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(1, 1) forms with specified Lagrangian phase:
a priori estimates and algebraic obstructions

Tristan C. Collins
∗
, Adam Jacob

†
, and Shing-Tung Yau

Let (X,α) be a Kähler manifold of dimension n, and let [ω] ∈
H1,1(X,R). We study the problem of specifying the Lagrangian
phase of ω with respect to α, which is described by the nonlinear
elliptic equation

n∑
i=1

arctan(λi) = h(x)

where λi are the eigenvalues of ω with respect to α. When h(x) is
a topological constant, this equation corresponds to the deformed
Hermitian-Yang-Mills (dHYM) equation, and is related by mirror
symmetry to the existence of special Lagrangian submanifolds. We
introduce a notion of subsolution for this equation, and prove a
priori C2,β estimates when |h| > (n−2)π2 and a subsolution exists.
Using the method of continuity we show that the dHYM equation
admits a smooth solution in the supercritical phase case, whenever
a subsolution exists. Finally, we discover some Bridgeland-stability-
type cohomological obstructions to the existence of solutions to the
dHYM equation and we conjecture that when these obstructions
vanish the dHYM equation admits a solution. We confirm this
conjecture for complex surfaces.

AMS 2000 subject classifications: Primary 14J32, 53C07.

1. Introduction

Let (X,α) be a connected, compact Kähler manifold of complex dimension

n, and let Ω ∈ H1,1(X,R) be a cohomology class. Motivated by Mirror

Symmetry, the second and third authors introduced the following problem
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in [26]; does there exist a smooth, closed (1, 1) form ω, such that [ω] = Ω,
and

(1.1) Im(α+
√
−1ω)n = tan(Θ̂)Re(α+

√
−1ω)n,

where Θ̂ is an S1 valued topological constant determined by [α],Ω? When
Ω ∈ H1,1(X,Z), this equation is known as the deformed Hermitian-Yang-
Mills (dHYM) equation, and plays an important role in Mirror Symmetry.
Written in terms of the eigenvalues of the relative endomorphism Λj

k =

αj�̄ωk�̄, equation (1.1) can be written as [26]

(1.2) Θα(ω) :=

n∑
i=1

arctan(λi) = Θ̂ mod 2π.

Equation (1.2) is the natural generalization to compact Kähler manifolds
of the special Lagrangian equation with potential introduced by Harvey-
Lawson [24] and since studied extensively; see, for instance, [4, 38, 39, 51,
52, 53, 58, 59] and the references therein. The third author, with Leung and
Zaslow [32], showed that when Ω = c1(L) for a holomorphic line bundle
L → X, and X is a torus fibration over a torus, solutions of equation (1.2)
are related via the Fourier-Mukai transform to special Lagrangian sections
of the dual torus fibration. In their paper [26], the second and third authors
initiated the study of (1.2) over a compact Kähler manifold, and using a
parabolic flow they proved the existence of solutions when (X,α) has positive
bisectional curvature, and the initial data is sufficiently positive.

A fundamental conjecture in mirror symmetry, dating back to work
of Thomas [46] and Thomas-Yau [48] states that, for a Calabi-Yau man-
ifold (X,ω), the class of a Lagrangian [L] in the derived Fukaya category
DπFuk(X,ω) contains a special Lagrangian representative if and only if it is
stable in an algebraic sense. The precise notion of stability has been updated
since the original works [46, 48], and is now understood to be Bridgeland
stability. We therefore state

Conjecture 1.1 (Folklore). There is a Bridgeland stability condition on
the derived Fukaya category such that the class of a Lagrangian contains a
special Lagrangian representative if and only if it is stable.

Joyce has made detailed conjectures in this direction concerning stability
and the behavior of the Lagrangian mean curvature flow [27].

In this paper we study the mirror of Conjecture 1.1. As remarked above,
at least for Lagrangian sections of the SYZ fibration, this is equivalent to
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understanding conditions for the existence of solutions to the dHYM. Our

starting point, at least inspirationally, is the following simple observation;

suppose Ω = c1(L) is Kähler, and look for hermitian metrics h on L whose

curvature form satisfies (1.1). We may also look for metrics h on L, so that

the curvature form of hk on L⊗k satisfies equation (1.1) with c1(L) replaced

by kc1(L). These two equations are different. It is therefore natural to ask for

the limiting equation when k → ∞. Multiplying both sides of (1.1) by k−n,

and taking a limit as k → ∞ one easily obtains that the limiting equation is

(1.3) cωn = nωn−1 ∧ α,

for ω ∈ c1(L) with c a topological constant. Equation (1.3) is precisely the

J-equation, discovered independently by Donaldson [16] and Chen [6, 7]. Let

us briefly recall some of the important analytic and algebraic facts about

the J-equation to serve as motivation for our work. Analytically, the solv-

ability of the J-equation on general compact Kähler manifolds is well un-

derstood thanks to work of Song-Weinkove [42]. Building on previous work

of Weinkove [55, 56], Song-Weinkove show that the existence of a solution

to the J-equation is equivalent to the existence of a Kähler metric χ ∈ [ω]

with

(1.4) cχn−1 − (n− 1)χn−2 ∧ α > 0

in the sense of (n−1, n−1) forms. Very recently, Székelyhidi [44] introduced

a notion of subsolutions for a very general class of Hessian type equations

on Hermitian manifolds, which encompasses (1.4), and showed that the ex-

istence of a subsolution implies a priori estimates to all orders.

The primary goal in this work is to begin building an analytic and al-

gebraic framework for studying the existence problem for solutions of equa-

tion (1.2). As a first step, we study the specified Lagrangian phase equation;

(1.5) Θα(ω) :=
∑
i

arctan(λi) = h(x).

Our first theorem is that, under the assumption of a subsolution, solu-

tions of the specified Lagrangian phase equation with critical phase admit

a priori estimates to all orders.

Theorem 1.2. Fix ω0 ∈ Ω. Let u : X → R be a smooth function such that

supX u = 0 and Θα(ω0+
√
−1∂∂u) = h(x), where h : X → [(n−2)π2+ε0, n

π
2 ).
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Suppose there exists a C-subsolution u : X → R in the sense of Definition 3.2
(see also Lemma 3.3). Then for every β ∈ (0, 1) we have an estimate

‖u‖C2,β � C(X,α, β, h, ε0, ω0, u).

Our notion of a subsolution is certainly necessary for the existence of a
solution to (1.5), and furthermore agrees with the notion of a C-subsolution
recently introduced by Székelyhidi [44]. The Lagrangian phase equation (1.5)
fails several of the structural conditions imposed in [44] – most seriously, in
general, the operator we study fails to be concave. The main difficulty in
the proof of Theorem 1.2 is the C2 estimate which is rather delicate owing
to the lack of concavity. In the real case, a priori second order estimates
for graphical solutions of the special Lagrangian equation with constant
and critical phase are proved by Wang-Yuan [51]. By contrast, the complex
setting studied here introduces several new negative terms into the estimate,
which together with the non-constant phase, further complicate the analysis.

We apply these a priori estimates together with the method of continuity
to prove an existence theorem for the deformed Hermitian-Yang-Mills equa-
tion. Before stating this result, we make two remarks about the topological
constant Θ̂. First, by integrating equation (1.1), we see Θ̂ is the argument
of the complex number

(1.6) Z[ω] :=

∫
X

(α+
√
−1ω)n

n!
,

which only depends on the classes [α],Ω. Thus a necessary condition for
existence of a solution is that Z[ω] �= 0. Second, because it is defined as the

sum of arc-tangents, the angle Θα(ω) is real valued, while Θ̂ is valued in S1.
Thus we need to lift Θ̂ to R to study equation (1.2), which is the formulation
of the deformed Hermitian-Yang-Mills we solve in this paper. Fortunately,
existence of a subsolution which satisfies (1.7) allows us to specify a natural
lift, and guarantees Z[ω] �= 0, allowing us to prove the following:

Theorem 1.3. Suppose that there exists a form χ := ω0 +
√
−1∂∂̄u ∈ Ω

defining a subsolution in the sense of Definition 3.2 (see also Lemma 3.3).
Furthermore, assume

(1.7) Θα(χ) > (n− 2)
π

2
.

Then there exists a unique smooth (1, 1) form ω with [ω] = Ω solving the
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deformed Hermitian-Yang-Mills equation

Θα(ω) = Θ̂.

This result removes the hypercritical phase, non-negative sectional cur-
vature, and large initial angle assumptions from [26]. We remark that if there
exists a lifted angle such that Θ̂ � [(n−2)+ 2

n ]
π
2 , then any subsolution χ ∈ Ω

will automatically satisfy Θα(χ) > (n − 2)π2 . Thus in this case we do not
need an analytic assumption on χ, only an assumption on the topological
constant Θ̂. We expect this can be improved to when the average angle lifts
and lies in Θ̂ ∈ ((n−2)π2 , ((n−2)+ 2

n)
π
2 ). This expectation has been verified

in dimension 2 [26, Theorem 1.2], and in dimension 3 [35], where it follows
from work of Fang-Lai-Ma [21].

In the case of a domain in Cn, we expect the natural extension of the
subsolution condition considered here to be equivalent to the solvability of
the boundary value problem, in analogy with the work of Guan-Li [23] on
the inverse Hessian type equations. In the real setting, the Dirichlet problem
posed by Harvey-Lawson [24] was solved by Caffarelli-Niremberg-Spruck [4]
under some assumptions on the convexity of the boundary. It is interesting to
note the similarities between these convexity conditions and the subsolution
condition in Lemma 3.3.

Finally, we show that the existence of a subsolution imposes some coho-
mological restrictions on X. In particular, we prove the following simple

Proposition 1.4. For every subvariety V ⊆ X, define

(1.8) ZV := −
∫
V
e−

√
−1(α+

√
−1ω).

If there exists a solution to the deformed Hermitian-Yang-Mills equation
(1.2), then for every proper subvariety V ⊂ X we have

Im

(
ZV

ZX

)
> 0.

This condition is a close analog of the stability condition for the J-
equation recently discovered by Lejmi-Székelyhidi [31], and we expect the
obstruction in Proposition 1.4 to arise from a suitable adaptation of the K-
stability framework, a problem we plan to address in future work. In light
of [31, Conjecture 1], and recent evidence for this conjecture by the first
author and Székelyhidi [10] and Lejmi-Székelyhidi [31], it does not seem
irresponsible to pose
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Conjecture 1.5. A solution of the deformed Hermitian-Yang-Mills equa-

tion (1.2) exists if and only if for every proper subvariety V ⊂ X we have

Im

(
ZV

ZX

)
> 0.

in the notation of Proposition 1.4.

