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On the analogy between real reductive groups and
Cartan motion groups: the Mackey–Higson bijection

Alexandre Afgoustidis

George Mackey suggested in 1975 that there should be analogies
between the irreducible unitary representations of a noncompact
reductive Lie group G and those of its Cartan motion group G0 −
the semidirect product of a maximal compact subgroup of G and a
vector space. He conjectured the existence of a natural one-to-one
correspondence between “most” irreducible (tempered) represen-
tations of G and “most” irreducible (unitary) representations of
G0. We here describe a simple and natural bijection between the
tempered duals of both groups, and an extension to a one-to-one
correspondence between the admissible duals.
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1. Introduction

1.1. Contractions of Lie groups and a conjecture of Mackey

When G is a Lie group and K is a closed subgroup, one can use the linear
action of K on the vector space V = Lie(G)/Lie(K) to define a new Lie
group: the semidirect product G0 = K � V , known as the contraction of G
with respect to K. The notion first arose in mathematical physics (see Segal
[37], İnönü and Wigner [21], Saletan [36] and the lecture by Dyson [14]):
the Poincaré group of special relativity admits as a contraction the Galilei
group of classical inertial changes, and it is itself a contraction of the de
Sitter group of general relativity.

It is a classical problem to try to determine whether there is a rela-
tionship between the representation theories of G and G0: for instance, the
unitary (irreducible) representations of the Poincaré group famously yield
spaces of quantum states for (elementary) particles [50], and it is quite nat-
ural to wonder about the existence of “nonrelativistic” analogues in the
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representation theory of the Galilei group [20]. In many cases of physical
interest, the observation that the contraction G0 can be seen as the special
point of a one-parameter family (Gt)t∈R of Lie groups (where the parameter
t usually has some physical significance, and Gt is isomorphic with G for all
t �= 0) has led to attempts to exhibit some representations of G0 as “limiting
cases” of representations of G; early examples include [20], [17], [32], [31].

For most Lie groups, unitary representations do not behave well under
the contraction. The parameters needed to identify an irreducible represen-
tation of G are often visibly different from those determining an irreducible
representation of G0, and some of the differences are important for physics
− a consequence of the bad behavior in the case of the Poincaré group is
that the notion of (rest) mass has different meanings in special and Galilean
relativity.

Now, suppose G is a reductive Lie group and K is a maximal compact
subgroup. The contraction G0 is known in that case as the Cartan motion
group of G, probably as a tribute to Élie Cartan’s study of symmetric spaces:
the group G acts by isometries on the negatively curved G/K, while G0 acts
by Euclidean rigid motions on the (flat) tangent space toG/K at the identity
coset.

The algebraic structures of G and G0 and their representation theories
are quite different. Denote the unitary dual of a Lie group Γ by Γ̂; then
George Mackey’s early work on semidirect products [28, 29] describes Ĝ0 in
very simple and concrete terms, but describing Ĝ remains to this day an
extremely deep problem. A complete understanding of the tempered dual
Ĝtemp (the support of the Plancherel measure) was attained in the early
1980s, crowning tremendous efforts of Harish-Chandra and others that had
begun in 1945.

In 1975, however, Mackey noticed surprising analogies, for several sim-
ple examples of reductive groups G, between his accessible description of
Ĝ0 and Harish-Chandra’s subtle parametrization of Ĝtemp. In the examples
studied by Mackey, “large” subsets of Ĝ0 and Ĝtemp could be described us-
ing the same parameters, and the classical constructions for some of the
corresponding representations were reminiscent of one another. Quantum-
mechanical considerations led him to believe that there was more to this
than chance, and he went on to conjecture that there should be a natural
one-to-one correspondence between “large” subsets of Ĝ0 and Ĝtemp [30]:

The physical interpretation suggests that there ought to exist a “natural”
one-to-one correspondence between almost all the unitary representations
of G0 and almost all the unitary representations of G − in spite of the
rather different algebraic structure of these groups.
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Mackey’s idea seems to have been widely considered overenthusiastic at
the time. It is true that in the years immediately following his proposal,
studying the relationship between G-invariant harmonic analysis on G/K
and G0-invariant analysis on G0/K became a flourishing subject (see e.g.
[16, 34]), with beautiful ramifications for all Lie groups [12, 22], and the close
relationship between the two kinds of harmonic analysis does call to mind
Mackey’s observations on the principal series. But few of the authors who
pursued this subject explicitly referred to Mackey’s suggestion. Exceptions
include Dooley and Rice [11], who established in 1985 that the operators
for (minimal) principal series representations of G do weakly converge, as
the contraction is performed, to operators for a generic representation of
G0; and Weinstein [49], who wrote down a Poisson correspondence relating
coadjoint orbits of G attached to (minimal) principal series representations
and generic coadjoint orbits for G0.

But as one moves away from the principal series of G to the other parts
of the tempered dual, it must have seemed difficult in the 1970s to imagine
that anything general could be extracted from Mackey’s suggestions. The
geometrical construction of representations in the deeper parts of Ĝtemp,
for instance that of the discrete series, was then a burning subject; in con-
trast, the most degenerate parts of Ĝ0 look somewhat trivial. Mackey had of
course noticed the absence, for these deeper parts, of any clear geometrical
relationship:

Above all [the conjectured analogy] is a mere coincidence of parametriza-
tions, with no evident relationship between the constructions of correspond-
ing representations.

1.2. Connection with the Connes–Kasparov isomorphism;
Higson’s work

In the late 1980s and in the 1990s, Mackey’s conjecture found an echo in the
study of group C�-algebras. The Baum–Connes conjecture, in its “Lie group”
version due to Connes and Kasparov, describes the K-theory of the reduced
C�-algebra C�

r (G) of a connected Lie group G in terms of the representation
ring of a maximal compact subgroup and Dirac induction. For real reductive
groups, the conjecture was first established by A. Wassermann [48]; a later
proof would follow from V. Lafforgue’s work [27]. Viewing the operator K-
theory of C�

r (G) as a noncommutative-geometry version of the topological
K-theory of the tempered dual Ĝtemp, Paul Baum, Alain Connes and Nigel
Higson pointed out in the 1990s that the Connes–Kasparov isomorphism
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can be reinterpreted as a statement that Ĝtemp and Ĝ0 share algebraic-
topological invariants: see [5, §4]. The Baum–Connes–Kasparov isomorphism
can thus be viewed as a cohomological reflection of Mackey’s conjectured
analogy.

