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Geometric flows for the Type IIA string
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A geometric flow on 6-dimensional symplectic manifolds is intro-
duced which is motivated by supersymmetric compactifications of
the Type IIA string. The underlying structure turns out to be
SU(3) holonomy, but with respect to the projected Levi-Civita
connection of an almost-Hermitian structure. The short-time ex-
istence is established, and new identities for the Nijenhuis tensor
are found which are crucial for Shi-type estimates. The integrable
case can be completely solved, giving an alternative proof of Yau’s
theorem on Ricci-flat Kähler metrics. In the non-integrable case,
models are worked out which suggest that the flow should lead
to optimal almost-complex structures compatible with the given
symplectic form.

1. Introduction

There has been a remarkable confluence in recent years between high energy
physics, more specifically unified string theories, and special geometry. The
earliest and particularly influential development was the 1985 recognition by
Candelas, Horowitz, Strominger, and Witten [7] of Calabi-Yau manifolds as
supersymmetric compactifications of the heterotic string. The importance
of geometry in physical laws at their most fundamental level has of course
been long recognized with electromagnetism, general relativity, and gauge
theories. The key new feature here is the requirement that the 6-dimensional
internal manifold have a special geometric structure, in this case a complex
structure together with a holomorphic section of the canonical bundle. This
requirement is equivalent to the manifold having SU(3) holonomy, and can
be traced back to supersymmetry. Since then, the class of Calabi-Yau solu-
tions has been enlarged in many directions. On one hand, the Calabi-Yau
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condition can be extended to the Hull-Strominger system for conformally
balanced metrics [32, 44, 23, 24, 40, 41, 25, 21, 17]. On the other hand, it
emerged from the mid 1990’s that string theories, which are 10-dimensional
and of which there are five, can be unified themselves into another the-
ory, namely M Theory, one of whose limits is 11-dimensional supergravity
[31, 48]. The compactification of an 11-dimensional space-time to a more
familiar 4-dimensional space time results in a 7-dimensional internal space,
and the role of Calabi-Yau manifolds is assumed in this case by manifolds
with G2 or Spin(7) holonomy [1, 28].

While the full string theories have been conjectured to merge ultimately
into a single M Theory, this requires highly non-trivial dualities, and their
low-energy approximations and geometric settings can be quite different.
A common feature of their supersymmetric compactifications is a metric sat-
isfying a curvature condition as well as a cohomological condition. In Kähler
geometry, these are characteristic features of the notion of canonical metric,
of which the Calabi-Yau condition is the prime example. Thus the general
case can be viewed as a search for canonical metrics in non-Kähler geom-
etry. The compactifications discussed above arise from three of the string
theories, which are the Type I theory and the two heterotic string theories.
The other two string theories are the Type IIA and the Type IIB theories.
There is an immense literature on their supersymmetric compactifications,
but some attractive mathematical formulations can be found in Grana et
al. [27] and Tomasiello [45], and the study of the most basic examples was
begun in Tseng and Yau [50, 51, 52]. The geometric realm for the Type IIB
equation is that of complex geometry, albeit non-Kähler, and we described
a geometric flow approach to it in [19]. The main goal of the present paper
is to present a geometric flow approach to the Type IIA equation.

The Type IIA equation is of particular interest, because of all string the-
ory compactifications, its geometric setting is unique in being that of sym-
plectic geometry instead of complex geometry. More specifically, let M be a
compact 6-dimensional manifold, equipped with a symplectic form ω, that
is, a closed non-degenerate 2-form. Recall that on any oriented 6-manifold,
Hitchin [30] had shown how to associate to a non-degenerate 3-form ϕ an
almost-complex structure Jϕ. In the Type IIA equation, a symplectic form
ω is given, so it makes sense to consider the condition of primitiveness for ϕ
with respect to ω. Explicitly, this is the condition Λϕ = 0, where

Λ : Ak(M) → Ak−2(M)(1.1)
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is the usual Hodge operator of contracting with ω. As shown in §4.1 be-
low, the symplectic form ω is invariant with respect to the almost-complex
structure Jϕ when ϕ is primitive. We obtain then a Hermitian form

gϕ(X,Y ) = ω(X, JϕY )(1.2)

which becomes a Hermitian metric under the open condition that it be
strictly positive. Thus we obtain an almost-Kähler 3-fold (M,ω, Jϕ, gϕ) with
the additional requirement that ϕ be primitive and Jϕ arise from ϕ by the
above construction. When ϕ is also closed, we shall refer to such a structure
as a “Type IIA geometry”.

Let ρA be now the Poincaré dual of a given finite linear combination
of special Lagrangians calibrated by ϕ. Then the Type IIA equation is the
following system of equations for a real-valued primitive 3-form ϕ

dΛd(|ϕ|2 �ϕ) = ρA, dϕ = 0, gϕ > 0.(1.3)

Here � is the Hodge star operator and |ϕ| the norm of ϕ with respect to the
metric gϕ.

As in the case of the other string theories, the Type IIA equations as
written in (1.3) involve, besides the open condition gϕ > 0, a curvature-
type equation and the cohomological constraint dϕ = 0. In order to enforce
this cohomological constraint without invoking any particular Ansatz, we
introduce the following geometric flow of 3-forms ϕ,

∂tϕ = dΛd(|ϕ|2 �ϕ)− ρA,(1.4)

for any closed and primitive initial data ϕ0 with gϕ0
> 0. Since the right

hand side is closed, the flow preserves the closedness condition. It can also
be verified to preserve the primitiveness property of ϕ. Thus it is a flow of
Type IIA geometries, whose stationary points would give solutions of the
Type IIA equation without recourse to any Ansatz. We shall refer to (1.4)
as the Type IIA flow. The idea of preserving the closedness of a form by a
flow was introduced by Bryant [5] in the Laplacian flow for G2 structures.
More recently, it was applied in [38, 39, 19, 18, 37] to the construction of
geometric flows which preserve the conformally balanced condition in the
Hull-Strominger system and the Type IIB equation. The geometric flow
approach was particularly appropriate there, as it allowed to bypass the
absence of a ∂∂̄-lemma in non-Kähler geometry.
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The main goal of this paper is to start an in-depth study of the Type
IIA flow. Except for the original formulation, we shall restrict to the most
basic source-free case ρA = 0. Despite its very simple formulation (1.4), the
flow turns out to be highly non-trivial and to present many new difficulties
specific to symplectic geometry:

• The first is that the Type IIA equation is not elliptic. This difficulty
was well-recognized in the works of Tseng and Yau [52] and Tseng and Wang
[49], and led them to consider instead some 4th-order equations. However,
4th-order equations are complicated, and the closedness constraint on the 3-
form ϕ would have to be imposed separately. Thus it appears still preferable
to confront the specific difficulties of the Type IIA flow. They originate in
any case from the geometric assumption of a given symplectic structure,
which is fundamental in symplectic geometry.

• The second may be appreciated by comparing the flow of almost-
complex structures Jϕ in the Type IIA flow with the gradient flow of the
Blair-Ianus functional on a symplectic manifold. The Blair-Ianus functional
is the L2 norm of the Nijenhuis tensor [4]. Its gradient flow was called the
anti-complexified Ricci flow by Lê and Wang [33], who also established its
short-time existence. However, this flow has proved to be difficult to use,
because neither the corresponding Nijenhuis tensor nor curvature evolves
there by parabolic equations. For the Type IIA flow to be viable, it has to
overcome such difficulties.

• The third difficulty is more technical, but still serious. The Type IIA
flow of 3-forms ϕ induces a flow of metrics gϕ which will be one of the
main tasks of this paper to determine explicitly. The simplest case is when
the initial almost-complex structure is integrable. It turns out that the Type
IIA flow preserves the integrability condition, and becomes equivalent to the
dual Anomaly flow introduced in [20]. Using the techniques there as well as
in [42, 43], it gives a new proof of Yau’s [53] celebrated theorem on the
existence of Kähler Ricci-flat metrics. Thus the difficult case is the case of
non-integrable almost-complex structures. There we shall see that the flow
of metrics in the Type IIA flow is conformally equivalent to a perturbation
of the Ricci flow by first-order terms involving the Nijenhuis tensor. In this
respect, it is analogous to Bryant’s G2 Laplacian flow, which was shown
relatively recently by Lotay and Wei [35] to be a perturbation of the Ricci
flow by first-order terms involving the torsion tensor. However, the long-
time behavior of the G2 flow remains at this moment a subject of extensive
research [2, 34].
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Despite these difficulties, we shall find that the Type IIA flow is par-
ticularly rich, reflecting its unique position at the crossroads of symplectic
geometry, complex geometry, and unified string theories. This rich structure
will be much in evidence in the results described below. Furthermore, ex-
amples suggest that even when the flow develops singularities, it may be
possible in some cases to continue the flow of the Nijenhuis tensor. Thus,
besides the original motivation from string theory and interest in its station-
ary points, the flow should also be useful in finding optimal almost-complex
structures.

2. Main results

We describe now our main results. Throughout this section, M is a compact
6-dimensional manifold equipped with a symplectic form ω. Given a prim-
itive 3-form ϕ, we denote by Jϕ the almost-complex structure defined by
Hitchin [30], and by gϕ the corresponding Hermitian form, which we assume
is a metric.

2.1. A Laplacian flow formulation

Our first result is an alternative formulation of the Type IIA flow:

Theorem 1. The Type IIA flow defined in (1.4) can be rewritten as the
following flow

∂tϕ = −dd†(|ϕ|2ϕ) + 2 d(|ϕ|2N † · ϕ)− ρA(2.1)

where d† is the adjoint of the operator d with respect to the metric gϕ, and
N † is the operator from Λ3(M) to Λ2(M) defined by

(N † · ϕ)kj = Nμ
j
λϕμkλ −Nμ

k
λϕμjλ.(2.2)

Here Nm
γβ is the Nijenhuis tensor of Jϕ, and indices are raised using the

metric gϕ.

We note that, up to the factor of |ϕ|2, the first terms on the right-hand
side of the Type IIA flow are the same as in the standard heat equation. Up
to sign, they are also reminiscent of Bryant’s G2 Laplacian flow. However,
the terms involving the Nijenhuis tensor are also of leading order and account
for a wide range of different phenomena.

Henceforth, we assume that the source ρA is 0, unless stated explicitly
otherwise.
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2.2. The short-time existence of the Type IIA flow

When a flow is not strictly parabolic, even its short-time existence can be a
difficult question. Two powerful tools developed over the years for this issue
have been the reparametrization method of DeTurck [14] and the Hamilton-
Nash-Moser theorem [29], a combination of which has been applied success-
fully to many important flows, such as the Ricci flow [29], the G2 Laplacian
flow [5, 6], and the anti-complexified Ricci flow [33]. The fundamental new
difficulty in the Type IIA flow is that there is a given symplectic form ω. It
is not hard to see that reparametrizations by symplectomorphisms do not
improve the parabolicity of the flow, while more general reparametrizations
lead to a coupled flow of both metrics and symplectic forms. Thus a first
major task in this paper is to establish the following theorem:

Theorem 2. Let (M,ω) be a compact 6-dimensional symplectic manifold.
Then for any ϕ0 which is a smooth positive, primitive, and closed 3-form,
the source-free Type IIA flow (1.4) with initial value ϕ0 admits a unique and
smooth solution on some time interval [0, T ) with T > 0. Furthermore, ϕ
continues to be positive, primitive and closed at all times.

While the theorem deals only with the short-time existence of the flow,
the proof requires a rather deep probe of the structure of the flow and several
new elements which are also useful elsewhere:

The first element is the behavior of the coupled flows mentioned above.
It turns out that these coupled flows admit natural parabolic regulariza-
tions, which reduce to the desired flow for primitiveness initial data. While
primitiveness was a requirement in the solution ϕ of the Type IIA equation,
it may not have been anticipated that it would play such a central role for
the very existence of the flow.

The second feature permeates the rest of the paper, and is the underlying
Type IIA geometry. In the present context, it allows us to recapture the flow
of the forms ϕ from the flow of the metrics g̃ϕ = |ϕ|2gϕ, even though, point-
wise, there is an ambiguity in determining ϕ from g̃ϕ. Since we shall have
to analyze in detail the flow of metrics in order to obtain Shi-type estimates
and long-time existence criteria, it is simplest to deduce the uniqueness part
of Theorem 2 from the corresponding uniqueness theorems for the flow of
metrics. The flow of ǧϕ = |ϕ|−2gϕ turns out to be a perturbation of the
Ricci flow by terms of first order. In general, integrability operators are not
stable under first-order terms perturbations. However, the underlying Type
IIA geometry is what allows us to modify the Bianchi operator used by
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Hamilton [29] for the Ricci flow into an integrability operator for the flow of
ǧϕ. From there we can establish the uniqueness for ǧϕ, and from there the
uniqueness in Theorem 2.

2.3. Type IIA geometry

We have stressed that the underlying structure for the Type IIA flow is Type
IIA geometry, as defined in the Introduction, and which is more special than
just a symplectic structure on a 6-manifold. The holonomy, curvature, and
Nijenhuis tensor in Type IIA geometry have rather special properties, which
play an important role in every aspect of the Type IIA flow. We list here
some properties which are applied repeatedly in the paper and are the easiest
to describe, but we expect others to emerge and prove their worth in time:

Theorem 3. Let (M,ω, ϕ) be a Type IIA geometry, and gϕ the correspond-
ing metric. Set

g̃ϕ = |ϕ|2gϕ.(2.3)

Let D and D̃ be the projected Levi-Civita connections of gϕ and g̃ϕ respec-
tively, Ω = ϕ+ iJϕϕ, and |Ω|g̃ϕ the norm of Ω with respect to g̃ϕ. Then

(a) D̃( Ω
|Ω|g̃ϕ

) = 0. Thus (M, g̃ϕ) has holonomy in SU(3), but with respect

to the connection D̃.
(b) D0,1Ω = 0, so Ω is formally holomorphic, even when Jϕ is not inte-

grable.
(c) The Nijenhuis tensor has only 6 independent components.

2.4. The flow of metrics in the Type IIA flow

Next, we can describe the flow of the 3-forms ϕ and metrics gϕ in terms of
curvature:

Theorem 4. Let ϕ be a smooth positive, primitive and closed 3-form evolv-
ing by the source-free Type IIA flow. Set u = log |ϕ|2.

(a) The flow of ϕ is given by

∂tϕiab = e2u
∑

cyc i,a,b

(
ϕsab(D̃i + ui)u

s + 2ϕsta(N
st
pT̃

p
ib

−us

2
T̃t

ib + (D̃i + ui)N
st
b)

)
,(2.4)

where T̃ is the torsion tensor of the connection D̃.
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(b) The flow of g̃ϕ is given by

(∂tg̃ϕ)ij = e2u
[
− 2R̃ij − 2(∇̃2u)ij + 4us(Nisj +Njsi)− 4(N2

−)ij

+uiuj − uJiuJj + (|du|2g̃ϕ + |N |2g̃)(g̃ϕ)ij
]
,(2.5)

where ∇̃ is the Levi-Civita connection of g̃ϕ.

Note that u is determined by g̃ϕ, so the right hand side of (2.5) involves
only tensors determined by g̃, and the equation is a self-contained flow for
g̃ϕ. Furthermore, the equation for ϕ can be viewed as a linear ODE of ϕ
whose coefficients are tensors determined by g̃ϕ. Thus ϕ is completely de-
termined once g̃ϕ is determined. As we noted before, this is to be contrasted
with the problem of having to resolve an ambiguity if we just try to re-
capture ϕ from gϕ at each fixed time. It may be worth observing that the
ambiguity in recapturing ϕ from gϕ pointwise in time is reminiscent of the
ambiguity in defining the angle in the special Lagrangian equation. It would
be interesting to investigate if the angle in the special Lagrangian equation
can be recaptured by a mechanism similar to the above Theorem 4 for the
Type IIA flow.

2.5. An integrability operator for the flow of metrics

The flow (2.5) is reminiscent of the Ricci flow, except for the term (∇̃2u)ij
which can normally be eliminated by a reparametrization. But as we noted in
the above discussion of Theorem 2, a reparametrization would create other
difficulties since it would change the given symplectic form ω. To bypass this
difficulty, we make instead a conformal change

ǧij = |ϕ|−2(gϕ)ij(2.6)

and find that ǧij evolves by

∂tǧij = e
3

2
u

[
− 2Řij +

3

2
uiuj − uJiuJj + 4uk(Nikj +Njki)− 4(N2

−)ij

+
1

2

(
|du|2ǧ + |N |2ǧ

)
ǧij

]
.(2.7)

For the purpose of completing Theorem 2, we are particularly interested in
the uniqueness of this flow. For the classical Ricci flow, both the short-time
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existence and uniqueness were established by Hamilton [29] using a version

of the Nash-Moser theorem. This version, often referred to as the Hamilton-

Nash-Moser theorem, requires an integrability condition, which was provided

by the Bianchi identity in the case of the Ricci flow. More precisely, let L0

be the operator defined by

(2.8) (L0(S))j = 2ǧik∇̌kSik − ǧik∇̌jSik ∈ A1(M)

for any Sij ∈ Sym2(TM). Then L0(−2Řij) = 0, which is the desired integra-

bility condition. Now the flow (2.7) differs from the Ricci flow by first-order

terms, so the Bianchi identity is no longer applicable as an integrability

condition. In general, it is by no means clear whether a given first-order

perturbation would still allow an integrability condition. So it is again a

manifestation of the deep structure of Type IIA geometry that this can be

done in this case:

Theorem 5. Let Sij be the symmetric 2-tensor defined by writing the flow

(2.7) as

∂tǧij = e
3

2
u(−2Řij + Sij).(2.9)

(a) For any Sij ∈ Sym2(TM), we define the operator Z by

(2.10) (Z(S))j = −4

3
uj ǧ

ikSik + 2usSjs − 4N st
jSst ∈ A1(M)

If along the flow, the metric ǧ arises from a Type IIA geometry, then the

following operator L is an integrability operator for the flow (2.7) in the

sense that

Sym2(TM) � ǧij → L(ǧij) := (L0 + Z)(e
3

2
u(−2Řij + Sij))(2.11)

is of order 1 in ǧij.

(b) As a consequence, the flow exists and is unique on some interval [0, T )

with T > 0.

We stress that this theorem is used only to establish the uniqueness of

the Type IIA flow, but not its existence. The reason is that, starting from the

flow (2.7) at an initial Type IIA geometry, it is not a priori known whether

the flow will remain a Type IIA geometry. Without this information, it is

not known whether the above integrability condition (2.11) holds.
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2.6. Formation of singularities and Shi-type estimates

In general, the fact that a flow may admit short-time existence does not im-
ply that important geometric quantities will evolve by parabolic equations.
For example, that is the case for the Ricci flow [29], but it is not the case
for the anti-complexified Ricci flow [33]. The Type IIA flow shares common
features with both the Ricci flow and the anti-complexified Ricci flow, and
one may wonder which way it will behave when it comes to the evolution
of the curvature and of the Nijenhuis tensor. It is a very attractive feature
of the Type IIA flow that, in this particular respect, it is closer to the Ricci
flow. Thus we find

Theorem 6. Consider the source-free Type IIA flow with a smooth, positive,
closed, and primitive initial value ϕ0.

(a) Then the Nijenhuis tensor evolves by

(∂t − euΔ)|N |2(2.12)

= eu
[
− 2|∇N |2 + (∇2u) ∗N2 +Rm ∗N2

+N ∗ ∇N ∗ (N +∇u) +N4 +N3 ∗ ∇u+N2 ∗ (∇u)2
]

(b) The Riemann curvature tensor evolves by

(∂t − euΔ)|Rm|2(2.13)

= eu
[
− 2|∇Rm|2 + (∇Rm+∇3u+∇2N) ∗ O(Rm,∇u,N)

+(∇N ∗ ∇N +∇2u ∗ ∇2u+ 1) ∗ O(Rm,∇u,N)

]
.

Here, ∗ denote the bilinear pairings (not to be confused with the Hodge star
operator) and O(∇u,Rm,N) indicates terms which only depend on ∇u,Rm
and N .

Other geometric quantities satisfy similar flows, which are written in
greater detail in §8. Using these flows, we can establish the following Shi-
type estimates and criteria for extending the flow:

Theorem 7. Assume that we have a solution of the source-free Type IIA
flow on some interval [0, T ), and that the bound

|u|+ |Rm| ≤ A(2.14)
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holds for some finite constant A. Here Rm denotes the Riemann curvature
tensor of the metric gϕ. Then for any multi-index α, we have

|∇αϕ| ≤ C(A,α, T, ϕ(0))(2.15)

for some constant C(A,α, T, ϕ(0)). In particular, the Type IIA flow can be
continued to an interval [0, T + ε) for some ε > 0.

It may be worth noting that, in this estimate, the estimates for the
gradient |∇u| are rather special, and make essential use of the underlying
Type IIA geometry.

2.7. The stationary points in the case of no source

In the case ρA = 0, the stationary points of the flow can be identified, once
we have developed Type IIA geometry:

Theorem 8. A primitive and closed 3-form ϕ is a stationary point of the
flow if and only if the corresponding almost-complex structure Jϕ is inte-
grable and the norm |ϕ| is constant. Thus (M,Jϕ, ω) is then a Kähler man-
ifold, and the metric gϕ is Kähler and Ricci-flat.

2.8. The integrable case and the Calabi conjecture

The simplest case is that of integrable almost-complex structures, and a
complete description of the behavior of the Type IIA flow in this case is
provided by the following theorem:

Theorem 9. Assume that the initial value ϕ0 of the source-free Type IIA
flow is a positive, closed and primitive 3-form, and that the corresponding
almost-complex structure Jϕ0

=: J0 is integrable. Then the source-free Type
IIA flow exists for all time, the almost-complex structure Jϕ corresponding
to ϕ remains integrable along the flow, and the flow converges in C∞ to a
3-form corresponding to a Kähler Ricci-flat metric.

In fact, the corresponding flow of metrics gϕ turns out to reduce by
diffeomorphisms to the dual Anomaly flow introduced in [20] which applies
in all dimensions and gives another proof of the Calabi conjecture. This
reduction of the Type IIA flow to the dual Anomaly flow, which was itself
motivated by duality considerations for the Type IIB flow, can be viewed
as a manifestation of the duality between the Type IIA and the Type IIB
theories. We also observe that there are by now several known proofs of
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the Calabi conjecture, giving each a different sequence converging to the
Kähler Ricci-flat metric: besides Yau’s original proof, there are for example
the proof by the Kähler-Ricci flow [8], by the Anomaly flow [42], by the dual
Anomaly flow [20], by the inverse Monge-Ampère flow [9, 10], and by more
general parabolic Monge-Ampère flows [43]. Nevertheless, new proofs from
an independent geometric set-up remain of considerable interest, as they can
detect different types of obstructions. Such a scenario is nicely illustrated in
[10].

2.9. Examples

As we can see from the induced flow of metrics, the Type IIA flow is com-
plicated. However, besides the integrable case which was solved above, there
are non-integrable, geometrically interesting cases that can also be worked
out completely and which exhibit varied and interesting behaviors. They
suggest the possibility of a general phenomenon, namely that in all cases,
the Type IIA flow leads to an optimal almost-complex structure with respect
to the given symplectic form. A first example is provided by the torus:

Theorem 10. Consider the source-free Type IIA flow on the torus R6/Z6

with the symplectic form ω as described in §9.3.1. Consider the Type IIA
flow with non-integrable initial data of the form in (9.3.1). Then the flow
exists for all time, and ϕ converges as t → ∞ to a positive harmonic form.

A rich class of models is the special generalized Calabi-Yau (or SGCY)
manifolds introduced by de Bartholomeis [12, 13]. These are manifolds of
Type IIA geometry with the additional property that |ϕ| is constant. They
are also sometimes referred to as symplectic half-flat structures. A large
subclass is given by nilmanifolds, which are quotients of a nilpotent Lie
group by a co-compact lattice, and the other subclass is the solvmanifolds,
which are quotients of solvable Lie groups by a co-compact lattice. Details
on the models which we consider can be found in §9.3.2, and we shall just
state here the main conclusions.

Theorem 11. Consider the source-free Type IIA flow on the nilmanifold and
the solvmanifold described in §9.3.2, with the initial data described there.

(a) In the case of the nilmanifold, with initial data corresponding to
(9.29), the flow exists for all time, and the Nijenhuis tensor tends to 0 as
t → ∞.

(b) In the case of the solvmanifold, with initial data corresponding to
(9.32), the flow develops a singularity at a finite time T . However, the limit
of Jϕ as t → T exists, and is a harmonic almost-complex structure.
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3. The Type IIA flow as a Laplacian flow

We start now the proof of the results described in the previous section.
For Theorem 1, we do not need any detailed information on the metric gϕ.
Rather, we only need the main properties of the corresponding Hermitian
connections, and how they differ from the Levi-Civita connection. These
have been worked out by Gauduchon [26], and we begin with a brief review
of the results from [26] that we require.

3.1. Gauduchon’s formulas for connections on an almost-complex
manifold

We revert momentarily to the general set-up of a smooth manifold M
equipped with a Riemannian metric g, a compatible almost-complex struc-
ture J (not necessarily integrable), and the associated symplectic form ω.
This means that g is a positive definite section of the bundle of quadratic
forms on TM , ω is a 2-form on M , J is a section of the bundle of endomor-
phisms of TM satisfying J2 = −Id, and g(X,Y ) = ω(X, JY ) for any two
vector fields X,Y on M . In local coordinates xj , with X and Y given by
their components X i and Y j , we shall write

g(X,Y ) = gijX
iY j , ω(X,Y ) = ωijX

iY j , (JX)k = Jk
jX

j .(3.1)

In particular gij and ωij are respectively symmetric and anti-symmetric
in i and j, and the fact that J is a compatible almost-complex structure
translates into

Jk
qJ

q
j = −δkj , gij = ωiqJ

q
j = ωjqJ

q
i.(3.2)

Note that ω is invariant under the action of J , i.e. ωiqJ
q
jJ

i
� = ω�j .

Clearly the structure defined by the triple (g, ω, J) is determined by
any two of its components. Here we do not assume that ω is closed. For our
purposes, we can assume that dω has no (3, 0)+(0, 3)-components. Obviously
this condition is satisfied when ω is closed, or conformally closed, or when
J is integrable. When such a condition is satisfied, dcω = J−1dω has no
(3, 0) + (0, 3)-components either.

Associated to this setup are several important tensors:

• The first is the Nijenhuis tensor N , defined as

(3.3) N(X,Y ) =
1

4
([JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ]).
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By construction N is a 2-form valued in TM . Using the metric, we can lower

the superscript to the first slot by NX,Y,Z = g(X,N(Y, Z)).

• The second is the 3-form dcω, where by our convention for differential

forms, the form ω is defined from its coefficients ωij by

ω =
1

2
ωijdx

i ∧ dxj .

The form dcω can also be written as dcω = J−1dJω = −Jdω since dc =

J−1dJ and ω is invariant under the action of J . In components, we have

dω =
1

3!
(∂iωjk + ∂jωki + ∂kωij)dx

i ∧ dxj ∧ dxk

and hence

(dω)ijk = ∂iωjk + ∂jωki + ∂kωij ,

(dcω)abc = −Jk
cJ

j
bJ

i
a(dω)ijk = −Jk

cJ
j
bJ

i
a(∂iωjk + ∂jωki + ∂kωij).

As shown by Gauduchon [26], the construction of Hermitian connections

associated to the structure (g, ω, J) is clearer if we also view dcω as a 2-form

valued in TM , i.e. a section of TM ⊗Λ2T ∗M , in analogy with the Nijenhuis

tensor. This can be achieved by raising one index in dcω, using the metric

gij . Unless indicated otherwise, the TM -valued 2-form corresponding to dcω

is obtained by raising the first index, i.e.,

(dcω)mjk = gmi(dcω)ijk.

