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Geometric flows for the Type ITA string

TeENG FEI, DUONG H. PHONG*,
SEBASTIEN PICARD, AND XIANGWEN ZHANG'

A geometric flow on 6-dimensional symplectic manifolds is intro-
duced which is motivated by supersymmetric compactifications of
the Type ITA string. The underlying structure turns out to be
SU(3) holonomy, but with respect to the projected Levi-Civita
connection of an almost-Hermitian structure. The short-time ex-
istence is established, and new identities for the Nijenhuis tensor
are found which are crucial for Shi-type estimates. The integrable
case can be completely solved, giving an alternative proof of Yau'’s
theorem on Ricci-flat Kédhler metrics. In the non-integrable case,
models are worked out which suggest that the flow should lead
to optimal almost-complex structures compatible with the given
symplectic form.

1. Introduction

There has been a remarkable confluence in recent years between high energy
physics, more specifically unified string theories, and special geometry. The
earliest and particularly influential development was the 1985 recognition by
Candelas, Horowitz, Strominger, and Witten [7] of Calabi-Yau manifolds as
supersymmetric compactifications of the heterotic string. The importance
of geometry in physical laws at their most fundamental level has of course
been long recognized with electromagnetism, general relativity, and gauge
theories. The key new feature here is the requirement that the 6-dimensional
internal manifold have a special geometric structure, in this case a complex
structure together with a holomorphic section of the canonical bundle. This
requirement is equivalent to the manifold having SU(3) holonomy, and can
be traced back to supersymmetry. Since then, the class of Calabi-Yau solu-
tions has been enlarged in many directions. On one hand, the Calabi-Yau
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condition can be extended to the Hull-Strominger system for conformally
balanced metrics [32, 44, 23, 24, 40, 41, 25, 21, 17]. On the other hand, it
emerged from the mid 1990’s that string theories, which are 10-dimensional
and of which there are five, can be unified themselves into another the-
ory, namely M Theory, one of whose limits is 11-dimensional supergravity
[31, 48]. The compactification of an 11-dimensional space-time to a more
familiar 4-dimensional space time results in a 7-dimensional internal space,
and the role of Calabi-Yau manifolds is assumed in this case by manifolds
with Gg or Spin(7) holonomy [1, 28].

While the full string theories have been conjectured to merge ultimately
into a single M Theory, this requires highly non-trivial dualities, and their
low-energy approximations and geometric settings can be quite different.
A common feature of their supersymmetric compactifications is a metric sat-
isfying a curvature condition as well as a cohomological condition. In Kéhler
geometry, these are characteristic features of the notion of canonical metric,
of which the Calabi-Yau condition is the prime example. Thus the general
case can be viewed as a search for canonical metrics in non-Kéhler geom-
etry. The compactifications discussed above arise from three of the string
theories, which are the Type I theory and the two heterotic string theories.
The other two string theories are the Type IIA and the Type IIB theories.
There is an immense literature on their supersymmetric compactifications,
but some attractive mathematical formulations can be found in Grana et
al. [27] and Tomasiello [45], and the study of the most basic examples was
begun in Tseng and Yau [50, 51, 52]. The geometric realm for the Type IIB
equation is that of complex geometry, albeit non-Kéahler, and we described
a geometric flow approach to it in [19]. The main goal of the present paper
is to present a geometric flow approach to the Type ITA equation.

The Type ITA equation is of particular interest, because of all string the-
ory compactifications, its geometric setting is unique in being that of sym-
plectic geometry instead of complex geometry. More specifically, let M be a
compact 6-dimensional manifold, equipped with a symplectic form w, that
is, a closed non-degenerate 2-form. Recall that on any oriented 6-manifold,
Hitchin [30] had shown how to associate to a non-degenerate 3-form ¢ an
almost-complex structure J,. In the Type IIA equation, a symplectic form
w is given, so it makes sense to consider the condition of primitiveness for ¢
with respect to w. Explicitly, this is the condition Ap = 0, where

(1.1) A AR — AR 2 (M)
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is the usual Hodge operator of contracting with w. As shown in §4.1 be-
low, the symplectic form w is invariant with respect to the almost-complex
structure J, when ¢ is primitive. We obtain then a Hermitian form

(1.2) 9o (X,Y) =w(X, YY)

which becomes a Hermitian metric under the open condition that it be
strictly positive. Thus we obtain an almost-Kéhler 3-fold (M, w, J,,, g,) with
the additional requirement that ¢ be primitive and J,, arise from ¢ by the
above construction. When ¢ is also closed, we shall refer to such a structure
as a “Type ITA geometry”.

Let pa be now the Poincaré dual of a given finite linear combination
of special Lagrangians calibrated by ¢. Then the Type ITA equation is the
following system of equations for a real-valued primitive 3-form ¢

(1.3) dAd(|p|* *¢) = pa, do =0, g, > 0.

Here « is the Hodge star operator and || the norm of ¢ with respect to the
metric g.

As in the case of the other string theories, the Type IIA equations as
written in (1.3) involve, besides the open condition g, > 0, a curvature-
type equation and the cohomological constraint dp = 0. In order to enforce
this cohomological constraint without invoking any particular Ansatz, we
introduce the following geometric flow of 3-forms ¢,

(1.4) Orp = dAd(|p]* %) — pa,

for any closed and primitive initial data g with g,, > 0. Since the right
hand side is closed, the flow preserves the closedness condition. It can also
be verified to preserve the primitiveness property of ¢. Thus it is a flow of
Type ITA geometries, whose stationary points would give solutions of the
Type ITA equation without recourse to any Ansatz. We shall refer to (1.4)
as the Type ITA flow. The idea of preserving the closedness of a form by a
flow was introduced by Bryant [5] in the Laplacian flow for Gy structures.
More recently, it was applied in [38, 39, 19, 18, 37] to the construction of
geometric flows which preserve the conformally balanced condition in the
Hull-Strominger system and the Type IIB equation. The geometric flow
approach was particularly appropriate there, as it allowed to bypass the
absence of a 9-lemma in non-Kihler geometry.
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The main goal of this paper is to start an in-depth study of the Type
ITA flow. Except for the original formulation, we shall restrict to the most
basic source-free case pg = 0. Despite its very simple formulation (1.4), the
flow turns out to be highly non-trivial and to present many new difficulties
specific to symplectic geometry:

e The first is that the Type ITA equation is not elliptic. This difficulty
was well-recognized in the works of Tseng and Yau [52] and Tseng and Wang
[49], and led them to consider instead some 4th-order equations. However,
4th-order equations are complicated, and the closedness constraint on the 3-
form ¢ would have to be imposed separately. Thus it appears still preferable
to confront the specific difficulties of the Type IIA flow. They originate in
any case from the geometric assumption of a given symplectic structure,
which is fundamental in symplectic geometry.

e The second may be appreciated by comparing the flow of almost-
complex structures J, in the Type IIA flow with the gradient flow of the
Blair-Tanus functional on a symplectic manifold. The Blair-Ianus functional
is the L? norm of the Nijenhuis tensor [4]. Its gradient flow was called the
anti-complexified Ricci flow by Lé and Wang [33], who also established its
short-time existence. However, this flow has proved to be difficult to use,
because neither the corresponding Nijenhuis tensor nor curvature evolves
there by parabolic equations. For the Type ITA flow to be viable, it has to
overcome such difficulties.

e The third difficulty is more technical, but still serious. The Type ITA
flow of 3-forms ¢ induces a flow of metrics g, which will be one of the
main tasks of this paper to determine explicitly. The simplest case is when
the initial almost-complex structure is integrable. It turns out that the Type
ITA flow preserves the integrability condition, and becomes equivalent to the
dual Anomaly flow introduced in [20]. Using the techniques there as well as
n [42, 43], it gives a new proof of Yau’s [53] celebrated theorem on the
existence of Kéhler Ricci-flat metrics. Thus the difficult case is the case of
non-integrable almost-complex structures. There we shall see that the flow
of metrics in the Type IIA flow is conformally equivalent to a perturbation
of the Ricci flow by first-order terms involving the Nijenhuis tensor. In this
respect, it is analogous to Bryant’s Go Laplacian flow, which was shown
relatively recently by Lotay and Wei [35] to be a perturbation of the Ricci
flow by first-order terms involving the torsion tensor. However, the long-
time behavior of the G flow remains at this moment a subject of extensive
research [2, 34].
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Despite these difficulties, we shall find that the Type IIA flow is par-
ticularly rich, reflecting its unique position at the crossroads of symplectic
geometry, complex geometry, and unified string theories. This rich structure
will be much in evidence in the results described below. Furthermore, ex-
amples suggest that even when the flow develops singularities, it may be
possible in some cases to continue the flow of the Nijenhuis tensor. Thus,
besides the original motivation from string theory and interest in its station-
ary points, the flow should also be useful in finding optimal almost-complex
structures.

2. Main results

We describe now our main results. Throughout this section, M is a compact
6-dimensional manifold equipped with a symplectic form w. Given a prim-
itive 3-form ¢, we denote by J, the almost-complex structure defined by
Hitchin [30], and by g, the corresponding Hermitian form, which we assume
is a metric.