In Proposition 8.5 we show that this conjecture holds in dimension 2.

Furthermore, we briefly discuss how the stability condition can be inter-

preted in terms of a central charge. In future work we hope to understand

how Conjecture 1.5 fits into the Mirror Symmetry setting for special La-

grangians and the conjectural picture put forth by Thomas and the third

author [48], and Thomas [46, 47]. Finally, we remark that there has recently

been considerable interest in the analogy between the problem of finding

special Lagrangians in a Calabi-Yau, and that of finding Kähler-Einstein or

constant scalar curvature Kähler metrics as outlined by Solomon [40, 41],

and studied in recent work of Rubinstein-Solomon [37].

The layout of this paper is as follows; in Section 2 we briefly discuss

some background material, mostly taken from earlier work of the second

and third authors [26]. In Section 3 we discuss the notion of a C-subsolution,
and extract the results from [44] which we will need. In Section 4 we prove

an a priori C2 estimate in terms of the gradient for solutions of the specified

Lagrangian phase equation (1.5). This is the most difficult step in the proof

of Theorem 1.2. In Section 5 we use a blow-up argument to prove an a

priori gradient bound for solutions of (1.5), which implies a uniform C2

estimates. In Section 6 we discuss the C2,β estimates, which follow from

the usual Evans-Krylov estimate by a blow-up argument and a reduction

to the real case. In Section 7 we take up the method of continuity and

prove Theorem 1.3. This actually turns out to be slightly involved, as the

natural method of continuity does not obviously preserve the critical phase

condition, nor the existence of a subsolution. Instead we adapt a trick of

Sun [43], and use a double method of continuity. The first continuity path

is used to find a suitable starting point for the second method of continuity,

whose ending point is the solution of the deformed Hermitian-Yang-Mills

equation. In Section 8 we further discuss the implications of the existence of

a subsolution for the deformed Hermitian-Yang-Mills equation, and deduce

some algebraic obstructions to the existence of (1, 1) forms with constant

Lagrangian phase. We prove Proposition 1.4, and give some evidence for

Conjecture 1.5.
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2. Background and notation

Let us briefly discuss our setup. Fix a compact Kähler manifold X with
Kähler form α, and assume the normalization

∫
X αn = n!. Throughout this

paper, unless otherwise noted, the covariant derivative ∇ and all norms are
computed with respect to α.

Fix a cohomology class Ω ∈ H1,1(X,R). The deformed Hermitian-Yang-
Mills equation seeks a (1, 1) form ω ∈ Ω with the property that the map

X � x 
−→ (α+
√
−1ω)n

αn
∈ C

lies in a fixed ray R>0e
√
−1Θ̂. If a solution of this equation exists, then we

necessarily have ∫
X
(α+

√
−1ω)n ∈ R>0e

√
−1Θ̂

and hence Θ̂ = Argp.v
∫
X(α +

√
−1ω)n mod 2π. As shown in [26], this

problem is equivalent to both equations (1.1) and (1.2). We will primarily
deal with the latter representation. As discussed in the introduction, it is
also necessary to consider the specified Lagrangian phase equation for non-
constant phase

Θα(ω) :=

n∑
i=1

arctan(λi) = h(x),

where again λi are the eigenvalues of α−1ω.

It is useful to introduce another Hermitian metric on T 1,0(X), defined
by the formula ηjk̄ = αjk̄+ωj�̄α

p�̄ωpk̄. Note this metric is never Kähler. With
this definition, following [26] one can compute the variation of Θα as

(2.1) δΘα = ηjk̄α�k̄δ(α
�m̄ωjm̄).

This computation has two important consequences. First, using the covariant
derivative ∇ with respect to α, one sees that dΘ = ηjk̄∇ωjk̄. Furthermore,
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since we consider variations of ω which fix α, the linearization of the operator
Θα(ω) is given by

(2.2) Δη = ηjk̄∂j∂k̄.

It is easy to check that this operator becomes uniformly elliptic as soon as
|ω| is bounded. At a point x0 in coordinates where α(x0) is the identity and
ω(x0) is diagonal with entries λi, then the metric ηjk̄ is diagonal with entries

ηīi(x0) = (1 + λ2
i )δīi.

We conclude this section by restating the observation that the cohomo-
logical data ∫

X
(α+

√
−1ω)n

only provides an S1 valued target angle Θα(ω) ∈ R/Z. On the other hand,
the Lagrangian phase operator, defined as the sum of arc-tangents, is nat-
urally R-valued. Therefore in order to study (1.2), a lift of Θ̂ needs to be
chosen. The first observation is that if χ′ is any (1, 1) form with

(2.3) oscXΘα(χ
′) < π

then there is a lift of Θ̂ which is in the image of Θα(χ
′) : X → R. Further-

more, an easy application of the maximum principle shows that any (1, 1)
form satisfying (2.3) must give rise to the same lifted angle. Fortunately,
our assumption (1.7) implies (2.3) and hence we obtain unique lift of Θ̂ to
the branch ((n − 2)π2 , n

π
2 ). Following [26] and [51], we say that an angle is

supercritical if it is larger than (n−2)π2 , and hypercritical if it is larger than
(n− 1)π2 . For further discussion and background we refer to reader to [26].

3. Subsolutions and the C0 estimate

In order to introduce the notion of subsolution for the Lagrangian phase
equation, we first define the relevant cone in which our solutions takes values.
Let Γn ⊂ Rn denote the positive orthant. Recall that (X,α) is a fixed Kähler
manifold, and ω0 is a fixed (1,1) form. In this paper we are interested in
finding forms ω such that [ω] = [ω0], and

(3.1) Θα(ω) :=

n∑
�=1

arctan(λ�) = h(x)
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where λ� are the eigenvalues of the hermitian endomorphism Λi
k := αij̄ωkj̄ ,

and h : X → ((n−2)π2 , n
π
2 ) is a smooth function. We call this the Lagrangian

phase equation with supercritical phase. To lighten notation, let us define
Θ : Rn → R to be

Θ(x1, . . . , xn) =

n∑
i=1

arctan(xi).

Let Γ ⊂ Rn be the cone through the origin over the region{
(x1, . . . , xn) : Θ(x) � (n− 2)

π

2

}
.

Γ is an open, symmetric cone with vertex at the origin containing Γn. Ad-
ditionally, for any σ ∈ ((n− 2)π2 , n

π
2 ) we define

(3.2) Γσ := {λ ∈ Γ : Θ(λ) > σ}.

Note that for any σ such that Γσ is not empty, the boundary ∂Γσ is a smooth
hypersurface. The geometric and arithmetic properties of the cone Γ, and
the sets Γσ will play a crucial role in the developments to follow.

Lemma 3.1. Suppose we have real numbers λ1 � λ2 � · · · � λn which
satisfy Θ(λ) = σ, for σ � (n − 2)π2 . Then (λ1, . . . , λn) have the following
arithmetic properties;

(i) λ1 � λ2 � · · · � λn−1 > 0 and λn−1 � |λn|.
(ii) λ1 + (n− 1)λn � 0.
(iii) σk(λ1, . . . , λn) � 0 for all 1 � k � n− 1.

Furthermore,

(iv) If Γσ is not empty, the boundary ∂Γσ is a smooth, convex hypersurface.

In addition, if σ � (n− 2)π2 + β, then;

(v) if λn � 0, then λn−1 � ε0(β).
(vi) |λn| � C(β).

Proof. Statements (i)-(iii) are due to Wang-Yuan [51, Lemma 2.1]. State-
ment (iv) is Yuan [59, Lemma 2.1], while (v) and (vi) are trivial.

In particular, it follows from part (i) of the above lemma that

Γ ⊂ {(λ1, . . . , λn) ∈ R
n :

∑
i

λi > 0}.
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We recall the definition of a C-subsolution, due to Székelyhidi [44].

Definition 3.2 ([44], Definition 1). Fix ω0 ∈ Ω. We say that a smooth
function u : X → R is a C-subsolution of (3.1) if the following holds: At
each point x ∈ X define the matrix Λi

j := αik̄(ω0 +
√
−1∂∂u)jk̄. Then we

require that the set

(3.3)

{
λ′ ∈ Γ :

n∑
�=1

arctan(λ′
�) = h(x), and λ′ − λ(Λ(x)) ∈ Γn

}

is bounded, where λ(Λ(x)) denotes the n-tuple of eigenvalues of Λ(x).

In the present setting we have the following explicit description of the
C-subsolutions.
Lemma 3.3. A smooth function u : X → R is a C-subsolution of (3.1)
if and only if at each point x ∈ X, if μ1, . . . , μn denote the eigenvalues
of the Hermitian endomorphism Λi

j := αik̄(ω0 +
√
−1∂∂u)jk̄, then, for all

j = 1, . . . , n we have

(3.4)
∑
��=j

arctan(μ�) > h(x)− π

2
.

Proof. We show that if u satisfies (3.4), then it is a C-subsolution. Fix a
point x0 ∈ X, and suppose we have numbers λ1 � λ2 � . . . � λn such that∑

i

arctanλi = h(x0).

It suffices to show that if λi � μi for all i, then λ1 � C. Fix δ > 0 such that∑
��=j

arctan(μ�) > h(x0) + δ − π

2
,

and suppose we can find an n-tuple λ1 � λ2 � . . . � λn as above such that
arctanλ1 � π/2− δ. Then we clearly have∑

i �=1

arctan(λi) � h(x0) + δ − π

2
<
∑
i �=1

arctan(μi).

Since arctan(·) is monotone increasing, we must have that μj > λj for some
j, but this is a contradiction to the assumption that λi � μi for all i. The
proof of the reverse implication is similar.
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Throughout this paper we will be somewhat abusive in referring to the
(1, 1) form χ := ω0 +

√
−1∂∂u as a subsolution. We hope that no confusion

will result.

Remark 3.4. The condition in Lemma 3.3 can be expressed in terms of the
positivity of a certain (n − 1, n − 1) form, which is similar in spirit to the
subsolution condition discovered by Song-Weinkove [42] in the setting of the
J-flow. We will discuss this fact, as well as some consequences in section 8;
see Proposition 8.1 below.

The following proposition is due to Székelyhidi [44], refining previous
work of Guan [22]. This proposition play a fundamental role in proving the
C2 bound for our equation, which we demonstrate in the next section.

Proposition 3.5 ([44], Proposition 6). Let [a, b] ⊂ ((n−2)π2 , n
π
2 ) and δ,R >

0. There exists κ > 0, with the following property: Suppose that σ ∈ [a, b]
and B is a hermitian matrix such that

(λ(B)− 2δId+ Γn) ∩ ∂Γσ ⊂ BR(0).