• The third and the fourth tensors of interest are obtained by decompos-

ing dcω, viewed as a TM -valued 2-form, into components U and V which

are respectively even and odd under the following involution M acting on

the space of TM -valued 2-forms,

(MΨ)(X,Y ) = Ψ(JX, JY ), Ψ ∈ A2(TM)(3.4)

where we have denoted the space of TM -valued 2-forms by A2(TM). We

can then define the TM -valued 2-forms U and V by

U =
1

4
(dcω +M(dcω)), V =

1

4
(dcω −M(dcω)).(3.5)
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In components,

(MΨ)mbc = Ψm
jkJ

k
cJ

j
b(3.6)

and

Um
bc =

1

4
((dcω)mbc + (dcω)mjkJ

k
cJ

j
b),(3.7)

V m
bc =

1

4
((dcω)mbc − (dcω)mjkJ

k
cJ

j
b).

Note that Um
bc and V m

bc are still anti-symmetric in b and c, but if we let Uabc

and Vabc the components of the T ∗M -valued 2-form obtained by lowering the
index m to an index a, then Uabc and Vabc are not anti-symmetric in a and b,
unlike (dcω)abc. The tensors N , U , and V satisfy the following Bianchi-type
identities

Nijk +Njki +Nkij = 0,(3.8)

Uijk + Ujki + Ukij = (dcω)ijk, Vijk + Vjki + Vkij =
1

2
(dcω)ijk.(3.9)

Given an almost Hermitian structure (g, ω, J), the Gauduchon line of
connections is a line of connections preserving all of (g, ω, J) which passes
through the Chern connection and the projected Levi-Civita connection.
If we denote the Levi-Civita connection by ∇, since dcω has only type
(2, 1) + (1, 2)-components, the Gauduchon line can be parameterized by a
real parameter t, and the corresponding connection Dt is given by

Dt
iX

m = ∇iX
m + gmk(−Nijk − Vijk + tUijk)X

j .(3.10)

Equivalently, if we express a connection D in terms of its connection form
Γ(D)mij ,

DiX
m = ∂iX

m + Γ(D)mijX
j

then we have

Γ(Dt)mij = Γ(∇)mij + gmk(−Nijk − Vijk + tUijk).(3.11)

Since the torsion of a connection D is given by

T (D)mij = Γ(D)mij − Γ(D)mji
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and the Levi-Civita connection has zero torsion, it readily follows that

T (Dt)mjk = Nm
jk + (t− 1)Um

jk + 2tV m
jk.(3.12)

The two values of t of particular interest to us are:

• t = 0: this is the so-called projected Levi-Civita connection (a.k.a.
the first canonical connection), which we shall henceforth denote by just
D0 = D.

• t = 1: this is the Chern connection ∇C , also characterized by the
condition that ∇C

Ū
V = [Ū , V ]1,0, for any sections U, V of T 1,0M . Here we

have set C⊗TM = T 1,0M⊕T 0,1M and used J to identify TM with T 1,0M .
The expression [Ū , V ]1,0 denotes the (1, 0)-component of [Ū , V ].

The value t = −1 gives the Bismut connection, but we shall not need it
in this paper.

3.1.1. A convenient notation for the action of J . For the conve-
nience of later use, we use the following abbreviations

(JV )k = Jk
jV

j =: V Jk, (JW )m = WjJ
j
m =: WJm.(3.13)

For example, the operator M acting on a TM -valued 2-form Ψ introduced
earlier in (3.4) and (3.6) can now be expressed as

(MΨ)mbc = Ψm
Jb,Jc(3.14)

and (3.7) as

Um
bc =

1

4
((dcω)mbc + (dcω)mJb,Jc),(3.15)

V m
bc =

1

4
((dcω)mbc − (dcω)mJb,Jc).

As another example, since dcω has no (0, 3) + (3, 0) components, it satisfies

(3.16) (dcω)Ji,j,k + (dcω)i,Jj,k + (dcω)i,j,Jk = (dcω)Ji,Jj,Jk.

When summing over repeated indices, J can be raised or lowered as follows

XkαJk = XkJ l
kαl = XJkαk.
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Moreover, we can insert J in summation indices at the cost of adding a
minus sign:

Xkαk = −XJkαJk.

In this short-hand notation, we have1

ωjk = gJj,k = −gj,Jk, gjk = ωj,Jk = ωk,Jj ,

ωjk = gJj,k = −gj,Jk, gjk = ωj,Jk = ωk,Jj .

3.1.2. The types of TM-valued 2-forms. All the tensors which we
encountered above, namely the Nijenhuis tensor, the tensors dcω, U , and V ,
and the torsion tensors can be viewed as TM -valued 2-forms, or equivalently
3-tensors which are antisymmetric in the last two slots. Denote this space
by A2(TM) for simplicity. It is convenient to break up elements of A2(TM)
into simpler components.

Recall the involution M on A2(TM) defined by (3.4) or (3.14) in com-
ponents. Clearly A2(TM) splits into the direct sum of eigenspaces of M
with eigenvalue ±1. We shall call the eigenvalue 1 subspace the space of
TM -valued (1,1)-forms, denoted by A1,1(TM). That is, Ψ ∈ A1,1(TM) if
and only if

Ψp
Jj,Jk = Ψp

jk or equivalently Ψi,Jj,k +Ψi,j,Jk = 0.

The space of eigenvalue −1 can be decomposed further as follows. We say a
TM -valued 2-form Ψ is of type (2,0) or (0,2) if2

Ψ(JX, Y ) = JΨ(X,Y ) or Ψ(JX, Y ) = −JΨ(X,Y ).

In this way we have a direct sum decomposition

A2(TM) = A1,1(TM)⊕A2,0(TM)⊕A0,2(TM).

In terms of indices we see that Ψ ∈ A2,0(TM) if

Ψp
Jj,k = ΨJp

jk = Ψp
j,Jk or ΨJi,j,k = −Ψi,Jj,k = −Ψi,j,Jk;

1Here (ωjk) denotes the inverse matrix of (ωjk), ω
jkωkl = δj l. It is not the tensor

one gets by raising indices using gjk. In fact ωjk = −gjaωabg
bk.

2To avoid confusion, we stress that this notion is specific to A2(TM) and is not
the same as that of scalar-valued (2, 0) or (0, 2) forms.
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and Ψ ∈ A0,2(TM) if

Ψp
Jj,k = −ΨJp

jk = Ψp
j,Jk or ΨJi,j,k = Ψi,Jj,k = Ψi,j,Jk.

Returning to the tensors which we have encountered, their types are as
follows:

• It is readily seen that the Nijenhuis tensor is of type (0, 2), therefore
any contraction of N using either g or ω yields 0.

• It is easy to see that the tensor Um
jk is of type (1, 1). As for V , we

have by definition

VJi,j,k =
1

4
((dcω)Ji,j,k − (dcω)Ji,Jj,Jk)

(3.16)
= −1

4
((dcω)i,Jj,k + (dcω)i,j,Jk)

= VJ(Ji),Jj,k = −Vi,Jj,k

and thus V is of type (2,0).

• Finally, tensors such as the torsions of connections on the Gauduchon
line and consequently also differences of connections, correspond to forms
of mixed types, whose decomposition in Λ1,1(TM)⊕Λ2,0(TM)⊕Λ0,2(TM)
can be read off from formulas such as (3.11) and (3.12), since we know now
the types of Nm

jk, U
m

jk, and V m
jk.

3.2. Proof of Theorem 1

We can now give the proof of Theorem 1. For simplicity, we shall denote
in the subsequent calculations gϕ and Jϕ by just g and J . Recall that the
operator dc is defined by dc = J−1dJ , and that, for a compatible structure
(ω, g, J), we have the identity

dΛ := dΛ− Λd = (dc)†.(3.17)

This identity holds even if J is not integrable. Since ϕ is primitive, we can
replace in (1.4) Λd by −dΛ (since d2 = 0) and rewrite the equation as

∂tϕ = dΛd(|ϕ|2 �ϕ)− ρA = −d(dc)†(|ϕ|2 �ϕ)− ρA

= −d(J−1dJ)†(|ϕ|2 �ϕ)− ρA = −dJ−1d†J(|ϕ|2 �ϕ)− ρA.(3.18)

Here we have used the fact that the adjoint J† of J with respect to g is J−1,
since J is an isometry. We shall see later that �ϕ = Jϕ, so that the above
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equation can be rewritten as

∂tϕ = dJd†(|ϕ|2ϕ)− ρA.(3.19)

Thus the theorem would be proved once we can establish the following
lemma:

Lemma 1. Let (M, g, J, ω) be a 6-dimensional compact almost-Hermitian
manifold with dω = 0. We have

Jd†ϕ = −d†ϕ+ 2N † · ϕ(3.20)

where N † is the operator defined in (2.2).

To establish this, we begin by recalling that the adjoint of the operator
d on 3-forms is given by

(d†ϕ)αβ = −∇γϕγαβ(3.21)

where ∇ denotes the Levi-Civita connection of g, which has no torsion. We
need to apply the operator J to both sides of this equation. For this, we
need in turn the following lemma:

Lemma 2.

∇kJ
a
b = −2NJk

a
b.(3.22)

The point of this lemma is that the Levi-Civita connection does not
necessarily respect the almost-complex structure J . However, we can write
it in terms of the projected Levi-Civita connection D which does, at the cost
of having to handle in addition terms coming from difference of connections,
which gives us the Nijenhuis tensor. This lemma follows directly from (3.11),
where U = V = 0 as ω is closed.

Returning to the proof of Lemma 1, since ϕα,Jβ,Jγ = −ϕαβγ by Lemma
2 and 6, we find

(Jd†ϕ)kj = −Jα
kJ

β
j∇γϕγαβ

= −∇γ(Jα
kJ

β
jϕγαβ)− 2(NJγ

α
kJ

β
j +NJγ

β
jJ

α
k)ϕ

γ
αβ

= −∇γϕγ,Jk,Jj − 2(Nλμ
kϕμjλ −Nλμ

jϕμkλ)

= −(d†ϕ)kj + 2(N † · ϕ)kj .(3.23)

This completes the proof of Lemma 1. Replacing ϕ by |ϕ|2ϕ in Lemma 1,
we also obtain Theorem 1.
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4. The principal symbol of the Type IIA equation

Our next task is to identify the symbol and the eigenvalues of the Type IIA
equation.

4.1. Almost-complex structures and 3-forms

For this and for the rest of the paper, we make essential use of Hitchin’s
construction of an almost-complex structure Jϕ and a metric gϕ from a 3-
form ϕ on a 6-dimensional manifold [30]. We begin by recalling the results
that we need.

4.1.1. Hitchin’s construction. Let V be a 6-dimensional oriented vec-
tor space over R. Following Hitchin [30]3, for any 3-form ϕ ∈ Λ3V ∗, one can
define a linear map Kϕ : V → Λ5V ∗ ∼= V ⊗ Λ6V ∗ by

(4.1) Kϕ(v) = −ιvϕ ∧ ϕ = −ei ⊗ ei ∧ ιvϕ ∧ ϕ,

where {ei} is an arbitrary basis of V and {ei} its dual basis in V ∗. It follows
that

(4.2) λϕ :=
1

6
trV K

2
ϕ ∈ (Λ6V ∗)2

is well-defined and it makes sense to talk about the sign of λϕ. In general
λϕ is a homogeneous degree 4 polynomial in the components of ϕ. When
λϕ < 0, as V is oriented, one can take

√
−λϕ ∈ Λ6V ∗ to be the positive

square root of −λϕ. It is proved in [30]

(4.3) Jϕ :=
Kϕ√
−λϕ

: V → V

defines a complex structure on V . Note that λϕ < 0 is an open condition. In
fact, the set {ϕ ∈ Λ3V ∗ : λϕ < 0} forms an open orbit in Λ3V ∗ of the natural
GL(V )-action. Furthermore, there is a basis {ei} of V ∗ where ϕ takes the
following “canonical form”,

(4.4) ϕ = Re(e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6) = e135 − e146 − e245 − e236

and e123456 defines a positive volume form. In this basis, one can easily check
that Jϕe2k−1 = e2k and Jϕe2k = −e2k−1 for k = 1, 2, 3. Therefore ϕ is the

3Here we adopt the convention used in [15, 16].
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real part of a (3, 0)-form with respect to the complex structure Jϕ. It follows

that the imaginary part

(4.5) ϕ̂ = Im(e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6) = e136 + e145 + e235 − e246

is also determined by ϕ through ϕ̂ = Jϕϕ, meaning that

ϕ̂(X,Y, Z) = ϕ(JϕX, JϕY, JϕZ)

for any X,Y, Z ∈ V . Furthermore two forms ϕ and ϕ̃ define the same com-

plex structure Jϕ if and only if they are related by C∗-action

ϕ̃ = ρ · Re(e−iθ(ϕ+ iϕ̂)).

4.1.2. Jϕ and symplectic structures. Now let us assume that V is

equipped with a symplectic form ω ∈ Λ2V ∗ so V is canonically oriented by

ω3/3!. A natural question is when the symplectic form ω is invariant under

the induced complex structure Jϕ. The answer is very simple:

Lemma 3. ω is Jϕ-invariant if and only if ϕ is primitive in the sense that

ω ∧ ϕ = 0.

Proof. As stated above, we can choose a basis such that ϕ = e135−e146−
e245 − e236. In this coordinate, we may write ω = aije

i ∧ ej with aij = −aji.

The condition that ω(ei, ej) = ω(Jϕei, Jϕej) for any i and j is equivalent to

the following system of linear equations

a13 = a24, a14 = −a23, a15 = a26,

a16 = −a25, a35 = a46, a36 = −a45.(4.6)

These are exactly the equations for ϕ being primitive in the sense that

ω ∧ ϕ = 0. Q.E.D.

For primitive ϕ, we can consider then the Hermitian form gϕ(X,Y ) =

ω(X, JϕY ). We shall say that ϕ is positive if gϕ is positive, in which case gϕ
is a metric, and the triple (ω, Jϕ, gϕ) is compatible4. The positivity of ϕ is

an open condition. Once we have a Riemannian metric and an orientation,

4This notion of positivity is different from the one defined in [30], which does
not involve a symplectic form.
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we have the associated Hodge star operator �. It is straightforward to check

that

(4.7) �ϕ = ϕ̂, �ϕ̂ = −ϕ.

In particular we know that ϕ̂ is primitive if ϕ is primitive.

Altogether, assuming the presence of ω and that ϕ is primitive and

positive, we may upgrade the previous choice of orthonormal basis {ej}6j=1

to the following useful statement:

Lemma 4. (Normal form of ϕ)

There exists an orthonormal basis {ej}6j=1 of V (with respect to g) such that

ω = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6,(4.8)

ϕ = MRe(e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6),(4.9)

where M =
1

2
|ϕ| > 0. It follows that

(4.10)
√

−λϕ =
1

2
|ϕ|2ω

3

3!
.

Using this upgraded version of canonical form of ϕ, one can check that

the following key formula for the metric gϕ holds:

Lemma 5. In any coordinate system, we can write

(4.11) (gϕ)ij = −|ϕ|−2ϕiabϕjcdω
acωbd = 2|ϕ|−2 ιiϕ ∧ ιjϕ ∧ ω

ω3/3!
.

The metric g̃ϕ introduced in (2.3) is then given by

(4.12) (g̃ϕ)ij = −ϕiabϕjcdω
acωbd.

Clearly g̃ϕ is conformal to gϕ and its associated Kähler form is ω̃ϕ = |ϕ|2ω.
Since |ϕ|2 is the square root of a complicated homogeneous degree 4 polyno-

mial in components of ϕ, the metric g̃ϕ has the advantage that its expression

is algebraic in ϕ, which makes it much easier to compute with. Also, the vol-

ume form of gϕ is just ω3/3!, but we can recapture |ϕ|2 from the volume

form of g̃ϕ.
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4.1.3. Basic identities. As always we fix a symplectic form ω. Let ϕ be
a positive primitive 3-form so that it defines an almost complex structure
Jϕ compatible with ω. For simplicity, we shall denote in the subsequent
calculations gϕ and Jϕ by just g and J . Furthermore we can define another
primitive 3-form ϕ̂ = Jϕ = �ϕ such that Ω = ϕ+ iϕ̂ is a nowhere vanishing
(3,0)-form with respect to J , i.e. a complex volume form that trivializes the
canonical bundle of (M,J).

Lemma 6. The 3-forms ϕ and ϕ̂ are related to each other by

ϕijk = ϕ̂Ji,j,k = ϕ̂i,Jj,k = ϕ̂i,j,Jk = −ϕJi,Jj,k = −ϕJi,j,Jk

= −ϕi,Jj,Jk = −ϕ̂Ji,Jj,Jk

and

ϕ̂ijk = −ϕJi,j,k = −ϕi,Jj,k = −ϕi,j,Jk = −ϕ̂Ji,Jj,k = −ϕ̂Ji,j,Jk

= −ϕ̂i,Jj,Jk = ϕJi,Jj,Jk.

Proof. Since ϕ + iϕ̂ is of type (3,0), we have ι∂k+iJ∂k
(ϕ + iϕ̂) = 0. By

taking the real and imaginary parts of the above equation and its iterations
gives the desired identities. Q.E.D.

Since ϕ and ϕ̂ are type (3, 0) + (0, 3)-forms, for any 1-form μ, we know
that both μ ∧ ϕ and μ ∧ ϕ̂ are of type (3, 1) + (1, 3), so

(4.13) μ ∧ ϕ = −J(μ ∧ ϕ) = −Jμ ∧ ϕ̂.

It is not hard to verify that wedging with ϕ or ϕ̂ gives an isomorphism from
the space of real 1-forms to the space of real (3, 1) + (1, 3)-forms. Note that
the primitiveness of ϕ with respect to ω implies the primitiveness of ϕ with
respect to ω̃, and hence ω̃jiϕijk = 0, or equivalently,

ω̃ijϕklm − ω̃kjϕilm − ω̃ljϕkim − ω̃mjϕkli − ω̃ikϕjlm

−ω̃ilϕkjm − ω̃imϕklj + ω̃klϕijm + ω̃mlϕkji + ω̃mkϕjli = 0.(4.14)

We also have the following simple lemma:

Lemma 7. The following are equivalent:
(a) dϕ̂ = 0;
(b) The almost-complex structure J is integrable.

In both cases, the (3, 0)-form Ω is holomorphic and the form ϕ is harmonic.
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Proof. If J is integrable, then ∂Ω = 0 since it is a (4, 0)-form in a 3-

dimensional complex manifold. Similarly for ∂̄Ω̄. But ϕ = 1
2(Ω + Ω̄), so

dϕ = 0 implies 0 = ∂̄Ω+ ∂Ω̄, and hence Ω is holomorphic and dΩ = 0. This

implies that dϕ̂ = 0.

Conversely, if dϕ̂ = 0, then we know that Ω = ϕ+
√
−1ϕ̂ is also closed.

Therefore for any (1, 0)-form λ, we know λ ∧ Ω = 0, hence

0 = d(λ ∧ Ω) = dλ ∧ Ω,

so we deduce that dλ has no (0, 2)-components, which implies that J is

integrable by Frobenius theorem. Q.E.D.

The defining equation for g̃ tells us the effect of contracting twice with

ωij a quadratic polynomial in ϕ. It actually follows from a stronger identity

with only one contraction, and which can be verified explicitly using the

normal form of ϕ in Lemma 4. Using the fact that gij = ωi,Jj , we can readily

deduce the effect of contracting with gij . We summarize these contractions

in the following lemma:

Lemma 8. The following quadratic identities hold:

ωijϕiabϕjcd =
1

4
(ωacg̃bd − ωbcg̃ad − ωadg̃bc + ωbdg̃ac)(4.15)

gijϕiabϕjcd =
1

4
(gacg̃bd − gbcg̃ad + ωadω̃bc − ωbdω̃ac)(4.16)

gacgbdϕiabϕjcd = g̃ij .(4.17)

4.2. The variation δ(ϕ̂)

The key variational formula for ϕ̂ is given by the following lemma:

Lemma 9.

(4.18) δ(ϕ̂) = −Jϕ(δϕ) + 2
δϕ ∧ ϕ

ϕ ∧ ϕ̂
ϕ+ 2

δϕ ∧ ϕ̂

ϕ ∧ ϕ̂
ϕ̂.

When ϕ is primitive and positive with respect to a symplectic form ω, the

above formula can be written as

δ(ϕ̂) = −Jϕ(δϕ)−
2(δϕ, ϕ̂)

|ϕ|2 ϕ+
2(δϕ, ϕ)

|ϕ|2 ϕ̂.(4.19)
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Proof. This is a purely linear algebra problem. We break its proof into
two steps.
• Step 1: The primitive case.

Choose a nondegenerate (1, 1)-form ω compatible with Jϕ. We shall first
prove Lemma 9 under the assumption that δϕ is primitive with respect to
ω. By Lemma 4, one can find an orthonormal basis {ei}6i=1 of V ∗ such that

ω = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6,

ϕ = M(e1 ∧ e3 ∧ e5 − e1 ∧ e4 ∧ e6 − e2 ∧ e4 ∧ e5 − e2 ∧ e3 ∧ e6),

�ϕ = M(e1 ∧ e3 ∧ e6 + e1 ∧ e4 ∧ e5 + e2 ∧ e3 ∧ e5 − e2 ∧ e4 ∧ e6),

where M =
1

2
|ϕ| > 0. For simplicity, we denote e123456 = ω3/3! by ε. Let

δϕ = μ =
1

3!
μijke

i ∧ ej ∧ ek. Straightforward computation gives us

δ(Kϕ) = 2Mε×⎡
⎢⎢⎢⎢⎢⎢⎣

A1 μ135−μ146 −μ125 μ126 μ123 −μ124

μ236+μ245 −A1 μ126 μ125 −μ124 −μ123

μ345 −μ346 A2 μ135−μ236 −μ134 μ234

−μ346 −μ345 μ245+μ146 −A2 μ234 μ134

−μ356 μ456 μ156 −μ256 A3 μ135−μ245

μ456 μ356 −μ256 −μ156 μ236+μ146 −A3

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where

A1 =
μ246 + μ136 + μ145 − μ235

2
,

A2 =
μ246 + μ136 − μ145 + μ235

2
,

A3 =
μ246 − μ136 + μ145 + μ235

2
.

It follows that

(4.20) δ(K2
ϕ) = 4M3ε2(μ236 + μ245 − μ135 + μ146)IdV = 4M2ε2

ϕ̂ ∧ μ

ε
IdV .

Therefore

δ(−λϕ) = 4M2ε2
μ ∧ ϕ̂

ε
= 4M2ε2(μ, ϕ)(4.21)

δ
√

−λϕ =
1

2
δ(|ϕ|2)ε = μ ∧ ϕ̂ = (δϕ, ϕ)ε,(4.22)
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which agrees with Hitchin’s formula [30, Proposition 4]. As a consequence,
we have

(4.23) δ(Jϕ) =
δ(Kϕ)

2M2ε
− μ ∧ ϕ̂

2M2ε
Jϕ.

For simplicity of notation, we introduce the following

F :=
δ(Kϕ)

2Mε
,

ϕ0 := e1 ∧ e3 ∧ e5 − e1 ∧ e4 ∧ e6 − e2 ∧ e4 ∧ e5 − e2 ∧ e3 ∧ e6,

ϕ̂0 := e1 ∧ e3 ∧ e6 + e1 ∧ e4 ∧ e5 + e2 ∧ e3 ∧ e5 − e2 ∧ e4 ∧ e6,

dzk := e2k−1 + ie2k, k = 1, 2, 3.

Again by straightforward calculation, we get

F.dz1 = iB0dz
1 + (A1 + iB1)dz̄

1 + C3dz̄
2 + C2dz̄

3,

F.dz2 = C3dz̄
1 + iB0dz

2 + (A2 + iB2)dz̄
2 + C1dz̄

3,

F.dz3 = C2dz̄
1 + C1dz̄

2 + iB0dz
3 + (A3 + iB3)dz̄

3,

where

B0 =
1

2
(μ135 − μ146 − μ236 − μ245) =

μ ∧ ϕ̂0

2ε
,

B1 =
1

2
(μ135 − μ146 + μ236 + μ245),

B2 =
1

2
(μ135 + μ146 − μ236 + μ245),

B3 =
1

2
(μ135 + μ146 + μ236 − μ245),

C1 = μ156 − iμ256 = −μ134 + iμ234,

C2 = −μ356 + iμ456 = μ123 − iμ124,

C3 = μ345 − iμ346 = −μ125 + iμ126.

Here to obtain expressions of Cj one makes use of primitiveness of μ. For
completeness we also introduce

A0 =
μ246 − μ235 − μ136 − μ145

2
=

μ ∧ ϕ0

2ε
.

Collecting all these together, we get

F.(ϕ0 + iϕ̂0) = F.(dz1 ∧ dz2 ∧ dz3)(4.24)
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= F.(dz1) ∧ dz2 ∧ dz3 + dz1 ∧ F.(dz2) ∧ dz3 + dz1 ∧ dz2 ∧ F.(dz3)

= 3iB0dz
1 ∧ dz2 ∧ dz3 + (A1 + iB1)dz̄

1 ∧ dz2 ∧ dz3

+(A2 + iB2)dz
1 ∧ dz̄2 ∧ dz3 + (A3 + iB3)dz

1 ∧ dz2 ∧ dz̄3

+C1dz
1 ∧ (dz̄3 ∧ dz3 + dz2 ∧ dz̄2)− C2dz

2 ∧ (dz̄3 ∧ dz3 + dz1 ∧ dz̄1)

+C3dz
3 ∧ (dz1 ∧ dz̄1 + dz̄2 ∧ dz2).

Notice we can express μ as

μ = − i

4

[
(C1dz

1 + C1dz̄
1) ∧ (dz̄3 ∧ dz3 + dz2 ∧ dz̄2)

−(C2dz
2 + C2dz̄

2) ∧ (dz̄3 ∧ dz3 + dz1 ∧ dz̄1)

+(C3dz
3 + C3dz̄

3) ∧ (dz1 ∧ dz̄1 + dz̄2 ∧ dz2)

]
+

B0

2
ϕ0 −

A0

2
ϕ̂0

− i

4
(A1 + iB1)dz̄

1 ∧ dz2 ∧ dz3 +
i

4
(A1 − iB1)dz

1 ∧ dz̄2 ∧ dz̄3

− i

4
(A2 + iB2)dz

1 ∧ dz̄2 ∧ dz3 +
i

4
(A2 − iB2)dz̄

1 ∧ dz2 ∧ dz̄3

− i

4
(A3 + iB3)dz

1 ∧ dz2 ∧ dz̄3 +
i

4
(A3 − iB3)dz̄

1 ∧ dz̄2 ∧ dz3.

By taking real part of (4.24) we get

F.ϕ0 = 2Jϕμ−A0ϕ0 − 4B0ϕ̂0.

Since

Jϕ.ϕ0 = ϕ0(Jϕ·, ·, ·) + ϕ0(·, Jϕ·, ·) + ϕ0(·, ·, Jϕ·) = −3ϕ̂0,

δ(Jϕ) =
1

M
(F −B0Jϕ),

it follows that

δ(Jϕ).ϕ0 =
1

M
(2Jϕμ−A0ϕ0 −B0ϕ̂0).(4.25)

Consequently we obtain

δϕ̂ = Jϕδϕ− δ(Jϕ).ϕ = −Jϕμ+A0ϕ0 +B0ϕ̂0.

Rewrite this equation in a coordinate-free manner, we obtain the desired
formula.
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• Step 2: The general case.