2.1. A Laplacian flow formulation

Our first result is an alternative formulation of the Type IIA flow:

Theorem 1. The Type IIA flow defined in (1.4) can be rewritten as the
following flow

(2.1) O = —dd' (|o*0) + 2d(|o|°NT - ¢) — pa

where df is the adjoint of the operator d with respect to the metric 9o, and
Nt is the operator from A3(M) to A2(M) defined by

(2.2) (NT- @) = N* 2 0uir — NP uin

Here N™.g is the Nijenhuis tensor of J,, and indices are raised using the
metric gy .

We note that, up to the factor of |p|?, the first terms on the right-hand
side of the Type IIA flow are the same as in the standard heat equation. Up
to sign, they are also reminiscent of Bryant’s G2 Laplacian flow. However,
the terms involving the Nijenhuis tensor are also of leading order and account
for a wide range of different phenomena.

Henceforth, we assume that the source p4 is 0, unless stated explicitly
otherwise.
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2.2. The short-time existence of the Type ITA flow

When a flow is not strictly parabolic, even its short-time existence can be a
difficult question. Two powerful tools developed over the years for this issue
have been the reparametrization method of DeTurck [14] and the Hamilton-
Nash-Moser theorem [29], a combination of which has been applied success-
fully to many important flows, such as the Ricci flow [29], the G2 Laplacian
flow [5, 6], and the anti-complexified Ricci flow [33]. The fundamental new
difficulty in the Type ITA flow is that there is a given symplectic form w. It
is not hard to see that reparametrizations by symplectomorphisms do not
improve the parabolicity of the flow, while more general reparametrizations
lead to a coupled flow of both metrics and symplectic forms. Thus a first
major task in this paper is to establish the following theorem:

Theorem 2. Let (M,w) be a compact 6-dimensional symplectic manifold.
Then for any wg which is a smooth positive, primitive, and closed 3-form,
the source-free Type IIA flow (1.4) with initial value po admits a unique and
smooth solution on some time interval [0,T) with T > 0. Furthermore, ¢
continues to be positive, primitive and closed at all times.

While the theorem deals only with the short-time existence of the flow,
the proof requires a rather deep probe of the structure of the flow and several
new elements which are also useful elsewhere:

The first element is the behavior of the coupled flows mentioned above.
It turns out that these coupled flows admit natural parabolic regulariza-
tions, which reduce to the desired flow for primitiveness initial data. While
primitiveness was a requirement in the solution ¢ of the Type ITA equation,
it may not have been anticipated that it would play such a central role for
the very existence of the flow.

The second feature permeates the rest of the paper, and is the underlying
Type ITA geometry. In the present context, it allows us to recapture the flow
of the forms ¢ from the flow of the metrics g, = |¢|%gy,, even though, point-
wise, there is an ambiguity in determining ¢ from g,. Since we shall have
to analyze in detail the flow of metrics in order to obtain Shi-type estimates
and long-time existence criteria, it is simplest to deduce the uniqueness part
of Theorem 2 from the corresponding uniqueness theorems for the flow of
metrics. The flow of g, = |p| 2g, turns out to be a perturbation of the
Ricci flow by terms of first order. In general, integrability operators are not
stable under first-order terms perturbations. However, the underlying Type
ITA geometry is what allows us to modify the Bianchi operator used by
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Hamilton [29] for the Ricci flow into an integrability operator for the flow of
Jyp. From there we can establish the uniqueness for g,, and from there the
uniqueness in Theorem 2.

2.3. Type ITA geometry

We have stressed that the underlying structure for the Type ITA flow is Type
ITIA geometry, as defined in the Introduction, and which is more special than
just a symplectic structure on a 6-manifold. The holonomy, curvature, and
Nijenhuis tensor in Type ITA geometry have rather special properties, which
play an important role in every aspect of the Type ITA flow. We list here
some properties which are applied repeatedly in the paper and are the easiest
to describe, but we expect others to emerge and prove their worth in time:

Theorem 3. Let (M,w, ) be a Type IIA geometry, and g, the correspond-
ing metric. Set

(2-3) 9y = "P|29<p-

Let ® and © be the projected Levi-Civita connections of g, and g, respec-
tively, Q = ¢ +iJyp, and |Qz, the norm of Q with respect to g,. Then

(a) @(ﬁ) = 0. Thus (M, g,) has holonomy in SU(3), but with respect
to the connection .

(b) %10 =0, so Q is formally holomorphic, even when J, is not inte-
grable.

(c) The Nijenhuis tensor has only 6 independent components.

2.4. The flow of metrics in the Type ITA flow

Next, we can describe the flow of the 3-forms ¢ and metrics g, in terms of
curvature:

Theorem 4. Let ¢ be a smooth positive, primitive and closed 3-form evolv-
ing by the source-free Type ITA flow. Set u = log |o|?.
(a) The flow of ¢ is given by

Apiab = 62“2 Psab(Di + i) + 20510 (N* TP

cyc i,a,b

(2.4) _%‘itib + (D + ui)NStb)>7

where T is the torsion tensor of the connection 9.
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(b) The flow of g, is given by

(0do)iy = €| —2Ri; — 2(Vu)i; + 4u®(Nigj + Njai) — 4(N?)s;
(2.5) TUU; — Uit + (|du|§¢ + |N|§)(§sﬂ)ij ’

where V is the Levi-Civita connection of Jp-

Note that v is determined by g, so the right hand side of (2.5) involves
only tensors determined by g, and the equation is a self-contained flow for
J,- Furthermore, the equation for ¢ can be viewed as a linear ODE of ¢
whose coefficients are tensors determined by g,. Thus ¢ is completely de-
termined once g, is determined. As we noted before, this is to be contrasted
with the problem of having to resolve an ambiguity if we just try to re-
capture ¢ from g, at each fixed time. It may be worth observing that the
ambiguity in recapturing ¢ from g, pointwise in time is reminiscent of the
ambiguity in defining the angle in the special Lagrangian equation. It would
be interesting to investigate if the angle in the special Lagrangian equation
can be recaptured by a mechanism similar to the above Theorem 4 for the
Type IIA flow.

2.5. An integrability operator for the flow of metrics
The flow (2.5) is reminiscent of the Ricci flow, except for the term (VZu);;
which can normally be eliminated by a reparametrization. But as we noted in
the above discussion of Theorem 2, a reparametrization would create other

difficulties since it would change the given symplectic form w. To bypass this
difficulty, we make instead a conformal change

(2.6) Gij = el 7(9,)ij
and find that g;; evolves by
- 3u 5 3 k 2
Ogi; = e? [ = 2Rqj + Juiny — wpittgj + 4" (Nigj + Njgs) — 4(N2)y5
2\
7) gz-j] :

For the purpose of completing Theorem 2, we are particularly interested in
the uniqueness of this flow. For the classical Ricci flow, both the short-time

(|du|§ +|N

| =

(2.7) +
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existence and uniqueness were established by Hamilton [29] using a version
of the Nash-Moser theorem. This version, often referred to as the Hamilton-
Nash-Moser theorem, requires an integrability condition, which was provided
by the Bianchi identity in the case of the Ricci flow. More precisely, let Lg
be the operator defined by

(2.8) (Lo(9)); = 2™V Sik — 5™V Sy, € AL (M)

for any S;; € Sym?(T'M). Then Lo(—2R;;) = 0, which is the desired integra-
bility condition. Now the flow (2.7) differs from the Ricci flow by first-order
terms, so the Bianchi identity is no longer applicable as an integrability
condition. In general, it is by no means clear whether a given first-order
perturbation would still allow an integrability condition. So it is again a
manifestation of the deep structure of Type IIA geometry that this can be
done in this case:

Theorem 5. Let S;; be the symmetric 2-tensor defined by writing the flow
(2.7) as

(2.9) 8tgij = €%u<—2Rij + Sz])
(a) For any S;j € Sym?(TM), we define the operator Z by

4 .

(2.10) (2(5)); = —gujg%ksik +2uSjs — AN® ;S € AN(M)

If along the flow, the metric § arises from a Type IIA geometry, then the
following operator L is an integrability operator for the flow (2.7) in the
sense that

(2.11) Sym?(TM) > Gij — L(gij) == (Lo + Z)(e%u(_2Rij + 5i5))

is of order 1 in g;;.
(b) As a consequence, the flow exists and is unique on some interval [0,T)
with T' > 0.

We stress that this theorem is used only to establish the uniqueness of
the Type ITA flow, but not its existence. The reason is that, starting from the
flow (2.7) at an initial Type ITA geometry, it is not a priori known whether
the flow will remain a Type IIA geometry. Without this information, it is
not known whether the above integrability condition (2.11) holds.
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2.6. Formation of singularities and Shi-type estimates

In general, the fact that a low may admit short-time existence does not im-
ply that important geometric quantities will evolve by parabolic equations.
For example, that is the case for the Ricci flow [29], but it is not the case
for the anti-complexified Ricci flow [33]. The Type ITA flow shares common
features with both the Ricci flow and the anti-complexified Ricci flow, and
one may wonder which way it will behave when it comes to the evolution
of the curvature and of the Nijenhuis tensor. It is a very attractive feature
of the Type ITA flow that, in this particular respect, it is closer to the Ricci
flow. Thus we find

Theorem 6. Consider the source-free Type IIA flow with a smooth, positive,
closed, and primitive initial value @q.
(a) Then the Nijenhuis tensor evolves by

(2.12) (9 — e“A)|N|?

