
Cambridge Journal of Mathematics

Volume 8, Number 3, 505–607, 2020

Hermitian K-theory, Dedekind ζ-functions, and
quadratic forms over rings of integers in number

fields
Jonas Irgens Kylling, Oliver Röndigs, and Paul Arne Østvær

We employ the slice spectral sequence, the motivic Steenrod alge-
bra, and Voevodsky’s solutions of the Milnor and Bloch-Kato con-
jectures to calculate the hermitian K-groups of rings of integers
in number fields. Moreover, we relate the orders of these groups
to special values of Dedekind ζ-functions for totally real abelian
number fields. Our methods apply more readily to the examples of
algebraic K-theory and higher Witt-theory, and give a complete set
of invariants for quadratic forms over rings of integers in number
fields.
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1. Introduction

The themes explored in this paper are Karoubi’s hermitian K-theory [23],
Lichtenbaum’s conjectures on special values of ζ-functions [33], [34], Milnor’s
conjecture on quadratic forms [37], [38] extended to arithmetic Dedekind do-
mains [18], and Voevodsky’s slice filtration [66]. By explicit slice spectral se-
quence calculations we identify the hermitian K-groups of rings of integers in
number fields in terms of motivic cohomology groups. Voevodsky’s proof of
Milnor’s conjecture on Galois cohomology [67] combined with Wiles’s proof
of the main conjecture in Iwasawa theory [70] allow us to relate the orders of
hermitian K-groups to special values of ζ-functions for totally real abelian
number fields. While these beautiful links between number theory and homo-
topy theory are traditionally expressed in terms of algebraic K-theory, recent
calculations of universal motivic invariants have brought hermitian K-theory
into focus [54]. One expects that motivic homotopy theory has more to offer
in this direction since hermitian K-theory is in a precise sense closer to the
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motivic sphere than algebraic K-theory. A shadow of this is witnessed by
the Betti realization functor sending algebraic K-theory to topological uni-
tary K-theory and hermitian K-theory to topological orthogonal K-theory.
Via the J-homomorphism and the Adams conjecture, the latter 8-periodic
theory gives rise to cyclic summands in the stable homotopy groups of the
topological sphere whose orders are related to Bernoulli numbers [48], [49,
Chapters 1, 5]. Our calculation of the hermitian K-groups represents a de-
cisive first step in a quest to establish a motivic analogue of this result over
number fields.

Suppose F is a number field with r1 (resp. r2) number of real (resp. pairs
of complex conjugate) embeddings into the complex numbers C. Let S be
a (not necessarily finite) set of places in F containing the archimedean and
dyadic ones. We denote the ring of S-integers in F by OF,S . Classically,
the zeroth hermitian K-group KQ0(OF,S) is the Grothendieck-Witt ring of
symmetric bilinear forms on OF,S [38]. When S is finite, then KQn(OF,S)
is a finitely generated abelian group for all n ≥ 0. Its odd torsion sub-
group is the invariant part of the odd torsion subgroup of the algebraic
K-group KGLn(OF,S) for the involution M �→ tM

−1 on GL(OF,S), see [5,
Propositions 3.2, 3.13]. Our main focus is on the two-primary subgroup of
KQn(OF,S). We also identify its �-primary subgroup, for � any odd prime
number, by making use of the Rost-Voevodsky solution of the Bloch-Kato
conjecture [69].

In the first main result of this paper we identify the mod 2 hermitian K-
groups KQn(OF,S ;Z/2) up to extensions of motivic cohomology groups of
Dedekind domains as defined in [16], [30], [60]. Our method of proof reveals
for n ≥ 1 the existence of an 8-fold periodicity isomorphism

(1.1) KQn(OF,S ;Z/2) ∼= KQn+8(OF,S ;Z/2).

Moreover, for all k ≥ 0, we show the vanishing result

(1.2) KQ8k+5(OF,S ;Z/2) = 0.

By the universal coefficient short exact sequence

0 → KQn(OF,S)/2 → KQn(OF,S ;Z/2) → 2KQn−1(OF,S) → 0,

the vanishing in (1.2) implies the multiplication by 2 map on the abelian
group KQn(OF,S) is injective when n = 8k + 4 and surjective when n =
8k + 5.
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To state our main result for KQn(OF,S ;Z/2), let hp,q (resp. hp,q+ ) denote
the degree p and weight q mod 2 (resp. positive mod 2) motivic cohomology
of OF,S (see Appendix A). As usual ρ is the class of −1 in h1,1. Let hp,q/ρi

denote the cokernel of ρi : hp−i,q−i → hp,q and ker(ρip,q) denote the kernel of
ρi : hp,q → hp+i,q+i. We denote the Picard group of OF,S by Pic(OF,S), and
its Brauer group by Br(OF,S). If A is an abelian group, we let 2A denote its
subgroup of elements of exponent 2 and rk2A its 2-rank.

Theorem 1.3. Let OF,S be the ring of S-integers in a number field F . The
mod 2 hermitian K-groups of OF,S are computed up to extensions by the
following filtrations of length l.

Table 1: The mod 2 hermitian K-groups of OF,S

n ≥ 0 l KQn(OF,S ;Z/2)
8k 3 f0/f1 = h0,4k, f1/f2 = h1,4k+1 ⊕ ker(ρ2,4k+1), f2 = h2,4k+2/ρ
8k + 1 2 f0/f1 = h0,4k+1 ⊕ ker(ρ1,4k+1), f1 = h1,4k+2 ⊕ ker(ρ2,4k+2)
8k + 2 3 f0/f1 = h0,4k+1, f1/f2 = h0,4k+2 ⊕ h1,4k+2, f2 = h2,4k+3

8k + 3 2 f0/f1 = h0,4k+2, f1 = h1,4k+3

8k + 4 2 f0/f1 = h0,4k+3, f1 = h4,4k+4

8k + 5 0 0
8k + 6 2 f0/f1 = ker(ρ2,4k+4), f1 = h4,4k+5/ρ3

8k + 7 2 f0/f1 = ker(ρ21,4k+4), f1 = ker(ρ2,4k+5)

Remark 1.4. In Table 1: h0,q ∼= Z/2, ker(ρ2,1) = h2,1 ∼= Pic(OF,S)/2, h1,q ∼=
O×

F,S/2⊕ 2 Pic(OF,S), h2,q ∼= Pic(OF,S)/2⊕ 2 Br(OF,S) for q > 1, h4,q/ρ3 ∼=
h3,q−1/ρ2 ∼= (Z/2)t

+
S−tS , ker(ρ2,q) ∼= im(h2,q+ → h2,q) for q > 1, ker(ρ21,q) ∼=

im(h1,q+ → h1,q), and ker(ρ1,q) ⊆ im(h1,q+ → h1,q). Here t+S is the 2-rank
of the narrow Picard group Pic+(OF,S) and tS = rk2 Pic(OF,S). The 2-
rank of ker(ρ21,q) (resp. ker(ρ2,q)) equals r2 + sS + t+S (resp. sS + tS − 1),
where sS is the number of finite primes in S. This determines the abelian
group KQn(OF,S ;Z/2) up to extensions, e.g., there is a short exact se-
quence

0 → h1,4k+2 ⊕ h2,4k+2 → KQ8k+1(OF,S ;Z/2) → h0,4k+1 ⊕ ker(ρ1,4k+1) → 0.

Remark 1.5. More generally, Theorem 4.23 identifies the homotopy groups
πp,qKQ/2 for the motivic spectrum KQ representing hermitian K-theory
over OF,S . When q ≡ 0, 1, 2, 3 mod 4 and n = p − 2q, πp,qKQ coincides
with Karoubi’s hermitian K-groups KQn = KOn, USpn, KSpn, and Un

[23].
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Calculating the cup-product map ρ : h1,q → h2,q+1 is a challenging arith-
metic problem. (See also Lemma A.18.) While ρn 	= 0 for all n ≥ 1 if F
admits a real embedding, it is unknown when ρ2 	= 0 over totally imaginary
quadratic number fields.

Moreover, for every integer n ≥ 1 we calculate the mod 2n algebraic
K-groups, hermitian K-groups, and higher Witt-groups of OF,S . When S is
finite we use this to identify the corresponding 2-adically completed groups.
With this in hand we are ready to discuss the analytic aspect of these K-
groups in connection with Dedekind ζ-functions. For complex numbers s
with real part Re(s) > 1, we have

(1.6) ζF (s) :=
∑
I �=0

(#OF /I )−s,

where the summation is over all nonzero ideals I ⊆ OF and #OF /I is
the absolute norm. The sum in (1.6) diverges for s = 1, but work of Hecke
shows ζF admits a meromorphic extension to all of C which is holomorphic
except for a simple pole at s = 1 with residue expressed by the analytic class
number formula [41, Chapter VII, §5].

The functional equation relating the values of ζF at s and 1− s implies
the multiplicity dq of the zero of ζF at 1−q (0 < q ∈ N) is equal to r1+r2−1
if q = 1, r2 if q is even, and r1+ r2 is q > 1 is odd. In [10], Borel showed that
dq coincides with the rank of K2q−1(OF ) for q > 0. Note that dq = 0 occurs
only if F is totally real and q even, when ζF (1−q) ∈ Q by the Siegel-Klingen
theorem [25] (in this case the Borel regular map is trivial and ζF (1−q) equals
the leading term ζ∗F (1− q)).

The Birch-Tate conjecture relates the special value ζF (−1) 	= 0 to alge-
braic K-groups by the formula

(1.7) ζF (−1) = ±#K2(OF )

w2(F )
.

Here wq(F ) is the largest natural number N such that the absolute Galois
group of F acts trivially on μ⊗q

N , i.e., the order of the étale cohomology group
H0

ét(F ;Q/Z(q)). Wiles’s proof of the main conjecture in Iwasawa theory [70],
which identifies the characteristic power series of certain inverse limits of p-
class groups with p-adic L-series, implies (1.7) for totally real abelian number
fields via the formula

(1.8) ζF (1− q) = ±
#
∏

pH
2
ét(OF [

1
p ];Zp(q))

wq(F )
.
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The factors on the right hand side of (1.8) identify with motivic cohomol-
ogy groups via the Milnor and Bloch-Kato conjectures [67], [69] (see [16]).
Following [50] for the two-primary part, this implies

(1.9) ζF (1− q) = ±2r1
#K2q−2(OF )

#K2q−1(OF )

for q ≥ 2 even, see [26, Theorem 0.11] (the sign in (1.9) is positive if r1
is even and negative if r1 is odd according to the functional equation). We
relate special values of ζ-functions to hermitian K-groups in the following
amelioration of [7, Theorem 5.9].

Theorem 1.10. For k ≥ 0 and F a totally real abelian number field with
ring of 2-integers OF [

1
2 ], the Dedekind ζ-function of F takes the values

ζF (−1− 4k) =
#h2,4k+3

#h1,4k+3
·
#KQ8k+2(OF [

1
2 ];Z2)

#KQ8k+3(OF [
1
2 ];Z2)

ζF (−3− 4k) = 2r1 ·#ker(ρ2,4k+4) ·
#KQ8k+6(OF [

1
2 ];Z2)

#KQ8k+7(OF [
1
2 ];Z2)

up to odd multiples.

Our calculations depend on strong convergence of the slice spectral se-
quences for mod 2n reduced higher Witt-theory KW/2n over OF,S , n ≥ 1.
Showing strong convergence turns out to be related to finding a complete set
of invariants for quadratic forms over OF,S involving the fundamental ideal,
the Brauer group, the Clifford invariant, and motivic cohomology groups.
In Theorem 2.48 we show a form of Milnor’s conjecture for quadratic forms
[37] over OF,S by generalizing the proof given in [52]. Our formulation of
the Milnor conjecture for quadratic forms involves the slice filtration for
higher Witt-theory, the element −1 ∈ h0,1, and the mod 2 Picard group h2,1

of OF,S .

Outline of proofs

Our approach is based on applications of the Milnor and Bloch-Kato con-
jectures on Galois cohomology and K-theory [67], [69], the motivic Steenrod
algebra [21], [68], the slice filtration [66], and the identification of the slices
of hermitian K-theory in [52], [54].
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The slice filtration for a motivic spectrum E gives rise to distinguished
triangles in the stable motivic homotopy category

(1.11) fq+1(E) → fq(E) → sq(E) → Σ1,0fq+1(E),

where {fq(E)} exhausts E, and the slices sq(E) are uniquely determined up
to isomorphism by (1.11), see [66, Theorem 2.2]. Applying the motivic ho-
motopy groups π∗,w to (1.11) yields an exact couple and an associated slice
spectral sequence in weight w, with E1-page

(1.12) E1
p,q,w(E) = πp,wsq(E) =⇒ πp,w(E).

The slice d1-differential in (1.12) is induced by d1 : sq(E) → Σ1,0sq+1(E) ob-
tained from (1.11). Here the slices of E are modules over the zero slice s0(1)
of the motivic sphere spectrum by [17, §6 (iv),(v)], [47, Theorem 3.6.13(6)].
Let fqπp,w(E) denote the image of πp,wfq(E) in πp,w(E). While {fqπp,n(E)} is
an exhaustive filtration of πp,n(E), convergence of (1.12) is unclear in general
(see Lemma 2.5).

Over any field F of characteristic char(F ) 	= 2 the slices of the motivic
spectra of algebraic K-theory KGL, hermitian K-theory KQ, and higher
Witt-theory KW are identified in [52]:

sq(KGL) � Σ2q,qMZ,(1.13)

sq(KQ) �
{
Σ2q,qMZ ∨

∨
i< q

2

Σ2i+q,qMZ/2 q ≡ 0 mod 2∨
i< q+1

2

Σ2i+q,qMZ/2 q ≡ 1 mod 2,
(1.14)

sq(KW) �
∨
i∈Z

Σ2i+q,qMZ/2.(1.15)

Here MZ (resp. MZ/2) denotes the integral (resp. mod 2) motivic coho-
mology or Eilenberg-MacLane spectrum. The slices are motives or MZ-
modules by [54, Theorem 2.7] and the slice d1-differentials are maps between
Eilenberg-MacLane spectra. These facts make the slice spectral sequence
amenable to calculations over base schemes affording an explicit description
of the action of the motivic Steenrod algebra on its motivic cohomology ring.
More generally, using Spitzweck’s work of motivic cohomology in [60], after
localization the isomorphisms in (1.13), (1.14), and (1.15) hold over Dedekind
domains of mixed characteristic with no residue fields of characteristic 2, see
[54, §2.3].
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We investigate the convergence properties of (1.12) for KGL, KQ, and
KW. Earlier convergence results include [32, Theorem 4], [54, Theorem 3.50],
and [66, Lemma 7.2]. Assuming vcd(F ) < ∞ and char(F ) 	= 2, we show the
slice spectral sequence for KQ/2n is conditionally convergent [9]. In the proof
we note the filtrations of W (F )/2n by the powers of I(F )/2n and of 2nW (F )
by the powers of 2nI(F ) are both exhaustive, Hausdorff, and complete. The
Wood cofiber sequence [52, Theorem 3.4] identifying KGL with the cofiber
of the Hopf map η on KQ is also used in the argument. This confirms a
special case of Levine’s conjecture on convergence of the fundamental ideal
completed slice tower [32].

The most technical part of the paper concerns the calculations of the
slice d1-differentials for the mod 2n reductions of KW and KQ. We give
succinct formulas for the d1’s as quintuples of motivic Steenrod operations
generated by Sq1 and Sq2 and motivic cohomology classes of the base scheme.
Over rings of S-integers OF,S in a number field F we show by calculation that
the slice spectral sequence for KQ/2n collapses, so that it converges strongly,
and we identify its E∞ = En+1-page. This finishes the proof of Theorem 1.3.
Using the Bloch-Kato conjecture for odd primes and finite generation we also
deduce an integral calculation of the hermitian K-groups of OF,S .

Throughout the paper we use the following notation.

KGL, KQ, KW algebraic K-theory, hermitian K-theory, higher Witt-theory
1, MZ motivic sphere, motivic cohomology
fq(E), sq(E) qth effective cover, qth slice of a motivic spectrum E
Σp,q motivic (p, q)-suspension
SH, SHeff stable motivic homotopy category of a field F

or OF,S , effective version
KM

∗ , kM∗ , KMW
∗ integral and mod 2 Milnor K-theory,

integral Milnor-Witt K-theory
πp,q(E) = Ep,q bidegree (p, q) motivic homotopy group of E
Hp,q(X;A) bidegree (p, q) motivic cohomology of X with A-coefficients
OF,S ring of S-integers in a number field F , S ⊃ {2,∞}
hp,q, Hp,q

n bidegree (p, q) mod 2 and mod 2n motivic
cohomology of F , OF,S

ρ, τ the class of −1 in h1,1 and h0,1, respectively
hp,q/ρi, ker(ρip,q) cokernel of ρi : hp−i,q−i → hp,q, kernel of ρi : hp,q → hp+i,q+i

cd2(F ), vcd(F ) mod 2 cohomological and virtual cohomological
dimension of a field F

We use matrices to represent maps between suspensions of free MZ/2-
modules; the entries will be ordered according to the simplicial degrees of
the summands.
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Guide to the paper

Section 2 recalls some basic properties of the slice filtration in SH. Our calcu-
lations rely on convergence results shown here for the slice spectral sequences
of the mod 2n reductions of KGL (see Theorem 3.5), KW (see Theorem 2.28
and Theorem 2.52), and KQ (see Theorem 2.66 and Theorem 2.67). More-
over, we study multiplicative properties of the slice spectral sequence for
pairings of motivic Moore spectra. This part allows us to circumvent the
lack of an algebra structure on the slice spectral sequence for calculations
with mod 2 reductions of motivic spectra.

One of the points of Section 3 is to show that our methods provide
effective tools for calculations of algebraic K-groups (see Theorem 3.7, The-
orem 3.11, and Theorem 3.23).

In Section 4 we first identify the mod 2 higher Witt-groups and the mod
2 hermitian K-groups of OF,S (see Theorem 1.3, Theorem 4.6, and Theo-
rem 4.16). Second, we extend these calculations to mod 2n coefficients for
all n ≥ 1 (see Theorem 4.32 and Theorem 4.39), and consequently to 2-
adic coefficients. The corresponding calculations for odd-primary coefficients
are straightforward. Using this we deduce an integral calculation of the ho-
motopy groups of KQ over OF,S in terms of motivic cohomology groups
(see Theorem 4.61 for the odd-primary calculations).

Section 5 relates the orders of the hermitian K-groups to special values of
Dedekind ζ-functions of number fields (see Theorem 1.10 and Theorem 5.1).
We perform some technical work in Section 6 where we determine the mul-
tiplicative structure on the graded slices s∗(KQ/2n) for n ≥ 2 (see Theo-
rem 6.11); this part is needed to determine extension problems arising in
the slice spectral sequence for KQ/2n (see Theorem 4.61 and Section 5).
In Appendix A we review background on motivic cohomology and the mod
2 motivic Steenrod algebra over fields and rings of S-integers — with focus
on low weights and coefficient rings — which is used throughout our calcu-
lations. Finally, in Appendix B we give charts and tables summarizing the
calculations in the main body of the paper.

Relation to other works

Our results are more complete than the calculations of hermitian K-groups
in [4], [5], [6], and [7] in the sense that we consider arbitrary number fields.
Our motivic homotopy-theoretic techniques apply more readily to algebraic
K-theory than to higher Witt-theory and hermitian K-theory; we use this
to revisit some of the results in [22], [28], and [50] based on the Bloch-
Lichtenbaum spectral sequence [8] (which is unpublished and may forever
remain so).
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2. The slice spectral sequence and its convergence

In this section we discuss the slice filtration in SH developed in [17], [47],
and [66]. Over fields for which the filtration of the Witt ring by the powers of
the fundamental ideal is complete, exhaustive, and Hausdorff, we show con-
ditional convergence of the slice spectral sequence for the mod 2n reduction
of hermitian K-theory (see Theorem 2.66). This lays the foundation for our
calculations. For later reference we summarize results on the multiplicative
structure of the slices and the slice spectral sequence.

2.1. Convergence of the slice spectral sequence

With reference to (1.11), recall that a motivic spectrum E is slice complete
[54, Definition 3.8] if the homotopy limit

holimq→∞ fq(E)

is contractible. The algebraic K-theory spectrum KGL is slice complete over
fields [55, Lemma 3.11]. Recall the coeffective cover fq−1(E) — see [54, §3.1]
— is defined by the cofiber sequence

fq(E) → E → fq−1(E),

and the slice completion sc(E) — see [54, Definition 3.1] — is defined as the
homotopy limit

sc(E) = holimq→∞ fq(E).

The slice completion is related to the convergence of the slice spectral se-
quence (1.12).
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Lemma 2.1 ([55, Section 3]). For every motivic spectrum E we have the
following.

» A cofiber sequence

(2.2) sq(E) → fq(E) → fq−1(E) → Σ1,0sq(E).

» A commutative diagram

(2.3)

sq(E) fq(E)

Σ1,0fq+1(E) Σ1,0sq+1(E).

» A map of cofiber sequences

(2.4)
sq(E) fq(E) fq−1(E) Σ1,0sq(E)

sq(E) Σ1,0fq+1(E) Σ1,0fq(E) Σ1,0sq(E),

= =

which induces an isomorphism from the slice spectral sequence (1.12)
to the spectral sequence obtained from (2.2), up to reindexing.

Proof. Both (2.2) and (2.3) are obtained by filling in the diagram

fq+1(E) E fq(E)

fq(E) E fq−1(E)

sq(E) ∗ Σ1,0sq(E)

id

similarly to Verdier’s octahedral axiom (TR4) [40] (because of ∗ all squares
in this diagram commute). Moreover, (2.3) implies (2.4), and the last claim
follows since the spectral sequences have isomorphic E1-pages.

Lemma 2.5 ([55, §4]). The slice spectral sequence for E ∈ SH is condition-
ally convergent to

(2.6) E1
p,q,w(E) = πp,wsq(E) ⇒ πp,wsc(E).
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For a fixed w this is a half plane spectral sequence with entering dr-differ-
entials of degree (−1, r + 1).

Remark 2.7. If Er(E) = E∞(E) for some r ≥ 1, then (2.6) converges strongly
to πp,wsc(E) by conditional convergence and [9, Theorem 7.1]. This applies
to all the examples considered in this paper.

2.2. Convergence for higher Witt-theory

Following [52] we discuss the slice filtration for KW/2n over a field F of
characteristic different than 2. Recall that fqπp,w(E) denotes the image of
πp,wfq(E) in πp,w(E). The slice spectral sequence for E converges if for all
p, w, q ∈ Z we have ⋂

i≥0

fq+iπp,wfq(E) = 0.

In this case the exact sequence of [9, Lemma 5.6], [66, Lemma 7.2]

0 → fqπp,w(KW/2n)/fq+1πp,w(KW/2n) → E∞
p,q,w(KW/2n) →

→
⋂
i≥1

fq+iπp−1,wfq+1(KW/2n) →
⋂
i≥0

fq+iπp−1,wfq(KW/2n),

yields the short exact sequence

(2.8) 0 → fq+1πp,w(KW/2n) → fqπp,w(KW/2n) → E∞
p,q,w(KW/2n) → 0.

Lemma 2.9. For all integers p, w, q ∈ Z, assume πp,wfq(E) is a finite abelian
group and ⋂

i≥0

fq+iπp,wfq(E) = 0.

Then for n ≥ 2 we have ⋂
i≥0

fq+iπp,wfq(E/n) = 0.

Proof. Follows from the universal coefficient sequence since fq+iπp,w/n(E)
and nfq+iπp,w(E) are finite.

Lemma 2.10. If #F×/2 < ∞ then the slice spectral sequence for KW/2n

converges.
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Proof. By η-periodicity Σ1,1KW � KW [52, Example 2.3] we may assume
w = 0. When q ≤ 0 we have

πp,0fq(KW) = πp,0(KW) =

{
W (F ) p ≡ 0 mod 4

0 otherwise.

By the assumption πp,0sq(KW) and πp,0fq(KW) are finitely generated abe-
lian groups for all p, q ∈ Z. We conclude using Lemma 2.9.

Lemma 2.11. If vcd(F ) < ∞ then the slice spectral sequence for KW/2n

converges.

Proof. As in Lemma 2.10 we may assume w = 0 and prove the vanishing

(2.12)
⋂
i≥1

fq+iπp−1,0fq+1(KW/2n) = 0,

where fq+iπp−1,0fq+1(KW/2n) is defined as the image

im(πp−1,0fq+ifq+1(KW/2n) → πp−1,0fq+1(KW/2n)).

Owing to the natural isomorphism fmfn � fm for n < m we may identify the
latter with

im(πp−1,0fq+i(KW/2n) → πp−1,0fq+1(KW/2n)), i ≥ 1.

Since πp,0KW = 0 when p 	≡ 0 mod 4, we may assume p ≡ 0, 1 mod 4. We
claim there is an isomorphism

im(πp−1,0(fq+i(KW) → fq(KW/2n)))(2.13)
∼= im(πp−1,0(fq+i(KW/2n) → fq(KW/2n))).

To prove (2.13) we use the naturally induced commutative diagram of uni-
versal coefficient short exact sequences

(2.14)
0 πp−1,0fq+i(KW)/2n πp−1,0fq+i(KW/2n) 2nπp−2,0fq+i(KW) 0

0 πp−1,0fq(KW)/2n πp−1,0fq(KW/2n) 2nπp−2,0fq(KW) 0.