Choosing ω as before, a general variation δϕ takes the form

δϕ = μ+ ω ∧ λ,

where μ is primitive with respect to ω and λ is a 1-form. By linearity, we only

need to prove our formula for δϕ = ω ∧ λ. By symmetry, we may assume

that λ = Ne1 for some number N . Therefore ω ∧ λ = Ne1 ∧ (e34 + e56)

is a linear combination of e1 ∧ (e34 − e56) and e1 ∧ (Ke34 − e56) for some

constant K > 1. Notice that e1 ∧ (e34 − e56) is primitive with respect to

ω, and e1 ∧ (Ke34 − e56) is primitive with respect to another Jϕ-compatible

(1, 1)-form ω′ = e12 +Ke34 + e56. By linearity we reduce Step 2 to Step 1

with ω replaced by ω′. Q.E.D.

4.3. The eigenvalues of the principal symbol

With all preparations from last section, we are now ready to compute the

principal symbol of the Type IIA flow (1.4) without source. When ϕ is

primitive, the right hand side of the Type IIA flow is also primitive, so we

only need to consider primitive variations in Lemma 9, which takes the form

δ(|ϕ|2ϕ̂) = −|ϕ|2J(δϕ)− 2(δϕ, ϕ̂)ϕ+ 4(δϕ, ϕ)ϕ̂.(4.26)

Thus the symbol of the leading term in the Type IIA flow is given by

(4.27) δϕ �→ ξ ∧ Λ
{
ξ ∧ (−|ϕ|2J(δϕ)− 2(δϕ, ϕ̂)ϕ+ 4(δϕ, ϕ)ϕ̂)

}
and whether the flow is parabolic or not, depends on the eigenvalues of this

operator. Since by our assumption, the right hand side of the flow is primitive

and admits an integrability operator d. Thus by the Hamilton-Nash-Moser

theorem [29], we can restrict δϕ to the space

W = {δϕ ∈ Λ3V ∗ : ξ ∧ δϕ = 0,Λ(δϕ) = 0}.

As before, we may choose an orthonormal basis {ei}6i=1 of V ∗ such that

ω = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6,

ϕ = M(e1 ∧ e3 ∧ e5 − e1 ∧ e4 ∧ e6 − e2 ∧ e4 ∧ e5 − e2 ∧ e3 ∧ e6),

�ϕ = M(e1 ∧ e3 ∧ e6 + e1 ∧ e4 ∧ e5 + e2 ∧ e3 ∧ e5 − e2 ∧ e4 ∧ e6).
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As we only care about the sign of the eigenvalues of the principal symbol,
we may assume that |ξ| = 2M = 1. Moreover by rotational symmetry we
may assume that ξ = e1. Under such reduction, it is easy to see that

W = {e1 ∧ γ : γ ∈ Λ2(V ′)∗,Λ′γ = 0},

where V ′ = span{ej}6j=3 equipped with the symplectic form ω′ = e3 ∧ e4 +

e5 ∧ e6 and Λ′ is the contraction with respect to ω′. In this way we can also
simplify the operator to

e1 ∧ γ �→ e1 ∧
[
Jγ +

1

2
(γ, e3 ∧ e6 + e4 ∧ e5)(e3 ∧ e6 + e4 ∧ e5)

+(γ, e35 − e46)(e35 − e46)

]
,

which is equivalent to

(4.28) γ �→ Jγ+
1

2
(γ, e3∧e6+e4∧e5)(e3∧e6+e4∧e5)+(γ, e35−e46)(e35−e46).

Then it is clear that the eigenvalues are λ = 1 (multiplicity 4) with eigenvec-
tors γ = e3∧e4−e5∧e6, e3∧e5+e4∧e6, e3∧e6−e4∧e5 and e3∧e5−e4∧e6,
λ = 0 with eigenvector γ = e3 ∧ e6 + e4 ∧ e5. We summarize our findings in
the following lemma:

Lemma 10. The leading symbol in the Type IIA flow, restricted to closed
and primitive forms, is only weakly parabolic. More precisely, it has an eigen-
value λ = 1 with multiplicity 4, and an eigenvalue λ = 0 with multiplicity
1.

5. Proof of Theorem 2: existence

In this section we establish the short-time existence of the Type IIA flow.
As we saw in §4, the flow is not strictly parabolic, and the presence of the
symplectic form prevents a direct application of either the reparametrization
arguments of [14] or the Hamilton-Nash-Moser theorem of [29]. Rather, we
proceed as follows: first we do apply a reparametrization, but we have to
accompany it at the same time with a flow of the symplectic form. This new
coupled flow of (ϕ, ω) is still not strictly parabolic, but one of its key prop-
erties is that it admits a strictly regularization with integrability condition,
to which the Hamilton-Nash-Moser theorem can apply. Thus we obtain the
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short-time existence for a regularized version of the Type IIA flow. Next,
we show that the regularized flow preserves the primitiveness of the data,
and reduces to the Type IIA flow if the form ϕ is known to be primitive.
Altogether, we obtain the desired short-time existence of the Type IIA flow
for primitive data. The uniqueness of the solution will be shown later in
§7.5, as a consequence of the uniqueness of the flows of the corresponding
metrics.

5.1. A coupled flow for (ϕ, ω)

More precisely, we consider a reparametrization of the Type IIA flow by the
following time-dependent vector field

V k = eu
(
gpq(Γk

pq − (Γ0)
k
pq)− glkul

)
,(5.1)

where |ϕ|, u and g are defined by

|ϕ|2ω
3

3!
= ϕ ∧ ϕ̂, u = log |ϕ|2, gij = −|ϕ|−2ϕiabϕjcdω

acωbd,

and Γ and Γ0 are Christoffel symbols associated to the evolving metric g
and the initial metric g0. Under a reparametrization by the diffeomorphisms

generated by the vector field V k, the given symplectic form in the Type
IIA flow would become time-dependent and evolve by its Lie derivative. It
is convenient to change notation slightly, and denote the given symplectic
form by ω0 while reserving ω = ω(t) for the evolving symplectic form. This
consideration inspires us to consider the following coupled flow for the pair
(ϕ, ω), {

∂tϕ = dΛd(|ϕ|2ϕ̂) + d(ιV ϕ)

∂tω = d(ιV ω)
(5.2)

with initial data ϕ(0) = ϕ0, ω(0) = ω0, where ϕ0 would be a closed primitive
positive 3-form with respect to ω0. Although the initial metric g0 is almost
Kähler, a priori we should not assume that ϕ(t) is primitive with respect to
ω(t), hence g(t) a priori may not even be almost Hermitian.

Our first task is to work out the eigenvalues of the principal symbol for
this coupled flow. Note that because of the coupling, the principal symbol
of (5.2) is now a linear operator acting on both δϕ and δω, and not just on
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δϕ, and we may no longer assume that δϕ is primitive. It is easy to see that

the principal symbol of the linearization of (5.2) is determined by

(δϕ, δω) → (dΛd δ(|ϕ|2ϕ̂) + d(ιδV ϕ), d(ιδV ω)).(5.3)

Now the leading order term in δV is

eugpqgkl(∇p(δg)lq −
1

2
∇l(δg)pq)− glk∇lδ(e

u),

so if we define the vector field Wξ by

W k
ξ = |ϕ|2gpqgkl(ξp(δg)lq −

1

2
ξl(δg)pq)− glkξlδ|ϕ|2,

it follows immediately that the principal symbol of the linearized operator

is

(δϕ, δω) �→ (ξ ∧ Λ(ξ ∧ δ(|ϕ|2ϕ̂)) + ξ ∧ ιWξ
ϕ, ξ ∧ ιWξ

ω)(5.4)

with integrability conditions ξ ∧ δϕ = ξ ∧ δω = 0.

We work out more explicitly the symbol at a point (ϕ, ω) where ϕ is

primitive with respect to ω. In this case, we may choose an orthonormal

basis of g such that

ω = e12 + e34 + e56,

ϕ =
|ϕ|
2
(e135 − e146 − e245 − e236), ϕ̂ =

|ϕ|
2
(e136 + e145 + e235 − e246).

Without loss of generality, we may further assume that ξ = e1 and |ϕ| = 1.

In this case, we can write δϕ = e1 ∧ γ and δω = e1 ∧ α for some 2-form γ

and 1-form α such that α, γ ∈
∧∗{e2, . . . , e6}. It is straightforward to check

that

δ|ϕ|2 = 2(δϕ, ϕ)− |ϕ|2(δω, ω) = (γ, e35 − e46)− (α, e2),

δ(|ϕ|2ϕ̂) = −|ϕ|2J(δϕ)− 2(δϕ, ϕ̂)ϕ+ 4(δϕ, ϕ)ϕ̂− |ϕ|2(δω, ω)ϕ̂
= e2 ∧ Jγ − (γ, e36 + e45)ϕ+ (2(γ, e35 − e46)− (α, e2))ϕ̂

W k
ξ = (δg)k1 − δk1

(
1

2
trgδg + (γ, e35 − e46)− (α, e2)

)
.(5.5)
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We see that the key is to compute δg, especially (δg)k1. By definition of g̃
and straightforward calculation, we have

(δg̃)11 = 2(γ, e35 − e46), (δg̃)22 = 0, (δg̃)12 = −(γ, e36 + e45),

(δg̃)33 = (δg̃)55 = 2(γ, e35)− (α, e2), (δg̃)44 = (δg̃)66 = −2(γ, e46)− (α, e2),

(δg̃)13 = (γ, e26) +
1

2
(α, e4), (δg̃)14 = (γ, e25)− 1

2
(α, e3),

(δg̃)15 = −(γ, e24) +
1

2
(α, e6), (δg̃)16 = −(γ, e23)− 1

2
(α, e5),

(δg)ij = (δg̃)ij − ((γ, e35 − e46)− (α, e2))δij .

It follows that trgδg = 2(α, e2), hence

W 1
ξ = (α, e2), W 2

ξ = −(γ, e36 + e45)

W 3
ξ = (γ, e26) +

1

2
(α, e4), W 4

ξ = (γ, e25)− 1

2
(α, e3),

W 5
ξ = −(γ, e24) +

1

2
(α, e6), W 6

ξ = −(γ, e23)− 1

2
(α, e5).

Consequently we find that

ξ ∧ ιWξ
ϕ =

1

2
e1 ∧
[
(γ36 + γ45)(e

36 + e45) + (γ26 +
α4

2
)e26 + (γ25 −

α3

2
)e25

+(γ24 −
α6

2
)e24 + (γ23 +

α5

2
)e23 + α2(e

35 − e46)

]
,

ξ ∧ ιWξ
ω =

1

2
e1 ∧ (α+ α2e

2 − 2(γ25e
3 − γ26e

4 − γ23e
5 + γ24e

6)).

If we further write γ = e2∧β+λ, α = α2e
2+μ, where β, μ, λ ∈

∧∗{e3, . . . , e6},
we have

ξ ∧ ιWξ
ϕ =

1

2
e1 ∧

[
(λ36 + λ45)(e

36 + e45) + e2 ∧ β

−1

2
e2 ∧ ιμ(e

35 − e46) + α2(e
35 − e46)

]
,

ξ ∧ ιWξ
ω =

1

2
e1 ∧ (μ+ 2α2e

2 + 2ιβ(e
35 − e46)),

ξ ∧ Λ(ξ ∧ δ(|ϕ|2ϕ̂) = e1 ∧
[
Jλ+

λ36 + λ45

2
(e36 + e45)

+(λ35 − λ46 −
α2

2
)(e35 − e46)

]
.
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It follows that the principal symbol is the linear map

(β, λ, α2, μ) �→
(
β

2
− ιμ

4
(e35 − e46), λ, α2,

μ

2
+ ιβ(e

35 − e46)

)
(5.6)

This matrix is only positive semi-definite. The part (λ, α2) �→ (λ, α2) is the
identity map. However the other part

(β, μ) �→
(
β

2
− ιμ

4
(e35 − e46),

μ

2
+ ιβ(e

35 − e46)

)

has eigenvalues 0 and 1, both of multiplicities 4. So the coupled flow (5.2)
for (ϕ, ω) is still not strictly parabolic.

5.2. A parabolic regularization of the coupled flow

To solve this problem, we add an extra term on the right hand side of the
evolution equation of ϕ in (5.2). This term takes the form

−BdJd(|ϕ|2Λϕ̂),

where B is a constant to be determined. In fact, Λ(ϕ̂) is expected to be zero
along the flow as ϕ should always be primitive. Again let us consider the
linearization of |ϕ|2Λϕ̂ at a primitive pair (ω, ϕ) and we may assume that
|ϕ|2 = 1 at the point of linearization. It follows that

δ(|ϕ|2Λϕ̂) = (δΛ)(ϕ̂)− Λ(Jδϕ).(5.7)

As before, we may assume that ξ = e1 and δϕ = e1 ∧ (e2 ∧ β + λ) and
δω = e1 ∧ (α2e

2 + μ). The principal symbol for the extra term is

Be12 ∧ J
[
(δΛ)(ϕ̂)− Λ(Jδϕ

)
].(5.8)

The second term is easy to compute:

−Be12 ∧ J(Λ(Jδϕ)) = Be12 ∧ β.(5.9)

The first term is more complicated, notice that

B(δΛ)(ϕ̂)k = −B

2
ωjs(δω)stω

tiϕ̂ijk = B

6∑
t=3

μtω
tiϕ̂2ik,
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therefore by straightforward calculation, this part of the principal symbol is
equivalent to the linear map

μ �→ B

2
ιμ(e

35 − e46).

Therefore the principal symbol for the full evolution equation is equivalent
to the linear map

(β, λ, α2, μ) �→
(
β

2
(1 + 2B) +

2B − 1

4
ιμ(e

35 − e46), λ, α2,
μ

2
+ ιβ(e

35 − e46)

)
.

If B > 0, then all the eigenvalues of the above matrix are positive. In this
sense, the coupled flow with the additional B term is parabolic.

Lemma 11. Consider the flow

∂tϕ = dΛd(|ϕ|2ϕ̂)−BdJd(|ϕ|2Λϕ̂) + d(ιV ϕ),

∂tω = d(ιV ω),(5.10)

for any fixed, strictly positive constant B. Then for any initial value ϕ0 which
is a closed, positive, and primitive form with respect to the initial symplectic
form ω0, the flow exists and is smooth at least on some interval [0, T ) with
T > 0. Clearly the flow preserves the closedness of both the forms ϕ and ω.

Proof. Let d be the exterior derivative. The preceding fact that the eigen-
values of the principal symbol of the flow (5.10) when restricted to closed
and primitive forms are positive means that the flow (5.10) together with
d as the integrability operator satisfies the condition of the Hamilton-Nash-
Moser theorem ([29], Theorem 5.1). This theorem implies the short-time
existence and uniqueness of the flow (5.10). Q.E.D.

It should be noted that we need to treat ϕ and ω as tensors evolving in-
dependently at this moment, therefore we cannot assume that ϕ is primitive
with respect to ω (though we shall prove it is indeed the case later). Conse-
quently the metric g defined above is not necessarily compatible with J or
ω: we only know it is a Riemannian metric. As (5.10) preserves the closed-
ness of ϕ and ω, by performing the reverse reparametrization, we obtain
immediately

Lemma 12. Fix any positive constant B. Then the flow of 3-forms ϕ

∂tϕ = dΛd(|ϕ|2ϕ̂)−BdJd(|ϕ|2Λϕ̂)(5.11)



Geometric flows for the Type IIA string 727

admits a closed smooth solution ϕ on some interval [0, T ) with T > 0, for
any initial value ϕ0 which is a smooth closed, positive, and primitive form
with respect to the symplectic form ω0.

5.3. Preservation of the primitiveness condition

Next we shall show that, if the initial data ϕ0 is primitive in the flow (5.11),
then ϕ(t) remains primitive for all time. Since ϕ primitive implies that ϕ̂ is
also primitive, it follows that the terms with coefficient B in (5.11) all drop
out, and the flow reduces to the Type IIA flow, establishing Theorem 2 in
the case of no sources.

From now on, we take B = 1. Let ϕ(t) be a solution to (5.11) on M ×
[0, T ) with ϕ(0) being closed, positive, and primitive. Clearly for any t, ϕ(t)
stays closed. Let

ϕ = P + β ∧ ω(5.12)

be the primitive decomposition of ϕ, where P is a primitive 3-form. It follows
that

β =
Λϕ

2
.

We wish to show that β = 0 by the maximum principle. To do so, we need to
compute the evolution equation of β. We fix a background metric ḡ = g(0)
which is compatible with ω. We denote by ∇̄ the covariant derivatives with
respect to ḡ. Since ϕ is closed, dβ is primitive, and thus

ωjk∇̄jβk = 0.(5.13)

Furthermore,

(Λϕ̂)k =
ωji

2
ϕ̂ijk = −ωji

2
ϕi,j,Jk = −(Λϕ)Jk,

hence there exists a primitive 3-form P̂ such that the primitive decomposi-
tion for ϕ̂ is

ϕ̂ = P̂ − Jβ ∧ ω.(5.14)

Using this decomposition for ϕ̂, we can derive the evolution equation for β,

∂tβ = −dΛd(|ϕ|2Jβ) + Λ(dJd(|ϕ|2Jβ)).(5.15)
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We know that ϕ, J , and all their covariant derivatives are bounded in M ×
[0, τ ] for any τ < T , therefore we can write (5.15) in the form

∂tβ = |ϕ|2(−dΛd(Jβ) + Λ(dJdJβ) + ∇̄β ∗ S1 + β ∗ S2),(5.16)

where S1 and S2 are bounded tensors on M × [0, τ ] and ∗ represents certain
contraction of indices. We need to compute the leading term of β in (5.16).
Notice that (Jβ)j = Jp

jβp, so

d(Jβ)jk = Jp
k∇̄jβp − Jp

j∇̄kβp +O(β),

Λd(Jβ) = ωkjJp
k∇̄jβp +O(β),

(dΛd(Jβ))l = ωJp,j∇̄l∇̄jβp +O(β, ∇̄β),

(JdJβ)jk = Js
jJ

t
k(J

p
t∇̄sβp − Jp

s∇̄tβp +O(β))

= J t
k∇̄tβj − J t

j∇̄tβk +O(β),

(dJdJβ)jkl = J t
k(∇̄l∇̄tβj − ∇̄j∇̄tβl)− J t

j(∇̄l∇̄tβk − ∇̄k∇̄tβl)

+J t
l(∇̄j∇̄tβk − ∇̄k∇̄tβj) +O(β, ∇̄β),

Λ(dJdJβ)l = ωkjJ t
k(∇̄l∇̄tβj − ∇̄j∇̄tβl) + J t

l∇̄t(ω
kj∇̄jβk) +O(β, ∇̄β)

= ωJj,p∇̄l∇̄jβp + ωj,Jt∇̄j∇̄tβl +O(β, ∇̄β).

It follows that

∂tβ = |ϕ|2(Lβ +O(β, ∇̄β)),(5.17)

where L is defined by

(Lβ)l = (ωJj,p + ωj,Jp)∇̄l∇̄jβp + ωj,Jt∇̄j∇̄tβl.

We further notice that ωJj,p + ωj,Jp = O(β), ωj,Jt − δjt = O(β), and as β is
a smooth function of ϕ, we also have |∇̄2β| is uniformly bounded. Therefore
one can also write

∂tβ = |ϕ|2(Δ̄β +O(β, ∇̄β)).(5.18)

It follows that

∂t|β|2ḡ = 2|ϕ|2(Δ̄β, β)ḡ +O(β, ∇̄β) ∗ β ∗ S
≤ |ϕ|2Δ̄(|β|2ḡ)− 2|ϕ|2|∇̄β|2 +O(β, ∇̄β) ∗ β ∗ S
≤ |ϕ|2Δ̄(|β|2ḡ) + C|β|2.(5.19)
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Since β = 0 initially, by maximum principle we know that β = 0 on [0, τ ]
for any τ < T . Therefore ϕ(t) is primitive for as long as the flow exists, and
J is always compatible with ω. The existence part of Theorem 2 is proved
in the case of no sources.

6. Type IIA geometry: proof of Theorem 3

The goal of this section is to work out some properties specific to Type IIA
geometry. What is crucial is that the almost complex structure Jϕ in Type
IIA strings comes from a closed primitive positive 3-form ϕ via Hitchin’s con-
struction. In fact, the closedness of ϕ imposes subtle “higher integrability”
conditions on Jϕ which in turn distinguish Jϕ from a generic almost complex
structure. This feature gives rise to various identities that are not available
in the more general almost-Kähler setting. We begin with the curvature
and Nijenhuis tensor on general almost-complex manifolds, and gradually
specialize to almost-Kähler manifolds, and then to Type IIA geometry.

6.1. Curvature tensors on general almost-complex manifolds

For any affine connection D, we define its curvature tensor R(D) and torsion
T (D) by

[Di, Dj ]X
m = R(D)ij

m
lX

l − T (D)lijDlX
m.(6.1)

The curvature tensor with four lower indices is defined in the usual way

R(D)ijkl = R(D)ij
p
lgpk.(6.2)

As in the case for Levi-Civita connection, we define the Ricci curvature of
D, also denoted by R(D), by

R(D)ik = gjlR(D)ijkl.(6.3)

Let now J be an almost-complex structure on the Riemannian manifold
M . In subsequent developments, we shall need both the Levi-Civita con-
nection ∇ and the projected Levi-Civita connection D = D0. Therefore we
will reserve the Latin letter R for various curvature tensors associated to
∇ and the German letters �, T, and R for Christoffel symbol, torsion, and
curvature tensors associated to D. When we have other Hermitian metrics
with decoration like g̃ or ĝ, we shall decorate the corresponding connections
and curvature tensors with the same symbol. Identities for the curvature
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and torsion of the Chern connection have been worked out in the paper
of Tosatti, Weinkove, and Yau [47]. However, they are expressed there in
complex frames, and it is difficult for us to apply their formulas, as we shall
have to let the almost-complex structure evolve. Thus we develop here a
formalism for curvature and torsion identities with the action of J in real
coordinate systems.

To pass back and forth from ∇ to �, we note that from (3.11) and (3.12)
that

�mij = Γm
ij −Nij

m − Vij
m =: Γm

ij −Aij
m,(6.4)

Tm
ij = Nm

ij − Um
ij ,(6.5)

where A = V +N is of type (2, 0)+(0, 2), and hence their curvature tensors
are related by

Rijkl = Rijkl − (DiAjkl −DjAikl + Tp
ijApkl(6.6)

+Aik
pAjlp −Ajk

pAilp).

As Rijkl is the curvature tensor of the Levi-Civita connection, it has various
symmetries and satisfies the Bianchi identities. On the other hand, since
DJ = 0, its curvature R satisfies

Rijkl = Ri,j,Jk,Jl.(6.7)

It is easy to deduce from the preceding relation between Rijkl and Rijkl how
to modify the identity for each curvature if it is replaced by the other.

The projected Levi-Civita connection D induces a connection on the
canonical bundle of M , whose curvature represents the first Chern class (up
to a constant) of the almost complex manifold (M,J). To be precise, if we
use small Greek letter to denote the index for “holomorphic” tangent bundle
T 1,0M , then

1

4π
Rijklω

lk =

√
−1

2π
Rij

γ
γ ∈ [c1(M,J)].(6.8)

Since A is of type (2, 0)+ (0, 2), the contraction of its last two indices using
ω or g vanishes, therefore by (6.6) we see that

Rijklω
lk = Rijklω

lk + 2Aik
pAjlpω

lk(6.9)
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is a closed 2-form. We end this subsection by deriving the following formula
for Ricci curvature

Rij = −2gkl(DiAkjl −DkAijl + Tp
ikApjl) +

1

2
ωlkRi,Jj,k,l.(6.10)

Indeed, by (6.6) we see that

Ri,j,Jk,Jl −Rijkl = (DiAjkl −DjAikl + Tp
ijApkl +Aik

pAjlp −Ajk
pAilp)

−(DiAj,Jk,Jl −DjAi,Jk,Jl + Tp
ijAp,Jk,Jl

+Ai,Jk
pAj,Jl,p −Aj,Jk

pAi,Jl,p).

Recall that A is of type (2, 0) + (0, 2), so Aijk = −Ai,Jj,Jk, therefore we get

Ri,j,Jk,Jl −Rijkl = 2(DiAjkl −DjAikl + Tp
ijApkl).(6.11)

Let us denote the right hand side of the above equation by Bijkl. Then the
above equation is equivalent to

−Ri,j,Jk,l −Ri,j,k,Jl = 2(DiAj,k,Jl −DjAi,k,Jl + Tp
ijAp,k,Jl)

= Bi,j,Jk,l = Bi,j,k,Jl.(6.12)

Let {ea} be an orthonormal frame for the given Riemannian metric, and so
is the frame {Jea}. By definition of Ricci curvature, we have

Ri,Jj =
∑
a

R(i, ea, Jj, ea) =
∑
a

R(i, Jea, Jj, Jea)

=
∑
a

(R(i, Jea, j, ea) +B(i, Jea, j, ea))

=
∑
a

(−R(j, ea, J(Ji), Jea)−B(i, Jea, Jj, Jea))

=
∑
a

(−R(j, ea, Ji, ea)−B(j, ea, Ji, ea)−B(i, ea, Jj, ea))

= −Rj,Ji − gkl(Bi,k,Jj,l +Bj,k,Ji,l).(6.13)

On the other hand, by taking trace of (6.12) and using Bianchi identity of
R, we have

gjlBi,j,Jk,l = −gjl(Ri,j,Jk,l +Ri,j,k,Jl)

= −Ri,Jk + gjl(Rj,k,i,Jl +Rk,i,j,Jl)
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= −Ri,Jk + gjl(Rk,j,Ji,l +Bk,j,Ji,l) +Rkijlω
lj

= −Ri,Jk +Rk,Ji + gjlBk,j,Ji,l +Rkijlω
lj .(6.14)

(6.13) and (6.14) can be rewritten as

Ri,Jj +Rj,Ji = −gkl(Bi,k,Jj,l +Bj,k,Ji,l),

Ri,Jj −Rj,Ji = −gkl(Bi,k,Jj,l −Bj,k,Ji,l)−Rijklω
lk.

Adding these two equations up we get

Ri,Jj = −gklBi,k,Jj,l −
1

2
Rijklω

lk

which is equivalent to

Rij = −gklBikjl +
1

2
ωlkRi,Jj,k,l

= −2gkl(DiAkjl −DkAijl + Tp
ikApjl) +

1

2
ωlkRi,Jj,k,l.

This gives the desired formula.

6.2. Quadratic expressions in the Nijenhuis tensor

We shall encounter frequently later quadratic expressions of the Nijenhuis

tensor. It is convenient to introduce the following two symmetric tensors

quadratic in N :

(N2
+)ij := Npk

iNpkj ≥ 0,

(N2
−)ij := Nkp

iNpkj .

Since N is skew-symmetric in the last two slots and it satisfies the Bianchi

identity (3.8), all the other similar tensors can be expressed as a linear

combination of N2
+ and N2

−. For example

0 ≤ NipkNj
pk = (Npki −Nkpi)(N

pk
j −Nkp

j) = 2(N2
+)ij − 2(N2

−)ij .

Obviously gijNipkNj
pk = |N |2 = gijNpk

iNpkj , so we find that

(6.15) |N |2 = trN2
+ = gij(N2

+)ij = 2gij(N2
−)ij = 2trN2

−.



Geometric flows for the Type IIA string 733

Also we observe that both N2
+ and N2

− are J-invariant in the sense that
(N2

±)ij = (N2
±)Ji,Jj . In general, for any symmetric 2-tensor A = Aij , we

define its J-invariant and J-anti-invariant parts respectively by

(AJ)ij :=
1

2
(Aij +AJi,Jj), (A−J)ij :=

1

2
(Aij −AJi,Jj).

In this notation, we have N2
± = (N2

±)
J .

Clearly we have A = AJ + A−J and this decomposition is orthogonal
with respect to the inner product induced by the metric g. Later such a
decomposition will play an important role in our calculations.

