orbits of KC0
0 cannot cross either

sphere, proving (ii).
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Before turning to the remaining items we first show that no orbit of KC0
0

intersects any face of Ω0
0 tangentially, except at a vertex. By the symmetries

it suffices to prove that orbits intersect p0q1q1 ⊂ Σπ/2m and p0q1q1 ⊂ Σπ/4

transversely (if at all) except at q1 (the orbit through which is tangential
to Σπ/2m) and q1 (the orbit through which is tangential to Σπ/4). Of course

the spheres Σπ/2m and Σπ/4 are minimal surfaces and neither contains C0
0 ,

so the Killing field KC0
0 induces a nontrivial Jacobi field on each of them.

A point where an orbit meets one of these spheres tangentially is a zero of
the corresponding Jacobi field, but we know these nontrivial Jacobi fields
are simply first harmonics, each of whose nodal sets consists of a single
great circle. Clearly the reflection RΣ

π/2 (RΣπ/2
) preserves the sides of Σπ/2m

(Σπ/4) and reverses each orbit of KC0
0 . Thus orbits can meet Σπ/2m (Σπ/4)

tangentially only along C
π/2
π/2m (C

π/4
π/2 ), which intersects Ω0

0 only at q1 (q1),

establishing the asserted transversality.

Next we argue that no orbit of KC0
0 intersects any face of Ω0

0 at more
than one point. Again (by the symmetries) it suffices to show that every
orbit intersects each of the faces p0q1q1 ⊂ Σπ/2m and p0q1q1 ⊂ Σπ/4 at

most once. To see this first note that the orbits of KC0
0 in R4 ⊃ S3 are

planar circles, so if one intersects a great 2-sphere at more than one point,
then the intersection must be either a great circle (the entire orbit) or a
pair of points. In the first case the 2-sphere so intersected must contain
C0
0 , but neither the sphere Σπ/4 ⊃ p0q1q1 nor the sphere Σπ/2m ⊃ p0q1q1

contains C0
0 , and so the orbits ofKC0

0 must meet these spheres at most twice.
However, the reflection RΣπ/2 (RΣπ/2

) preserves both Σπ/2m (Σπ/4) and each

orbit (as a set) of KC0
0 , so that if an orbit intersects Σπ/2m (Σπ/4) in two

points, these points must lie on opposite sides of Σπ/2 (Σπ/2). Since in fact
Ω0
0 crosses neither sphere of symmetry, we see that any orbit meets each face

at most once, as claimed.

Now we are ready to prove (iii), (iv), and (v). By the symmetries it
suffices to consider an orbit O intersecting Ω0+

0+. Of course by (i) O is not

contained in Ω0+
0+ and obviously by (ii)O can enter (or exit) Ω0+

0+ only through

p0q1q1 or p0q1q1, but by the preceding paragraph it intersects each at most
once. Since q1q1 lies on both these triangles, it follows that any orbit O
meeting q1q1 intersects Ω0

0 at only one point. If on the other hand O misses
q1q1, then, by the transversality above, it must intersect the interior of Ω0

0,
so in this case it must cross p0q1q1 ∪ p0q1q1 at least twice, meaning, by the
above, that in fact O must intersect each of these triangles exactly once.
This completes the proof of (iii), (iv), and (v).
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For (vi) set Π := Π0
0. Since the quadrilateral Q0

0 is itself a closed curve

missing C
π/2
π/2 = Π−1

(
C

π/2
π/2

)
, its image Q′ := Π

(
Q0

0

)
under Π is likewise a

closed curve missing C
π/2
π/2 . By item (iv) (and the embeddedness of Q0

0) it

follows that Q′ is an embedded closed curve in the interior of C
π/2
π/2××p0, so

that
(
C

π/2
π/2××p0

)
\Q′ has two connected components, one the disc bounded

by Q′ and the other the annulus bounded by Q′ and C
π/2
π/2 . Call the closure of

the disc D′. Since the hemisphere Π−1
(
p0pπ/2

)
= C0

0××pπ/2 ⊂ Σ0 intersects

Q0
0 only at q1, we see that the geodesic arc p0pπ/2 intersects Q′ exactly once

(at q1), and so we conclude that p0 ∈ D′. A second application of item (iv)

ensures that Π
(
Ω0
0\Q0

0

)
misses Q′, but Ω0

0\Q0
0 is connected and includes p0,

so we have Π
(
Ω0
0

)
⊂ D′. Last, note that D′′ := q0q1q0 ∪ q0q1q1 is a disc

in Ω0
0 whose boundary is Q0

0 and thereby mapped by Π homeomorphically

onto Q′ = ∂D′. It follows (by degree theory) that Π(D′′) = D′, and so of

course Π(Ω0
0) = D′ as well.

4. The Lawson surfaces

Definition, uniqueness, and symmetries

Note that the surfaces we define below are the surfaces called ξm−1,1 in [13].

Recall that these surfaces can be viewed as desingularizations of two orthog-

onal great two-spheres. In this article we do not consider any other Lawson

surfaces and when we refer to Lawson surfaces we mean these surfaces only.

The surfaces defined in the next theorem are positioned so that they can

be viewed as desingularizations of Σπ/4 ∪ Σ−π/4 along C. Note also that

we restrict our attention to the case m ≥ 3 because the surfaces produced

otherwise are the great sphere (m = 1) and the Clifford torus (m = 2).

Theorem 4.1 (Lawson 1970 [13]). Given an integer m ≥ 3 there is a unique

compact connected minimal surface Dj
i ⊂ Ωj

i with ∂Dj
i = Qj

i (recall (3.2)

and (3.19)). Moreover Dj
i is a disc, minimizing area among such discs, and

M = M [C,m] :=
⋃

i+j∈2Z
Dj

i

is an embedded connected closed (so two-sided) smooth minimal surface of

genus m− 1.
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Proof. The theorem except for the uniqueness part but including the exis-
tence of a minimizing disc Dj

i is proved in [13]. Although the uniqueness
is also claimed in [13], the subsequent literature (for example [7]) does not
assume uniqueness known. We provide now a simple proof of uniqueness.

Suppose D′j
i is another connected minimal surface in Ωj

i with boundary

Qj
i . By 3.23 Rt

C
jπ/2+π/2

iπ/m+π/2

Dj
i cannot intersect D′j

i for any t ∈ (−π, 0) ∪ (0, π)

because otherwise we can consider the sup or inf of such t’s which we call
t′. For t′ then we would have tangential contact on one side in the interior.
By the maximum principle [20, Lemma 1] this would imply equality of the
surfaces and the boundaries, a contradiction.

By 3.23 the orbits which are close enough to Qj
i \Q/

j
i and intersect Ωj

i also

intersect Dj
i and D′j

i . Since there are no intersections for t �= 0 above, we

conclude that Dj
i and D′j

i agree on a neighborhood of Qj
i \Q/

j
i and therefore

by analytic continuation they are identical.

Corollary 4.2 (Symmetries of the Lawson discs). ∀i, j ∈ Z Dj
i inherits the

symmetries of Ωj
i : it is preserved as a set by RΣiπ/m

= RΣt
i+1

2

= RC⊥,qi+1
2

,

RΣjπ/2 = R
Σt

j+1
2
= R

C,qj+1
2
, and the composite of those RCjπ/2

iπ/m

. Moreover it

has no more symmetries.

Proof. Clearly (usingm > 2 for the second equality) we have G
Ωj

i
sym = G

Q/ j
i

sym =

G
Qj

i
sym. That the symmetries of Ωj

i are symmetries of Dj
i follows from the

uniqueness ofDj
i discussed in 4.1. Any symmetry ofDj

i has to be a symmetry

of its boundary and then of Q/ j
i , and hence of Ωj

i as well. By 3.6.iii this
completes the proof.

Lemma 4.3 (Generating symmetries of the Lawson surfaces). For M =
M [C,m] as in 4.1 we have the following symmetries, which generate GM

sym.

(i) ∀i, j ∈ Z we have RΣ
jπ/2 ,RΣiπ/m

∈ GM
sym. Moreover the collection of the

great two-spheres of symmetry of M is {Σjπ/2}j∈Z∪{Σiπ/m}i∈Z and contains
m+ 2 spheres.
(ii) ∀i, j ∈ Z we have R

C
(2j−1)π

4
(2i−1) π

2m

= Rqi,qj ∈ GM
sym. Moreover the collection

of great circles contained in M is
{
C

(2j−1)π

4

(2i−1) π

2m

= S(qi, q
j)
}
i,j∈Z

and contains

2m great circles.
Furthermore if ν : M → S3 is a unit normal smoothly chosen on M ,

then ν is even under the symmetries in (i) (that is for such a symmetry R
we have ν ◦ R = R∗ ◦ ν) and odd under the symmetries in (ii) (that is for
such a symmetry R we have ν ◦ R = −R∗ ◦ ν).
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Proof. SetQ :=
{
Qj

i

}
i+j∈2Z

andΩ :=
{
Ωj
i

}
i+j∈2Z

. It is easy to see (keeping

in mind that m > 2) that an element of O(4) permutes Q if and only if it
permutes Ω. By the uniqueness assertion of Theorem 4.1 any element of
O(4) permuting Q is then a symmetry of M . Conversely, since M is disjoint
from the interior of every Ωj

i with i + j ∈ 2Z + 1, every element of GM
sym

must permute Q. Now write G for the subgroup of O(4) generated by all
the orthogonal transformations named in the statement of the lemma. It is
immediately verified from definitions 1.3, 2.1, 2.6, 2.7, 3.2, and 3.19 that
every element of G indeed permutes Q, confirming that G ⊆ GM

sym. In fact it

is clear that G acts transitively on Ω, so in order to show that GM
sym ⊆ G it

suffices to show that any orthogonal transformation preserving Ω0
0 as a set

belongs to G, but this is evident from 3.7. Thus GM
sym = G.

The counts of the spheres and circles named in (i) and (ii) are obvious
from (2.6) and (2.7) alone. It is also obvious from the definitions that every
circle in item (ii) of the lemma indeed lies on M , and furthermore for this
very reason reflection through such a circle must reverse ν. Note that for each
j ∈ Z the symmetry RΣjπ/2 fixes C pointwise. In particular RΣjπ/2 fixes the

point q1 ∈ C ∩M , but q1 lies on each of the circles of symmetry C
π/4
π/2m and

C
−π/4
π/2m orthogonally intersecting C there, and so ν(q1) points along C and

is thereby preserved by RΣ
jπ/2 . A similar argument shows that ν is likewise

preserved by every RΣiπ/m
with i ∈ Z.