Nigel Higson later remarked that Mackey had in mind a measure-theo-
retic correspondence (which may have been defined only for “almost every”
representation), but that the interplay with the Connes–Kasparov isomor-

phism brought the topologies of Ĝtemp and Ĝ0 into the game, albeit at the
level of cohomology. Because the relationship between the Fell topologies
and the Plancherel measure is nontrivial, he noted [18, 19] that the simplest
way to reconcile both points of view was to guess that there might exist a
natural one-to-one correspondence between every irreducible tempered rep-
resentation of G and every unitary irreducible representation of G0.

After the turn of the century, Higson took up the issue in more detail
and examined the case of complex semisimple groups, in which the tempered
dual Ĝtemp is completely described by the principal series. He constructed in
2008 a natural bijection between Ĝtemp and Ĝ0 in the complex case [18], and
used it to analyze the structures of C�

r (G) and C�
r (G0) − discovering building

blocks for the two C�-algebras that fit together rigidly in the deformation
from C�

r (G) to C�
r (G0). With the help of tools crafted for the purpose in the

early 1990s by Connes and himself (see [9] and [8, §II.10.δ]), he was led to
a new proof of the Connes–Kasparov isomorphism for complex semisimple
groups that is both natural from the point of view of representation theory
and elementary from the point of view of K-theory.

1.3. Contents of this article

We here construct a simple and natural bijection between Ĝtemp and Ĝ0,
for any real reductive group G (more precisely, whenever G is the group
of real points of a connected reductive algebraic group defined over R. The
construction may work for a wider class of reductive groups, as we will see).

David Vogan’s notion of lowest K-types will play a crucial part: we shall
imitate Mackey’s classical parametrization of Ĝ0 (recalled in §2) and build
a Mackey-like parametrization of Ĝtemp using Vogan’s work on tempered
irreducible representations with real infinitesimal character (see §3.1).

Our bijection will turn out (see §4) to preserve lowest K-types and be
compatible with a natural notion of variation of continuous parameters in the
representation theories of both groups. As we shall see (in §5), the Langlands
classification of admissible representations provides an immediate extension
to a one-to-one correspondence between the admissible duals of both groups.
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This paper’s main result, Theorem 3.5, can of course be viewed a classifi-
cation theorem for irreducible tempered representations. Its overall form may
seem particularly simple in view of the equivalent classifications of Knapp–
Zuckerman or Vogan–Zuckerman. One should not forget, though, that our
proofs entirely rely on results extracted from these very deep classifications.

With Mackey’s conjecture established at the level of parameters, we shall
turn elsewhere to the deformation (Gt)t∈R to try to better understand the
reasons for, and implications of, the existence of the correspondence. A first
companion article [4] gives a geometrical realization for the Mackey–Higson
bijection, describing a natural deformation (at the level of representation
spaces) of every irreducible tempered representation π of G onto the cor-
responding representation of G0. A second companion [3] focuses on the

topologies on Ĝtemp and Ĝ0 and the behavior of matrix coefficients, estab-
lishing rigidity properties of the deformation at the C�-algebraic level and
deducing a new proof of the Connes–Kasparov isomorphism.

Together, these companion papers lead to a somewhat different perspec-
tive on the bijection’s definition, which we may summarize in elementary
terms as follows (I thank a referee for this formulation). The irreducible
tempered representations with a given lowest K-type can be parametrized
by a real vector space (modulo a finite group). Moving along a ray in one
of these vector spaces towards infinity, and inspecting the matrix coefficient
functions attached to lowest K-type vectors in a representation π of G, one
can see that these functions actually converge, after a simple rescaling along
the deformation (Gt)t∈R, to certain matrix coefficients for a representation
of G0. This is the one corresponding to π. Unlike the short algebraic con-
struction of this paper, the more geometrical approach does not provide a
proof for the bijection; but it is very relevant to the existing applications.

These further developments are hopefully clear signs that there may be
much more to the Mackey–Higson bijection than the unexpected “coinci-
dence of parametrizations” to be established here.
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2. Representations of the Cartan motion group

2.1. Notation

Let G be the group of real points of a connected reductive algebraic group

defined over R (see for instance [1], §3), and let g be its Lie algebra. (All Lie

algebras in this paper are real, unless they come with a subscript C.)

Fix a maximal compact subgroup K of G, write θ for the Cartan in-

volution of G with fixed-point-set K, and form the corresponding Cartan

decomposition g = k ⊕ p of G. Here k is the Lie algebra of K and p is a

linear subspace of g which, although not a Lie subalgebra, is stable under

the adjoint action Ad : K → End(g).

Recall that the semidirect product K � p is the group whose underlying

set is the Cartesian product K × p, equipped with the product law

(k1, v1) ·0 (k2, v2) := (k1k2, v1 +Ad(k1)v2) (k1, k2 ∈ K, v1, v2 ∈ p).

We will denote that group by G0 and call it the Cartan motion group of G.

Writing V � for the space of linear functionals on a vector space V and

viewing p� as the space of linear functionals on g which vanish on k, note

that in the coadjoint action Ad� : G → End(g�), the subspace p� ⊂ g� is

Ad�(K)-invariant.

We fix once and for all an abelian subalgebra a of g that is contained

in p and is maximal among the abelian subalgebras of g contained in p. We

write A for expG(a).