According to [52, Lemma 6.13] the map

(2.15) πl,0fq+i(KW) → πl,0fq(KW)
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is trivial for l ≡ 1, 2, 3 mod 4. Hence the rightmost vertical map in (2.14) is
trivial. By [52, Corollary 6.15] there are isomorphisms

2nπm,0fq(KW) ∼= πm,0fq(KW) ∼= πm,0fq(KW)/2n ∼= hq−i,q ⊕ hq−i−4,q ⊕ · · · ,

for m ≡ i mod 4, q ≥ 0, and i = 1, 2, 3. When q ≥ 1, [52, Corollary 6.16]
shows there is a naturally split short exact sequence

0 → hq−4,q−1 ⊕ hq−8,q−1 ⊕ · · · → π0,0fq(KW) → fqπ0,0(KW) = Iq → 0.

(2.16)

This identifies the outer terms of the short exact sequences in (2.14). The
naturally induced diagram

(2.17)
sq+i−1(KW/2n) Σ1,0fq+i(KW/2n)

sq+i−1(Σ
1,0KW) Σ1,0fq+i(Σ

1,0KW)

in SH(F ) yields the commutative diagram

(2.18)
πp,0sq+i−1(KW/2n) πp−1,0fq+i(KW/2n)

πp−1,0sq+i−1(KW) πp−2,0fq+i(KW).

In (2.18) the left vertical map is a split surjection by (1.15) and (4.1). More-
over, the lower horizontal map is surjective for p ≡ 0, 1, 3 mod 4 by (2.15).
It follows that

(2.19) πp,0sq+i−1(KW/2n) → πp−2,0fq+i(KW)

is surjective for p ≡ 0, 1, 3 mod 4. Since fq+i(KW/2n) → fq(KW/2n) factors
through fq+i(KW/2n) → fq+i−1(KW/2n) for all i ≥ 1, the image of the
upper horizontal map in (2.18) injects into the kernel of the middle map
in (2.14), i.e., there is an inclusion

im(πp,0sq+i−1(KW/2n) → πp−1,0fq+i(KW/2n))(2.20)
⊆ ker(πp−1,0fq+i(KW/2n) → πp−1,0fq(KW/2n)).
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From (2.19) and (2.20) we deduce a naturally induced surjection

ker(πp−1,0fq+i(KW/2n) → πp−1,0fq(KW/2n)) → 2nπp−2,0fq+i(KW),
(2.21)

where

2nπp−2,0fq+i(KW) ∼= πp−2,0fq+i(KW).

Combined with (2.14) this proves (2.13). Note that fq+i(KW) → fq(KW/2n)

factors as the composite of the canonical maps fq+i(KW) → fq(KW) and
fq(KW) → fq(KW/2n). Using (2.15) this readily implies (2.12) for p ≡
0 mod 4.

For p ≡ 1 mod 4 we show

(2.22)
⋂
i≥1

im(πp−1,0fq+i(KW) → πp−1,0fq(KW)/2n) = 0.

To begin we first note there is a short exact sequence

0 → fq+iπ0,0fq(KW)
⋂

2nπ0,0fq(KW) → fq+iπ0,0fq(KW) →
→ im(fq+iπ0,0fq(KW) → π0,0fq(KW)/2n) → 0.

For i � 0 we claim

(2.23) fq+iπ0,0fq(KW)
⋂

2nπ0,0fq(KW) → fq+iπ0,0fq(KW)

is the identity map. Hence the Milnor exact sequence implies the vanish-
ing in (2.22). Now the leftmost terms in (2.16) for fq+i(KW) map trivially
to (2.16) for fq(KW). Thus the image of π0,0fq+i(KW) in π0,0fq(KW) is con-
tained in the direct summand Iq. From [1, Lemma 2.1] we get Ii+1 = 2Ii,
where Ii is torsion free for i � 0 (here we use the assumption vcd(F ) <

∞, see also the proof of Theorem 2.28). Hence for i � 0 the image of
π0,0fq+i(KW) in π0,0fq(KW) is a multiple of 2n.

Theorem 2.24. For p ≡ 0 mod 4 and w ∈ Z there are isomorphisms

fqπp+w,w(KW/2n) ∼= im(Iq−w → W (F )/2n),(2.25)
fqπp+w+1,w(KW/2n) ∼= 2nIq−w.(2.26)

By convention Iq−w = W (F ) for q ≤ w.
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Proof. We may assume p = w = 0 by (4, 0)- and (1, 1)-periodicity of KW
[52, §6.3]. To show (2.25) we consider the commutative diagram of universal
coefficient short exact sequences

0 π0,0fq(KW)/2n π0,0fq(KW/2n) 2nπ−1,0fq(KW) 0

0 π0,0(KW)/2n π0,0(KW/2n) 2nπ−1,0(KW) = 0 0.

α
∼=

Recall that π0,0(KW) is the Witt ring W (F ). As in (2.19) there is a surjec-
tion

π1,0sq−1(KW/2n) → π−1,0fq(KW),

and as in (2.20) there is a natural inclusion

im(π1,0sq−1(KW/2n) → π0,0fq(KW/2n))

⊆ ker(π0,0fq(KW/2n) → π0,0(KW/2n)).

Similarly to (2.21) and (2.13), we obtain a naturally induced surjection

ker(π0,0fq(KW/2n) → π0,0(KW/2n)) → π−1,0fq(KW),

and an isomorphism

im(π0,0(fq(KW/2n) → KW/2n)) ∼= im(π0,0(fq(KW) → KW/2n)).

The latter group may be identified with im(Iq → W (F )/2n) by [52, Corollary
6.11].

To prove (2.26), recall from [52, Corollary 6.16] the split short exact
sequence

0 → hq−4,q−1 ⊕ hq−8,q−1 ⊕ · · · → π0,0fq(KW) → fqπ0,0(KW) = Iq → 0.

(2.27)

By [52, Lemma 6.4] we have π0,0f0(KW) ∼= f0π0,0(KW) ∼= W (F ). The mod
2n universal coefficient exact sequence shows there is a commutative diagram
with surjective vertical maps

π1,0fq(KW/2n) π1,0(KW/2n)

2nπ0,0fq(KW) 2nπ0,0(KW).

∼=
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The right vertical map is an isomorphism since π1,0(KW) = 0. Thus the
image of π1,0fq(KW/2n) in π1,0(KW/2n) coincides with 2n fqπ0,0(KW), and
our claim follows from (2.27).

Theorem 2.28. Assuming vcd(F ) < ∞ the filtrations of W (F )/2n by
Iq(F )/2n and of 2nW (F ) by 2nIq(F ) are exhaustive, Hausdorff, and com-
plete. Hence the slice spectral sequence for KW/2n is strongly convergent.

Proof. We claim our assumption implies Iq(F (
√
−1)) = 0 for q ≥ vcd(F )+1.

By the Milnor conjecture on quadratic forms over fields [43], [52], we find
Iq(F (

√
−1)) = Iq+i(F (

√
−1)) for i ≥ 1 since the étale cohomology group

Hq
ét(F (

√
−1);μ2) = 0. It follows that Iq(F (

√
−1)) = 0 by the Arason-Pfister

Haupsatz [2]. Thus by [15, Corollary 35.27] we deduce Iq(F ) = 2Iq−1(F ) is
torsion free for q � 0. Hence both filtrations in question are finite, and
therefore complete and Hausdorff. The filtrations are exhaustive since I0 =

W (F ). Our last claim follows in combination with Theorem 2.24.

Remark 2.29. The filtration of 2nW (F ) by 2nIq(F ) is always Hausdorff. In
the filtration of W (F )/2n by Iq(F )/2n there is a possibly nonzero lim1-term
that obstructs the Hausdorff condition.

The proofs of Lemma 2.11 and Theorem 2.24 are based on results shown
over fields in [52, §6]. In the following we extend these results to rings of
S-integers in number fields, assuming {2,∞} ⊂ S.

Theorem 2.30. Over OF,S the 0th slice spectral sequence for KW collapses
at its E2-page, and there are isomorphisms

E∞
p,q,0(KW) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
hq,q p ≡ 0 mod 4, q 	= 2

h2,2/τ p ≡ 0 mod 4, q = 2

h2,1 p ≡ 3 mod 4, q = 1

0 otherwise.

Proof. The proof is similar to the calculations for fields in [52, Theorem 6.3]
with the exceptions that E∞

4p,2,0(KW)(OF,S) ∼= h2,2/τ by Lemma A.11 and
E∞

4p+3,1,0(KW)(OF,S) ∼= h2,1 ∼= Pic(OF,S)/2. The d1-differentials take the
same form as in [52, Theorem 5.3] by base change, see the proof of Theo-
rem 4.3. Thus E1

p,q,0(KW)(F ) and E1
p,q,0(KW)(OF,S) agree in all degrees

with the exception of

E1
2p+1,1,0(KW)(OF,S) ∼= h2,1 ⊕ h1,1 ⊕ h0,1.
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The summand h2,1 of E1
4p+1,1,0(KW)(OF,S) supports a d1-differential given

by τ -multiplication, which is injective by Lemma A.11. The d1-differential on
the summand h2,1 of E1

4p+2,1,0(KW)(OF,S) is trivial. This yields the claimed
E2 = E∞-page along the lines of [52, Theorem 6.3].

We refer to [14] for the construction of the “defect of purity” transforma-
tion

Σ−2,−1i∗(−) → i!(−).

Following Quillen’s purity theorem for algebraic K-theory we will make use
of the following special case of absolute purity for hermitian K-theory.

Theorem 2.31. Let i : x → Spec(OF,S) be the inclusion of a closed point
x 	∈ S. Then in SH(k(x)) there exist absolute purity isomorphisms

(2.32) Σ−2,−1i∗(KQ)

−→ i!(KQ)

and

(2.33) Σ−2,−1i∗(KW)

−→ i!(KW).

Proof. This is shown for KQ in [14]. The case of higher Witt-theory follows
since KW = KQ[ 1η ] and i! commutes with sequential colimits [35, Proposi-
tion 5.4.7.7].

Theorem 2.34. With the notation in Theorem 2.31 there is an absolute
purity isomorphism

(2.35) Σ−2,−1i∗s∗(KW)

−→ i!s∗(KW).

Proof. Combine (1.15) with absolute purity for motivic cohomology in [60,
Corollary 3.2].

Lemma 2.36. There are isomorphisms

(2.37) πp,q(KW)(OF,S) ∼=

⎧⎪⎨⎪⎩
W (OF,S) p− q ≡ 0 mod 4

Pic(OF,S)/2 p− q ≡ 3 mod 4

0 otherwise.

Proof. Combine the exact sequence and vanishing in [3, Corollary 92] with
the Knebusch-Milnor exact sequence

(2.38) 0 → W (OF,S) → W (F ) →
⊕
x �∈S

W (k(x)) → Pic(OF,S)/2 → 0

from [38, p. 93], [57, p. 227].
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Lemma 2.39. Over OF,S the slice filtration for KW induces a commutative
diagram

π0,0f1(KW) π0,0f0(KW)

I(OF,S) W (OF,S).

Here I(OF,S) is the kernel of the rank map rk2 : W (OF,S) → Z/2. By multi-
plicativity of the slice filtration this yields an inclusion

Iq(OF,S) ⊆ fqπ0,0(KW)(OF,S).

Proof. This is shown over F in [52, Lemma 6.4]. Our first claim follows since
W (OF,S) → W (F ) is injective — see [38, Corollary IV.3.3], [57, Theorem
6.1.6] — and π0,0s0(KW)(OF,S) → π0,0s0(KW)(F ) ∼= h0,0 is an isomor-
phism. The second claim follows as in [52, Corollary 6.5].

Lemma 2.40. The composite map

π−1,0f1(KW) → π−1,0s1(KW) ∼= h2,1 ⊕ h0,1
pr→ h2,1

is an isomorphism.

Proof. In the proof we make use of Lemma 2.36. The naturally induced map

π3,0f1(KW) → π3,0f0(KW),

where π3,0f0(KW) ∼= h2,1, follows from the long exact sequence

π4,0f0(KW)→π4,0s0(KW)→π3,0f1(KW)→π3,0f0(KW)→π3,0s0(KW)=0,

and the natural surjection W (OF,S) ∼= π4,0f0(KW) → π4,0s0(KW) ∼= h0,0

by Lemma 2.39.
For a closed point i : x → SpecOF,S there is a commutative diagram

π−1,0i∗i∗Σ−2,−1(KW) π−1,0i∗i∗Σ−2,−1(KW) π−1,0i!i
!(KW)

π−1,0f0i∗i∗Σ−2,−1(KW) π−1,0i∗i∗Σ−2,−1f1(KW) π−1,0i!i
!f1(KW)

π−1,0s0i∗i∗Σ−2,−1(KW) π−1,0i∗i∗Σ−2,−1s1(KW) π−1,0i!i
!s1(KW).

= ∼=

f1

g1

f2

g2

f3

g3

h1
∼=
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Here h1 is obtained using [24, Lemma 4.2.23]. Absolute purity as in Theo-
rem 2.31 and Theorem 2.34 imply the indicated isomorphisms. The maps g1
and g2 are isomorphisms since π−1,0f0(−) = π−1,0(−). Since πq,0i!i!s0(KW)=

0 when q = −1,−2 we get a bijection π−1,0i!i
!f1(KW) → π−1,0i!i

!f0(KW).
It follows that g3 is an isomorphism by contemplating the diagram with exact
rows

0 π0,0f0(KW) π0,0j∗j
∗f0(KW) ⊕x �∈Sπ−1,0i!i

!f0(KW) π−1,0KW 0

0 π0,0KW π0,0j∗j
∗(KW) ⊕x �∈Sπ−1,0i!i

!(KW) π−1,0KW 0.

∼= ∼= ∼=

To show that h1 is an isomorphism we reduce to showing h′1 : π0,0i
∗s0(KW)→

π0,0s0i
∗(KW) is an isomorphism, and conclude using the naturally induced

commutative diagram

π0,0s0i
∗(KW) π0,0i

∗s0(KW) π0,0s0(KW)

π0,0f0i
∗(KW) π0,0i

∗f0(KW) π0,0f0(KW)

π0,0i
∗(KW) π0,0KW.

h′
1

∼=

∼= ∼=

Here 1 ∈ π0,0KW maps to the units in π0,0s0i
∗(KW) and π0,0i

∗s0(KW).
The map f1 is surjective since it identifies with the rank map rk2 : W (OF,S)→
Z/2 as in the proof of [52, Lemma 6.4]. It follows that f2 and f3 are surjec-
tive.

Next we consider the commutative diagram with exact rows and col-
umns

⊕x �∈Sπ−1,0i!i
!f1(KW) ⊕x �∈Sπ−1,0i!i

!s1(KW) ⊕x �∈Sπ−2,0i!i
!f2(KW)

π−1,0f1(KW) π−1,0s1(KW) ∼= h2,1 ⊕ h0,1 π−2,0f2(KW)

π−1,0j∗j
∗f1(KW) = 0 π−1,0j∗j

∗s1(KW) ∼= h0,1 π−2,0j∗j
∗f2(KW) ∼= h0,1.

f3

∼=
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Since f3 is surjective we conclude π−2,0i!i
!f2(KW) = 0. Chasing the latter

diagram shows

π−2,0f2(KW) ∼= h0,1

and the composite map

π−1,0f1(KW) → π−1,0s1(KW) ∼= h2,1 ⊕ h0,1 → h2,1

is surjective.

Lemma 2.41. Over OF,S we have

⋂
i≥0

fq+iπp,wfq(KW) = 0.

Hence the slice spectral sequence for KW is convergent.

Proof. By η-periodicity of KW [52, Example 2.3] we are reduced to showing

(2.42)
⋂
i≥0

fq+iπp,0fq(KW) = 0

for p = 0, 1, 2, 3.
When p = 0, 1, Theorem 2.30 shows E∞

p+1,q,0(KW) = 0. As in [52,
Corollary 6.16] we deduce that fq+1πp,0fq(KW) → πp,0fq−1(KW) is injective.
Hence, we obtain the injection

(2.43)
⋂
i

fq+iπp,0fq+1(KW) →
⋂
i

fq+iπp,0fq(KW).

The target of (2.43) is trivial by induction. When p = 0 recall that the
natural map W (OF,S) → W (F ) is injective [38, Corollary IV.3.3] and that it
factors via the slice filtration, i.e., there is a canonical map fq(KWOF,S ) →
j∗fq(KWF ) for the generic point j : SpecF → SpecOF,S . The vanishing of
the group

π1,0(KW) = 0

holds according to Lemma 2.36.
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When p = 2, 3 we consider the unrolled exact couple for KW

...
...

...

π4,0s1(KW) π4,0s0(KW) π4,0s−1(KW)

. . . π3,0f2(KW) π3,0f1(KW) π3,0f0(KW)

π3,0s2(KW) π3,0s1(KW) π3,0s0(KW)

. . . π2,0f3(KW) π2,0f2(KW) π2,0f0(KW)

...
...

...

0 0 0

0

∼=

0

0

0

Inspection of the differentials shows the indicated trivial maps, see [52, The-
orem 5.3]. By Lemma 2.40 there is an isomorphism

coker(π3,0f1(KW) → π3,0s1(KW)) ∼= h0,1.

This implies the vanishing π3,0f2(KW) = 0. Since E∞
3,q,0(KW) = 0 for q > 1

according to Theorem 2.30 and π3,0f1(KW) → ker(d13,1,0) is surjective, a
diagram chase implies the map

fq+1π2,0fq(KW) → π2,0fq−1(KW)

is injective for all q. This implies (2.42) when p = 2.
When p = 3 and q > 2 we show in Lemma 2.44 that there is a naturally

induced surjection

π4,0fq−1(KW) → π4,0sq−1(KW) → E∞
4,q−1,0(KW).

This implies the map fq+1π3,0fq(KW) → π3,0fq−1(KW) is injective (in fact,
it is trivial).

To proceed we recall some facts about the Clifford invariant for rings of
S-integers from [18]. Any quadratic space (P, φ) over OF,S has an associated
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Clifford algebra C(P, φ). This is a graded Azumaya algebra; in particular,
it defines an element of the Brauer-Wall group BW (OF,S). The Clifford
invariant is the induced group homomorphism Cl: W (OF,S) → BW (OF,S),
see [18, p. 206]. Over the field F , the restriction of the Clifford invariant
to the square of the fundamental ideal I2(F ) factors through the 2-torsion
subgroup 2 Br(F ) of the Brauer group, see [18, p. 207, Theorem 13.14], [38,
Lemma 4.4]. From these considerations we obtain the commutative diagram

Cl−1(2Br(OF,S)) ∩ I2(F ) W (OF,S) BW (OF,S) 2 Br(OF,S)

I2(F ) W (F ) BW (F ) 2 Br(F ).

Cl

Cl

Lemma 2.44. There is a naturally induced isomorphism

fqπ0,0(KW)/fq+1π0,0(KW) ∼= E∞
0,q,0(KW).

Proof. This is shown over F in [52, Lemma 6.9]. By Lemma 2.39 there are
maps

Iq(OF,S)/I
q+1(OF,S) → fqπ0,0(KW)/fq+1π0,0(KW)(OF,S),

and a commutative diagram

(2.45)
Iq(OF,S)/I

q+1(OF,S) fqπ0,0(KW)/fq+1π0,0(KW)(OF,S) E∞
0,q,0(KW)(OF,S)

Iq(F )/Iq+1(F ) fqπ0,0(KW)/fq+1π0,0(KW)(F ) hq,q(F ).
∼= ∼=

The injections in (2.45) follow from [9, Lemma 5.6] and the isomorphisms
follow from [52, Lemma 6.9]. In (2.45) we want to show there is a naturally
induced surjection

fqπ0,0(KW)/fq+1π0,0(KW) → E∞
0,q,0(KW).

When q > 2, Theorem 2.30 and Theorem A.9 imply E∞
0,q,0(KW)(OF,S) ∼=

hq,q(F ). Moreover, Iq(F ) is generated by forms defined over OF,S . Indeed,
by [38, Corollary IV.4.5] the image of W (OF,S) ∩ I2(F ) by the signature
map is 4Zr1 . It follows that σ(I(OF,S)) ⊃ 4Zr1 and I3(OF,S) = I3(F ) ∼=
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8Zr1 . Hence the leftmost vertical map in (2.45) is surjective. This implies
fqπ0,0(KW)/fq+1π0,0(KW) → hq,q is surjective.

When q = 1 we note the map π4,0s1(KW) → π3,0f2(KW) is trivial. It
follows that π4,0f1(KW) → π4,0s1(KW) ∼= E∞

0,1,0(KW) is surjective.
In the more complicated case q = 2 we first show there is an isomorphism

(2.46) Cl−1(2 Br(OF,S)) ∩ I2(F ) ∼= f2π0,0(KW),

and hence an injection

Cl−1(2 Br(OF,S)) ∩ I2(F ) ∼= f2π0,0(KW) ↪→ π0,0(KW) ∼= W (OF,S).

For this we consider the commutative diagram with exact rows and columns
obtained by localization and the slice filtration

(2.47)
h0,1(OF,S) = π1,0s1(KW) π0,0f2(KW) π0,0f1(KW)

h0,1(F ) = π1,0j∗j∗s1(KW) π0,0j∗j∗f2(KW) π0,0j∗j∗f1(KW)

⊕x �∈Sπ1,0i!i!s1(KW) ⊕x �∈Sπ0,0i!i!f2(KW) ⊕x �∈Sπ0,0i!i!f1(KW)

π0,0s1(KW) π−1,0f2(KW).

0

∼=

0

0

An inspection of the slice differentials following [52, Theorem 5.3] yields the
indicated injective and trivial maps. Say α ∈ Cl−1(2Br(OF,S)) ∩ I2(F ) ⊆
π0,0j∗j∗f2(KW) ∼= I2(F ) = Cl−1(2 Br(F )) ∩ I2(F ) maps to

β ∈ ⊕x �∈Sπ0,0i!i
!f2(KW).

(The isomorphism is [52, Corollary 6.16], and the equality holds because
the Clifford-invariant surjects onto 2 Br(F ) by [18, Theorem 14.6]). Then β
maps trivially to ⊕x �∈Sπ0,0i!i!f1(KW) because Cl−1(2Br(OF,S)) ∩ I2(F ) ⊆
W (OF,S) ∩ I(F ) = I(OF,S) and π0,0f1(KW) surjects onto I(OF,S). We also
note that β maps trivially to π−1,0f2(KW). Hence β is the image of some
element γ ∈ ⊕x �∈Sπ1,0i!i!s1(KW). Say γ maps to δ under the injective map
to π0,0s1(KW). By commutativity of (2.47), δ maps to zero in π−1,0f2(KW).
Hence β = 0, which implies α is in the image of the map from π0,0f2(KW).
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To conclude (2.46), it remains to combine the inclusion I(OF,S) ⊆ I(F ) with
the injection of π0,0f2(KW) into π0,0j∗j∗f2(KW) in (2.47).

The commutative diagram of short exact sequences (see Lemma A.11
and its proof)

0 h2,1(OF,S) h2,2(OF,S) 2H
2
ét(OF,S ;Gm) 0

0 0 h2,2(F ) 2H
2
ét(F ;Gm) 0

τ

τ

yields a naturally induced injection E∞
0,2,0(KW) ∼= h2,2(OF,S)/τ → h2,2(F ).

Here we use the injection of Brauer groups H2
ét(OF,S ;Gm) → H2

ét(F ;Gm)
from [36, p. 107]. Hence we may identify

f2π0,0KW → f2π0,0KW/f3π0,0KW → E∞
0,2,0(KW)

with the upper horizontal map in the commutative diagram

f2π0,0KW ∼= Cl−1(2 Br(OF,S)) ∩ I2(F ) 2H
2
ét(OF,S ;Gm) ∼= h2,2(OF,S)/τ

f2π0,0j∗j
∗(KW) ∼= Cl−1(2 Br(F )) ∩ I2(F ) 2H

2
ét(F ;Gm) ∼= h2,2(F ).

Cl

Cl

By [18, Theorem 14.6] the horizontal maps are surjective, and we conclude
the naturally induced map

f2π0,0KW/f3π0,0KW → E∞
0,2,0(KW)

is surjective.

From the proof of Lemma 2.44 we obtain the following form of Milnor’s
conjecture for quadratic forms [37] over the Dedekind domain OF,S .

Theorem 2.48. Set Iq(OF,S) = fqπ0,0(KW)(OF,S) for all integers q. Then
Iq(OF,S) ∼= W (OF,S) for q ≤ 0, I1(OF,S) ∼= ker(rk2),

I2(OF,S) ∼= Cl−1(2Br(OF,S)) ∩ I2(F ),

and Iq(OF,S) = Iq1(OF,S) for q > 2. For τ ∈ h0,1 the class of −1 and every
q ≥ 0 there is an isomorphism

(2.49) Iq(OF,S)/Iq+1(OF,S) ∼= hq,q(OF,S)/τ.
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Remark 2.50. Note that hq,q/τ = hq,q for q 	= 2. Via the Clifford invariant the
proof of Lemma 2.44 identifies I2(OF,S) with the kernel of the Arf invariant
[18, p. 206].

By now-familiar arguments this allows us to conclude the following gen-
eralization of Theorem 2.24.

Theorem 2.51. Over OF,S there are isomorphisms for n ≥ 1, p ≡ 0 mod 4,
and w ∈ Z

fqπp+w,w(KW/2n) ∼= h2,1(OF,S) • im(Iq−w(OF,S) → W (OF,S)/2
n), q ≤ 1

fqπp+w,w(KW/2n) ∼= im(Iq−w(OF,S) → W (OF,S)/2
n), q > 1

fqπp+w+1,w(KW/2n) ∼= 2nIq−w(OF,S)

fqπp+w+2,w(KW/2n) = 0

f0πp+w+3,w(KW/2n) ∼= f1πp+w+3,w(KW/2n) ∼= h2,1(OF,S)

fqπp+w+3,w(KW/2n) = 0, q > 1.