Then for any hermitian matrix A with λ(A) ∈ ∂Γσ and |λ(A)| > R we either
have ∑

p,q

ηpq̄(A)[Bpq̄ −Apq̄] > κ
∑
p

ηpp̄(A)

or ηīi(A) > κ
∑

p η
pp̄(A) for all i, where η = Id+A2.

Proof. Since σ > (n − 2)π2 , Lemma 3.1 part (iv) implies that ∂Γσ is a
convex hypersurface. With this observation, the proof in [44] goes through
verbatim.

The following estimate, based on the Alexandroff-Bakelman-Pucci max-
imum principle, is due to Székelyhidi [44]. B	locki [1] first applied the ABP
estimate to the complex Monge-Ampère equation on Kähler manifolds fol-
lowing earlier suggestions by Cheng and the third author. While the operator
under consideration here does not have the structural properties imposed in
[44], it is straightforward to check that the proof requires only the ellipticity
of the operator, and hence applies verbatim here.

Proposition 3.6 ([44], Proposition 10). Suppose that Θα(ω0+
√
−1∂∂u) =

h(x), where h : X → [(n − 2)π2 , n
π
2 ), and suppose that u = 0 is a C-

subsolution. Then there exists a constant C, depending only on the given
data, including ω0, such that

oscXu � C.
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When a C-subsolution u exists, we will denote by χ := ω0+
√
−1∂∂u ∈ Ω

the corresponding (1, 1) form.

4. The C2 estimate

The main result of this section is

Theorem 4.1. Suppose u : X → R is a smooth function solving the equation

(4.1) Θα(χ+
√
−1∂∂u) = h(x)

where h : X → [(n − 2)π2 + β, nπ
2 ) for some β > 0. Then there exists

a constant C depending only on the subsolution χ, as well as |h|C2(X,α),
oscXu, α, β, such that

|∂∂u| � C

(
1 + sup

X
|∇u|2

)
.

Proof. The proof is via the maximum principle. Let ω := χ+
√
−1∂∂u. We

begin by defining functions ϕ(t), ψ(t) as follows. Let K = 1 + supX |∇u|2,
and set

ϕ(t) = −1

2
log(1− t

2K
), t ∈ [0,K − 1].

Note that ϕ(t) satisfies

(4K)−1 < ϕ′ < (2K)−1, ϕ′′ = 2(ϕ′)2, 0 � ϕ(t) � 1

2
log 2

Normalize u so that infX u = 0. By Proposition 3.6 we have a bound on
supX u. Define ψ : [0, supX u] → R by

ψ(t) = −2At+
Aτ

2
t2

where A � 0 and τ > 0 are constants to be determined. We choose τ
sufficiently small so that

A � −ψ′ � 2A, ψ′′ = Aτ

Define the Hermitian endomorphisms

Λ := αij̄(χ+
√
−1∂∂u)kj̄ , Λ0 := αij̄χkj̄
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and recall that we are assuming χ is a C-subsolution. Let λmax denote the
largest eigenvalue of Λ, which is a continuous function from X to R. We
want to apply the maximum principle to the quantity

G0(x) :=
1

2
log(1 + λ2

max) + ϕ(|∇u|2) + ψ(u).

This quantity is inspired by the one considered by Hou-Ma-Wu [25] for the
complex Hessian equations and subsequently used by Székelyhidi [44] for a
large class of concave equations. The gradient term used appearing in G0 was
first used by Chou-Wang [8] in their study of the real Hessian equations. The
function G0 differs from the one considered in [25, 44] in its highest order
term, where we have used a function of the eigenvalues which first appeared
in the study of the real special Lagrangian equation in work of Wang-Yuan
[51]. This modification is not merely cosmetic – the added convexity of this
higher order term appears essential to the estimate. Finally, we note that,
unlike the estimates in the real case, we require extra lower order terms in
order to counter additional negative terms which appear when differentiating
the eigenvalues of a Hermitian (rather than symmetric) matrix.

The function G0(x) is clearly continuous, and hence achieves its maxi-
mum at some point x0 ∈ X. Fix local coordinates (z1, . . . , zn) centered at x0
which are normal for the background Kähler metric α, and such that ω(x0)
is diagonal with entries λ1 � λ2 � · · · � λn. By Lemma 3.1 we may assume
that λ1 is sufficiently large so that λ1 > max{2|λn|, |λn| + 1}. Since χ is a
subsolution, we can find δ,R > 0 depending only on h, ω0 such that

[λ(Λ0(x0))− 2δId+ Γn] ∩ ∂Γh(x0) ⊂ BR(0).

We may assume that |λ(Λ(x0))| > R, so that Proposition 3.5 applies. In
particular, there exists κ > 0 depending only on δ,R and h such that either

(4.2)
∑
p

χpp̄ − λp

1 + λ2
p

> κ
∑
p

1

1 + λ2
p

.

or (1 + λ2
i )

−1 > κ
∑

p(1 + λ2
p)

−1 for all i. Since λn is uniformly bounded by
Lemma 3.1 part (vi), we may assume that λ1 is sufficiently large so that

1

1 + λ2
1

� κ
1

1 + λ2
n

.

In particular, (4.2) must hold.
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In order to apply the maximum principle, we must differentiate the
function G0 twice. Since the eigenvalues of Λ need not be distinct at x0,
the function G0 may only be continuous. To circumvent this difficulty we
use a perturbation argument similar to the one used in [44]. We choose
a constant matrix B, defined in our fixed local coordinates to be a con-
stant diagonal matrix Bpq with real entries satisfying B11 = Bnn = 0 and
0 < B22 < · · · < Bn−1n−1, and such that∑

j

Bjj � (n− 1)
ε0
2

where ε0 is the constant from Lemma 3.1 part (v). We work with the matrix
Λ̃ = Λ−B, and apply the maximum principle to the smooth function

G(x) =
1

2
log(1 + λ̃2

max) + ϕ(|∇u|2) + ψ(u)

where λ̃max denotes the largest eigenvalue of Λ̃. Note that G(x) � G0(x) and
that G(x) achieves its maximum at x0, where we have G(x0) = G0(x0). If we
denote by λ̃i are the eigenvalues of Λ̃, then λ̃1 = λ1, and all the remaining
eigenvalues are distinct from λ̃1. In particular, λ̃1 is a smooth function near
x0 and we may differentiate it freely. Computing derivatives of λ̃1 yields

(4.3)

∇sλ̃1 = ∇sω11̄ −∇sB11

∇s∇s̄λ̃1 = ∇s∇s̄ω11̄ +
∑
q>1

|∇sωq1̄|2 + |∇sω1q̄|2

(λ1 − λ̃q)

+∇s∇s̄B11 − 2Re
∑
q>1

∇sωq1̄∇s̄B1q̄ +∇sω1q̄∇s̄Bp1̄

λ1 − λ̃p

+ λ̃pq,r�
1 ∇s(Bpq)∇s̄(Br�),

where

λ̃pq,r�
1 = (1− δ1p)

δ1qδ1rδp�

λ̃1 − λ̃p

+ (1− δ1r)
δ1�δ1pδrq

λ̃1 − λ̃r

see, for example, [44, Equation (70)] or [45]. Evaluating this expression at
x0 ∈ X, and using that B is constant, B11 = 0, and that we are working in
normal coordinates for α, we have

(4.4)

∇sλ̃1 = ∇sω11̄

∇s∇s̄λ̃1 = ∇s∇s̄ω11̄ +
∑
q>1

|∇sωq1̄|2 + |∇sω1q̄|2

(λ1 − λ̃q)
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We are thus reduced to differentiating equation (4.1). Using (2.1), and com-

puting at x0, we have

(4.5)

∇b̄∇ah = ∇b̄(η
sq̄∇aωsq̄)

= ηsq̄∇b̄∇aωsq̄ + (∇b̄η
sq̄)∇aωsq̄

= ηsq̄∇s∇q̄ωab̄ + ηsq̄[∇b̄,∇s]ωaq̄ + (∇b̄η
sq̄)∇aωsq̄.

Expanding the third term, we have

(4.6)
(∇b̄η

sq̄) = −ηsk̄ηjq̄∇b̄ηjk̄

= −ηsk̄ηjq̄
(
αpm̄ωpk̄∇b̄ωjm̄ + αpm̄ωjm̄∇b̄ωpk̄

)
,

Using that α, ω are diagonal at x0, we can now solve for Δηω11̄,

(4.7)

ηsq̄∇s∇q̄ω11̄ = ∇1∇1̄h−
∑
s

λsR1
s
s1̄

1 + λ2
s

+
∑
s

λ1R
1̄
s̄s1̄

1 + λ2
s

+
∑
s,q

λs + λq

(1 + λ2
s)(1 + λ2

q)
|∇1ωqs̄|2.

Combining this expression with (4.4) allows us to solve for Δηλ̃1. This al-

lows us to compute the Laplacian of the highest order term from G(x) at

the point x0

Δη
1

2
log(1 + λ̃2

1) =
λ1Δηλ̃1

(1 + λ2
1)

+
1− λ2

1

(1 + λ2
1)

3
|∇1ω11̄|2

+
∑
s>1

1− λ2
1

(1 + λ2
1)

2(1 + λ2
s)
|∇sω11̄|2.

The Laplacian term can be computed as

Δηλ̃1 = ∇1∇1̄h−
∑
s

λsR1
s
s1̄

1 + λ2
s

+
∑
s

λ1R
1̄
s̄s1̄

1 + λ2
s

+
∑
s,q

λs + λq

(1 + λ2
s)(1 + λ2

q)
|∇1ωqs̄|2 +

∑
s

∑
q>1

|∇sωq1̄|2 + |∇sω1q̄|2

(1 + λ2
s)(λ1 − λ̃q)

.
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After some algebra we arrive at the formula

Δη
1

2
log(1 + λ̃2

1) =
λ1

1 + λ2
1

∇1∇1̄h+
∑
s

−λ1λsR1
s
s1̄ + λ2

1R
1̄
s̄s1̄

(1 + λ2
1)(1 + λ2

s)

+
∑
s

∑
q>1

λ1[1 + λ1(λs + λq)− λqλs + (λs + λq)(λq − λ̃q)]

(1 + λ2
1)(1 + λ2

s)(1 + λ2
q)(λ1 − λ̃q)

|∇1ωsq̄|2

+
1

(1 + λ2
1)

2
|∇1ω11̄|2 +

∑
s>1

λ2
1λs + 2λ1 − λ̃s + λ1λs(λs − λ̃s)

(1 + λ2
1)

2(1 + λ2
s)(λ1 − λ̃s)

|∇sω11̄|2

+
∑
s,q>1

λ1

(1 + λ2
1)(1 + λ2

s)(λ1 − λ̃q)
|∇qωs1̄|2.