6.3. Curvature tensors in almost-Kähler geometry

In this subsection we restrict ourselves to the case dω = 0, namely the case
(M,J, g) is an almost-Kähler manifold. Since ω is a symplectic form, we
know dcω = 0, hence both U and V defined in (3.5) are zero. Therefore
(6.4) and (6.5) specialize to A = N = T. Therefore the previously deduced
formula (6.6) becomes

Rijkl = Rijkl − (DiNjkl −DjNikl(6.16)

+Np
ijNpkl +Nik

pNjlp −Njk
pNilp),

thus we have

Rij = Rij +DkNijk − (N2
−)ij .(6.17)

Combining (6.10) with (6.16), we also obtain

Rij = 2DkNijk − 2(N2
+)ij +

1

2
ωlkRi,Jj,k,l

= 2DkNijk − 2(N2
+)ij +

1

2
ωlk(Ri,Jj,k,l − (DiNJj,k,l −DJjNikl

+Np
i,JjNpkl +Nik

pNJj,l,p −NJj,k
pNilp))

= 2DkNijk − 2(N2
−)ij +

1

2
ωlkRi,Jj,k,l.(6.18)

Alternatively

Rij = 2DkNijk − 2(N2
+)ij +

1

2
ωlkRk,l,i,Jj

= 2DkNijk − 2(N2
+)ij +

1

2
ωlk(Rk,l,i,Jj − (DkNl,i,Jj
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+Np
klNp,i,Jj −DlNk,i,Jj +Nki

pNl,Jj,p −Nli
pNk,Jj,p))

= Dk(Nijk +Njik)− (N2
+)ij +

1

2
ωlkRk,l,i,Jj .(6.19)

From (6.19) we can immediately read off that

(RJ)ij = −(N2
+)ij +

1

2
ωlkRk,l,i,Jj ,(6.20)

(R−J)ij = Dk(Nijk +Njik).(6.21)

Taking the trace of (6.18) and plugging in (6.16), we see that

R =
1

2
ωjiωlkRijkl − |N |2 = 1

2
ωjiωlkRijkl − 2|N |2.(6.22)

In the literature, the expression
1

2
ωjiωlkRijkl is sometimes known as the

�-scalar curvature. This relation (6.22) was first discovered by Blair-Ianus
[4], and Blair [3] together with Oproiu [36].

Combining (6.16) with the symmetry of R, we can derive that

Rijkl −Rklij = DiNjkl −DjNikl −DkNlij +DlNkij

+N p
ik Njlp −N p

jk Nilp −N p
ki Nljp +N p

li Nkjp.(6.23)

As Rijkl = Ri,j,Jk,Jl, by making use of (6.23), we get

RJi,Jj,k,l −Rijkl = RJi,Jj,k,l −Rk,l,Ji,Jj +Rklij −Rijkl

= DJiNJj,k,l −DJjNJi,k,l −DiNjkl

+DjNikl + 2DkNlij − 2DlNkij .(6.24)

Notice that the LHS of (6.24) does not change if one replace k and l by Jk
and Jl respectively, so we get an interesting identity satisfied by DN

DJiNJj,k,l −DJjNJi,k,l −DJkNJl,i,j +DJlNJk,i,j

= DiNjkl −DjNikl −DkNlij +DlNkij ,(6.25)

which allows us to rewrite one covariant derivative of N in terms of some
other combination of covariant derivatives.

In the same vein we can derive the Bianchi-type identity for R

Rijkl +Rjkil +Rkijl = −DiNljk −DjNlki −DkNlij

+Np
ijNlkp +Np

jkNlip +Np
kiNljp.(6.26)
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Equation (6.24) accounts for the (2,0)+(0,2)-part of the curvature tensor
R. If we use Greek letters for barred and unbarred directions, then (6.24)
can be translated into

Rαβγ̄δ = DαNβγ̄δ −DβNαγ̄δ −Dγ̄Nδαβ +DδNγ̄αβ

= −Dγ̄Nδαβ,

R∗∗γδ = R∗∗γ̄δ̄ = 0,

which is the content of (2.17) in [47]. Replace i, j, k, l by ᾱ, β, γ̄, δ respectively
in the Bianchi-type identity (6.26), we get

Rᾱβγ̄δ −Rγ̄βᾱδ = Rᾱβγ̄δ +Rβγ̄ᾱδ +Rγ̄ᾱβδ = Np
γ̄ᾱNδβp = Nλ

γ̄ᾱNδβλ.

This is the content of (2.16) in [47].

6.4. The holonomy of Type IIA geometry

We now restrict ourselves further to Type IIA geometry, namely a triple
(M,ω, ϕ) where (M,ω) is a symplectic 6-manifold and ϕ is a closed positive
ω-primitive 3-form.

Our first task is to prove Theorem 3(a). Recall that |ϕ| is the norm of
ϕ with respect to the metric gϕ, and that we have defined the metric g̃ϕ by
g̃ϕ = |ϕ|2gϕ. It is not hard to see that

|ϕ|g̃ = |ϕ|−2.

Henceforth we shall denote gϕ, g̃ϕ, and Jϕ by just g, g̃, and J for simplicity.
It is clear that J is compatible with g̃ and the corresponding Kähler form
ω̃ = |ϕ|2ω satisfies

dω̃ = −α ∧ ω̃, dcω̃ = Jα ∧ ω̃,

where

(6.27) α = d log |ϕ|g̃ = −d log |ϕ|2.

It follows from (3.16) that

Uijk =
1

4
(2αJiω̃jk + αJjω̃ki + αJkω̃ij + αj g̃ki − αkg̃ij),(6.28)

Vijk =
1

4
(αJjω̃ki + αJkω̃ij − αj g̃ki + αkg̃ij).(6.29)
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We need now the following lemmas for computational purposes.

Lemma 13.
Let μ be any differential form, D any affine connection, T = T (D) the
torsion tensor associated to D. Then we have the following formula

(6.30) dμ = dxj ∧Djμ+ T � μ,

where � is a multiplication operation linear in both factors. We only need
the explicit expression of � when μ is a 3-form, in which case T � μ is a
4-form given by
(6.31)
(T �μ)ijkl = T p

ijμpkl +T p
klμpij −T p

ikμpjl −T p
jlμpik +T p

ilμpjk +T p
jkμpil,

as well as the case μ is a 2-form, where T � μ is a 3-form of the form

(6.32) (T � μ)ijk = T p
ijμpk + T p

jkμpi + T p
kiμpj .

Proof: We give the proof of (6.32) and leave (6.31) to the reader. For μ =
1

2
μijdx

i ∧ dxj , we have

(6.33) dμ =
1

2
∂αμij dx

α ∧ dxi ∧ dxj .

We write DiWj = ∂iWj − Γ(D)kijWk, and obtain

(6.34) dμ =
1

2
(Dkμij + Γ(D)βkiμβj + Γ(D)βkjμiβ) dx

k ∧ dxi ∧ dxj .

This becomes

dμ = dxk∧Dkμ(6.35)

+
1

3!

(
Γ(D)βkiμβj + Γ(D)βjkμβi + Γ(D)βijμβk

)
dxk∧dxi∧dxj

+
1

3!

(
Γ(D)βkjμiβ + Γ(D)βikμjβ + Γ(D)βjiμkβ

)
dxk∧dxi∧dxj

which leads to

(6.36) dμ = dxk ∧Dkμ+
1

3!
(T β

kiμβj + T β
jkμβi + T β

ijμβk)dx
k ∧ dxi ∧ dxj .

Q.E.D.
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Lemma 14.
In the notation in Lemma 13, the 4-form N � ϕ is of type (2, 2).

Proof of the Lemma: By Lemma 13, we know that

(N � ϕ)ijkl = Np
ijϕpkl +Np

klϕpij −Np
ikϕpjl −Np

jlϕpik

+Np
ilϕpjk +Np

jkϕpil.

Since N ∈ A0,2(TM) and ϕ satisfies Lemma 6, we find

(J(N � ϕ))ijkl = Np
Ji,Jjϕp,Jk,Jl +Np

Jk,Jlϕp,Ji,Jj −Np
Ji,Jkϕp,Jj,Jl

−Np
Jj,Jlϕp,Ji,Jk +Np

Ji,Jlϕp,Jj,Jk +Np
Jj,Jkϕp,Ji,Jl

= Np
ijϕpkl +Np

klϕpij −Np
ikϕpjl −Np

jlϕpik

+Np
ilϕpjk +Np

jkϕpil

= (N � ϕ)ijkl.

As J acts on (3, 1) + (1, 3)-forms as −1 and acts on (2, 2)-forms as 1, we
deduce that N � ϕ is a (2, 2)-form. Q.E.D.

Lemma 15.
Using the notation in Lemma 13, we have

dcω̃ � ϕ = M(dcω̃)� ϕ = 2α ∧ ϕ,(6.37)

dcω̃ � ϕ̂ = M(dcω̃)� ϕ̂ = 2α ∧ ϕ̂.(6.38)

Proof. As we have seen dcω̃ = Jα ∧ ω̃, so the first term in (dcω̃)� ϕ is

(dcω̃)pijϕpkl = g̃pq((Jα)qω̃ij + (Jα)iω̃jq + (Jα)jω̃qi)ϕpkl

= g̃pqαJqω̃ijϕpkl + αJiϕJj,k,l − αJjϕJi,k,l

= g̃pqαJqω̃ijϕpkl − αJiϕ̂jkl + αJjϕ̂ikl.

Hence

(dcω̃ � ϕ)ijkl

= g̃pqαJq(ω̃ijϕpkl + ω̃klϕpij − ω̃ikϕpjl − ω̃jlϕpik + ω̃ilϕpjk + ω̃jkϕpil)

−αJiϕ̂jkl + αJjϕ̂ikl − αJkϕ̂lij + αJlϕ̂kij + αJiϕ̂kjl − αJkϕ̂ijl

+αJjϕ̂lik − αJlϕ̂jik − αJiϕ̂ljk + αJlϕ̂ijk − αJjϕ̂ilk + αJiϕ̂jlk

= g̃pqαJq(ω̃ipϕjkl − ω̃jpϕikl + ω̃kpϕijl − ω̃lpϕijk)− 3(Jα ∧ ϕ̂)ijkl

= αJq(J
q
iϕjkl − Jq

jϕikl + Jq
kϕijl − Jq

lϕijk) + 3(α ∧ ϕ)ijkl

= 2(α ∧ ϕ)ijkl.
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In this proof we only used the fact that ϕ is primitive (4.14) so in the

same manner we have

dcω̃ � ϕ̂ = 2α ∧ ϕ̂.

The other identities can be proved similarly. Q.E.D.

Now we are ready to prove Theorem 3 (a).

Since D̃J = 0, there exists a complex-valued 1-form θ = α+
√
−1β such

that

D̃Ω = θ ⊗ Ω.

Taking its real and imaginary parts, we get

D̃ϕ = α⊗ ϕ− β ⊗ ϕ̂,(6.39)

D̃ϕ̂ = β ⊗ ϕ+ α⊗ ϕ̂.(6.40)

The 1-form α is very easy to find: as D̃g̃ = 0, we know that

d|ϕ|2g̃ = D̃g̃(ϕ,ϕ) = 2g̃(D̃ϕ,ϕ) = 2|ϕ|2g̃α,

hence we conclude that

(6.41) α =
1

2
d log |ϕ|2g̃ = d log |ϕ|g̃ = −d log |ϕ|2,

which is the exactly same expression we assigned to α in (6.27). To find β,

we plug (6.39) in (6.30) to get

0 = dϕ = α ∧ ϕ− β ∧ ϕ̂+ T̃� ϕ.(6.42)

Apply (3.12) to the Hermitian metric g̃ with t = 0, we get

T̃ = N − U,(6.43)

where U =
1

4
(dcω̃ +M(dcω̃)). According to Lemma 15 we have

T̃� ϕ = N � ϕ− 1

4
dcω̃ � ϕ− 1

4
M(dcω̃)� ϕ

= N � ϕ− α ∧ ϕ.
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Consequently (6.42) can be simplified to

N � ϕ = β ∧ ϕ̂.

By Lemma 14, the LHS of the above equation is a (2, 2)-form while the RHS

is a (3, 1) + (1, 3)-form. Therefore we conclude that N � ϕ = 0 and β = 0.

As a result,

D̃Ω = α⊗ Ω,(6.44)

which implies immediately that D̃
(

Ω
|Ω|g̃

)
= 0. Q.E.D.

Remark: Heuristically we can argue as follows. Since N accounts for the non-

integrability of J , the form N �ϕ is responsible for the “exotic” component

of dϕ which vanishes automatically in the integrable case. Because ϕ is a

(3, 0) + (0, 3)-form, dϕ would be a (3, 1) + (1, 3)-form if J is integrable. As

a result

N � ϕ = (2,2) component of dϕ = 0.

Corollary 1.

The pair (N,ϕ) satisfies

Np
ijϕpkl +Np

klϕpij = 0,(6.45)

Np
ijϕ̂pkl −Np

klϕ̂pij = 0.(6.46)

Proof: In the proof of Theorem (3) Part (a), we showed that N �ϕ = 0,

namely

(6.47)

Np
ijϕpkl +Np

klϕpij −Np
ikϕpjl −Np

jlϕpik +Np
ilϕpjk +Np

jkϕpil = 0.

Replace i and j in (6.47) by Ji and Jj, by using symmetry of N and ϕ, we

get instead

(6.48)

−Np
ijϕpkl −Np

klϕpij −Np
ikϕpjl −Np

jlϕpik +Np
ilϕpjk +Np

jkϕpil = 0.

By combining (6.47) and (6.48) we prove the corollary. Equation (6.46) fol-

lows from (6.45) and Lemma 6. Q.E.D.
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6.5. The curvature in Type IIA geometry

Next, we prove Theorem 3 (b).

As we have seen in Theorem 3 (a), in Type IIA geometry, the nowhere
vanishing (3, 0)-form Ω/|Ω|g̃ is parallel under the connection D̃. A direct
consequence is that the first Chern form associated to D̃ is identically zero,
that is,

−
√
−1

2
R̃ijklω̃

lk = R̃ij
β
β = 0.(6.49)

As g̃ = |ϕ|2g, one can relate D̃ with D by the conformal change formula.
Combining it with (6.44), it is not hard to see that

DΩ = −1

2
(α−

√
−1Jα)⊗ Ω.(6.50)

As a consequence, the curvature tensor R satisfies

−
√
−1

2
Rijklω

lk = Rij
β
β =

1

2
d(α−

√
−1Jα)ij(6.51)

= −
√
−1(ddc log |ϕ|)ij ,

and we recover the well-known formula for Ricci curvature in the Kähler
case. In fact, (6.50) implies that D0,1Ω = 0. For an almost Kähler manifold,
the Gauduchon line of connections [26] collapses to a point, so D is also the
Chern connection (in the almost complex setting), hence D0,1 = ∂̄, and we
conclude that Ω is a holomorphic section of the canonical bundle associated
to (M,J). Theorem 3 (b) is proved.

We complete this section with some identities linking the curvature and
Nijenhuis tensor. Recall the globally defined function u = log |ϕ|2. In this
notation we have g̃ = eug and α = −du. Furthermore (6.51) can be rewritten
as

Rijklω
lk = (ddcu)ij = −(Di(du)Jj −Dj(du)Ji +Nk

ijuJk)

= −(∇2u)i,Jj + (∇2u)j,Ji − 2Nk
ijuJk.(6.52)

Substitute (6.52) back to (6.18), we get

Rij = 2DkNijk − 2(N2
−)ij +

1

2
(∇2u)ij +

1

2
(∇2u)Ji,Jj − ukN

k
ij .
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Since Rij is symmetric, we conclude

Rij

= Dk(Nijk +Njik)− 2(N2
−)ij +

1

2
(∇2u)ij +

1

2
(∇2u)Ji,Jj ,(6.53)

= ∇k(Nijk +Njik) + 2(N2
−)ij − 2(N2

+)ij +
1

2
(∇2u)ij +

1

2
(∇2u)Ji,Jj(6.54)

and that N satisfies

DkNkij = ∇kNkij = −ukNkij .(6.55)

Therefore the J-invariant and J-anti-invariant components of the Ricci cur-
vature are given by (6.21) and the following refinement of (6.20)

(RJ)ij = −2(N2
−)ij +

(
(∇2u)J

)
ij
, (R−J)ij = Dk(Nijk +Njik).(6.56)

The scalar curvature is

R = Δu− |N |2.(6.57)

(6.52) then implies that

1

2
Rijklω

jiωlk = Δu.

It follows from (6.22) that the �-scalar curvature is given by

1

2
Rijklω

jiωlk = Δu+ |N |2.(6.58)

Similarly we can derive the formulae for R̃, the curvature tensor associ-
ated to the conformal metric g̃:

R̃ij = −(D̃s − 1

2
us)(Nisj +Njsi) +

1

2
((∇̃2u)Ji,Jj − 3(∇̃2u)ij − Δ̃ug̃ij)

−2(N2
−)ij −

1

2
uiuj +

1

2
uJiuJj +

1

2
|du|2g̃ g̃ij ,(6.59)

and

R̃ = −4Δ̃u+ 3|du|2g̃ − |N |2g̃,(6.60)

with (6.55) becoming

2D̃kNkij = ukNkij , 2∇̃kNkij = 3ukNkij .
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6.6. The Nijenhuis tensor in Type IIA geometry

As we have seen in previous sections, on an almost Kähler manifold, the

Nijenhuis tensor N is a (0, 2)-type TM -valued 2-form satisfying the Bianchi

identity (3.8). Moreover, one can define two J-invariant symmetric tensors

N2
+ and N2

− satisfying

trN2
+ = |N |2 = 2trN2

−.

When an almost Kähler structure is enhanced to a Type IIA structure,

the integrability of J is improved, hence one should expect more identities

satisfied by N . For example, we have already seen that certain divergences

of N are actually terms of lower order term (6.55). In this subsection, we

shall derive more identities and differential equations satisfied by N , showing

that an almost-complex structure coming from a Type IIA geometry is more

“integrable” than a generic one. We shall also complete the proof of Theorem

3 by proving Part (c).

First, we show that N2
+ and N2

− are related to each other:

Proposition 1.

For any Type IIA structure (M,ω, ϕ), the Nijenhuis tensor N satisfies

N2
− = 2N2

+ − 1

4
|N |2g.(6.61)

Proof: In view of (6.45), we notice that

ϕiapN
st
bN

p
st = −ϕpstN

st
bN

p
ia = ϕstbN

st
pN

p
ia,

so

|ϕ|−2N st
bN

p
stϕiapϕjcdω

acωbd = |ϕ|−2N st
pN

p
iaϕstbϕjcdω

acωbd.

Applying Lemma 8 to both sides, we get

2N st
iNjst −N stkNkstgij = 2Nj

stNtsi + 2N st
jNtsi.

Converting everything into N2
+ and N2

−, we get

− 2N2
+ + 2N2

− −N stkNkstg = 2N2
+.
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By Bianchi identity, we know that

−N stkNkst = N stk(Nstk −Ntsk) = trN2
+ − trN2

− =
1

2
|N |2.

Consequently

N2
− = 2N2

+ − 1

4
|N |2g.

As a corollary, we obtain the inequality

(6.62) 0 ≤ N2
+ ≤ 1

4
|N |2g

since 0 ≤ N2
+ −N2

−. Q.E.D.

We now come to the proof of Theorem 3 (c), which is a very powerful
tool for proving identities involving N :

Let us choose a frame at a given point as in Lemma 4. Since N is a (0, 2)-
type TM -valued 2-form satisfying the Bianchi identity, we get the following
relations:

0 = N∗jj = N∗12 = N∗21 = N∗34 = N∗43 = N∗56 = N∗65,

N135 = −N153 = −N146 = N164 = −N236 = N263 = −N245 = N254,

N136 = −N163 = N145 = −N154 = N235 = −N253 = −N246 = N264,

N315 = −N351 = −N326 = N362 = −N416 = N461 = −N425 = N452,

N316 = −N361 = N325 = −N352 = N415 = −N451 = −N426 = N462,

N513 = −N531 = −N524 = N542 = −N614 = N641 = −N623 = N632,

N514 = −N541 = N523 = −N532 = N613 = −N631 = −N624 = N642,

and

N113 = −N131 = −N124 = N142 = −N214 = N241 = −N223 = N232,

N114 = −N141 = N123 = −N132 = N213 = −N231 = −N224 = N242,

N115 = −N151 = −N126 = N162 = −N216 = N261 = −N225 = N252,

N116 = −N161 = N125 = −N152 = N215 = −N251 = −N226 = N262,

N331 = −N313 = −N342 = N324 = −N432 = N423 = −N441 = N414,

N332 = −N323 = N341 = −N314 = N431 = −N413 = −N442 = N424,

N335 = −N353 = −N346 = N364 = −N436 = N463 = −N445 = N454,
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N336 = −N363 = N345 = −N354 = N435 = −N453 = −N446 = N464,

N551 = −N515 = −N562 = N526 = −N652 = N625 = −N661 = N616,

N552 = −N525 = N561 = −N516 = N651 = −N615 = −N662 = N626,

N553 = −N535 = −N564 = N546 = −N654 = N645 = −N663 = N636,

N554 = −N545 = N563 = −N536 = N653 = −N635 = −N664 = N646,

with constraints

N135 +N351 +N513 = 0,

N136 +N361 +N613 = 0.

Furthermore, by evaluating (6.45) at the given point, we get

0 = N135 = N136 = N315 = N316 = N513 = N514,

0 = N331 −N551 = N113 −N553 = N115 −N335,

0 = N114 +N554 = N116 +N336 = N332 +N552.

Therefore N has only 6 independent components at the given point. Q.E.D.

We can choose and name such independent components as

a := N331, b := N332, c := N113, d := N114, e := N115, f := N116.

It follows that

|N |2 = 16(a2 + b2 + c2 + d2 + e2 + f2).

We can further express N2
+ and N2

− in terms of these components. For in-

stance, it is straightforward to verify that

N2
+ = 2×⎡

⎢⎢⎢⎢⎢⎢⎣

r2+a2+b2 0 ac+ bd −ad+ bc ae− bf −af − be
0 r2+a2+b2 ad− bc ac+ bd af + be ae− bf

ac+ bd ad− bc r2+c2+d2 0 ce+ df cf − de
−ad+ bc ac+ bd 0 r2+c2+d2 −cf + de ce+ df
ae− bf af + be ce+ df −cf + de r2+e2+f2 0
−af − be ae− bf cf − de ce+ df 0 r2+e2+f2

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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where r2 = a2 + b2 + c2 + d2 + e2 + f2 =
1

16
|N |2. Similarly we can find N2

−
as well. This normal form also allows us to quickly prove that

(6.63) |N2
+|2 = 48r4 =

3

16
|N |4.

As an application of Theorem 3 (c), we prove that N satisfies the fol-
lowing differential equation:

Lemma 16.
Given a Type IIA structure (M,ω, ϕ), the Nijenhuis tensor N satisfies

8N sti∇iNstj = 8N stiDiNstj = Dj |N |2 + uj |N |2.(6.64)

Proof: By (6.25), we have

DiNsjt −DsNijt −DjNtis +DtNjis

= DJiNJs,j,t −DJsNJi,j,t −DJjNJt,i,s +DJtNJj,i,s.

Contracting this equation with N sti, we get

2N sti(DiNsjt −DsNijt +DtNjis) = N sti(DjNtis −DJjNJt,i,s).

The LHS can be simplified as follows

LHS = −2N stiDiNstj + 2N itsDiNstj + 2N sitDiNjts

= 2N tis(DiNstj +DiNjst)

= −2N stiDiNstj .

On the other hand, we see that

N stiDjNtis = −N stiDjNtsi = −1

2
Dj(N

stiNtsi) = −1

4
Dj |N |2.

Therefore to prove the lemma, we only need to show that

N stiDJjNJt,i,s =
1

4
uj |N |2,

or equivalently

(6.65) N stiDjNt,s,Ji =
1

4
uJj |N |2.
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We only need to verify (6.65) pointwise. To do so, at any given point,
we expand the LHS of (6.65) using the normal form of ϕ in Lemma 4.
For simplicity of notation, let us write B = DjN . Clearly B has the same
symmetry as N , namely it is a TM -valued type (0, 2)-form and it satisfies
the Bianchi identity. By Lemma 4, we get

LHS =
∑
s,t,i

Nsti(DjN)t,s,Ji

= N331(B332 −B134 +B431 −B233 +B341 −B244 −B442 −B143)

+N331(B552 −B156 +B651 −B255 +B561 +B266 −B662 −B165)

+N332(−B331 −B234 +B432 +B133 +B342 −B144 +B441 −B243)

−N332(−B551 −B256 +B652 +B155 +B562 −B166 +B661 −B265)

+ . . .

= 4N331(B332 +B552) + 4N113(B114 +B554) + 4N115(B116 +B336)

+4N332(B551 −B331) + 4N114(B553 −B113) + 4N116(B335 −B115).

Since

Djϕ =
1

2
(ujϕ+ uJjϕ̂),

by taking derivative of (6.45), we get

DjN
p
abϕpcd +DjN

p
cdϕpab = −uJjN

p
abϕ̂pcd,

or equivalently

Bp
abϕpcd +Bp

cdϕpab = −uJjN
p
abϕ̂pcd.

Evaluating the above equation at the given point using Lemma 4, we get
the following relations

B331 −B551 = −uJjN332, B332 +B552 = uJjN331,

B113 −B553 = −uJjN114, B114 +B554 = uJjN113,

B115 −B335 = −uJjN116, B116 +B336 = uJjN115.

It follows that

LHS of (6.65) = 4uJj(N
2
331 +N2

332 +N2
113 +N2

114 +N2
115 +N2

116)

=
1

4
uJj |N |2.

Q.E.D.
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7. The flow of the metric in the Type IIA flow

The main task of this section is to prove Theorem 4, which gives explicit
formulas for the flows of ϕ and g̃ϕ in terms of the curvature and Nijenhuis
tensors.

7.1. A tensor coefficients ODE for ϕ: proof of Theorem 4(a)

We begin with the proof of Theorem 4 (a), which gives the flow of ϕ. Since
we will be mainly working with the metric g̃, we shall use g̃ to raise or lower
indices in this subsection.

It is clear that ϕ(t) is closed and primitive for any t. We can also assume
that ϕ is positive, since this is an open condition and later estimates (7.25)
will show that this property is preserved along the flow. Therefore we get
a family of Type IIA structures (M,ω, ϕ(t)). So we can apply formulae in
Type IIA geometry to expand the right hand side of the flow equation. Now
the right hand side is given by dΛd(|ϕ|2ϕ̂) = dΛd(euϕ̂). Combining (6.40),
(6.30), and β = 0, we obtain

(7.1) dϕ̂ = α ∧ ϕ̂+ T̃� ϕ̂

where T̃ = N − 1
4(d

cω̃+M(dcω̃)) by (6.43). Applying Lemma 15, we obtain
dϕ̂ = N � ϕ̂ and

d(euϕ̂) = eu(du ∧ ϕ̂+N � ϕ̂).

To proceed, we need to compute Λ(du∧ ϕ̂) and Λ(N� ϕ̂), which are 2-forms
of type (2, 0) + (0, 2) and of type (1, 1) respectively. We have the following
lemmas:

Lemma 17.

(7.2) (Λ(du ∧ ϕ̂))kl = gjiuiϕjkl.

Proof: Since (du∧ ϕ̂)ijkl = uiϕ̂jkl−ujϕ̂ikl+ukϕ̂ijl−ulϕijk, by definition
of Λ, we have

(Λ(du ∧ ϕ̂))kl =
1

2
ωji(uiϕ̂jkl − ujϕ̂ikl + ukϕ̂ijl − ulϕ̂ijk).

The last two terms in the above expression are zero since ϕ̂ is primitive. In
addition, the first two terms are identical due to the symmetry in switching
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i and j, so it follows that

(Λ(du ∧ ϕ̂))kl = ωjiuiϕ̂jkl = gJj,iuiϕ̂jkl = gjiuiϕ̂Jj,k,l

= gjiuiϕjkl,

where in the last step we make use of Lemma 6. Q.E.D.