Here we write A •B for an abelian group extension of B by A, i.e., there
is an exact sequence

0 → A → A •B → B → 0.

Theorem 2.52. The filtrations of W (OF,S)/2n by Iq(OF,S)/2n and of
2nW (OF,S) by 2nIq(OF,S) are exhaustive, Hausdorff, and complete. Hence
the slice spectral sequence for KW/2n over OF,S is strongly convergent.

2.3. Convergence for hermitian K-theory

In this section we combine the convergence results for KGL and KW to
conclude conditional convergence of the slice spectral sequences for KQ.
Recall that KW is obtained by inverting the Hopf map η on KQ while
KGL and KQ are related via the Wood cofiber sequence [52, Theorem 3.4]

(2.53) Σ1,1KQ
η−→ KQ → KGL.

Recall from [52, Lemma 2.1] the canonical isomorphism in SH

(2.54) fq+kΣ
0,k(E) � Σ0,kfq(E).

Definition 2.55. For i ≥ 0 define sq+i
q (E) by the cofiber sequence

fq+i(E) → fq(E) → sq+i
q (E).
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Lemma 2.56. For every motivic spectrum E there are cofiber sequences

(2.57) sq+i
q+1(E) → sq+i

q (E) → sq(E).

Proof. This follows from Definition 2.55 and the octahedral axiom [20, Def-
inition 7.1.4].

Lemma 2.58. For integers p, w, q, i ∈ Z, l ≥ 0, and k � 0 we have

πp+k,ws
q+i
q (KGL) = 0,(2.59)

πp−l,wfq+k(KGL) = 0.(2.60)

Proof. We note that πn+k,wsq(KGL) = H2q−n−k,q−w−k = 0 for k � 0.
Induction on i using (2.57) proves (2.59) for all i. Moreover, (2.60) follows
because the slice spectral sequence for fq+k(KGL) is strongly convergent
(see Theorem 3.5).

Proposition 2.61. The slice spectral sequences for KQ and KQ/2n are
convergent, i.e.,⋂

i≥0

fq+iπ∗,∗fq(KQ) =
⋂
i≥0

fq+iπ∗,∗fq(KQ/2n) = 0.

Proof. By applying πp,w to the diagram of cofiber sequences

...
... Σ−2,−1sq+i+1

q+1 (KGL)

. . . fq+i(KQ) Σ−1,−1fq+i+1(KQ) Σ−1,−1fq+i+1(KGL) . . .

. . . fq(KQ) Σ−1,−1fq+1(KQ) Σ−1,−1fq+1(KGL) . . .

. . . sq+i
q (KQ) Σ−1,−1sq+i+1

q+1 (KQ) Σ−1,−1sq+i+1
q+1 (KGL) . . .

...
...

...
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we obtain a double complex A∗,∗ with A0,0 = πp,wfq(KQ) and exact rows
and columns. Lemma 2.62 applies to A∗,∗ since

A2+3k,2+3k = πp+2+k,w+1s
q+i+1
q+1 (KGL) = 0

for k � 0 according to Lemma 2.58. Thus for i � 0, so that

πp+2,w+1fq+i(KGL) = 0,

the composition

fq+iπp,wfq(KQ) → πp,wfq(KQ) → πp+1,w+1fq+1(KQ)

is injective. More generally,

fq+l+iπp+l,w+lfq(KQ) → πp+l,w+lfq+l(KQ) → πp+l+1,w+l+1fq+l+1(KQ)

is injective for l ≥ 0 because

πp+l+2,w+l+1fq+l+i(KGL) = 0

for i � 0, see Lemma 2.58.
Since

⋂
i≥0 fq+iπ∗,∗fq(KW) = 0, any x ∈

⋂
i≥0 fq+iπp,wfq(KQ) maps triv-

ially under the composition

πp,wfq(KQ)→πp+1,w+1fq+1(KQ)→πp+2,w+2fq+2(KQ)→· · ·→πp,wfq(KW).

But since fq+iπp,wfq(KQ) maps injectively under this composition for i � 0,
this implies x = 0.

A verbatim argument applies to KQ/2n.

Lemma 2.62. Suppose A∗,∗ is a double complex with exact rows and col-
umns such that Ak,k = 0 for some k > 0, and with differentials dp,qh : Ap,q →
Ap+1,q, dp,qv : Ap,q → Ap,q−1. Then for any x ∈ A0,1 in the kernel of the
composite map A0,1 → A0,0 → A1,0, there exists an element y ∈ A−1,1 such
that x and y have the same image in A0,0.

Proof. We set x1 = d0,1h (x) and inductively xk+1 = dk,k+1
h (x′k). Here x′k ∈

Ak,k+1 is a lift of xk, i.e., dk,k+1
v (x′k) = xk. Note that xk ∈ Ak,k, x′k ∈ Ak,k+1,

dk,kv (xk) = 0, and xn = 0 for some n � 0. Next we construct elements
yk ∈ Ak,k+1 such that dk,k+1

v (yk) = dk,k+1
v (x′k) = xk and dk,k+1

h (yk) = 0.
First we set yn−1 = x′n−1 for n as above. Since dk+1,k+2

h (yk+1) = 0, there
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exists an x′′k+1 such that dk,k+2
h (x′′k+1) = yk+1. To conclude we set yk =

x′k − dk,k+2
v (x′′k+1) and y = x′′−1.

Proposition 2.63. Let (E,E′) be shorthand for (KQ,KW) or (KQ/2n,
KW/2n). Then we have

(2.64) lim
q

πp,wfq(E) ∼= lim
q

πp,wfq(E
′), lim

q

1πp,wfq(E) ∼= lim
q

1πp,wfq(E
′).

It follows that E → sc(E) is a π∗,∗-isomorphism if and only if E′ → sc(E′) is
a π∗,∗-isomorphism.

Proof. The Wood cofiber sequence (2.53) induces the commutative diagram

(2.65)
...

...
...

...
...

...

πp,wfq+l(KQ) πp+1,w+1fq+l+1(KQ) . . . πp+k,w+kfq+k+l(KQ) . . . πp,wfq+l(KW)

...
...

...
...

...
...

πp,wfq(KQ) πp+1,w+1fq+1(KQ) . . . πp+k,w+kfq+k(KQ) . . . πp,wfq(KW),

where each horizontal map is part of a long exact sequence

· · · → πp+k+2,w+k+1fq+k+1(KGL) → πp+k,w+kfq+k(KQ) →
→ πp+k+1,w+k+1fq+k+1(KQ) → πp+k+1,w+k+1fq+k+1(KGL) → · · · .

By Bott periodicity for KGL [65, Theorem 6.8] and (2.54) there are isomor-
phisms

πp+k+1,w+k+1fq+k+1(KGL) = πp,wΣ
−(k+1),−(k+1)fq+k+1(KGL)

∼= πp,wfq(Σ
−(k+1),−(k+1)KGL)

∼= πp,wfq(Σ
k+1,0KGL)

∼= πp−k−1,wfq(KGL).

According to Lemma 2.58 we have πp−l,wfq(KGL) = 0 for all l ≥ 0 and
q � 0. Thus the horizontal maps in (2.65) are isomorphisms, and the in-
verse systems {πp,wfq(KQ)}q and {πp,wfq(KW)}q are levelwise isomorphic
for q � 0. This proves the isomorphisms in (2.64).
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The final claim follows from the Milnor exact sequence

0 → lim
q

1πp+1,wfq(E) → πp,w holimq fq(E) → lim
q

πp,wfq(E) → 0.

A verbatim argument applies to (KQ/2n,KW/2n).

We are ready to state our main convergence result for fields.

Theorem 2.66. Suppose the filtrations {im(Iq(F ) → W (F )/2n)}q of
W (F )/2n and {2nIq(F )}q of 2nW (F ) are exhaustive, Hausdorff, and com-
plete (e.g., if vcd(F ) < ∞ or F×/2 is finite). Then the slice spectral sequence
for KQ/2n, n ≥ 1, is conditionally convergent with abutment π∗,∗(KQ/2n).

Proof. Follows from Lemma 2.5, Theorem 2.24, Theorem 2.28, and Proposi-
tion 2.63.

Similarly we obtain a generalization of Theorem 2.66 to rings of S-
integers based on Theorem 2.51 and Theorem 2.52.

Theorem 2.67. Over OF,S the slice spectral sequence for KQ/2n, n ≥ 1,
is conditionally convergent with abutment π∗,∗(KQ/2n).

2.4. Multiplicative structure and pairings of slice spectral
sequences

Let us begin by constructing a pairing of slice spectral sequences based on
the motivic version

(2.68) 1/4 ∧ 1/2 → 1/2

of Oka’s module action of the mod 4 by the mod 2 Moore spectrum [42, §6].
If E is a motivic ring spectrum, i.e., a monoid in SH, then (2.68) induces the
more general pairing

(2.69) E/4 ∧ E/2 → E/2.

The slice filtration of E gives rise to an Eilenberg-MacLane system in the
sense of [11] and hence to an exact couple. By [54, Proposition 2.24], (2.69)
induces a pairing of slice spectral sequences

(2.70) Er
p,q,w(E/4)⊗ Er

p′,q′,w′(E/2) → Er
p+p′,q+q′,w+w′(E/2),

satisfying the Leibniz rule dr(a · b) = dr(a) · b + (−1)pa · dr(b) for a ∈
Er

p,q,w(E/4), b ∈ Er
p′,q′,w′(E/2). Here E/4 is a motivic ring spectrum, and the
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groups Er
p,q(E/4) form the Er-page of an algebra spectral sequence whose

differentials satisfy the Leibniz rule. On the level of slices there is a multi-
plication map

sm(1) ∧ sq(E) → sq+m(E).

The positive slices of the motivic sphere spectrum contain MZ/2 as a direct
summand up to Gm-suspensions [54, Corollary 2.13]. More precisely, we have

sm(1) � Σm,mMZ/2 ∨ · · · .

Any differential entering or exiting the direct summand hm,m ↪→ π0,0sm(1) is
trivial [54, Theorem 4.8]. By the Leibniz rule with respect to the differentials
[54, Proposition 2.24], there is an induced pairing

(2.71) hm,m ⊗ Er
p,q,w(E) → Er

p,q+m,w(E).

Under this pairing we have dr(x·y) = x·dr(y) for all x ∈ hm,m, y ∈ Er
p,q,w(E).

Lemma 2.72. Over a field F of characteristic char(F ) 	= 2, the canonical
map π0,0f1(1) → π0,0s1(1) sends 〈−1〉 − 〈1〉 ∈ GW (F ) to ρ ∈ h1,1.

Proof. In the proof we will make use of Milnor-Witt K-theory KMW
∗ (F ) of

F (see [39]). Consider the commutative diagram

Σ1,1f0(1) f1(Σ
1,11) f1(1)

Σ1,1s0(1) s1(Σ
1,11) s1(1)

Σ1,1MZ Σ1,1MZ/2.


 f1(η)


 s1(η)

pr∞2

See [52, Lemma 2.1] for the upper leftmost square and [54, Lemma 2.32] for
the bottom square. Applying π0,0 we get the commutative diagram

π−1,−1(1) f1π1,1(1)

H1,1(F ;Z) h1,1.

The left vertical map identifies with the quotient map KMW
1 (F )→KMW

1 (F )/η
under the isomorphism π−1,−1(1) ∼= KMW

1 (F ). Here, η ∈ KMW
−1 (F ) corre-

sponds to the Hopf map in π1,1(1) and fnπ0,0(1) ∼= In over perfect fields [31,
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Theorem 1]. (For a general field use base change and [52, Lemma 2.5]). That
is, the isomorphism KMW

0 (F ) → GW (F ) given by 1 + η[u] �→ 〈u〉 induces a
commutative diagram with surjective maps

(2.73)
KMW

1 (F ) KMW
1 (F )/η

I I/I2 KMW
1 (F )/(η, 2) ∼= h1,1.

·η

A diagram chase in (2.73) shows 〈−1〉 − 〈1〉 maps to ρ.

To state our next result we set Λ := {x 	∈ S}−1Z — the localization of Z
inverting every rational prime not in S ∩ Z — and let EΛ (resp. AΛ) be the
corresponding localization of the motivic spectrum E (resp. abelian group
A), see also [54, Definition 2.1, Remark 2.2].

Lemma 2.74. Over OF,S the canonical map π0,0f1(KQΛ) → π0,0s1(KQΛ)

sends 〈−1〉 − 〈1〉 ∈ GW (OF,S)Λ to ρ ∈ h1,1.

Proof. Since π0,0(1)(F ) → π0,0(KQ)(F ) is an isomorphism the correspond-
ing statement holds over F by Lemma 2.72. Comparing OF,S with F we have
the commutative diagram

π0,0f1(KQΛ)(OF,S) π0,0f1(KQΛ)(F )

π0,0(KQΛ)(OF,S) π0,0(KQΛ)(F )

GW (OF,S)Λ GW (F )Λ.

∼= ∼=

The maps GW (OF,S) → GW (F ) and h1,1(OF,S) → h1,1(F ) are injective
(see [38, Corollary IV.3.3] and Appendix A). Hence 〈−1〉− 〈1〉 ∈ GW (OF,S)
maps to ρ ∈ h1,1, since this holds over F .

Remark 2.75. If absolute purity holds for the sphere 1 — see Theorem 2.31
for KQ — then localization implies Lemma 2.72 holds over OF,S . By com-
paring the slice spectral sequences for 1 and KQ one obtains a version
of Lemma 2.72 for η-completions.
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3. Algebraic K-theory KGL

Throughout we work over a base field F of char(F ) 	= 2 or the ring of S-
integers in a number field. From [52, §5] we have the slice calculation

(3.1) sq(KGL/2n) � Σ2q,qMZ/2n.

Since S contains all dyadic primes, the same calculation holds over OF,S by
[54, Theorem 2.19]. Recall the slice spectral sequence for KGL/2n converges
conditionally over fields F by [55, Lemma 3.11] and over rings of S-integers
in number fields by the Wood cofiber sequence (2.53) and Theorem 2.67. We
give an alternate proof in Theorem 3.5.

By the proof of [52, Lemma 5.1] the slice d1-differential for KGL/2 is
the first Milnor operation

(3.2) Q1 = Sq3 + Sq2Sq1.

In weight w = 0 we obtain E1
p,q,0(KGL/2) = h2q−p,q, which vanishes if

2q < p or q > p with the possible exception of the mod 2 Picard group
h2,1 ∼= Pic(OF,S)/2.

Over a general base scheme there is a canonical orientation map

Φ: MGL → KGL

of motivic ring spectra. By passing to effective covers we obtain the factor-
ization

MGL
Ψ−→ f0(KGL) → KGL.

In the Lazard ring L = Z[x1, x2, . . .] the generator xn can be viewed as a
map Σ2n,n1 → MGL defined over the integers. By complex realization we
have Φ(xn) = 0 and hence Ψ(xn) = 0 for all n ≥ 2. Hence Ψ defines a map
Θ: MGL/(x2, x3, . . .)MGL → f0(KGL) of quotients, following [61, §5].

Proposition 3.3. Let S be a Dedekind domain containing 1
2 . Then Θ/2

induces an equivalence

MGL/(2, x2, x3, . . .)

−→ f0(KGL/2).

Proof. This follows from [61, Proposition 5.4] in combination with [60, The-
orem 11.3].
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Corollary 3.4. Let S be a Dedekind domain containing 1
2 . Then

fq(KGL/2) = Σ2q,qf0(KGL/2)

is q-connective.

Proof. Follows from Proposition 3.3 and Bott periodicity for KGL [65, The-
orem 6.8].

Theorem 3.5. Let S be a Dedekind domain containing 1
2 and let n ≥ 1.

Over S the motivic spectrum KGL/2n is slice complete and its slice spectral
sequence is conditionally convergent with abutment π∗,∗(KGL/2n).

Proof. We may assume n = 1 and conclude using Corollary 3.4 and [58,
Proposition 3.7]. More precisely, Milnor’s lim1 exact sequence

0 → lim1

q→∞
[Σ1,0E, fq(KGL/2)] → [E, holim

q→∞
fq(KGL/2)]

→ lim
q→∞

[E, fq(KGL/2)] → 0

for E passing through the standard generators of SH(S) implies, using [58,
Proposition 3.7], that the homotopy limit holimq→∞ fq(KGL/2) is contracti-
ble. Hence KGL/2 is slice complete. The convergence statement then follows
from Lemma 2.5.

Remark 3.6. As a related statement, [58, Corollary 3.8] implies that the ho-
motopy t-structure on the stable motivic homotopy category of any noethe-
rian base scheme of finite Krull dimension is left complete, i.e., under the
said assumptions any motivic spectrum is the homotopy limit of its Postnikov
truncations.

Theorem 3.7. In the slice spectral sequence for KGL/2 there are isomor-
phisms

E2
p,q,w(KGL/2) ∼=

⎧⎪⎨⎪⎩
h2,1 (p− w, q) = (0, 1)

h2q−p,q−w/ρ3 p− w − q ≡ 0, 1 mod 4

ker(ρ32q−p,q−w) p− w − q ≡ 2, 3 mod 4.

Proof. See Figure 4 for the E1-page when w = 0. By Table 10 the first
Milnor operation Q1 acts on h2q−p,q−w as multiplication by ρ3 times a τ -
multiple when p − w − q ≡ 2, 3 mod 4, and trivially otherwise. Note that
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E2
p,q,w(KGL/2) is the homology of the complex

E1
p+1,q−1,w(KGL/2)

d1
p+1,q−1,w−−−−−−→ E1

p,q,w(KGL/2)
d1
p,q,w−−−→ E1

p−1,q+1,w(KGL/2).

Depending on p − w − q mod 4, if d1p,q,w is multiplication by ρ3 times a τ -
multiple then d1p+1,q−1,w is trivial, and vice versa. Thus the E2-page takes
the claimed form.

Remark 3.8. Note that Er
∗,∗,∗(KGL/2) is not an algebra spectral sequence.

This follows since d1(τ2) 	= 0, while a Leibniz rule would imply d1(τ2) =

2τd1(τ) = 0.

Example 3.9. If F is a real closed field, then h∗,∗ = F2[τ, ρ] and the proof
of Theorem 3.7 implies

E∞
p,q,0(KGL/2)∼=

{
Z/2{ρ2q−pτp−q} q − p ≡ 0, 3 mod 4, and 2q − p=0, 1, 2

0 otherwise.

In the abutment, this gives the 8-periodicity Z/2, Z/2, Z/4, Z/2, Z/2, 0, 0,
0 for the mod 2 K-groups of the real numbers, see e.g., [62, Theorem 4.9].

Recall there is an isomorphism KGLp,q(F ) ∼= Kp−2q(F ) [65, §6.2].

Example 3.10. If cd2(F ) ≤ 2 and n ≥ 1 there is an isomorphism
K2n−1(F ;Z/2) ∼= h1,n and a short exact sequence

0 → h2,n → K2n−2(F ;Z/2) → h0,n → 0.

Theorem 3.11. The mod 2 algebraic K-groups of OF,S are computed up
to extensions by the following filtrations of length l.

Table 2: The mod 2 algebraic K-groups of OF,S

n ≥ 0 l Kn(OF,S ;Z/2)
8k 2 f0/f1 = h0,4k, f1 = ker(ρ2,4k+1)
8k + 1 1 f0 = h1,4k+1

8k + 2 2 f0/f1 = h0,4k+1, f1 = h2,4k+2

8k + 3 2 f0/f1 = h1,4k+2, f1 = h3,4k+3/ρ3

8k + 4 2 f0/f1 = h2,4k+3, f1 = h4,4k+4/ρ3

8k + 5 2 f0/f1 = ker(ρ21,4k+3), f1 = h3,4k+4/ρ3

8k + 6 2 f0/f1 = ker(ρ2,4k+4), f1 = h4,4k+5/ρ3

8k + 7 1 f0 = ker(ρ21,4k+4)
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In Table 2: h0,q ∼= Z/2, h1,q ∼= O×
F,S/2⊕ 2 Pic(OF,S)/2, ker(ρ2,1) ∼= h2,1 ∼=

Pic(OF,S)/2, h2,q ∼= Pic(OF,S)/2⊕2Br(OF,S) for q > 1, h3,q/ρ3 ∼= (Z/2)r1−1,
h4,q/ρ3 ∼= h3,q−1/ρ2 ∼= (Z/2)t

+
S−tS , ker(ρ21,q) ∼= ker(ρ31,q)

∼= im(h1,q+ → h1,q),
ker(ρ2,q) ∼= ker(ρ22,q)

∼= ker(ρ32,q)
∼= im(h2,q+ → h2,q) for q > 1. Here t+S is

the 2-rank of the narrow Picard group Pic+(OF,S) and tS is the 2-rank of
Pic(OF,S). Moreover, ker(ρ31,q) has 2-rank r2+s+t+S , where r2 is the number
of pairs of complex embeddings of F and sS is the number of finite primes
in S, while ker(ρ32,q) has 2-rank sS + tS − 1.

Proof. Combining Theorem 3.7 with (A.13) and (A.14) we deduce Table 2.
The 2-rank formulas follow from (A.13), see [45, Lemma 13].

Remark 3.12. Theorem 3.11 is in agreement with [50, Theorem 7.8]. The
calculations in [50] are based on the unpublished work [8] (cf. the comments
in [63]).

Lemma 3.13. There is an isomorphism E∞
8,4,0(KGL/4) ∼= H0,4(OF,S ;Z/4).

Proof. The d1-differential is trivial on the mod 4 class τ̃4 generating

E1
8,4,0(KGL/4) ∼= H0,4(OF,S ;Z/4).

Here τ̃ is the generator of H0,1(OF,S ;Z/4) ∼= μ4(O×
F,S). Since Er

∗,∗,∗(KGL/4)
is an algebra spectral sequence, this follows from the Leibniz rule, i.e.,
d1(τ̃4) = 4τ̃3d1(τ̃) = 0.

Since KGL is a motivic ring spectrum, see e.g., [53], (2.70) yields a
pairing of slice spectral sequences

(3.14) Er
p,q,w(KGL/4)⊗ Er

p′,q′,w′(KGL/2) → Er
p+p′,q+q′,w+w′(KGL/2).

The generator τ̃4 commutes with the differentials and acts as multiplication
by τ4 ∈ h0,4 under the pairing (3.14). Thus it induces a periodicity isomor-
phism on Er

p,q,w(KGL/2) in the range q ≤ p. For the abutment we deduce
the following result.

Corollary 3.15. For n ≥ 1 the permanent cycle τ̃4 induces an 8-fold peri-
odicity isomorphism

Kn(OF,S ;Z/2) ∼= Kn+8(OF,S ;Z/2).

Proof. Follows from Theorem 3.11 and the discussion of (3.14).
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More generally, comparing with real closed fields, see Example 3.9, the
techniques in [56, §4,5] yield a periodicity result for fields of finite virtual
cohomological dimension.

Corollary 3.16. Let F be a field of char(F ) 	= 2 and assume vcd(F ) < ∞.
The permanent cycle τ̃4 induces an 8-fold periodicity isomorphism

Kn(F ;Z/2) ∼= Kn+8(F ;Z/2)

for all n ≥ vcd(F )− 1.

Our next aim is to determine KGL/2n for any n ≥ 1 over rings of S-
integers. We first calculate the differentials in the slice spectral sequence over
R, and then transfer these to OF,S under the real embeddings of F . As in the
mod 2 case the slice spectral sequence collapses at its E2-page. This is made
possible by the following description of the mod 2n motivic cohomology of R.

Lemma 3.17. Set Ha,b
n = Ha,b(R;Z/2n), and let (pr2

n

2 )a,b : Ha,b
n → ha,b,

(inc22n)a,b : ha,b → Ha,b
n , (∂2n

2 )a,b : Ha,b
n → ha+1,b and (∂2

2n)a,b : h
a,b
n → Ha+1,b

n

be the maps induced by the short exact sequences

0 → Z/2 → Z/2n+1 → Z/2n → 0 and 0 → Z/2n → Z/2n+1 → Z/2 → 0.

» If a − b ≡ 1 mod 2, (inc22n)a,b, (∂2n

2 )a,b and (∂2
2n)a,b are isomorphisms,

and (pr2
n

2 )a,b is trivial.
» If a > 0, a−b ≡ 0 mod 2, (pr2n

2 )a,b is an isomorphism, (inc22n)a,b, (∂2n

2 )a,b

and (∂2
2n)a,b are trivial.

» If a = 0 and b ≡ 0 mod 2, (∂2n

2 )a,b and (∂2
2n)a,b are trivial, and there

are nonsplit extensions

0→h0,b
inc22n−−−→ H0,b

n →H0,b
n−1→0 and 0 → H0,b

n−1 → H0,b
n

pr2
n

2−−→ h0,b → 0.

Proof. This follows by induction on n using the diagrams with exact rows,

ha+1,b

ha−1,b Ha,b
n Ha,b

n+1 ha,b Ha+1,b
n

ha,b ha+2,b

inc22n

∂2
2n

Sq1

pr2
n

2

pr2
n+1

2 ∂2
2n

0
∂2n

2
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when a− b ≡ 0 mod 2, in which case Sq1 : ha,b → ha+1,b is trivial, and

ha−2,b ha,b

Ha−1,b
n ha,b Ha,b

n+1 Ha,b
n ha+1,b

ha−1,b

∂2
2n

0 inc22n
Sq1

∂2n

2

pr2
n

2

inc2
2n+1 ∂2n

2

when a− b ≡ 1 mod 2, in which case Sq1 : ha,b → ha+1,b is an isomorphism,
a ≥ 0. In the above we used that [MZ/2,Σ2,0MZ/2] = 0 (see Appendix A).
The extensions are nontrivial by a standard Galois cohomology calculation.