= ¢“| —2|VN]* + (V?u) * N> + Rm x N?
+N % VN % (N + Vu) + N* + N? « Vu + N? x (Vu)?

(b) The Riemann curvature tensor evolves by
(2.13) (9 — e“A)|Rm|?
= e"| —2|VRm|* + (VRm + V3u + V>N) x O(Rm, Vu, N)

+(VN % VN + VZu % V2u + 1) * O(Rm, Vu, N)|.

Here, * denote the bilinear pairings (not to be confused with the Hodge star
operator) and O(Vu, Rm, N) indicates terms which only depend on Vu, Rm
and N.

Other geometric quantities satisfy similar flows, which are written in
greater detail in §8. Using these flows, we can establish the following Shi-
type estimates and criteria for extending the flow:

Theorem 7. Assume that we have a solution of the source-free Type ITA
flow on some interval [0,T), and that the bound

(2.14) lu| +|Rm| < A
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holds for some finite constant A. Here Rm denotes the Riemann curvature
tensor of the metric g,. Then for any multi-index o, we have

(2.15) [V¥%| < C(A,a,T, ¢(0))

for some constant C(A, a, T, ¢(0)). In particular, the Type IIA flow can be
continued to an interval [0,T + €) for some € > 0.

It may be worth noting that, in this estimate, the estimates for the
gradient |Vu| are rather special, and make essential use of the underlying
Type IIA geometry.

2.7. The stationary points in the case of no source

In the case p4 = 0, the stationary points of the flow can be identified, once
we have developed Type ITA geometry:

Theorem 8. A primitive and closed 3-form ¢ is a stationary point of the
flow if and only if the corresponding almost-complex structure J, is inte-
grable and the norm |¢| is constant. Thus (M, J,,w) is then a Kdhler man-
ifold, and the metric g, is Kdhler and Ricci-flat.

2.8. The integrable case and the Calabi conjecture

The simplest case is that of integrable almost-complex structures, and a
complete description of the behavior of the Type ITA flow in this case is
provided by the following theorem:

Theorem 9. Assume that the initial value o of the source-free Type 1TA
flow is a positive, closed and primitive 3-form, and that the corresponding
almost-complex structure J,, =: Jy is integrable. Then the source-free Type
ITA flow ewists for all time, the almost-complex structure J, corresponding
to o remains integrable along the flow, and the flow converges in C'* to a
3-form corresponding to a Kdhler Ricci-flat metric.

In fact, the corresponding flow of metrics g, turns out to reduce by
diffeomorphisms to the dual Anomaly flow introduced in [20] which applies
in all dimensions and gives another proof of the Calabi conjecture. This
reduction of the Type ITA flow to the dual Anomaly flow, which was itself
motivated by duality considerations for the Type IIB flow, can be viewed
as a manifestation of the duality between the Type IIA and the Type IIB
theories. We also observe that there are by now several known proofs of
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the Calabi conjecture, giving each a different sequence converging to the
Kahler Ricci-flat metric: besides Yau’s original proof, there are for example
the proof by the Kéhler-Ricci flow [8], by the Anomaly flow [42], by the dual
Anomaly flow [20], by the inverse Monge-Ampere flow [9, 10], and by more
general parabolic Monge-Ampeére flows [43]. Nevertheless, new proofs from
an independent geometric set-up remain of considerable interest, as they can
detect different types of obstructions. Such a scenario is nicely illustrated in
[10].

2.9. Examples

As we can see from the induced flow of metrics, the Type ITA flow is com-
plicated. However, besides the integrable case which was solved above, there
are non-integrable, geometrically interesting cases that can also be worked
out completely and which exhibit varied and interesting behaviors. They
suggest the possibility of a general phenomenon, namely that in all cases,
the Type ITA flow leads to an optimal almost-complex structure with respect
to the given symplectic form. A first example is provided by the torus:

Theorem 10. Consider the source-free Type IIA flow on the torus R®/Z°
with the symplectic form w as described in §9.3.1. Consider the Type IIA
flow with non-integrable initial data of the form in (9.8.1). Then the flow
exists for all time, and ¢ converges ast — oo to a positive harmonic form.

A rich class of models is the special generalized Calabi-Yau (or SGCY)
manifolds introduced by de Bartholomeis [12, 13]. These are manifolds of
Type ITA geometry with the additional property that |¢| is constant. They
are also sometimes referred to as symplectic half-flat structures. A large
subclass is given by nilmanifolds, which are quotients of a nilpotent Lie
group by a co-compact lattice, and the other subclass is the solvmanifolds,
which are quotients of solvable Lie groups by a co-compact lattice. Details
on the models which we consider can be found in §9.3.2, and we shall just
state here the main conclusions.

Theorem 11. Consider the source-free Type ITA flow on the nilmanifold and
the solvmanifold described in §9.3.2, with the initial data described there.

(a) In the case of the nilmanifold, with initial data corresponding to
(9.29), the flow exists for all time, and the Nijenhuis tensor tends to 0 as
t — 0.

(b) In the case of the solvmanifold, with initial data corresponding to
(9.32), the flow develops a singularity at a finite time T. However, the limit
of J, ast — T ewists, and is a harmonic almost-complex structure.
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3. The Type ITA flow as a Laplacian flow

We start now the proof of the results described in the previous section.
For Theorem 1, we do not need any detailed information on the metric g,.
Rather, we only need the main properties of the corresponding Hermitian
connections, and how they differ from the Levi-Civita connection. These
have been worked out by Gauduchon [26], and we begin with a brief review
of the results from [26] that we require.

3.1. Gauduchon’s formulas for connections on an almost-complex
manifold

We revert momentarily to the general set-up of a smooth manifold M
equipped with a Riemannian metric g, a compatible almost-complex struc-
ture J (not necessarily integrable), and the associated symplectic form w.
This means that g is a positive definite section of the bundle of quadratic
forms on T'M, w is a 2-form on M, J is a section of the bundle of endomor-
phisms of TM satisfying J? = —Id, and g(X,Y) = w(X,JY) for any two
vector fields X,Y on M. In local coordinates 2/, with X and Y given by
their components X* and Y7, we shall write

(3.1) 9(X,Y) = g XY, w(X,Y) = wy XY (JX)F = Jk X7

In particular g;; and w;; are respectively symmetric and anti-symmetric
in 7 and j, and the fact that J is a compatible almost-complex structure
translates into

(3.2) ququ = —5kj, gij = wquqj = ququ.

Note that w is invariant under the action of J, i.e. w,-qujJig = wy;.

Clearly the structure defined by the triple (g,w,J) is determined by
any two of its components. Here we do not assume that w is closed. For our
purposes, we can assume that dw has no (3, 0)+(0, 3)-components. Obviously
this condition is satisfied when w is closed, or conformally closed, or when
J is integrable. When such a condition is satisfied, d°w = J~'dw has no
(3,0) + (0, 3)-components either.

Associated to this setup are several important tensors:

e The first is the Nijenhuis tensor IV, defined as

(3.3) N(X,Y) = i([JX, JY] = J[JX,Y] - J[X,JY] - [X,Y)).
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By construction N is a 2-form valued in 7'M . Using the metric, we can lower
the superscript to the first slot by Nxy,z = g(X,N(Y, 2)).

e The second is the 3-form d‘w, where by our convention for differential
forms, the form w is defined from its coefficients w;; by

1 . .
w= §wijdac2 Adz?.

The form d°w can also be written as d°w = J 'dJw = —Jdw since d° =
J~1dJ and w is invariant under the action of J. In components, we have

1 ) )
dw = a(awjk + @wki + 8kwij)d:c’ Adzd A dx®

and hence

(dw)ijr = Ojwjk + Ojwii + Okwij,
(dW)ape = — T Ty o (dw)iji = —TF 7y o (Qiwjr + Ojwi + Opwij).

As shown by Gauduchon [26], the construction of Hermitian connections
associated to the structure (g,w, J) is clearer if we also view d‘w as a 2-form
valued in T'M, i.e. a section of TM ® A>T* M, in analogy with the Nijenhuis
tensor. This can be achieved by raising one index in d°w, using the metric
gij. Unless indicated otherwise, the T'M-valued 2-form corresponding to d‘w
is obtained by raising the first index, i.e.,

(dcw)mjk — gmi(dcw)ijk-

e The third and the fourth tensors of interest are obtained by decompos-
ing d°w, viewed as a T M-valued 2-form, into components U and V which
are respectively even and odd under the following involution M acting on
the space of T'M-valued 2-forms,

(3.4) (M) (X,Y) =T(JX,JY), U € A*(TM)

where we have denoted the space of T'M-valued 2-forms by A?(TM). We
can then define the T'M-valued 2-forms U and V by

(35 U= i(dcw M), V= i(dm — M(dw)).



Geometric flows for the Type ITA string 707

In components,

(3.6) (MEB)™ye = O™ JF T,
and

1 .
(3.7) U = Z((dﬂw)mm<dcw)mjkﬁcﬂb),

1 .
Ve = Z((dcw)mbc—(dcw)mijkcJ]b).