The only assertions left to prove are thatM is invariant under no spheres
of symmetry other than those enumerated in (i) and that M contains no cir-
cles of symmetry other than those enumerated in (ii) (since the reflection
principle [13, Proposition 3.1] then ensures that M contains no other great
circles at all). Accordingly suppose that S is such a sphere or circle of sym-
metry, so that RS ∈ GM

sym. As explained above, RS therefore permutes Q,
but because m > 2, this requires in particular that RS preserve C (and so
C⊥ too) as a set. If S is a great sphere, it must consequently intersect either
C or C⊥ orthogonally (containing the other), but to permute Q it can then
be only one of the spheres listed in (i) (a sphere bisecting some Ωj

i , since re-

flection through a sphere containing a face of an Ωj
i takes the corresponding

Qj
i to a quadrilateral outside of Q). If instead S is a great circle, in order

to preserve C as a set it must (a) coincide with C, (b) coincide with C⊥,
or (c) intersect C (and so also C⊥) orthogonally. Clearly neither C nor C⊥

is contained in M , since, for example, neither q0q1 nor q0q1 is contained in
∂D0

0. In case (c), in order to permute Q, S can be only one of the circles
listed in (ii) (a circle containing an edge of a quadrilateral in Q) or one of the
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circles of intersection of a pair of spheres of symmetry (a circle bisecting the

edges on C and C⊥ of some Qj
i , not necessarily having i+ j even), but none

of these latter circles is contained in M , since, for example, for all i, j ∈ Z

qi+ 1

2
�∈ ∂Dj

i .

Corollary 4.4 (Umbilics on the Lawson surfaces). For M = M [C,m] as

in 4.1 we have only four umbilics, q1, q2, q3, and q4, of degree (as in [13])

m− 2 each.

Proof. By the symmetries it is clear that each of these point is an umbilic

of degree m− 2. By a result of Lawson [13, Proposition 1.5] the total degree

of the umbilics is 4g − 4 = 4m− 8 and so there can be no other.

Corollary 4.5 (The unit normal on the geodesic segments qiq1). By ap-

propriate choice of the unit normal ν : M → S3 smoothly defined on M we

have ∀i ∈ Z

ν
(
qiq1

)
= qi−(−1)i m

2
q0 = p i

m
π−(−1)i π

2
− π

2m
p−π/4 .

Proof. A unit vector normal to a great circle C ′ ⊂ S3 lies on the circle C ′⊥.
By the symmetries (Lemma 4.3) the unit normal ν on M ∩ C must point

along C, while on M ∩ C⊥ it must point along C⊥. Thus ν(q1) = ±q1+m/2

and ν(q1) = ±q0. Assume that ν(q1) = q1+m/2. Using Lemma 4.3 again,

it suffices to complete the proof for i = 1. Since M is disjoint from the

interior of Ω0
1 (and Ω1

0), we conclude that along all of q1q1 the normal ν

cannot cross either Σπ/2m or Σπ/4 and more specifically, by our choice of

ν(q1), must point into Ω0
1. It follows that ν(q1) = q0 and ν(x) · ν(q1) ≥ 0

and ν(x) · ν(q1) ≥ 0 for all x ∈ q1q1, completing the proof.

Although it is not needed in this article, we include the following lemma

to offer a fuller picture of the symmetry group.

Lemma 4.6 (Further symmetries of the Lawson surfaces). M = M [C,m]

defined as in 4.1 has the following symmetries.

(i) A great circle C ′ �⊂ M is a circle of symmetry for M if and only if (a)

C ′ = C, (b) C ′ is one of the 2m circles C
jπ/2
iπ/m having i, j ∈ Z, or (c) m is

even and C ′ = C⊥. Each such RC′ preserves ν.

(ii) The antipodal map R∅ belongs to GM
sym if and only if m is even, in which

case R∅ preserves ν.
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(iii) A point x ∈ S3 is a point of symmetry for M (Rx ∈ GM
sym) if and only

if (a) x is one of the 2m points piπ/m with i ∈ Z or (b) x is one of the 4

points pjπ/4 with j ∈ 2Z +m. In case (a) Rx preserves ν, while in case (b)

Rx preserves (reverses) ν provided m is even (odd).

(iv) The rotations Rπ
C = RC⊥

π and R
2π/m
C⊥ = RC

2π/m both belong to GM
sym and

both preserve ν.

(v) The screw motion R
π/2
C ◦ Rπ/m

C⊥ = R
π/m
C⊥ ◦ Rπ/2

C = RC
π/4

π/2m

◦ RC0
0
belongs to

GM
sym and reverses ν.

(vi) For every i ∈ Z the map Rqi
◦ Rπ/2

C ∈ GM
sym and reverses ν.

Proof. Items (iv) and (v) are immediate from Lemma 4.3. It is easy to see

that for any i ∈ Z both Rqi
and R

π/2
C exchange the sets {Ωj

i}i+j∈2Z and

{Ωj
i}i+j∈2Z+1, so that the composite acts as a permutation on each of these

sets and therefore (as explained in the proof of Lemma 4.3) belongs to GM
sym;

it is also easy to see that the composite reverses the normal at qi, completing

the proof of (vi). Item (ii) follows from (i), since R∅ = RCRC⊥ . The fact

that the circles listed in (i) exhaust all circles of symmetry not lying on M

follows from the final paragraph of the proof of Lemma 4.3. The rest of (i)

is easily proven using Lemma 4.3 itself (and the group structure of O(4))

as follows. Clearly RΣ′ ◦ RΣ′′ = RΣ′∩Σ′′ for any two great spheres Σ′ and
Σ′′ intersecting orthogonally. On the other hand, according to Lemma 4.3,

the great 2-spheres of symmetry of M are precisely the spheres Σiπ/m and

Σjπ/2 for i, j ∈ Z, so in particular Σπ/2 is a sphere of symmetry precisely

when m is even. Together, the preceding two sentences complete the proof

of (i).

To prove (iii) first note that for any point x ∈ S3 the set x⊥ is the round

2-sphere centered at ±x, and moreover Rx = R−x = −Rx⊥ = RΣx
◦ RCx

,

where Σx is any great sphere through ±x and Cx is any great circle orthog-

onally intersecting Σx at ±x. In particular Rx ∈ GM
sym precisely when Rx⊥

takes M to −M . Since −Dj
i = Dj+2

i+m, we have −M =
⋃

i+j≡m mod 2D
j
i . It

is clear from Lemma 4.3 that GM
sym preserves C as a set (since each gener-

ator obviously does so). Thus in order for x to be a point of symmetry of

M (whatever the parity of m) x must lie on either C or C⊥. Since C is

itself a great circle of symmetry, any point of symmetry lying on C must

also lie on a sphere of symmetry intersecting C orthogonally. Thus the set

of points of symmetry lying on C is simply
{
piπ/m

}
i∈Z. To identify the

points of symmetry on C⊥ we observe by Lemma 4.3 that GM
sym preserves

the set {qj}j∈Z, which means that a point of symmetry on C⊥ must lie in
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{qj}j∈ 1

2
Z = {pjπ/4}j∈Z. It is easy to see that RΣ

jπ/4+π/2 takes M to −M

precisely when j −m ∈ 2Z, which completes the proof.

Graphical properties

Lemma 4.7 (Graphical property and subdivisions of Dj
i ). ∀i, j ∈ Z the

following hold.
(i) Dj

i is graphical—with its interior strongly graphical—with respect to

KC
jπ/2

iπ/m = KCjπ/2+π/2

iπ/m+π/2

(recall 2.4) and each orbit which intersects Ωj
i in-

tersects Dj
i as well.

(ii) Each of Dj
i± := Dj

i ∩ Ωj
i±, D

j±
i := Dj

i ∩ Ωj±
i , and Dj±

i± := Dj
i ∩ Ωj±

i± , is

homeomorphic to a closed disc.

Proof. To prove (i) we first prove that Dj
i is graphical. This follows by the

same argument as in the second paragraph of the proof of 4.1 but with D′j
i

replaced by Dj
i . Consider now the Jacobi field ν ·KCjπ/2+π/2

iπ/m+π/2

, which clearly

by the graphical property and appropriate choice of ν is ≥ 0 on Dj
i and

hence by the maximum principle is > 0 on the interior of Dj
i . This implies

that the interior of Dj
i is strongly graphical.

Next we recall the projection map

(4.8) Πj
i := Π

C
jπ/2

iπ/m

piπ/m
: Ωj

i → C
jπ/2+π/2
iπ/m+π/2××piπ/m

defined in 3.23.vi. Let D′ := Πj
i (Ω

j
i ), which by 3.23.vi is homeomorphic to a

closed disc with ∂D′ = Πj
i (Q

j
i ). Clearly then Πj

i (D
j
i ) ⊂ D′. Since ∂Dj

i = Qj
i

we have also Πj
i (∂D

j
i ) = ∂D′, and therefore Πj

i (D
j
i ) = D′, which completes

the proof of (i).

Furthermore, as shown above, Dj
i is graphical with respect to KC

jπ/2

iπ/m ,

so the restriction Πj
i |Dj

i
is one-to-one. We conclude that Πj

i takes Dj
i home-

omorphically onto D′. The proof of (ii) is then completed by the fact that
Πj

i clearly respects the symmetries of Ωj
i .

By the definitions when i + j ∈ 2Z we have M ∩ Ωj±
i± = Dj±

i± ; oth-

erwise we have M ∩ Ωj±
i± = ∅. By 4.7 each Dj±

i± is an embedded minimal

disc. To study ∂Dj±
i± and the intersections with two-spheres of symmetry

we define the intersections of Dj
i and Dj±

i± with the bisecting two-spheres as
follows.
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(4.9)

αj±
i :=Dj

i ∩ qi+ 1

2
qj+

1

2qj+
1

2
± 1

2 = Dj±
i ∩ Σi π

m
,

αj
i :=Dj

i ∩ qi+ 1

2
qjqj+1 = Dj

i ∩ Σi π

m
= αj−

i ∪ αj+
i ,

βj
i± :=Dj

i ∩ qi+ 1

2
qi+ 1

2
± 1

2
qj+

1

2 = Dj
i± ∩ Σj π

2 ,

βj
i :=Dj

i ∩ qiqi+1q
j+ 1

2 = Dj
i ∩ Σj π

2 = βj
i− ∪ βj

i+.

Lemma 4.10 (The α and β curves). ∀i, j ∈ Z the following hold.

(i) Dj
i intersects pi π

m
pj

π

2 = qi+ 1

2
qj+

1

2 at a single point which we will call xji .