Remark 3.18. In fact there is an isomorphism of algebras

H∗,∗(R;Z/2n) ∼= Z/2n[u, τ, ρ]/(2ρ, 2τ, τ2),

where u, τ , and ρ are the generators of H0,2(R;Z/2n), H0,1(R;Z/2n), and
H1,1(R;Z/2n).

Lemma 3.19. If a d1-differential for KGL/2 over the real numbers is sur-
jective then the corresponding d1-differential for KGL/2n is also surjective.

Proof. The canonical maps KGL/2 → KGL/2n → KGL/2 induce a com-
mutative diagram

E1
p,q,w(KGL/2) = h2q−p,q−w h2q−p+3,q−w+1 = E1

p−1,q+1,w(KGL/2)

E1
p,q,w(KGL/2n) = H2q−p,q−w

n H2q−p+3,q−w+1
n = E1

p−1,q+1,w(KGL/2n)

E1
p,q,w(KGL/2) = h2q−p,q−w h2q−p+3,q−w+1 = E1

p−1,q+1,w(KGL/2).

d1

d1

d1

If q− p+w ≡ 0 mod 2 the lower vertical maps are surjections and the lower
left vertical map is an isomorphism (cf. Lemma 3.17). If q−p+w 	≡ 0 mod 2

the upper vertical maps are isomorphisms.
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Corollary 3.20. The E2 = E∞-page of the slice spectral sequence for
KGL/2n over OF,S is given by

E∞
p,q,w(KGL/2n) ∼=

{
H̄2q−p,q−w(OF,S ;Z/2n) p− w − q ≡ 0, 1 mod 4

H̃2q−p,q−w(OF,S ;Z/2n) p− w − q ≡ 2, 3 mod 4.

Here we set

H̄p,q(OF,S ;Z/2
n)

:=

{
coker(Hp−3,q−1(OF,S ;Z/2n) →

⊕r1 Hp−3,q−1(R;Z/2n)) p ≥ 3

Hp,q p < 3

and

H̃p,q(OF,S ;Z/2
n) := ker(Hp,q(OF,S ;Z/2

n) →
r1⊕

Hp,q(R;Z/2n)).

In particular, E∞
p,q,w(KGL/2n) = 0 for 2q − p ≥ 5.

Proof. For p ≥ 3 the real embeddings of F induce an isomorphism (see Ap-
pendix A)

Hp,q(OF,S ;Z/2
n)

∼=→
r1⊕

Hp,q(R;Z/2n).

We have a commutative diagram

H2q−p,q−w(OF,S ;Z/2n)
⊕r1 H2q−p,q−w(R;Z/2n)

H2q−p+3,q−w+1(OF,S ;Z/2n)
⊕r1 H2q−p,q−w(R;Z/2n),

d1
⊕r1 d1

∼=

where the lower horizontal map is an isomorphism for 2q − p ≥ 0. This
determines all the differentials, and the E2-page takes the above form. For
degree reasons this is the E∞-page.

When S is a finite set, finite generation of KGL∗,∗(OF,S) implies the
inverse limit

(3.21) lim
n

Er
p,q,w(KGL/2n)

defines a spectral sequence with the dr-differentials given by inverse lim-
its of the slice dr-differentials. Its E∞

p,q,w-term is given by the inverse limit
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limnE
∞
p,q,w(KGL/2n) identified in Corollary 3.20. Due to collapse at the

E2 = E∞-page for each n ≥ 1 the inverse limit spectral sequence con-
verges strongly to the 2-adic algebraic K-groups K∗(OF,S ;Z2). In this way
we deduce two-primary calculations first carried out in [22], [28], and [50,
Theorem 0.6]. Moreover, by Voevodsky’s proof of the Bloch-Kato conjecture
at every odd prime � [69], assuming � is invertible in OF,S and S is finite, a
straightforward calculation with the slice spectral sequence for KGL yields
isomorphisms for �-adic coefficients

(3.22) K2n−m(OF,S ;Z�)
∼=→ Hm,n(OF,S ;Z�)

for n ≥ 2, m = 1, 2 (see Appendix A for a review of the integral motivic co-
homology groups of OF,S). Corollary 3.20, localization and purity, and (3.22)
conspire to give an integral calculation for arbitrary S containing the infinite
primes.

Theorem 3.23. For n ≥ 2, m = 1, 2, the map

(3.24) K2n−m(OF,S) → Hm,n(OF,S)

is an isomorphism when 2n −m ≡ 0, 1, 2, 7 mod 8, a surjection with kernel
(Z/2)r1 when 2n−m ≡ 3 mod 8, and an injection with cokernel (Z/2)r1 when
2n−m ≡ 6 mod 8. Finally, when n ≡ 3 mod 4, there is an exact sequence

0 → K2n−2(OF,S) → H2,n(OF,S) → (Z/2)r1 → K2n−1(OF,S) → H1,n(OF,S)

(3.25)

→ 0.

4. Higher Witt-theory and hermitian K-theory

Throughout we work over a base field F of char(F ) 	= 2 or the ring of S-
integers in a number field. From the identification (1.15) in [52, Theorem
4.28] of the qth slice of higher Witt-theory we obtain

(4.1) sq(KW/2) �
∨
j∈Z

Σq+j,qMZ/2.

Since (Sq1, id) is a nontrivial automorphism of MZ/2∨Σ1,0MZ/2, the wedge
product decomposition of sq(KW/2) is only unique up to MZ-module iso-
morphisms. Similar observations apply to KQ and its mod 2 slices in (1.14).
For the purpose of systematic calculations we fix an explicit choice:
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Convention 4.2. Let E denote KQ or KW.

1. The canonical maps E → E/2 and E/2 → Σ1,0E induce either inclusions
or projections on the slice summands.

2. The naturally induced map sq(KQ/2) → sq(KW/2) is compatible with
the canonical map of cofiber sequences from KQ → KQ → KQ/2 to
KW → KW → KW/2.

In particular, the top summand Σ2q,qMZ/2 of sq(KQ/2) maps by
(Sq1, id) to sq(KW/2) if q is even. All other summands of sq(KQ/2) map
by the identity to sq(KW/2).

Over a field F of char(F ) 	= 2, recall that πp,qKW ∼= W (F ) if p ≡
q mod 4 and πp,qKW is trivial in all other degrees. By the mod 2 universal
coefficient sequence we deduce

πp,q(KW/2) ∼=

⎧⎪⎨⎪⎩
W (F )/2 p ≡ q mod 4

2W (F ) p ≡ q + 1 mod 4

0 otherwise.

Theorem 4.3. The restriction of the slice d1-differential to the summand
Σq+j,qMZ/2 of sq(KW/2) in (4.1) is given by

d1(KW/2)(q, j)(4.4)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(Sq3Sq1, 0, Sq2, 0, 0) j ≡ 0 mod 4

(Sq3Sq1, Sq2Sq1 + Sq3, Sq2, ρ+ τSq1, 0) j ≡ 1 mod 4

(Sq3Sq1, 0, Sq2 + ρSq1, 0, τ) j ≡ 2 mod 4

(Sq3Sq1, Sq2Sq1 + Sq3, Sq2 + ρSq1, τSq1, τ) j ≡ 3 mod 4.

Figure 1 shows the slice d1-differentials for KW/2. Each dot is a suspen-
sion of MZ/2. The simplicial degree (resp. weight) is indicated horizontally
(resp. vertically).

Proof. According to [52, Theorem 6.3] the corresponding slice d1-differential
of KW is given by

d1(KW)(q, j) =

{
(Sq3Sq1, Sq2, 0) j ≡ 0 mod 4

(Sq3Sq1, Sq2 + ρSq1, τ) j ≡ 2 mod 4.

From the homotopy cofiber sequence KW → KW/2 → Σ1,0KW →
Σ1,0KW we get d1(KW)(q, j) = d1(KW/2)(q, j) when j is even. This
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q − 1

q

q + 1

q + 2

q + 3

4i− 4 4i− 2 4i 4i+ 2 4i+ 4

Sq2 Sq2 + ρSq1 τ Sq3Sq1

Figure 1: Slice d1-differentials for KW/2.

proves (4.4) for j ≡ 0, 2 mod 4. When j is odd, pr ◦ d1(KW)(q, j) = pr ◦
d1(KW/2)(q, j), where pr is the projection of Σ1,0sq+1(KW/2) onto the
odd summands. Hence, by Lemma A.4, we have

d1(KW/2)(q, j)

(4.5)

=

{
(Sq3Sq1, aSq2Sq1 + bSq3, Sq2, φ+ cτSq1, 0) j ≡ 1 mod 4

(Sq3Sq1, a′Sq2Sq1 + b′Sq3, Sq2 + ρSq1, φ′ + c′τSq1, τ) j ≡ 3 mod 4,

where a, b, c, a′, b′, c′ ∈ h0,0 ∼= Z/2 and φ, φ′ ∈ h1,1. Since the slice d1-
differential squares to zero, the product of the matrices⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sq3Sq1 0 0 0 0
aSq2Sq1 + bSq3 Sq3Sq1 0 0 0

Sq2 0 Sq3Sq1 0 0
φ+ cτSq1 Sq2 a′Sq2Sq1 + b′Sq3 Sq3Sq1 0

0 0 Sq2 + ρSq1 0 Sq3Sq1

0 0 φ′ + c′τSq1 Sq2 + ρSq1 aSq2Sq1 + bSq3

0 0 τ 0 Sq2

0 0 0 τ φ+ cτSq1

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and (Sq3Sq1, a′Sq2Sq1+ b′Sq3, Sq2+ρSq1, φ′+ c′τSq1, τ) is zero. That is, the
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matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

(φ+ φ′ + c′ρ)Sq3Sq1 + (b′ + a′)Sq2Sq3

0
(a+ b)ρSq2 + (b+ c′)τSq3 + (a+ c′)τSq2Sq1 + (b+ c′)ρ2Sq1

0
τ(φ+ φ′ + cρ) + (c+ c′)τ2Sq1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
has zero entries. This implies φ+ φ′ + c′ρ = a′ + b′ = 0, and a = b = c = c′.

Next we consider the commutative diagram for q even

sq(KQ/2) sq(KW/2)

Σ1,0sq+1(KQ/2) Σ1,0sq+1(KW/2).

d1(KQ/2)(q) d1(KW/2)(q)

Here the upper horizontal map restricts to (Sq1, id) on the top summand
Σ2q,qMZ/2 of sq(KQ/2). The top summand of Σ1,0sq+1(KQ/2) is
Σ2q+3,q+1MZ/2. Hence Σ2q,qMZ/2 maps trivially to the summand

Σ2q+4,q+1MZ/2

of Σ1,0sq+1(KW/2), i.e.,

0 =

{
(aSq2Sq1 + bSq3)Sq1 + Sq3Sq1 id q ≡ 0 mod 4

(a′Sq2Sq1 + b′Sq3)Sq1 + Sq3Sq1 id q ≡ 2 mod 4.

It follows that b = b′ = 1, and thus a = a′ = b = b′ = c = c′ = 1.
The relation φ = ρ ∈ h1,1 is shown in Lemma 4.8.
Finally, a base change argument as in [52, Lemma 5.1] extends the result

to OF,S .

Theorem 4.6. Over fields F of char(F ) 	= 2 and q′ = q − w, the E2-page
of the slice spectral sequence for KW/2 is given by

E2
p,q,w(KW/2) ∼=

⎧⎪⎨⎪⎩
hq

′,q′/ρ p ≡ w mod 4

ker(ρq′,q′) p ≡ w + 1 mod 4

0 otherwise.
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The same identifications hold over the ring of S-integers in a number field
with the exceptions

E2
p,w+2,w(KW/2) ∼=

⎧⎪⎨⎪⎩
h2,2/(ρ, τ) p− w ≡ 0 mod 4

ker(ρ2,2)/τ p− w ≡ 1 mod 4

0 p− w ≡ 2, 3 mod 4,

E2
p,w+1,w(KW/2) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h1,1 ⊕ h2,1 p− w ≡ 0 mod 4

ker(ρ1,1) p− w ≡ 1 mod 4

0 p− w ≡ 2 mod 4

h2,1 p− w ≡ 3 mod 4.

Proof. Note that E1
p,q,w(KW/2) ∼=

⊕q′

i=0 h
i,q′ by (4.1). The slice differentials

d1p,q,w :
⊕
i

hi,q
′ →

⊕
i

hi,q
′+1

from Theorem 4.3 are given by matrices with entries 0 and ρaτ b, where
a ∈ N, b ∈ Z, cf. Table 10. When b < 0 this makes sense in the range where
multiplication by τ is an isomorphism on the mod 2 motivic cohomology ring
h∗,∗, see Appendix A.

Let d1p,q,w(i, j) be the restriction of d1p,q,w to hi,q
′ → hj,q

′+1. For i, j ≤ q
we have

d1p,q,w(i, j) = 0 if |i− j| > 4, d1p,q,w(i, j) = d1p,q,w(i+ 4, j + 4),(4.7)

d1p,q+1,w(i, j) = d1p,q,w(i, j).

From (4.7) we deduce the repetitive form of the matrix (d1p,q,w(i, j))i,j as
indicated in Figure 2. Every void box indicates a trivial map.

The d1-differential exiting E1
p,q,w(KW/2) is given by a (q′+2)× (q′+1)

matrix similar to the one in Figure 2. Since hi,q
′ is trivial for i < 0 this

matrix is of size (4N + 1)× 4N for some N . Table 3 displays all details for
q′ = 3. All other differentials are determined by Table 3 and (4.7).

Using Figure 2 and Table 3 it is straightforward to determine the kernel,
image, and homology in each column E1

p,∗,w(KW/2). We summarize the cal-
culations in Table 4. As an example, we identify the kernel of multiplication
by (d1p,q,0(i, j))i,j when p ≡ 1 mod 4. In each column corresponding to hi,q

where q ≡ i mod 4 we obtain ker(φi,q) if i = q, and if i 	= q and for x ∈ hi,q

the element (ρ4τ−4, φτ−1, 1)x is in the kernel.
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hq′+1,q′+1

hq′,q′+1

...

hq′−1,q′+1

hq′−2,q′+1

hq′,q′ · · ·hq′−1,q′hq′−2,q′hq′−3,q′

ρ2τ−1 ρ4τ−3

ρ ρ2τ−1 ρ3τ−2

τ ρ2τ−1

τ

ρ2τ−1

ρ ρ2τ−1

τ

Figure 2: The matrix (d1p,q,0(i, j))i,j≤q for p ≡ 0, 3 mod 4. The entries for
p ≡ 0 mod 4 are shown. The dotted red rectangle shows the matrix for d1p,q,w
when q′ = 3.

Table 3: The matrix for d1p,q,w, N = 1

p − w ≡ 0 mod 4,

⎛
⎜⎜⎜⎜⎝

0 ρ2τ−1 0 ρ4τ−3

0 φ ρ2τ−1 ρ3τ−2

0 τ 0 ρ2τ−1

0 0 τ φ + ρ

0 0 0 0

⎞
⎟⎟⎟⎟⎠ p − w ≡ 1 mod 4,

⎛
⎜⎜⎜⎜⎝

φ 0 ρ3τ−2 ρ4τ−3

0 0 ρ2τ−1 0

0 0 φ + ρ 0

0 0 τ 0

0 0 0 τ

⎞
⎟⎟⎟⎟⎠

p − w ≡ 2 mod 4,

⎛
⎜⎜⎜⎜⎝

0 0 0 ρ4τ−3

τ φ + ρ ρ2τ−1 ρ3τ−2

0 0 0 0

0 0 0 φ

0 0 0 τ

⎞
⎟⎟⎟⎟⎠ p − w ≡ 3 mod 4,

⎛
⎜⎜⎜⎜⎝

φ + ρ ρ2τ−1 ρ3τ−2 ρ4τ−3

τ 0 ρ2τ−1 0

0 τ φ ρ2τ−1

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

Lemma 4.8. Over a field F of characteristic char(F ) 	= 2 we have φ =

ρ ∈ h1,1.

Proof. Over the real numbers, W (R) ∼= Z and Iq = (2q) via the index.
By (2.8) and (2.25) this implies
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Table 4: The homology of E1
p,∗,w(KW/2)

p− w mod 4 ker(d1p,q,w)

0 ⊕q′−i≡0h
i,q′ ⊕⊕q′−i≡3(ρ

2τ−2, φ+ ρ, 1)hi,q′

1 ker(φq′,q′)⊕⊕q′−i≡1h
i,q′ ⊕⊕q′−i≡0,i<q′(ρ

4τ−4, φτ−1, 1)hi,q′

2 ⊕q′−i≡1((φ+ ρ)τ−1, 1)hi,q′ ⊕⊕q′−i≡2(ρ
2τ−2, 1)hi,q′

3 ⊕q′−i≡2(ρ
2τ−2, φτ−1, 1)hi,q′ ⊕⊕q′−i≡3(ρ

2τ−2, 1)hi,q′

im(d1p+1,q−1,w)

0 im(φq′−1,q′−1)⊕⊕q′−1−i≡2(ρ
3τ−2, ρ2τ−1, φ+ ρ, τ)hi,q′−1⊕

⊕q′−1−i≡3(ρ
4τ−3, τ)hi,q′−1

1 ⊕q′−1−i≡0τh
i,q′−1 ⊕⊕q′−1−i≡3(ρ

4τ−3, φ, τ)hi,q′−1

2 ⊕q′−1−i≡0(φ+ ρ, τ)τhi,q′−1 ⊕⊕q′−1−i≡1(ρ
2τ−1, τ)hi,q′−1

3 ⊕q′−1−i≡1(ρ
2τ−1, φ, τ)hi,q′−1 ⊕⊕q′−1−i≡2(ρ

2τ−1, τ)hi,q′−1

(4.9) E∞
0,q,0(KW/2) ∼=

{
Z/2 q = 0

0 q > 0.

Moreover, by the proof of Theorem 4.6, we have

(4.10) E2
p,q,0(KW/2) ∼=

⎧⎪⎨⎪⎩
hq,q/φhq−1,q−1 p ≡ 0 mod 4

ker(φ : hq,q → hq+1,q+1) p ≡ 1 mod 4

0 otherwise.

Here h∗,∗ ∼= F2[ρ, τ ], where |τ | = (0, 1), |ρ| = (1, 1), see Table 11. It follows
that φ = ρ ∈ h1,1 over R. Over Q we compare with the completions R and
Q�, � a prime number, via the injective map

(4.11) h1,1(Q) → h1,1(R)⊕
⊕
�

h1,1(Q�).

According to [27, Theorems 2.2, 2.29] and [57, Theorem 6.6] the Witt-group
and the nonzero powers of the fundamental ideal of the �-adic completion of
Q are given by:

Table 5: The Witt-group of Q� and nonzero powers of the fundamental ideal
Q� W (Q�) I I2

� = 2 Z/8⊕ (Z/2)2 Z/4⊕ (Z/2)2 Z/2
� ≡ 1 mod 4 (Z/2)4 (Z/2)3 Z/2
� ≡ 3 mod 4 (Z/4)2 Z/4⊕ Z/2 Z/2
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From (4.11) and the calculation over R it follows that φ = ρ + ρ′ over Q.
Over the �-adic completions we identify the groups in (4.10) with the corre-
sponding mod 2 Milnor K-groups given in [37, Example 1.7], [44, §3.3]:

Table 6: The mod 2 Milnor K-groups of Q�

Q� kM∗
� = 2 F2[ρ, x, y]/(x

2, y2, ρ2 + xy, ρx, ρy)
� ≡ 1 mod 4 F2[u, �]/(u

2, �2)
� ≡ 3 mod 4 F2[ρ, �]/(ρ

2, �(ρ− �))

Here u is a nonsquare in the Teichmüller lift F×
� ⊆ Q×

� . For � = 2 we write x
and y for the square classes of 2 and 5, respectively.

If � ≡ 1 mod 4 we have ρ = 0 over Q�. By (2.25) we obtain E∞
0,1,0(KW/2)

∼= (Z/2)2. Hence the image of ρ′ : h0,0 → h1,1 is trivial, i.e., ρ′ = 0 over Q�

when � ≡ 1 mod 4. The same analysis is inconclusive over Q2 and Q� for
� ≡ 3 mod 4 in the sense that we are unable to determine the value of ρ′

by comparing with (2.8), (2.25), and (2.26). The filtration of the abutment
is the same regardless of the value of ρ′ (that is, up to isomorphism of each
filtration quotient).

Next we show ρ′ = 0 over Q. Over Q� the slice spectral sequence for
KQ/2 converges strongly to π∗,∗(KQ/2) by Theorem 2.66. The slice d1-
differentials are identified in terms of those of KW/2 in Theorem 4.14, with
the caveat that one should replace ρ by ρ + ρ′ (before concluding ρ′ = 0).
Its E2-page with ρ′ = 0 is identified in Theorem 4.16. To show ρ′ = 0 we
consider weight zero and E2

2,∗,0(KQ/2). The proof of Theorem 4.16 shows
E2

2,i,0(KQ/2) = E2
2,i,0(KW/2) if i ≥ 4, and E2

2,i,0(KQ/2) = 0 if i ≤ 0. We
have E2

2,i,0(KQ/2) 	= 0 only if i = 1, 2, 3 by Theorem 4.6. Calculations as
in Theorem 4.16 show

E2
2,0,0(KQ/2) ∼= 0, E2

2,1,0(KQ/2) ∼= ker(ρ′0,1),

E2
2,2,0(KQ/2) ∼= h1,2 ⊕ h0,2, E2

2,3,0(KQ/2) ∼= h2,3/(ρρ′).

If ρ′ 	= 0 this filtration cannot produce KQ2(Q�;Z/2), see Lemma A.20.
Thus we conclude ρ′ = 0.

Via (4.11) we conclude the claim for Q and hence for any field of charac-
teristic zero using base change. For fields of positive odd characteristic one
may proceed as in the proof of [52, Lemma 5.1].

Next we calculate the E2-page of the slice spectral sequence for KQ/2
over fields and rings of S-integers in number fields. Specializing to fields
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with vcd(F ) ≤ 2 or OF,S the spectral sequence collapses, and we deduce a
calculation of the mod 2 hermitian K-groups up to extensions.

The slices (1.14) of KQ were identified in [52, Theorem 5.18]. It follows
there is an isomorphism

(4.12) sq(KQ/2) �
∨
j≤q

Σq+j,qMZ/2.

Remark 4.13. We shall refer to the summands Σq+j,qMZ/2 of sq(KQ/2) as
even or odd when j is even respectively odd. These are summands arising
from sq(KQ) or Σ1,0sq(KQ) in the cofiber sequence defining sq(KQ/2). As
it turns out it is often easier to compute with the even summands.

Theorem 4.14. The restriction of the slice d1-differential to the summand
Σq+j,qMZ/2 of sq(KQ/2) in (4.12) is given by

d1(KQ/2)(q, j)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(Sq3Sq1, 0, Sq2, 0, 0) q > j ≡ 0 mod 4

(Sq3Sq1, Sq2Sq1 + Sq3, Sq2, ρ+ τSq1, 0) q > j ≡ 1 mod 4

(Sq3Sq1, 0, Sq2 + ρSq1, 0, τ) q > j ≡ 2 mod 4

(Sq3Sq1, Sq2Sq1 + Sq3, Sq2 + ρSq1, τSq1, τ) q > j ≡ 3 mod 4,

d1(KQ/2)(q, q) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(0, Sq2Sq1, Sq2 + ρSq1, 0, 0) q ≡ 0 mod 4

(0, Sq2Sq1 + Sq3, Sq2, ρ+ τSq1, 0) q ≡ 1 mod 4

(0, Sq2Sq1, Sq2 + ρSq1, τSq1, τ) q ≡ 2 mod 4

(0, Sq2Sq1 + Sq3, Sq2 + ρSq1, τSq1, τ) q ≡ 3 mod 4.

Here the ith component of d1(KQ/2)(q, j) is a map

Σq+j,qMZ/2 → Σq+j+i,q+1MZ/2.

Proof. This follows from Theorem 4.3 by applying Convention 4.2 to the
commutative diagram

(4.15)

sq(KQ/2) sq(KW/2)

Σ1,0sq+1(KQ/2) Σ1,0sq+1(KW/2).

d1(KQ/2) d1(KW/2)
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Suppose q is even. When q < j it is immediate that d1(KQ/2)(q, j) =

d1(KW/2)(q, j). When q = j the top horizontal map in (4.15) equals
(Sq1, id), while the lower horizontal map is an inclusion. Hence we
obtain

d1(KQ/2)(q, q) = d1(KW/2)(q, q) + d1(KW/2)(q, q + 1)Sq1.

For example if q ≡ 0 mod 4 we have

(0, Sq3Sq1, 0, Sq2, 0, 0) + (Sq3Sq1, Sq2Sq1 + Sq3, Sq2, ρ+ τSq1, 0, 0)Sq1

= (0, 0, Sq2Sq1, Sq2 + ρSq1, 0, 0).

Suppose q is odd. When j < q−1 it is immediate that d1(KQ/2)(q, j) =

d1(KW/2)(q, j). Note that d1(KQ/2)(q, q−1) takes the asserted form since
Sq3Sq1Sq1 = 0. If j = q, then Σ2q+2,q+1MZ/2 maps by the identity un-
der the lower horizontal map in (4.15). Thus d1(KQ/2)(q, q) agrees with
d1(KW/2)(q, q) except for on the summand Σ2q+3,q+1MZ/2 of sq+1(KW/2)

(this is not a summand of sq+1(KQ/2)). Finally, note that sq(KQ/2) →
sq(KW/2) is a split monomorphism.