Note that U™y, and V"™ are still anti-symmetric in b and ¢, but if we let U,
and V. the components of the T* M-valued 2-form obtained by lowering the
index m to an index a, then Uy, and V. are not anti-symmetric in a and b,
unlike (d°w)qpe. The tensors N, U, and V satisfy the following Bianchi-type
identities

(3.8)  Nijk + Njki + Niij =0,
1
(3.9)  Uijk + Ujni + Uij = (d°W)ij,  Vig + Vini + Viij = 5 (d°w)ij-
Given an almost Hermitian structure (g,w,J), the Gauduchon line of
connections is a line of connections preserving all of (g,w,JJ) which passes
through the Chern connection and the projected Levi-Civita connection.
If we denote the Levi-Civita connection by V, since d‘w has only type

(2,1) + (1,2)-components, the Gauduchon line can be parameterized by a
real parameter ¢, and the corresponding connection ! is given by

(3.10) DIX™ =V, X™ + g™ (=Nijr. — Viji + tUir) X

Equivalently, if we express a connection D in terms of its connection form
L'(D)™4,

D;X™=09;X"+ F(D)minj
then we have

(3.11)  L(D)™; =T(V)™i; + g™ (= Niji — Viji + tUsjn).

Since the torsion of a connection D is given by
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and the Levi-Civita connection has zero torsion, it readily follows that
(3.12) T®N" ) = N + (t = 1)U + 2tV ..

The two values of ¢ of particular interest to us are:

e t = 0: this is the so-called projected Levi-Civita connection (a.k.a.
the first canonical connection), which we shall henceforth denote by just
DV =9.

e t = 1: this is the Chern connection V¢, also characterized by the
condition that VgV = [U, V"0, for any sections U,V of T'OM. Here we
have set CRTM = TYOM @T% M and used J to identify TM with T1OM.
The expression [U, V]1? denotes the (1,0)-component of [U, V].

The value t = —1 gives the Bismut connection, but we shall not need it
in this paper.

3.1.1. A convenient notation for the action of J. For the conve-
nience of later use, we use the following abbreviations

(3.13) (V)= TRV = VIR (JW ) = W, = W

For example, the operator M acting on a T'M-valued 2-form ¥ introduced
earlier in (3.4) and (3.6) can now be expressed as

(3.14) (M) =™ 1 ge
and (3.7) as

m 1 C m C m
(3.15) U = 7((dW)" e + (d°W)™ g, s0)

Ve = %((dcw)mbc — (dw)" Jb,Jc)-
As another example, since d°w has no (0, 3) + (3,0) components, it satisfies
(3.16) (dW) ik + (dW)igjk + (d°W)i ok = (d°w) i g5,k
When summing over repeated indices, J can be raised or lowered as follows

Xrag, = XFJTh o = X7k,
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Moreover, we can insert J in summation indices at the cost of adding a
minus sign:

Xkozk = —XJkOéJk.

In this short-hand notation, we have!

Wik = 975k = —3;,Jk; ik = Wj,Jk = Wk Jj,

ik Jik _ i Jk ik GJk _  kJj
wik = gik = _gilk gk = Wik = ki,

3.1.2. The types of T M-valued 2-forms. All the tensors which we
encountered above, namely the Nijenhuis tensor, the tensors d°w, U, and V,
and the torsion tensors can be viewed as T'M-valued 2-forms, or equivalently
3-tensors which are antisymmetric in the last two slots. Denote this space
by A%2(TM) for simplicity. It is convenient to break up elements of A%(T'M)
into simpler components.

Recall the involution M on A%(T'M) defined by (3.4) or (3.14) in com-
ponents. Clearly A%(T'M) splits into the direct sum of eigenspaces of M
with eigenvalue £1. We shall call the eigenvalue 1 subspace the space of
TM-valued (1,1)-forms, denoted by Ab'(TM). That is, ¥ € ALY (TM) if
and only if

\IlijJk = \Ilpjk or equivalently U; yip + ¥ ; ji = 0.

The space of eigenvalue —1 can be decomposed further as follows. We say a
T M-valued 2-form W is of type (2,0) or (0,2) if?

UV(JX,Y)=J¥(X,Y) or ¥(JX,Y)=—-JU(X,Y).
In this way we have a direct sum decomposition
AX(TM) = AYHTM) @ A*°(TM) & A%*(TM).
In terms of indices we see that ¥ € A20(T M) if

D _Wmdr P _ _ .
Ve =Y =V e o Wiign = —Wigik ==Yk

Here (w7*) denotes the inverse matrix of (w;x), w/*wy; = 67;. It is not the tensor
one gets by raising indices using g;x. In fact Wik = —g7%0q g%

2To avoid confusion, we stress that this notion is specific to A?(T'M) and is not
the same as that of scalar-valued (2,0) or (0,2) forms.
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and ¥ € A%2(TM) if

P _ Jp  _ P _ _
e ="V =Y g or Uik =55k = Yk

Returning to the tensors which we have encountered, their types are as
follows:

e It is readily seen that the Nijenhuis tensor is of type (0,2), therefore
any contraction of NV using either g or w yields 0.

e It is easy to see that the tensor U™ is of type (1,1). As for V, we
have by definition

1 3.16) 1
Viige = Z((dcw)ﬁ,j,k — (d°w) 5i,z5,7%) G _Z(<dcw)i,h}k + (dw)ijn)
= Viuigjk = —Vijk

and thus V is of type (2,0).

e Finally, tensors such as the torsions of connections on the Gauduchon
line and consequently also differences of connections, correspond to forms
of mixed types, whose decomposition in ALY (TM) @ A20(TM) @ A%2(TM)
can be read off from formulas such as (3.11) and (3.12), since we know now
the types of N™ i, U™ i, and V'™ jy.

3.2. Proof of Theorem 1

We can now give the proof of Theorem 1. For simplicity, we shall denote
in the subsequent calculations g, and J, by just g and J. Recall that the
operator d¢ is defined by d° = J~'dJ, and that, for a compatible structure
(w,g,J), we have the identity

(3.17) d* .= dA — Ad = (d°)1.

This identity holds even if J is not integrable. Since ¢ is primitive, we can
replace in (1.4) Ad by —d* (since d?> = 0) and rewrite the equation as

A = dAd(p|? %) — pa = —d(d°) (|g|* xp) — pa
(3.18) = —d(J AN (el xp) — pa = —dT T (|p|* xp) — pa.

Here we have used the fact that the adjoint J of J with respect to g is J~1,
since J is an isometry. We shall see later that xp = Jy, so that the above
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equation can be rewritten as

(3.19) Orp = dJd' (lp*p) — pa.

Thus the theorem would be proved once we can establish the following
lemma:

Lemma 1. Let (M, g, J,w) be a 6-dimensional compact almost-Hermitian
manifold with dw = 0. We have

(3.20) Jd'p=—dlp +2NT .

where NT is the operator defined in (2.2).

To establish this, we begin by recalling that the adjoint of the operator
d on 3-forms is given by

(3'21) (dT@)aﬁ = —V7(p7a5

where V denotes the Levi-Civita connection of g, which has no torsion. We
need to apply the operator J to both sides of this equation. For this, we
need in turn the following lemma:

Lemma 2.
(3.22) ijab = —2NJkab.

The point of this lemma is that the Levi-Civita connection does not
necessarily respect the almost-complex structure J. However, we can write
it in terms of the projected Levi-Civita connection ® which does, at the cost
of having to handle in addition terms coming from difference of connections,
which gives us the Nijenhuis tensor. This lemma follows directly from (3.11),
where U =V = 0 as w is closed.

Returning to the proof of Lemma 1, since ¢q, 18,7, = —@agy by Lemma
2 and 6, we find

(Jdi); = =TIV 0508
= V(I 0y08) — 2(N12 k% + NuvP 5 J%%) ¢ 0
= V% k75 — 2(NMe@in — NMi0u0)
(3.23) = —(d'@)r; +2(NT- o).

This completes the proof of Lemma 1. Replacing ¢ by |¢|?p in Lemma 1,
we also obtain Theorem 1.
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4. The principal symbol of the Type ITA equation

Our next task is to identify the symbol and the eigenvalues of the Type ITA
equation.

4.1. Almost-complex structures and 3-forms

For this and for the rest of the paper, we make essential use of Hitchin’s
construction of an almost-complex structure .J, and a metric g, from a 3-
form ¢ on a 6-dimensional manifold [30]. We begin by recalling the results
that we need.