(4.8)

The main difficulty is finding a useful estimate for this quantity. For

the remainder of this section we let C denote a constant depending only

on the stated data, but which may change from line to line. The first two

terms contribute only a negative constant. For the third term, we require

the following simple lemma

Lemma 4.2. If λ1 � λ2 � · · · � λn, and these numbers satisfy Θ(λ) �
(n− 2)π2 , then

1 + λ1(λj + λ�)− λjλ� � 0

unless j = � = n and λn < 0.

Proof. The lemma is obvious if λj , λ� � 0, since λ1 � max{λj , λ�}. By sym-

metry we can consider the case when j = n, λn < 0, and � < n. In this case

Lemma 3.1 part (i) guarantees that λ� + λn � 0, and so again we are done,

since the final term above is positive.

The fourth term in (4.8) is positive, as is the fifth term, unless s = n

and λn < 0. The sixth term is also clearly positive. Thus, if λn � 0, then

Δη
1

2
log(1 + λ̃2

1) � −C.

If λn < 0 then the estimate is much worse, due to the presence of several

negative terms. Throwing away some but not all of the positive terms, we
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rewrite (4.8) as

(4.9)

Δη
1

2
log(1 + λ̃2

1) � −C +
1

(1 + λ2
1)

2
|∇1ω11̄|2

+
∑
q>1

λ1[1 + 2λ1λq − λ2
q + 2λq(λq − λ̃q)]

(1 + λ2
1)(1 + λ2

q)
2(λ1 − λ̃q)

|∇1ωqq̄|2

+
∑
q>1

λ2
1λq + 2λ1 − λ̃q + λ1λq(λq − λ̃q)

(1 + λ2
1)

2(1 + λ2
q)(λ1 − λ̃q)

|∇qω11̄|2.

Let us analyze this more difficult case. We first estimate the second line

above. Note that we can write

λ1[1 + 2λ1λq − λ2
q + 2λq(λq − λ̃q)]

(1 + λ2
1)(1 + λ2

q)
2(λ1 − λ̃q)

=
λq

(1 + λ2
q)

2(λ1 − λ̃q)

+
(λ1 − λq)(1 + λ1λq) + 2λqλ1(λq − λ̃q)

(1 + λ2
1)(1 + λ2

q)
2(λ1 − λ̃q)

=
λq

(1 + λ2
q)

2(λ1 − λ̃q)
+

1 + λ1λq

(1 + λ2
1)(1 + λ2

q)
2

+
(λqλ1 − 1)(λq − λ̃q)

(1 + λ2
1)(1 + λ2

q)
2(λ1 − λ̃q)

,

and so we can rewrite the first and second lines in (4.9) (excluding the

constant) as three separate sums

(4.10)

(
I
)
=
∑
q>1

λq

(1 + λ2
q)

2(λ1 − λ̃q)
|∇1ωqq̄|2 +

1

(1 + λ2
1)

2
|∇1ω11̄|2

(
II
)
=
∑
q

1 + λ1λq

(1 + λ2
1)(1 + λ2

q)
2
|∇1ωqq̄|2 −

1

(1 + λ2
1)

2
|∇1ω11̄|2

(
III

)
=

∑
1<q<n

(λqλ1 − 1)(λq − λ̃q)

(1 + λ2
1)(1 + λ2

q)
2(λ1 − λ̃q)

|∇1ωqq̄|2

where we have used that Bnn = 0. We may assume that λ1 is sufficiently

large so that for q < n we have λ1λq � 1, since λn−1 � ε0 by Lemma 3.1
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part (v). In particular, the third sum is positive. We next consider terms (I)

and (II) individually, beginning with term (I). The only negative contribu-

tion to the sum occurs when q = n. Differentiating our main equation (4.1),

we have, for any δ, αj > 0, j = 1, . . . , n− 1

|∇1ωnn̄|2
(1 + λ2

n)
2
=

∣∣∣∣∇1h−
∑
q<n

∇1ωqq̄

1 + λ2
q

∣∣∣∣2
� (1 +

λ1

δ
)|∇1h|2 + (1 +

δ

λ1
)

∣∣∣∣∑
q<n

∇1ωqq̄

1 + λ2
q

∣∣∣∣2

� (1 +
λ1

δ
)|∇1h|2 + (1 +

δ

λ1
)

(∑
q<n

|∇1ωqq̄|2αq

(1 + λ2
q)

2

)
·

⎛⎝∑
j<n

1

αj

⎞⎠ .

(4.11)

In the above we have used Young’s inequality for the first line, and the

Cauchy-Schwartz inequality in the third line. Now, set αq = λq

λ1−λ̃q

for

1 < q < n, and α1 = 1, and choose δ = ε0/2, where ε0 is as in Lemma 3.1

part (v). Let us denote

Υ :=

(∑
q<n

|∇1ωqq̄|2αq

(1 + λ2
q)

2

)

=
∑

1<q<n

λq

(1 + λ2
q)

2(λ1 − λ̃q)
|∇1ωqq̄|2 +

|∇1ω11̄|2
(1 + λ2

1)
2
.

Multiplying (4.11) by λn

(λ1−λn)
and observing that λn(δ+λ1)|∇1h|2

δ(λ1−λn)
� −C, by

our choice of αj we have,

λn|∇1ωnn̄|2
(1 + λ2

n)
2(λ1 − λn)

� −C +
λn

(λ1 − λn)
(1 +

δ

λ1
)

⎛⎝1 +
∑

1<j<n

λ1 − λ̃j

λj

⎞⎠Υ.

(4.12)

Note that the left hand side above is the q = n term from (I), while the re-

maining terms from (I) are equal to Υ. Using that λ̃n = λn < 0, we estimate
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(I) as follows

(I) � −C+Υ
λn

λ1 − λn

⎧⎨⎩λ1 − λn

λn
+
∑
j<n

λ1

λj
+ δ

∑
j<n

1

λj
− (1 +

δ

λ1
)
∑

1<j<n

λ̃j

λj

⎫⎬⎭
� −C +Υ

λn

λ1 − λn

⎧⎨⎩λ1

∑
j

1

λj
−
∑
j>1

λ̃j

λj
+ δ

∑
j<n

1

λj

⎫⎬⎭
� −C +Υ

λn

λ1 − λn

⎧⎨⎩λ1
σn−1(λ)

σn(λ)
−
∑
j>1

λ̃j

λj
+ δ

n− 1

λn−1

⎫⎬⎭ .

(4.13)

Since σn−1(λ(Λ)) � 0, and σn(λ(Λ)) < 0 by Lemma 3.1 part (iii), the first
term in the brackets is negative. Furthermore, by our choice of B we know
that ∑

j>1

λ̃j

λj
= (n− 1)−

∑
1<j<n

Bjj

λj

� (n− 1)− 1

ε0

∑
j

Bjj

� n− 1

2
,

and hence our choice of δ implies that the final two terms combine to be
negative as well. Thus, we obtain that the term (I) in equation (4.10) is
bounded below by a negative constant depending only on the stated data.

Next we consider the sign of the sum (II). Again, the only negative
contribution to the sum occurs when q = n.

We use an estimate similar to that in (4.11) to get that, for any δ, αj , α
′
j >

0, 1 � j < n

λ1λn|∇1ωnn̄|2
(1 + λ2

1)(1 + λ2
n)

2
� −C

δ
+

λ1λn

(1 + λ2
1)
(1 +

δ

λ1
)

∣∣∣∣∑
q<n

∇1ωqq̄

1 + λ2
q

∣∣∣∣2

� −C

δ
+ λn

(∑
q<n

|∇1ωqq̄|2λ1αq

(1 + λ2
1)(1 + λ2

q)
2

)
·

⎛⎝∑
j<n

1

αj

⎞⎠
+ δλn

(∑
q<n

|∇1ωqq̄|2α′
q

(1 + λ2
1)(1 + λ2

q)
2

)
·

⎛⎝∑
j<n

1

α′
j

⎞⎠

(4.14)
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where in the last line we have used the Cauchy-Schwartz inequality twice.
We take αq = λq, and α′

q = 1 for 1 � q < n. To simplify notation, let us
define

Υ̃ =
∑
q<n

|∇1ωqq̄|2λ1λq

(1 + λ2
1)(1 + λ2

q)
2
.

Substituting the estimate in (4.14) into the expression for term (II) and
simplifying we obtain

(
II
)

� −C

δ
− 1

(1 + λ2
1)

2
|∇1ω11̄|2 +

|∇1ωnn̄|2
(1 + λ2

1)(1 + λ2
n)

2

+

{
1 + δ(n− 1)λn

}∑
q<n

|∇1ωqq̄|2
(1 + λ2

1)(1 + λ2
q)

2

+ Υ̃

⎧⎨⎩1 + λn

⎛⎝∑
j<n

1

λj

⎞⎠⎫⎬⎭ .

(4.15)

If we choose δ sufficiently small depending only on the uniform lower bound
for λn provided by Lemma 3.1 part (vi) then the first term on the second
line is positive, while the final term is always positive by Lemma 3.1 part
(iii). Thus (

II
)

� −C − 1

(1 + λ2
1)

2
|∇1ω11̄|2.

Summarizing, we have proven the estimate

Δη
1

2
log(1 + λ̃2

1) � −C − 1

(1 + λ2
1)

2
|∇1ω11̄|2

+
∑
q>1

λ2
1λq + 2λ1 − λ̃q + λ1λq(λq − λ̃q)

(1 + λ2
1)

2(1 + λ2
q)(λ1 − λ̃q)

|∇qω11̄|2

� −C − 1

(1 + λ2
1)

2
|∇1ω11̄|2 +

λ2
1λn|∇nω11̄|2

(1 + λ2
1)

2(1 + λ2
n)(λ1 − λn)

.

(4.16)

where in the last line we have used the obvious fact that

λ2
1λq + 2λ1 − λ̃q + λ1λq(λq − λ̃q) � 0, 1 < q < n.

We now compute the action of the linearized operator on the lower order
terms in the definition of G.
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Δηψ(u) = ψ′′(u)
∑
q

|uq|2
1 + λ2

q

+ ψ′(u)
∑
q

λq − χqq̄

1 + λ2
q

Δηϕ(|∇u|2) = ϕ′′(|∇u|2)
1 + λ2

q

∑
q

∣∣∣∣∣∣
∑
j

uqj̄uj + uqjuj̄

∣∣∣∣∣∣
2

+ 2ϕ′(|∇u|2)
∑
j

Re

(
ujhj̄ −

∑
q

uj∇j̄χqq̄

1 + λ2
q

)

+ ϕ′(|∇u|2)
∑
q

⎛⎝∑
j

|ujq̄|2 + |uqj |2
1 + λ2

q

+
Rqq̄

k̄�u�uk̄
1 + λ2

q

⎞⎠ .