Lemma 18.

(7.3) Λ(N � ϕ̂)kl = 2gjiNp
ilϕpjk = −2gjiNp

ikϕpjl.

Proof: By (6.31) and (6.46) we see that

Λ(N � ϕ̂)kl = ωji(Np
klϕ̂pij −Np

ikϕ̂pjl +Np
ilϕ̂pjk).

Notice that the first term above vanishes due to the primitiveness of ϕ̂, and

again, the last two terms are identical because of the symmetry of switching

i and j, so we conclude that

Λ(N � ϕ̂)kl = 2ωjiNp
ilϕ̂pjk = −2ωjiNp

ilϕp,Jj,k = 2gjiNp
ilϕpjk.

Here we again used Lemma 6 to simplify our expression. Q.E.D.

Combining Lemma 17 and Lemma 18, we see immediately that

μkl := (Λd(euϕ̂))kl = eugji(uiϕjkl + 2Np
ilϕpjk)

= e2u(usϕskl + 2N st
lϕstk) = e2u(usϕskl − 2N st

kϕstl).(7.4)

To compute dΛd(euϕ̂) = dμ, we make use of Lemma 13 to get

(dμ)iab = (T̃� μ)iab +
∑

cyc i,a,b

D̃iμab.(7.5)

The first term in (7.5) is already in good shape, since by (6.32) we get

(T̃� μ)iab =
∑

cyc i,a,b

T̃p
iaμpb = e2u

∑
cyc i,a,b

T̃p
ia(u

sϕspb − 2N st
pϕstb)

= e2u
∑

cyc i,a,b

ϕsta(2N
st
pT̃

p
ib − usT̃t

ib),(7.6)

which is linear in ϕ. For the second term in (7.5), we need
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Lemma 19.

(7.7) D̃iμab = e2u(ϕsab(D̃i + ui)u
s + 2ϕsta(D̃i + ui)N

st
b).

Proof: Plugging in (7.4), we see that

D̃iμab = D̃i(e
2u(usϕsab + 2N st

bϕsta))

= e2u(2ui(u
sϕsab + 2N st

bϕsta) + usD̃iϕsab + 2N st
bD̃iϕsta

+ϕsabD̃iu
s + 2ϕstaD̃iN

st
b)

(6.44)
= e2u(ϕsab(D̃i + ui)u

s + 2ϕsta(D̃i + ui)N
st
b).

Q.E.D.

Combining (7.6) and (7.7) we obtain the evolution equation for ϕ stated
in Theorem 4 (a).

Next we justify the remark made after Theorem 4, to the effect that the
function u is determined by g̃. Indeed g̃ = eug, and thus to prove the second
part of the statement, we notice that g̃ = eug, therefore the volume element
associated to g̃ satisfies

dvolg̃ = e3udvolg = e3u
ω3

3!
.

Therefore (in Darboux coordinate) we may write the global function u as

u =
1

6
log det g̃,(7.8)

which is entirely determined by g̃. Hence the metric g is also determined
by g̃, and so is the almost complex structurer J since ω is fixed. It follows
that the Nijenhuis tensor N , the projected Levi-Civita connection D̃ and its
torsion T̃ are also determined by g̃.

For the convenience of later calculations, we derive a more explicit evo-
lution equation for ϕ than what we have in Theorem 4 Part (a). The starting
point is (7.5), which can be expanded as

(dμ)iab = (N � μ)iab − (U � μ)iab +
∑

cyc i,a,b

D̃iμab(7.9)

by using (6.43). The first two terms in (7.9) can be expressed as follows:
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Lemma 20.

(7.10) (N � μ)iab = e2u
∑

cyc i,a,b

ϕiap(u
sNp

sb − 2N st
bN

p
st).

Proof of the Lemma: By (6.32), we have

(N � μ)iab =
∑

cyc i,a,b

Np
iaμpb = e2u

∑
cyc i,a,b

Np
ia(u

sϕspb + 2N st
bϕstp)

= e2u
∑

cyc i,a,b

Np
ia(−usϕpsb + 2N st

bϕpst)

(6.45)
= e2u

∑
cyc i,a,b

ϕiap(u
sNp

sb − 2N st
bN

p
st).

Q.E.D.

Lemma 21. For any real 2-form μ, we may write μ = μ+ + μ−, where μ+

and μ− are the (1, 1) and (2, 0) + (0, 2) components of μ respectively. Then

(7.11) (U � μ)iab = −1

2
ω̃qpuq(ω̃ ∧ μ)piab −

1

2

∑
cyc i,a,b

uJi(μ
−)Ja,b.

In particular, for the specific μ in (7.4), we get

(U � μ)iab =
1

2
(ω̃ ∧ ιWμ)iab +

e2u

2
|du|2g̃ϕiab(7.12)

−e2u
∑

cyclic i,a,b

ui(u
sϕsab +N st

bϕsta).

Proof of the Lemma: By (6.32) and the definition of U (6.28), we have

(U � μ)iab = g̃pq
∑

cyc i,a,b

Uqiaμpb

=
1

4
g̃pq

∑
cyc i,a,b

(2αJqω̃ia + αJiω̃aq + αJaω̃qi + αig̃aq − αag̃qi)μpb

=
1

4

∑
cyc i,a,b

2ω̃qpαqω̃iaμpb + αJiμJa,b − αJaμJi,b + αiμab − αaμib

=
1

2
(α ∧ μ)iab +

1

4

∑
cyc i,a,b

2ω̃qpαqω̃iaμpb + αJi(μJa,b − μJb,a).
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Notice that (ω̃∧μ)piab = ω̃iaμpb+ ω̃abμpi+ ω̃biμpa− ω̃paμib− ω̃pbμai− ω̃piμba,
therefore

ω̃qpαq(ω̃ ∧ μ)piab = (α ∧ μ)iab + ω̃qpαq

∑
cyc i,a,b

ω̃iaμpb.

Hence we find out that

(U � μ)iab =
1

2
ω̃qpαq(ω̃ ∧ μ)piab +

1

4

∑
cyc i,a,b

αJi(μJa,b − μJb,a).

Write μ = μ+ + μ−, where μ+ and μ− are the (1, 1) and (2, 0) + (0, 2)
components. Then by definition, we have

(μ+)Ja,b = (μ+)Jb,a, (μ−)Ja,b = −(μ−)Jb,a.

So we conclude that

(U � μ)iab = −1

2
ω̃qpuq(ω̃ ∧ μ)piab −

1

2

∑
cyc i,a,b

uJi(μ
−)Ja,b.

Now let us apply this to μ = Λd(euϕ̂). It is clear from (7.4) that

(7.13) (μ−)ab = e2uusϕsab = e2u(ι∇̃uϕ)ab.

Let W = W p∂p be the vector field defined by W p = −ω̃qpuq = (∇̃u)Jp, we
see that

− 1

2
ω̃qpuq(ω̃ ∧ μ)piab =

1

2
(ιW (ω̃ ∧ μ))iab =

1

2
(ω̃ ∧ ιWμ)iab −

1

2
(du ∧ μ)iab,

hence

(U � μ)iab
(7.13)
=

1

2
(ω̃ ∧ ιWμ)iab −

1

2
(du ∧ μ)iab −

1

2
e2u

∑
cyclic i,a,b

uJiu
Jsϕsab

(7.4)
=

1

2
(ω̃ ∧ ιWμ)iab −

e2u

2
(du ∧ ι∇̃uϕ+ Jdu ∧ ιJ∇̃uϕ)

−e2u
∑

cyclic i,a,b

uiN
st
bϕsta.

From (4.13) we know that

du ∧ ϕ = −Jdu ∧ Jϕ,
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by taking interior product with ∇̃u, we get

|du|2g̃ϕ− du ∧ ι∇̃uϕ = ι∇̃u(du ∧ ϕ) = −ι∇̃u(Jdu ∧ Jϕ) = −Jdu ∧ ιJ∇̃uϕ.

Substitute the RHS of the above equation back to the previous one, we get

(U � μ)iab=
1

2
(ω̃ ∧ ιWμ)iab+

e2u

2
|du|2g̃ϕiab− e2u

∑
cyclic i,a,b

ui(u
sϕsab +N st

bϕsta).

Q.E.D.

Combining (7.10), (7.13) and (7.7), we conclude that

∂tϕiab = (dμ)iab(7.14)

= −1

2
(ω̃ ∧ ιWμ)iab −

e2u

2
|du|2g̃ϕiab + e2u

∑
cyc i,a,b

ϕiap(u
sNp

sb − 2N st
bN

p
st)

+e2u
∑

cyc i,a,b

(ϕsab(D̃i + 2ui)u
s + ϕsta(2D̃i + 3ui)N

st
b).

7.2. The flow of g̃ϕ: proof of Theorem 4(b)

By definition of g̃ (4.12), we know that

∂tg̃ij = −∂tϕiabϕjcdω
acωbd − ϕiab∂tϕjcdω

acωbd

= −∂tϕiabϕjcdω
acωbd + (i ↔ j).(7.15)

We only need to compute the first term in (7.15) as the full expression is the
symmetrization of the first term there. This term can be calculated using
(7.14). It is useful to observe the following:

Lemma 22. Suppose λ is a 3-form that can be factorized as the product of
a 1-form with ω, i.e. λ = ν ∧ ω for some 1-form ν. Then

(ϕiabλjcd + λiabϕjcd)ω
acωbd = 0.

Proof of the lemma. By our assumption, λiab = νiωab + νaωbi + νbωia.
Therefore

λiabϕjcdω
acωbd = (νiωab + νaωbi + νbωia)ϕjcdω

acωbd

= νiϕjcdω
dc − νaϕjciω

ac + νbϕjidω
bd
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= −2νaω
acϕijc,

where the primitiveness of ϕ is used. After symmetrization in i and j, the
outcome is zero. Q.E.D.

By Lemma 22, we do not need to worry about the first term in (7.14).
For simplicity of notation, let F be the 3-form defined by

Fiab =
∑

cyc i,a,b

(
ϕiap(u

sNp
sb − 2N st

bN
p
st) + ϕsab(D̃i + 2ui)u

s

+ϕsta(2D̃i + 3ui)N
st
b

)

=
∑

cyc i,a,b

(
ϕpab(u

sNp
si − 2N st

iN
p
st + (D̃i + 2ui)u

p)(7.16)

+ϕsta(2D̃i + 3ui)N
st
b

)
,

and hence (7.14) can be rewritten as

∂tϕ = −1

2
ω̃ ∧ ιWμ− e2u

2
|du|2g̃ϕ+ e2uF,

and we have that

e−2u∂tg̃ij + |du|2g̃ g̃ij = −Fiabϕjcdω
acωbd + (i ↔ j).(7.17)

The goal is to compute Fiabϕjcdω
acωbd. By (7.16) we know

Fiabϕjcdω
acωbd

= ϕjcdω
acωbd

∑
cyc i,a,b

(
ϕpab(u

sNp
si − 2N st

iN
p
st + (D̃i + 2ui)u

p)

+ϕsta(2D̃i + 3ui)N
st
b

)
= ϕpabϕjcdω

acωbd(usNp
si − 2N st

iN
p
st + (D̃i + 2ui)u

p)

+2ϕiapϕjcdω
acωbd(usNp

sb − 2N st
bN

p
st + (D̃b + 2ub)u

p)

+ϕstbϕjcdω
acωbd((4D̃a + 6ua)N

st
i − (2D̃i + 3ui)N

st
a))(7.18)

=: (A) + (B) + (C),
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where (A), (B), and (C) denote the first, the second, and the third line in
(7.18) respectively. (A) can be computed using definition of g̃ (4.12) directly:

(A) = −(usNjsi − 2N st
iNjst + (D̃i + 2ui)uj)

= −usNjsi + 2(N2
−)ij − 2(N2

+)ij − D̃iuj − 2uiuj .(7.19)

To compute (B) and (C), we need to invoke Lemma 8. It follows that

(B) = 2ϕiapϕjcdω
acωbd(usNp

sb − 2N st
bN

p
st + (D̃b + 2ub)u

p)

=
1

2
ωbd(ωij g̃pd − ωpj g̃id − ωidg̃pj

+ ωpdg̃ij)×

(usNp
sb − 2N st

bN
p
st + (D̃b + 2ub)u

p)

=
1

2
(ω̃ijJ

b
p − ω̃pjJ

b
i + g̃pjδ

b
i − g̃ijδ

b
p)×

(usNp
sb − 2N st

bN
p
st + (D̃b + 2ub)u

p)

=
1

2
(−4N st

iNjst + 2N stpNpstg̃ij + ω̃ijω̃
bpD̃bup

+(D̃i + 2ui)uj + (D̃Ji + 2uJi)uJj − (D̃sus + 2|du|2g̃)g̃ij)

= 2(N2
+)ij − 2(N2

−)ij −
1

2
(|N |2g̃ + D̃sus + 2|du|2g̃)g̃ij

+
1

2
((D̃i + 2ui)uj + (D̃Ji + 2uJi)uJj + ω̃ijω̃

bpD̃bup)(7.20)

and

(C) = ϕstbϕjcdω
acωbd((4D̃a + 6ua)N

st
i − (2D̃i + 3ui)N

st
a))

=
1

4
ωac(ωsj g̃tc − ωtj g̃sc − ωscg̃tj + ωtcg̃sj)×

((4D̃a + 6ua)N
st
i − (2D̃i + 3ui)N

st
a))

=
1

4
(ω̃sjJ

a
t − ω̃tjJ

a
s + g̃tjδ

a
s − g̃sjδ

a
t)×

((4D̃a + 6ua)N
st
i − (2D̃i + 3ui)N

st
a))

= −(2D̃s + 3us)Nisj .(7.21)

Combining (7.19), (7.20), (7.21), and (7.17), we get

∂tg̃ij = e2u
[
2(D̃k + 2uk)(Nikj +Njki) + 2uiuj − 2uJiuJj

+
1

2
(D̃iuj + D̃jui − D̃JiuJj − D̃JjuJi) + (D̃sus + |du|2g̃ + |N |2g̃)g̃ij

]
.(7.22)
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Equation (7.22) is self-contained in the sense that its RHS is entirely deter-
mined by the metric g̃ and the ϕ-dependence is fully eliminated. However,
to study its analytic behavior, we need to rewrite it in a more familiar form
as we have in the case of Ricci flow or the Lê-Wang flow [33]. Moreover,
we would like to replace all the D̃-derivatives to ∇̃-derivatives as it is more
convenient for us to apply the conformal change technique.

Notice that

D̃iuj = ∇̃iuj − ukNikj +
1

4
(uiuj + uJiuJj − |du|2g̃ g̃ij),

therefore (7.22) can be rephrased as

∂tg̃ij = e2u
[
(2D̃k + 3uk)(Nikj +Njki) + (∇̃2u)ij − (∇̃2u)Ji,Jj

+2uiuj − 2uJiuJj + (Δ̃u+ |N |2g̃)g̃ij
]
.

Taking (6.59) into account, we obtain the desired formula

∂tg̃ij = e2u
[
− 2R̃ij − 2(∇̃2u)ij + 4uk(Nikj +Njki)− 4(N2

−)ij

+uiuj − uJiuJj + (|du|2g̃ + |N |2g̃)g̃ij
]
.(7.23)

Q.E.D.

Recalling that u = (1/6) log detg̃, we can derive from (7.23) that

∂tu =
e2u

3

(
−Δ̃u− R̃+ 3|du|2g̃ + 2|N |2g̃

)
(6.60)
= e2u(Δ̃u+ |N |2g̃).(7.24)

By the maximum principle, we immediately prove the following estimate

Lemma 23. Suppose ϕ(t) is a solution to the source-free Type IIA flow on
M × [0, T ]. Then

|ϕ(t)|2 ≥ min
M

|ϕ0|2(7.25)

for any t ∈ [0, T ].



756 Teng Fei et al.

This lemma has the important consequence that if ϕ(t) is a solution to
the source-free Type IIA flow on M × [0, T ] with primitive closed initial
data, then ϕ(t) remains positive on M × [0, T ], which allows us to define the
almost-complex structure J and the metric g. Indeed, the lemma implies
that

√
−λϕ = 1

2 |ϕ|2
ω3

3! cannot pass through zero.

7.3. Conformal transformation to a perturbed Ricci flow

In this subsection, we wish to establish the uniqueness of the flow (7.23).
Besides the Ricci curvature, the right hand side of (7.23) also contains the
2nd order term ∇̃2u, which cannot be reparametrized away since this would
change the symplectic structure and the reparametrized flow would be non-
local. Therefore we need a different technique to deal with the Hessian term,
namely we absorb it in the Ricci tensor by a conformal change of metric.

More specifically, we consider a family of conformal Hermitian metrics
g(s) = esug, where we have g(0) = g and g(1) = g̃. Notice that all the metrics
g(s) are equivalent except for s = 0, in which case we need the pair (g, u).
This is because one can solve u from g(s) when s �= 0 by

u =
1

6s
log det g(s).

Thus we only need to show the short-time existence and uniqueness of any
of the flows satisfied by g(s) with s �= 0, or that for the coupled flow (g, u).
To begin with, we first compute the evolution equation satisfied by the pair
(g, u).

∂tgij

= ∂t(e
−ug̃ij) = e−u(∂tg̃ij − ∂tu · g̃ij)

= eu
[
− 2R̃ij − 2(∇̃2u)ij + 4uk(Nikj +Njki)− 4(N2

−)ij

+uiuj − uJiuJj + (|du|2g̃ − Δ̃u)g̃ij

]

= eu
[
− 2Rij + 2(∇2u)ij + uiuj − uJiuJj

+4uk(Nikj +Njki)− 4(N2
−)ij

]
(7.26)

(6.53)
= 2eu

[
− (R−J)ij + ((∇2u)−J)ij + ((du⊗ du)−J)ij
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+2us(Nisj +Njsi)

]
.(7.27)

Meanwhile (7.24) can be rewritten as

∂tu = eu(Δu+ 2|du|2 + |N |2).(7.28)

Using the same method, we can derive that

∂tg
(s)
ij = e(s+1)u

[
− 2R

(s)
ij + (2− 4s)((∇(s))2u)ij + (1 + 2s− 2s2)uiuj

−uJiuJj + 4uk(Nikj +Njki)− 4(N2
−)ij + s(|du|2g(s) + |N |2g(s))g

(s)
ij

]
(7.29)

= e(s+1)u

[
2
(
(−R(s) + (1− 2s)(∇(s))2u+ (1 + s− s2)du⊗ du)−J

)
ij

+4uk(Nikj +Njki) + s
(
Δ(s)u+ 2(1− s)|du|2g(s) + |N |2g(s)

)
g
(s)
ij

]
.(7.30)

Formulae (6.54) and (6.55) now take the form

R
(s)
ij = −∇(s)

k (Ni
k
j +Nj

k
i) + (

1

2
− 2s)((∇(s))2u)ij +

1

2
((∇(s))2u)Ji,Jj

+
s

2
(1− 2s)uiuj +

s

2
uJiuJj +

3s

2
uk(Nikj +Njki)

+2(N2
−)ij − 2(N2

+)ij −
s

2
Δ(s)ug

(s)
ij − s

2
(1− 2s)|du|2g(s)g

(s)
ij ,(7.31)

and

∇(s)
k Nk

ij =
5s− 2

2
ukNkij .(7.32)

In particular for s =
1

2
, from (7.29) we know that the metric ǧ := g(

1

2
)

evolves by

∂tǧij = e
3

2
u

[
− 2Řij +

3

2
uiuj − uJiuJj + 4uk(Nikj +Njki)− 4(N2

−)ij

+
1

2

(
|du|2ǧ + |N |2ǧ

)
ǧij

]
,(7.33)

where the only 2nd order term on RHS is the Ricci curvature term. We
stress that it is important to keep in mind the fact that ǧij arises from a
conformal change from a Type IIA geometry.
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7.4. An integrability condition: proof of Theorem 5

We now prove Theorem 5, which provides the key integrability condition
needed later to establish the uniqueness of the Type IIA solutions to the
flow (7.33) of the metrics ǧij .

We know that for the Ricci flow, the integrability operator L comes from
the contracted Bianchi identity. Since our flow (7.33) can be viewed as a de-
formation of the Ricci flow, our L should be a deformation of the contracted
Bianchi operator. Let us simplify our notation in (7.33) by introducing the
tensor S defined as

Sij : =
3

2
uiuj − uJiuJj + 4uk(Nikj +Njki)− 4(N2

−)ij(7.34)

+
1

2

(
|du|2ǧ + |N |2ǧ

)
ǧij ,

so (7.33) can be written as

∂tǧij = e
3

2
u(−2Řij + Sij),(7.35)

where we can think of S as the lower order deformation term of the Ricci
curvature. Let L0 denote the contracted Bianchi identity operator defined
by

L0(P )j := 2ǧik∇̌kPij − ǧik∇̌jPik

for any symmetric 2-tensor P . We know that L0(−2Ř) = 0. Now we would
like to look for a zeroth order linear operator Z such that (L0+Z)(−2Ř+S)
is of degree 1 in the metric ǧ. To do so we need to compute L0(S) first.

Proposition 2.

L0(S)j = 4usŘsj − 8ŘskN
ks

j −
8

3
ujŘ− 16us(N2

−)sj + 2usukN
ks

j

+
1

3
uj(2|du|2ǧ − 5|N |2ǧ).(7.36)

Proof of the Proposition: We apply L0 to each term of S in (7.34) to get

3

2
L0(du⊗ du)j = 3Δ̌u · uj ,

−L0(J
∗(du⊗ du))j = 2ǧikuk(∇̌2u)Ji,Jj+∇̌j |du|2ǧ−2ǧikusut∇̌i(J

s
jJ

t
k)
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= 2ǧikuk(∇̌2u)Ji,Jj + ∇̌j |du|2ǧ + 4usukN
ks

j ,

4L0(u
k(N∗k∗ +N∗k∗))j = 8(∇̌2u)skN

ks
j + 8us∇̌i(Nisj +Njsi),

−4L0(N
2
−)j = −8ǧik∇̌k(N

2
−)ij + 2∇̌j |N |2ǧ,

1

2
L0

(
(|du|2ǧ + |N |2ǧ)ǧ

)
j
= −2∇̌j |du|2ǧ − 2∇̌j |N |2ǧ.

To obtain these expressions, we need to use that

∇iJ
s
t = −2NJi

s
t,

∇̌iJ
s
t = −2NJi

s
t +

1

4
(uJtδ

s
i + ǧitu

Js − ω̌itu
s − utJ

s
i)

and we raise and lower indices using the metric ǧ. Combining the calculation

above, we get

L0(S)j = 3ujΔ̌u+ 2ui(∇̌2u)Ji,Jj + 8(∇̌2u)skN
ks

j + 8us∇̌i(Nisj +Njsi)

−8∇̌i(N2
−)ij − ∇̌j |du|2ǧ + 4usukN

ks
j .(7.37)

Take s =
1

2
in (7.31) and (7.32), we get

Řij = −(∇̌k − 3

4
uk)(Nikj +Njki)−

1

2
(∇̌2u)ij +

1

2
(∇̌2u)Ji,Jj

−1

4
Δ̌u · ǧij +

1

4
uJiuJj + 2(N2

−)ij − 2(N2
+)ij ,(7.38)

Ř = −3

2
Δ̌u+

1

4
|du|2ǧ − |N |2ǧ,(7.39)

∇̌kNkij =
1

4
ukNkij .(7.40)

Using (7.38) and (7.40), Equation (7.37) can be rearranged as

L0(S)j = 3ujΔ̌u+ 2ui((∇̌2u)Ji,Jj − (∇̌2u)ij)− 4us∇̌i(Njis +Nsij + 3Nijs)

+8(∇̌2u)skN
ks

j − 8∇̌i(N2
−)ij + 4usukN

ks
j

= 4usŘsj + 4ujΔ̌u+ 8(∇̌2u)skN
ks

j − 8∇̌i(N2
−)ij + 4usukN

ks
j

+8us((N2
+)sj − (N2

−)sj)

= 4usŘsj −
8

3
ujŘ+ 8(∇̌2u)skN

ks
j − 8∇̌i(N2

−)ij + 4usukN
ks

j

+8us((N2
+)sj − (N2

−)sj) +
2

3
uj(|du|2ǧ − 4|N |2ǧ).(7.41)
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By (7.38), we also know that

(∇̌2u)skN
ks

j

= −(∇̌p − 3

4
up)(Nspk +Nkps)N

ks
j − ŘskN

ks
j −

1

4
ukusNksj

= −ŘskN
ks

j − ∇̌p(2Nkps +Npsk)N
ks

j −
1

4
ukusNksj

−3

4
up(N2

+ +N2
−)pj

= −ŘskN
ks

j + 2Nks
j∇̌pNksp −

1

2
up(N2

− + 2N2
+)pj −

1

4
ukusNksj

= −ŘskN
ks

j + 2∇̌p(N2
+)pj − 2Nksp∇̌pNksj −

1

4
ukusNksj

−1

2
up(N2

− + 2N2
+)pj

= −ŘskN
ks

j + ∇̌i(N2
−)ij − 2Nksp∇̌pNksj +

1

4
∇̌j |N |2ǧ −

1

4
ukusNksj

−1

2
us(N2

− + 2N2
+)sj .(7.42)

Plugging (7.42) in (7.41), we get

L0(S)j = 4usŘsj − 8ŘskN
ks

j −
8

3
ujŘ− 16Nksp∇̌pNksj + 2∇̌j |N |2ǧ

−12us(N2
−)sj + 2usukN

ks
j +

2

3
uj(|du|2ǧ − 4|N |2ǧ).(7.43)

To deal with the remaining second order terms in (7.43), we rewrite (6.64)

using ∇̌-derivatives as

8Nksp∇̌pNksj + 2uj |N |2ǧ − 2ui(N2
−)ij =

3

2
uj |N |2ǧ + ∇̌j |N |2ǧ.

Incorporating this identity, we see (7.43) becomes

L0(S)j = 4usŘsj − 8ŘskN
ks

j −
8

3
ujŘ− 16us(N2

−)sj + 2usukN
ks

j

+
1

3
uj(2|du|2ǧ − 5|N |2ǧ).

Q.E.D.
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Let Z be the zeroth order linear operator defined by

Z(P )j := 2uiPij − 4N st
jPst −

4

3
uj ǧ

stPst,

then (7.36) says

L0(S)j = Z(2Ř∗∗)j − 16us(N2
−)sj + 2usukN

ks
j +

1

3
uj(2|du|2ǧ − 5|N |2ǧ).

Consider the first linear operator L1 = L0 + Z, then

L1(−2Ř∗∗ + S)j = L0(−2Ř∗∗ + S)j + Z(−2Ř∗∗ + S)j

= L0(S)j − Z(2Ř∗∗)j + Z(S)j

= −16us(N2
−)sj + 2usukN

ks
j +

1

3
uj(2|du|2ǧ − 5|N |2ǧ)

+8us(2N2
+ +N2

−)sj − 2usukN
ks

j −
2

3
uj(|du|2ǧ + 2|N |2ǧ)

= −uj |N |2ǧ

is of first order in ǧ. Therefore if we define the first order linear operator L
by

L(P ) = L1(e
− 3

2
uP ),

then L is an integrability condition for the flow (7.33). Theorem 5 is proved.
Q.E.D.

7.5. Return to the proof of Theorem 2: uniqueness

It is now easy to establish the uniqueness part in Theorem 2.