When Γ is a Lie group, we will write Γ̂ for its unitary dual and Γ̂adm for

its admissible dual (see for instance [42, §0.3] or [47, §3.3]). For the motion

group G0, which is amenable, the support of the Plancherel measure is all

of Ĝ0. For our reductive group G, the support of the Plancherel measure is

the tempered dual Ĝtemp: the set of representations π ∈ Ĝ whose K-finite

matrix elements lie in L2+ε(G/ZG) for every ε > 0. (See [10]; here ZG is the

center of G.) If G/ZG is noncompact, then the trivial representation of G is

not tempered, and so Ĝtemp �= Ĝ.
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2.2. Mackey parameters

When χ is an element of p�, we write Kχ for its stabilizer in the coadjoint
action of K on p; this compact group is usually disconnected. In physics, it
is known as the “little group at χ”.

We define a Mackey parameter (or: Mackey datum) to be any pair
δ = (χ, μ) where χ is an element of p� and μ is an irreducible represen-
tation of Kχ.

We say that two Mackey parameters (χ, μ) and (χ′, μ′) are equivalent
when there exists an element k in K such that

• χ = Ad�(k) · χ′, and
• μ is equivalent, as an irreducible representation of Kχ, with the rep-
resentation u → μ′(k−1uk).

This defines an equivalence relation on the set of Mackey data; we will write
D for the set of equivalence classes.

It may be useful to mention two elementary facts from structure theory
(see [23], sections V.2 and V.3):

(i) Every Mackey datum is equivalent to a Mackey datum (χ, μ) in which
χ lies in a�; furthermore, if χ and χ′ are two elements of a�, and if μ
and μ′ are irreducible representations of Kχ and Kχ′ , then the Mackey
data (χ, μ) and (χ′, μ′) are equivalent if and only if there is an element
of the Weyl group W = W (g, a) which sends χ to χ′ and μ to μ′.

(ii) The dimension of the Ad�(K)-orbit of χ in p� is maximal (among all
possible dimensions of Ad�(K)-orbits in p�) if and only if χ is regular.
All regular elements in a� have the same Ad�(K)-stabilizer, viz. the
centralizer M = ZK(a) of a in K.

2.3. Unitary dual of the motion group

We recall the usual way to build a unitary representation of G0 from a
Mackey parameter δ = (χ, μ).

Consider the centralizer Lχ
0 of χ in G0 (for the coadjoint action). It is

Kχ � p, where Kχ is the little group of §2.2.
Out of δ and χ, build an irreducible representation of this centralizer:

fix a (finite-dimensional) carrier space V for μ, and define an action of L0
χ

on V , where (κ, v) ∈ Kχ � p acts through ei〈χ,v〉μ(k). Write σ = μ⊗ eiχ for
this representation of L0

χ.
Now, observe the induced representation

(2.1) M0(δ) = IndG0

L0
χ
(σ) = IndG0

Kχ�p

(
μ⊗ eiχ

)
.
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Theorem 2.1 (Mackey [28]).

(a) For every Mackey parameter δ, the representation M0(δ) is irreducible.
(b) Suppose δ and δ′ are two Mackey parameters. Then the representations

M0(δ) and M0(δ
′) are unitarily equivalent if and only if δ and δ′ are

equivalent as Mackey parameters.
(c) By associating to any Mackey parameter δ the equivalence class of M0(δ)

in Ĝ0, one obtains a bijection between D and Ĝ0.

Remark 2.2. If χ is zero, then Kχ equals K and the representation of
M0(χ, μ) of G0 is the trivial extension of μ where p acts by the identity.

There is thus in Ĝ0 a family of finite-dimensional representations; every
member of the family is equal to M0(0, μ) for some μ in K̂.

Remark 2.3. In §4, we will need information about the K-module structure
of M0(χ, μ). Recall that M0(χ, μ) can be realized by fixing a μ(K)-invariant
inner product on V , then equipping the Hilbert space

H =
{
f ∈ L2(K,V ) / ∀m ∈ Kχ, ∀k ∈ K, f(km) = μ(m−1)f(k)

}
with the G0-action in which

g0 = (k, v) acts through π0(k, v) : f 	→
[
u 	→ ei〈Ad�(u)χ,v〉f(k−1u)

]
;

the restriction to K of that action is a classical picture for IndKKχ
(μ).

2.4. Admissible dual of the motion group

We now outline Champetier and Delorme’s description of the admissible

dual of Ĝ0
adm

(see [6]; see also Rader [33]). Recall that the action Ad� of
K on p� induces an action on the complexified space p�

C
, in which K acts

separately on the real and imaginary parts. We will still write Ad� for it.
We define an admissible Mackey parameter to be any pair (χ, μ) in which

χ lies in a�
C
and μ is an irreducible representation of Kχ. In contrast to the

previous section, we require from the outset that χ lie in a�
C
: it is no longer

true that Ad�(K) · a�
C
coincides with p�

C
.

We define on the set of admissible Mackey parameters the same equiva-
lence relation as described in §2.2 and write Dadm for the set of equivalence
classes of admissible Mackey data.

When δ = (χ, μ) is an admissible Mackey datum, we write M0(δ) for the
representation IndG0

Kχ�p
(μ⊗eχ) of G0. This is an admissible representation of
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G0 (for details on admissible representations ofG0, and equivalences between
them, see [6]). This representation is unitary if and only if the real part of
χ is zero; in that case it coincides with the representation defined in §2.3
using the imaginary part of χ.

Theorem 2.4 ([6], Théorème A).

(a) For every admissible Mackey parameter δ, the representation M0(δ) is
irreducible.

(b) Suppose δ and δ′ are two admissible Mackey parameters. Then the ad-
missible representations M0(δ) and M0(δ

′) are equivalent if and only if
δ and δ′ are equivalent as admissible Mackey parameters.

(c) By associating to any admissible Mackey parameter δ the equivalence
class of M0(δ) in Ĝadm, one obtains a bijection between Dadm and

Ĝ0
adm

.

3. The Mackey–Higson bijection for tempered
representations

In this section, we introduce a natural one-to-one correspondence between
Ĝ0 and Ĝtemp.