Now, it is easy to see that

Rqq̄
k̄�u�uk̄

1 + λ2
q

+ 2Re

(
ujhj̄ −

uj∇j̄χpp̄

1 + λ2
p

)
� −C0K,

so at x0, where G achieves its maximum, we have

0 � ΔηG � −C1 −
|∇1ω11̄|2
(1 + λ2

1)
2
+

λ2
1λn|∇nω11̄|2

(1 + λ2
1)

2(1 + λ2
n)(λ1 − λn)

+ ϕ′′
∑
q

1

1 + λ2
q

∣∣∣∣∣∣
∑
j

uqj̄uj + uqjuj̄

∣∣∣∣∣∣
2

− ϕ′C0K

+
∑
q

⎛⎝ϕ′
∑
j

|ujq̄|2 + |uqj |2
1 + λ2

q

+ ψ′′ |uq|2
1 + λ2

q

+ ψ′λq − χqq̄

1 + λ2
q

⎞⎠ .

Furthermore, we have ∇pG(x0) = 0, and so

λ1∇pω11̄

1 + λ2
1

= −ϕ′
∑
j

(
upjuj̄ + ujupj̄

)
− ψ′up

In particular,

λ2
1λn|∇nω11̄|2

(1 + λ2
1)

2(1 + λ2
n)(λ1 − λn)

� λn(1 + δ)(ϕ′)2

(1 + λ2
n)(λ1 − λn)

∣∣∣∣∣∣
∑
j

unjuj̄ + ujunj̄

∣∣∣∣∣∣
2

+
λn(1 + δ−1)(ψ′)2

(1 + λ2
n)(λ1 − λn)

|un|2.
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In a similar fashion we have

|∇1ω11̄|2
(1 + λ2

1)
2

� (1 + δ)(ϕ′)2

λ2
1

∣∣∣∣∣∣
∑
j

u1juj̄ + uju1j̄

∣∣∣∣∣∣
2

+
(1 + δ−1)(ψ′)2

λ2
1

|u1|2.

We now use that ϕ′′ = 2(ϕ′)2. If we take δ = 1/2, then we have at x0

0 � −C1 + (ϕ′)2

∣∣∣∣∣∣
∑
j

u1j̄uj + u1juj̄

∣∣∣∣∣∣
2(

2

1 + λ2
1

− 1 + δ

λ2
1

)

+
(ϕ′)2

1 + λ2
n

∣∣∣∣∣∣
∑
j

unj̄uj + unjuj̄

∣∣∣∣∣∣
2(

2 +
λn(1 + δ)

λ1 − λn

)

− (1 + δ−1)(ψ′)2

λ2
1

|u1|2 +
λn(1 + δ−1)(ψ′)2

(1 + λ2
n)(λ1 − λn)

|un|2

+ ϕ′′
∑

1<q<n

1

1 + λ2
q

∣∣∣∣∣∣
∑
j

uqj̄uj + uqjuj̄

∣∣∣∣∣∣
2

− ϕ′C0K

+
∑
q

⎛⎝ϕ′
∑
j

|ujq̄|2 + |uqj |2
1 + λ2

q

+ ψ′′ |uq|2
1 + λ2

q

+ ψ′λq − χqq̄

1 + λ2
q

⎞⎠ .

If λ1 is sufficiently large, depending only on the lower bound for λn, then(
2

1 + λ2
1

− 1 + δ

λ2
1

)
� 0,

(
2 +

λn(1 + δ)

λ1 − λn

)
� 0.

In particular, since ϕ′′ � 0 we have

0 � −C1 − ϕ′C0K − (1 + δ−1)(ψ′)2

λ2
1

|u1|2

+

(
ψ′′ +

λn(1 + δ−1)(ψ′)2

λ1 − λn

)
|un|2
1 + λ2

n

+ ϕ′
∑
q,j

|ujq̄|2 + |uqj |2
1 + λ2

q

+ ψ′′
∑
q<n

|uq|2
1 + λ2

q

+ ψ′
∑
q

λq − χqq̄

1 + λ2
q

.
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As long as λ1 is sufficiently large, depending only on τ, A, the bracketed
term on the second line is positive. For the last term on the first line we
clearly have the estimate

(1 + δ−1)(ψ′)2

λ2
1

|u1|2 � C0A
2K

λ2
1

,

and so

0 � −C1 − ϕ′C0K − C0A
2K

λ2
1

+ ϕ′
∑
q,j

|ujq̄|2 + |uqj |2
1 + λ2

p

+ ψ′
∑
q

λq − χqq̄

1 + λ2
q

.

Now, if λ1 is sufficiently large relative to χ11̄, then we have

|u11̄|2 � 1

2
λ2
1

and so, since (4K)−1 < ϕ′ < (2K)−1 we have

(4.17)

0 � −C1 − C0 −
C0A

2K

λ2
1

+
1

2
ϕ′ λ2

1

1 + λ2
1

+ ψ′
∑
q

λq − χqq̄

1 + λ2
q

.

Recall from equation (4.2) that we have∑
q

χqq̄ − λq

1 + λ2
q

� κ
∑
q

1

1 + λ2
q

.

Since |λn| � C3 by Lemma 3.1, we can choose A sufficiently large so that

A
κ

1 + λ2
n

� −C1 − C0,

then, since A < −ψ′ < 2A, we have

0 � λ2
1

8K(1 + λ2
1)

− C0A
2K

λ2
1

.

In other words,

λ2
1

K2
� 8C0A

2(1 + λ2
1)

λ2
1

� C5.
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Thus, at the maximum of G we have λ1 � C5K. At this point we have

1

2
log(1 + λ2

1)−
1

2
log(1− |∇u|2

2K
) + ψ(u) � 1

2
log(1 + C5K

2) + C

which after simplification yields the desired estimate;√
1 + λ2

1 � C6K.

5. The blow-up argument and the gradient estimate

We now apply a blow-up argument to the estimate in Theorem 4.1 to ob-
tain a gradient bound. By contrast with the general setting considered by
Szḱelyhidi [44], or the complex Hessian equation studied by Dinew-Ko	lodziej
[14], the argument here is rather simple. By the lower bound for ω from
Lemma 3.1, part (vi) it suffices to prove

Proposition 5.1. Suppose u : X → R satisfies

(i) ω0 +
√
−1∂∂u � −Kα,

(ii) supX |u| � K,
(iii) |∂∂u| � K(1 + supX |∇u|2),

for a uniform constant K < +∞. Then there exists a constant C, depending
only on (X,α), ω0, and K such that

sup
X

|∇u| � C.

Proof. We argue by contradiction. Suppose we have a Kähler manifold (X,α)
where the estimate fails. Then we have smooth functions uk : X → R, and a
(1, 1) form ω0 such that the assumptions (i)− (iii) hold uniformly in n ∈ N,
but

sup
X

|∇uk| = Ck � k.

Let xk ∈ X be a point where supX |∇uk| is attained. Up to passing to a
subsequence we may assume that {xk} converges to some point x ∈ X. In
particular, we may assume that about each xk there is a coordinate chart
Uk ⊂ X with coordinates (z1, . . . , zn) defined on a ball of radius 1, centered
at xk, such that

α(z) = Id+O(|z|2)
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on Uk. In particular, estimates (i)-(iii) hold uniformly on B1(0) with α
replaced by the Euclidean metric, after possibly increasing K slightly. Define
ûk(z) := uk(

z
Ck

), defined in the ball of radius Ck. From properties (i)-(iii)
and the above remark we have

• ∂∂ûk � −KId−ω0

C2
k

for all z ∈ BCk
(0),

• oscBCk
(0)ûk � K,

• |∂∂ûk| � 2K for all z ∈ BCk
(0)

• |∇ûk(z)| � 1 = |∇ûk(0)| for all z ∈ BCk
(0).

Since Ck → ∞, a standard diagonal argument yields, for a fixed β ∈ (0, 1),
the existence of a C1,β function u∞ : Cn → R so that ûj → u∞ in C1,β

topology on compact subsets. Furthermore, by the above estimates u is con-
tinuous, uniformly bounded, has |∇u(0)| = 1, and satisfies

√
−1∂∂u � 0 in

the sense of distributions. Hence, u is bounded, non-constant plurisubhar-
monic function defined on all of Cn. By a standard result in several complex
variables, no such functions exist [36].

6. Higher order estimates

The higher order estimates follow from the Evans-Krylov theory. The equa-
tion (1.5) is only concave when h : X → [(n − 1)π2 , n

π
2 ), the so called

hypercritical phase case. However, as long as h � (n − 2)π2 , we can exploit
the convexity of the level sets ∂Γσ (see Lemma 3.1 part (iv)) to obtain the
C2,β estimates by a blow-up argument. The first step in this direction is to
prove a Liouville theorem. The following proposition implies the complex
analog of [59, Theorem 1.1] except that we also assume a second derivative
bound. Let Herm(n) denote the space of n× n Hermitian matrices.

Lemma 6.1. Suppose u : Cn → R is a C3 function satisfying

F (∂∂u) = σ.

where F : Herm(n) → R is smooth and elliptic. Assume that the set

Γσ = {M ∈ Herm(n) : F (M) > σ}

is convex. If |∂∂u|L∞(Cn) � K < +∞, then u is a quadratic polynomial.

The proof follows by combining the convexity of the level sets of the
equation F (∂∂u) = σ with an extension trick in order to apply the standard
Evans-Krylov estimate. The extension trick occurs in two steps. First we
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find a concave elliptic operator F0(·), such that F0(∂∂u) = 0 if and only if
F (∂∂u) = σ. Secondly, we use a trick due to Wang [54], which was used
also by Tosatti-Wang-Weinkove-Yang [49], to extend F0 to a real uniformly
elliptic concave operator, to which we apply the Evans-Krylov theory. While
we expect this is well-known to experts, we give the details for the readers’
convenience.

Proof. Let Sym(2n) denote the space of real symmetric 2n × 2n matrices.
Note that we have a canonical inclusion ι : Herm(n) ↪→ Sym(2n), and so we
will always regard Herm(n) ⊂ Sym(2n). Let Hλ,Λ ⊂ Sym(2n) denote the set
of symmetric matrices with eigenvalues lying in [λ,Λ].