(ii) The sets αj−
i , αj+

i , βj
i−, βj

i+, αj
i , and βj

i are connected curves with

∂αj−
i = {qj , xji}, ∂αj+

i = {qj+1, xji}, ∂βj
i− = {qi, xji}, ∂βj

i+ = {qi+1, x
j
i},

∂αj
i = {qj , qj+1}, and ∂βj

i = {qi, qi+1}.
(iii) ∂Dj±

i± = p(2i±1) π

2m
p(2j±1)π

4 ∪ αj±
i ∪ βj

i± = qi+ 1

2
± 1

2
qj+

1

2
± 1

2 ∪ αj±
i ∪ βj

i±.

Proof. As in the previous proof we consider Πj
i , which is a homeomorphism

from Dj
i onto D′ and moreover respects the symmetries of Ωj

i . Using the
various definitions it is then straightforward to complete the proof.

Lemma 4.11 (Graphical properties of Dj±
i± ). ∀i, j ∈ Z the following hold.

(i) The interior of Dj
i is contained in the interior of Ωj

i and the conormal

of Dj
i at a point of Qj

i \ Q/
j
i is transverse to each face of Ωj

i containing the
point.
(ii) Dj

i± (as in 4.7(ii)) is graphical with respect to KC = KC⊥ and strongly
graphical in its interior.
(iii) Dj±

i (as in 4.7(ii)) is graphical with respect to KC⊥
= KC and strongly

graphical in its interior.

Proof. (i) follows easily by the maximum principle [20, Lemma 1]. The proofs
of (ii) and (iii) are based on Alexandrov reflection in the style of [20]. Clearly
ΠC

qi
Ωj
i = qiqjqj+1 by 2.3 and 3.6. For t ∈ [0, π/m] we define (recall 3.1)

qi,t := pti+t, Dj
i,t := Dj

i ∩ qiqi,tqjqj+1 ,

and Dj
i:t := Dj

i ∩ qi+1qi,tqjqj+1 .

We clearly have then Dj
i = Dj

i,t ∪Dj
i:t and Dj

i,t ∩Dj
i:t = Dj

i ∩ qi,tqjqj+1 .

Clearly Ωj
i \ Dj

i consists of two connected components, which in this
proof we call U1 and U2, where U1 is chosen to be the component which
contains the interior of qiqjqj+1 . We define

T := {t ∈ (0, π/m) : U1 ∩ RC⊥,qi,t
Dj

i,t �= ∅}.
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(i) implies that Dj
i,t is graphical for t small enough, and therefore t /∈ T for

t small enough. We conclude that t′ := inf T > 0. If t′ < π
2m , then by the

definition of t′, RC⊥,qi,t′
Dj

i,t′ and Dj
i:t′ have a point of one-sided interior or

boundary tangential contact. By the maximum principle [20, Lemma 1] and

analytic continuation this implies that RC⊥,qi,t′
Dj

i,t′ and Dj
i:t′ are identical

contradicting the symmetries of Qj
i (alternatively 4.3). We conclude that

t′ ≥ π
2m and hence

U1 ∩ RC⊥,qi,t
Dj

i,t = ∅ for t ∈ (0, π/2m).

Using this we prove now that Dj
i− is graphical with respect to KC⊥ :

Otherwise there would be an orbit which would contain two points y1 �= y2
with yi ∈ Dj

i ∩ qi,tiq
jqj+1 for i = 1, 2, where 0 < t1 < t2 ≤ π

2m . y2 is then a

point of interior one-sided tangential contact of RC⊥,qi,t∗
Dj

i,t∗
and Dj

i , where

t∗ = t1+t2
2 ∈ (0, π

2m). This implies that RC⊥,qi,t∗
is a symmetry of Dj

i , and

hence of ∂Dj
i = Qj

i , which is a contradiction. To prove that it is strongly

graphical in the interior we argue as in the proof of 4.7. By symmetry we

conclude the statement for Dj
i+. This completes the proof of (ii). The proof

of (iii) is similar with the roles of C and C⊥ exchanged.

We define [m : 2] := 0 if m ∈ 2Z and [m : 2] := 1 otherwise.

Lemma 4.12 (Some intersections of M with great two-spheres). We have

the following.

(i) M ∩ S(C⊥, qi) = M ∩ Σ(2i−1) π

2m
=

⋃
j∈Z S(qi, q

j) =
⋃

j∈ZC
(2j−1)π

4

(2i−1) π

2m

∀i ∈ Z.

(ii) M ∩ S(C⊥, qi+ 1

2
) = M ∩ Σi π

m
=

⋃
j∈2Z−i α

j
i ∪ α

j+[m:2]
i+m ∀i ∈ Z.

(iii) M ∩ S(C, qj) = M ∩ Σ(2j−1)π

4 =
⋃

i∈Z S(qi, q
j) =

⋃
i∈Z C

(2j−1)π

4

(2i−1) π

2m

∀j ∈ Z.

(iv) M ∩ S(C, qj+
1

2 ) = M ∩ Σj π

2 =
⋃

i∈2Z−j β
j
i ∪ βj+2

i ∀j ∈ Z.

Proof. That the circles are contained in the intersections in (i) and (iii)

follows from the definition of M in 4.1 and the reverse inclusions follow

from 4.11.i completing the proof of (i) and (iii). By 2.9.iv we have Σi π

m
=

(C⊥××pi π

m
)∪ (C⊥××pi π

m
+π ) and Σj π

2 = (C××pj
π

2 )∪ (C××pj
π

2
+π ). By 4.9 and

4.1 we have M ∩ (C⊥××pi π

m
) =

⋃
j∈2Z−i α

j
i and M ∩ (C××pj

π

2 ) =
⋃

i∈2Z−j β
j
i .

Using 3.1 we complete the proof of (ii) and (iv).
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Subdividing the Lawson surfaces with mutually orthogonal

two-spheres

Definition 4.13. For M = M [C,m] as in 4.1 we define M±±
±± := M ∩Ω±±

±±,
where instead of ± we could also have ∗ (recall 3.12). For example M−∗

+− :=

M ∩ Ω−∗
+−.

Lemma 4.14 (Description of M++
∗∗ ). The following hold.

(i) M±±
∗∗ is homeomorphic to a closed disc and M++

∗∗ = ∪m−1
i=0 (D0+

2i ∪D1−
2i+1).

(ii) ∂M++
∗∗ = (Σ0 ∩M++

∗∗ )∪ (Σπ/2∩M++
∗∗ ) and is homeomorphic to a circle.

(iii) Σ0 ∩ M++
∗∗ = ∪m−1

i=0 β0
2i, and so consists of m connected components,

each homeomorphic to a closed interval.

(iv) Σπ/2 ∩M++
∗∗ = ∪m−1

i=0 β1
2i+1, and so consists of m connected components,

each homeomorphic to a closed interval.

(v) Σ0 ∩ M++
∗∗ is homeomorphic to a closed interval and Σ0 ∩ M++

∗∗ ={
α0+
0 ∪ α0+

m if m ∈ 2Z,

α0+
0 ∪ α1−

m if m ∈ 2Z+ 1.

(vi) Σπ/2 ∩M++
∗∗ is homeomorphic to a closed interval and

Σπ/2 ∩M++
∗∗ =

⎧⎪⎪⎨⎪⎪⎩
α0+
m/2 ∪ α0+

3m/2 if m ∈ 4Z,

q1qm+1

2
∪ q1q 3m+1

2
if m ∈ 2Z+ 1,

α1−
m/2 ∪ α1−

3m/2 if m ∈ 4Z+ 2.

Proof. All items follow easily from 3.15, 4.1, 4.9, 4.10, and 4.13.

Lemma 4.15 (Description of M++
+∗ ). The following hold.

(i) M++
+∗ = D0+

0+ ∪
{

∪m−1
i=1 D

[i:2]±
i ∪D0+

m− if m ∈ 2Z,

∪m−1
i=1 D

[i:2]±
i ∪D1−

m− if m ∈ 2Z+ 1,

where the ± signs are + for i even and − for i odd. Therefore M++
+∗ is

homeomorphic to a closed disc.

(ii) ∂M++
+∗ is homeomorphic to a circle. Moreover we can write ∂M++

+∗ =

γ4 ∪ γ5, where γ4 := γ4− ∪ γ4+, γ4− := Σ0 ∩ M++
+∗ , γ4+ := Σπ/2 ∩ M++

+∗ ,

γ5 := Σ0 ∩M++
+∗ , and each of γ4, γ5 is homeomorphic to a closed interval.

(iii) γ4 = γ4− ∪ γ4+ = β0
0+ ∪

{
∪m−1
i=1 β

[i:2]
i ∪ β0

m− if m ∈ 2Z,

∪m−1
i=1 β

[i:2]
i ∪ β1

m− if m ∈ 2Z+ 1,
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(iv) γ4− = Σ0 ∩M++
+∗ = β0

0+ ∪

⎧⎨⎩ ∪
m−2

2

i=1 β0
2i ∪ β0

m− if m ∈ 2Z,

∪
m−1

2

i=1 β0
2i if m ∈ 2Z+ 1.

(v) γ4+ = Σπ/2 ∩M++
+∗ =

⎧⎨⎩ ∪m/2
i=1 β1

2i−1 if m ∈ 2Z,

∪
m−1

2

i=1 β1
2i−1 ∪ β1

m− if m ∈ 2Z+ 1.

(vi) γ5 = Σ0 ∩M++
+∗ = Σ0 ∩M++

∗∗ =

{
α0+
0 ∪ α0+

m if m ∈ 2Z,

α0+
0 ∪ α1−

m if m ∈ 2Z+ 1.

(vii) Σπ/2 ∩M++
+∗ = Σπ/2 ∩M++

++ =

⎧⎪⎪⎨⎪⎪⎩
α0+
m/2 if m ∈ 4Z,

q1qm+1

2
= pπ/4pπ/2 if m ∈ 2Z+ 1,

α1−
m/2 if m ∈ 4Z+ 2,

Proof. All items follow easily from 3.15, 4.1, 4.9, 4.10, and 4.13.

Lemma 4.16 (Description of M++
++ ). The following hold.

(i) M++
++ = D0+

0+ ∪

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∪

m

2
−1

i=1 D
[i:2]±
i ∪D0+

m

2
− if m ∈ 4Z,

∪
m−1

2

i=1 D
[i:2]±
i if m ∈ 2Z+ 1,

∪
m

2
−1

i=1 D
[i:2]±
i ∪D1−

m

2
− if m ∈ 4Z+ 2,

where the ± signs are + for i even and − for i odd. Therefore M++
++ is

homeomorphic to a closed disc.
(ii) ∂M++

++ is homeomorphic to a circle. Moreover we can write ∂M++
++ =

γ1 ∪ γ2 ∪ γ3, where γ1 := γ1− ∪ γ1+, γ1− := Σ0 ∩ M++
++ , γ1+ := Σπ/2 ∩

M++
++ , γ2 := Σ0 ∩ M++

++ , and γ3 := Σπ/2 ∩ M++
++ , and each of γ1, γ2, γ3 is

homeomorphic to a closed interval.