The key step is to determine the subset of Ĝtemp that should correspond
to the “discrete part” of Ĝ0 encountered in Remark 2.2, which is a copy of
K̂ in Ĝ0.

For some reductive groups, there is a natural candidate for that subset of
Ĝtemp: the discrete series. If G is a reductive group with nonempty discrete
series, it is well-known from the work of Harish-Chandra, Blattner, Hecht–
Schmid (see [15]) that every discrete series representation π comes with a
distinguished element of K̂, the minimal K-type of π (see for example [13,
§1.5]); furthermore, inequivalent discrete series representations of G have
inequivalent minimal K-types.

There are at least two obvious reasons not to use the discrete series for
our construction, however:

(i) there are reductive groups with no discrete series representations;
(ii) even when G has a nonempty discrete series, there are elements of K̂

which cannot be realized as the minimal K-type of any discrete series
representation.

To define a natural candidate for the class of representations to be associated
in Ĝtemp to the copy of K̂ in Ĝ0, we turn to David Vogan’s work on lowest
K-types for other representations.
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3.1. Real-infinitesimal-character representations and a theorem
of Vogan

Fix a reductive group G and a maximal compact subgroup K. Given a
Cartan subalgebra t of k and a choice of positive root system Δ+

c for the
pair (kC, tC), Vogan defines ([40]) a positive-valued function μ → ‖μ‖

̂K on

K̂: starting from an irreducible μ in K̂, one can consider its Δ+
c -highest

weight μ̃ and the half-sum ρc of positive roots in Δ+
c ; these are two elements

of t�
C
, and that space comes with a Euclidean norm ‖·‖

t�
C

; one then defines

‖μ‖
̂K = ‖μ̃+ 2ρc‖t�

C

.

When π is an admissible (but not necessarily irreducible) representation
of G, the lowest K-types of π are the elements of K̂ that appear in the
restriction of π toK and have the smallest possible norm among the elements
of K̂ that appear in π|K . Every admissible representation has a finite number
of lowest K-types, and these do not depend on the choice of T and Δ+

c .
Given an irreducible tempered representation π of G, we say π has real

infinitesimal character when there exists a cuspidal parabolic subgroup P
of G, with Langlands decomposition P = MAN , and a discrete series repre-
sentation σ of M , so that π is equivalent with one of the irreducible factors
of IndGP (σ ⊗ 1). We will not need to explain the link with the notion of
infinitesimal character and refer the reader to [45].

We write ĜRIC for the subset of Ĝtemp whose elements are the equiva-
lence classes of irreducible tempered representations of G with real infinites-
imal character. I thank Michel Duflo for calling my attention to that subset.

Vogan discovered ([42], see also [41]) that if π is an irreducible tempered
representations of G with real infinitesimal character, then π has a unique
lowest K-type. He went on to prove that every K-type is the lowest K-type
of exactly one representation in ĜRIC:

Theorem 3.1 (Vogan [42]; see [46], Theorem 1.2). The map from ĜRIC

to K̂ which, to an irreducible tempered representation π of G with real in-
finitesimal character, associates the lowest K-type of π, is a bijection.

When μ is (the class of) an irreducible representation of K, we will write
VG(μ) for the real-infinitesimal-character irreducible tempered representa-
tion of G with lowest K-type μ.

Remark 3.2. We shall need to use Theorem 3.1 for groups G that are not
quite the group of real points of a connected reductive algebraic group;
therefore let us note that Theorem 3.1 is also valid when G is a linear
reductive group in Harish-Chandra’s class and has all its Cartan subgroups
abelian (see §0.1 in [42]).
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Remark 3.3. Still assuming that G is a linear reductive group in Harish-
Chandra’s class with abelian Cartan subgroups, Vogan proved that if π is
an irreducible admissible representation, then the lowest K-types of π all
occur with multiplicity one in π|K (see [42, §6.5], and for comments, [1, §6]).
Remark 3.4. The relationship between the highest weight of μ and the in-
finitesimal character of VG(μ) is an important ingredient of the results in
[42]. An improved approach, using Carmona’s observation that the subtle
part of the relationship can be interpreted as a convex cone projection, is
explained in [35], which also contains a summary of the lowest-K-type ap-
proach to the classification of representations in [41, 42].

3.2. Construction of the bijection

We first proceed to build tempered representations of G by following as
closely as possible the procedure described in §2.3 to build representations
of G0 from Mackey parameters.

Fix a Mackey parameter (χ, μ).
Consider, as we did in §2.3, the centralizer Lχ of χ in G for the coadjoint

action. This is the group of real points of a connected reductive algebraic
group. Furthermore, the “little group” Kχ is a maximal compact subgroup
of Lχ. Applying Vogan’s Theorem 3.1, we can build, out of the irreducible
representation μ of Kχ, a tempered irreducible representation of Lχ: the
representation VLχ

(μ).
The centralizer Lχ is the θ-stable Levi factor of a real parabolic sub-

group of G (see [45, Lemma 3.4(4)]). Write Lχ = MχAχ for its Langlands
decomposition − a direct product decomposition in which Aχ is abelian and
contained in expG(p), so that χ defines an abelian character of Lχ.

From our Mackey datum (χ, μ), we can thus build as in §2.3 a tempered
irreducible representation σ = VLχ

(μ)⊗ eiχ of the centralizer Lχ.
In order to obtain a tempered irreducible representation of G, it is how-

ever not reasonable to keep imitating the previous construction and induce
without further precaution from Lχ to G. Indeed, our centralizer Lχ =
ZG(χ) in G is a poor geometric analogue of the centralizer L0

χ = ZG0
(χ):

these two groups usually do not have the same dimension and the contrac-
tion of Lχ with respect toKχ is usually not isomorphic with L0

χ. The induced

representation IndGLχ
(σ) is also likely to be very reducible.