As in [44], we define F0 : Herm(n) → R by

(6.1) F0(A) := inf
{
t : λ(A)− t · Id ∈ Γ

σ}
,

where λ(A) denotes the eigenvalues of A. The reader can check that F0 is
a smooth, elliptic, non-linear operator on Herm(n). The convexity of Γσ

implies that F0(·) is a concave operator. Furthermore, F0(∂∂u) = 0 if and
only if F (∂∂u) = σ. Consider the compact, convex set

B2K := {M ∈ Herm(n) : ‖M‖ � 2K} .

Since F0(·) is smooth, and elliptic, and B2K is compact, F0(·) is uniformly
elliptic on B2K .

The next step is to extend F0 to a uniformly elliptic, concave operator
outside of B2K . We use an envelope trick due to Wang [54] (see also [49]).
The complex structure J on Cn gives a canonical projection p : Sym(2n) →
Herm(n), by setting

p(M) =
M + JTMJ

2
.

Define

B2K := {N ∈ Sym(2n) : p(N) ∈ B2K} ,
and extend F0 to a smooth, concave operator F̂0 : B2K → R by setting

F̂0(N) := F0(p(N)).

We claim that F̂0 is uniformly elliptic on B2K . This is just a matter of linear
algebra. First, observe that if M � 0 is positive semi-definite, then so is
p(M), since, for any vector v ∈ R2n,

〈v, p(M)v〉 = 〈v,Mv〉+ 〈Jv,MJv〉
2

.
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Furthermore, we clearly have Tr(p(M)) = Tr(M). From these two facts the

uniform ellipticity of F̂0 on B2K easily follows from the uniform ellipticity of

F0 on B2K . Hence, there are constants 0 < λ < Λ < +∞ such that, for all

A ∈ B2K the differential of F0, denoted DF0, at A lies in Hλ,Λ. We define

F1(N) := inf

{
L(N) : L : Sym(2n) → R affine linear ,

DL ∈ Hλ,Λ, and L(A) � F̂0(A), ∀A ∈ B2K

}
(6.2)

where DL denotes the differential of L. In words, F1 is the concave envelope

of the graph of F̂0 over B2K . As in [49, Lemma 4.1] it is straightforward to

check that F1 : Sym(2n) → R is uniformly elliptic, concave and agrees with

F̂0 over B2K . Since ∂∂u : Cn → B2K we have

F1(D
2u) = 0.

By the Evans-Krylov theorem [20, 29], [3, Theorem 6.1] and a standard

scaling argument we have; for some β = β(n, λ,Λ) ∈ (0, 1) and for every

R > 0 there holds

|D2u|Cβ(BR(0)) � C(n, λ,Λ)R−β‖D2u‖L∞(B2R(0)) � C(n, λ,Λ)R−βK.

Letting R → +∞ we get the result.

We use this Liouville type result to conclude C2,β estimates by a blow-up

argument.

Lemma 6.2. Suppose u : B2 ⊂ Cn → R is a smooth function satisfying

F (x, ∂∂u) = h(x),

for some smooth map F : B2 × Herm(n) → R. Suppose that F (x, ·) is uni-

formly elliptic on B2 × ∂∂u(B2) with ellipticity constant 0 < λ < Λ < +∞.

Assume h : B2 → [a, b] is C2 and, for every σ ∈ [a, b] and x ∈ B2 the set

Γσ := {M ∈ Herm(n) : F (x,M) > σ} is convex. Then, for every β ∈ (0, 1)

we have the estimate

|∂∂u|Cβ(B1/2) � C(n, β, λ,Λ, |∂∂u|L∞(B2), ‖h‖C2(B2)).
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Proof. The proof is by a standard blow-up argument; see, for instance [9].
We give the details for the convenience of the reader. For each x ∈ B1

consider the quantity

Nu := sup
B1

dx|∂∂∂u|(x)

where dx := dist(x, ∂B1). Suppose the supremum is achieved at x0 ∈ B1.
Consider the function ũ : BNu

(0) → R defined by

ũ(z) :=
N2

u

d2x0

u

(
x0 +

dx0

Nu
z

)
−A−Aizi

where A,Ai are chosen so that ũ(0) = ∂ũ(0) = 0. Note that

∂∂ũ = ∂∂u, ‖∂∂∂u‖L∞(BNu (0))
= |∂∂∂u(0)| = 1.

In particular, we have |∂∂u|Cβ(B1) � 1 for every β ∈ (0, 1) and ũ solves

F (x0 +
dx0

Nu
z, ∂∂ũ(z)) = h

(
x0 +

dx0

Nu
z

)
, z ∈ BNu

(0).

Differentiating the equation in the ∂� direction yields

F ij̄(x0 +
dx0

Nu
z, ∂∂ũ)∂i∂j̄∂�ũ =

dx0

Nu
h′
(
x0 +

dx0

Nu
z

)
.

Since F (x, ·) is uniformly elliptic and h is smooth, the Schauder theory im-
plies ∂ũ is bounded in C2,β(BNu/2(0)), and so ũ is controlled in

C3,β(BNu/2(0)).

Now, for the sake of finding a contradiction, suppose we have:

• a sequence un : B2 → R such that ‖∂∂un‖L∞(B2) � K, but so that
Nun

� n
• functions hn : B2 → [a, b] such that ‖hn‖C2(B2) � K

For each n let xn ∈ B1 be a point where Nun
is achieved. By compactness,

after passing to a subsequence (not relabelled) we may assume that:

• xn → x∞ ∈ B1.
• hn converges to some function h uniformly in C1,β′

topology on B3/2

for some fixed β′ ∈ (0, 1).

By the above rescaling we find functions ũn : BNun
(0) → R such that
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• ‖ũn‖C3,β(BNun
(0)) � C and

• F (xn + dxn

Nun
z, ∂∂ũn) = hn

(
xn + dxn

Nun
z
)

z ∈ BNun
(0).

Since Nun
� n, a diagonal argument yields the existence of a function

u : Cn → R and a subsequence (again, not relabelled) such that {un}n�k

converges uniformly to u in C3,α/2(Bk(0)). In particular, we have

F (x0, ∂∂u) = h(x0), |∂∂∂u|(0) = 1.

Clearly h(x0) ∈ [a, b], and so we may apply Lemma 6.1 to conclude that u
is a quadratic polynomial, which is a contradiction.

By arguing locally, Lemma 6.2 immediately implies the following corol-
lary, whose proof we leave to the reader, and finishes the proof of Theo-
rem 1.2.

Corollary 6.3. Suppose u : X → R is a solution of

Θα(ω +
√
−1∂∂u) = h(x)

where h(x) � (n − 2)π2 + ε for some ε > 0. Then for every β ∈ (0, 1) we
have the estimate

|∂∂u|Cβ(X) � C(n,X, α, β, ‖h‖C2 , ‖∂∂u‖L∞(X))

7. The method of continuity and the proof of Theorem 1.3

In this section we prove Theorem 1.3, using the method of continuity. Unfor-
tunately, the naive method of continuity does not work due essentially to the
fact that the subsolution condition is non-trivial; for related discussion see
[44]. Instead, adapting an idea of Sun [43] in the setting of the J-equation,
the proof of Theorem 1.3 requires two applications of the method of conti-
nuity. Let us first prove openness along a general method of continuity.

Lemma 7.1. Fix k � 2, β ∈ (0, 1) and suppose we have Ck−2,β functions
H0, H1 : X → R, and a Ck,β function u : X → R such that

Θα(ω +
√
−1∂∂u) = H0.

Consider the family of equations

(7.1) Θα(ω +
√
−1∂∂ut) = (1− t)H0 + tH1 + ct
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for ct a constant. There exists ε > 0 such that, for every |t| < ε a unique
pair (ut, ct) ∈ Ck,β × R solving (7.1). Furthermore, if H0, H1 are smooth,
then so is ut.

Proof. The proof is by the implicit function theorem. Fix β > 0, k � 2 and
consider the map F : [0, 1]× Ck,β × R → Ck−2,β given by

(t, c, u) 
−→ Θα(ω +
√
−1∂∂u)− (1− t)H0 − tH1 − c.

Let Δη denote the linearization of Θα around (u0, c0) := (u, 0). The operator
Δη is homotopic to the Laplacian with respect to α, and so has index 0. By
the maximum principle, the kernel of Δη consists of the constants, and hence
the cokernel of Δη has dimension 1. Another application of the maximum
principle shows that the constants are not in the image of Δη. It follows that
the linearization of F at time 0, given by

(v, c) 
−→ Δηv + c,

is a surjective map from Ck,β × R to Ck−2,β. In particular, by the implicit
function theorem we conclude that there exists ε > 0 such that, for all |t| < ε
we can find a unique pair (ut, ct) ∈ Ck,β × R solving (7.1). By a standard
boot strapping argument, we find that ut is in fact smooth provided H0, H1

are smooth.

Suppose now that we have a subsolution χ ∈ [Ω] to the deformed
Hermitian-Yang-Mills equation satisfying the assumptions of Theorem 1.3.
Let us denote by

Θ0 := Θα(χ).

As stated above, by assumption (1.7), the average angle Θ̂ lifts naturally
to R. Without loss of generality, we will assume that Θ0 �= Θ̂, for otherwise
we are finished. Now, and for the remainder of this section, we let μ1, · · ·μn

be the eigenvalues of the relative endomorphism α−1χ at an arbitrary point
of X. We clearly have∑

i �=j

arctan(μi) > Θ0 −
π

2
∀j.

In particular, we can find δ0 > 0 such that∑
i �=j

arctan(μi) > max{Θ0, Θ̂}+ 100δ0 −
π

2
∀j.
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Furthermore, since

Arg

∫
X
(α+

√
−1χ)n = Θ̂

we must have that infX Θ0 < Θ̂. Choose δ1 > 0 such that

inf
X

Θ0 + 100δ1 = Θ̂

Set δ = min{δ0, δ1}, and define

Θ1 = m̃axδ{Θ̂,Θ0}

where m̃axδ denotes the regularized maximum [12]. We have

Lemma 7.2. Fix a point p ∈ X where Θ0 achieves its infimum. The function
Θ1 has the following properties:

(i) Θ1 is smooth.
(ii) max{Θ0, Θ̂} � Θ1 � max{Θ0, Θ̂}+ δ.
(iii) Θ1(x) = Θ̂ on the set {x ∈ X : Θ0 + δ � Θ̂ − δ}. In particular,

Θ1(x) = Θ̂ in a neighbourhood of p ∈ X.
(iv) Θ1(x) = Θ0(x) on the set {x ∈ X : Θ̂ + δ � Θ0 − δ}.
(v) For every t ∈ [0, 1]

inf
X
[(1− t)Θ0 + tΘ1] = (1− t) inf

X
Θ0 + tΘ̂ = (1− t)Θ0(p) + tΘ̂.

(vi) supX [Θ1 −Θ0] = Θ1(p)−Θ0(p) = Θ̂− infX Θ0(p).