(iii) γ1 = γ1− ∪ γ1+ = β0
0+ ∪

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∪

m

2
−1

i=1 β
[i:2]
i ∪ β0

m

2
− if m ∈ 4Z,

∪
m−1

2

i=1 β
[i:2]
i if m ∈ 2Z+ 1,

∪
m

2
−1

i=1 β
[i:2]
i ∪ β1

m

2
− if m ∈ 4Z+ 2,

(iv) γ1− = Σ0 ∩M++
++ = p0pπ/2p0 ∩M++

++ =

= β0
0+ ∪

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∪
m−4

4

i=1 β0
2i ∪ β0

m

2
− if m ∈ 4Z,

∪
m−1

4

i=1 β0
2i if m ∈ 4Z+ 1,

∪
m−2

4

i=1 β0
2i if m ∈ 4Z+ 2,

∪
m−3

4

i=1 β0
2i if m ∈ 4Z+ 3.

(v) γ1+ = Σπ/2 ∩M++
++ =
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= pπ/2pπ/2p0 ∩M++
++ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∪m/4
i=1 β1

2i−1 if m ∈ 4Z,

∪
m−1

4

i=1 β1
2i−1 if m ∈ 4Z+ 1,

∪
m−2

4

i=1 β1
2i−1 ∪ β1

m

2
− if m ∈ 4Z+ 2,

∪
m+1

4

i=1 β1
2i−1 if m ∈ 4Z+ 3.

(vi) γ2 = Σ0 ∩M++
++ = p0pπ/2p0 ∩M++

++ = α0+
0 .

(vii) γ3 = Σπ/2 ∩M++
++ =

= pπ/2pπ/2p0 ∩M++
++ =

⎧⎪⎪⎨⎪⎪⎩
α0+
m/2 if m ∈ 4Z,

q1qm+1

2
= pπ/4pπ/2 if m ∈ 2Z+ 1,

α1−
m/2 if m ∈ 4Z+ 2,

Proof. All items follow easily from 3.15, 4.1, 4.9, 4.10, and 4.13.

Lemma 4.17 (Symmetries of M++
++ and M++

+∗ ). pπ

2
= qm+1

2
and for m even

pπ

4
= qm

4
+ 1

2
. Moreover the following hold.

(i) If m ∈ 4Z then RΣπ/4
= Rqm

4
+ 1

2
,C⊥ is a symmetry of M++

++ preserving the

unit normal.
(ii) If m ∈ 4Z + 2 then RCπ/4

π/4

= Rqm+2
4

,q1 is a symmetry of M++
++ reversing

the unit normal.
(iii) If m ∈ 2Z+ 1 then RCπ/4

π/2

= Rqm+1
2

,q1 is a symmetry of M++
+∗ reversing

the unit normal and exchanging M++
++ with M++

+− .

Proof. All items follow easily from 3.14.iii, 4.3, 4.13, and 4.16.

5. Jacobi fields

As is well known the linearized operator for the mean curvature on M =
M [C,m] (recall 4.1) is given by

(5.1) L := Δ + |A|2 + 2,

where |A|2 is the square of the length of the second fundamental form of the
surface. We recall next the following standard definition.

Definition 5.2 (Jacobi fields on M = M [C,m]). We call a function J ∈
C∞(M) a Jacobi field on M = M [C,m] if it satisfies LJ = 0.

It is well known that Killing fields induce Jacobi fields as in the following
definition.
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Definition 5.3 (Jacobi fields JC′). We adopt now for the rest of this article

the same choice for the unit normal ν on the Lawson surface M = M [C,m]

as in 4.5. Given then a great circle C ′ in S3 and assuming an orientation

on C ′⊥, we define the Jacobi field JC′⊥
= JC′⊥

[C,m] = JC′ = JC′ [C,m] ∈
C∞(M [C,m] ) by JC′⊥

= JC′ := KC′ · ν (recall 2.1).

Note that multiplying a Jacobi field by −1 changes neither its nodal

set nor any other significant properties, and so the orientation of C ′⊥ and

direction of ν do not play a fundamental role.

Definition 5.4 (Exceptional and non-exceptional Jacobi fields). We call a

Jacobi field on M non-exceptional if it is induced by a Killing field; otherwise

we call it exceptional.

We proceed to study some non-exceptional Jacobi fields which as we will

see in 5.9 form a basis. It is useful to introduce first the following notation.

Notation 5.5. We define 0⊥ := π/2 and (π/2)⊥ := 0.

Lemma 5.6 (Symmetries of Jacobi fields). ∀i, j ∈ Z we have the following.

(i) JC is odd under RΣjπ/2 = R
C,qj+1

2
and even under RΣiπ/m

= RC⊥,qi+1
2

and R
C

(2j−1)π
4

(2i−1) π
2m

= R qj ,qi
.

(ii) JC⊥ is odd under RΣiπ/m
= RC⊥,qi+1

2

and even under RΣjπ/2 = R
C,qj+1

2

and R
C

(2j−1)π
4

(2i−1) π
2m

= R qj ,qi
.

(iii) If m ∈ 2Z and φ, φ′ ∈ {0, π/2}, then J
Cφ′

φ

is odd under RΣφ
and R

Σφ′

and even under RΣφ⊥
and R

Σ
φ′
⊥ .

(iv) If m ∈ 2Z + 1, then the symmetries in (iii) hold except for the ones

associated with RΣπ/2
.

Proof. All items follow from 2.11 and 4.3. Note that RΣπ/2
preserves M only

when m is even.

Lemma 5.7 (Action of some symmetries on some Jacobi fields). The fol-

lowing hold.

(i) If m ∈ 4Z, then JC0
0
◦ RΣπ/4

= −JC0
π/2

and JCπ/2

π/2

◦ RΣπ/4
= JCπ/2

0
.

(ii) If m ∈ 4Z+ 2, then JC0
0
◦ RC

π/4

π/4

= JCπ/2

π/2

and JC0
π/2

◦ RC
π/4

π/4

= −JCπ/2
0

.

(iii) If m ∈ 2Z+ 1, then JC0
0
◦ RC

π/4

π/2

= JCπ/2
0

and JCπ/2

π/2

◦ RC
π/4

π/2

= JC0
π/2

.

Proof. All items follow easily from 4.17 and the definitions, using in partic-

ular the orientation conventions specified in 3.17.



388 Nikolaos Kapouleas and David Wiygul

Lemma 5.8 (Gradient of Jacobi fields at q1). If φ, φ′ ∈ {0, π/2}, then

J
Cφ′

φ

(q1) = 0 and the gradient ∇q1J
Cφ′

φ

at q1 is nonzero and tangential to

Σφ⊥.

Proof. By 4.4 M has high-order contact with Σπ/4 at q1, so we can consider

the corresponding Jacobi field on Σπ/4 instead. That Jacobi field is clearly

a first harmonic of Σπ/4 and the result follows without calculation by the

symmetries.

Lemma 5.9 (Non-exceptional Jacobi fields). JC , JC⊥ , and J
Cφ′

φ

for φ, φ′ ∈
{0, π/2} form a basis of the space of non-exceptional Jacobi fields on M =

M [C,m].

Proof. Since the space of Killing fields has dimension six, it is enough to

prove that the Jacobi fields under consideration are linearly independent.

By symmetrizing and antisymmetrizing with respect to RΣ0 , RΣ
π/2 , and (for

the last four) RΣ0
, we can kill all of them by 5.6 except for a single Jacobi

field arbitrarily chosen in advance. This reduces the proof to proving that

each of the six Jacobi fields does not vanish identically. Clearly JC(q
1) �= 0,

JC⊥(q1) �= 0, and for the rest we consider the gradient at q1 and we appeal

to 5.8. This completes the proof.

An alternative proof is that the map K �→ K ·ν from the space of Killing

fields to the space of Jacobi fields is injective: if not, there would exist a

nontrivial Killing field everywhere tangential to M , meaning M would have

a one-parameter family of symmetries. By Lemma 4.3, however, GM
sym is

discrete, completing the proof.

Lemma 5.10 (Some Jacobi fields on geodesic segments). We have the fol-

lowing.

(i) For i ∈ (2Z + 1) ∩ [1, (m + 1)/2] and i ∈ (2Z) ∩ [(m + 1)/2,m] we have

JC0
0
≥ 0 on qiq1 ⊂ M++

+∗ .

(ii) For i ∈ (2Z) ∩ [1, (m+ 1)/2] and i ∈ (2Z+ 1) ∩ [(m+ 1)/2,m] we have

JCπ/2
0

≥ 0 on qiq1 ⊂ M++
+∗ .

(iii) For i ∈ (2Z) ∩ [1, (m+ 1)/2] we have JC0
π/2

≤ 0 on qiq1 ⊂ M++
++ and

for i ∈ (2Z+ 1) ∩ [(m+ 1)/2,m] we have JC0
π/2

≥ 0 on qiq1 ⊂ M++
+− .

(iv) For i ∈ (2Z+1)∩ [1, (m+1)/2] we have JCπ/2

π/2

≥ 0 on qiq1 ⊂ M++
++ and

for i ∈ (2Z) ∩ [(m+ 1)/2,m] we have JCπ/2

π/2

≤ 0 on qiq1 ⊂ M++
+− .
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Proof. By 3.18 and 4.13

(5.11)

KC0
0

∣∣
M++

+±
is a conical combination of pπ/2 and − pπ/2,

KC
π/2
0

∣∣∣
M++

+±

is a conical combination of − pπ/2 and p0,

KC0
π/2

∣∣∣
M++

+±

is a conical combination of − p0 and ± pπ/2, and

KC
π/2

π/2

∣∣∣
M++

+±

is a conical combination of − p0 and ± p0,

where by “conical combination” we mean a “linear combination with non-
negative coefficients”. Meanwhile, according to Lemma 4.5, at each point on
qiq1 the unit normal ν is a conical combination of ν(qi) = p 2i−1

2m
π+(−1)i+1 π

2

and ν(q1) = p−π/4. Note that

(5.12) ν(qi) ∈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pπ/2pπ for i ∈ (2Z+ 1) ∩ [1, (m+ 1)/2]

p−π/2p0 for i ∈ (2Z) ∩ [1, (m+ 1)/2]

pπp−π/2 for i ∈ (2Z+ 1) ∩ [(m+ 1)/2,m]

p0pπ/2 for i ∈ (2Z) ∩ [(m+ 1)/2,m],

so on M++
+∗

(5.13) p0 · ν(qi) ∈
{
[0, 1] for i ∈ 2Z

[−1, 0] for i ∈ 2Z+ 1

and

(5.14) pπ/2 · ν(qi) ∈{
[0, 1] for i ∈ ((2Z+ 1) ∩ [1, (m+ 1)/2]) ∪ ((2Z) ∩ [(m+ 1)/2,m])

[−1, 0] for i ∈ ((2Z) ∩ [1, (m+ 1)/2]) ∪ ((2Z+ 1) ∩ [(m+ 1)/2,m]) .