But we recalled that there exists at least one parabolic subgroup Pχ =
LχNχ of G whose θ-stable Levi factor is Lχ. The parabolic subgroups with θ-
stable Levi factor Lχ are all contained in a single associate class of parabolic
subgroups.
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Now, the subgroup Pχ is closer to being a good geometric analogue in
G of the centralizer L0

χ: these two groups have the same dimension, and
whenever P ′

χ is a parabolic subgroup of G with θ-stable Levi factor Lχ, the
contraction of P ′

χ with respect to Kχ is none other than L0
χ.

It seems, then, that the representation obtained by extending σ to Pχ is
the simplest possible analogue of the representation of L0

χ used in §2.3. This
makes it natural to form the induced representation

(3.1) M(δ) = IndPχ
(σ) = IndGMχAχNχ

(VMχ
(μ)⊗ eiχ ⊗ 1).

This is a tempered representation. For the last equality in (3.1), we note
that Mχ satisfies the hypothesis of Remark 3.2 (see [42, page 142]), so that
Theorem 3.1 does apply to Mχ as well as Lχ; and that VLχ

(μ) coincides
with the representation of Lχ obtained by extending VMχ

(μ) to Lχ, because

both belong to (̂Lχ)
RIC

and have the same lowest Kχ-type.

We can now state our main result.

Theorem 3.5.

(a) For every Mackey parameter δ, the representation M(δ) is irreducible
and tempered.

(b) Suppose δ and δ′ are two Mackey parameters. Then the representations
M(δ) and M(δ′) are unitarily equivalent if and only if δ and δ′ are
equivalent as Mackey parameters.

(c) By associating to a Mackey parameter δ the equivalence class of M(δ)
in Ĝtemp, one obtains a bijection between D and Ĝtemp.

Combined with Mackey’s description of Ĝ0 in §2.3, this yields a bijection

(3.2) M : Ĝ0
∼−→ Ĝtemp.

We will refer to it as the Mackey–Higson bijection.

Proof of Theorem 3.5. Our result is a simple and straightforward conse-
quence of the classification of tempered irreducible representations of G. In
other words, it is a simple and straightforward consequence of an immense
body of work (the bulk of which is due to Harish-Chandra).

We first remark that given Remark 2.2.(i) and the properties of unitary
induction, we may assume without losing generality that χ lies in a�.

In that case, Mχ is a reductive subgroup of G that contains the compact
subgroup M = ZK(a) mentioned in §2.2, point (ii); in addition, Aχ is con-
tained in A, it is related with its own Lie algebra aχ through Aχ = expG(aχ),
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and the group Mχ centralizes Aχ. We recall that Lχ is generated by M and
the root subgroups for those roots of (gC, aC) whose scalar product with χ
is zero; in the Langlands decomposition, the subgroup Aχ is by definition
the intersection of the kernels of these roots (viewed as abelian characters
of A).

In order to choose a precise Nχ, fix an ordering on a�: with it comes a
notion of positive weight for (g, aχ); the sum of root subspaces corresponding
to positive weights yields a subalgebra nχ, and we set Nχ = expG(nχ). But
of course another choice for Nχ and Pχ in (3.1) would yield an equivalent
representation of G.

Recall that an element in a� is called aχ-regular when its scalar product
with every root for the pair (gC, aχ,C) is nonzero. We now call in a theorem
due to Harish-Chandra, although Harish-Chandra never published it himself;
see [26, Theorem 4.11] for semisimple G, [23, Theorem 14.93] for linear
connected reductive G, and [45, Lemma 3.2(5)] (with proofs in [39]) for the
current class of reductive groups:

If β ∈ a� is aχ-regular and if η is an irreducible tempered represen-
tation of Mχ with real infinitesimal character, then IndGMχAχNχ

(η ⊗ eiβ) is
irreducible.

To show that χ is aχ-regular, consider a root γ of (gC, aC) whose scalar
product with χ is zero. Then γ is a root for (lχ,C, aχ,C) (see the remarks on
the structure of Lχ above), so that aχ is contained in the kernel of γ (see the
same remarks). Thus, the restriction of γ to aχ must be zero, and γ cannot
be a root of (gC, aχ,C), because the latter are precisely the roots which do
not vanish on aχ.

Using Harish-Chandra’s theorem above, we obtain part (a) in Theo-
rem 3.5. Part (b) then follows from the usual criteria for equivalence be-
tween parabolically induced representations (see for instance [26, Theorem
4.11(i))]: if M1A1N1 and M2A2N2 are two parabolic subgroups containing a
parabolic subgroup MAN , if β1 and β2 are elements of a�1 and a�2 which are
respectively a1 and a2-regular, and if η1 and η2 are two real-infinitesimal-
character irreducible tempered representations of M1 and M2, then the rep-
resentations IndGM1A1N1

(η1 ⊗ eiβ1) and IndGM2A2N2
(η2 ⊗ eiβ2) are equivalent if

and only if there is an element in W = W (gC, aC) that sends β1 to β2 and
η1 to η2.

We now turn to (c), which is a simple consequence of the Knapp–
Zuckerman classification of irreducible tempered representations [24, 25].
Suppose π is an arbitrary irreducible tempered representation of G; then
there exists a parabolic subgroup P = MPAPNP of G, a tempered irre-
ducible representation σ of MP with real infinitesimal character, and an
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element ν of (aP )
�, so that

IndGMPAPNP

(
σ ⊗ eiν

)
is irreducible and equivalent with π. See [45, Theorem 3.3]; for proofs, see
of course [24, 25] in the connected compact-center case, and [38, §5.4], for
disconnected groups in the present class (see also the comments in [7]).

We need to prove that such a representation is equal to M(δ) for some
Mackey parameter δ. We first remark that P is associate to a parabolic
subgroup contained in Pν : since ν lies in (aP )

�, the centralizer LP = MPAP

of a�P for the coadjoint action is contained in Lν ; given the above remarks on
the Langlands decomposition and the construction of parabolic subgroups,
we deduce that LP is contained in Lν , so that Mν contains MP and that
Aν is contained in AP , and finally that Nν is conjugate to a subgroup N ′

contained in NP . So P is associate to MPAPN
′, which is contained in Pν .