4.1.1. Hitchin’s construction. Let V be a 6-dimensional oriented vec-
tor space over R. Following Hitchin [30]3, for any 3-form ¢ € A3V*, one can
define a linear map K, : V — ASV* 2V ® ASV* by

(4.1) K,(v) = —typ Ao = —€; @€' Ay A g,

where {e;} is an arbitrary basis of V and {e’} its dual basis in V*. It follows
that

1 *
(4.2) Ay = EtrVKf, € (ASV*)?
is well-defined and it makes sense to talk about the sign of A,. In general
Ay is a homogeneous degree 4 polynomial in the components of ¢. When
Ay < 0, as V is oriented, one can take \/—X\, € ASV* to be the positive
square root of —A,. It is proved in [30]

(4.3) Jp=—"2=:V =V
X,

N

defines a complex structure on V. Note that A, < 0 is an open condition. In
fact, the set {¢ € A3V* : A\, < 0} forms an open orbit in A3V* of the natural
GL(V)-action. Furthermore, there is a basis {e'} of V* where ¢ takes the
following “canonical form”,

(4.4) ¢ = Re(e' +ie?) A (€3 +iet) A (€7 + ief) = e13% — 16 _ 245 _ (236

and e'23456 defines a positive volume form. In this basis, one can easily check
that Jyoeor—1 = egr and Jyeg = —egip—1 for k = 1,2,3. Therefore ¢ is the

3Here we adopt the convention used in [15, 16].
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real part of a (3,0)-form with respect to the complex structure J,,. It follows
that the imaginary part

(4.5) ¢ =TIm(e' +ie?) A (&3 +iet) A (&7 + ief) = 130 4 145 4 235 _ 246
is also determined by ¢ through ¢ = J,¢, meaning that
@(X7 Y’ Z) = @(J@Xa Jgo}/v J4PZ)

for any X,Y, Z € V. Furthermore two forms ¢ and ¢ define the same com-
plex structure J,, if and only if they are related by C*-action

p=p-Re(e (o +ip)).

4.1.2. J, and symplectic structures. Now let us assume that V is
equipped with a symplectic form w € A2V* so V is canonically oriented by
w3/3!. A natural question is when the symplectic form w is invariant under
the induced complex structure J,. The answer is very simple:

Lemma 3. w is J -invariant if and only if ¢ is primitive in the sense that

wAp=0.
Proof. As stated above, we can choose a basis such that ¢ = 135 — 146 —
€245 _ 236 Tp this coordinate, we may write w = a;je' A e/ with a;; = —aj;.

The condition that w(e;, e;) = w(Jye;, Jye;) for any i and j is equivalent to
the following system of linear equations

a13 = 24, a14 = —a23, a15 = 426,

(4.6) aig = —ags, ass = a46, a3e = —a45.

These are exactly the equations for ¢ being primitive in the sense that
wAp=0.Q.E.D.

For primitive ¢, we can consider then the Hermitian form g,(X,Y) =
w(X, J,Y'). We shall say that ¢ is positive if g, is positive, in which case g,
is a metric, and the triple (w, J,, g,) is compatible*. The positivity of ¢ is
an open condition. Once we have a Riemannian metric and an orientation,

4This notion of positivity is different from the one defined in [30], which does
not involve a symplectic form.
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we have the associated Hodge star operator %. It is straightforward to check
that
(4.7) *p =@, *p=—0p.
In particular we know that ¢ is primitive if ¢ is primitive.
Altogether, assuming the presence of w and that ¢ is primitive and

positive, we may upgrade the previous choice of orthonormal basis {e; }?:1
to the following useful statement:

Lemma 4. (Normal form of ¢)
There exists an orthonormal basis {ej}?zl of V' (with respect to g) such that

(4.8) w ebnet 3 net +e’ el
(4.9) @ = MRe(e! +ie?) A (2 +iet) A (® +ie®),

1
where M = §]g0| > 0. It follows that

3

1 w
(4.10) Ve = 5lelSr

Using this upgraded version of canonical form of ¢, one can check that
the following key formula for the metric g, holds:

Lemma 5. In any coordinate system, we can write

Lip NLjp Aw

ac, bd
=2
| w3 /3!

(4.11) (90)ij = =l *Piabpjeaw’w |2

The metric g, introduced in (2.3) is then given by

(4.12) (G0)ij = —PiabPjcaww’.

Clearly g, is conformal to g, and its associated Kihler form is &, = |¢]?w.
Since ||? is the square root of a complicated homogeneous degree 4 polyno-
mial in components of ¢, the metric g, has the advantage that its expression
is algebraic in ¢, which makes it much easier to compute with. Also, the vol-
ume form of g, is just w?/3!, but we can recapture |¢|? from the volume
form of g,.
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4.1.3. Basic identities. As always we fix a symplectic form w. Let ¢ be
a positive primitive 3-form so that it defines an almost complex structure
J, compatible with w. For simplicity, we shall denote in the subsequent
calculations g, and J, by just g and J. Furthermore we can define another
primitive 3-form ¢ = Jp = xp such that Q = ¢+ i¢ is a nowhere vanishing
(3,0)-form with respect to J, i.e. a complex volume form that trivializes the
canonical bundle of (M, J).

Lemma 6. The 3-forms ¢ and ¢ are related to each other by

Cijk = Prijk = Pi,Jjk = PijJk = —PJi,Jjk = —PJij,Jk
= —QiJj Ik = —PJiJj,Jk
and
Cijk = —PJijk = —PiJik = —Pij,Jk = —PJi,Jjk = —PJijJk

= —@iJj,Jk = PJi,JjJk-

Proof. Since ¢ + i is of type (3,0), we have vy, +i7s, (¢ + 1) = 0. By
taking the real and imaginary parts of the above equation and its iterations
gives the desired identities. Q.E.D.

Since ¢ and ¢ are type (3,0) + (0, 3)-forms, for any 1-form p, we know
that both p A ¢ and p A ¢ are of type (3,1) + (1, 3), so

(4.13) pAe=—=J(pNp)=—JuNp.

It is not hard to verify that wedging with ¢ or ¢ gives an isomorphism from
the space of real 1-forms to the space of real (3,1) + (1, 3)-forms. Note that
the primitiveness of ¢ with respect to w implies the primitiveness of ¢ with
respect to @, and hence (Ijﬁgoijk = 0, or equivalently,

WijPkim — WkjPilm — WijPkim — WmjPkli — WikPjim
(4.14) —QilPkjm — PimPklj + CklPijm + OmiPkji + Cmkjii = 0.

We also have the following simple lemma:

Lemma 7. The following are equivalent:
(a) dp =0;
(b) The almost-complex structure J is integrable.
In both cases, the (3,0)-form Q is holomorphic and the form ¢ is harmonic.
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Proof. If J is integrable, then 02 = 0 since it is a (4,0)-form in a 3-
dimensional complex manifold. Similarly for 0. But ¢ = %(Q + ), so
dy = 0 implies 0 = 02 + 912, and hence € is holomorphic and d€2 = 0. This
implies that dp = 0.

Conversely, if dp = 0, then we know that Q = ¢ 4+ v/—1¢ is also closed.
Therefore for any (1,0)-form A, we know A A Q = 0, hence

0=dAAQ)=d\AQ,

so we deduce that d\ has no (0,2)-components, which implies that J is
integrable by Frobenius theorem. Q.E.D.

The defining equation for g tells us the effect of contracting twice with
w4 a quadratic polynomial in ¢. It actually follows from a stronger identity
with only one contraction, and which can be verified explicitly using the
normal form of ¢ in Lemma 4. Using the fact that ¢/ = w7, we can readily
deduce the effect of contracting with ¢”/. We summarize these contractions
in the following lemma:

Lemma 8. The following quadratic identities hold:

(4.15) W iabPicd (WacTbd — WoeGad — WadJbe + WodJac)

N N

(416) gijsoiabgpjcd = (gacgbd - gbcgad + WadWhe — wbdwac)

Nl
=
<.

417)  g"g""piavpjea
4.2. The variation ()

The key variational formula for ¢ is given by the following lemma:

Lemma 9.

Sp NP,
QD.

. dp N
4.18 8() = —J,(8p) + 2 Zp+2 !
(4.18) (@) »(0p) Y

pAP

When ¢ is primitive and positive with respect to a symplectic form w, the
above formula can be written as

419 69) = o) - 205D, 2000,
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Proof. This is a purely linear algebra problem. We break its proof into
two steps.
e Step 1: The primitive case.

Choose a nondegenerate (1, 1)-form w compatible with J,. We shall first
prove Lemma 9 under the assumption that d¢ is primitive with respect to
w. By Lemma 4, one can find an orthonormal basis {¢‘}%_; of V* such that

w = 61/\62—|—63/\64+€5/\66,
o = MEASne® —elnetne —e2netne® —e?2ned ned),
xp = ME NSNS el netne® 2 ned e’ —e? Aet Aeb),

1
where M = §|cp| > 0. For simplicity, we denote e!?34%0 = 3/3! by €. Let

1 ) .
0p =p= g,uijkez A el A eF. Straightforward computation gives us

(Ky) =2Me x
[ A H135—146 —H125 H126 H123 —p124 |
H236HH245 -4 K126 H125 —H124 —H123
K345 — 346 Az H135—[4236 —H134 K234
—H346 —H345 H245+ 1146 —As 234 K134 ’
—H356 K456 K156 —H256 As H135—[245
K456 K356 —H256 —H156 H236H4146 —As |
where
A, = H246 + p136 + 4145 — [1235
2 )
A, — M6 + (136 — H145 + [235
2 = 2 )
Ao — H24a6~ His6 + 145 + 1235
3 = 5 .

It follows that

(4.20) 6(K2) = AM>*(puags + proas — pass + piras)Idy = 4M262@1dv.
Therefore

(4.21) 5(=Ap) = YL A AM2E (p, )

€

1 .
(4.22) 0W=he = So(lef)e=pnng =00 ¢,
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which agrees with Hitchin’s formula [30, Proposition 4]. As a consequence,
we have

_0(Ky) pAp
(4.23) 3(Jp) = Gartl 5o,

For simplicity of notation, we introduce the following

b OUK)

2Me "’
Yo = 61/\63/\65—61/\64/\66—62/\64/\65—62/\63/\66,
Py = 61/\63/\€6+61/\€4/\65+€2/\€3/\65—62/\64/\66,
dzF = el et k£ =1,23.