Assume that we have two closed, primitive, and positive solutions ϕ(t)
and ϕ′(t) of the Type IIA flow on some time interval [0, T ) for some T > 0,
with the same initial data ϕ(0) = ϕ′(0). By Theorem 4, the corresponding

pairs (ϕ(t), g̃ϕ(t)) and (ϕ′(t), g̃ϕ′(t)) satisfy the flows in Theorem 4. Since the
geometries (ω, Jϕ, gϕ) and (ω, Jϕ′ , gϕ′) are by definition Type IIA geometries,
the corresponding flows for ǧϕ(t) and ǧϕ′(t) satisfy the integrability condi-
tion in Theorem 5. Since the principal symbols in the flow of ǧij and the
integrability condition L are the same up to a multiplicative factor as their
counterparts in the Ricci flow, it follows that the flow of ǧij together with
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the integrability condition L satisfy all the conditions in the Hamilton-Nash-
Moser theorem ([29], Theorem 5.1). By the uniqueness part in this theorem,
we conclude that ǧij(t) and ǧ′ij(t) must be equal. But then ϕ and ϕ′(t) satisfy
the same ODE with the same initial data and hence must be equal. Q.E.D.

7.6. Monotonicity formulas

Recall that the function u evolves by

∂tu = eu(Δu+ 2|∇u|2 + |N |2).(7.44)

From (7.44) one can derive a number of things.

Proposition 3.

(7.45) min
M

u(t) ≥ min
M

u(0),

Proof of the Proposition: Apply maximum principle to (7.44). Q.E.D.

This proposition can be interpreted that if ϕ0 is initially positive, then
ϕ stays positive as long as the flow exists. This is because that the only
possibility for ϕ leaving the positive cone is that it first hits the wall of
degeneracy defined |ϕ| = 0, which contradicts the above C0-estimate.

Like its Type IIB counterpart [20], one has the following monotonicity
formulas for the dilaton functional along the flow.

Proposition 4.

(7.46) ∂t

∫
M

epu
ω3

3!
= p

∫
M

e(p+1)u
(
(1− p)|∇u|2 + |N |2

) ω3

3!
.

If we denote
∫
epu by Ep, then it follows that Ep is monotonely non-increasing

along the flow for p < 0 and it is monotonely non-decreasing along the flow
for 0 < p ≤ 1. In particular, the Hitchin’s functional E1 [30] is monotonely
non-decreasing along the source-free Type IIA flow.

8. Estimates for the Type IIA flow

Recall that the Type IIA flow becomes the following flow for the pair
(g(t), u(t)):

∂tgij = eu
[
− 2Rij + 2∇i∇ju− 4(N2

−)ij + uiuj − uJiuJj
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+4up(Ni
p
j +Nj

p
i)
]

∂tu = eu
[
Δu+ 2|∇u|2 + |N |2

]
(8.1)

In this section, we show that if |u|+|Rm(g)| ≤ C remains bounded on [0, T ),

then the flow can be extended to [0, T + ε) for some ε > 0.

To start, we examine some consequences of the boundedness of the Rie-

mann curvature tensor. We note that by equation (6.22), a bound on Rm

implies a bound on |N |2. Therefore we may assume

(8.2) |u|+ |N |2 + |Rm| ≤ C.

Next, since the Ricci curvature Ric is also bounded, so are its J-invariant

and J-anti-invariant parts. From (6.56), we know that the J-invariant part

of the Ricci curvature (RJ)ij is given by (RicJ) = (∇2u)J − 2N2
−. As |N |2

is already bounded, we conclude that
1

2
(∇2u)ij +

1

2
(∇2u)Ji,Jj is bounded,

namely, the J-invariant part of ∇2u is bounded. Consequently Δu is also

bounded.

Our goal will be to obtain bounds on all derivatives of u,N , Rm. For this,

we must first compute the evolution equations of ∇ku, ∇kN and ∇kRm.

8.1. The evolution of the derivatives of u

In this section, we compute the evolution of |∇u|2 and |∇∇u|2.

8.1.1. The evolution of the gradient of u. We start with

(8.3) ∂t|∇u|2 = 2gij∇iu̇∇ju− giaġabg
bjuiuj .

The differentiated evolution of u is

∇iu̇ = eu
(
∇iΔu+ 2∇i|∇u|2 +∇i|N |2

)
(8.4)

+eu
(
Δu+ 2|∇u|2 + |N |2

)
ui

Commuting derivatives

(8.5) ∇iΔu = gpq∇i∇p∇qu = Δ∇iu− gpqRip
λ
quλ
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Therefore the first term in (8.3)

2gij∇iu̇∇ju = 2eu
(
gijΔ∇iu∇ju− gpqRp

iλ
quλui + 2gij∇i|∇u|2uj

)
+gij∇i|N |2uj + 2eu

(
Δu+ 2|∇u|2 + |N |2

)
|∇u|2

= eu
(
Δ|∇u|2 − 2|∇∇u|2 − 2Riλuλui + 8(∇∇u)ijuiuj

+2gij∇i|N |2uj + 2Δu|∇u|2 + 4|∇u|4 + 2|N |2|∇u|2
)

(8.6)

The second term in (8.3) is

−giaġabg
bjuiuj = eu

[
2Rij − 2∇i∇ju+ 4(N2

−)
ij − 4up(N

ipj +N jpi)

]
uiuj

−eu|∇u|4 + eu[ωaiuaui][ω
bjubuj ]

= eu
[
2Rij − 2(∇∇u)ij + 4(N2

−)
ij

]
uiuj − eu|∇u|4(8.7)

The term (N ipj+N jpi)uiujup vanishes since N
ipj is anti-symmetric in p and

j, and N jpi is anti-symmetric in p and i. Altogether, (8.3) becomes

(∂t − euΔ)|∇u|2 = eu
[
− 2|∇∇u|2 + 2gij∇i|N |2uj + 2Δu|∇u|2 + 3|∇u|4

+2|N |2|∇u|2 + 6(∇2u)ijuiuj + 4(N2
−)

ijuiuj

]
(8.8)

The identity N2
− = 2N2

+ − 1
4 |N |2g implies

(∂t − euΔ)|∇u|2 = eu
[
− 2|∇∇u|2 + 2gij∇i|N |2uj + 2Δu|∇u|2 + 3|∇u|4

+|N |2|∇u|2 + 6(∇2u)ijuiuj + 8(N2
+)

ijuiuj

]
.(8.9)

8.1.2. The evolution of the Hessian of u. We use as usual the notation
uij = ∇i∇ju = (∇2u)ij . The variation of the Hessian is

(8.10) ∂tuip = ∇i∇pu̇− Γ̇λ
ipuλ.

Differentiating (8.4)

∇p∇iu̇ = eu
[
∇p∇iΔu+ 2∇p∇i|∇u|2 +∇p∇i|N |2

]
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+eu
[
∇iΔu+ 2∇i|∇u|2 +∇i|N |2

]
up

+eu
[
Δu+ 2|∇u|2 + |N |2

]
uip + (i ↔ p)(8.11)

Commuting derivatives, we see that

∇p∇iΔu = gab∇p∇a∇i∇bu− gab∇p(Ria
λ
buλ)

= gab∇a∇p∇i∇bu− gabRap
λ
iuλb − gabRap

λ
buiλ

−gab∇p(Ria
λ
buλ)

= Δ∇p∇iu− gab∇a(Rpb
λ
iuλ)− gabRap

λ
iuλb − gabRap

λ
buiλ

−gab∇p(Ria
λ
buλ)

Therefore

∇p∇iu̇ = euΔuip + eu
[
4gabuiaupb

]

+eu
[
∇Rm ∗ ∇u+∇2N ∗N +∇3u ∗ ∇u

]

+eu
[
∇2u ∗ O(∇u,Rm,N) +∇N ∗ ∇N +∇N ∗N ∗ ∇u

]

Here we used the identity R = Δu− |N |2 on the term euΔuuip.
Before further proceeding the computation, we explain the notations

used in the above formula. The terms written as α∗β represent contractions
of the tensors α and β which are linear in both α, β. In later computation,
we will also use (α+ γ) ∗ (β + η) to represent the linear contractions among
the tensors α, β, γ and η. The notation O(∇u,Rm,N) indicates terms which
only depend on ∇u,Rm and N (but the dependence may be nonlinear). We
will soon prove a gradient estimate |∇u| ≤ C, so that O(∇u,Rm,N) will
be treated as bounded terms.

Next,

(8.12) − Γ̇λ
ipuλ = −gλμ

2
(−∇μġip +∇pġμi +∇iġμp)uλ

Since
(8.13)

∇μġij = ∇μ

[
eu(−2Rij+2∇i∇ju−4(N2

−)ij+uiuj−uJiuJj+4up(Ni
p
j+Nj

p
i))

]



766 Teng Fei et al.

we get

−Γ̇λ
ipuλ = eu

[
∇Rm ∗ ∇u+∇3u ∗ ∇u

]
+O(∇u,Rm,N)

+eu
[
∇2u ∗ O(∇u,Rm,N) +∇N ∗ (N +∇u) ∗ ∇u

]
(8.14)

Therefore

(∂t − euΔ)uip

= eu
[
4gabuiaupb

]
+O(∇u,Rm,N)

+eu
[
∇Rm ∗ ∇u+∇2N ∗N +∇3u ∗ ∇u

]

+eu
[
∇2u ∗ O(∇u,Rm,N) +∇N ∗ ∇N +∇N ∗ (N +∇u) ∗ ∇u

]

Next, we compute

(∂t − euΔ)|∇2u|2 = 2gijgpq(∂t − euΔ)uipujq − 2eu|∇3u|2

−giaġabg
bjgpquipujq − gijgpaġabg

bquipujq.(8.15)

The first term is then

2gijgpq(∂t − euΔ)uipujq

= eu
[
8gabuiaupb(∇2u)ip

]
+O(∇u,Rm,N) ∗ ∇2u

+eu
[
∇Rm ∗ ∇u+∇2N ∗N +∇3u ∗ ∇u

]
∗ ∇2u

+eu
[
∇2u ∗ O(∇u,Rm,N) +∇N ∗ ∇N +∇N ∗ (N +∇u) ∗ ∇u

]
∗∇2u

Since ġab = 2euuab +O(∇u,Rm,N)

(∂t − euΔ)|∇2u|2(8.16)

= eu
[
4gabuiaupb(∇2u)ip

]
− 2eu|∇3u|2 +O(∇u,Rm,N) ∗ ∇2u

+eu
[
∇Rm ∗ ∇u+∇2N ∗N +∇3u ∗ ∇u

]
∗ ∇2u
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+eu
[
∇2u ∗ O(∇u,Rm,N) +∇N ∗ ∇N +∇N ∗ (N +∇u) ∗ ∇u

]
∗∇2u

8.2. The evolution of the Nijenhuis tensor: proof of Theorem 6(a)

8.2.1. Rewriting the flow of the complex structure. The almost
complex structure is given by Jk

j = ωkigij . Therefore, ∂tJ
k
j = ωki∂tgij .

By substituting equation (6.53) for the Ricci curvature Rij into the flow of
metric ∂tgij (8.1), we obtain

∂tJ
k
j = euωki

{
4DpNi

p
j − Jp

iJ
q
j∇q∇pu+∇i∇ju

+uiuj − uJiuJj + 2upNj
p
i + 6upNi

p
j

}
.(8.17)

This simplifies to

∂tJ
k
j = eu

{
4Jk

qDpN
qp

j − Jq
j∇q∇ku+ Jk

q∇q∇ju

+uJkuj − ukuJj + 2upNj
p,Jk + 6upN

Jk,p
j

}
.(8.18)

Converting covariant derivatives using ∇�V
p = D�V

p +N�λ
pV λ, we obtain

4Jk
qDpN

qp
j = −4Jk

qDpN
q
j
p

= −4Jk
q(∇pN

q
j
p −Npλ

qNλ
j
p +Npj

λN q
λ
p −Npλ

pN q
j
λ)

Using the symmetries of the Nijenhuis tensor, this is

4Jk
qDpN

qp
j = −4Jk

q∇pN
q
j
p − 4Npλ

JkNλp
j + 4Npλ

jN
Jk

λp

= −4Jk
q∇pN

q
j
p − 4Npλ

JkNλp
j + 4Npλ

j(−Np
Jk

λ −Nλp
Jk)

= −4Jk
q∇pN

q
j
p − 8(N2

−)
Jk

j + 4(N2
+)

Jk
j(8.19)

using (N2
+)ij = Npλ

iNpλj and (N2
−)ij = Npλ

iNλpj . Thus

∂tJ
k
j = eu

{
− 4Jk

q∇pN
q
j
p − Jq

j∇q∇ku+ Jk
q∇q∇ju

+uJkuj − ukuJj + 2upNj
p,Jk + 6upN

Jk,p
j

−8(N2
−)

Jk
j + 4(N2

+)
Jk

j

}
.(8.20)
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8.2.2. A first formulation of the evolution of the Nijenhuis tensor.
We start with the identity

(8.21) ∇iJ
k
j = −2Nij

Jk,

which follows from the formula relating∇ toD andNi,Jj
k = −Nij

Jk. Indeed,

(8.22) ∇iJ
k
j = DiJ

k
j +Niλ

kJλ
j − Jk

λNij
λ = −2Nij

Jk.

We can expand (8.21) and obtain

(8.23) Jk
pNij

p = −1

2
∇iJ

k
j = −1

2
∂iJ

k
j −

1

2
(Γk

iλJ
λ
j − Jk

λΓ
λ
ij).

Differentiating this gives

(8.24) J̇k
pNij

p + Jk
pṄij

p = −1

2
∇iJ̇

k
j −

1

2
(Γ̇k

iλJ
λ
j − Jk

λΓ̇
λ
ij),

which leads to

(8.25) ∂tNij
� =

1

2
J �

k∇iJ̇
k
j + J �

kJ̇
k
pNij

p +
1

2
(J �

kΓ̇
k
iλJ

λ
j + Γ̇�

ij).

We will introduce some notation to group terms. We first introduce the
tensor Z given by

(8.26) Zij
J� = J �

rΓ̇
r
inJ

n
j + Γ̇�

ij .

Next, we denote J̇k
j = euEk

j , where by (8.20),

Ek
j = −4Jk

q∇pN
q
j
p − Jq

j∇q∇ku+ Jk
q∇q∇ju

+Jk
pu

puj − Jp
ju

kup + 2Jk
�upNj

p� + 6Jk
�upN

�p
j

−8Jk
�(N

2
−)

�
j + 4Jk

�(N
2
+)

�
j .(8.27)

We write

∇iE
k
j = −4Jk

q∇i∇pN
q
j
p − Jq

j∇i∇q∇ku+ Jk
q∇i∇q∇ju

+Jk
p∇i(u

puj)− Jp
j∇i(u

kup) + Yi
k
j ,(8.28)

where

Yr
k
j = −4∇rJ

k
q∇pN

q
j
p −∇rJ

q
j∇q∇ku+∇rJ

k
q∇q∇ju
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+∇rJ
k
pu

puj −∇rJ
p
ju

kup + 2∇r(J
k
�upNj

p�) + 6∇r(J
k
�upN

�p
j)

−8∇r(J
k
�(N

2
−)

�
j) + 4∇r(J

k
�(N

2
+)

�
j)(8.29)

Therefore

J �
k∇iJ̇

k
j = J �

k∇ie
uEk

j + J �
ke

u∇iE
k
j

= eu
[
4∇i∇pN

�
j
p − J �

kJ
q
j∇i∇q∇ku−∇i∇�∇ju

−∇i(u
�uj)− J �

kJ
p
j∇i(u

kup) + J �
kYi

k
j + uiE

J�
j

]
.(8.30)

Substituting this,

∂tNij
� = eu

[
− 2∇i∇pN

�p
j −

1

2
J �

kJ
q
j∇i∇q∇ku− 1

2
∇i∇�∇ju

−1

2
∇i(u

�uj)−
1

2
J �

kJ
p
j∇i(u

kup) +
1

2
J �

kYi
k
j

+
1

2
uiE

J�
j + J �

kE
k
pNij

p

]
+

1

2
Zij

J�.(8.31)

To interpret the highest order terms, we will need the following identity. We

claim:

ΔNij� = −2∇i∇pN�
p
j −∇iR�j −

1

2
∇p(Rpij� −Rp,i,Jj,J�)

+[∇i,∇p]N
p
�j +

1

2
∇i∇�∇ju+

1

2
∇i(J

p
�J

q
j∇p∇qu)

+2

[
∇p(Npj

rNi�r)−∇p(Nij
rNp�r) +∇i(N

2
−)�j −∇i(N

2
+)�j

]
.(8.32)

We assume identity (8.32) for now and give the proof in §8.2.3. The evolution
of N becomes

∂tNij
� = eu

[
ΔNij

� −∇i∇�∇ju+∇iR�j +
1

2
∇p(Rpij� −Rp,i,Jj,J�)

−1

2
(uiuju

� + uiuJju
J�) + (IIa)ij

� +
e−u

2
Zij

J�

+Rm ∗N +∇N ∗ (N +∇u) +N3 +N2 ∗ ∇u+N ∗ (∇u)2
]

(8.33)



770 Teng Fei et al.

where terms involving ∇∇u will need to be tracked for future use, and are

given explicitly by

(IIa)ij
� = −1

2
∇i(u

�uj)−
1

2
J �

kJ
p
j∇i(u

kup)−
1

2
gr�∇i(J

p
rJ

q
j)(∇2u)pq

+
1

2
J �

k

[
−∇iJ

q
j(∇2u)q

k +∇iJ
k
q(∇2u)qj + 2Jk

r(∇2u)ipNj
pr

+6Jk
r(∇2u)ipN

rp
j

]
+

1

2
uiJ

�
k

[
− Jq

j(∇2u)kq + Jk
q(∇2u)qj

]

+J �
k

[
− Jq

p(∇2u)q
k + Jk

q(∇2u)qp

]
Nij

p(8.34)

which, using ∇iJ
k
j = −2Nij

Jk and simplifying, become

(IIa)ij
� = −1

2
∇i(u

�uj)−
1

2
J �

kJ
p
j∇i(u

kup) +Ni
�Jp(∇2u)p,Jj−Nij

Jq(∇2u)J�q

+Nij
Jq(∇2u)q

J� +Niq
�(∇2u)qj − (∇2u)ipNj

p� − 3(∇2u)ipN
�p

j

−1

2
ui

[
(∇2u)J�Jj + (∇2u)�j

]
−
[
(∇2u)Jp

J� + (∇2u)�p

]
Nij

p.(8.35)

Next, we claim that

Zij
Jp = ∇iġ

p
j +

1

2
(−∇pġij +∇j ġ

p
i) +

1

2
(ωrpJn

j − ωnpJr
j)∇rġin

+(Ni
prġjr +Nij

rġpr).(8.36)

We assume identity (8.36) for now and give the proof later in §8.2.3. Sub-
stituting the evolution of gij (8.1) into this expression for Zij

Jp and then in

our expression for ∂tNij
�, we obtain

∂tNij
� = eu

[
ΔNij

� −∇i∇�∇ju+∇iR
�
j +

1

2
∇p(Rpij

� − g�rRp,i,Jj,Jr)

−∇iR
�
j −

1

2
(−∇�Rij +∇jR

�
i)−

1

2
(ωr�Jn

j − ωn�Jr
j)∇rRin

+
1

2
(−∇�∇i∇ju+∇j∇�∇iu) +

1

2
(ωr�Jn

j − ωn�Jr
j)∇r∇i∇nu

+∇i∇�∇ju+Ric ∗ ∇u+ (IIa)ij
� + (IIb)ij

�

+Rm ∗N +∇N ∗ (N +∇u) +N3 +N2 ∗ ∇u+N ∗ (∇u)2
]

(8.37)
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where terms of order (∇u)3 (e.g. uiuju
�) have cancelled and the additional

terms involving ∇2u are

(IIb)ij
� =

1

2
[∇i(u

�uj − uJ�uJj) + 4(∇2u)pi(N
�p

j +Nj
p�) + 2ui(∇2u)�j ]

−1

4
[∇�(uiuj − uJiuJj) + 4(∇2u)p

�(Ni
p
j +Nj

p
i) + 2u�(∇2u)ij ]

+
1

4
[∇j(uiu

� − uJiu
J�) + 4(∇2u)pj(Ni

p� +N �p
i) + 2uj(∇2u)i

�]

+
1

4
(ωr�Jn

j − ωn�Jr
j)[∇r(uiun − uJiuJj) + 2ur(∇2u)in]

+4(∇2u)pr(Ni
p
n +Nn

p
i) + (Ni

�r(∇2u)jr +Nij
r(∇2u)�r).(8.38)

Since we can commute ∇�∇j∇iu = ∇j∇�∇iu−R�j
p
iup, the terms of order

∇3u in (8.37) cancel. We are left with

∂tNij
� = eu

[
ΔNij

� +
1

2
∇pRpij

� − 1

2
ωn�Jr

j∇pRpirn +Ric ∗ ∇u

−1

2
(−∇�Rij +∇jR

�
i)−

1

2
(ωr�Jn

j − ωn�Jr
j)∇rRin

+
1

2
(−Rj

�p
iup +RJ�

i
p
Jjup −RJj,i

p,J�up) + (IIa)ij
� + (IIb)ij

�

+Rm ∗N +∇N ∗ (N +∇u) +N3 +N2 ∗ ∇u+N ∗ (∇u)2
]
.(8.39)

The terms of order ∇Rm also cancel. Indeed, the Bianchi identity is

∇pRj
�
pi +∇�Rp

jpi +∇jR
�p

pi = 0

and hence

(8.40)
1

2
∇pRpij

� =
1

2
∇pRj

�
pi =

1

2
(−∇�Rij +∇jR

�
i).

For the terms involving ω, J , the same argument gives
(8.41)

− 1

2
ωn�Jr

j∇pRpirn = −1

2
ωn�Jr

j∇pRnrip =
1

2
ωn�Jr

j(∇nRri −∇rRin)

This is the same thing as

(8.42) − 1

2
ωn�Jr

j∇pRpirn =
1

2
(ωr�Jn

j − ωn�Jr
j)∇rRin
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Putting these identities back to (8.39), we get the cancellation of the ∇Rm
terms. Thus

∂tNij
k = eu

[
ΔNij

k + (Rm ∗ ∇u)ij
k + (IIa)ij

k + (IIb)ij
k

+Rm ∗N +∇N ∗ (N +∇u) +N3 +N2 ∗ ∇u+N ∗ (∇u)2
]
,(8.43)

where the (II) terms involve ∇2u and are explicitly given in (8.35) and (8.38)
and Rm ∗ ∇u is of the form
(8.44)

(Rm ∗ ∇u)ij
k =

1

2
(−Rj

kp
iup +RJk

i
p
Jjup −RJj,i

p,Jkup) + (Ric ∗ ∇u)ij
k.

8.2.3. Proof of identity (8.32) and identity (8.36). Proof of iden-
tity (8.32): The starting point is the identity (6.11) for the action of J on
the Riemann curvature tensor. Recall that in the case dω = 0, (6.4) and
(6.5) specialize to A = N = T, and so the identity (6.11) becomes

Ri,j,Jk,Jl −Rijkl = 2(DiNjkl −DjNikl +N r
ijNrkl)

= 2(DiNjkl −DjNikl +Nji
rNrkl −Nij

rNrkl),(8.45)

using Nijk +Nkij +Njki = 0. We can convert DN to ∇N . For example,

(8.46) DiNjkl = ∇iNjkl +Nij
rNrkl +Nik

rNjrl +Nil
rNjkr.

After converting D to ∇, (8.45) becomes

(8.47) ∇jNi�k = ∇iNj�k +
1

2
(Rjik� −Rj,i,Jk,J�)− 2Njk

rNi�r + 2Nik
rNj�r.

Differentiating this identity, we obtain

∇q∇pNkij = ∇q∇kNpij +
1

2
∇q(Rpkji −Rp,k,Jj,Ji)

−2∇q(Npj
rNkir) + 2∇q(Nkj

rNpir).(8.48)

By the Bianchi identity,

ΔNijk = −ΔNkij +ΔNjik
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= −∇p∇kN
p
ij −

1

2
∇p(Rpkji −Rp,k,Jj,Ji)

+2∇p(Npj
rNkir)− 2∇p(Nkj

rNpir) + ΔNjik.(8.49)

Therefore

−ΔNjik +ΔNijk = −∇k∇pN
p
ij −

1

2
∇p(Rpkji −Rp,k,Jj,Ji)

+[∇k,∇p]N
p
ij + 2∇p(Npj

rNkir)− 2∇p(Nkj
rNpir)

= ∇k∇pNj
p
i −∇k∇pNi

p
j −

1

2
∇p(Rpkji −Rp,k,Jj,Ji)

+[∇k,∇p]N
p
ij + 2∇p(Npj

rNkir)− 2∇p(Nkj
rNpir)(8.50)

The formula for Ricci curvature in Type IIA geometry given in (6.54) is

(8.51)

∇pNj
p
i = −∇pNi

p
j −Rij + 2(N2

−)ij − 2(N2
+)ij +

1

2
(∇2u)ij +

1

2
(∇2u)Ji,Jj .

Substituting this into (8.50),

−ΔNjik +ΔNijk

= −2∇k∇pNi
p
j −∇kRij −

1

2
∇p(Rpkji −Rp,k,Jj,Ji)

+[∇k,∇p]N
p
ij +

1

2
∇k∇i∇ju+

1

2
∇k(J

p
iJ

q
j∇p∇qu)

+2∇p(Npj
rNkir)− 2∇p(Nkj

rNpir) + 2∇k(N
2
−)ij − 2∇k(N

2
+)ij(8.52)

This proves the identity after using Nijk +Nkij +Njki = 0. Q.E.D.

Proof of Identity (8.36): The variation of the Christoffel symbol is given

by

(8.53) Γ̇p
in =

gps

2
(−∇sġin +∇iġsn +∇nġis).

Thus

Zij
p = Γ̇p

inJ
n
j − Jp

nΓ̇
n
ij =

gps

2
(−∇sġinJ

n
j +∇iġsnJ

n
j + Jn

j∇nġis)

−gns

2
Jp

n(−∇sġij +∇iġsj +∇j ġis).(8.54)
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Therefore

Zij
J� =

gps

2
J �

p(−∇sġinJ
n
j +∇iġsnJ

n
j + Jn

j∇nġis)

−gns

2
J �

pJ
p
n(−∇sġij +∇iġsj +∇j ġis),(8.55)

which becomes

Zij
Jp = −gps

2
Jr

s∇iġrnJ
n
j +

1

2
(−∇pġij +∇iġ

p
j +∇j ġ

p
i)

+
1

2
(ωrpJn

j∇rġin − ωnpJr
j∇rġin).(8.56)

From the evolution equation of g, we have the identity Jr
iġrnJ

n
j = −ġij .

Therefore the first term

−gps

2
Jr

s∇iġrnJ
n
j(8.57)

= −gps

2
∇i(J

r
sġrnJ

n
j) +

gps

2
∇iJ

r
sġrnJ

n
j +

gps

2
Jr

sġrn∇iJ
n
j

simplifies to

(8.58) − gps

2
Jr

s∇iġrnJ
n
j =

1

2
∇iġ

p
j +Ni

prġrj + ġpnNij
n.

Therefore

Zij
Jp = ∇iġ

p
j +

1

2
(−∇pġij +∇j ġ

p
i) +

1

2
(ωrpJn

j∇rġin − ωnpJr
j∇rġin)

+Ni
prġrj + ġpnNij

n.(8.59)

Q.E.D.