Write Ã and Ñ for the subgroups of G whose Lie algebras are the orthog-
onal complements of aν and n′ in aP and nP , respectively. Then AP = AνÃ
and NP = ÑN ′; from the fact that mν is orthogonal to aν ⊕ n′, we deduce
that Ã and Ñ are contained in Mν . Since AP is abelian and NP normalizes
A, we obtain

IndGMPAPNP

(
τ ⊗ eiν ⊗ 1

)
� IndG

(MP ÃÑ)AνN ′

(
(τ ⊗ e0)⊗ eiν

)
.

Now, P̃ = MP ÃÑ is a subgroup of Mν and MP Ã is the centralizer of Ã
in Mν , so P̃ is a parabolic subgroup of Mν . Finally, we note that σ̃ =
IndMν

MÃÑ
(σ ⊗ e0) is a tempered representation of Mν , that it has real in-

finitesimal character (by induction in stages from the definition of real in-
finitesimal character), and that it is irreducible (otherwise π would not be).
By induction in stages, we conclude that

IndGPν

(
σ̃ ⊗ eiν

)
� IndGMνAνN ′

(
IndMν

P̃

(
σ ⊗ e0

)
⊗ eiν

)
:

thus π is equivalent with M(ν, μ), where μ is the lowest Kν-type of the
representation IndMν

P̃
(σ ⊗ e0). This concludes the proof.

Remark 3.6. It seems likely that Theorem 3.5 and its proof are valid in
a wider class than used here. Presumably they hold as soon as G satis-
fies Theorem 3.1, the Harish-Chandra irreducibility criterion above, and the
Knapp–Zuckerman classification. Concerning Theorem 3.1, some care is def-
initely needed: I am not aware of any reference for nonlinear groups, and
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there are nonlinear groups in Harish-Chandra’s class which do not satisfy
the (additional) multiplicity-one property. For G in Harish-Chandra’s class,
the irreducibility criterion is stated in [45, Lemma 3.2], and a version of the
Knapp–Zuckerman classification is stated in [43, Theorem 2.9].

4. First properties of the bijection

In our construction of the Mackey–Higson bijection in §3.2, the notion of
lowest K-type for admissible representations of G was of critical importance.
Since K is also a maximal compact subgroup in G0, the notion of lowest K-
type for admissible representations of G0 can similarly be brought in, and
every irreducible admissible representation of G0 has a finite number of
lowest K-types.

We now prove that the Mackey–Higson bijection M : Ĝ0 → Ĝtemp

preserves lowest K-types.

Proposition 4.1. Suppose π0 is a unitary irreducible representation of G0.
Then the representation π0 of G0 and the representation M(π0) of G have
the same lowest K-types.

Proof. We recall that π0 is equivalent with M0(χ, μ) for some Mackey da-
tum (χ, μ). From Remark 2.3, we know that as a K-module, M0(χ, μ) is
isomorphic with IndKKχ

(μ). So we need to show that the lowest K-types of
the G-representation M(χ, μ) are exactly the irreducible K-submodules of
IndKKχ

(μ) with minimal norm.

Now, the definition of parabolic induction shows that M(χ, μ) is iso-
morphic, as a K-module, with IndKKχ

(
V(μ)|Kχ

)
(see the “compact picture”

description of M(χ, μ) in [23, §VII.1]). Of course that K-module contains
IndKKχ

(μ).

Suppose then that α is a lowest K-type in IndKKχ

(
V(μ)|Kχ

)
, but is not a

lowest K-type in IndKKχ
(μ). Then there is an element μ1 of K̂χ, distinct from

μ, such that α is a lowest K-type in IndKKχ
(μ1), and since α must appear

with multiplicity one in IndKKχ

(
V(μ)|Kχ

)
(see Remark 3.3), μ1 must appear

with multiplicity one in V(μ)|Kχ
. Because the latter has only one lowest

Kχ-type, we know that ‖μ1‖̂Kχ
must be greater than ‖μ‖

̂Kχ
.

If α were a lowest K-type in IndKKχ

(
V(μ1)|Kχ

)
, the representations

IndKKχ

(
V(μ)|Kχ

)
and IndKKχ

(
V(μ1)|Kχ

)
would have a lowestK-type in com-

mon; but that cannot happen, because of the following reformulation of a
result by Vogan:
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Lemma 4.2. Suppose MAN is a cuspidal parabolic subgroup of G, and μ1,
μ2 are inequivalent irreducible K ∩ M -modules. Then the representations
IndKK∩M (V(μ1)) and IndKK∩M (V(μ2)) have no lowest K-type in common.

Proof. When V(μ1) and V(μ2) are in the discrete series of M , this follows
from Theorem 3.6 in [44] (see also Theorem 1 in the announcement [40], and
of course [41]). In the other cases, this actually follows from the same result,
but we need to give some details.

Assume that both V(μ1) and V(μ2) are either in the discrete series
or nondegenerate limits of discrete series. Then both IndGMAN (V(μ1)) and
IndGMAN (V(μ2)) are irreducible constituents of some representations in-
duced from discrete series, from larger parabolic subgroups if need be: see
[24, Theorem 8.7]. If IndGM∗A∗N∗ (δ1) (with δ1 in the discrete series of M�)
contains IndGMAN (V(μ1)) as an irreducible constituent, it must contain it
with multiplicity one, and the set of lowest K-types are IndGM∗A∗N∗ (δ1) is
the disjoint union of the sets of lowest K-types of its irreducible constituents
(which are finite in number): see [23, Theorem 15.9]. If IndGMAN (V(μ1)) and
IndGMAN (V(μ2)) are constituents of the same representation induced from
discrete series, then the desired conclusion follows; if that is not the case
we are now in a position to apply Vogan’s result to the two representations
induced from discrete series under consideration (Vogan’s disjointness-of-K-
types theorem is true of reducible induced-from-discrete-series representa-
tions).