Theorem 4.16. The groups E2
p,q,w(KQ/2) over fields F of characteristic

different than 2 and rings of S-integers in number fields are given by Table 7
and Table 8. (In the tables p−w and q−p+w are congruence classes modulo
4 with the exception of q − p+ w in Table 8, and a = 2q − p, q′ = q − w):

Table 7: The group E2
p,q,w(KQ/2) is trivial if p/2 > q and for q + w ≤ p it

is given by:
����������p− w

q − p+ w
0 1

0 ha,q′/ρ5 ker(ρ2a,q′)⊕ ha−1,q′/ρ2

1 ker(ρa,q′)⊕ ha−1,q′/ρ2 ker(ρ2a−1,q′)⊕ ha−2,q′/ρ2

2 ha−1,q′/ρ3 ⊕ ha−2,q′/ρ ha−2,q′/ρ3

3 ha−2,q′/ρ2 ker(ρ3a,q′)

2 3

0 ker(ρ2a−1,q′)⊕ ha−2,q′/ρ ha−2,q′/ρ2

1 ker(ρ5a−2,q′) ker(ρ2a,q′)

2 ker(ρ2a,q′) ha,q′/ρ3 ⊕ ker(ρ2a−1,q′)

3 ker(ρa,q′)⊕ ker(ρ3a−1,q′) ha−1,q′/ρ2 ⊕ ker(ρ3a−2,q′)
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Table 8: For q + w ≥ p+ 1 the group E2
p,q,w(KQ/2) is given by:

����������p− w
q − p+ w

1 > 1

0 ha−1,q′/ρ2 hq′,q′/ρ

1 ker(ρa−1,q′)⊕ ha−2,q′/ρ2 ker(ρq′,q′)

2 ha−2,q′/ρ3 0
3 0 0

Proof. Taking homotopy groups in (4.12) yields

E1
p,q,w(KQ/2) ∼=

min{2q−p,q′}⊕
i=0

hi,q−w.

If q ≥ p− w + 1 the canonically induced map

E1
p,q,w(KQ/2) → E1

p,q,w(KW/2)

is an isomorphism. Moreover, the entering and exiting d1-differentials for
KQ/2 and KW/2 coincide when q > p − w + 1, see Theorem 4.14. Thus
E2

p,q,w(KQ/2) ∼= E2
p,q,w(KW/2) in this region. By Theorem 4.6 we obtain

the second column in Table 8.
If q ≤ p−w we proceed as in Theorem 4.6 by writing d1p,q,w as a matrix

(d1p,q,w(i, j))i,j , where

d1p,q,w(i, j) : h
i,q′ → hj,q

′+1.

To determine this matrix we combine Theorem 4.14 with Table 10. Set a =
2q − p, a′ = a− b, and

b = (q − p mod 4) ∈ {0, 1, 2, 3}
A = 2(q − 1)− (p+ 1) = a− 3

B = ((q − 1)− (p+ 1) mod 4) = (b+ 2 mod 4)

A′ = A−B = a− 3− (b+ 2 mod 4).

Note that ha,q′ is the top summand of E1
p,q,w(KQ/2), and likewise for hA′,q′−1

and E1
p+1,q−1,w(KQ/2). The entry d1p,q,w(i, j) is possibly nontrivial only when

(i, j) ∈ [0, b + 4n) × [0, b + 4n + 1), where n ≥ �(2q − p − b)/4�. Thus
(d1p,q,w(i, j))i,j is a (b + 4n) × (b + 4n + 1)-matrix. To simplify we consider
its submatrices M1

p,q := (d1p,q(i, j))i,j for i ∈ [a′, a] given in Table 12, and
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M2
p,q,w := (d1p,q,w(i, j))i,j for i ∈ [0, a′). Here M1

p,q,w is a (b+1)× (b+4n+1)-
matrix, cf. Table 12, and M2

p,q,w is the block matrix obtained by inserting one
of the matrices in Table 3 along its diagonal and zero entries elsewhere. In the
first block of M2

p,q we remove the first column in the corresponding matrix
from Table 3. That is, M2

p,q,w(i, j) = Mp−w mod 4(i mod 4, j + 1 mod 4) if
|i− (j + 1)| ≤ 4 and 0 otherwise. Here Mp−w is the (p−w mod 4)th matrix
in Table 3.

It is helpful to note the equality d1p,q,0 = d1p+w,q,w. Indeed, we have

d1p+w,q,w : πp+w,w(
∨
j≤q

Σq+j,qMZ/2) → E1
p−1,q+1,w,

and

πp+w,w(
∨
j≤q

Σq+j,qMZ/2) =
⊕
j≤q

hq+j−p−w,q−w =
⊕
j≤q

τ j−phq+j−p−w,q+j−p−w.

Here the d1-differential depends only on the powers of τ , and the integers q

and j. The decompositions

ker(d1p,q,w)
∼= ker(M1

p,q,w)⊕ ker(M2
p,q,w),

and

im(d1p,q,w)
∼= im(M1

p,q,w)⊕ im(M2
p,q,w)

follow by inspection. To determine the E2-page we identify the kernels, im-
ages and homologies for all the matrices M1

p,q,w in Table 12, and likewise for
M2

p,q,w. A part of the calculation for M2
p,q,w was carried out in Theorem 4.6,

see Table 4. The kernels and images together with the values of a′ and A′ are
determined by Table 13. Using this data we deduce Table 7. If q = p−w+1,
the entering d1-differential is given by Table 12 and the exiting d1-differential
by Table 3. By combining Table 4 (or Table 13 for q − p + w ≡ 0 mod 4)
with Table 13 for q−p+w ≡ 1 mod 4, we deduce the first column in Table 8.
The E2-page in weight w = 0, 1, 2, 3 is shown in Figure 5, Figure 6, Figure 7,
and Figure 8, respectively.

Combining the ring structure on KQ in [46] with (2.70) we obtain a
pairing of spectral sequences

(4.17) Er
p,q,w(KQ/4)⊗ Er

p′,q′,w′(KQ/2) → Er
p+p′,q+q′,w+w′(KQ/2).
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The proof of Lemma 3.13 shows the group Er
8,4,0(KQ/4) is isomorphic to

H0,4(F ;Z/4), generated by τ̃4 for all r ≥ 1. Here τ̃4 commutes with the
d1-differential and it defines an (8, 4, 0)-periodicity element on the Er-pages
under the paring (4.17). The generator τ̃4 ∈ H0,4(F ;Z/4) acts as τ4 ∈ h0,4,
and we obtain:

Lemma 4.18. There is an isomorphism E∞
8,4,0(KQ/4) ∼= H0,4(F ;Z/4).

Recall the slice spectral sequence for KQ/2n is conditionally convergent
over F when vcd(F ) < ∞ by Theorem 2.66.

Theorem 4.19. If F is a field of characteristic char(F ) 	= 2 and vcd(F ) <
∞, the E2-page E2

p,q,w(KQ/2) of the slice spectral sequence for KQ/2 is
(8, 4, 0)-periodic for p − 2w ≥ vcd(F ) − δF . Here δF = 2 if vcd(F ) + w ≡
0 mod 4, and δF = 1 if vcd(F ) +w 	≡ 0 mod 4. The periodicity isomorphism
is induced by multiplication by τ̃4 ∈ E2

8,4,0(KQ/4) in the pairing (4.17).
When vcd(F ) = 2 the mod 2 hermitian K-groups of F are given up to

extensions as follows.

n ≥ 0 l KQn,0(F ;Z/2)

8k 3 f0/f1 = h0,4k, f1/f2 = ker(ρ2,4k+1)⊕ h1,4k+1, f2 = h2,4k+2/ρ

8k + 1 2 f0/f1 = ker(ρ1,4k+1)⊕ h0,4k+1, f1 = ker(ρ2,4k+2)⊕ h1,4k+2

8k + 2 3 f0/f1 = h0,4k+1, f1/f2 = h1,4k+2 ⊕ h0,4k+2, f2 = h2,4k+3

8k + 3 2 f0/f1 = h0,4k+2, f1 = h1,4k+3

8k + 4 2 f0/f1 = h0,4k+3, f1 = h4,4k+4

8k + 5 0 0
8k + 6 1 f0 = ker(ρ2,4k+4)
8k + 7 2 f0/f1 = ker(ρ21,4k+4), f1 = ker(ρ2,4k+5)

n ≥ 0 l KQn+2,1(F ;Z/2)

8k 3 f0/f1 = ker(ρ0,4k), f1/f2 = ker(ρ21,4k+1)⊕ h0,4k+1,
f2 = ker(ρ2,4k+2)

8k + 1 2 f0/f1 = h0,4k+1, f1 = h1,4k+2

8k + 2 1 f0 = h0,4k+2

8k + 3 1 f0 = h3,4k+3

8k + 4 1 f0 = ker(ρ2,4k+3)

8k + 5 2 f0/f1 = ker(ρ21,4k+3), f1 = h3,4k+4/ρ3 ⊕ ker(ρ2,4k+4)
8k + 6 3 f0/f1 = ker(ρ30,4k+3), f1/f2 = ker(ρ2,4k+4)⊕ ker(ρ21,4k+4),

f2 = ker(ρ2,4k+5)

8k + 7 2 f0/f1 = ker(ρ21,4k+4)⊕ h0,4k+4,

f1 = ker(ρ2,4k+5)⊕ h1,4k+5/ρ
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n ≥ 0 l KQn+4,2(F ;Z/2)

8k 1 f0 = h0,4k+1

8k + 1 0 0

8k + 2 1 f0 = h2,4k+2

8k + 3 2 f0/f1 = ker(ρ21,4k+2), f1 = h2,4k+3/ρ2

8k + 4 3 f0/f1 = ker(ρ20,4k+2), f1/f2 = h2,4k+3 ⊕ ker(ρ21,4k+3),

f2 = h3,4k+4/ρ3 ⊕ h2,4k+4/ρ
8k + 5 2 f0/f1 = ker(ρ1,4k+3)⊕ ker(ρ30,4k+3),

f1 = h2,4k+4/ρ2 ⊕ ker(ρ21,4k+4)

8k + 6 3 f0/f1 = ker(ρ20,4k+3), f1/f2 = ker(ρ21,4k+4)⊕ h0,4k+4,

f2 = h2,4k+5/ρ2

8k + 7 2 f0/f1 = ker(ρ20,4k+4), f1 = ker(ρ21,4k+5)

n ≥ 0 l KQn+6,3(F ;Z/2)

8k 1 f0 = ker(ρ2,4k+1)

8k + 1 2 f0/f1 = h1,4k+1, f1 = h2,4k+2/ρ2

8k + 2 3 f0/f1 = ker(ρ20,4k+1), f1/f2 = ker(ρ2,4k+2)⊕ h1,4k+2,

f2 = h2,4k+3/ρ2

8k + 3 3 f0/f1 = h1,4k+2 ⊕ ker(ρ20,4k+2), f1/f2 = h2,4k+3 ⊕ h1,4k+3/ρ,

f2 = h3,4k+4/ρ3

8k + 4 3 f0/f1 = ker(ρ0,4k+2), f1/f2 = h1,4k+3 ⊕ ker(ρ30,4k+3),

f2 = h2,4k+4/ρ2

8k + 5 3 f0/f1 = ker(ρ20,4k+3), f1/f2 = h1,4k+4, f2 = h5,4k+5/ρ5

8k + 6 1 f0 = ker(ρ30,4k+4)
8k + 7 0 0

Proof. We make the following observations:

» If q + w ≤ p, the group E2
p,q,w(KQ/2) is identified in Table 7.

» The direct summands of E2
p,q,w(KQ/2) are subquotients of h2q−p−i,q−w,

for 0 ≤ i ≤ 2. Such a subquotient is trivial if 2q − p− 2 > vcd(F ).

Now assume p− 2w > vcd(F ).

» If q ≤ 1
2(p + vcd(F ) + 2), then q + w ≤ p, and (8, 4, 0)-periodicity

follows.
» If q > 1

2(p + vcd(F ) + 2), then 2q − p > vcd(F ) + 2, and hence
E2

p,q,w(KQ/2) = 0.

It remains to consider degrees with p = vcd(F ) + 2w− δ, δ = 0, 1, i.e., com-
pare E2

p,q,w for q ∈ (vcd(F ) +w − δ, vcd+w + 1− (δ/2)] with E2
p+8,q+4,w. If

q is not in this interval, E2
p,q,w is either zero or determined by the (8, 4, 0)-

periodic Table 7, as observed above. It remains to show the E2-page in de-
grees (p, q, w) ∈ {(vcd(F )+2w, vcd(F )+w+1, w), (vcd(F )+2w−1, vcd(F )+
w,w)} and (p+ 8, q + 4, w) are isomorphic via the map τ4. This follows by
inspection of Table 7 and Table 8 in Theorem 4.16. The sharper bound for



Hermitian K-theory, Dedekind ζ-functions, and quadratic forms 557

vcd(F ) + w ≡ 0 mod 4 follows by inspection of the degrees (vcd(F ) + 2w −
2, vcd(F ) + w − 1, w) and (vcd(F ) + 2w − 2, vcd(F ) + w,w).

Corollary 4.20. Suppose F is a field of char(F ) 	= 2 and vcd(F ) < ∞. The
permanent cycle τ̃4 induces an 8-fold periodicity isomorphism

KQp,w(F ;Z/2) ∼= KQp+8,w(F ;Z/2)

for all p− 2w ≥ vcd(F )− 1.

Proof. Multiplication by τ̃4 commutes with the differentials, so the period-
icity in Theorem 4.19 carries over to the E∞-page. We conclude by reference
to Theorem 2.66.

Example 4.21. Let F be an algebraically closed field, or more generally
a quadratically closed field, of char(F ) 	= 2. Then h∗,∗ = F2[τ ] and Theo-
rem 4.16 implies isomorphisms for 2w ≤ p

E∞
p,q,w(KQ/2) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h0,q−w 2q − p = 0, 2 and p ≡ 0, 2 mod 8

h0,q−w 2q − p = 1 and p ≡ 1, 3 mod 8

h0,q−w 2q − p = 2 and p ≡ 2, 4 mod 8

0 otherwise.

For 2w > p we have isomorphisms

E∞
p,q,w(KQ/2) ∼=

{
h0,0 q = w and p− w ≡ 0, 1 mod 4

0 otherwise.

Over C, this gives the 8-periodicity Z/2, Z/2, Z/4, Z/2, Z/2, 0, 0, 0 for the
mod 2 K-groups of the real numbers, see e.g., [62, Theorem 4.9].

Example 4.22. If F is a real closed field, then h∗,∗ = F2[τ, ρ]. In the follow-
ing tables we use the notation in Theorem 2.51 and determine the filtration
quotients for the group KQ8k+2,0(F ;Z/2).

n ≥ 0 KQn+4,2(F ;Z/2) KQn+6,3(F ;Z/2)

8k h0,4k+1 0
8k + 1 0 h1,4k+1

8k + 2 h2,4k+2 h1,4k+2

8k + 3 0 h2,4k+3 • h1,4k+2

8k + 4 h2,4k+3 h1,4k+3

8k + 5 0 h1,4k+4

8k + 6 h0,4k+4 0
8k + 7 0 0
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n ≥ 0 KQn,0(F ;Z/2) KQn+2,1(F ;Z/2)

8k h1,4k+1 • h0,4k h0,4k+1

8k + 1 h1,4k+2 • h0,4k+1 h1,4k+2 • h0,4k+1

8k + 2 h0,4k+1, h1,4k+2 ⊕ h0,4k+2, h2,4k+3 h0,4k+2

8k + 3 h1,4k+3 • h0,4k+2 h3,4k+3

8k + 4 h4,4k+4 • h0,4k+3 0
8k + 5 0 0
8k + 6 0 0
8k + 7 0 h0,4k+4

We are ready to prove Theorem 1.3 stated in the introduction.

Theorem 4.23. The mod 2 hermitian K-groups of OF,S are computed up
to extensions by the following filtrations of length l.

n ≥ 0 l KQn,0(OF,S ;Z/2)

8k 3 f0/f1 = h0,4k, f1/f2 = ker(ρ2,4k+1)⊕ h1,4k+1, f2 = h2,4k+2/ρ
8k + 1 2 f0/f1 = ker(ρ1,4k+1)⊕ h0,4k+1, f1 = ker(ρ2,4k+2)⊕ h1,4k+2

8k + 2 3 f0/f1 = h0,4k+1, f1/f2 = h1,4k+2 ⊕ h0,4k+2, f2 = h2,4k+3

8k + 3 2 f0/f1 = h0,4k+2, f1 = h1,4k+3

8k + 4 2 f0/f1 = h0,4k+3, f1 = h4,4k+4

8k + 5 0 0
8k + 6 2 f0/f1 = ker(ρ2,4k+4), f1 = h4,4k+5/ρ3

8k + 7 2 f0/f1 = ker(ρ21,4k+4), f1 = ker(ρ2,4k+5)

n ≥ 0 l KQn+2,1(OF,S ;Z/2)

8k 3 f0/f1 = ker(ρ0,4k), f1/f2 = ker(ρ21,4k+1)⊕ h0,4k+1,

f2 = ker(ρ2,4k+2)
8k + 1 2 f0/f1 = h0,4k+1, f1 = h1,4k+2

8k + 2 1 f0 = h0,4k+2

8k + 3 1 f0 = h3,4k+3

8k + 4 2 f0/f1 = ker(ρ2,4k+3), f1 = h3,4k+4/ρ2

8k + 5 3 f0/f1 = ker(ρ21,4k+3), f1/f2 = h3,4k+4/ρ3 ⊕ ker(ρ2,4k+4),

f2 = h4,4k+5/ρ3

8k + 6 3 f0/f1 = ker(ρ30,4k+3), f1/f2 = ker(ρ2,4k+4)⊕ ker(ρ21,4k+4),

f2 = h3,4k+5/ρ2 ⊕ ker(ρ2,4k+5)
8k + 7 3 f0/f1 = ker(ρ21,4k+4)⊕ h0,4k+4,

f1/f2 = ker(ρ2,4k+5)⊕ h1,4k+5/ρ, f2 = h3,4k+6/ρ2
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n ≥ 0 l KQn+4,2(OF,S ;Z/2)

8k 1 f0 = h0,4k+1

8k + 1 0 0
8k + 2 2 f0/f1 = h2,4k+2, f1 = h3,4k+3/ρ2

8k + 3 3 f0/f1 = ker(ρ21,4k+2), f1/f2 = h2,4k+3/ρ2, f2 = h3,4k+4/ρ2

8k + 4 4 f0/f1 = ker(ρ20,4k+2), f1/f2 = h2,4k+3 ⊕ ker(ρ21,4k+3),

f2/f3 = h3,4k+4/ρ3 ⊕ h2,4k+4/ρ, f3 = h4,4k+5/ρ3

8k + 5 3 f0/f1 = ker(ρ1,4k+3)⊕ ker(ρ30,4k+3),

f1/f2 = h2,4k+4/ρ2 ⊕ ker(ρ21,4k+4), f2 = h3,4k+5/ρ2

8k + 6 4 f0/f1 = ker(ρ20,4k+3), f1/f2 = ker(ρ21,4k+4)⊕ h0,4k+4,

f2/f3 = h2,4k+5/ρ2, f3 = h6,4k+6/ρ5

8k + 7 2 f0/f1 = ker(ρ20,4k+4), f1 = ker(ρ21,4k+5)

n ≥ 0 l KQn+6,3(OF,S ;Z/2)

8k 1 f0 = ker(ρ2,4k+1)
8k + 1 2 f0/f1 = h1,4k+1, f1 = h2,4k+2/ρ2

8k + 2 3 f0/f1 = ker(ρ20,4k+1), f1/f2 = ker(ρ2,4k+2)⊕ h1,4k+2,

f2 = h2,4k+3/ρ2

8k + 3 3 f0/f1 = h1,4k+2 ⊕ ker(ρ20,4k+2), f1/f2 = h2,4k+3 ⊕ h1,4k+3/ρ,

f2 = h3,4k+4/ρ3

8k + 4 3 f0/f1 = ker(ρ0,4k+2), f1/f2 = h1,4k+3 ⊕ ker(ρ30,4k+3),

f2 = h2,4k+4/ρ2

8k + 5 3 f0/f1 = ker(ρ20,4k+3), f1/f2 = h1,4k+4, f2 = h5,4k+5/ρ5

8k + 6 1 f0 = ker(ρ30,4k+4)

8k + 7 0 0

Proof. We have vcd(F ) = vcd(OF,S) = 2. The proofs of Theorem 4.16
and Theorem 4.19 apply to OF,S since there are no nontrivial differentials
exiting or entering h2,1 ∈ E1

0,1,0(KQ/2). Lemma A.15 shows the naturally
induced map hp,q(OF,S) →

⊕r1 hp,q(R) is surjective for q ≥ 2. For degree
reasons E∞(KQ/2) = E2(KQ/2). The 8-periodicity follows as in the proof
of Corollary 4.20.

Our next aim is to compute the slice d1-differentials for KW/2n and
KQ/2n when n ≥ 2. By (1.15) the slices of KW/2n are given by

(4.24) sq(KW/2n) �
∨
j

Σq+j,qMZ/2,

while (1.14) identifies the slices of KQ/2n as
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(4.25) sq(KQ/2n) �
{
Σ2q,qMZ/2n ∨

∨
j<q Σ

q+j,qMZ/2 q even∨
j≤q Σ

q+j,qMZ/2 q odd.

The MZ-module structure on the wedge product decomposition of
sq(E/2

n) is not unique. For our calculational purposes we may make the
exact same choices as in Convention 4.2.

Theorem 4.26. The restriction of the slice d1-differential to the summand
Σq+j,qMZ/2 of sq(KW/2n) in (4.24) is given by

(4.27) d1(KW/2n)(q, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(Sq3Sq1, 0, Sq2, 0, 0) j ≡ 0 mod 4

(Sq3Sq1, 0, Sq2, 0, 0) j ≡ 1 mod 4

(Sq3Sq1, 0, Sq2 + ρSq1, 0, τ) j ≡ 2 mod 4

(Sq3Sq1, 0, Sq2 + ρSq1, 0, τ) j ≡ 3 mod 4.

Proof. According to [52, Theorem 6.3] the corresponding slice d1-differential
of KW is given by

d1(KW)(q, j) =

{
(Sq3Sq1, Sq2, 0) j ≡ 0 mod 4

(Sq3Sq1, Sq2 + ρSq1, τ) j ≡ 2 mod 4.

When j is even it follows that d1(KW)(q, j) = d1(KW/2)(q, j).
When j is odd, pr ◦d1(KW)(q, j) = pr ◦d1(KW/2)(q, j), where pr is the

projection of Σ1,0sq+1(KW/2) to the odd summands. Hence, by Lemma A.4
and the vanishing d1 ◦ d1 = 0, we have

d1(KW/2n)(q, j)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(Sq3Sq1, 0, Sq2, 0, 0) j ≡ 0 mod 4

(Sq3Sq1, a(Sq2Sq1 + Sq3), Sq2, φ+ aτSq1, 0) j ≡ 1 mod 4

(Sq3Sq1, 0, Sq2 + ρSq1, 0, τ) j ≡ 2 mod 4

(Sq3Sq1, a′(Sq2Sq1+Sq3), Sq2+ρSq1, φ+aρ+aτSq1, τ) j ≡ 3 mod 4,

for some a, a′ ∈ h0,0 and φ ∈ h1,1. Consider the commutative diagram for q
even

sq(KQ/2n) sq(KW/2n)

Σ1,0sq+1(KQ/2n) Σ1,0sq+1(KW/2n).

d1(KQ/2)(q) d1(KW/2)(q)
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The top summand Σ2q,qMZ/2n maps by (∂2n

2 , pr2
n

2 ) and hence trivially to
the summand Σ2q+4,q+1MZ/2 of Σ1,0sq+1(KW/2n), i.e.,

0 =

{
a(Sq2Sq1 + Sq3)∂2n

2 + Sq3Sq1pr2
n

2 q ≡ 0 mod 4

a′(Sq2∂2n

2 + Sq3)Sq1 + Sq3Sq1pr2
n

2 q ≡ 2 mod 4.

This implies a = a′ = 0. Next we show φ = 0. For q′ = q−w the E2-page of
the slice spectral sequence for KW/2n over a finite field or a completion of
Q takes the form

(4.28) E2
p,q,w

∼=

⎧⎪⎨⎪⎩
hq

′,q′/φ p ≡ w mod 4

ker(φq′,q′) p ≡ w + 1 mod 4

0 otherwise.

Table 5 and Table 11 show this filtration is too small to produce the mod 2n

Witt groups if φ 	= 0.

In (4.28), hq′,q′ identifies with the quotient of hq′,q′⊕hq
′−4,q′⊕hq

′−8,q′⊕. . .

by elements (x1, x2, . . . ), where xi = Sq3Sq1xi+1 for all i ≥ 1. To understand
the product structure we write

B =

⎛⎜⎜⎜⎜⎜⎝
Sq3Sq1 0 . . .

τ Sq3Sq1 0
. . .

0 τ Sq3Sq1
. . .

...
. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎠(4.29)

Ĥp,q
n =

Hp,q
n ⊕ hp−4,q ⊕ hp−8,q ⊕ . . .⎛⎝δSq2Sq1 0

τ B
0

⎞⎠ (hp−4,q−1 ⊕ hp−8,q−1 ⊕ . . . )

(4.30)

ĥp,q =
hp,q ⊕ hp−4,q ⊕ hp−8,q ⊕ . . .

B(hp−4,q−1 ⊕ hp−8,q−1 ⊕ . . . )
.(4.31)

With this notation we can describe the E2-page of the slice spectral
sequence for KW/2n over any field of characteristic unequal to 2 and rings
of S-integers in number fields.
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Theorem 4.32. For q′ = q − w the E2-page of the slice spectral sequence
for KW/2n over a field F of characteristic unequal to 2 is given by

E2
p,q,w(KW/2n) ∼=

⎧⎪⎨⎪⎩
ĥq

′,q′ p ≡ w mod 4

ĥq
′,q′ p ≡ w + 1 mod 4

0 otherwise.