On the other hand, obviously

(5.15) p0 · ν(q1) ∈ [0, 1] and pπ/2 · ν(q1) ∈ [−1, 0],

while of course

(5.16) p0 · ν(qi) = pπ/2 · ν(qi) = p0 · ν(q1) = pπ/2 · ν(q1) = 0.
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All items now follow from the nonnegativity of the coefficients and the signs

of the inner products recorded above.

We define now a kind of discrete derivative ∂/ for functions on M by ap-

propriately adapting to the current situation the discrete derivative defined

in [10, (8.13), page 319]:

Definition 5.17 (T and the discrete derivative ∂/ ). We define an isometry

T : S3 → S3 by T := Rq1,q1 ◦ RΣ0
and a linear map ∂/ : C∞(M) → C∞(M)

by ∂/ f := 1
2 sin(π/m)(f ◦ T− f ◦ T−1) ∀f ∈ C∞(M).

Lemma 5.18 (Elementary properties of T and ∂/ ). ∂/ as in 5.17 is well

defined and T preserves C, C⊥, and M = M [C,m], and on M satisfies

T−1
∗ ◦ν ◦T = −ν. Moreover T = RC

π/m ◦RΣπ/4 and so T rotates C along itself

by angle π/m and reflects C⊥ to itself while fixing q1 = pπ/4 and q3 = −pπ/4.

Proof. The first statement about T follows from 4.3. It follows then that

∂/ is well defined. Using the definitions it is easy to check that T maps

p0, pπ/2, p
0, pπ/2 to pπ/m, pπ/2+π/m, pπ/2, p0 respectively. This implies the last

statement and completes the proof.

Lemma 5.19 (Discrete derivatives of some Jacobi fields). The following

hold.

(i) ∂/JC0
0
= JCπ/2

π/2

and ∂/ JCπ/2

π/2

= −JC0
0
.

(ii) ∂/JCπ/2
0

= −JC0
π/2

and ∂/JC0
π/2

= JCπ/2
0

.

Proof. Note that if J = K · ν is a Jacobi field induced by a Killing field K,

then J ◦T = (K ◦T) ·(ν ◦T) = (T−1
∗ ◦K ◦T) ·(T−1

∗ ◦ν ◦T) = −(T−1
∗ ◦K ◦T) ·ν

and similarly J ◦ T−1 = −(T∗ ◦K ◦ T−1) · ν, so we have

(5.20) ∂/J = 1
2 sin(π/m) (−T−1

∗ ◦K ◦ T+ T∗ ◦K ◦ T−1) · ν.

Simplifying the notation in this proof by taking c := cos π
m and s := sin π

m ,

we have by 5.18 that

T( y1p0 + y2pπ/2 + y3p0 + y4pπ/2 ) =

= (cy1 − sy2)p0 + (sy1 + cy2)pπ/2 + y4p0 + y3pπ/2,

T−1( y1p0 + y2pπ/2 + y3p0 + y4pπ/2 ) =

= (cy1 + sy2)p0 + (−sy1 + cy2)pπ/2 + y4p0 + y3pπ/2.

(5.21)
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It is easy to calculate then by referring to 3.17 that

T−1
∗ ◦KC0

0
◦ T (x1p0 + x2pπ/2 + x3p0 + x4pπ/2 ) =

= sx3p0 + cx3pπ/2 − (sx1 + cx2)p0,

T−1
∗ ◦KC

π/2

π/2

◦ T (x1p0 + x2pπ/2 + x3p0 + x4pπ/2 ) =

= −cx4p0 + sx4pπ/2 + (cx1 − sx2)pπ/2,

T−1
∗ ◦KC

π/2
0

◦ T (x1p0 + x2pπ/2 + x3p0 + x4pπ/2 ) =

= −sx4p0 − cx4pπ/2 + (sx1 + cx2)pπ/2,

T−1
∗ ◦KC0

π/2
◦ T (x1p0 + x2pπ/2 + x3p0 + x4pπ/2 ) =

= −cx3p0 + sx3pπ/2 + (cx1 − sx2)p0,

If we exchange T and T−1 in the left hand sides we obtain the same ex-

pressions but with “s” replaced by “−s”. Subtracting, applying 5.20, and

referring to 3.17 again, we conclude the proof.

6. Eigenfunctions on the Lawson surfaces

In this section we study the index and nullity of the linear operator L on

M = M [C,m] defined in 5.1. L is the only operator we consider in this

section and so we often omit it in order to simplify the notation, especially

in the notation of 1.9. We start by defining

(6.1) V ±± := {u ∈ C∞
pw(M) : u ◦ RΣ0 = ±u and u ◦ RΣ

π/2 = ±u },

where the ± signs are taken correspondingly, the first one referring to RΣ0

and the second one to RΣ
π/2 . We clearly have

(6.2) C∞
pw(M) = V ++⊕L V +−⊕L V −+⊕L V −−,

where we use ⊕L to mean “direct sum” not only in the sense of linear spaces,

but also to mean that the summands are invariant under L, and therefore

the same decomposition holds for the corresponding eigenspaces.

Proposition 6.3. We have the following (recall 1.7 and 1.8).

(i) JC ∈ V −− and V −− ∼ C∞
pw[M

++
∗∗ ; ∂M++

∗∗ , ∅].
(ii) Ind(V −−) = 0 and Null(V −−) = 1.
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Proof. (i) follows from the definitions, 4.14, and 5.6, where the linear iso-
morphism is given by restriction to M++

∗∗ in one direction and its inverse
by extension by appropriate reflections. For (ii) recall first that Lemma 5.6
implies that JC is nonnegative on M++

∗∗ by 4.11.iii and the symmetries. JC is
nontrivial by 5.9 and therefore, as a consequence of Courant’s nodal theorem
B.1, there are no other eigenfuctions in V −− of the same or lower eigenvalue
as the eigenvalue of JC , which is zero. The result follows.

To study V ++ now we define

(6.4)
V ++
± :={u ∈ V ++ : ∀i ∈ Z u ◦ RΣiπ/m

= ±u },
V ++
±± :={u ∈ V ++

± : ∀i, j ∈ Z u ◦ R qj ,qi
= ±u },

where in the second equation the ± signs are taken correspondingly. Note
that

(6.5) V ++
+ = V ++

++ ⊕L V ++
+− and V ++

− = V ++
−+ ⊕L V ++

−− .

On the other hand V ++ is not the direct sum of V ++
+ and V ++

− .

Lemma 6.6. The following hold (recall 4.7.ii and 4.9).
(i) JC⊥ ∈ V ++

−+ and V ++
− ∼ C∞

pw[D
0+
0+ ∪D1−

1−;α
1−
1 ∪ α0+

0 , β0
0+ ∪ β1

1−].

(ii) λ1(V
++
− ) = 0 < λ2(V

++
− ).

Proof. JC⊥ ∈ V ++
−+ follows from 5.6.ii and the definitions. Recall now that

D0+
0+∪D1−

1− is homeomorphic to a closed disc and its boundary is β0
0+∪β1

1−∪
α1−
1 ∪ α0+

0 . We clearly have (i) then, where the linear isomorphism is given
by restriction in one direction and its inverse by extending using reflections.
On D0+

0+ JC⊥ is nonnegative by 4.11.ii and nontrivial by 5.9. By 5.6.ii it

is then nonnegative on D1−
1− as well. As a consequence of Courant’s nodal

theorem B.1 JC⊥ corresponds then to the lowest eigenvalue and the proof is
complete.

Lemma 6.7. The following hold.
(i) V ++

+− ∼ C∞
pw[D

0+
0+; q

1q1, β
0
0+ ∪ α0+

0 ] ∼
∼ {u ∈ C∞

pw[D
0
0; ∂D

0
0, ∅] : u ◦ RΣ0

= u ◦ RΣ0 = u }.
(ii) λ1(V

++
+− ) > 0 and λ1(V

++
+ ) < 0 < λ2(V

++
+ ).

Proof. (i) follows easily by the symmetries with linear isomorphisms being
restrictions in one direction and inverses given by extensions using even or
odd reflections appropriately. By 6.5 to prove (ii) it is enough to prove

(6.8) λ1(V
++
+− ) > 0, λ1(V

++
++ ) < 0, λ2(V

++
++ ) > 0.
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Let φ1 be an eigenfunction corresponding to the eigenvalue λ1(V
++
+− ).

Since D0
0 is a minimizing disc, it is weakly stable, and so λ1(V

++
+− ) ≥ 0. The

first inequality in 6.8 will follow if we prove λ1(V
++
+− ) �= 0. By Courant’s

nodal theorem B.1 φ1 cannot change sign on D0
0 and so by the maximum

principle (without loss of generality) φ1 > 0 on the interior ofD0
0 and ηφ1 < 0

on ∂D0
0 \Q/

0
0 = Q0

0 \Q/
0
0, where η is the outward unit conormal derivative of

D0
0 at ∂D0

0 \ Q/ 0
0. By applying Green’s second identity to φ1 and JCπ/2

π/2

we

conclude∫
D0

0

(JCπ/2

π/2

Lφ1 − φ1LJCπ/2

π/2

) =

∫
∂D0

0

(JCπ/2

π/2

ηφ1 − φ1ηJCπ/2

π/2

).

If λ1(V
++
+− ) = 0, then the left hand side vanishes. Since φ1 satisfies the

Dirichlet condition on ∂D0
0, we conclude∫

∂D0
0

JCπ/2

π/2

ηφ1 = 0.

By 4.7.i JCπ/2

π/2

does not change sign on D0
0. Since ηφ1 < 0 on ∂D0

0 \ Q/ 0
0,

we conclude that JCπ/2

π/2

= 0 on ∂D0
0. This contradicts 5.8 (alternatively it

implies odd symmetries which together with 5.6 contradict the nontriviality
of JCπ/2

π/2

) and therefore we conclude the first inequality in 6.8. The positivity

of the zeroth-order term of L implies the second inequality in 6.8.
Suppose now that λ2(V

++
++ ) ≤ 0 and let φ2 be a corresponding eigen-

function. Then φ2 satisfies Neumann conditions on ∂D0+
0+ and moreover by

Courant’s nodal theorem B.1 will have two nodal domains on D0+
0+. It fol-

lows from [2, Theorem 2.5] that the nodal set φ−1
2 ({0}) contains (at least) a

piecewise C2 embedded circle or segment whose endpoints (if it has any) lie
on ∂D0+

0+ but which is otherwise disjoint from ∂D0+
0+. In particular this nodal

curve separates D0+
0+ into two components and misses the interior of at least

one of the three sides—β0
0+, α

0+
0 , and q1q1—of ∂D0+

0+. We call the missed

side γ. By domain monotonicity we conclude that λ1[D
0+
0+; γ, ∂D

0+
0+ \γ ] < 0.