Proof. Statements (i)− (iv) are just the properties of the regularized max-
imum, [12, Chapter 1, Lemma 5.18]. We prove (v). From our choice of δ,
and the definition of Θ1 we have Θ1(p) = Θ̂. Thus

(1− t)Θ0(p) + tΘ̂ = (1− t)Θ0(p) + tΘ1(p)

� inf
X
[(1− t)Θ0 + tΘ1]

� (1− t) inf
X

Θ0 + t inf
X

Θ1

= (1− t)Θ0(p) + tΘ̂,

establishing the fifth point. For (vi), we first consider the set U1 := {x ∈
X : Θ0 + δ � Θ̂ − δ}. On this set we have Θ1 − Θ0 = Θ̂ − Θ0 by property
(iii). This difference is maximized at the point p ∈ U1, where we have

Θ1(p)−Θ0(p) = Θ̂−Θ0(p) = 100δ1 � 100δ.
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Now consider the set U2 := {x ∈ X : Θ̂ + δ � Θ0 − δ}. On this set we have

Θ1 −Θ0 ≡ 0 by (iv). Finally, we consider the set U3 = {x ∈ X : |Θ0 − Θ̂| <
2δ}. On U3 we have

Θ1 −Θ0 � max{Θ0, Θ̂}+ δ −Θ0 � 3δ < 100δ,

and the lemma follows.

We use the function Θ1 as the first target for the method of continuity.

Proposition 7.3. There exists a smooth function u1 : X → R, and a

constant b1 < 0 such that

Θα(ω +
√
−1∂∂u1) = Θ1 + b1, and Θ1 + b1 > (n− 2)

π

2
.

Proof. We use the method of continuity. Consider the family of equations

(7.2) Θα(χ+
√
−1∂∂ut) = (1− t)Θ0 + tΘ1 + bt.

Define

I =
{
t ∈ [0, 1] : ∃ (ut, bt) ∈ C∞(X)× R solving (7.2)

}
.

Since (0, 0) is a solution at time t = 0, we have that I is non-empty. By

Lemma 7.1 the set I is open. It suffices to prove that I is closed. This will

follow from the a priori estimates in Theorem 1.2 together with a standard

bootstrapping argument provided we can show

• χ is a subsolution of equation (7.2) for all t ∈ [0, 1]

• (1− t)Θ0 + tΘ1 + bt > (n− 2)π2 uniformly for t ∈ [0, 1].

In order to do each of these things, we must control the constant bt. First,

we claim that bt � t supX(Θ0 − Θ1) � 0. To see this, choose q ∈ X where

ut achieves its maximum. Then at q, ellipticity implies

Θ0(q) � Θα(χ+
√
−1∂∂ut)(q) = (1− t)Θ0(q) + tΘ1(q) + bt.

Rearranging this equation yields

bt � t sup
X

(Θ0 −Θ1) � 0
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where the final inequality follows from the fact that Θ1 � Θ0 by construc-
tion. It follows that for every 1 � j � n there holds,∑

i �=j

arctan(μi) > max{Θ0, Θ̂}+ 100δ − π

2

> Θ1 −
π

2

� (1− t)Θ0 + tΘ1 + bt −
π

2

and so χ is a subsolution of equation (7.2) for all t ∈ [0, 1], taking care of
the first point. To take care of the second point we look at a point q ∈ X
where ut achieves its minimum to find

bt � −t sup
X

(Θ1 −Θ0).

Combining this estimate with the results of Lemma 7.2, we have

(7.3)

inf
X

[(1− t)Θ0 + tΘ1 + bt] = (1− t)Θ0(p) + tΘ1(p) + bt

= Θ0(p) + t(Θ1(p)−Θ0(p)) + bt

= Θ0(p) + t sup
X

(Θ1 −Θ0) + bt

� Θ0(p)

> (n− 2)
π

2
.

By Theorem 1.2, together with the usual Schauder estimates and bootstrap-
ping argument we conclude that I is closed. Proposition 7.3 follows.

We now turn to the proof of the main theorem. Let ω1 = χ+
√
−1∂∂u1,

where u1 is the function from Proposition 7.3. We consider the method of
continuity

(7.4) Θα(ω1 +
√
−1∂∂vt) = (1− t)Θ1 + tΘ̂ + ct.

Define

I = {t ∈ [0, 1] : ∃ (vt, ct) ∈ C∞(X)× R solving (7.4)}.

By Proposition 7.3 we have a solution at time t = 0, with constant c0 = b1.
Thanks to Lemma 7.1, the set I is open, and so it suffices to prove I is
closed. Again this will follow from the a priori estimates in Theorem 1.2, if
we can show that
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• χ is a subsolution along the whole method of continuity (7.4).

• (1− t)Θ1 + tΘ̂ + ct > (n− 2)π2 for all t ∈ [0, 1].

as in the proof of Proposition 7.3, it suffices to control the constant ct. To

control ct from above we observe that since Θ1 � Θ̂, the cohomological

condition

Arg

∫
X

√
det ηt
detα

ei((1−t)Θ1+tΘ̂+ct)αn = Θ̂

implies that ct � 0 for all t ∈ [0, 1]. Arguing as in the proof of Proposi-

tion 7.3, we conclude that χ is again a subsolution along the whole method

of continuity. Furthermore, if p ∈ X is a point where Θ0 achieves its infimum,

then Lemma 7.2 part (iii), combined with Proposition 7.3 implies

Θ̂ + b1 = Θ1(p) + b1 > (n− 2)
π

2
,

and so in particular, we have

(1− t)[Θ1 + b1] + t[Θ̂ + b1] > (n− 2)
π

2
.

In order to show that (1− t)Θ1 + tΘ̂+ ct > (n− 2)π2 it suffices to show that

ct � b1 for all t. This is easy. If the maximum of vt is achieved at the point

q ∈ X, then we have

Θ1(q) + b1 � (1− t)Θ1(q) + tΘ̂ + ct,

or in other words,

ct � b1 + t[Θ1(q)− Θ̂] � b1

since Θ1 � Θ̂. As a result we can apply the a priori estimates in 1.2 uniformly

in t to conclude that I is closed. The higher regularity follows in the usual

way from the Schauder estimates and bootstrapping. Since we clearly have

c1 = 0 by the cohomological condition, Theorem 1.3 follows.

Remark 7.4. It is easy to establish the following weaker existence theorem

using the parabolic flow introduced in [26]: If Θ̂ > (n − 1)π2 , and χ ∈ Ω

is a subsolution with Θα(χ) > (n − 1)π2 , then the flow in [26] starting at

χ converges smoothly to a solution of the deformed Hermitian-Yang-Mills

equation.
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8. Subsolutions, class conditions and stability

In this section we briefly elaborate on the subsolution condition as well as

pose some natural conjectures related to the existence of solutions to the

deformed Hermitian-Yang-Mills equation. The first step is to observe that

the subsolution condition in Lemma 3.3 is equivalent to a class condition,

as we alluded to in Remark 3.4. Recall that Ω ∈ H1,1(X,R) is a fixed

cohomology class. We then have the following proposition.

Proposition 8.1. Let Θ̂ ∈ ((n − 2)π2 , n
π
2 ) be the fixed constant defined in

Section 2. Then a (1, 1) form χ ∈ Ω, satisfying Θα(χ) > (n − 2)π2 is a

subsolution to equation (1.2) if and only if

1. dimC X = n is even and

(8.1) − (in)
(
Im(α+

√
−1χ)n−1 + cot(Θ̂)Re(α+

√
−1χ)n−1

)
> 0

2. dimC X = n is odd and

in−1
(
tan(Θ̂)Im(α+

√
−1χ)n−1 +Re(α+

√
−1χ)n−1

)
> 0.

In each line, positivity is to be understood in the sense of (n−1, n−1) forms.

Proof. We will prove the statement in the case n ≡ 0 (mod 4), as all other

cases are similar. Suppose that χ is a subsolution in the sense of Lemma 3.3.

Since the statement is pointwise, it suffices to fix a point x0 ∈ X, and

coordinates so that α is the identity at x0 and χ(x0) is diagonal with entries

μ1, . . . , μn. By assumption, for every 1 � j � n we have

(n− 1)
π

2
>
∑
i �=j

arctan(μi) > Θ̂− π

2
.

In other words

(8.2) (n− 1)
π

2
> Arg

⎛⎝∏
j �=i

(1 +
√
−1μj)

⎞⎠ > Θ̂− π

2
,

where again we have fixed the branch cut of Arg by setting it to be zero

when μ1 = · · · = μn = 0. If Θ̂ = (n− 1)π2 , then the fact that n ≡ 0 (mod 4)
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along with (8.2) implies

Im

⎛⎝∏
j �=i

(1 +
√
−1μj)

⎞⎠ < 0.

Since cot(Θ̂) = 0 in this case, we obtain (8.1). Otherwise, (8.2) implies

arctan

(
Im

∏
i �=j(1 +

√
−1μi)

Re
∏

i �=j(1 +
√
−1μi)

)
> Θ̂− π

2
− kπ

where on the right hand side, we choose k ∈ Z so that Θ̂ − π
2 − kπ ∈

(−π
2 , 0)∪(0,

π
2 ). Since tan(·) is increasing and non-zero on (−π

2 ,
π
2 ), we obtain

Im
∏

i �=j(1 +
√
−1μi)

Re
∏

i �=j(1 +
√
−1μi)

> − cot(Θ̂).

Above we have used the elementary fact that tan(x−π/2) = − cot(x) for x �=
0 (mod π). By (8.2), the complex number

∏
j �=i(1 +

√
−1μj) has argument

lying in the interval ((n− 3)π2 , (n− 1)π2 ). Since n ≡ 0 (mod 4), this implies
that it has negative real part. As a result, we have

Im
∏
i �=j

(1 +
√
−1μi) < − cot(Θ̂)Re

∏
i �=j

(1 +
√
−1μi).

Since this holds for all j, we obtain that (8.1) holds in the sense of (n−1, n−1)
forms.

The reverse implication holds by essentially the same argument. Suppose
that χ satisfies (8.1). Since χ ∈ Ω we get

Arg

∫
X
(α+

√
−1χ)n = Θ̂ mod 2π.

By assumption Θα(χ) > (n − 2)π2 , and so it follows that there exists a

point x0 ∈ X such that Θα(χ) = Θ̂ ∈ ((n − 2)π2 , n
π
2 ). In particular, in a

neighbourhood of x0, χ defines a subsolution in the sense of Lemma 3.3.
The set of points U ⊂ X where χ defines a subsolution is thus open and
non-empty. On the other hand, it is also closed. To see this assume we can
find points pj ∈ U converging to p, and at p there exists a j such that∑

i �=j

arctan(μj) = Θ̂− π

2
.
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The above computation implies that, at p the (n− 1, n− 1) form

−Im(α+
√
−1χ)n−1 − cot(Θ̂)Re(α+

√
−1χ)n−1

is positive, but not strictly positive, which is a contradiction. Since X is
connected, it follows that χ is a subsolution everywhere.