Now, if V(μ1), in spite of its real infinitesimal character, is neither in the
discrete series of M nor a nondegenerate limit of discrete series, then there is
a smaller parabolic subgroupM�A�N� and a discrete series or nondegenerate
limit of discrete series representation ε1 of M� such that IndKK∩M (V(μ1)) =
IndKK∩M�

(ε1). If necessary, we can rewrite IndKK∩M (V(μ2)) in an analogous
way; then we can use Vogan’s result again, after some embeddings in re-
ducible representations induced from discrete series as above if necessary.
This proves Lemma 4.2.

Coming back to the proof of Proposition 4.1, we now know that if α is
a lowest K-type in IndKKχ

(
V(μ)|Kχ

)
, then it cannot be a lowest K-type in

IndKKχ

(
V(μ1)|Kχ

)
. Let then α1 in K̂ be a lowestK-type in IndKKχ

(
V(μ1)|Kχ

)
;

we note that ‖α1‖ ̂K < ‖α‖
̂K . If α1 were to appear in IndKKχ

(μ1), it would

appear in IndKKχ

(
V(μ)|Kχ

)
, and that cannot be the case because α is already

a lowest K-type there.
We conclude that there exists α1 in K̂ and μ1 in K̂χ such that

• ‖α1‖ ̂K < ‖α‖
̂K and ‖μ1‖̂Kχ

> ‖μ‖
̂Kχ
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• α1 is a lowest K-type in IndKKχ

(
V(μ1)|Kχ

)
, but it is not a lowest K-

type in IndKKχ
(μ1).

This seems to trigger an infinite recursion, because the same argument
can be used again, beginning with (α1, μ1) instead of (α, μ); however, there
are not infinitely many K-types which are strictly lower than α. Thus our
hypothesis that the lowest K-type α in M(χ, μ) is not a lowest K-type in
IndKKχ

(μ) leads to a contradiction.

To complete the proof, notice (from the compatibility of induction with
direct sums) the equality of K-modules

(4.1) M(χ, μ) = IndKKχ

(
V(μ)|Kχ

)
= IndKKχ

(μ)⊕ M̃,

with M̃ induced from a (quite reducible) Kχ-module.

We already proved that every lowest K-type in M(χ, μ) must occur in as
a lowest K-type in IndKKχ

(μ). Conversely, every lowest K-type in IndKKχ
(μ)

does occur as a lowest K-type in M(χ, μ): from (4.1) we know that it must
occur there, and from the above argument we already know that it is lower
than everyK-type occurring in M̃ , so that it is a lowestK-type in IndKKχ

(μ).
This proves Proposition 4.1.

We should mention that the above proof establishes, in a somewhat
roundabout way, the following property of unitary representations of G0:

Corollary 4.3. In every unitary irreducible representation of G0, each low-
est K-type occurs with multiplicity one.

Proof. Suppose π0 is a unitary irreducible representation of G0; choose a
Mackey parameter (χ, μ) for π0; recall that M0(χ, μ) is equivalent, as a
K-module, with IndKKχ

(μ). In (4.1) we see that the multiplicity of every
lowest K-type in π0 is lower than its multiplicity in M(χ, μ); every lowest
K-type occurs at least once in π0 and exactly once in M(χ, μ); the corollary
follows.

The Mackey–Higson bijection is compatible with other natural features
of Ĝtemp and Ĝ0. We mention an elementary one, related to the existence in
each dual of a natural notion of renormalization of continuous parameters
for irreducible representations:

• On the G0-side, there is for every α > 0 a natural bijection

Rα
G0

: Ĝ0 → Ĝ0



568 Alexandre Afgoustidis

obtained from Mackey’s description of Ĝ0 in §2.3 by sending a repre-
sentation π0 � M0(χ, μ) of G0 to the equivalence class of M0(

χ
α , μ).

• On the G-side, there is also for every α > 0 a natural bijection

Rα
G : Ĝtemp → Ĝtemp

obtained from the Knapp–Zuckerman classification (see the proof of
Theorem 3.5) as follows: starting with π in Ĝtemp, we know that π
is equivalent with some representation IndGMPAPNP

(
σ ⊗ eiν

)
, where

MPAPNP , σ and ν are as in the proof of Theorem 3.5; the tempered
representation πα = IndGMPAPNP

(
σ ⊗ ei

ν

α

)
has the same R-group ([24,

§10]) as IndGMPAPNP

(
σ ⊗ eiν

)
, so it is irreducible; we define Rα

G(π) as
the equivalence class of πα.

It is immediate from the construction in §3.2 that the Mackey–Higson
bijection is compatible with these renormalization maps:

Proposition 4.4. For every α > 0, we have Rα
G ◦M = M◦Rα

G0
.

Together Propositions 4.1 and 4.4 may shed some light on our construc-
tion of the correspondence: any bijection

B : Ĝ0 → Ĝtemp

must, if it is to satisfy Proposition 4.4, induce a bijection between the fixed-
point-sets

{
π0 ∈ Ĝ0 : ∀α > 0, Rα

G0
(π0) = π0

}
and

{
π ∈ Ĝtemp : ∀α > 0, Rα

G(π) = π
}
.

The first class is the copy of K̂ discussed in Remark 2.2; the second is the
class ĜRIC discussed in §3.1. So B must send any K-type μ to an element
of ĜRIC; if B is to satisfy Proposition 4.1, it must send μ to VG(μ), like our
correspondence M.