Again by straightforward calculation, we get
F.dz' = iBydz' + (A) + iBy)dz" + C3dz? + Codz®,

F.dz? = C3dz' +iBydz* + (Ay + iBo)dz* + C1dz,
F.dz? = Cydz' + C1dz? + iBodz® + (A3 + iB3)dz>,

where
1 A oo
By = —(M135 — H146 — M236 — M245) = L4 ;
2 2e
1
B = 5(#135 — 146 + 1236 + 1245),
1
By = 5(#135 + ft146 — p236 + [1245),
1
By = 5(#135 + fl146 + 1236 — [1245),
C1 = pise — if2s6 = —[134 + 1[4234,
Coy = —pu3s6 + ifase = (123 — i124,
C3 = 345 — 14346 = —[125 + /4126

Here to obtain expressions of C; one makes use of primitiveness of u. For
completeness we also introduce

A, — H246 = Ho3s — P36 — fas A ®o
0= = .
2 2e

Collecting all these together, we get

(4.24) F.(¢o + igo) = F.(dz' A dz* A d2®)
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= F.(dz") ANd2? Nd2® + d2' A F.(d2?) A d2® 4 d2t A d2? A FL(d2?)
= 3iBodz' Ndz2 Ad2P 4 (A +iBy)dzt A d2? A d2P
+(Ag +iBy)dzt AdzZ? A d2® + (A3 + iB3)dzt A d2? A dZ3
+C1d2t A (dZ3 A d23 + d2? A dZE?) — Cad2® A (dZ3 A d23 + d2t A dzY)
+C3dz3 A (d2' A dz' 4 dz% A d2?).

Notice we can express p as

po= —i (Crdz! + Crdz") A (dZ3 A d2® + d2? A dZ?)
—(Cadz? + Cadz®) A (dZ3 A d2® + d2t A dzY)
_ B A
H(Cyd23 + Tadz3) A (dz! A dz' + dZ2 A d2?)| + 7%0 - 70950

LAy +iB)dE  Ad22 Ad2B + L(A — iB)dzt AdZ2 A dF
4 4
i i

—(As + iBo)dz' A dz? A dz® + 1 (A2 - iBo)dz' A dz? A dZ?

L (Ay +iB3)dz' Ad2?2 A dZ + L(Ay — iB3)dz' A dZ2 A d2P,
4 4

By taking real part of (4.24) we get
Foo = 2Jop— Aopo — 4Bopo.

Since

Jcp"PO = 900(‘]90'7'7')+900('7Js0'7')+900('7'7‘]30'):*39507

5(Js0) = %(F - BOJSO)a
it follows that
(4.25) 6(Jp)-p0 = %(2%# — Aoo — Bopo).
Consequently we obtain
0p = Jy0p — 6(Jy).0 = —Jup + Aopo + Bopo.

Rewrite this equation in a coordinate-free manner, we obtain the desired

formula.
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e Step 2: The general case.
Choosing w as before, a general variation d¢ takes the form

dp=p+wA,

where y is primitive with respect to w and A is a 1-form. By linearity, we only
need to prove our formula for d¢ = w A A. By symmetry, we may assume
that A = Ne! for some number N. Therefore w A A = Nel A (34 + €°9)
is a linear combination of e! A (3% — €50) and e! A (Ke3* — €59) for some
constant K > 1. Notice that el A (e3* — €59) is primitive with respect to
w, and e! A (Ke3* — e%0) is primitive with respect to another J,-compatible
(1,1)-form w’ = e'? + Ke3* + 5. By linearity we reduce Step 2 to Step 1
with w replaced by w’. Q.E.D.

4.3. The eigenvalues of the principal symbol

With all preparations from last section, we are now ready to compute the
principal symbol of the Type ITA flow (1.4) without source. When ¢ is
primitive, the right hand side of the Type ITA flow is also primitive, so we
only need to consider primitive variations in Lemma 9, which takes the form

(4.26) 5(|l*@) = —|@* T (5¢) — 2(3, @) + 4(5p, )

Thus the symbol of the leading term in the Type ITA flow is given by

(4.27) Sp = ENMEN (—|@l*T(8p) — 2(6p, @) + 4(p,0)@) }

and whether the flow is parabolic or not, depends on the eigenvalues of this
operator. Since by our assumption, the right hand side of the flow is primitive
and admits an integrability operator d. Thus by the Hamilton-Nash-Moser
theorem [29], we can restrict d¢ to the space

W ={0p € A3V*: £ Adp =0,A(5p) = 0}.
As before, we may choose an orthonormal basis {e’}{_, of V* such that

w = 61/\€2+€3/\€4+65/\€6,
o = M rnedned —elnetned —e2net he® —e2 Aed e,
xp = M ASBAFetnet e+ A ne® —e? net Aeb).
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As we only care about the sign of the eigenvalues of the principal symbol,
we may assume that || = 2M = 1. Moreover by rotational symmetry we
may assume that & = e'. Under such reduction, it is easy to see that

W ={e' Ay:ye A2(V)* Ny=0},

where V' = span{e; }?:3 equipped with the symplectic form ' = 3 A e* +
e5 Aeb and A’ is the contraction with respect to «w’. In this way we can also
simplify the operator to

1
Ay = el A J’Y+5(’)’,63/\66+€4/\€5)(63/\€6—|—€4/\65)

+(’Y, 635 _ 646)(635 _ 646) 7
which is equivalent to
1
(4.28) v+ J'y+§(’y, el 4etned) (e3NeS et Ne®)+ (v, €3 —et0)(e37 —e10).

Then it is clear that the eigenvalues are A = 1 (multiplicity 4) with eigenvec-
tors v = e3 Net —e5/\66, 63/\e5+e4/\e6, e3nel—et Ned and e3 Aed —64/\66,
A\ = 0 with eigenvector v = e3 A €® + e* A €5. We summarize our findings in
the following lemma:

Lemma 10. The leading symbol in the Type IIA flow, restricted to closed
and primitive forms, is only weakly parabolic. More precisely, it has an eigen-
value A\ = 1 with multiplicity 4, and an eitgenvalue A = 0 with multiplicity
1.

5. Proof of Theorem 2: existence

In this section we establish the short-time existence of the Type ITA flow.
As we saw in §4, the flow is not strictly parabolic, and the presence of the
symplectic form prevents a direct application of either the reparametrization
arguments of [14] or the Hamilton-Nash-Moser theorem of [29]. Rather, we
proceed as follows: first we do apply a reparametrization, but we have to
accompany it at the same time with a flow of the symplectic form. This new
coupled flow of (p,w) is still not strictly parabolic, but one of its key prop-
erties is that it admits a strictly regularization with integrability condition,
to which the Hamilton-Nash-Moser theorem can apply. Thus we obtain the
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short-time existence for a regularized version of the Type ITA flow. Next,
we show that the regularized flow preserves the primitiveness of the data,
and reduces to the Type IIA flow if the form ¢ is known to be primitive.
Altogether, we obtain the desired short-time existence of the Type ITA flow
for primitive data. The uniqueness of the solution will be shown later in
§7.5, as a consequence of the uniqueness of the flows of the corresponding
metrics.

5.1. A coupled flow for (¢, w)

More precisely, we consider a reparametrization of the Type ITA flow by the
following time-dependent vector field

(5.1) vE = et (gP(rh, = (To)ky) = o)
where |p|, u and g are defined by

3
w P —
Mzg =0 AP, u= log|p|? gij = — || QSOiab(pjcdwacwbd’

and I' and T'y are Christoffel symbols associated to the evolving metric g
and the initial metric ggo. Under a reparametrization by the diffeomorphisms

generated by the vector field V¥, the given symplectic form in the Type
ITA flow would become time-dependent and evolve by its Lie derivative. It
is convenient to change notation slightly, and denote the given symplectic
form by wp while reserving w = w(t) for the evolving symplectic form. This
consideration inspires us to consider the following coupled flow for the pair

(o, ),
52 Dip = ANd(Ig3) + dluv)
Ow = d(Ltyw)

with initial data ¢(0) = g, w(0) = wp, where pg would be a closed primitive
positive 3-form with respect to wg. Although the initial metric gg is almost
Kahler, a priori we should not assume that ¢(t) is primitive with respect to
w(t), hence g(t) a priori may not even be almost Hermitian.

Our first task is to work out the eigenvalues of the principal symbol for
this coupled flow. Note that because of the coupling, the principal symbol
of (5.2) is now a linear operator acting on both d¢ and dw, and not just on
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dp, and we may no longer assume that d¢p is primitive. It is easy to see that
the principal symbol of the linearization of (5.2) is determined by

(5-3) (6p,0w) — (dAdO(lp[@) + d(wsv ), d(isvw)).