If γ = q1q1, this would contradict the first inequality in 6.8, which already
has been proved. If γ = α0+

0 , this would contradict 6.6. Finally if γ = β0
0+,

this would contradict 6.3, and the proof is complete.

Proposition 6.9. We have Ind(V ++) = 2m− 1 and Null(V ++) = 1.

Proof. By considering M++
∗∗ and subdividing along the curves of intersection

with Σiπ/m and imposing the Dirichlet or the Neumann conditions appro-
priately, the result follows from A.1 by using 6.6 and 6.7.
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To study V +− and V −+ now we define

V +−
± := {u ∈ V +− : u ◦ RΣ0

= ±u }, V −+
± := {u ∈ V −+ : u ◦ RΣ0

= ±u }.
(6.10)

Note that

(6.11) V +− = V +−
+ ⊕L V +−

− , V −+ = V −+
+ ⊕L V −+

− .

Lemma 6.12 (The sign of some Jacobi fields). The following hold.
(i) If m ≥ 3, then JC0

0
≥ 0 and JCπ/2

0
≥ 0 on M++

+∗ .

(ii) If in addition m is even, then JCπ/2

π/2

≥ 0 and JC0
π/2

≤ 0 on M++
++ .

Proof. Step 1: We prove that ∀i ∈ Z ∩ [1, (m + 1)/2] we have JC0
0
≥ 0 on

qiq1—equivalently JC0
0
≥ 0 on all geodesic segments contained in M++

++ .

If i is odd or i = m+1
2 , we already know this by 5.10.i. We can assume

then that m ≥ 4 because for m = 3 step 1 is proved. By 5.10.iv and 5.19.i
we have for i ∈ (2Z + 1) ∩ [1, (m + 1)/2] that JC0

0
◦ T ≥ JC0

0
◦ T−1 on qiq1.

Since T±1(qiq1) = qi±1q1 by 5.18, this means that JC0
0
on qiq1 ⊂ M++

++ is
increasing with increasing even i. Arguing inductively on even i it is enough
to prove then that JC0

0
≥ 0 on q2q1.

Taking i = 1 in the inequality in the previous paragraph we establish
that JC0

0
◦ T ≥ JC0

0
◦ T−1 on q1q1. By 5.17 we have T−1 = RΣ0

on q1q1,

so by 5.6.iii-iv we know that JC0
0
◦ T−1 = −JC0

0
on q1q1. Combining we

obtain JC0
0
◦T+JC0

0
≥ 0 on q1q1. We consider now the symmetrization ϕ :=

JC0
0
◦RΣπ/m

+JC0
0
of JC0

0
onD1−

1 ⊂ M++
++ . Recall that ∂D1−

1 = q1q1∪q2q1∪β1
1 .

Since by 5.18 T = RΣπ/m
on q1q1, by the last inequality above we have ϕ ≥ 0

on q1q1∪q2q1 ⊂ ∂D1−
1 . By 5.6.iii-iv ϕ satisfies the Neumann condition on the

remaining boundary β1
1 . If we assume that ϕ attains negative values on D1−

1 ,
then by domain monotonicity, and since Lϕ = 0, we obtain a contradiction
to λ1(V

++
+− ) > 0 in 6.7.ii by using 6.7.i. Hence ϕ ≥ 0 on D1−

1 and since
ϕ = 2JC0

0
on α1−

1 = D1−
1 ∩ Σπ/m (by 4.9), we conclude that JC0

0
≥ 0 on

α1−
1 ⊂ D1−

1 .
We consider now the domain Φ := D1−

1+ ∪D0+
2 . Clearly Φ is homeomor-

phic to a disc and has ∂Φ = β1
1+∪β0

2∪q3q1∪α1−
1 and q2q1 ⊂ Φ. We postpone

the casem = 4 for later and we assume thatm ≥ 5 so that q3q1 ⊂ Φ ⊂ M++
++ .

We already know then (by the preceding paragraphs and 5.6) that JC0
0
≥ 0

on q3q1 ∪ α1−
1 and satisfies the Dirichlet condition on β0

2 and the Neumann

condition on β1
1+. In order to apply now A.1 we subdivide Φ along q2q1
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into D1−
1+ and D0+

2 . We clearly have C∞
pw[L, D1−

1+;α
1−
1 , q2q1 ∪ β1

1+] ∼ V ++
−+

and λ1[L, D0+
2 ;β0

2 ∪q3q1, q2q1] > λ1[L, D0+
2 ;β0

2 , q2q
1∪q3q1] ≥ λ1(V

−−). By

referring to 6.6 and 6.3 we conclude that #<0[L, D1−
1+;α

1−
1 , q2q1 ∪ β1

1+] =

0 and #≤0[L, D0+
2 ;β0

2 ∪ q3q1, q2q1] = 0. By A.1 then we conclude that

λ1[L,Φ;β0
2 ∪ q3q1 ∪ α1−

1 , β1
1+] > 0, which by domain monotonicity would

contradict an assumption that JC0
0
takes negative values on Φ. We conclude

that JC0
0
≥ 0 on q2q1 ⊂ Φ which completes step 1 under the assumption

m ≥ 5.

We consider now the case m = 4. Note that D1−
1+ ∪ D0+

2− is homeomor-

phic to a disc and can be subdivided into D1−
1+ and D0+

2− by q2q1. Recall

that ∂D1−
1+ = α1−

1 ∪ β1
1+ ∪ q2q1 and ∂D0+

2− = α0+
2 ∪ β0

2− ∪ q2q1. We have

λ1[D
1−
1+;α

1−
1 , β1

1+∪q2q1] = 0 by 6.6 and λ1[D
0+
2−;β

0
2−, α

0+
2 ∪q2q1] = 0 by 6.3.

Applying A.1 we conclude that λ1[D
1−
1+ ∪ D0+

2−;α
1−
1 ∪ β0

2−, β
1
1+ ∪ α0+

2 ] ≥ 0.

Since for m = 4 we have α0+
2 ⊂ Σπ/2, it follows by 5.6 that JC0

0
satisfies

the same boundary conditions except on α1−
1 , where we proved above that

it is ≥ 0. Moreover JC0
0
cannot vanish identically on α1−

1 by 5.8. By domain
monotonicity we obtain a contradiction on the assumption that JC0

0
is not

nonnegative on D1−
1+ ∪D0+

2−. We conclude JC0
0
≥ 0 on q2q1 ⊂ D1−

1+ ∪D0+
2− and

step 1 is complete in all cases.

Step 2: We prove that ∀i ∈ Z ∩ [1, (m + 1)/2] we have JCπ/2
0

≥ 0 on

qiq1—equivalently JCπ/2
0

≥ 0 on all geodesic segments contained in M++
++ .

Unlike the case of JC0
0
we now know this by 5.10.ii when i is even.

Using the discrete derivative as before, we have by 5.10.iii and 5.19.ii for
i ∈ (2Z) ∩ [1, (m + 1)/2] that JCπ/2

0
◦ T ≥ JCπ/2

0
◦ T−1 on qiq1. Arguing

inductively on odd i, it is enough to prove then that JCπ/2
0

≥ 0 on q1q1. For

this we consider the domain Φ′ := D0+
0+∪D1−

1 . Clearly Φ′ is isometric to Φ in

the previous step (in fact Φ = T(Φ′)) and has ∂Φ′ = β0
0+∪β1

1∪q2q1∪α0+
0 and

q1q1 ⊂ Φ′. Similarly to the previous step, we already know that JCπ/2
0

≥ 0

on q2q1 and satisfies the Dirichlet condition on β1
1 ∪ α0+

0 and the Neumann
condition on β0

0+. Arguing then as in the previous step, we conclude that

JCπ/2
0

≥ 0 on Φ′ and hence on q1q1 ⊂ Φ′, which completes step 2.

Step 3: We prove that JC0
0
≥ 0 and JCπ/2

0
≥ 0 on M++

++ .

Recall from 4.16 that M++
++ can be subdivided along the geodesic seg-

ments it contains into D
[i:2]±
i ’s, D0+

0+, and D0+
m

2
− (for m ∈ 4Z) or D1−

m

2
− (for

m ∈ 4Z+2). We already know that on the geodesic segments in the bound-
aries of these regions we have JC0

0
, JCπ/2

0
≥ 0, while on the rest of each
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boundary JC0
0
and JCπ/2

0
satisfy Dirichlet or Neumann conditions. We also

know, using 6.3 and 6.7, that if we impose the Dirichlet condition on each
geodesic segment and leave the remaining boundary conditions unchanged,
then the corresponding lowest eigenvalue on each region (obtained by sub-
dividing along the geodesic segments) is strictly positive. If we assume then
that JC0

0
or JCπ/2

0
attains negative values, we will have a contradiction by

domain monotonicity. This completes step 3.
Step 4: We complete the proof of the lemma.
Form even (i) follows from step 3 and the even symmetry with respect to

RΣπ/2
, as asserted in 5.6.iii, which exchanges M++

++ with M++
+− . For m odd (i)

follows from step 3 and by using 4.17.iii and the identity JC0
0
◦RCπ/4

π/2

= JCπ/2
0

from 5.7.iii. Finally (ii) follows from step 3 and (for m ∈ 4Z) 4.17.i and 5.7.i
or (for m ∈ 4Z+ 2) 4.17.ii and 5.7.ii.

Proposition 6.13. We have the following (recall 4.15).
(i) JC0

0
∈ V −+

− and V −+
− ∼ C∞

pw[M
++
+∗ ; γ4− ∪ γ5, γ4+].

(ii) JCπ/2
0

∈ V +−
− and V +−

− ∼ C∞
pw[M

++
+∗ ; γ4+ ∪ γ5, γ4−].

(iii) Ind(V −+
− ) = Ind(V +−

− ) = 0 and Null(V −+
− ) = Null(V +−

− ) = 1.

Proof. (i) and (ii) follow easily from the definitions and the symmetries in
5.6, with the linear isomorphisms between the spaces given by restriction to
M++

+∗ and their inverses by extending using the appropriate reflections. (iii)
follows then from 6.12.i and B.1.