8.2.4. The evolution of the norm of N . The norm of the Nijenhuis
tensor, which is |N |2 = gijgpqgk�NipkNjq�, evolves by

(∂t − euΔ)|N |2 = 2N ij
k(∂t − euΔ)Nij

k − 2eu|∇N |2

−girġrsg
sjNipkNj

pk − 2gkrġrsg
s�NipkN

ip
�.(8.60)

By the equation for the evolution of gij (8.1), this is of the form

(∂t − euΔ)|N |2 = 2N ij
k(∂t − euΔ)Nij

k − 2eu|∇N |2
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+eu
[
− 2(∇2u)ijNipkNj

pk − 4(∇2u)k�NipkN
ip
�

+N2 ∗ (Rm+N ∗N +∇u ∗ ∇u+∇u ∗N)

]
(8.61)

Substituting (8.43), we obtain

(∂t − euΔ)|N |2

= eu
[
− 2|∇N |2 + 2N ij

k(IIa + IIb)ij
k − 2(∇2u)ijNipkNj

pk

−4(∇2u)k�NipkN
ip
� + 2N ij

k(Rm ∗ ∇u)ij
k +Rm ∗N2

+∇N ∗N ∗ (N +∇u) +N4 +N3 ∗ ∇u+N2 ∗ (∇u)2
]
.(8.62)

The expressions for the terms (IIa+IIb) are given in (8.35) and (8.38). A cal-
culation can be done to verify that each term N ij

k(IIa)ij
k and N ij

k(IIb)ij
k

only contributes terms of the type (∇2u) ∗ N2 since the others vanish by
symmetry. For example, if we denote the terms on each line of (IIb) (8.38)
by (i) + (ii) + (iii) + (iv) + (v), we have

(i) =
1

2
N ij

�[∇i(u
�uj)− J �

rJ
s
j∇i(u

rus) + 4upi(N
�p

j +Nj
p�) + 2uiu

�
j ]

= −2upiN
ij
�N

�
jp − 2upiN

ij
�Nj

�
p

= 2upi(N
�ij +N j�i)N�jp + 2upi(N

�ij +N j�i)Nj�p = 0(8.63)

where we used the symmetry N ij
� = −N i

�
j , the identity N i,Jj

Jr = N ij
r,

and the Bianchi identityNijk+Nkij+Njki = 0. The symmetryN ij
� = −N i

�
j

allows us to combine the (ii) + (iii) terms:

(ii) + (iii)(8.64)

= −1

2
N ij

�[∇�(uiuj)− Jr
iJ

s
j∇�(urus) + 4up

�(Ni
p
j +Nj

p
i) + 2u�uij ]

= −1

2
N ij

�[2u
�
iuj + 4up

�(Ni
p
j +Nj

p
i) + 2u�uij ]

= 2up
�(N ij

�Nij
p) + 2up

�(N ij
�Nji

p)

where we used NJi,Jj
� = −N ij

�. Next,

(iv) =
1

2
N ij

�ω
r�Jn

j [∇r(uiun)− Jp
iJ

q
n∇r(upuq)
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+4upr(Ni
p
n +Nn

p
i) + 2uruin]

= N ij
�ω

r�Jn
j [uriun + uiurn + 2upr(Ni

p
n +Nn

p
i) + uruin]

= −N i,Jn
J�g

r�[uriun + uiurn + 2upr(Ni
p
n +Nn

p
i) + uruin]

= −N in
�[u

�
iun + uiu

�
n + 2u�p(Ni

p
n +Nn

p
i) + u�uin]

= 2u�p(N
in

�Nin
p) + 2u�p(N

in
�Nni

p).(8.65)

The computations of the other terms is similar. The result is then

(∂t − euΔ)|N |2(8.66)

= eu
[
− 2|∇N |2 + (∇2u) ∗N2 + 2N ij

k(Rm ∗ ∇u)ij
k

+Rm ∗N2 +∇N ∗N ∗ (N +∇u) +N4 +N3 ∗ ∇u+N2 ∗ (∇u)2
]

where (∇2u)�N2 is an expression involving (∇u)ij(N2
+)ij and (∇u)ij(N2

−)ij .
The expression for the term (Rm ∗ ∇u)ij

k is given in (8.44), and using
N i,Jj

Jk = N ij
k and symmetries of the curvature tensor, it becomes

(8.67) N ij
k(Rm ∗ ∇u)ij

k = −Rp
ijkupN

ijk +N ij
k(Ric ∗ ∇u)ij

k.

By (6.16), we can convert Rp
ijk = Rp

ijk+∇N+N2. Since Rp
i,Jj,Jk = Rp

ijk

and N i,Jj,Jk = −N ijk, the term R
p
ijkN

ijk = 0 by symmetry. Similarly, we

can reduce terms of the form N ij
ku

kRij = N ij
ku

kR−J
ij where R−J

ij is the J-

anti-invariant part of the Ricci tensor given in (6.56) byRic−J = ∇N+N∗N .
Absorbing these terms gives the expression

(∂t − euΔ)|N |2 = eu
[
− 2|∇N |2 + (∇2u) ∗N2 +Rm ∗N2

+∇N ∗N ∗ (N +∇u) +N4 +N3 ∗ ∇u+N2 ∗ (∇u)2
]
.(8.68)

We remark that from this expression, we see that if |N |2 = 0 at the initial
time, that |N |2 ≡ 0 along the flow. To see this, we assume |N |2 ≤ 1 and
|Rm| + |∇2u| + |∇u| ≤ C on [0, ε) and apply the maximum principle to
e−At|N |2 for A � 1.

8.2.5. The evolution of the gradient of N . We compute the evolution
of ∇N .

(8.69) ∂t∇�Nij
k = ∇�Ṅij

k −Nλj
kΓ̇λ

�i −Niλ
kΓ̇λ

�j + Γ̇k
�λNij

λ
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Using the equation (8.1) for ġij , we can compute the time derivative of the

Christoffel symbol as

Γ̇k
ij = −gkμ

2
(−∇μġij +∇j ġμi +∇iġμp)

= eu(∇Rm ∗ g +∇3u ∗ g + (∇N +∇2u+ 1) ∗ O(∇u,N,Rm)).(8.70)

Substituting (8.43),

∂t∇�Nij
k

= eu
[
∇�ΔNij

k + (∇Rm+∇2N +∇3u) ∗ (N +∇u)

+(∇N +∇2u) ∗ (∇N +∇2u) + (∇N +∇2u+ 1) ∗ O(∇u,N,Rm)

]

We can commute the derivatives ∇�ΔNij
k up to lower order terms, and so

(∂t − euΔ)∇�Nij
k

= eu
[
(∇Rm+∇2N +∇3u) ∗ (N +∇u)

+(∇N +∇2u) ∗ (∇N +∇2u) + (∇N +∇2u+ 1) ∗ O(∇u,N,Rm)

]

The evolution of the norm |∇N |2 is

(∂t − euΔ)|∇N |2 = 2〈(∂t − euΔ)∇N,∇N〉 − 2eu|∇2N |2 + ∂tg ∗ ∇N ∗ ∇N

Altogether,

(∂t − euΔ)|∇N |2

≤ −2eu|∇2N |2 + Ceu
[
|∇N |3 + |∇2u||∇N |2 + |∇2u|2|∇N |

+|∇N |(|∇Rm|+ |∇2N |+ |∇3u|)(|N |+ |∇u|)

+O(∇u,N,Rm)(|∇N |2 + |∇N ||∇2u|+ 1)

]
.(8.71)
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8.3. The evolution of the curvature: proof of Theorem 6(b)

The general formula for the variation of the curvature tensor (see e.g. [29])

is

d

dt
Rjikl =

1

2
(∇i∇kġjl −∇i∇lġjk −∇j∇kġil +∇j∇lġik)

+
1

2
ġkλRji

λ
l −

1

2
ġlλRji

λ
k.(8.72)

In our case, we write the evolution of gij (8.1) as

ġij = eu(−2Rij + 2∇i∇ju+ Eij),

Eij = −4(N2
−)ij + uiuj − uJiuJj + 4up(Ni

p
j +Nj

p
i).(8.73)

Differentiating once gives

(8.74)

∇kġj� = eu(−2∇kRj�+2∇k∇j∇�u+∇kEj�)+eu(−2Rj�+2∇j∇�u+Ej�)∇ku.

Differentiating twice gives

∇i∇kġj� = eu(−2∇i∇kRj� + 2∇i∇k∇j∇�u+∇i∇kEj�)

+eu(−2∇kRj� + 2∇k∇j∇�u+∇kEj�)∇iu+ (i ↔ k)

+eu(−2Rj� + 2∇j∇�u+ Ej�)∇i∇ku

+eu(−2Rj� + 2∇j∇�u+ Ej�)∇ku∇iu.

We can group this as

∇i∇kġj� = eu(−2∇i∇kRj� + 2∇i∇k∇j∇�u)

+eu(∇Rm+∇3u+∇2N) ∗ O(∇u,N) +∇N ∗ ∇N

+∇N ∗ (∇2u+O(∇u,N)) +O(Rm,N,∇2u,∇u, u).(8.75)

We have

(8.76) ∇i∇k∇j∇�u−∇i∇j∇k∇�u = ∇i(−Rkj
λ
�uλ)

and (Lemma 7.2 in [29])

(8.77) ∇i∇kRj�−∇i∇�Rjk −∇j∇kRi�+∇j∇�Rik=−ΔRjik�+Rm ∗Rm.



Geometric flows for the Type IIA string 779

Substituting all this into (8.72), we obtain

(∂t − euΔ)Rm = eu
[
(∇Rm+∇3u+∇2N) ∗ O(∇u,N) +O(Rm,N,∇u)

+∇N ∗ (∇2u+O(∇u,N)) +∇N ∗ ∇N +∇2u ∗ ∇2u

]
.(8.78)

The norm evolves by

(8.79)

(∂t − euΔ)|Rm|2 = 2〈(∂t − euΔ)Rm,Rm〉 − 2eu|∇Rm|2 + ∂tg ∗Rm ∗Rm.

Therefore

(∂t − euΔ)|Rm|2(8.80)

= eu
[
− 2|∇Rm|2 + (∇Rm+∇3u+∇2N) ∗ O(Rm,∇u,N)

+(∇N ∗ ∇N +∇2u ∗ ∇2u+ 1) ∗ O(Rm,∇u,N)

]
.

8.4. Lower order estimates

8.4.1. Gradient estimate. In this section, we estimate the gradient of

u.

Proposition 5. Suppose over a finite interval [0, T ) the flow exists and that

|u|+ |Rm| ≤ C, then there exists a constant C ′ such that |∇u|2 ≤ C ′ in the

time interval [0, T ).

We recall that by our work so far, we know that |N |2 is bounded and

the J-invariant part of ∇2u is bounded.

Equation (8.9) for the evolution of |∇u|2 together with the evolution

(∂t − euΔ)u = eu(2|∇u|2 + |N |2) of u imply

(∂t − euΔ)(epu|∇u|2)(8.81)

= e(p+1)u

(
− 2|∇2u|2 + (6− 4p)(∇2u)iju

iuj + 8(N2
+)iju

iuj

+2u2∇s|N |2 + |∇u|2(2Δu+ (3 + 2p− p2)|∇u|2 + (1 + p)|N |2)
)
.
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Let V = epu(|N |2 + |∇u|2) for some constant p. From (2.12) and (8.81), we
see that

e−(p+1)u(∂t − euΔ)V

=

(
− 2|∇N |2 + (∇2u) ∗N2 +N ∗ (Rm+∇N) ∗ (N +∇u)

+N ∗ (N +∇u)3 − 2pus∇s|N |2 − (p2 − 2p)|∇u|2|N |2 + p|N |4
)

+

(
− 2|∇2u|2 + (6− 4p)(∇2u)iju

iuj + 8(N2
+)iju

iuj + 2us∇s|N |2

+|∇u|2(2Δu+ (3 + 2p− p2)|∇u|2 + (1 + p)|N |2)
)
.

We note that (∇2u) ∗ N2 represent terms of the form a(∇2u)ij(N2
+)ij +

b(∇2u)ij(N2
−)ij for some constant a and b. Those terms are also bounded

since N2
± is J-invariant hence only the J-invariant part of ∇2u contributes

to this term, which is bounded. Also, we can control all the terms linear in
∇N by the good term −|∇N |2. Therefore

e−(p+1)u(∂t − euΔ)V

≤ −2|∇2u|2 + (6− 4p)(∇2u)iju
iuj + (3 + 2p− p2)|∇u|4

+C(p)|∇u|3 + C(p).(8.82)

To handle the term (∇2u)iju
iuj , we need to make use of the fact that the

J-invariant part of ∇2u is bounded. To do so, let us denote the J-invariant
and the J-anti-invariant parts of ∇2u by ∇2

Ju and ∇2
−Ju respectively. Under

this notation, we see that

−2|∇2u|2 + (6− 4p)(∇2u)iju
iuj + (3 + 2p− p2)|∇u|4

= −2|∇2
Ju|2 − 2|∇2

−Ju|2 + (6− 4p)(∇2
Ju+∇2

−Ju,∇u⊗∇u)

+(3 + 2p− p2)|∇u|4

≤ −2|∇2
−Ju|2 + (6− 4p)(∇2

−Ju,∇u⊗∇u) + C|∇u|2

+(3 + 2p− p2)|∇u|4.(8.83)

The advantage of this consideration is that only the J-anti-invariant part of
∇u⊗∇u, namely 1

2(uiuj − uJiuJj), contributes to the inner product term.
Therefore

−2|∇2u|2 + (6− 4p)(∇2u)iju
iuj + (3 + 2p− p2)|∇u|4
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≤ −2|∇2
−Ju|2 + (3− 2p)(∇2

−Ju)
ij(uiuj − uJiuJj) + C|∇u|2

+(3 + 2p− p2)|∇u|4

= −2|(∇2
−Ju)ij +

1

2
(p− 3

2
)(uiuj − uJiuJj)|2 +

1

2
(p− 3

2
)2|uiuj − uJiuJj |2

+(3 + 2p− p2)|∇u|4 + C|∇u|2

≤ 1

2
(p− 3

2
)2|uiuj − uJiuJj |2 + (3 + 2p− p2)|∇u|4 + C|∇u|2.

The J-anti-invariant part of ∇u⊗∇u has half of the norm square compared
to the full ∇u⊗∇u:

|uiuj − uJiuJj |2 = 2|∇u⊗∇u|2 = 2|∇u|4.(8.84)

So the conclusion is that

−2|∇2u|2 + (2− 4p)(∇2u)iju
iuj + (3 + 2p− p2)|∇u|4

≤ ((p− 3

2
)2 − p2 + 2p+ 3)|∇u|4 + C|∇u|2

= (−p+
9

4
+ 3)|∇u|4 + C|∇u|2

≤ −|∇u|4 + C|∇u|2

for p = (9/4) + 4. Thus

e−(p+1)u(∂t − euΔ)V ≤ −|∇u|4 + C(p)|∇u|3 + C(p).(8.85)

Then by maximum principle and the boundedness of u, we prove the propo-
sition.

8.4.2. Second order estimate. In this section, we obtain estimates on
|∇N | + |∇2u|. We refer to ∇N and ∇2u as second order terms since they
involve two derivatives of ϕ.

Proposition 6. Let (gij(t), u(t)) evolve by Type IIA flow on M × [0, T ].
Suppose

(8.86) sup
M×[0,T ]

(
|Rm|+ |N |+ |∇u|+ |u|

)
≤ Λ.

Then there exists a constant C depending on Λ and (gij(0), u(0)) such that

(8.87) sup
M×[0,T ]

(
|∇N |+ |∇2u|

)
≤ C.
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A basic building block in the construction of our test function for this
estimate will be

(8.88) τ(z) = |N |2 + |∇u|2.

It satisfies τ ≤ C, and using our work so far, its evolution can be estimated
by

(8.89) (∂t − euΔ)τ ≤ −|∇N |2 − |∇2u|2 + C.

We start with the test function

(8.90) Q =
|∇2u|2 + |∇N |2

K − τ

where K is a large constant to be determined. We can compute its evolution

(∂t − euΔ)Q

=
1

K − τ
(∂t − euΔ)(|∇2u|2 + |∇N |2) + |∇2u|2 + |∇N |2

(K − τ)2
(∂t − euΔ)τ

− 2eu

(K − τ)2
∇i(|∇2u|2 + |∇N |2)∇iτ − 2eu

|∇2u|2 + |∇N |2
(K − τ)3

|∇τ |2.

By our evolution equations (8.71), (8.16), (8.89) for |∇N |2, |∇2u|2, and τ ,
we obtain the estimate

(∂t − euΔ)Q ≤ eu

(K − τ)

[
− |∇3u|2 − |∇2N |2 + C|∇N |3 + C|∇2u|3

+C|∇Rm||∇N |+ C|∇Rm||∇2u|+ C|∇N ||∇3u|
+C|∇N |2|∇2u|+ C|∇2N ||∇2u|+ C

− |∇N |4
(K − τ)

− |∇2u|4
(K − τ)

− 2
|∇2u|2|∇N |2

(K − τ)

+C
|∇2u|2 + |∇N |2

(K − τ)
− 2

|∇2u|2 + |∇N |2
(K − τ)2

|∇τ |2

− 2

(K − τ)
∇i(|∇2u|2 + |∇N |2)∇iτ

]

By the bound on |N | and |∇u|, we can choose K − τ ≥ K
2 large. The terms

|∇N |4 and |∇2u|4 can absorb lower order terms. We also drop the last term.

(∂t − euΔ)Q ≤ eu

(K − τ)

[
− |∇3u|2 − |∇2N |2 + 1

10
|∇Rm|2 + C(K)
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−|∇N |4
2K

− |∇2u|4
2K

− |∇2u|2|∇N |2
K

− 2

(K − τ)
∇i(|∇2u|2 + |∇N |2)∇iτ

]
(8.91)

Using |∇τ | ≤ C(|∇2u|+ |∇N |+ 1), we can estimate

− 2

(K − τ)
∇i(|∇2u|2 + |∇N |2)∇iτ(8.92)

≤ C

K
|∇|∇2u|2 +∇|∇N |2||∇τ |

≤ C

K

(
|∇3u|(|∇2u|2 + |∇2u||∇N |) + |∇2N |(|∇N |2 + |∇2u||∇N |)

)

≤ 1

2
|∇3u|2 + 1

2
|∇2N |2 + C0

K2
|∇2u|4 + C0

K2
|∇2u|2|∇N |2 + C0

K2
|∇N |4

Choose K large such that K ≥ 4C0 � 1. Then the main inequality becomes

(∂t − euΔ)Q ≤ eu

(K − τ)

[
− 1

2
|∇3u|2 − 1

2
|∇2N |2 − |∇N |4

4K
− |∇2u|4

4K

+
1

10
|∇Rm|2 + C(K)

]
.(8.93)

We can now prove that if |u|+ |∇u|+ |N |+ |Rm| ≤ C along the flow, then
we can bound |∇N | and |∇2u|. Consider the test function

(8.94) S = Q+ |Rm|2.

By (8.93) and (2.13), we can estimate the evolution of Q and |Rm|2.

(∂t − euΔ)S ≤ eu

(K − τ)

[
− 1

2
|∇3u|2 − 1

2
|∇2N |2 − |∇N |4

4K
− |∇2u|4

4K

+
1

10
|∇Rm|2 + C(K)

]
− eu|∇Rm|2

+C|∇3u|+ C|∇2N |+ C|∇N |2 + C|∇2u|2 + C(8.95)

As long as K is large enough such that K − τ ≥ 1, it follows that at a
maximum point (x0, t0) of S with t0 > 0, then

(8.96) |∇N |2(x0, t0) + |∇2u|2(x0, t0) ≤ C(K).
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Since Q = |∇2u|2+|∇N |2
K−τ , it follows that Q(x0, t0) ≤ C and hence S(x0, t0) ≤

C.

Therefore S is bounded on M× [0, T ]. It follows that if |u|+ |∇u|+ |N |+
|Rm| ≤ C0 on M × [0, T ], then

(8.97) |∇N |+ |∇2u| ≤ C

where C depends on C0 and the initial data.

8.5. Higher order estimates

In this section, we prove the following estimate.

Proposition 7. Let (gij(t), u(t)) evolve by Type IIA flow on M × [0, T ].

Suppose

(8.98) sup
M×[0,T ]

(
|Rm|+ |∇N |+ |N |+ |∇2u|+ |∇u|+ |u|

)
≤ Λ.

Then for each integer k ≥ 1, there exists a constant Ck depending on k, Λ

and (gij(0), u(0)) such that

(8.99) sup
M×[0,T ]

(
|∇kRm|+ |∇k+1N |+ |∇k+2u|

)
≤ Ck.

Note: in earlier work, we showed that the estimate |u|+|Rm| ≤ C implies

the estimate |∇u|+ |∇2u|+ |N |+ |∇N | ≤ C. Combining these two results,

we conclude that if |u| + |Rm| ≤ C remains bounded along the flow, then

all geometric terms remain bounded.

Let Ik denote any combination of geometric terms of derivative order

≤ k in the metric. For example,

I2 = f(u,∇u,∇2u,N,∇N,Rm),

I3 = f(u,∇u,∇2u,∇3u,N,∇N,∇2N,Rm,∇Rm).(8.100)

In this section, we will evolve all higher order geometric terms appearing in

the equation of the metric Type IIA flow.
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8.5.1. The evolution of |∇kRm|2. We write the evolution of the cur-
vature as

(8.101) (∂t − euΔ)Rm = E(Rm),

where

(8.102) E(Rm) = (∇3u+∇2N +∇Rm) ∗ I1 + I2.

We have for example

(8.103) ∇E(Rm) = (∇4u+∇3N+∇2Rm)∗I1+(∇3u+∇2N+∇Rm)∗I2+I2

and in general

∇kE(Rm) = (∇k+3u+∇k+2N +∇k+1Rm) ∗ I1
+(∇k+2u+∇k+3N +∇k+1Rm) ∗ I2 + Ik+1(8.104)

Then

∂t∇kRm = ∂t(∂ + Γ)kRm

= ∇k(∂tRm) +

k−1∑
i=0

∇i∂tΓ∇k−1−iRm

= ∇kE(Rm) +∇k(euΔRm) +

k−1∑
i=0

∇i∂tΓ∇k−1−iRm(8.105)

We have the general commutator formula

(8.106) ∇kΔA = Δ∇kA+∇k(Rm ∗A)

which implies

(∂t − euΔ)∇kRm = ∇k(Rm ∗Rm) +∇kE(Rm) +

k∑
i=1

∇ieu ∗ ∇k−iΔRm

+

k−1∑
i=0

∇i∂tΓ ∗ ∇k−1−iRm(8.107)

We note

(8.108) ∂tΓ = (∇3u+∇2N +∇Rm) ∗ I1 + I2,
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and

∇k∂tΓ = (∇k+3u+∇k+2N +∇k+1Rm) ∗ I1
+(∇k+2u+∇k+3N +∇k+1Rm) ∗ I2 + Ik+1.(8.109)

Therefore

(∂t − euΔ)∇kRm = I1 ∗ (∇k+3u+∇k+2N +∇k+1Rm)

+I2 ∗ (∇k+2u+∇k+1N +∇kRm) + Ik+1(8.110)

The norm is evolving by

(∂t − euΔ)|∇kRm|2 = 2〈(∂t − euΔ)∇kRm,∇kRm〉
−2eu|∇k+1Rm|2 + ∂tg ∗ ∇kRm ∗ ∇kRm.(8.111)

Thus

(∂t − euΔ)|∇kRm|2(8.112)

= −2eu|∇k+1Rm|2 + I1 ∗ (∇k+3u+∇k+2N +∇k+1Rm) ∗ ∇kRm

+I2 ∗ (∇k+2u+∇k+1N +∇kRm)2 + Ik+1 ∗ ∇kRm.

8.5.2. The evolution of |∇kN |2. We will evolve ∇kN in this section
for all k ≥ 2. We write (∂t − euΔ)N = E(N). Higher order terms evolve by

∂t∇kN = ∂t(∂ + Γ)kN

= ∇k(∂tN) +

k−1∑
i=0

∇i∂tΓ ∗ ∇k−1−iN

= ∇kE(N) + eu∇kΔN +

k∑
i=1

∇ieu ∗ ∇k−iΔN

+

k−1∑
i=0

∇i∂tΓ ∗ ∇k−1−iN.(8.113)

Using (8.106) to commute derivatives gives

(∂t − euΔ)∇kN(8.114)

= ∇kE(N) +

k∑
i=1

∇ieu ∗ ∇k−iΔN +∇k(Rm∗N)+

k−1∑
i=0

∇i∂tΓ ∗ ∇k−1−iN.
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By (8.43),

(8.115) E(N) = (∇2u+∇N +Rm) ∗ I1 + I1.

Differentiating this once gives

(8.116) ∇E(N) = (∇3u+∇2N +∇Rm) ∗ I1 + I2.

Differentiating again, we obtain

∇2E(N) = (∇4u+∇3N +∇2Rm) ∗ I1
+(∇3u+∇2N +∇Rm) ∗ I2 + I2.(8.117)

Higher order derivatives are

∇kE(N) = (∇k+2u+∇k+1N +∇kRm) ∗ I1
+(∇k+1u+∇kN +∇k−1Rm) ∗ I2 + Ik(8.118)

for k ≥ 2. Substituting this and (8.108) into (8.114)

(∂t − euΔ)∇kN = (∇k+2u+∇k+1N +∇kRm) ∗ I1
+(∇k+1u+∇kN +∇k−1Rm) ∗ I2 + Ik.(8.119)

The norm evolves by

(∂t − euΔ)|∇kN |2 = −2eu|∇k+1N |2 + 2〈(∂t − euΔ)∇kN,∇kN〉
+∂tg ∗ ∇kN ∗ ∇kN.(8.120)

Therefore

(∂t − euΔ)|∇kN |2

= −2eu|∇k+1N |2 + I1 ∗ (∇k+2u+∇k+1N +∇kRm) ∗ ∇kN

+I2 ∗ (∇k+1u+∇kN +∇k−1Rm)2 + Ik ∗ ∇kN.(8.121)

8.5.3. The evolution of |∇ku|2. Denote as before (∂t− euΔ)u = E(u).
We will compute the evolution of ∇ku for k ≥ 3.

∂t∇ku = ∂t(∂ + Γ)k−1∂u

= ∇k(∂tu) +

k−2∑
i=0

∇i∂tΓ ∗ ∇k−1−iu
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= eu∇kΔu+∇kE(u) +

k∑
i=1

∇ieu∇k−iΔu+

k−2∑
i=0

∇i∂tΓ ∗ ∇k−1−iu

= euΔ∇ku+

k−1∑
i=0

∇iRm ∗ ∇k−iu+∇kE(u)

+

k∑
i=1

∇ieu∇k−iΔu+

k−2∑
i=0

∇i∂tΓ ∗ ∇k−1−iu(8.122)

The evolution of u is of the form E(u) = I1. We will differentiate this
3 times before it becomes linear enough to use in our general argument.
Differentiating once

(8.123) ∇E(u) = (∇2u+∇N +Rm) ∗ I1 + I1,

twice

(8.124) ∇2E(u) = (∇3u+∇2N +∇Rm) ∗ I1 + I2

and three times

(8.125) ∇3E(u) = (∇4u+∇3N+∇2Rm)∗I1+(∇3u+∇2N+∇Rm)∗I2+I2.