Now, observing the Knapp–Zuckerman classification, Lemma 4.2 and
Proposition 4.1, and inserting the above remark, we note that if π0 �
M(χ, μ) is a unitary irreducible representation of G with nonzero χ, any
representation of G having the same set of lowest K-types as π0 must read

IndMχAχNχ

(
VMχ

(μ)⊗ eiν
)

for some ν in a�χ. We may view our correspondence M as that obtained by
choosing ν = χ.
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5. Extension to the admissible duals

We now come back to the setting of §3.2 and extend the Mackey–Higson
bijection M : Ĝ0 → Ĝtemp to a natural bijection between the admissible

duals Ĝ0
adm

and Ĝ
adm

.
Let us first describe a way to build, out of an admissible Mackey datum

δ = (χ, μ), an admissible representation of G (here χ ∈ a�
C
, μ ∈ K̂χ, see

§2.4).
Write χ = α + iβ, where α and β lie in a�. Consider the centralizer Lχ

of χ for the coadjoint action: Lχ is the intersection Lα ∩ Lβ . Notice that in
the notations of the proof of Theorem 3.5, Lχ is the centralizer of aα + aβ;
thus Lχ appears as the θ-stable Levi factor of a real parabolic subgroup
Pχ = MχAχLχ of G, in which Kχ is a maximal compact subgroup. In slight
contrast with the construction of §3.2, we require from the outset that Pχ be
chosen in a specific way: we fix an ordering of a� making α (the “real part”
of χ) nonnegative, and choose Pχ accordingly. See the proof of Theorem 3.5.

As before, we can build from δ the representation VMχ
(μ) ⊗ eχ of Pχ;

we define

M̃(δ) = IndGPχ
(σ) = IndGMχAχNχ

(VMχ
(μ)⊗ eχ ⊗ 1),

an admissible representation of G.

Theorem 5.1.

(a) For every admissible Mackey parameter δ, the representation M̃(δ) has
a unique irreducible quotient Madm(δ).

(b) Suppose δ and δ′ are two admissible Mackey parameters. Then Madm(δ)
and Madm(δ′) are equivalent if and only if δ and δ′ are equivalent as
admissible Mackey parameters.

(c) By associating to any admissible Mackey parameter δ the equivalence
class of Madm(δ) in Ĝadm, one obtains a bijection between Dadm and
Ĝadm.

Combined with the description of Ĝ0
adm

in §2.4, this yields a natural
bijection

(5.1) Madm : Ĝ0
adm ∼−→ Ĝadm

whose restriction to Ĝ0 is the Mackey–Higson bijection (3.2) between tem-
pered representations.
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Proof of Theorem 5.1. We use the Langlands classification to reduce the
description of the irreducible admissible representations of G to that of the
irreducible tempered representations of reductive subgroups of G.

We will write (aα)
o for the set of linear functionals on a whose restriction

to aα is zero. Decompose

χ = α+ i(β1 + β2), where α ∈ a�, β1 ∈ a�α and β2 ∈ (aα)
o.

Consider the parabolic subgroup Pα = MαAαNα attached to α. We point
out that it is possible to view (β1, μ) as a (tempered) Mackey parameter
for the reductive group Mα: indeed, Mα admits Kα as a maximal compact
subgroup, and if we view β1 as a linear functional on mα ∩ p (where mα is
the Lie algebra of Mα), then the stabilizer of β1 for the action of Kα on
(mα ∩ p)� is Kα ∩ Kβ1

= Kχ (since Kα is contained in Kβ2
). Besides, the

group Mα satisfies the hypothesis of Remark 3.2: we can therefore construct,
as in §3.2, the tempered representation MMα

(β1, μ).
We now remark that

(5.2) M̃(χ, μ) � IndGPα

(
MMα

(β1, μ)⊗ eα+iβ2

)
.

To see this, recall that MMα
(β, μ) is built using the centralizer

ZMα
(β1) = {g ∈ Mα,Ad�(g)β1 = β1} = Mα ∩ Lβ1

= Mχ(Aχ ∩Mα) ;

thus, it is induced from a parabolic subgroup P of Mα, which reads P =
Mχ(Aχ ∩Mα)Ñ − here Ñ normalizes ZMα

(β1) and its Lie algebra is a sum
of positive root spaces for the given ordering. The right-hand side of (5.2)
can thus be rewritten as

IndGMαAαNα

[
IndMα

Mχ(Aχ∩Mα)Ñ

(
VMχ

(μ)⊗ eiβ1

)
⊗ eα+iβ2

]
,

which, by induction in stages, can in turn be written with only one parabolic
induction as

IndG
Mχ[(Aχ∩Mα)(Aα)](ÑNα)

(
VMχ

(μ)⊗ eα+iβ
)
.

Since (Aχ ∩ Mα)(Aα) is none other than Aχ, the parabolic subgroup that
appears in the final expression is equal to Pχ. This proves (5.2).

From (5.2) we see that M̃(χ, μ) is induced from a tempered representa-
tion; furthermore, in (5.2) we know from the proof of Theorem 3.5 that α is
aα-regular. It also has a positive scalar product with every positive root of
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(g, aα) in the ordering used to define Pα. Therefore M̃(χ, μ) meets the usual
criterion for the existence of a unique irreducible quotient: see [23, Theorem
8.54]. This proves part (a) in Theorem 5.1; part (b) then follows from the
usual criteria for equivalence between Langlands quotients (implicit in [23,
Theorem 8.54]).

To prove part (c), recall from the Langlands classification that when
π is an admissible irreducible representation of G, there exists a parabolic
subgroup P = MPAPNP of G such that AP ⊂ A, there exists an aP -regular
element α in a�P , and there exists an element β1 in a�P , as well as an irre-
ducible tempered representation σ of MP , so that π is equivalent with the
unique irreducible quotient of IndGP

(
σ ⊗ eα+iβ1

)
. Since α is aP -regular, the

subgroups Pα and P are associate. Applying Theorem 3.5 to Mα, we know
that the tempered representation σ of MP is equivalent with MMα

(β2, μ) −
for some linear functional β2 on a∩ (mα ∩ p) and some irreducible represen-
tation μ of Kα∩ZMα

(β2) = Kα+iβ1+iβ2
. (The group Mα does not necessarily

satisfy the “real points of a connected complex algebraic group” hypothesis
of §3.2, but the centralizer Lα does, and it is the direct product between Mα

and the abelian vector group Aα; thus Theorem 3.5 does hold for Mα.) We
note that β2 ∈ (aα)

o, and conclude that π is equivalent with a representation
of the kind that appears in the right-hand side of (5.2). This proves (c) and
Theorem 5.1.
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