We proceed to study now V −+
+ and V +−

+ . One would like to decompose
these spaces further, but unfortunately it is clear how to do this only when
m is even. If m is even, we define

(6.14) V ◦◦
◦± := {u ∈ V ◦◦

◦ : u ◦ RΣπ/2
= ±u } for m even,

where the upper circles can be +− or −+ (on both sides) and the lower
circle + or − (on both sides). We have then for m even that

(6.15) V +−
± = V +−

±− ⊕L V +−
±+ , V −+

± = V −+
±− ⊕L V −+

±+ .

Although we will not use the following lemma, we state it for completeness
of exposition—compare also with 5.7.

Lemma 6.16 (Some eigenvalue equivalences). The following hold.
(i) If m ∈ 4Z, then V −+

−+ ∼ V −+
+− and V +−

−+ ∼ V +−
+− .

(ii) If m ∈ 4Z+ 2, then V −+
−+ ∼ V +−

+− , and V +−
−+ ∼ V −+

+− .
(iii) If m ∈ 2Z+ 1, then V −+

− ∼ V +−
− and V −+

+ ∼ V +−
+ .
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Proof. All items follow easily from 4.17 and the definitions.

Proposition 6.17. We have the following (recall 4.15 and 4.16).

(i) JC0
π/2

∈ V −+
+ and V −+

+ ∼ C∞
pw[M

++
+∗ ; γ4−, γ4+ ∪ γ5]. Moreover if m is

even, we have JC0
π/2

∈ V −+
+− and V −+

+− ∼ C∞
pw[M

++
++ ; γ1− ∪ γ3, γ1+ ∪ γ2 ].

(ii) JCπ/2

π/2

∈ V +−
+ and V +−

+ ∼ C∞
pw[M

++
+∗ ; γ4+, γ4− ∪ γ5]. Moreover if m is

even, we have JCπ/2

π/2

∈ V +−
+− and V +−

+− ∼ C∞
pw[M

++
++ ; γ1+ ∪ γ3, γ1− ∪ γ2 ].

(iii) Ind(V −+
+ ) = Ind(V +−

+ ) = 1 and Null(V −+
+ ) = Null(V +−

+ ) = 1.

Proof. As in the proof of 6.13, (i) and (ii) follow easily from the defini-

tions and the symmetries in 5.6, with the linear isomorphisms between the

spaces given by restriction to M++
+∗ and their inverses by extending using

the appropriate reflections. To prove (iii) now we provide different arguments

depending on whether m is even or odd, the even case being easier because

of the extra symmetry we can employ.

We assume first that m is even. By (i), (ii), 6.12.ii, and B.1 we conclude

that λ1(V
+−
+− ) = λ1(V

−+
+− ) = 0, λ2(V

+−
+− ) > 0, and λ2(V

−+
+− ) > 0. Replacing

the Dirichlet condition with the Neumann condition reduces the eigenvalues

and therefore λ1(V
+−
++ ) < λ1(V

+−
+− ) = 0 and λ1(V

−+
++ ) < λ1(V

−+
+− ) = 0.

By Courant’s nodal theorem B.1 and arguing as in the proof of 6.7 using [2,

Theorem 2.5], we conclude that the eigenfunction corresponding to λ2(V
+−
++ )

must contain a separating nodal curve in M++
++ which does not intersect at

least one of γ1, γ2, or γ3 defined as in 4.16.ii. There is a nodal domain then

in M++
++ which does not intersect at least one of γ1, γ2, or γ3. If it does not

intersect γ1, by extending to M++
++ and by using domain monotonicity we

conclude that λ2(V
+−
++ ) > λ1(V

−−). If it does not intersect γ2, using domain

monotonicity we conclude that λ2(V
+−
++ ) > λ1(V

+−
−+ ). If it does not intersect

γ3, using domain monotonicity we conclude that λ2(V
+−
++ ) > λ1(V

+−
+− ). Since

λ1(V
−−) = 0, λ1(V

+−
−+ ) = 0, and λ1(V

+−
+− ) = 0 by 6.3, 6.13, and the above,

we conclude that 0 < λ2(V
+−
++ ). Arguing similarly we conclude that 0 <

λ2(V
−+
++ ). The above together with the decompositions (by 6.15)

V +−
+ = V +−

+− ⊕L V +−
++ , V −+

+ = V −+
+− ⊕L V −+

++

imply (iii) in the case that m is even.

Suppose now that m is odd. Recall 4.15. By “cutting through” q1q1 and

α1−
1 we obtain the decomposition M++

+∗ = D0+
0+ ∪D1−

1− ∪M ′, where

M ′ := D1−
1+ ∪ ∪m−1

i=2 D
[i:2]±
i ∪D1−

m−,
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with the signs as in 4.15.i. By 4.7.ii D0+
0+, D

1−
1−, and M ′ are each homeomor-

phic to a disc and we have ∂D0+
0+ = β0

0+∪q1q1∪α0+
0 , ∂D1−

1− = β1
1−∪q1q1∪α1−

1 ,

and ∂M ′ = γ′4∪α1−
1 ∪α1−

m , where γ′4 := γ′4−∪γ′4+, γ′4− = γ4−∩M ′ = γ4−\β0
0+,

and γ′4+ = γ4+ ∩ M ′ = γ4+ \ β1
1−. The advantage of M ′ over M++

+∗ is that
M ′ has an extra symmetry, Rqm

2
+1,C⊥ = RΣπ

2
+ π

2m

, which preserves each of

γ′4− and γ′4+. To exploit this we define

W := C∞
pw[M

′; γ′4−, γ
′
4+∪α1−

1 ∪α1−
m ], W± := {u ∈ W : u = ±u◦RΣπ

2
+ π

2m

}.

We clearly have then the decomposition W = W+⊕LW−. We claim now
that

(6.18) λ2(W ) = λ2[M
′; γ′4−, γ

′
4+ ∪ α1−

1 ∪ α1−
m ] > 0.

To prove the claim it is enough to prove that λ1(W−) > 0 and λ2(W+) >
0. By “cutting through” with Σπ

2
+ π

2m
we have the decomposition M ′ =

M ′
+ ∪ RΣπ

2
+ π

2m

M ′
+, where

M ′
+ := D

[m+1

2
:2]±

m+1

2
+

∪ ∪m−1
i=m+3

2

D
[i:2]±
i ∪D1−

m−.

We have then M ′
+ ∩ RΣπ

2
+ π

2m

M ′
+ = M ′ ∩ Σπ

2
+ π

2m
= α

[m+1

2
:2]±

m+1

2

, γ′4± ∩ M ′
+ =

γ4± ∩M ′
+,

W− ∼C∞
pw

[
M ′

+; (γ4− ∩M ′
+) ∪ α

[m+1

2
:2]±

m+1

2

, (γ4+ ∩M ′
+) ∪ α1−

m

]
,

W+ ∼C∞
pw

[
M ′

+; γ4− ∩M ′
+, α

[m+1

2
:2]±

m+1

2

∪ (γ4+ ∩M ′
+) ∪ α1−

m

]
.

Next we reposition M ′
+ by using T−m+1

2 (recall 5.18) to obtain

M ′′ := T−m+1

2 M ′
+ = D0+

0+ ∪ ∪
m−3

2

i=1 D
[i:2]±
i ∪D

[m−1

2
:2]±

m−1

2
− ,

and we use Rqm/2,C⊥ = RΣπ
2

− π
2m

to “double” M ′′, producing

M ′′′ := M ′′ ∪ (Rqm/2,C⊥ M ′′) = D0+
0+ ∪ ∪m−2

i=1 D
[i:2]±
i ∪D0+

(m−1)−,

where α
[m+1

2
:2]±

m+1

2

, which was used to subdivide M ′, has been moved and “dou-

bled” to α0+
0 ∪ α0+

m−1 ⊂ ∂M ′′′.
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We have then that a first eigenfunction inW− (corresponding to λ1(W−))
corresponds to an eigenfunction in C∞

pw[M
′′′;α0+

0 ∪α0+
m−1∪(γ4±∩M ′′′), (γ4∓∩

M ′′′) ] which moreover is even under reflection with respect to Rqm/2,C⊥ =
RΣπ

2
− π

2m

, and where the ± and ∓ signs are opposite and depend on whether

m ∈ 4Z+1 or m ∈ 4Z+3. Either way by 6.13 and by domain monotonicity
(since M ′′′ � M++

+∗ ) we conclude that λ1(W−) > 0.

We have also W+ ∼ C∞
pw[M

′′; (γ4±∩M ′′), α0+
0 ∪α

[m−1

2
:2]±

m−1

2

∪ (γ4∓∩M ′′) ].

Suppose ϕ is an eigenfunction corresponding to λ2(W+). By Courant’s nodal
theorem B.1 and arguing as in the proof of 6.7 using [2, Theorem 2.5], we
conclude that there is a separating nodal curve γ which has to avoid at least

one of γ4 ∩M ′′, α0+
0 , or α

[m−1

2
:2]±

m−1

2

. In the first case by domain monotonicity

we conclude that

λ2(W+) > λ1[M
′′; (γ4 ∩M ′′), α0+

0 ∪ α
[m−1

2
:2]±

m−1

2

] = 0,

where the last equality follows from 6.3. In the second case we again use
domain monotonicity, but the comparison is with λ1(W−), which we proved
positive above. In the third case we reposition M ′′ and we argue as for the
second case. This completes the proof that λ2(W+) > 0 and hence of our
claim 6.18.

Clearly by 6.3 we have

(6.19) λ1[D
0+
0+;β

0
0+, q1q

1 ∪ α0+
0 ] = 0.

We consider now an eigenfunction corresponding to λ2[D
1−
1−; ∅, β1

1− ∪ q1q1 ∪
α1−
1 ]. By Courant’s nodal theorem B.1 and arguing as in the proof of 6.7

using [2, Theorem 2.5] again, we conclude that there is a separating nodal
curve which avoids at least one of β1

1−, q1q
1, or α1−

1 . We can use domain

monotonicity then to assert that λ2[D
1−
1−; ∅, β1

1− ∪ q1q1 ∪ α1−
1 ] is > one of

λ1[D
1−
1−;β

1
1−, q1q

1 ∪ α1−
1 ], λ1[D

1−
1−; q1q

1, β1
1− ∪ α1−

1 ], or λ1[D
1−
1−;α

1−
1 , β1

1− ∪
q1q1]. By appealing to 6.3, 6.7, or 6.6 correspondingly we conclude that

(6.20) λ2[D
1−
1−; ∅, β1

1− ∪ q1q1 ∪ α1−
1 ] > 0.