The same identifications hold over the ring of S-integers in a number field
with the exceptions

E2
p,w+2,w(KW/2n) ∼=

{
ĥ2,2/τ p− w ≡ 0, 1 mod 4

0 p− w ≡ 2, 3 mod 4,

E2
p,w+1,w(KW/2n) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ĥ1,1 ⊕ h2,1 p− w ≡ 0 mod 4

ĥ1,1 p− w ≡ 1 mod 4

0 p− w ≡ 2 mod 4

h2,1 p− w ≡ 3 mod 4.

Remark 4.33. We note that E2 	= E∞ for KW/2n over R and Q2. Over R

there is a family of differentials on the En-page, see Theorem 4.35, and over
Q2 there is a nontrivial d2-differential.

Theorem 4.34. For l = 1 or n, the restriction of the slice d1-differential to
the summand Σq+j,qMZ/2l of sq(KQ/2n) in (4.25) is given by

d1(KQ/2n)(q, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(Sq3Sq1, 0, Sq2, 0, 0) q − 1 > j ≡ 0 mod 4

(Sq3Sq1, 0, Sq2, 0, 0) q − 1 > j ≡ 1 mod 4

(Sq3Sq1, 0, Sq2 + ρSq1, 0, τ) q − 1 > j ≡ 2 mod 4

(Sq3Sq1, 0, Sq2 + ρSq1, 0, τ) q − 1 > j ≡ 3 mod 4,

d1(KQ/2n)(q, q − 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(∂2

2nSq2Sq1, 0, Sq2, 0, 0) q − 1 ≡ 0 mod 4

(Sq3Sq1, 0, Sq2, 0, 0) q − 1 ≡ 1 mod 4

(∂2
2nSq2Sq1, 0, Sq2 + ρSq1, 0, τ) q − 1 ≡ 2 mod 4

(Sq3Sq1, 0, Sq2 + ρSq1, 0, τ) q − 1 ≡ 3 mod 4,

d1(KQ/2n)(q, q) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(0, Sq2∂2n

2 , Sq2 ◦ pr2n

2 , 0, 0) q ≡ 0 mod 4

(0, inc22n ◦ Sq2Sq1, Sq2, 0, 0) q ≡ 1 mod 4

(0, Sq2∂2n

2 , Sq2 ◦ pr2n

2 , τ∂2n

2 , τ ◦ pr2n

2 ) q ≡ 2 mod 4

(0, inc22n ◦ Sq2Sq1, Sq2 + ρSq1, 0, τ) q ≡ 3 mod 4.
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The ith component of d1(KQ/2n)(q, j) is a map

Σq+j,qMZ/2l → Σq+j+i,q+1MZ/2l
′
,

where l′ = 1 or n.

Proof. This follows from Theorem 4.26.

Theorem 4.35. The only nontrivial di-differentials for i ≥ 2 in the slice
spectral sequence for KW/2n over the real numbers R are dn : En

p,q,w →
En

p−1,q+n,w for p− w ≡ 1 mod 4. The E∞-page is given by

E∞
p,q,w(KW/2n) ∼=

{
hq

′,q′ p− w ≡ 0 mod 4, q′ = q − w < n

0 otherwise.

Proof. The abutment in question is given by

(4.36) KWp,w(R;Z/2
n) ∼=

{
Z/2n p− w ≡ 0 mod 4

0 otherwise.

If E2
4k+1+w,w,w = h0,0 does not support any differentials then

KWp,w(R;Z/2
n) 	= 0

for p − w ≡ 1 mod 4, a contradiction. By (2.71) multiplication by ρ ∈
h1,1 = π0,0s1(1) — generator in the polynomial algebra h∗,∗ — induces a
map Er

p,q,w → Er
p,q+1,w that commutes with the differentials. Thus, by ρ-

linearity, if Er
4k+1+w,w,w supports a nontrivial dr-differential then so does

the group Er
4k+1+w,w+q,w for every q ≥ 0. If r 	= n the terms on the E∞-page

cannot produce the groups in (4.36) by a cardinality count.

Remark 4.37. Since 〈−1〉 − 〈1〉 = −2 ∈ W (F ), Lemma 2.72 implies ρ maps
to −2 ∈ π∗,∗(KW). Hence we recover KW∗,∗(R;Z/2n) from the associated
graded (all the extensions are nontrivial).

In the next result we let a = 2q − p, q′ = q − w, q = (q mod 4) ∈
{0, 1, 2, 3}, and set

Rp,q,w =

⎧⎪⎨⎪⎩
ĥa−3−q p− q − w ≡ 1− q mod 4

ĥa−4−q p− q − w ≡ −q mod 4

0 otherwise,



564 Jonas Irgens Kylling et al.

Ap,q,w =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(inc22nSq2Sq1, Sq2 + ρSq1, τ)ĥa−3−q,q′−1 → Ha−q,q′
n ⊕ . . .

p− q − w ≡ 1− q mod 4, q = 0

(∂Sq2Sq1, Sq2 + ρSq1, τ)ĥa−4−q,q′−1 → Ha+1−q,q′
n ⊕ . . .

p− q − w ≡ −q mod 4, q = 0

(Sq3Sq1, Sq2 + ρSq1, τ)ĥa−3−q,q′−1 → ha+1−q,q′ ⊕ . . .

p− q − w ≡ 1− q mod 4, q 	= 0

(Sq3Sq1, Sq2 + ρSq1, τ)ĥa−4−q,q′−1 → ha−q,q′ ⊕ . . .

p− q − w ≡ −q mod 4, q 	= 0

0 otherwise.

Remark 4.38. Rp,q,w and imAp,q,w are used to identify ha−q̄,q′ with
ρ4kτ−4kha−q̄−4k,q′ . This records the multiplicative structure on the E2-page,
which is important for determining higher differentials and extensions, cf.
Theorem 4.59.

Theorem 4.39. Over fields F of char(F ) 	= 2 and rings of S-integers in
number fields we identify the term E2

p,q,w(KQ/2n) as follows.
For q + w ≤ p there is a direct sum decomposition

E2
p,q,w

∼= (Ẽ2
p,q,w ⊕Rp,q,w)/ imAp,q,w,

where Ẽ2
p,q,w is the first homology group of the following complexes:

Ẽ2
p,q≡0 mod 4,w

∼= H1(0 → Ha,q′

n

(
Sq2∂2n

2

Sq2pr

)
−−−−−−−→ ha+3,q′+1 ⊕ ha+2,q′+1),

(4.40)

Ẽ2
p,q≡1 mod 4,w

(4.41)

∼= H1(H
a−3,q′−1
n

(
Sq2∂2n

2

Sq2pr

)
−−−−−−−→ ha,q

′⊕ha−1,q′

(
Sq2 0
0 Sq2

)
−−−−−−−−→ ha+2,q′+1⊕ha+3,q′+1),

Ẽ2
p,q≡2 mod 4,w

∼= H1(h
a−3,q′−1 ⊕ ha−4,q′−1

⎛
⎜⎝inc22nSq

2Sq1 ∂2
2nSq

2Sq1

Sq2 0
0 Sq2

⎞
⎟⎠

−−−−−−−−−−−−−−−−−−−→

(4.42)
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Ha,q′

n ⊕ ha−1,q′ ⊕ ha−2,q′

(
τ∂2n

2 Sq2 0

τpr2
n

2 0 Sq2

)
−−−−−−−−−−−−−→ ha+3,q+1 ⊕ ha+2,q+1),

(4.43)

Ẽ2
p,q≡3 mod 4,w

(4.44)

∼=H1(H
a−3,q′−1
n ⊕ ha−4,q′−1 ⊕ ha−5,q′−1

(
τ∂2n

2 Sq2 0

τpr2
n

2 0 Sq2

)
−−−−−−−−−−−−−→

ha−2,q′ ⊕ ha−3,q′ → 0).

For q+w > p the canonical map KQ/2n → KW/2n induces an isomor-
phism of E2-pages for q +w > p over fields and for q +w− 1 > p over rings
of S-integers. The E2-page of KW/2n is given in Theorem 4.32.

Proof. This follows by inspection of the differentials similarly to the proof
of Theorem 4.16. To give the gist of the argument we discuss a few special
cases.

When q ≡ 0 mod 4 the group E2
p,q,w is the homology of the complex:

ha−3,q′−1 ⊕ ha−4,q′−1 ⊕ ha−5,q′−1 ⊕ . . .⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

inc22nSq2Sq1 ∂2
2nSq2Sq1 0 . . .

Sq2 + ρSq1 0 Sq3Sq1 0 . . .

0 Sq2 + ρSq1 0 Sq3Sq1 0 . . .

τ 0 Sq2 0 Sq3Sq1 0 . . .

0 τ 0 Sq2 0 Sq3Sq1 0 . . .

0 0 0 0 Sq2 + ρSq1 0 Sq3Sq1 0 . . .

0 0 0 0 0 Sq2 + ρSq1 0 Sq3Sq1 0 . . .

0 0 0 0 τ 0 Sq2 0 Sq3Sq1 0 . . .

.

.

.
.
.
.

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Ha,q′

n ⊕ ha−1,q′ ⊕ ha−2,q′ ⊕ . . .⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sq2∂2n

2 Sq3Sq1 0 . . .

Sq2pr2
n

2 0 Sq3Sq1 0 . . .

0 Sq2 + ρSq1 0 Sq3Sq1 0 . . .

0 0 Sq2 + ρSq1 0 Sq3Sq1 0 . . .

0 τ 0 Sq2 0 Sq3Sq1 0 . . .

0 0 τ 0 Sq2 0 Sq3Sq1 0 . . .

0 0 0 0 0 Sq2 + ρSq1 0 Sq3Sq1 0 . . .

.

.

.
.
.
.

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ha+3,q′+1 ⊕ ha+2,q′+1 ⊕ ha+1,q′+1 ⊕ . . .

In the latter matrix, a Sq2 to the right of τ and a Sq3Sq1 above τ can-
not both act nontrivally, i.e., Sq2(τp+2) and Sq3Sq1(τp) are never nontrivial
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simultaneously, cf. Table 10. We find the kernel is given by

ker(

(
Sq2∂2n

2

Sq2pr2
n

2

)
:Ha,q′

n → ha+3,q′+1 ⊕ ha+2,q′+1)(4.45)

⊕ (τ−1Sq2, 1)(ha−3,q′ ⊕ ha−7,q′ ⊕ . . . )(4.46)

⊕ (τ−1Sq2, 1)(ha−4,q′ ⊕ ha−9,q′ ⊕ . . . ),(4.47)

and the image by

⎛⎜⎜⎜⎜⎝
inc22nSq2Sq1 ∂2

2nSq2Sq1 0
Sq2 + ρSq1 0 Sq3Sq1 0

0 Sq2 + ρSq1 0 Sq3Sq1

τ 0 Sq2 0
0 τ 0 Sq2

⎞⎟⎟⎟⎟⎠(4.48)

× (ha−3,q′−1 ⊕ ha−4,q′−1 ⊕ ha−5,q′−1 ⊕ ha−6,q′−1)

+ (Sq3Sq1, Sq2 + ρSq1, τ)(ha−7,q′−1 ⊕ ha−11,q′−1 ⊕ . . . )(4.49)

+ (Sq3Sq1, Sq2 + ρSq1, τ)(ha−8,q′−1 ⊕ ha−12,q′−1 ⊕ . . . ).(4.50)

The term Sq2Sq1 above τ and Sq2 to the left of τ cannot both act nontriv-
ially simultaneously, hence the image contains imAp,q,w. Here Sq3Sq1 acts
(non)trivially on ha−j−4k,q′−1 depending on p− q−w mod 4. The last terms
in (4.45) either cancel the corresponding terms in (4.48) or give rise to ĥa−j,q′ ,
j = 3 − q̄, 4 − q̄ (Sq3Sq1(τ q) 	= 0 if and only if q ≡ 3 mod 4, cf. Table 10).
This produces Rp,q,w and imAp,q,w connects it to the first term of the kernel.
In this way we arrive at the complex in (4.40).

When q ≡ 3 mod 4 the group E2
p,q,w is the homology of the complex:

Ha−3,q′−1
n ⊕ ha−4,q′−1 ⊕ ha−5,q′−1 ⊕ . . .⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sq2∂2n

2 Sq3Sq1 0 . . .

Sq2pr2
n

2 0 Sq3Sq1 0 . . .

τ∂2n

2 Sq2 0 Sq3Sq1 0 . . .

τpr2
n

2 0 Sq2 0 Sq3Sq1 0 . . .

0 0 0 Sq2 + ρSq1 0 Sq3Sq1 0 . . .

0 0 0 0 Sq2 + ρSq1 0 Sq3Sq1 0 . . .

0 0 0 τ 0 Sq2 0 Sq3Sq1 0 . . .

0 0 0 0 τ 0 Sq2 0 Sq3Sq1 0 . . .

.

.

.
.
.
.

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ha,q

′ ⊕ ha−1,q′ ⊕ ha−2,q′ ⊕ . . .
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

inc22nSq2Sq1 ∂2
2nSq2Sq1 0 . . .

Sq2 + ρSq1 0 Sq3Sq1 0 . . .

0 Sq2 + ρSq1 0 Sq3Sq1 0 . . .

τ 0 Sq2 0 Sq3Sq1 0 . . .

0 τ 0 Sq2 0 Sq3Sq1 0 . . .

0 0 0 0 Sq2 + ρSq1 0 Sq3Sq1 0 . . .

0 0 0 0 0 Sq2 + ρSq1 0 Sq3Sq1 0 . . .

.

.

.
.
.
.

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Ha+3,q′+1

n ⊕ ha+2,q′+1 ⊕ ha+1,q′+1 ⊕ . . .

Here a Sq2 to the right of τ and a Sq3Sq1 above τ cannot both act nontrivally;
Sq2(τp+2) and Sq3Sq1(τp) are never nontrivial simultaneously, cf. Table 10.
We find that the kernel is given by

ker(

⎛⎝inc22nSq2Sq1 ∂2
2nSq2Sq1 0 0

τ 0 Sq2 0
0 τ 0 Sq2

⎞⎠ : ha,q
′⊕ha−1,q′⊕ha−2,q′⊕ha−3,q′

(4.51)

→ Ha+3,q′+1
n ⊕ ha,q

′+1 ⊕ ha−1,q′+1)

(4.52)

⊕ (τ−1Sq2, 1)(ha−6,q′ ⊕ ha−10,q′ ⊕ . . . )

(4.53)

⊕ (τ−1Sq2, 1)(ha−7,q′ ⊕ ha−11,q′ ⊕ . . . ),

(4.54)

and the image by⎛⎜⎜⎝
Sq2∂2n

2 Sq3Sq1 0
Sq2pr2

n

2 0 Sq3Sq1

τ∂2n

2 Sq2 0
τpr2

n

2 0 Sq2

⎞⎟⎟⎠ (Ha−3,q′−1
n ⊕ ha−4,q′−1 ⊕ ha−5,q′−1)(4.55)

+ (Sq3Sq1, Sq2 + ρSq1, τ)(ha−6,q′−1 ⊕ ha−10,q′−1 ⊕ . . . )(4.56)

+ (Sq3Sq1, Sq2 + ρSq1, τ)(ha−7,q′−1 ⊕ ha−11,q′−1 ⊕ . . . ).(4.57)

The action of Sq3Sq1 on ha−j−4k,q′−1 depends on p− q −w mod 4. The last
terms in (4.51) and (4.55) either cancel or give rise to ĥa−j,q′ , j = 3− q̄, 4− q̄
(Sq3Sq1(τ q) 	= 0 if and only if q ≡ 3 mod 4, cf. Table 10). This produces
Rp,q,w and imAp,q,w connects it to the first term of the kernel. Hence E2

p,q,w

is the homology of the complex

Ha−3,q′−1
n ⊕ ha−4,q′−1 ⊕ ha−5,q′−1
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⎛
⎜⎜⎜⎜⎜⎝

Sq2∂2n

2 Sq3Sq1 0
Sq2pr2

n

2 0 Sq3Sq1

τ∂2n

2 Sq2 0
τpr2

n

2n 0 Sq2

⎞
⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−−−−−−−→
ha,q

′ ⊕ ha−1,q′ ⊕ ha−2,q′ ⊕ ha−3,q′ ⊕Rp,q,w⎛
⎜⎜⎝
inc22nSq2Sq1 ∂2

2nSq2Sq1 0 0
τ 0 Sq2 0
0 τ 0 Sq2

⎞
⎟⎟⎠

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Ha+3,q′+1

n ⊕ ha,q
′+1 ⊕ ha−2,q′+1

modulo imAp,q,w. Here Sq2Sq1 and Sq2 are connected via τ in the latter
matrix and they are never nontrivial simultaneously. This yields the complex
in (4.44). Similar arguments apply in the remaining cases.

Next we specialize the computation in Theorem 4.39 to the real num-
bers R and rings of S-integers OF,S in a number field F . We determine
the higher differentials by comparison with KW/2n over R. A combination
of Lemma 3.17 and Theorem 4.39 yields the following description of the
E2-page.

Corollary 4.58. Over a number field F and its ring of S-integers OF,S the
E2-page of the slice spectral sequence for KQ/2n is given as follows. Let ε

be 0 for a number field F and 1 for OF,S . When a = 2q − p < 0 we have

E2
p,q,w(KQ/2n) = 0.

When a = 2q − p ≥ 6 and q + w − ε ≤ p we have

E2
p,q,w(KQ/2n) =

⎧⎪⎨⎪⎩
Ĥa,q′

n p− w ≡ 0, 1 mod 4 and q ≡ 0 mod 4

ĥa−(a−q′ mod 4),q′ p− w ≡ 0, 1 mod 4 and q 	≡ 0 mod 4

0 otherwise.

When q + w − ε > p we have

E2
p,q,w(KQ/2n) ∼=

{
ĥq

′,q′ p− w ≡ 0, 1 mod 4

0 otherwise.
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The same identifications hold over OF,S with the exceptions

E2
p,w+2,w(KQ/2n) ∼=

{
ĥ2,2/τ p− w ≡ 0, 1 mod 4

0 p− w ≡ 2, 3 mod 4,

E2
p,w+1,w(KQ/2n) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ĥ1,1 ⊕ h2,1 p− w ≡ 0 mod 4

ĥ1,1 p− w ≡ 1 mod 4

0 p− w ≡ 2 mod 4

h2,1 p− w ≡ 3 mod 4.

The remaining groups in the region 0 ≤ a = 2q − p < 6 are given in Theo-
rem 4.39.

The E2-page sorted by the congruence class mod 4 of w are given in Fig-
ure 9, Figure 10, Figure 11, and Figure 12.

Proof. When a = 2q − p ≥ 6 we have E2
p,q,w(F ) ∼=

⊕r1 E2
p,q,w(R) by Theo-

rem 4.39. If a − 3 ≥ 3 then Ha−3,q′(F ;Z/2n) ∼=
⊕r1 Ha−3,q′(R;Z/2n); that

is, the terms in the slice spectral sequences over F and R are isomorphic in
this range. Combined with Lemma A.19 we obtain the figures.

We determine the E∞-page for KQ/2n and n ≥ 2 by comparison with
KW/2n over the reals. It turns out that the higher differentials for KQ/2n

are determined by the dn-differentials for KW/2n over R.

Theorem 4.59. Let F be a number field with ring of S-integers OF,S and
let n ≥ 2. The slice spectral sequence for KQ/2n over OF,S has only dr-
differentials for r ≥ 2 when r = n, and the E∞ = En+1-page is obtained
from the E2 = En-page (see Figure 9, Figure 10, Figure 11, and Figure 12)
as follows:

» If E2
p,q,w(R;KW/2n) supports a nontrivial dn-differential then

E∞
p,q,w(OF,S ;KQ/2n)

identifies with the kernel of

E2
p,q,w(OF,S ;KQ/2n) →

r1⊕
E2

p,q,w(R;KW/2n).

» If E2
p,q,w(R;KW/2n) is the target of a nontrivial dn-differential then

E∞
p,q,w(OF,S ;KQ/2n) identifies with the cokernel of

E2
p−1,q−n,w(OF,S ;KQ/2n) →

r1⊕
E2

p−1,q−n,w(R;KW/2n).

» In all other degrees we have E∞ = E2.
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The E∞-page of the weight 0 slice spectral sequence for KQ/2n is displayed
in Figure 3. In negative degrees it is isomorphic to the E∞-page for Witt-
theory, cf. Theorem 4.35.

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8

n + 1

n + 2

n + 3

n + 4

H0

h1
⊕ ker ρ22

h2

h3

Ĥ8

ĥ9

h1

(
τ∂ 0

τpr Sq2

)
3

⊕ ker ρ2,2

h0

(
τ∂ 0 0

τpr 0 Sq2

)
2

h2+h1

τ∂,ρ2,τpr

(
τ∂ Sq2

τpr 0

)
1

h1+h0

τ∂,τpr

(
τ∂
τpr

)
0

h0

H4

ĥ5

(Sq2pr)2 (Sq2∂)1

ker ρ22

.

.

.
.
.
.

Ĥn′
/h1

Ĥn′
/h2

ĥn′−2

ĥn′−1

Ĥn′

Figure 3: E∞
8k+p,4k+q,0(KQ/2n), k ≥ 0.

Remark 4.60. The terms E2
8k+p+w,4k+q+w,w(KQ/2n) in the range −1 ≤

p, q ≤ 8, w, k ≥ 0 are displayed in Figure 9, Figure 10, Figure 11, and Fig-
ure 12. By periodicity it suffices to consider w ≤ p < w + 8. We use the
shorthand notations

Hp = Hp,q+4k
n , hp = hp,q+4k, h̃p = ĥmin{p,q+4k}, pr = pr2

n

2 ,

∂ = ∂2n

2 , H̃p =

{
Ĥp,q+4k

n p ≤ q + 4k

ĥp,q+4k p > q + 4k.

The groups Ĥp,q
n and ĥp,q are defined in (4.31). A bracket

(
·
)
p

denotes the
kernel of some matrix — where p refers to top cohomological dimension p in
the source — as in(

τ∂ 0 0
τpr 0 Sq2

)
2

:= ker

((
τ∂2n

2 0 0
τpr2

n

2 0 Sq2

)
: H2,q+4k

n ⊕ h1,q+4k ⊕ h0,q+4k

→ h3,q+4k+1
n ⊕ h2,q+1+4k

)
.
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Proof. (Theorem 4.59) Consider the commutative diagram

Er
p,q,w(OF,S ;KQ/2n) Er

p,q,w(OF,S ;KW/2n)
⊕r1 Er

p,q,w(R;KW/2n)

Er
p−1,q+r,w(OF,S ;KQ/2n) Er

p−1,q+r,w(OF,S ;KW/2n)
⊕r1 Er

p−1,q+r,w(R;KW/2n).

fr
p,q,w

dr(OF,S ;KQ/2n) dr(OF,S ;KW/2n)

grp,q,w

dr(R;KW/2n)
fr
p−1,q+r,w grp−1,q+r,w

Inductively the maps f r
p−1,q+r,w and grp−1,q+r,w are isomorphisms whenever

Er
p−1,q+r,w is the target of a nontrivial differential. For f r

p−1,q+r,w this is the
content of Corollary 4.58. For grp−1,q+r,w the group Er

p−1,q+r,w(OF,S ;E/2n) is
isomorphic to hb,q

′
(OF,S) for some b ≥ 3, and

hb,q
′
(OF,S ;Z/2

n) →
r1⊕

hb,q
′
(R)

is an isomorphism (see Lemma A.8). Thus dr(OF,S ;KQ/2n) is determined
by dr(R;KW/2n) and the composite grp,q,w ◦ f r

p,q,w. Since dr(R;KW/2n) is
nontrivial only when r = n the same holds true for dr(OF,S ;KQ/2n), and
the spectral sequence collapses at its En+1-page.

In the following we give an integral calculation of the hermitian K-groups
of OF,S . Recall that KQ∗,∗(OF,S) is a finitely generated abelian group when
S is finite [5, Proposition 3.13]. Hence the group KQ∗,∗(OF,S ;Z/�n) is finite
for all primes � (when � = 2 this also follows from the E∞-page in Theo-
rem 4.59). Consider the commutative diagram of cofiber sequences

KQ KQ KQ/2n+1 Σ1,0KQ

KQ KQ KQ/2n Σ1,0KQ.

2n+1

2 id 2

2n

Here KQ/2n+1 → KQ/2n induces an inverse system of the slice filtrations of
KQp,w(OF,S ;Z/2n), and an inverse system of the E∞-pages. Since the groups
KQp,w(OF,S ;Z/2n) are finitely generated, the lim1-term in the Milnor exact
sequence vanishes and we obtain

KQp,w(OF,S ;Z2) ∼= lim
n

KQp,w(OF,S ;Z/2
n).

Hence the limit of the inverse system of filtrations becomes an exhaustive,
Hausdorff, and complete filtration of KQp,w(OF,S ;Z2). Moreover, each fil-
tration quotient is the inverse limit of the corresponding E∞-terms.
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Theorem 4.61. When {2,∞} ⊂ S the 2-adic hermitian K-groups

KQ∗,∗(OF,S ;Z2)

are determined up to filtration quotients in Table 9.
When {�,∞} ⊂ S for an odd prime � and p − w ≥ 0 there are isomor-

phisms

KQp,w(OF,S ;Z�) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H0,�(p−w)/2�(OF,S ;Z�) p− w ≡ 0 mod 4

0 p− w ≡ 1 mod 4

H2,2+�(p−w)/2�(OF,S ;Z�) p− w ≡ 2 mod 4

H1,2+�(p−w)/2�(OF,S ;Z�) p− w ≡ 3 mod 4.