Notice that if χ is a subsolution to the deformed Hermitian-Yang-Mills
equation (1.2) in the sense of Lemma 3.3, then in fact we obtain a large
set of inequalities that the eigenvalues of χ with respect to α must satisfy.
Namely, at a point x0 ∈ X, and in coordinates so that α is the identity at
x0 and χ(x0) is diagonal with entries μ1, . . . , μn, then for every choice of �
distinct indices j1, . . . , j�, and every 1 � � � n− 1, we must have∑

i/∈{j1,...,jn}
arctan(μi) � Θ̂− �

π

2
.

Of course, for any � > 1, these inequalities are all implied by the definition
of a subsolution, so we have not really gained anything new. On the other
hand, this observation suggests a cohomological obstruction to the existence
of solutions for the deformed Hermitian-Yang-Mills equation. In order to
explain this, we first prove

Lemma 8.2. A (1, 1) form χ ∈ [ω] with Θα(χ) ∈ ((n − 2)π2 , n
π
2 ) is a

subsolution to the deformed Hermitian-Yang-Mills equation if and only if,
for any 1 � p � n−1, and any non-zero, simple, positive (n−p, n−p) form
β, we have

(8.3) Im

[
−(−

√
−1)p(α+

√
−1χ)p ∧ β

−(−
√
−1)ne

√
−1Θ̂αn

]
> 0.

Proof. The proof is a matter of linear algebra. Recall that a smooth (k, k)
form β defined on an open set is said to be a simple positive form if it can
be written as

β = (
√
−1)kβ1 ∧ β1 ∧ β2 ∧ β2 ∧ · · · ∧ βk ∧ βk

for smooth (1, 0) forms βj [28]. Since the statement is pointwise, we again
fix a point x0 ∈ X, and coordinates so that α is the identity at x0 and χ(x0)
is diagonal with entries μ1, . . . , μn. For any p, we can have

(α+
√
−1χ)p = (

√
−1)pp!

∑
J

∏
j∈J

(1 +
√
−1μj)dz

J ∧ dzJ
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where the sum is over ordered sets J ⊂ {1, . . . , n} of cardinality p. Suppose
that χ is a subsolution. Then by the above remarks we know that, for any
J we have ∏

j∈J
(1 +

√
−1μj) ∈ R>0e

√
−1ΘJ ,

where ΘJ > Θ̂− (n− p)π2 . In particular, for each J

Im

[
−(−

√
−1)p

∏
j∈J(1 +

√
−1μj)

−(−
√
−1)ne

√
−1Θ̂

]
> 0.

Let β be any non-zero simple positive (n−p, n−p) form. Then we can write

β = (
√
−1)n−p

∑
J

cJdz
Jc ∧ dzJc + β̃

for a smooth (n − p, n − p) form β̃ satisfying β̃ ∧ dzJ ∧ dzJ = 0 for all J .
Here again the sum is over ordered sets J ⊂ {1, . . . , n} of cardinality p, and
Jc denotes the ordered complement of J . The coefficients cJ are necessarily
real, non-negative, and at least one cJ must be strictly positive since

p!(
√
−1)n

∑
J

cJdz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn = β ∧ αp.

The right hand side is positive and not identically zero, since β is non-zero.
Thus we have

(α+
√
−1χ)p ∧ β

αn
=
∑
J

cJ

⎛⎝∏
j∈J

(1 +
√
−1μj)

⎞⎠ .

The right hand side is a positive linear combination of complex numbers
lying in the upper half-plane and so lies in the upper-half plane, proving one
implication. The reverse implication is trivial, by taking β = (

√
−1)n−pdzJ

c∧
dzJc for every ordered set J of cardinality p.

The upshot of this linear algebra is the following proposition, which is
essentially a corollary of Lemma 8.2

Proposition 8.3. For every subvariety V ⊂ X, define

(8.4) ZV := −
∫
V
e−

√
−1(α+

√
−1ω).
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If there exists a solution to the deformed Hermitian-Yang-Mills equation,
then for every proper subvariety V ⊂ X we have

Im

(
ZV

ZX

)
> 0.

Note that by convention we only integrate the term in the formal ex-
pansion of e−

√
−1(α+

√
−1ω) which has order dimV . When [ω] = c1(L), this

formula is equivalent to

(8.5) ZV (L) = −
∫
V
e−

√
−1αch(L).

It is easy to check that if L admits a solution of the dHYM equation with
Θ̂ ∈ ((n−2)π2 , n

π
2 ) then ZX(L) lies in the upper half plane. Let us denote by

Argp.v. the principal value of Arg, valued in (−π, π]. Then, in the notation

of Proposition 8.3 we have Im
(
ZV

ZX

)
> 0 implies

Argp.v. ZV (L) > Argp.v. ZX(L).

The numbers ZV appearing in (8.5) bear a resemblance to the various no-
tions central charge appearing in stability conditions in several physical and
mathematical theories. For example, we refer the reader to the works of
Douglas [17, 18, 19], Bridgeland [2], and Thomas [47] to name just a few.
We hope to further elucidate this observation in future work.

Additionally, the condition appearing in Proposition 8.3 is, at least
heuristically, similar to the algebro-geometric stability notions appearing
in other problems in complex geometry. Perhaps most notably, the notion
of Mumford-Takemoto stability pertaining to the existence of Hermitian-
Einstein metrics on holomorphic vector bundles [15, 50], and the recent
stability condition posed by Lejmi-Székelyhidi for the convergence of the
J-equation, and more generally existence of solutions to the inverse σk-
equations [31]. Let us briefly recount this conjecture in the setting of the
J-equation.

Conjecture 8.4 ([31]). Let (X,α) be a Kähler manifold, and [ω] another
Kähler class. For every subvariety V ⊂ X with dimV = p define

cV :=
p
∫
V ωdim p−1 ∧ α∫

V ωp
.

Then there exists a solution to the J-equation if and only if cX > cV for all
proper subvarieties V ⊂ X.
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This conjecture is known to hold when dimX = 2, thanks to the third
authors solution of the Calabi conjecture [57] and work of Demailly-Păun
[13]. The conjecture also holds when X is a complex torus, due to Lejmi-
Székelyhidi. Recently, the first author and Székelyhidi [10] have proven the
conjecture in the case that X is toric. It is interesting to note that the sta-
bility condition in Conjecture 8.4 arises from a modification of K-stability
by considering certain special test configurations arising from deformation
to the normal cone. We expect that the stability type condition in Proposi-
tion 8.3 can be realized in a similar manner, a point which we will address
in future work. Finally, we note;

Proposition 8.5. If dimX = 2, then a solution to the deformed Hermitian-
Yang-Mills equation exists if and only if, for every curve C ⊂ X we have

(8.6) Im

(
ZC

ZX

)
> 0.

Proof. First, an application of the Hodge index theorem shows that ZX �= 0.
Let us assume that Im(ZX) > 0. If Im(ZX) < 0, then we can replace [ω]
with [−ω], and if Im(ZX) = 0, then the condition in (8.6) is vacuous, and
a solution always exists, as observed in [26]. We can therefore assume that
Θ̂ ∈ (0, π), and so

(8.7) 1−
∫
X
ω2 = 2 cot(Θ̂)

∫
X
α ∧ ω.

It was observed in [26] that a solution to the deformed Hermitian-Yang-Mills
equation exists if and only if the class [cot(Θ̂)α+ω] is Kähler, thanks to the
third authors solution of the Calabi conjecture [57]. Since [α] is Kähler, the
class [ΩT ] := [(T +cot(Θ̂))α+ω] is a Kähler class for T � 0. Suppose there
exists a time T � 0 where [ΩT ] lies on the boundary of the Kähler cone –
that is, [ΩT ] is nef, but not Kähler. First, we claim that [ΩT ] is big. By [13,
Theorem 2.12] it suffices to check that

∫
X Ω2

T > 0. We compute∫
X
Ω2
T = (T + cot(Θ̂))2 + 2(T + cot(Θ̂X))

∫
X
α ∧ ω +

∫
X
ω2

= (T + cot(Θ̂))2 + 1 + 2T

∫
X
α ∧ ω,

where we have used (8.7). Note that since ImZX > 0 we have

2

∫
X
α ∧ ω = Im(α+

√
−1ω)2 > 0,
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and so the above computation implies∫
X
Ω2
T � 1.

Finally, by the main theorem of [13] (see also [11]), we can conclude that
[ΩT ] is Kähler provided

∫
C ΩT > 0 for any curve C ⊂ X. Fix C ⊂ X. Define

Θ̂C = Argp.v

∫
C
(α+

√
−1ω)

Since Im
(

ZC

ZX

)
> 0, and ImZX > 0, one easily see that Θ̂C ∈ (−π

2 ,
π
2 ),

Θ̂C > Θ̂− π
2 , and so the following equality makes sense;

tan(Θ̂C)

∫
C
α =

∫
C
ω.

Because tan(·) is defined an increasing on (−π
2 ,

π
2 ), we have

tan(Θ̂C) > tan(Θ̂− π

2
) = − cot(Θ̂).

We obtain ∫
C
ω = tan(Θ̂C)

∫
C
α � − cot(Θ̂)

∫
C
α.

Since T � 0, ∫
C
ΩT = T

∫
C
α+

∫
C
cot(Θ̂)α+ ω > T

∫
C
α > 0,

and so [ΩT ] is Kähler as long as T � 0, and the proposition follows.

We end by remarking that one could hope for a similar framework for
the lower branches of the deformed Hermitian-Yang-Mills equation – that
is, when ΘX � (n − 2)π2 . However, due to the lack of convexity in the
lower branches we expect that the deformed Hermitian-Yang-Mills equation
with subcritical phase may be extremely poorly behaved from an analytic
and algebraic stand point. For example, in the real case Nadirashvili-Vlăduţ
[34] and Wang-Yuan [52] have demonstrated the existence of C1,β viscosity
solutions to the special Lagrangian equation with subcritical phase on a
ball in R3 for n � 3 which are not C2 in the interior. Furthermore, Wang-
Yuan [52] have shown the existence of smooth solutions {uε} to the special
Lagrangian equation with fixed, subcritical phase on a ball in R3 such that
‖Duε‖L∞ < C, but so that |D2uε|(0) blows up as ε → 0.
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