We can apply A.1 now to the decomposition M++
+∗ = D0+

0+ ∪ D1−
1− ∪

M ′ to conclude by referring to 6.18, 6.19, and 6.20, that #≤0(V
−+
+ ) =

#≤0[M
++
+∗ ; γ4−, γ4+ ∪ γ5] ≤ 2. Since JC0

π/2
∈ V −+

+ changes sign on M++
+∗ by

5.8, it cannot be a first eigenfunction. Since it has eigenvalue 0, we conclude
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by the last inequality that it is a second eigenfunction, which completes the
proof of (iii) for V −+

+ . The proof for V +−
+ is similar.

The main theorem follows. Recall that ξg,1 in the notation of [13] denotes
the genus-g Lawson surface which can be viewed as a desingularization of
two orthogonal great two-spheres in the round three-sphere S3.

Theorem 6.21. If g ∈ N and g ≥ 2, then the index of ξg,1 is 2g + 3.
Moreover ξg,1 has nullity 6 and no exceptional Jacobi fields.

Proof. Recall that m = g + 1. Combining then 6.2, 6.11, Propositions 6.3,
6.9, 6.13 and 6.17, we conclude the proof.

Remark 6.22 (Alternative proof for high genus). The Lawson surfaces of
high genus can be constructed by gluing and then one obtains a detailed
knowledge of their geometry. The gluing construction is a straightforward
desingularization construction for Σπ/4 ∪ Σ−π/4 = ∪4

j=1(q
j××C), that is two

orthogonal great two-spheres, in the fashion of those constructions in [11]
which are for two orthogonally intersecting Clifford tori. The surfaces con-
structed are modeled in the vicinity of C after the classical Scherk surface
[19] desingularizing two orthogonal planes in R3 and given in appropriate
Cartesian coordinates by the equation sinhx1 sinhx2 = sinx3. For each large
m we can impose on the construction all the symmetries of M = M [C,m].
By the uniqueness then in 4.1 we can infer that the surface constructed is
actually M = M [C,m] = ξm−1,1. By the control the construction provides
we can conclude then that for large m (equivalently large genus) the region
of the Lawson surface M = ξm−1,1 in the vicinity of C can be approximated
by an appropriately scaled singly periodic Scherk surface, which has been
transplanted to S3 so that its axis covers C. The rest of the Lawson surface
approximates ∪4

j=1(q
j××C) (that is the two great two-spheres being desin-

gularized) with a small neighborhood of C removed. This information can
be used to simplify the proofs of many intermediate results on which the
proof of the main theorem is based, thus avoiding the need for many of the
arguments we have used in this article.

Note now that there is a smooth family of singly periodic Scherk surfaces
which can be parametrized by the angle θ ∈ (0, π) between two adjacent
asymptotic half planes. The Scherk surface in 6.22 corresponds then to θ =
π/2. Since we can then prescribe θ, we say that the Scherk surfaces can
“flap their wings”. In [10, Section 4.2] a heuristic argument was provided
indicating that this is not the case for the Lawson surfaces and further
questions motivated by this were asked. The non-existence of exceptional
Jacobi fields as in 6.21 provides partial answers to some of those questions.
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In particular it implies that each ξg,1 is isolated as in the following corollary.
Isolatedness can be proved by adapting the proof of [12, Proposition 3.1] or
by a more direct argument suggested to us by R. Schoen as follows.

Corollary 6.23 (No flapping and isolatedness). ξg,1 as in 6.21 cannot “flap
its wings” at the linearized level and moreover it is isolated in the sense that
there is an ε > 0 such that any minimal surface within a C1 ε-neighborhood
of ξg,1 is congruent to ξg,1.

Proof. By “no flapping at the linearized level” we mean that there are no
Jacobi fields which are infinitesimal deformations consistent with varying
the angle of intersection of the two spheres of which the surfaces can be
viewed as desingularizations. Since there are no exceptional Jacobi fields by
Theorem 6.21, the result follows.

To prove now isolatedness suppose M = ξg,1 is not isolated modulo con-
gruence. Then there exists a sequence {Mn} of embedded minimal surfaces
none of which is congruent to M but which C1-converge to M . Each Mn is
then the graph (via the exponential map in the normal direction) of some
function un on M , so that {un} converges to 0 in C1(M). By appropriately
rotating each Mn we may assume that eventually un is L2(M)-orthogonal
to the space of nonexceptional Jacobi fields, at least to first order in ‖un‖C0 .
Since each Mn is minimal, by elliptic regularity the sequence {un/ ‖un‖C1}
is bounded in C2,α(M), so has a subsequence converging in C2(M), thereby
producing a nontrivial exceptional Jacobi field, a contradiction.

Appendix A. Eigenvalues and subdivisions

In this appendix following [14] we state two bounds on the number of eigen-
values on a domain in terms of the number of eigenvalues on appropriate
subdivisions of the domain. More precisely suppose that we are given L, U ,
g, and ∂U = ∂DU ∪ ∂NU as in 1.9. We assume further that by removing
a finite union of smooth embedded one-dimensional submanifolds, γ ⊂ U ,
we subdivide U into n ∈ N connected components whose (compact) clo-
sures we denote by U i for i = 1, . . . , n. We define ∂DU i := ∂U i ∩ ∂DU ,
∂NU i := ∂U i ∩ ∂NU , and γ

i
:= ∂U i ∩ γ. Clearly then we have the decom-

position

∂U i = γ
i
∪ ∂DU i ∪ ∂NU i.

We have then the following.

Proposition A.1 (Montiel-Ros [14]). Assuming the above and in the nota-
tion of 1.9 we have the following ∀λ ∈ R.
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(i) #<λ[L, U ; ∂DU, ∂NU ] ≥
≥ #<λ[L, U1; γ1 ∪ ∂DU1, ∂NU1] +

∑n
i=2#≤λ[L, U i; γi ∪ ∂DU i, ∂NU i].

(ii) #≤λ[L, U ; ∂DU, ∂NU ] ≤
≤ #≤λ[L, U1; ∂DU1, γ1 ∪ ∂NU1] +

∑n
i=2#<λ[L, U i; ∂DU i, γi ∪ ∂NU i].

Proof. Parts (i) and (ii) generalize Lemma 12 and Lemma 13 respectively of
[14], whose proofs carry over here with only minor modification. Nevertheless
we sketch a proof for ease of reference. First we introduce some general
notation: for L, U , g, and ∂U = ∂DU ∪ ∂NU as in 1.9 and λ ∈ R we
will write Eλ[U ; ∂DU, ∂NU ] for the λ-eigenspace of L on U with Dirichlet
condition on ∂DU and Neumann condition on ∂NU . We will understand
Eλ[U ; ∂DU, ∂NU ] = {0} when λ is not an eigenvalue. Now we make the
same assumptions on U and its boundary as above and fix λ ∈ R.

To prove (i) we define the n spaces of test functions Vi (i = 1, . . . , n)
by requesting that the functions in Vi are supported in U i and their re-
strictions to U i are in

⊕
λ′<λEλ′ [U1; γ1 ∪ ∂DU1, ∂NU1] if i = 1 and in⊕

λ′≤λEλ′ [U i; γi ∪ ∂DU i, ∂NU i] if i �= 1. Clearly for any ui ∈ Vi and uj ∈ Vj

with i �= j we have ∇ui ⊥L2(U) ∇uj and ui ⊥L2(U) huj for any h ∈ C∞
pw(U).

Define also
V<λ :=

⊕
λ′<λ

Eλ′ [U ; ∂DU, ∂NU ].

We claim that the L2(U)-orthogonal projection
⊕n

i=1 Vi → V<λ is injective,
which will establish (i). To check the injectivity suppose u ∈

⊕n
i=1 Vi, so

that u =
∑n

i=1 ui for some u1 ∈ V1, u2 ∈ V2, . . . , un ∈ Vn. Then

〈∇u,∇u〉L2 − 〈u, fu〉 =
n∑

i=1

(〈∇ui,∇ui〉L2 − 〈ui, fui〉L2) ≤ λ〈u, u〉L2 ,

but the additional assumption u ⊥L2 V<λ forces the equality case, which
then implies u|U1

= 0 and Lu = −λu everywhere. We conclude by the
unique-continuation principle [1] that in fact u = 0.

To prove now (ii) we define the 2 + n vector spaces

W :=

n⊕
i=1

C∞
pw[U i],

V≤λ :=
⊕
λ′≤λ

Eλ′ [U, ∂DU, ∂NU ],

W1 :=
⊕
λ′≤λ

Eλ′ [U1, ∂DU1, γ1 ∪ ∂NU1],

Wi :=
⊕
λ′<λ

Eλ′ [U i, ∂DU i, γi ∪ ∂NU i] for 2 ≤ i ≤ n.
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Clearly
⊕n

i=1Wi is a subspace of W and the map

ι : u ∈ V≤λ �→
(
u|U1

, . . . , u|Un

)
∈ W

is injective. Endowing W with the obvious L2 inner product and writing

π : W →
⊕n

i=1Wi for the corresponding projection onto
⊕n

i=1Wi, we claim

that π◦ι is injective, implying (ii). To check the injectivity suppose u ∈ V≤λ.

Then

n∑
i=1

〈∇u|U i
,∇u|U i

〉L2 −
n∑

i=1

〈fu|U i
, u|U i

〉L2 =

= 〈∇u,∇u〉L2 − 〈u, fu〉L2 ≤ λ〈u, u〉L2 .

On the other hand, if ι(u) ⊥
⊕n

i=1Wi, then for each i

〈∇u|U i
,∇u|U i

〉L2 − 〈fu|U i
, u|U i

〉L2 ≥ λ〈u|U i
, u|U i

〉L2 ,

with strict inequality when n = 1, unless u|U1
= 0. Since we have 〈u, u〉L2 =∑n

i=1〈u|U i
, u|U i

〉L2 , we conclude that if u ∈ kerπ ◦ ι, then u is a solution

to Lu = −λu and vanishes identically on U1, forcing u = 0 by unique

continuation.

Appendix B. The Courant nodal theorem

In this appendix we recall Courant’s nodal theorem in the form we use

it. Suppose that we are given L, U , g, and ∂U = ∂DU ∪ ∂NU as in 1.9.

Suppose moreover U is connected. We define the number of nodal domains

of an eigenfunction u of L to be the number of connected components of

U \ u−1(0). We have then the following, where for ease of reference we

include in the theorem its corollary on the simplicity of the first eigen-

value.

Theorem B.1 (Courant’s nodal theorem [8]). Given L, U , g, and ∂U =

∂DU ∪∂NU as above, let Nn for each n ∈ N be the number of nodal domains

of an eigenfunction corresponding to the nth eigenvalue λn[L, U ; ∂DU, ∂NU ]

in the notation of 1.9. We have then the following.

(i) For n = 1: N1 = 1 and λ1[L, U ; ∂DU, ∂NU ] < λ2[L, U ; ∂DU, ∂NU ].

(ii) For n > 1: 2 ≤ Nn ≤ n.
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