(4.62)

Proof. In the decomposition

(4.63) sq(KQ/2n) � Σq,q(MZ/2l ∨
∨
j<q

Σj,0MZ/2),

where l = n if q is even, and l = 1 if q is odd, the slice summand Σj,0MZ/2

maps by the identity to the next stage of the inverse system when j is even,
and by 2 = 0 when j is odd, if j < q (there is no Sq1 from an odd slice sum-
mand to an even slice summand in the inverse system, cf. Convention 4.2).
Thus to identify the inverse limits it suffices to consider the summands ha,b

of E2
p,q,w(KQ/2n) when a− b+ p+ w = i ≡ 0 mod 2.
Since ρ ∈ π0,0s1(1) on the E∞-page of the slice spectral sequence for the

sphere 1 maps to −2 ∈ KW(F ) by Lemma 2.72, we can use ρ to detect
non-split extensions in Witt-theory and hence also in hermitian K-theory.
Similarly we can detect non-split extension in Witt-theory and hermitian
K-theory over OF,S with the help of Lemma 2.74. Using Theorem 4.59 we
are ready to show the calculations in Table 9. We give proofs in some special
cases.

From Figure 3 we read off the filtration quotients

H0,4k, h1,4k+1 ⊕ ker(ρ22,4k+2), h
2,4k+2, h3,4k+3, Ĥ8,4k+4, . . .

for KQ8k,0(OF,S ;Z/2n). Since ker(ρ22,4k+2) vanishes in the inverse limit we
are left with the groups

H0,4k, h1,4k+1, h2,4k+2, h3,4k+3, Ĥ8,4k+4, . . . ,
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Table 9: The 2-adic hermitian K-groups of OF,S

n ≥ 0 l KQn,4k(OF,S ;Z2)

8k 4 f0/f1 = H0,4k, f1/f2 = h1,4k+1, f2/f3 = h2,4k+2, f3 = Z
r1
2

8k + 1 2 f0/f1 = h0,4k+1, f1 = ker(pr3,4k+2)⊕ h1,4k+2

8k + 2 2 f0/f1 = ker(τpr, Sq2)2,4k+2, f1 = h1,4k+3/τpr
8k + 3 2 f0/f1 = ker(pr1,4k+2), f1 = h0,4k+3

8k + 4 1 f0 = Z
r1
2

8k + 5 0 0

8k + 6 1 f0 = ker(Sq2pr)2,4k+4

8k + 7 2 f0/f1 = ker(Sq2∂)1,4k+4, f1 = ker(ρ22,4k+5)

n ≥ 0 l KQn,4k+1(OF,S ;Z2)

8k 2 f0/f1 = ker(ρ21,4k+4), f1 = ker(ρ22,4k+5)

8k + 1 4 f0/f1=h0,4k,f1/f2=ker(pr3,4k+1)⊕h1,4k+1,f2/f3=h2,4k+2/τpr,f3=Z
r1
2

8k + 2 2 f0/f1 = ker(pr2,4k+1)⊕ h0,4k+1, f1 = h1,4k+2/τpr
8k + 3 2 f0/f1 = ker(pr1,4k+1), f1 = h0,4k+2

8k + 4 0 0
8k + 5 1 f0 = Z

r1
2

8k + 6 1 f0 = ker(pr2,4k+3)

8k + 7 2 f0/f1 = ker(Sq2pr1,4k+3), f1 = ker(ρ2,4k+4)

n ≥ 0 l KQn,4k+2(OF,S ;Z2)

8k 2 f0/f1 = ker(ρ21,4k+3), f1 = h2,4k+4/ρ2

8k + 1 2 f0/f1 = ker(ρ20,4k+3), f1 = ker(ρ21,4k+4)

8k + 2 3 f0/f1 = ker(τpr2,4k)⊕ h0,4k, f1/f2 = h1,4k+1/τpr, f2 = Z
r1
2

8k + 3 2 f0/f1 = ker(pr1,4k), f1 = h0,4k+1/τpr
8k + 4 1 f0 = ker(pr0,4k)
8k + 5 0 0
8k + 6 2 f0/f1 = H2,4k+2, f1 = Z

r1
2

8k + 7 2 f0/f1 = H1,4k+2, f1 = h2,4k+3

n ≥ 0 l KQn,4k+3(OF,S ;Z2)

8k 2 f0/f1 = h1,4k+1, f1 = h2,4k+3/ρ2

8k + 1 3 f0/f1 = ker(ρ20,4k+2), f1/f2 = ker(pr3,4k+3), f2 = h2,4k+4/τpr

8k + 2 2 f0/f1 = ker(τpr, Sq2)2,4k+3, f1 = h1,4k+4/τpr
8k + 3 3 f0/f1 = ker(pr1,4k−1), f1/f2 = h0,4k, f2 = Z

r1
2

8k + 4 0 0
8k + 5 0 0

8k + 6 1 f0 = ker(Sq2∂)2,4k+1

8k + 7 3 f0/f1 = H1,4k+1, f1/f2 = h2,4k+2, f2 = Zr
2
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connected via ρ-multiplications. Hence the filtration takes the form

H0,4k, h1,4k+1, h2,4k+2,Zr1
2 .

If k > 0 the filtration identifies with ker(ρ21,4k+1), ker(ρ2,4k+2),Z
r1
2 (see The-

orem A.9).
The filtration quotients of KQ8k+1,0(OF,S ;Z2) are given by

h1,4k+1, ker(pr3,4k+2)⊕ h1,4k+2.

Indeed, these are the only summands surviving in the inverse limit of
{KQ8k+1,0(OF,S ;Z/2n)}n≥1.

The filtration quotients for KQ8k+7,2(OF,S ;Z2) are given by

ker(pr1,4k+2), h
2,4k+3/Sq2pr.

By Theorem A.9 and Lemma A.19(3) these terms identify with H2,4k+2 and
h2,4k+3, respectively.

When � is an odd prime, the slices of KQ/�n are given by

sq(KQ/�n) �
{
Σ2q,qMZ/�n q ≡ 0 mod 2

0 q ≡ 1 mod 2.

Since cd�(OF,S) ≤ 2 the slice spectral sequence for KQ/�n collapses at its
E1-page, and we are done.

5. Special values of Dedekind ζ-functions

In this section we relate special values of ζ-functions of totally real abelian
number fields to hermitian K-groups of rings of integers.

Theorem 5.1. For k ≥ 0 and F a totally real abelian number field with
ring of 2-integers OF [

1
2 ], the Dedekind ζ-function of F takes the values

ζF (−1− 4k) =
#H2,4k+2(OF [

1
2 ];Z2)

#H1,4k+2(OF [
1
2 ];Z2)

=
#h2,4k+3

#h1,4k+3

#KQ8k+2,0(OF [
1
2 ];Z2)

#KQ8k+3,0(OF [
1
2 ];Z2)

= 2r1#h2,4k+3#KQ8k+6,2(OF [
1
2 ];Z2)tor

#KQ7+8k,2(OF [
1
2 ];Z2)

ζF (−3− 4k) =
#H2,4k+4(OF [

1
2 ];Z2)

#H1,4k+4(OF [
1
2 ];Z2)
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= 2r1#ker(ρ22,4k+4)
#KQ8k+6,0(OF [

1
2 ];Z2)

#KQ7+8k,0(OF [
1
2 ];Z2)

= 2r1+1#h2,4k+3

#h1,4k+1

#KQ8k+2,2(OF [
1
2 ];Z2)tor

#KQ8k+3,2(OF [
1
2 ];Z2)

up to odd multiples.

Proof. Throughout the proof we write KQp,w for KQp,w(OF [
1
2 ];Z2) and

Hp,w for Hp,w(OF [
1
2 ];Z2). Based on Wiles’s proof of the main conjecture in

Iwasawa theory [70], Kolster [50, Theorem A.1] showed

(5.2) ζF (1− 2k) = 2r1
#H2

ét(OF [
1
2 ];Z2(2k))

#H1
ét(OF [

1
2 ];Z2(2k))

up to odd multiples. We relate the right hand side of (5.2) to the hermitian
K-groups KQp,w.

By Theorem 4.61 the filtration quotients of KQ8k+2,0 are given by

ker(τpr, Sq2)2,2+4k, h
1,3+4k/τpr

and the filtration quotients of KQ8k+3,0 are given by

ker(pr1,2+4k), h
0,3+4k.

We note there are exact sequences

0 → ker(τpr2
n

2 Sq2)2,4k+2 → H2,4k+2
n ⊕ h0,4k+2 → h2,4k+3 → 0,

0 → ker(τpr2
n

2 )1,4k+2 → H1,4k+2
n → h1,4k+3 → h1,4k+3/τpr2

n

2 → 0,

and

H0,2+4k τpr−−→ h0,3+4k → 0.

Here τpr2
n

2 is surjective on H2,4k+2
n , cf. Lemma A.19. These exact sequences

imply
#h1,4k+3

#H1,4k+2
=

#h1,4k+3/τpr2
n

2

#ker(τpr2
n

2 )1,4k+2
,

and

#ker(τpr2
n

2 Sq2)2,4k+2 =
2#H2,4k+2

#h2,4k+3
.
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In conclusion, we find the equalities

#KQ8k+2,0

#KQ8k+3,0

=

2#H2,4k+2

#h2,4k+3 #h1,4k+3/τpr2
n

2

2#ker(τpr2
n

2 )1,4k+2
=

#h1,4k+3#H2,4k+2

#h2,4k+3#H1,4k+2
.

By Theorem 4.61 we have

KQ8k+6,0
∼= (Sq2pr2

∞

2 )2,8k+6,

and there is a short exact sequence

0 → (ker ρ2,4k+5) → KQ8k+7,0 → ker(Sq2pr2
∞

2 )1,4k+4 → 0.

Moreover, there is an exact sequence

0 → ker(Sq2pr2
∞

2 ) → H2,4k+4 → h4,4k+5 → 0.

Hence we find

#KQ8k+6,0

#KQ8k+7,0

=

#H2,4k+4

#h4,4k+5

#ker(ρ2,4k+5)#H1,4+4k
.

By Theorem 4.61 the filtration quotients of KQ8k+6,2 are given by

H2,4k+2
n ,Zr1

2

Here Zr1
2 arises from the tower ĥ3,3, ĥ4,4, . . . . There is a ρ-multiplication be-

tween H2,4k+2
n and Zr1

2 . The map from KQ → KW induces an isomorphism
on the filtration quotients with the exception of H2,4k+2

n → h2,4k+2. Since
ρ = −2 in the Witt ring, we find

#(KQ8k+6,2)tor = #H2,4k+2/#h3,4k+3.

For KQ8k+7,2 we have the short exact sequence

0 → h2,4k+2 → KQ8k+7,2 → H1,4k+2
n → 0.

Hence we find

#(KQ8k+6,2)tor

#KQ8k+7,2

=
1

#h3,4k+3#h2,4k+2

#H2,4k+2

#H1,4k+2
.
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The filtration quotients of (KQ8k+2,2)tor are given by

(τpr2
n

2 )2,4k⊕h0,4k, ker(h1,4k+1/τpr2
∞

2 →(h5,4k+1⊕h1,4k+1)/(Sq3Sq1,τ)h1,4k+4)

obtained as the inverse limit of

(τpr2
n

2 )2,4k ⊕ h0,4k, h1,4k+1/τpr2
n

2 , Ĥ6,4k+2
n , . . . .

By comparing with KW we see the groups h0,4k, h1,4k+1/τpr2
n

2 , Ĥ6,4k+2
n , . . .

are connected by 2-multiplications, hence are nontorsion.
For KQ8k+3,2 we have the short exact sequence

0 → h0,4k+1 → KQ8k+3,2 → ker(pr2
∞

2 )1,4k → 0.

The exact sequences

0 → (τpr2
n

2 )1,4k → H1,4k
n

τpr2
n

2−−−→ h1,4k+1 → h1,4k+1/τpr2
n

2

and

0 → ker(h1,4k+1/τpr2
n

2 → (h5,4k+1 ⊕ h1,4k+1)/(Sq3Sq1, τ)h1,4k+4)

→ h1,4k+1/τpr2
n

2 → (h5,4k+1 ⊕ h1,4k+1)/(Sq3Sq1, τ)h1,4k+4

∼= h5,4k+1,

conspire to produce the equalities

#h1,4k+1/τpr2
n

2

ker(τpr2
n

2 )1,4k
=

#h1,4k+1

#H1,4k

and

#ker(h1,4k+1/τpr2
n

2 → (h5,4k+1 ⊕ h1,4k+1)/(Sq3Sq1, τ)h1,4k+4)

=
#h1,4k+1/τpr2

n

2

#h5,4k+1
.

Hence we obtain

#(KQ8k+2,2)tor

#KQ8k+3,2

=
#(τpr2

n

2 )2,4k#h0,4k#h1,4k+1/τpr2
n

2

#h5,4k+1

#(τpr2
n

2 )1,4k#h0,4k+1

=
#H2,4k

#h2,4k+1#h1,4k
#h1,4k+1

#H1,4k#h5,4k+1
.
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Remark 5.3. The motivic cohomology groups appearing in Theorem 5.1 are
given explicitly in terms of r1, r2, sS , tS , and t+S in Corollary A.17.

Remark 5.4. Theorem 5.1 is a vast generalization of [7, Theorem 5.9] for
totally real 2-regular number fields (in which case sS = 1, and r2 = tS =

t+S = 0). The grading convention in [7] is such that

GW[w]
p (OF [

1

2
]) = KQp−2w,−w(OF [

1

2
]).

6. The multiplicative structure on s∗(KQ/2n) for n > 1

In this section we determine the multiplicative structure on the slices of
KQ/2n for n > 1. The answer shows τ4 acts periodically. Our main input
is the calculation of the graded slices s∗(KQ) in [51]. In outline, we first
determine the multiplication on the top summands, and then transfer this
information to all other summands via multiplying by the Hopf map η.

Lemma 6.1. Let n ≥ 1.

1. The forgetful map f : KQ/2n → KGL/2n induces the following map
on slices

sq(f) =

{
(id, 0, . . . ) q ≡ 0 mod 2

(inc22n , ∂2
2n , 0, . . . ) q ≡ 1 mod 2.

2. The Hopf map η : Σ1,1KQ/2n → KQ/2n induces the following map
on the top slice summands

sq(η)| =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Σ2q−1,qMZ/2

⎛
⎜⎝ 0

id

⎞
⎟⎠

−−−−→ Σ2q,qMZ/2n ∨ Σ2q−1,qMZ/2 q ≡ 0 mod 2

Σ2q−1,qMZ/2n

⎛
⎜⎝∂2n

2

pr2
n

2

⎞
⎟⎠

−−−−−→ Σ2q,qMZ/2 ∨ Σ2q−1,qMZ/2 q ≡ 1 mod 2.

Table 10 shows inc22n is the unique nontrivial map MZ/2→Σ1,0MZ/2n,
and ∂2

2n is the unique nontrivial map MZ/2 → Σ1,0MZ/2n.

Proof. When q is odd this follows from [52, Corollary 4.13] (the top summand
of sq(Σ1,1KQ/2n) is even).



Hermitian K-theory, Dedekind ζ-functions, and quadratic forms 579

When q is even we compare the top summands in the commutative dia-
gram

sq(KQ/2n) Σ1,0sq+1(KQ/2n)

sq(KGL/2n) Σ1,0sq+1(KGL/2n)

sq(KGL/2) Σ1,0sq+1(KGL/2)

d1

sq(f) Σ1,0sq+1(f)

d1

d1=Q1

obtained from (3.2) and Theorem 4.34. This forces the formula for sq(f).
The second claim follows from the first via the Wood cofiber sequence

(2.53).

Lemma 6.2. On slices the iterated Hopf map ηm : Σm,mKQ/2n → KQ/2n,
m ≥ 1, restricts to the top summand Σ2q−m,qMZ/2l of sq(Σm,mKQ/2n) as

sq(η
m)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Σ2q−m,qMZ/2n

⎛
⎜⎝∂2n

2

pr2
n

2

⎞
⎟⎠

−−−−−→ Σ2q−m+1,qMZ/2 ∨ Σ2q−m,qMZ/2

q −m ≡ 0 mod 2

Σ2q−m,qMZ/2

⎛
⎜⎝ 0

id

⎞
⎟⎠

−−−−→ Σ2q−m+1,qMZ/2l ∨ Σ2q−m,qMZ/2

q −m ≡ 1 mod 2.

Here l = n if m = 1, and l = 1 otherwise.

Proof. For q ≡ m mod 4 this follows since the top summand Σ2q−m,qMZ/2 is
even. For q −m ≡ 1 mod 4 we compare with the d1-differential. Lemma 6.1
shows the claim when m = 1. The following diagram commutes since the
d1-differential vanishes on η (cf. [54])

(6.3)
sq(Σ

m,mKQ/2n) Σ1,0sq+1(Σ
m,mKQ/2n)

sq(KQ/2n) Σ1,0sq+1(KQ/2n).

d1

sq(η) Σ1,0sq+1(η)

d1

Nontriviality of Σ2q−m,qMZ/2 → Σ2q−m+1,qMZ/2 would contradict com-
mutativity of (6.3).
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Lemma 6.4. When q ≡ m mod 4 the restriction of sq(ηm) to the top sum-
mand of s∗(KQ/2n) is given by

Σ2q−m,qMZ/2n

⎛
⎝∂2n

2

pr2
n

2

⎞
⎠

−−−−−→ Σ2q−m+1,qMZ/2 ∨ Σ2q−m,qMZ/2.

When q 	≡ m mod 4 the map sq(η
m) restricts to the direct summands of

s∗(KQ/2n) as

Σ2q−m−j,qMZ/2

⎛
⎝ 0
id

⎞
⎠

−−−−→ Σ2q−m−j+1,qMZ/2l ∨ Σ2q−m−j,qMZ/2.

Here l is n if m = 1, j = 0 and q ≡ 0 mod 4, and 1 otherwise.

Proof. Multiplication by ηm yields a surjective map from a top summand to
another summand. Our claim follows from Lemma 6.2.

Since all slices are s0(1) � MZ-modules it follows that s∗(KQ) is an
MZ-algebra, and hence for our purposes we may form smash products of
slices over MZ. This helps us simplify the calculations.

Lemma 6.5. Under the identification

MZ/2n ∧MZ MZ/2 � Σ1,0MZ/2 ∨MZ/2

we have

pr2
n

2 ∧MZ/2 =

(
0 0
0 id

)
: Σ1,0MZ/2 ∨MZ/2 → Σ1,0MZ/2 ∨MZ/2

and

∂2n

2 ∧MZ/2 =

(
0 0
id 0

)
: Σ1,0MZ/2 ∨MZ/2 → Σ2,0MZ/2 ∨ Σ1,0MZ/2.

By [51] we have the following description of the multiplication map on
the slices of KQ.

Lemma 6.6 ([51, Theorem 3.3]). The multiplication map on the MZ/2-
summands of s∗(KQ) ∧ s∗(KQ) is given by

Σm,qMZ/2 ∧MZ Σm′,q′MZ/2 � Σm+m′,q+q′(Σ1,0MZ/2 ∧MZ/2)
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⎛
⎝Sq1 0

0 id

⎞
⎠

−−−−−−−−→ Σm+m′,q+q′(Σ2,0MZ/2 ∨MZ/2)

and

Σm,qMZ/2 ∧MZ Σm′,q′MZ/2 � Σm+m′,q+q′(Σ1,0MZ/2 ∧MZ/2)⎛
⎝∂2

2∞ 0
0 id

⎞
⎠

−−−−−−−−→ Σm+m′,q+q′(Σ2,0MZ ∨MZ/2).

The multiplication map on the MZ-summands of s∗(KQ) ∧ s∗(KQ) is the
identity.

Lemma 6.7. For n > 1 the multiplication map on the even summands of
s∗(KQ/2n) ∧MZ s∗(KQ/2n) is given as follows: On the MZ/2-summands it
is given by

Σm,qMZ/2 ∧MZ Σm′,q′MZ/2 � Σm+m′,q+q′(Σ1,0MZ/2 ∧MZ MZ/2)⎛
⎝Sq1 0

0 id

⎞
⎠

−−−−−−−−→ Σm+m′,q+q′(Σ2,0MZ/2 ∨MZ/2)

and

Σm,qMZ/2 ∧MZ Σm′,q′MZ/2 � Σm+m′,q+q′(Σ1,0MZ/2 ∧MZ MZ/2)⎛
⎝∂2

2n 0
0 id

⎞
⎠

−−−−−−−−→ Σm+m′,q+q′(Σ2,0MZ/2n∨MZ/2).

On the MZ/2n ∧MZ/2n MZ/2- and MZ/2n ∧MZ/2n MZ/2n-summands it is
the identity.

Proof. This is straightforward from Lemma 6.6.

It remains to determine the multiplication on the odd summands of
s∗(KQ/2n) ∧MZ s∗(KQ/2n) for n > 1.

Lemma 6.8. Let n > 1 and consider the commutative diagram

(6.9)
s1(KQ/2n) ∧MZ s1(KQ/2n) s2(KQ/2n)

s1(KGL/2n) ∧MZ s1(KGL/2n) s2(KGL/2n).
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Restricting the multiplication map

(Σ2,1MZ/2 ∧MZ Σ2,1MZ/2) ∨ (Σ2,1MZ/2 ∧MZ Σ1,1MZ/2)∨
∨(Σ1,1MZ/2 ∧MZ Σ2,1MZ/2) ∨ · · · →

→ Σ4,2MZ/2n ∨ Σ3,2MZ/2,

to the top summands yields the trivial map

Σ2,1MZ/2 ∧MZ Σ2,1MZ/2 → Σ4,2MZ/2n ∨ Σ3,2MZ/2,

and

Σ2,1MZ/2 ∧MZ Σ1,1MZ/2 � Σ4,2MZ/2 ∨ Σ3,2MZ/2⎛
⎝inc22n 0

0 id

⎞
⎠

−−−−−−−−−→ Σ4,2MZ/2n ∨ Σ3,2MZ/2.

Permuting the smash factors Σ2,1MZ/2 and Σ1,1MZ/2 in the source yields
the same map in SH.

Proof. Note that s2(KQ/2n) → s2(KGL/2n) restricts to an isomorphism on
the top summand Σ4,2MZ/2. On the first summand the left vertical map
∂2
2n ∧ ∂2

2n in (6.9) is trivial by Lemma 6.10. For the second map we look at
the commutative diagram

Σ1,1s0(KQ/2n) ∧MZ s1(KQ/2n) s1(KQ/2n) ∧MZ s1(KQ/2n)

Σ1,1s1(KQ/2n) s2(KQ/2n).

s1(η)∧sq(KQ/2n)

Here the left vertical map restricts as (0,Σ3,2MZ/2) on the summand

Σ1,1MZ/2n ∧MZ Σ2,1MZ/2 � Σ4,2MZ/2 ∨ Σ3,2MZ/2.

Lemma 6.1 shows the horizontal maps agree with (∂2n

2 , pr2
n

2 )∧MZΣ2,1MZ/2
and (0,Σ3,2MZ/2). Incidentally, this also implies

Σ2,1MZ/2 ∧MZ Σ2,1MZ/2 → Σ4,2MZ/2n ∨ Σ3,2MZ/2

is trivial. By commutativity of the diagram we have

Σ1,1MZ/2 ∧MZ Σ2,1MZ/2 � Σ4,2MZ/2 ∨ Σ3,2MZ/2
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⎛
⎝? 0
0 id

⎞
⎠

−−−−−−→ Σ4,2MZ/2n ∨ Σ3,2MZ/2.

Using (6.9) and Lemma 6.10 we conclude ? = inc22n .

Lemma 6.10. The map

MZ/2 ∧MZ MZ/2
∂2
2n∧∂2

2n−−−−−→ Σ2,0MZ/2n ∧MZ MZ/2n

is trivial, while

MZ/2 ∧MZ MZ/2
∂2
2n∧inc22n−−−−−−→ Σ1,0MZ/2n ∧MZ MZ/2n

coincides with

Σ1,0MZ/2 ∨MZ/2

⎛
⎝ 0 0
inc22n 0

⎞
⎠

−−−−−−−−→ Σ2,0MZ/2n ∨ Σ1,0MZ/2n.

With notation inspired by [51] s∗(KQ/2n) is a polynomial algebra with
generators and relations

MZ/2n[
√
α
±1

, η, γ]/(2η = 0, η2
∂2
2n−−→

√
α, γ2 = 0, γη

inc22n−−−→
√
α).

Here the bidegrees of
√
α, η, and γ are (4, 2), (1, 1), and (2, 1), respectively.

Theorem 6.11. Let n ≥ 2. For i ≥ 1 and j > 1 the multiplicative structure
on s∗(KQ/2n) is given by

η2 =

⎛⎝∂2
2n 0
0 0
0 id

⎞⎠ , γη =

(
inc22n 0
0 id

)
, γ2 = 0,

ηiηj =

⎛⎝Sq1 0
0 0
0 id

⎞⎠ , γηj =

⎛⎝Sq1 0
0 0
0 id

⎞⎠ .

Proof. Use Lemma 6.4 and the multiplicative structure on the top summands
given in Lemma 6.8.
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Appendix A. Motivic cohomology and the Steenrod algebra

In this section we review the motivic cohomology groups of rings of integers in
number fields and properties of the mod 2 motivic Steenrod algebra. Suppose
F is a field of char(F ) 	= 2. Recall that H∗,∗(−;Z/2) is a contravariant
functor defined on the category SmF of smooth separated schemes of finite
type over F , taking values in bigraded commutative rings of characteristic 2
[64, §3]. Let h∗,∗ be short for the mod 2 motivic cohomology ring

⊕
p,q h

p,q

of F . The structure map X → Spec(F ) turns H∗,∗(X;Z/2) into a bigraded
commutative h∗,∗-algebra for every X ∈ SmF .