Now the leading order term in §V is

u 1 u
e 9" (Vp(09)ig — 5 Vi(09)pg) — 9" Vid(e"),

so if we define the vector field W by

1
WE = lolg" 9" (6(09)1 = 561(59)p) — g €151 0I",

it follows immediately that the principal symbol of the linearized operator
is

(54) (0, 0w) = (EANEN (D)) + & Atwep, E A tww)

with integrability conditions & A dp = & A dw = 0.

We work out more explicitly the symbol at a point (p,w) where ¢ is
primitive with respect to w. In this case, we may choose an orthonormal
basis of g such that

w = e?4e¥4 e
o = %(6135 —Mb _ 245 _ 236y 5 %(6136 + e84 235 _ o246),

Without loss of generality, we may further assume that £ = e! and |¢| = 1.
In this case, we can write d¢ = e' Ay and dw = e! A a for some 2-form 7
and 1-form « such that a,v € A\"{e?,...,e®}. It is straightforward to check
that

Slol> = 2(6p,0) — |p|*(dw,w) = (v,e% — ) — (a, €?),
5(lplP@) = —|plPT(8p) — 2(6p, §)p + 48, ) — |} (dw,w)p

~

= ENTy— (7,0 +eP)p+ (2(7, 6% — %) — (a, %))

1
(5.5) ng = (6g)p1 — OF <§tr959 + (7, €% — €19 — (a, 62)) .
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We see that the key is to compute dg, especially (dg)x1. By definition of g
and straightforward calculation, we have

(63)11 = 2(7,€® —€'%),  (0§)22 =10, (0§)12 = —(7,€* +¢*),
(09)33 = (63)55 = 2(7,€*®) — (@, €%), (6§)aa = (69)66 = —2(7,€™) — (a, €?),

(39)13 = (1) + 5a,eh), - (09)1s = (,6%) = 5(0,€),
1

(89)15 = —(7,€**) + %(Oé, €e®), (69)16 = —(7,€*) — 5(%65)7

(69)ij = (89)i — ((v,€% = €*) = (o, €%))di;.

It follows that trydg = 2(a, %), hence
VVg (o, €?), WE = —(v,e3 + %)

WP = () 4 S(ae), W= (7,6%) = (o),

W§5 = —(v,e**) + %(a, eb), Wg = —(v,e*) - %(a, e’).
Consequently we find that
ENwwp = %61 A | (36 + 745) (€% + ) + (76 + = 5 D)6 4 (725 — 7)625

(724 — 76) et + (o3 + %)623 +ag(e® — %) |,

ENww = %el A (a+ age’ — 2(’)/2563 — 72664 — ya3€” + ’)/2466)).

If we further write v = e?AB+\, a = age?+u, where 8, u, A € A*{e3, ..., €0},
we have

1
ENuvp = 5el A |:(A36 + Ma5) (€3 4+ eB) 42 A B
1
_562 A [‘M( 35 646) —|—Ck2(€35 _ 646):|7

1
ENwww = 561 A (4 20062 + 205(e — €19)),
A A
ENMENS(p[P) = el n [JA T

5 (636 + 645)

o
()\35 — )\46 — 72)(635 — 646):| .
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It follows that the principal symbol is the linear map

56 (B hans) o (§ - % = e A 4 sl - )

This matrix is only positive semi-definite. The part (A, az) — (A, a2) is the
identity map. However the other part

(B, 1) = <§ — %(635 —€19), g +15(e¥ — 646))

has eigenvalues 0 and 1, both of multiplicities 4. So the coupled flow (5.2)
for (p,w) is still not strictly parabolic.

5.2. A parabolic regularization of the coupled flow

To solve this problem, we add an extra term on the right hand side of the
evolution equation of ¢ in (5.2). This term takes the form

—BdJd(|p[?Ag),

where B is a constant to be determined. In fact, A(¢) is expected to be zero
along the flow as ¢ should always be primitive. Again let us consider the
linearization of |¢|?A¢ at a primitive pair (w, ) and we may assume that
l¢|? =1 at the point of linearization. It follows that

(5.7) 3(lp[PA@) = (5A)(2) — A(Jdy).

As before, we may assume that & = e! and §p = e' A (e2 A 3+ \) and
dw = e! A (age? 4 ). The principal symbol for the extra term is

(5.8) Be'? A J[(6A)(p) — A(J59)).
The second term is easy to compute:
(5.9) —Be'? A J(A(JSp)) = Be'? A B.

The first term is more complicated, notice that

6

~ B s [N [N
BOA)(P)k = —5 (0w) st i = B Y " Goin,
=3
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therefore by straightforward calculation, this part of the principal symbol is
equivalent to the linear map

B
i —u(e? —e

46
2 )

Therefore the principal symbol for the full evolution equation is equivalent
to the linear map

(nan s (G428 + 22

1(e3° — €19) )\, ag, g +15(e* — 646)>.

If B > 0, then all the eigenvalues of the above matrix are positive. In this
sense, the coupled flow with the additional B term is parabolic.

Lemma 11. Consider the flow

O = dAd(|p*@) — BdJd(|e[?Ap) + d(wv ),
(5.10) Ow = d(tyw),

for any fized, strictly positive constant B. Then for any initial value g which
is a closed, positive, and primitive form with respect to the initial symplectic
form wo, the flow exists and is smooth at least on some interval [0,T") with
T > 0. Clearly the flow preserves the closedness of both the forms ¢ and w.

Proof. Let d be the exterior derivative. The preceding fact that the eigen-
values of the principal symbol of the flow (5.10) when restricted to closed
and primitive forms are positive means that the flow (5.10) together with
d as the integrability operator satisfies the condition of the Hamilton-Nash-
Moser theorem ([29], Theorem 5.1). This theorem implies the short-time
existence and uniqueness of the flow (5.10). Q.E.D.

It should be noted that we need to treat ¢ and w as tensors evolving in-
dependently at this moment, therefore we cannot assume that ¢ is primitive
with respect to w (though we shall prove it is indeed the case later). Conse-
quently the metric g defined above is not necessarily compatible with J or
w: we only know it is a Riemannian metric. As (5.10) preserves the closed-
ness of ¢ and w, by performing the reverse reparametrization, we obtain
immediately

Lemma 12. Fiz any positive constant B. Then the flow of 3-forms ¢

(5.11) Ovp = dAd(|¢|*¢) — BdJd(|o[?Ap)
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admits a closed smooth solution ¢ on some interval [0,T) with T > 0, for
any nitial value @ which is a smooth closed, positive, and primitive form
with respect to the symplectic form wy.

5.3. Preservation of the primitiveness condition

Next we shall show that, if the initial data ¢g is primitive in the flow (5.11),
then ¢(t) remains primitive for all time. Since ¢ primitive implies that ¢ is
also primitive, it follows that the terms with coefficient B in (5.11) all drop
out, and the flow reduces to the Type ITA flow, establishing Theorem 2 in
the case of no sources.

From now on, we take B = 1. Let ¢(t) be a solution to (5.11) on M X
[0,T") with ¢(0) being closed, positive, and primitive. Clearly for any ¢, ¢(¢)
stays closed. Let

(5.12) p=P+pAw

be the primitive decomposition of ¢, where P is a primitive 3-form. It follows
that

B=""

We wish to show that § = 0 by the maximum principle. To do so, we need to
compute the evolution equation of 5. We fix a background metric g = g(0)
which is compatible with w. We denote by V the covariant derivatives with
respect to g. Since ¢ is closed, df is primitive, and thus

Ay
2

(5.13) WtV ;B = 0.
Furthermore,
. Wit Wit
(Ap)k = T(Pijk = _T‘Pi,j,ﬂc = —(Ap) Jks

hence there exists a primitive 3-form P such that the primitive decomposi-
tion for ¢ is

(5.14) ¢p=P—JBAw.
Using this decomposition for ¢, we can derive the evolution equation for 3,

(5.15) 9B = —dAd(|¢*TB) + A(dJd(|o2 T B):
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We know that ¢, J, and all their covariant derivatives are bounded in M X
[0, 7] for any 7 < T, therefore we can write (5.15) in the form

(5.16) 9,8 = |p|*(—dAd(JB) + A(dJdJB) + VB * Sy + % Sa),
where S; and Sy are bounded tensors on M x [0, 7] and * represents certain
contraction of indices. We need to compute the leading term of 3 in (5.16).

Notice that (J3); = JP;08p, so

d(J,B)jk = ka?j,@p - Jpj?kﬂp + O(/B)a

Ad(JB) = WMJPLV;B, 4+ O(B),
(dAd(JB)), = w'PIV,V;B,+ O(B,Vp),
(JdIB)ji = J*J'(JP NV sBy — JPsViBy + O(B))

J'W VB — J' VB + O(B),
(dJdIB)ju = JR(ViVeB; — V;ViBi) — T 5 (ViViBr — ViViB)
+J4(V;ViBe — ViViBj) + O(B,VB),
AdJdIB), = WMHIW(ViViB — Vi ViB) + T4V (WY B) + O(8, V)
= ij,p@l@jﬁp + wj"”?j?tﬂl +0(B, ?5)

It follows that
(5.17) 0B = |o*(LB + O(8, V),
where L is defined by
(LB = (WP + WP V)YV VB, + w7V V.
We further notice that w’/?? + w/P = O(3), Wi/t — 65t = O(B), and as f3 is

a smooth function of ¢, we also have |V2f| is uniformly bounded. Therefore
one can also write

(5.18) OB = |¢l*(AB+O(B,VB)).
It follows that
B2 = 2|l (AB,B); + OB, VB) * B xS

oPA(I817) — 2l IVBI* + O(B,VB) * B x S
e PA(1817) + ClBP.