Higher order derivatives are

∇kE(u) = (∇k+1u+∇kN +∇k−1Rm) ∗ I1(8.126)

+(∇ku+∇k−1N +∇k−2Rm) ∗ I2 + Ik−1,

for k ≥ 3. Substituting this and (8.108) into (8.122)

(∂t − euΔ)∇ku = (∇k+1u+∇kN +∇k−1Rm) ∗ I1
+(∇ku+∇k−1N +∇k−2Rm) ∗ I2 + Ik−1.(8.127)

Using the evolution of the norm

(∂t − euΔ)|∇ku|2 = −2eu|∇k+1u|2 + 2〈(∂t − euΔ)∇ku,∇ku〉
+∂tg ∗ ∇ku ∗ ∇ku,(8.128)

we conclude

(∂t − euΔ)|∇ku|2(8.129)

= −2eu|∇k+1u|2 + I1 ∗ (∇k+1u+∇kN +∇k−1Rm) ∗ ∇ku

+I2 ∗ (∇ku+∇k−1N +∇k−2Rm)2 + Ik−1 ∗ ∇ku.
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8.5.4. Estimates: proof of Theorem 7. Putting everything together,
we obtain

(∂t − euΔ)(|∇ku|2 + |∇k−1N |2 + |∇k−2Rm|2)
= −2eu(|∇k+1u|2 + |∇kN |2 + |∇k−1Rm|2)

+I1 ∗ (∇k+1u+∇kN +∇k−1Rm) ∗ (∇ku+∇k−1N +∇k−2Rm)

+I2 ∗ (∇ku+∇k−1N +∇k−2Rm)2

+Ik−1 ∗ (∇ku+∇k−1N +∇k−2Rm)(8.130)

Let k ≥ 3. Suppose Ik−1 ≤ C. Then

(∂t − euΔ)(|∇ku|2 + |∇k−1N |2 + |∇k−2Rm|2)
≤ −eu(|∇k+1u|2 + |∇kN |2 + |∇k−1Rm|2)

+C|∇ku|2 + C|∇k−1N |2 + C|∇k−2Rm|2 + C(8.131)

and

(∂t − euΔ)(|∇k−1u|2 + |∇k−2N |2 + |∇k−3Rm|2)
≤ −eu(|∇ku|2 + |∇k−1N |2 + |∇k−2Rm|2) + C.(8.132)

It follows that the test function

(∂t − euΔ)

[
|∇ku|2 + |∇k−1N |2 + |∇k−2Rm|2

+Λ(|∇k−1u|2 + |∇k−2N |2 + |∇k−3Rm|2)
]

≤ −|∇ku|2 − |∇k−1N |2 − |∇k−2Rm|2 + ΛC(8.133)

for Λ � 1 large. By the maximum principle, we conclude that if Ik−1 ≤ K
then

(8.134) |∇ku|2 + |∇k−1N |2 + |∇k−2Rm|2 ≤ C(K, g(0))

and hence Ik is bounded along the flow. This argument shows that if I2 is
bounded, then Ik is bounded for all k.

8.6. Long-time existence

Let (u(t), g(t)) be a solution to the Type IIA flow on [0, T ). Suppose |u| +
|Rm| ≤ C on M × [0, T ). We have shown that in this case |∇ku|+ |∇kN |+
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|∇kRm| ≤ C for all k ≥ 1. We now give the standard argument (see e.g. [29])
which shows that the flow can be extended past t = T . Denote ∂tgij = Eij .
Our estimates imply that

(8.135) |E|+ |∇kE| ≤ C

where ∇ is with respect to the evolving metric g(t). If we take x ∈ M ,
v ∈ TxM and t1, t2 ∈ (0, T ), then

(8.136)

∣∣∣∣ log g(t2)(v, v)− log g(t1)(v, v)

∣∣∣∣ =
∣∣∣∣
∫ t2

t1

ġ(τ)(v, v)

g(τ)(v, v)
dτ

∣∣∣∣ ≤ C|t2 − t1|.

It follows that g(t) is a Cauchy sequence as t → T and

(8.137) e−CT g(0) ≤ g(t) ≤ eCT g(0)

and the metrics gij do not degenerate on [0, T ). Let ∇̄ denote the covariant
derivative with respect to ḡ = g(0). We have

(8.138) ∂t∇̄kgij = ∇̄kġij = ∇kEij + (Γ̄− Γ) ∗ Eij

The difference between two connections is

(8.139) Γk
ij − Γ̄k

ij =
1

2
gkp(−∇̄pgij + ∇̄igpj + ∇̄jgpi),

and hence

(8.140) ∂t∇̄g = ∇̄g ∗ E +O(1).

Therefore

(8.141) ∂t|∇̄g|2ḡ ≤ C|∇̄g|2ḡ + C|∇̄g|ĝ

and hence |∇̄g|ḡ ≤ C(T ) on [0, T ). Higher order derivatives are similar:
indeed, let k ≥ 1 and suppose that |∇̄�g|ḡ ≤ C for all � ≤ k. Then a similar
calculation gives

(8.142) ∂t∇̄k+1g = ∇̄k+1g ∗E +O(1),

from which it follows that

(8.143) |∇̄k+1g|ḡ ≤ C(T ).
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Therefore, the evolving metrics gij and all their derivatives are bounded on

[0, T ). Since we showed g(t) is Cauchy, it follows that g(t) → g(T ) smoothly

as t → T . A similar argument shows that u(t) → u(T ).

This produces a limiting pair (g(T ), u(T )). The linear ODE for ϕ given

in Theorem 4 has coefficients which only depend on g̃ij = eugij , thus these

coefficients are smoothly defined on [0, T ]. It follows that ϕ(t) has a smooth
solution on [0, T ]. By the non-degeneracy estimate (7.25), we have that ϕ(T )

is closed, primitive, and in the positive cone (−λϕ) > 0. By the short-time

existence theorem, the flow can be extended to [0, T +ε) for some ε > 0. The

discussion here also implies that |∇αϕ| ≤ C on [0, T ) for any multi-index α.
This completes the proof of Theorem 7.

9. Examples and applications

In this section, we discuss a range of examples and applications of the Type
IIA flow with no sources.

9.1. The stationary points: proof of Theorem 8

We begin with the proof of Theorem 8. First, we note that −dΛ(|ϕ|2ϕ̂) =

Λd(|ϕ|2ϕ̂) = ∂−(|ϕ|2ϕ̂), where ∂− is a first order differential operator intro-

duced in [50] such that

d(|ϕ|2ϕ̂) = ω ∧ ∂−(|ϕ|2ϕ̂)

and ∂−(|ϕ|2ϕ̂) is a primitive 2-form. Therefore the stationary point equation

dΛd(|ϕ|2 � ϕ) = 0 can be expressed as d∂−(|ϕ|2ϕ̂) = 0. In particular,

(9.1) 0 =

∫
M

d∂−(|ϕ|2ϕ̂) ∧ ϕ̂ = −
∫
M

∂−(|ϕ|2ϕ̂) ∧ dϕ̂.

Combining (6.40), (6.30), and β = 0 implies dϕ̂ = α∧ ϕ̂+ T̃� ϕ̂. By (6.43),
we have T̃ = N − 1

4(d
cω̃ +M(dcω̃)). By Lemma 15, we see that

(9.2) dϕ̂ = N � ϕ̂

which is a (2,2)-form (by the argument in the proof of Lemma 14). Therefore

(9.3) d(|ϕ|2ϕ̂) = |ϕ|2(−α ∧ ϕ̂+N � ϕ̂),
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where the first term is a (3, 1) + (1, 3)-form, the second is a (2, 2)-form, and
α = −d|ϕ|2. It follows that

∂−ϕ̂ = Λ(N � ϕ̂),

∂−(|ϕ|2ϕ̂) = |ϕ|2(−Λ(α ∧ ϕ̂) + ∂−ϕ̂),

where Λ(N � ϕ̂) is a (1, 1)-form and Λ(α ∧ ϕ̂) is a (2, 0) + (0, 2)-form. Thus
(9.1) becomes

0 =

∫
M

|ϕ|2(−Λ(α ∧ ϕ̂) + ∂−ϕ̂) ∧ ω ∧ ∂−ϕ̂ =

∫
M

|ϕ|2ω ∧ ∂−ϕ̂ ∧ ∂−ϕ̂

= −
∫
M

|ϕ|2|∂−ϕ̂|2
ω3

3!
.(9.4)

Consequently we conclude that ∂−ϕ̂ = 0 and dϕ̂ = ω ∧ ∂−ϕ̂ = 0. In view of
Lemma 7, the almost-complex structure J is integrable and the form ϕ is
harmonic. Now we use the integration by parts argument again to get

0 =

∫
M

d∂−(|ϕ|2ϕ̂) ∧ |ϕ|2ϕ̂ = −
∫
M

ω ∧ ∂−(|ϕ|2ϕ̂) ∧ ∂−(|ϕ|2ϕ̂)

= −
∫
M

|ϕ|4|Λ(α ∧ ϕ̂)|2ω
3

3!
.

So we deduce that Λ(α ∧ ϕ̂) = 0, hence α ∧ ϕ̂ = 0 and α = 0, so |ϕ| is a
constant. Q.E.D.

9.2. Integrable almost-complex structures: proof of Theorem 9

Next, we give the proof of Theorem 9. The following identity for any smooth
function f and any differential form is well-known:

d†(fμ) = fd†μ− ι∇fμ.(9.5)

Indeed, it can be quickly verified by using d†μ = −ιk(∇kμ).

Back to the proof of Theorem 9, we apply Theorem 1 and the identity
(9.5) to rewrite the Type IIA flow without sources as

∂tϕ = −d(|ϕ|2d†ϕ− ι∇|ϕ|2ϕ) + 2d(|ϕ|2N † · ϕ)
= L∇|ϕ|2ϕ− d(|ϕ|2d†ϕ) + 2d(|ϕ|2N † · ϕ).(9.6)
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On any orbit of the diffeomorphism group which contains a form ϕ with an
integrable almost-complex structure, we have N = 0 and, in view of Lemma
7, d†ϕ = 0. Thus the flow reduces to

∂tϕ = L∇|ϕ|2ϕ(9.7)

and a solution is given by the reparametrizations of ϕ along the time-
dependent vector field ∇|ϕ|2. By the uniqueness part of Theorem 2, this
is the unique solution.

We now re-express the Type IIA flow in an equivalent formulation, but
with a fixed complex structure. For this, let ft be the flow generated by the
time-dependent vector field −∇|ϕ|2 in the sense that

(9.8)
d

dt
ft(x) = −∇|ϕ|2(t, x)

for any x ∈ X and time t. It follows that

d

dt
(f∗

t ϕt) = f∗
t ∂tϕt + f∗

t L−∇|ϕ|2ϕt = 0,

hence f∗
t ϕt ≡ ϕ0 is a constant 3-form on X. We see immediately that if we

reparametrize M by the time-dependent diffeomorphism ft, then along the
flow, the 3-form f∗

t ϕt and hence the complex structure f∗
t Jt are fixed. In

this new gauge, the Kähler metric ωt = f∗
t ω evolves by the equation

(9.9) ∂tωt = f∗
t L−∇|ϕ|2ω.

Notice that

L−∇|ϕ|2ω = −dι∇|ϕ|2ω = dJd|ϕ|2 = −ddc|ϕ|2(9.10)

so the flow of ωt can be written as

(9.11) ∂tωt = −ddc|ϕ|2ωt
.

We remark that this equation can be viewed as a T-dual of the Anomaly flow
for conformally Kähler data. In that case, we are given a fixed holomorphic
(3, 0) form Ω̌ on a Calabi-Yau threefold and the evolving Kähler metrics ω̌t

satisfy (see equation (4.10) in [20])

(9.12) ∂tω̌t = ddc|Ω̌|−2
ω̌t

.
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We see that Ř = |Ω̌|−2
ω̌ is exchanged with 1/R = |ϕ|2ω.

This type of duality was observed in [20] on semi-flat Calabi-Yau three-

folds. To connect with the work there, we can consider the conformally

changed metric ηt = |ϕ|−2
ωt

ωt. It follows that |ϕ|ηt
= |ϕ|4ωt

, hence ηt satisfies

the conformally balanced equation d(|ϕ|ηt
η2t ) = 0 since

|ϕ|ηt
η2t = |ϕ|4ωt

(|ϕ|−2
ωt

ωt)
2 = ω2

t

is closed. Moreover its evolution equation is

∂t(|ϕ|ηt
η2t ) = ∂t(ω

2
t ) = 2ωt ∧ ∂tωt

= 2ωt ∧ (−ddc|ϕ|2ωt
) = −4i∂∂̄(|ϕ|2ωt

ωt)

= −4i∂∂̄(|ϕ|ηt
ηt),(9.13)

which is exactly (up to a positive constant) the dual Anomaly flow in com-

plex dimension 3 firstly introduced in [20]. Since we are in the conformally

Kähler case, by the results of [20], we know the flow (9.11) is equivalent

to the inverse MA-flow introduced by Cao-Keller [9] and Collins-Hisamoto-

Takahashi [10], which converges to the unique Ricci-flat Kähler metric in

the cohomology class [ω0].

9.3. Symplectic manifolds with non-integrable almost complex

structures

Next, we work out the Type IIA flow on some model symplectic manifolds

with non-integrable almost-complex structures, more specifically tori, sym-

plectic half-flat manifolds, and nilmanifolds.

9.3.1. The Type IIA flow on a torus. Consider the 6-torus M =

(R/Z)6, with coordinates {xj}6j=1 and the standard symplectic form ω =

dx12+dx34+dx56. Let α, β, γ, δ : R/Z → R be smooth functions depending

only on the variable x1. Consider

ϕ = eαdx135 − eβdx146 − dx245 − dx236 + γdx136 + δdx145.(9.14)

Clearly ϕ is closed and primitive. It is straightforward to find out that

|ϕ|2 = 2
√

4eα+β − (γ − δ)2
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and

ϕ̂ =
2

|ϕ|2 (−eα(γ + δ)dx135 + (2eα+β − γ(γ − δ))dx136

+(2eα+β + δ(γ − δ))dx145 + eβ(γ + δ)dx146 + 2eαdx235

+(γ − δ)dx236 − (γ − δ)dx245 − 2eβdx246).

Consequently we see that

d(|ϕ|2ϕ̂) = 2dx12 ∧ (2(eα)′dx35 + (γ − δ)′(dx36 − dx45)− 2(eβ)′dx46),

Λd(|ϕ|2ϕ̂) = 2(2(eα)′dx35 + (γ − δ)′(dx36 − dx45)− 2(eβ)′dx46),

dΛd(|ϕ|2ϕ̂) = 4(eα)′′dx135 + 2(γ − δ)′′(dx136 − dx145)− 4(eβ)′′dx146.

So the Type IIA flow in this case reduces to

∂t(e
α) = 4(eα)′′, ∂t(e

β) = 4(eβ)′′,(9.15)

∂tγ = 2(γ − δ)′′, ∂tδ = −2(γ − δ)′′.(9.16)

For calculations, it is convenient to introduce a = 2eα, b = 2eβ, c = γ−δ, d =

γ + δ and

|ϕ|2 = 2
√

4eα+β − (γ − δ)2 = 2
√

ab− c2.

It follows that d is a constant along the flow, while a, b, c satisfy the standard

heat equation:

∂t

[
a c
c b

]
= 4

[
a c
c b

]′′
.(9.17)

Obviously the matrix

[
a c
c b

]
converges to a constant matrix as t goes to

infinity. Moreover along the flow the positive-definiteness is preserved and

the limiting matrix is also positive definite. Thus ϕt converges to a positive

primitive harmonic form.

Now let us analyze the behavior of |N |2 along the flow. The easiest way

to find |N |2 is to use (7.28), which says that

(9.18) |N |2 = e−u∂tu− (Δu+ 2|du|2).
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The key is to compute Δu. Observe that the metric g can be expressed as

(9.19) g = e−u

⎡
⎢⎢⎢⎢⎢⎢⎣

ab+ d2 − c2 −2d
−2d 4

2a −2c
−2c 2b

2a 2c
2c 2b

⎤
⎥⎥⎥⎥⎥⎥⎦

As Δu = gij(uij−Γk
ijuk) = g11u′′−gijΓ1

iju
′, and the Christoffel symbol term

can be simplified to

gijΓ1
ij =

1

2
gijg1l(∂igjl + ∂jgil − ∂lgij)

= g1jg1lg′jl −
1

2
g11gijg′ij

=
1

2
(g11)2g′11 + g11g12g′12 + ((g12)2 − 1

2
g11g22)g′22

−g11(g33g′33 + 2g34g′34 + g44g′44)

= 8e−3u(4u′(ab− c2)− (a′b+ ab′ − 2cc′))

= 8e−3uv′,(9.20)

where v = ab− c2 and u = log 2 +
1

2
log v. Therefore

(9.21) Δu = 4e−uu′′ − 8e−3uu′v′ = 4e−u(u′′ − (u′)2).

Consequently

|N |2 = e−u∂tu− (Δu+ 2|du|2)

= 2e−ua
′′b+ ab′′ − 2cc′′

v
− 4e−u(u′′ + (u′)2)

= 16e−5u

(
ab

(
2c′ − cb′

b
− ca′

a

)2

+
ab− c2

ab
(ab′ − a′b)2

)
.(9.22)

This calculation suggests that J is integrable if and only if a, b, c are pro-
portional to each other. In summary we have proved

Proposition 8. Under our ansatze (9.14), the Type IIA flow on (R/Z)6

reduces to the standard heat equation on R/Z. If initially ϕ is of the form
(9.14) whose associated almost complex structure is not integrable, the Type
IIA flow still converges to Kähler Calabi-Yau geometry.
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9.3.2. The Type IIA flow on homogeneous symplectic half-flat
manifolds. Because of Theorem 8, the convergence of the Type IIA flow
is only possible when the underlying manifold is Kähler. We shall see in this
subsection and the next that the Type IIA flow can be used to find optimal
almost complex structures compatible with a given symplectic form, even
when the underlying manifold does not admit any Kähler structure.

In order to run the Type IIA flow, we first need compact symplectic
6-manifolds with Type IIA structures. A special case of Type IIA structures
can be found on the so-called symplectic half-flat manifolds (firstly intro-
duced by de Bartholomeis [12], also known as special generalized Calabi-Yau
manifolds [13]). In our terminology, a symplectic half-flat manifold is sim-
ply a symplectic manifold with Type IIA structure (M,ω, ϕ) and the extra
condition that |ϕ|2 is constant. Many compact symplectic half-flat mani-
folds can be constructed as quotients of Lie groups by co-compact lattices,
where all the structures are homogeneous under the natural group action.
Therefore we shall call symplectic half-flat manifolds constructed in this way
homogeneous. It is clear that for homogeneous symplectic half-flat manifolds,
their geometry up to covering is fully characterized by the underlying Lie
algebra, or equivalently the exterior differential system defined by invariant
1-forms. Moreover, homogeneous symplectic half-flat structures have been
fully classified by [11] and [22] when the Lie group is nilpotent or solvable
respectively.

It is clear that if we run the Type IIA flow on a homogeneous sym-
plectic half-flat manifold with homogeneous initial data, the homogeneity
is preserved and the Type IIA flow reduces to a polynomial ODE system.
Moreover, in the homogeneous setting, the function u and |N |2 are constants
on the manifold, therefore we have the following monotonicity formulas

Proposition 9. Along the Type IIA flow on homogeneous symplectic half-
flat manifolds, the following monotonicity formulae hold

∂tu = eu|N |2 ≥ 0,(9.23)

∂t|N |2 = −2eu|(R−J)ij |2 ≤ 0.(9.24)

Proof: The first formula follows directly from (7.28). For the second
formula, we note that Blair-Ianus [4] proved that

∂t

∫
M

|N |2ω
3

3!
=

∫
M
(∂tgij , (R

−J)ij)
ω3

3!
.(9.25)
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In our case u is a constant, hence (7.27) becomes ∂tgij = −2eu(R−J)ij , and

(9.25) simplifies to

∂t

∫
M

|N |2ω
3

3!
= −2

∫
M

eu|(R−J)ij |2
ω3

3!
.(9.26)

As everything is homogeneous, so all the scalars must be constant, conse-

quently (9.26) still holds without integration, and (9.24) is proved. Q.E.D.

Corollary 2. Let (M,ω) be a compact 6-dimensional homogeneous symplec-

tic manifold. If (M,ω) admits a homogeneous symplectic half-flat structure

(M,ω, ϕ0) with which the Type IIA flow exists for all time, then there exist

homogeneous almost complex structures compatible with ω and with arbitrary

small Nijenhuis tensor.

Proof of the Corollary: We run the Type IIA flow with initial data ϕ0.

By monotonicity formulas above, we know that

d

dt
e−u = −|N |2 ≤ 0,(9.27)

d2

dt2
e−u = 2eu|(R−J)ij |2 ≥ 0.(9.28)

So e−u is a monotone non-increasing and convex function with lower bound.

If the flow exists for all time, then we must have

lim
t→∞

|N |2 = − lim
t→∞

d

dt
e−u = 0,

as was to be shown. Q.E.D.

The Type IIA flow on a nilmanifold. Now let us consider some explicit

examples.

Consider the homogeneous symplectic half-flat structure in [13, Example

5.2], where the Lie algebra of the nilpotent Lie group is characterized by

invariant 1-forms {e1, . . . , e6} satisfying

de1 = de2 = de3 = de5 = 0,

de4 = e15, de6 = e13.
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Clearly ω = e12 + e34 + e56 defines an invariant symplectic structure. More-
over, this nilpotent Lie group admits co-compact lattices so all the construc-
tions descend to compact nilmanifolds. Consider the ansatze

(9.29) ϕ = ϕa,b = (1 + a)e135 − e146 − e245 − e236 + b(e134 − e156),

it is straightforward to check that ϕa,b is primitive and closed for any a, b.

The positivity condition for ϕa,b is that
1

16
|ϕ|4 = 1+a−b2 > 0. By straight-

forward calculations, we get

ϕ̂ = 4|ϕ|−2((1 + a− b2)e1∧(e36 + e45) + e2 ∧ (be34 + (1 + a)e35−e46−be56)).

It follows that

d(|ϕ|2ϕ̂) = 4e12(e34 + 2be35 − e56),

Λd(|ϕ|2ϕ̂) = 4(e34 + 2be35 − e56), dΛd(|ϕ|2ϕ̂) = 8e135.

Therefore under our ansatze the Type IIA flow reduces to the following ODE
system

ȧ(t) = 8, ḃ(t) = 0.

Hence the unique solution to the Type IIA flow is

(9.30) ϕ(t) = (1 + a0 + 8t)e135 − e146 − e245 − e236 + b0(e
134 − e156),

which exists for all time t ≥ 0.

One can easily verify that limt→∞ Jt does not exist and

|N |2 = (1 + a− b2)−3/2 = (1 + a0 + 8t− b20)
−3/2(9.31)

is decreasing to zero as t → ∞. This is an explicit example where Corollary
2 applies.

The Type IIA flow on a solvmanifold. Consider the symplectic half-
flat structure on the solvmanifold M constructed by Tomassini and Vezzoni
in [46, Theorem 3.5]. The geometry of this solvmanifold is characterized by
invariant 1-forms {ej}6j=1 satisfying

de1 = −λe15, de2 = λe25, de3 = −λe36,
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de4 = λe46, de5 = 0, de6 = 0,

where λ = log
3 +

√
5

2
. One can easily check that ω = e12 + e34 + e56 is an

invariant symplectic form on M . A particular symplectic half-flat structure

on M takes the form

ϕ =

√
2

2
(e135 + e136 + e145 − e146 + e235 − e236 − e245 − e246)

=

√
2

2λ
d(e13 + e14 − e23 + e24),

so [ϕ] = 0 ∈ H3(M ;R).

Consider the ansatze

(9.32) ϕ = α(e135 + e136) + β(e145 − e146) + γ(e235 − e236)− δ(e245 + e246).

A direct calculation gives

|ϕ|2ϕ̂ = 8(−αβγ(e135 − e136) + αβδ(e145 + e146)

+αγδ(e235 + e236) + βγδ(e245 − e246)).

The nondegenerate condition is that |ϕ|4 = 64αβγδ > 0. It follows that

d(|ϕ|2ϕ̂) = 16λ(αβγe1356 + αβδe1456 − αγδe2356 + βγδe2456),

Λd(|ϕ|2ϕ̂) = 16λ(αβγe13 + αβδe14 − αγδe23 + βγδe24),

dΛd(|ϕ|2ϕ̂) = 16λ2(αβγ(e135 + e136) + αβδ(e145 − e146)

+αγδ(e235 − e236)− βγδ(e245 + e246)).

After time rescaling, the Type IIA flow under our ansatze reduces to

∂tα = αβγ, ∂tβ = αβδ,

∂tγ = αγδ, ∂tδ = βγδ.

It is easy to see that there exist time-independent nonzero constants C1 and

C2 such that α(t) = C1δ(t) and β(t) = C2γ(t). The ODE system simplifies

to

∂tγ = C1γδ
2, ∂tδ = C2γ

2δ.
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Integrate these equations we know there is a constant C such that C2γ
2 −

C1δ
2 = C, hence

∂tγ = γ(C2γ
2 − C).

One can solve explicitly

γ2(t) =
Cγ20

C2γ20(1− e2Ct) + Ce2Ct
, δ2(t) =

Cδ20e
2Ct

C1δ20 + C − C1δ20e
2Ct

.(9.33)

Assuming ϕ is initially positive, we know that C1, C2 are positive constants
and γ0, δ0 are initial values of γ and δ satisfying βγ−αδ = C2γ

2
0−C1δ

2
0 = C.

When C = 0, the above formula should be understood as

γ2 =
γ20

1− 2C2γ20t
, δ2 =

δ20
1− 2C1δ20t

.(9.34)

From the above explicit formulas, we can deduce that, no matter what C
is, the flow has finite time singularity. A more symmetric expression for the
solution (without time rescaling) is

α(t) = α0

√
(β0γ0 − α0δ0)e32λ

2β0γ0t

β0γ0e32λ
2α0δ0t − α0δ0e32λ

2β0γ0t
,

β(t) = β0

√
(β0γ0 − α0δ0)e32λ

2α0δ0t

β0γ0e32λ
2α0δ0t − α0δ0e32λ

2β0γ0t
,

γ(t) = γ0

√
(β0γ0 − α0δ0)e32λ

2α0δ0t

β0γ0e32λ
2α0δ0t − α0δ0e32λ

2β0γ0t
,

δ(t) = δ0

√
(β0γ0 − α0δ0)e32λ

2β0γ0t

β0γ0e32λ
2α0δ0t − α0δ0e32λ

2β0γ0t
,

and in the critical case when α0δ0 = β0γ0 = S > 0, one has

α(t) =
α0√

1− 32λ2St
, β(t) =

β0√
1− 32λ2St

,

γ(t) =
γ0√

1− 32λ2St
, δ(t) =

δ0√
1− 32λ2St

.

From these explicit expressions, we see that the maximal existence time T
is given by

T =
1

32λ2

log (α0δ0)− log (β0γ0)

α0δ0 − β0γ0
.(9.35)
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All of α, β, γ, δ tend to infinity as t → T , therefore |ϕ|2 = 8(αβγδ)1/2 → ∞.

To compute |N |2, the quickest way is to use (9.23):

|N |2 = e−u∂tu = −∂te
−u =

(αβγδ)−3/2

16
∂t(αβγδ) = 2λ2 αδ + βγ

(αβγδ)1/2

=
2λ2

(α0β0γ0δ0)1/2

(
α0δ0e

16λ2(β0γ0−α0δ0)t + β0γ0e
−16λ2(β0γ0−α0δ0)t

)
≥ 4λ2.

Now let us analyze the behavior of ϕ in detail. We shall see that the Type

IIA flow naturally leads us to optimal almost-complex structures compatible

with ω.

1. No matter what the integral constant C = β0γ0−α0δ0 is, the flow of ϕ

blows up when t → T , and the same is true for the metric g̃. However

the expressions of g, J , and N extend smoothly to t = T . In fact, the

limit |ϕ|−1ϕ as t → T exists.

2. In the critical case C = β0γ0 − α0δ0 = 0, the flow of ϕ (as well as g̃)

is a self-expander in the sense that

(9.36) ϕ(t) =
ϕ0√

1− 32λ2St

for a positive constant S determined by initial data. In this case, all

of g, J and N are stationary with |N |2 = 4λ2. In fact such J provide

examples of harmonic almost-complex structures in the sense of Blair-

Ianus [4], namely almost-complex structures compatible with ω and

satisfying

(9.37) (R−J)ij =
1

2
(Rij −RJi,Jj) = 0.

These harmonic almost-complex structures are critical points of the

energy functional studied by Blair-Ianus [4] and Lê-Wang [33].

3. When the integral constant C = β0γ0 − α0δ0 is not zero, all of g, J

and N are evolving. When t approaches T , the limit limt→T J(t) exists

and is a harmonic almost-complex structure, which is also a minimizer

of |N |2 among all almost complex structures associated to our ansatze

(9.32).
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