By change of topology there is a naturally induced map between motivic
and étale cohomology

(A.1) hp,q → Hp
ét(F ;μ⊗q

2 ).

The map in (A.1) is an isomorphism if p ≤ q and q ≥ 0 by the solution
of the Beilinson-Lichtenbaum conjecture [64, §6] in Voevodsky’s proof of
Milnor’s conjecture on Galois cohomology [67]. Here τ ∈ h0,1 maps to −1 in
H0

ét(F ;μ2) ∼= μ2(F ) ∼= {±1}; multiplication by this class is an isomorphism
on étale cohomology. It follows that τ i 	= 0 in h0,∗. By [64, Theorem 3.4] there
is an isomorphism hp,p ∼= kMp := KM

p (F )/2 for all p ≥ 0, and we conclude

(A.2) h∗,∗ ∼= kM∗ [τ ].

That is, hp,q = 0 if p > q or if p < 0, hp,p ∼= kMp and multiplication by
τ ∈ h0,1 is an isomorphism on h∗,∗. Note that when 0 ≤ p ≤ q, every element
of hp,q is a τ q−p-multiple of an element of hp,p. Formally inverting τ yields
an isomorphism [29, Theorem 1.1, Remark 6.3], [21, Corollary 3.6]

(A.3) h∗,∗[τ−1]
∼=→ H∗

ét(F ;μ⊗∗
2 ).

We write A∗,∗ for the mod 2 Steenrod algebra of bistable motivic co-
homology operations on SmF generated by the Steenrod squares Sqi and
multiplication by elements in h∗,∗, see [21], [68]. Every map

MZ/2 → Σp,qMZ/2

in the stable motivic homotopy category SH(F ) induces a bistable operation
of bidegree (p, q); in fact, every operation arises in this way. For degree
reasons the action of any Steenrod square on hp,p is zero. By (A.2) and the
Cartan formula [68, Proposition 9.6] it essentially remains to determine the
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actions on τ . Recall ρ denotes the class of −1 in h1,1 ∼= F×/2 and Sq1(τ) = ρ.
In the main body of the paper we make use of Table 10, which is the content
of [52, Corollary 6.2].

Table 10: Steenrod operations acting on τ -powers, k ≥ 0

τ4k τ4k+1 τ4k+2 τ4k+3

Sq1 0 ρτ4k 0 ρτ4k+2

Sq2 0 0 ρ2τ4k+1 ρ2τ4k+2

Sq2 + ρSq1 0 ρ2τ4k ρ2τ4k+1 0

Sq3 0 0 ρ3τ4k 0

Sq2Sq1 0 0 0 ρ3τ4k+1

Sq2Sq1 + Sq3 0 0 ρ3τ4k ρ3τ4k+1

Sq3Sq1 0 0 0 ρ4τ4k

The localization sequences for motivic cohomology [28, §14.4] and étale
cohomology [59, III.1.3] show that (A.1) and (A.3) generalize to the ring of
S-integers OF,S . One notable difference compared to the case of fields is the
possible non-vanishing of h2,1 ∼= Pic(OF,S)/2. By the work of Spitzweck [60],
the mod 2 Steenrod algebra A∗,∗ over the Dedekind domain OF,S has the
same structure as over fields. In particular, Table 10 remains valid over rings
of S-integers.

Lemma A.4 ([68, Lemma 11.1], [21, Theorem 1.1], [60, §11.2]). In weight
0 and 1 the motivic Steenrod algebra A∗,∗ is generated by Sq1, Sq2, Sq3,
Sq2Sq1 and Sq3Sq1 as a free left h∗,∗-module. The nontrivial elements are:

(p, q) Ap,q

(0, 0) h0,0

(1, 0) h0,0{Sq1}
(0, 1) h0,0{τ}
(1, 1) h1,1 ⊕ h0,0{τSq1}
(2, 1) h2,1 ⊕ h1,1{Sq1} ⊕ h0,0{Sq2}
(3, 1) h2,1{Sq1} ⊕ h0,0{Sq2Sq1} ⊕ h0,0{Sq3}
(4, 1) h0,0{Sq3Sq1}

Lemma A.5 ([54, Theorem A.5]). There are naturally induced cofiber se-
quences

MZ/2n−1 → MZ/2n
pr2

n

2−−→ MZ/2
∂2
2n−1−−−→ Σ1,0MZ/2n−1

and

MZ/2
inc22n−−−→ MZ/2n → MZ/2n−1 ∂2n−1

2−−−→ Σ1,0MZ/2.
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In weight 0 and 1 there are the following nontrivial maps:

(p, q) [MZ/2n,Σp,qMZ/2]

(0, 0) h0,0{pr2n

2 }
(1, 0) h0,0{∂2n

2 }
(0, 1) h0,0{τpr2n

2 }
(1, 1) h1,1{pr2n

2 } ⊕ h0,1{∂2n

2 }
(2, 1) h2,1{pr2n

2 } ⊕ h0,0{Sq2pr2n

2 } ⊕ h1,1{∂2n

2 }
(3, 1) h2,1{∂2n

2 } ⊕ h0,0{Sq3pr2n

2 , Sq2∂2n

2 }
(4, 1) h0,0{Sq1Sq2∂2n

2 }
(p, q) [MZ/2,Σp,qMZ/2n]

(0, 0) inc22nh0,0

(1, 0) ∂2
2nh0,0

(0, 1) inc22nh0,1

(1, 1) inc22nh1,1 ⊕ ∂2
2nh0,0

(2, 1) inc22nh2,1 ⊕ inc22nSq2h0,0 ⊕ ∂2
2nh1,1

(3, 1) inc22nSq2Sq1h0,0 ⊕ ∂2
2nh2,1 ⊕ ∂2

2nSq2h0,0

(4, 1) ∂2
2nSq2Sq1h0,0

We note the equalities pr2
n

2 ∂2
2n = Sq1 = ∂2n

2 inc22n .

Lemma A.6. For every number field F there is a naturally induced surjec-
tive map

F×/2 →
r1⊕

R×/2.

Proof. Follows from the strong approximation theorem for valuations in
number fields [12, §15].

Lemma A.7. For every number field F the naturally induced map

kn(F ) →
r1⊕

kn(R)

is surjective for n = 1, 2, and bijective for n ≥ 3.

Proof. Lemma A.6 implies this for n = 1, 2 since k2(F ) is generated by
products k1(F ) ⊗ k1(F ) → k2(F ). The bijection for n ≥ 3 is shown in [37,
Theorem A.2].

We can recast these results in terms of motivic cohomology by using the
identification of Milnor K-groups with the diagonal part of motivic coho-
mology [64, Theorem 3.4].
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Lemma A.8. For every number field F the naturally induced map

hp,q(F ) →
r1⊕

hp,q(R)

is injective for p = 0, surjective for p = 1, 2, and an isomorphism for p ≥ 3.

For a ∈ OF � {0} we have OF,S := {x ∈ F |‖x‖v ≤ 1 for all v 	∈ S} =

OF [
1
a ] if and only if the prime factors of aOF are precisely the primes ideals

p for which the corresponding place pv ∈ S � S∞. Note that O×
F,S = {x ∈

F |‖x‖v = 1 for all v 	∈ S} is a finitely generated abelian group of rank
#S − 1 = r1 + r2 + #(S � S∞) − 1. By the solution of the Bloch-Kato
conjecture [69] the results on the motivic cohomology groups of OF,S with
Z(2)-coefficients in [28] extend to integral coefficients.

Theorem A.9 ([28, Theorems 14.5, 14.6]). The integral motivic cohomology
group Hp,q(OF,S) is trivial outside the range 1 ≤ p ≤ q except in bidegrees
(0, 0) and (2, 1).

The naturally induced map Hp,q(OF,S) → Hp,q(F ) is:

» bijective for p = 0 and all q, and also for p = 1 and q ≥ 2 (14.6 (3)).
» injective for (p, q) = (1, 1), (2, 2) (14.6 (1)).
» surjective for (p, q) = (2, 1) (the target is the trivial group).
» injective for p = 2, q ≥ 3 (14.6 (4)), and there is a short exact localiza-

tion sequence

0 → H2,q(OF,S) → H2,q(F ) →
⊕
x/∈S

H1,q−1(k(x)) → 0.

» bijective for p ≥ 3, p ≤ q (14.6 (3), 14.5 (2), 14.5 (3)), and

Hp,q(OF,S) ∼=
{
(Z/2)r1 p ≡ q mod 2

0 p 	≡ q mod 2.

Corollary A.10. For 0 ≤ p ≤ q, multiplication by τ ∈ h0,1(OF,S) induces
an isomorphism

τ : hp,q(OF,S)
∼=→ hp,q+1(OF,S).

Proof. This follows from (A.1), finiteness of hp,q(OF,S) for all p, q ∈ Z, and
the exact localization sequence [28, §14.4] commutative diagram
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⊕
x �∈S hp−2,q−1(k(x)) hp,q(OF,S) hp,q(F )

⊕
x �∈S hp−2,q(k(x)) hp,q+1(OF,S) hp,q+1(F ).

τ τ τ

Alternatively, apply the Beilinson-Lichtenbaum conjecture for Dedekind do-
mains [16, Theorem 1.2 (2)].

Lemma A.11. Over OF,S the map τ : h2,1 → h2,2 is injective with image
contained in ker(ρ2,2).

Proof. As in [64, §6] the change of topology adjunction between the Nisnevich
and étale sites over OF,S (see also [60, p. 9], [16, Theorem 1.2.4]) yields a
commutative diagram with vertical product maps

(A.12)
h2,1 ⊗ h0,1 H2

ét(OF,S ;μ2(1))⊗H0
ét(OF,S ;μ2(1))

h2,2 H2
ét(OF,S ;μ2(2)).

∼=
∼=

The lower horizontal and right vertical maps in (A.12) are isomorphisms
(use the localization sequence for the horizontal map). Injectivity of the top
horizontal map in (A.12) follows from the commutative diagram of exact
coefficient sequences obtained from the change of topology adjunction

H2,1/2 H2
ét(OF,S ;Z(1))/2

h2,1 H2
ét(OF,S ;Z/2(1)) ∼= H2

ét(OF,S ;μ2(2)).

∼=

∼=

Here the maps exiting the top left corner are isomorphisms (use H3,1 = 0
and the quasi-isomorphism Z(1) � Gm[−1] in [60, Theorem 7.10]). This
shows τ : h2,1 → h2,2 is injective. Its image is contained in ker(ρ2,2) because
ρh2,1 = 0.

When q ≥ 2 the positive motivic cohomology groups hp,q+ of OF,S fit into
an exact sequence

0 → h0,q
ψ0,q→ (Z/2)r1+r2 → h1,q+ → h1,q

ψ1,q→ (Z/2)r1 → h2,q+ → h2,q(A.13)
ψ2,q→ (Z/2)r1 → 0.
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Here we consider the canonically induced map

ψp,q : h
p,q(OF,S) →

r1⊕
hp,q(R)⊕

r2⊕
hp,q(C).

We refer to [13] for the definition of positive étale cohomology groups; see [45,
(9)] for the indexing in (A.13). The exactness of (A.13) follows by identifying
étale and motivic cohomology groups in the given range, see [28, Theorem
14.5]. The subgroup of totally positive units of OF,S is defined by

O×,+
F,S := {α ∈ O×

F,S |σ(α) > 0, ∀σ : F → R}.

The narrow Picard group of OF,S is defined by the exact sequence

0 → O×,+
F,S → F×,+ → Div(OF,S) → Pic+(OF,S) → 0.

Here Div(OF,S) denotes the group of divisors. By [50, Lemma 7.6(a)] there
is an exact sequence

0 → im(h1,q+ → h1,q) → h1,q
ψ1,q→ (Z/2)r1 → Pic+(OF,S) → Pic(OF,S) → 0.

(A.14)

Using (A.13) we note the following result.

Lemma A.15. The naturally induced map

ψ2,q : h
2,q(OF,S) →

r1⊕
h2,q(R)

is surjective for q ≥ 2.

Proposition A.16 ([28, Theorem14.5 (3), (4), (5)], [50, Propositions 6.12,
6.13]). Suppose S is a set of places of F containing the archimedean and
dyadic ones.

1. H0,q(OF,S) = Z if q = 0 and trivial if q 	= 0.
2. H1,q(OF,S) = Zdq ⊕ Z/wq(F ), where dq = r2 if q ≥ 2 is even and

dq = r1 + r2 if q > 1 is odd.
3. H2,q(OF,S) is a torsion group for all q ∈ Z. If #S < ∞ then H2,q(OF,S)

is finite and the 2-rank rk2H
2,q(OF,S ;Z2)/2 equals r1 + sS + tS − 1 if

q is even and sS + tS − 1 if q is odd.

Corollary A.17. For the ring OF,S of S-integers in a number field F we
have

#h1,1 = 2r1+r2+sS+t+S ,#h2,2 = 2r1+sS+tS−1,
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#hq,q = 2r1 if q ≥ 3,#ker(ρ21,1) = 2r2+sS+t+S ,

#ker(ρ22,2) = #ker(ρ2,2) = 2sS+tS−1,#h2,2/ρ2 = #h2,2/2 if r1 > 0.

Lemma A.18. For the ring of S-integers OF,S in a number field F the
multiplication map ρq−1 : h1,1 → hq,q is surjective when q ≥ 3.

Proof. By Theorem 2.48 there is a commutative diagram

I(OF,S)/I2(OF,S) h1,1(OF,S)

I(F )/I2(F ) h1,1(F )

Iq(F )/Iq+1(F ) ∼= Iq(OF,S)/Iq+1(OF,S) hq,q(F ) ∼= hq,q(OF,S).

∼=

∼=

(〈1〉−〈−1〉)q−1 ρq−1

∼=

The left vertical composite is surjective. Indeed, by [38, Corollary IV.4.5] the
image of W (OF,S)∩I2(F ) by the signature map is 4Zr1 , hence σ(I(OF,S)) ⊃
4Zr1 , so multiplication by the element 〈1〉−〈−1〉 corresponding to ρ induces
I3(OF,S) = I3(F ) ∼= 8Zr1 .

Lemma A.19. The following holds over the ring of S-integers OF,S in any
number field.

1. pr2
n

2 : H2,q
n → h2,q is surjective if q ≡ 0 mod 2, and it has cokernel of

rank 2r1 if q ≡ 1 mod 2.
2. ∂2n

2 : H2,q
n → h3,q is surjective if q ≡ 1 mod 2, and trivial if q ≡ 0 mod 2.

3. H1,q
n

pr2
n

2−−→ h1,q
Sq2

−−→ h3,q+1 is trivial if q ≡ 0, 1, 2 mod 4.

4. H1,q
n

∂2n

2−−→ h2,q
Sq2

−−→ h4,q+1 is trivial if q ≡ 1, 2, 3 mod 4, and surjective
if q ≡ 0 mod 4.

Proof. In the proof we make use of the motivic squaring operation Sq2

and Table 10. (1) and (2) follow from the commutative diagrams with exact
rows

H2,q
n (OF,S) h2,q(OF,S) H3,q

n−1(OF,S) H3,q
n (OF,S)

⊕r1 H3,q
n−1(R)

⊕r1 H3,q
n (R),

pr2
n

2
∂2
2n−1

∼= ∼=
∼=
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H2,q
n (OF,S) h3,q(OF,S) H3,q

n+1(OF,S) H3,q
n (OF,S)

⊕r1 H3,q
n+1(R)

⊕r1 H3,q
n (R).

∂2n

2
inc2

2n+1

∼= ∼=

The lower horizontal map is trivial if q ≡ 0 mod 2 and an isomorphism if
q ≡ 1 mod 2 (see Table 10).

(3) The Steenrod square Sq2 : h3,q+1 → h5,q+2 is an isomorphism if q ≡
0, 1 mod 4 (see Table 10). Thus the composite

H1,q
n

pr2
n

2−−→ h1,q
Sq2

−−→ h3,q+1

is trivial if q ≡ 0, 1 mod 4, since Sq2Sq2pr2
n

2 = τSq3Sq1pr2
n

2 = 0. If q ≡
2 mod 4, Sq2 acts trivially on h1,q (see Table 10).

(4) The Steenrod square Sq2 : h4,q+1 → h6,q+2 is an isomorphism if q ≡
1, 2 mod 4 (see Table 10). Thus the composite

H1,q
n

∂2n

2−−→ h2,q
Sq2

−−→ h4,q+1

is trivial if q ≡ 1, 2 mod 4, since Sq2Sq2∂2n

2 = τSq3Sq1∂2n

2 = 0. If q ≡
3 mod 4, Sq2 acts trivially on h2,q (see Table 10). Finally, Sq2∂2n

2 inc22n =
Sq2Sq1 : h1,q → h4,q+1 is surjective if q ≡ 0 mod 4 (see Table 10).

Lemma A.20 ([19, p. 528]). The second hermitian K-group of any field F
is given by

KQ2,0(F ) ∼= K2(F )⊕ h0,1.

Example A.21. Examples of mod 2 motivic cohomology rings used in the
main body of the paper.

Table 11: Here u ∈ h1,1 is the class of a nonsquare in F× not equal to ρ or
π, and π ∈ h1,1 is the class of � ∈ Q×

�

F h∗,∗

R Z/2[τ, ρ]
Q2 Z/2[τ, u, ρ, π]/(π2, u2, ρu, ρπ, uπ + ρ2)
Q� Z/2[τ, u, π]/(u2, π2), � ≡ 1 mod 4
Q� Z/2[τ, ρ, π]/(ρ2, π(ρ+ π)), � ≡ 3 mod 4
F� Z/2[τ, u]/(u2), � ≡ 1 mod 4
F� Z/2[τ, ρ]/(ρ2), � ≡ 3 mod 4
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Appendix B. Tables and figures

0
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3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12

h0,0

h1,1 h0,1

h2,2 h1,2

h3,3

h0,2

h2,3

h4,4

h1,3

h3,4

h5,5

h0,3

h2,4

h4,5

h1,4

h3,5

h0,4

h2,5 h1,5 h0,5

h2,1

Figure 4: The E -page of the weight 0 slice spectral sequence for KGL/2.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10

h0,0

h1,1

h2,2/ρ

h3,3/ρ

h4,4/ρ

h5,5/ρ

h6,6/ρ

h7,7/ρ

h8,8/ρ

ker ρ1,1

h0,1

⊕

ker ρ2,2

h1,2

⊕

ker ρ3,3

ker ρ4,4

ker ρ5,5

ker ρ6,6

ker ρ7,7

ker ρ8,8

h0,1

h1,2

h0,2

⊕

h2,3

h0,2

h1,3 h0,3

h4,4

h5,5/ρ2

h6,6/ρ

h7,7/ρ

h8,8/ρ

ker ρ23,4

ker ρ5,5

h4,5/ρ2

⊕

ker ρ6,6

h5,6/ρ2

⊕

ker ρ7,7

ker ρ8,8

ker ρ22,4

ker ρ23,5

h4,5/ρ3

⊕

h5,6/ρ3

h4,6/ρ

⊕

h6,7/ρ3

ker ρ31,4

ker ρ32,5

ker ρ3,5
⊕

ker ρ33,6

h4,6/ρ2

⊕

h5,7/ρ2

h0,4

ker ρ22,5

h1,5

⊕

ker ρ23,6

h2,6/ρ

⊕

h4,7/ρ2

h8,8/ρ5

ker ρ1,5

h0,5

⊕

ker ρ22,6

h1,6

⊕

ker ρ53,7

ker ρ27,8

h0,5

h1,6

h0,6

⊕

h2,7

ker ρ26,8

Figure 5: E2
p,q,0(KQ/2).
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Table 12: Matrix M1

p,q,w used in Theorem 4.16
���������p− w

q − p+ w
0 1 2 3

0

⎛
⎜⎜⎜⎜⎝

0
0
0
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ρ3τ−2 0
ρ2τ−1 0

0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ρ4τ−3 0
ρ2τ−1 ρ3τ−2 0

0 ρ2τ−1 0
τ 0 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
ρ2τ−1 0 ρ4τ−3 0

ρ ρ2τ−1 ρ3τ−2 0
τ 0 ρ2τ−1 0
0 τ 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

⎛
⎜⎜⎜⎜⎝

0
0
ρ
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ρ3τ−2 0
0 0
ρ 0
τ ρ
0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ3τ−2 ρ4τ−3 0
ρ2τ−1 0 0

0 0 0
τ 0 0
0 τ ρ
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
ρ2τ−1 ρ3τ−2 ρ4τ−3 0

0 ρ2τ−1 0 0
0 0 0 0
0 τ 0 0
0 0 τ ρ
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

⎛
⎜⎜⎜⎜⎝

0
0
0
τ
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ρ3τ−2 0
0 0
ρ 0
τ 0
0 τ

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ρ4τ−3 0
ρ2τ−1 ρ3τ−2 0

0 0 0
0 ρ 0
0 τ 0
0 0 τ

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 ρ4τ−3 0
0 ρ2τ−1 ρ3τ−2 0
0 0 0 0
0 0 ρ 0
0 0 τ 0
0 0 0 τ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

3

⎛
⎜⎜⎜⎜⎝

0
0
0
τ
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ρ3τ−2 0
0 0
0 0
0 0
0 τ

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ3τ−2 ρ4τ−3 0
ρ2τ−1 0 0

ρ ρ2τ−1 0
0 0 0
0 0 0
0 0 τ

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
ρ2τ−1 ρ3τ−2 ρ4τ−3 0

ρ ρ2τ−1 0 0
τ ρ ρ2τ−1 0
0 0 0 0
0 0 0 0
0 0 0 τ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Table 13: Kernel and image of M1
p,q and M2

p,q used in Theorem 4.16

p − w q − p + w
ker(M1

p,q,w) a′ ker(M2
p,q,w)

imM1
p+1,q−1,w A′ imM2

p+1,q−1,w

i ∈ [0, a′), j ∈ [0, A′)

0

0 ha,q′ a − 0 ⊕
a′−i≡0 hi,q′

⊕
⊕

a′−i≡3(ρ
2τ−2, 1)hi,q′

(ρ3τ−2, ρ2τ−1, τ)ha−3,q′−1 ⊕ (ρ4τ−3, τ)ha−4,q′−1 ⊕ ρha−5,q′−1 a − 5

1 ker(ρ2
a,q′ ) ⊕ ha−1,q′ a − 1

ρ2τ−1ha−3,q′−1 ⊕ (ρ3τ−2, ρ2τ−1, τ)ha−4,q′−1 ⊕ (ρ4τ−3, τ)ha−5,q′−1 ⊕ ρha−6,q′−1 a − 6

2 ker(ρ2
a−1,q′ ) ⊕ ha−2,q′ a − 2 ⊕

A′−j≡2(ρ
2τ−1, τ)hj,q′−1

⊕
⊕

A′−j≡3 τhj,q′−1
ρha−3,q′−1 a − 3

3 (ρ2τ−2, 1)ha−2,q′ ⊕ ha−3,q′ a − 3

(ρ3τ−2, ρ, τ)ha−3,q′−1 ⊕ ρha−4,q′−1 a − 4

1

0 ker(ρa,q′ ) a − 0 ⊕
a′−i≡1 hi,q′

⊕
⊕

a′−i≡0(ρ
4τ−4, ρτ−1, 1)hi,q′ρ2τ−1ha−3,q′−1 ⊕ (ρ4τ−3, ρ, τ)ha−4,q′−1 ⊕ τha−5,q′−1 a − 5

1 (ρτ−1, 1) ker(ρ2
a−1,q′ ) a − 1

ρ2τ−1ha−4,q′−1 ⊕ (ρ4τ−3, ρ, τ)ha−5,q′−1 ⊕ τha−6,q′−1 a − 6

2 (ρτ−1, 1) ker(ρ5
a−2,q′ ) a − 2 ⊕

A′−j≡0 τhj,q′

⊕
⊕

A′−j≡3(ρ
4τ−3, ρ, τ)hj,q′−1

τha−3,q′−1 a − 3

3 ker(ρ2
a,q′ ) ⊕ (ρ4τ−3, ρ2τ−1, 1)ha−3,q′ a − 3

(ρ3τ−2, ρ, τ)ha−3,q′−1 ⊕ τha−4,q′−1 a − 4

2

0 0 a − 0 ⊕
a′−i≡1 hi,q′

⊕
⊕

a′−i≡2(ρ
2τ−2, 1)hi,q′

(ρ3τ−2, ρ2τ−1, ρ)ha−3,q′−1 ⊕ ρ3τ−2ha−4,q′−1 ⊕ τha−5,q′−1 a − 5

1 0 a − 1

(ρ2τ−1, ρ, τ)ha−3,q′−1 ⊕ ρ3τ−2ha−5,q′−1 ⊕ τha−6,q′−1 a − 6

2 ker(ρ2
a,q′ ) a − 2 ⊕

A′−j≡0 τhj,q′−1

⊕
⊕

A′−j≡1(ρ
2τ−1, τ)hj,q′−1

τha−3,q′−1 a − 3

3 ha,q′ ⊕ ker(ρ2
a−1,q′ ) a − 3

ρ3τ−2ha−3,q′−1 ⊕ τha−4,q′−1 a − 4

3

0 0 a − 0 ⊕
a′−i≡2(ρ
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ĥ9
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Ĥ6

ĥ8
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ĥ6
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ĥ11

ĥ12

H0

h2
⊕ h1

h3
⊕ h2/ρ2

ĥ4
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ĥ11
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