IN N

(5.19)
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Since 8 = 0 initially, by maximum principle we know that 8 = 0 on [0, 7]
for any 7 < T'. Therefore o(t) is primitive for as long as the flow exists, and
J is always compatible with w. The existence part of Theorem 2 is proved
in the case of no sources.

6. Type ITA geometry: proof of Theorem 3

The goal of this section is to work out some properties specific to Type ITA
geometry. What is crucial is that the almost complex structure J, in Type
ITA strings comes from a closed primitive positive 3-form ¢ via Hitchin’s con-
struction. In fact, the closedness of ¢ imposes subtle “higher integrability”
conditions on J, which in turn distinguish J,, from a generic almost complex
structure. This feature gives rise to various identities that are not available
in the more general almost-Kéhler setting. We begin with the curvature
and Nijenhuis tensor on general almost-complex manifolds, and gradually
specialize to almost-K&hler manifolds, and then to Type ITA geometry.

6.1. Curvature tensors on general almost-complex manifolds

For any affine connection D, we define its curvature tensor R(D) and torsion
T(D) by

(6.1) [D;, D;]X™ = R(D);;™1 X' — T(D)";; D} X™.
The curvature tensor with four lower indices is defined in the usual way
(6.2) R(D)ijir = R(D)ij"19pk-

As in the case for Levi-Civita connection, we define the Ricci curvature of
D, also denoted by R(D), by

(6.3) R(D)i. = ¢"'R(D)yjn-

Let now J be an almost-complex structure on the Riemannian manifold
M. In subsequent developments, we shall need both the Levi-Civita con-
nection V and the projected Levi-Civita connection ® = DY. Therefore we
will reserve the Latin letter R for various curvature tensors associated to
V and the German letters 0, ¥, and R for Christoffel symbol, torsion, and
curvature tensors associated to ®. When we have other Hermitian metrics
with decoration like g or g, we shall decorate the corresponding connections
and curvature tensors with the same symbol. Identities for the curvature
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and torsion of the Chern connection have been worked out in the paper
of Tosatti, Weinkove, and Yau [47]. However, they are expressed there in
complex frames, and it is difficult for us to apply their formulas, as we shall
have to let the almost-complex structure evolve. Thus we develop here a
formalism for curvature and torsion identities with the action of J in real
coordinate systems.

To pass back and forth from V to b, we note that from (3.11) and (3.12)
that

(6.4) 0" = ™y — Nig™ = V™ =T — Ay™,
(6.5) Tmij = Nmz’j - Umijv

where A =V + N is of type (2,0)+ (0,2), and hence their curvature tensors
are related by

(6.6) Rijii = Riju — (DiAjig — DA + TP App
+Ai? Ajip — Aji” Aup).-

As Ry;jjy is the curvature tensor of the Levi-Civita connection, it has various
symmetries and satisfies the Bianchi identities. On the other hand, since
DJ =0, its curvature R satisfies

(6.7) Rijkt = Rij,Jk,Ji-

It is easy to deduce from the preceding relation between R;;;; and R, how
to modify the identity for each curvature if it is replaced by the other.

The projected Levi-Civita connection ® induces a connection on the
canonical bundle of M, whose curvature represents the first Chern class (up
to a constant) of the almost complex manifold (M, J). To be precise, if we
use small Greek letter to denote the index for “holomorphic” tangent bundle
T'OM, then

1 v—1
(6.8) — R’ = Rij 7y € [er(M, J)].

47 2T

Since A is of type (2,0) + (0,2), the contraction of its last two indices using
w or g vanishes, therefore by (6.6) we see that

(6.9) Rijrw'™ = Rijraw™ + 245P Ajipw'’®
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is a closed 2-form. We end this subsection by deriving the following formula
for Ricci curvature

1
(6.10) Rij = —2gkl(®iAkjl — QkAijl + TpikApjl) + §WlkRi’Jj7k7l.
Indeed, by (6.6) we see that

Rijgkg— R = (Didjr — DjAie + TP Apry + Al Ajip — Aji? Agp)
— (DA gk01 — D Ai g1+ FPiiAp ka1
+Ai k" Ajaip — Aj ok’ Aiip)-

Recall that A is of type (2,0) + (0,2), so Ajjr = —A; jj.jk, therefore we get
(6.11) Rij gk — Rijrl = 2(DiAjm — D Aieg + T4 Apia)-

Let us denote the right hand side of the above equation by B;jx;. Then the
above equation is equivalent to

—Rijgki— Rijen = 20460 —DAikn+%PijApk,ai)
(6'12) = BZ,]:‘]ICJ = Bi7j7k7‘]l'

Let {e,} be an orthonormal frame for the given Riemannian metric, and so
is the frame {Je,}. By definition of Ricci curvature, we have

Rijj = Y Rli,eq,Jjea) = > R(i,Jeq, Jj, Jea)

- Z(R(Z’ Jea, J, ea) + B(ia Jeaq, J, ea))

a

= Y (~R(j,ea, J(Ji), Jea) — Bli, Jea, Jj, Jeq))

a

= Z(_R(]7 €a; le ea) - B(]a €a, JZ, ea) - B(Za €a, J]) ea))

a

(6.13) = —Rj i — §"(Biksji + Bjkit)-

On the other hand, by taking trace of (6.12) and using Bianchi identity of
R, we have

il il
' Bijkg = —9" (Rijgri+ Rijk)
il
—Ri g+ 9" (Rjkig+ Riij)
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= —Rigk+ ¢ (Rijsis+ Brjii) + Reijiw"
(6.14) = =Rk + Rigi+ ¢ Bijgig + R
(6.13) and (6.14) can be rewritten as

ki
Rigj+Rjyi = —9" (Bikujl+ Bjkii)

ki Ik
Rijj—Rj5i = —9"(Bikgji— Bjrgii) — Rijuw™.

Adding these two equations up we get

1
Kl Ik
Rijj=—9"Bikiji — §Rijklw

which is equivalent to
1
Ry = _gleikjl+§wlkRi,Jj,k,l
= 20" (D. A — DA+ TP A llkR 4
= 9" (DiAkji kA + 25k pjl)+2w i, J kL
This gives the desired formula.

6.2. Quadratic expressions in the Nijenhuis tensor

We shall encounter frequently later quadratic expressions of the Nijenhuis
tensor. It is convenient to introduce the following two symmetric tensors
quadratic in N:

(N})ij = NP*iNp >0,
(N2)i; = NNy,
Since N is skew-symmetric in the last two slots and it satisfies the Bianchi
identity (3.8), all the other similar tensors can be expressed as a linear
combination of Ni and N?2. For example
0 < Nipk NP = (Nyhi — Niga) (NPEj — N¥2j) = 2(N2)ij — 2(N2)s;.

Obviously gijNipkijk = |N]? = giijkinkj, so we find that

(6.15) IN|? = trN2 = g"(N2);; = 29" (N2),;; = 2trN2.
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Also we observe that both Ni and N? are J-invariant in the sense that
(N3)ij = (N3)i;. In general, for any symmetric 2-tensor A = A;;, we
define its J-invariant and J-anti-invariant parts respectively by

1 _ 1
(A7) = §(Aij + Ayjigi), (A7) = §(Aij — Ay gj)-

In this notation, we have N2 = (N?)7.

Clearly we have A = A7 + A~/ and this decomposition is orthogonal
with respect to the inner product induced by the metric g. Later such a
decomposition will play an important role in our calculations.

6.3. Curvature tensors in almost-Kéahler geometry

In this subsection we restrict ourselves to the case dw = 0, namely the case
(M, J,g) is an almost-Kéhler manifold. Since w is a symplectic form, we
know d‘w = 0, hence both U and V defined in (3.5) are zero. Therefore
(6.4) and (6.5) specialize to A = N = ¥. Therefore the previously deduced
formula (6.6) becomes

(6.16) Rijti = Riju — (DiNjp — D Ni
+N?i; Npri + Nig? Njip — Nji? Ny ),

thus we have
(6.17) Rij = Ry + QkNijk — (N2)ij.
Combining (6.10) with (6.16), we also obtain
1
R;; = QC‘DkNijk — Q(N_%_)z’j =+ §WlkRi,Jj,k,l

1
= 20FN; — 2(N2)y; + §Wlk(%i,Jj,k,l — (DiNyjkg — DNk

+NP; 1iNpki + Nt Npjip — Nyji? Nip))
1
(6.18) = 20FNp —2(N?);; + 5&’“9@, Tiki-

Alternatively
1
Rij = ZQkNijk’ - 2(N-?—)ij + §wlkRk7l’i’Jj

1
= QQkNijk — Q(N_%_)ij + iwlk(%k,l,i,Jj — (@kNl,z‘,Jj
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+NPuNpi. 75 — DNk gj + Nk’ Nigip — Nii? Ni.gjp))

1
(6.19) = D"(Niji + Nji) — (N3)ij + §wlk%k,l,i,h-

From (6.19) we can immediately read off that

1
(6.20) (R7)y; = —(Nz)ij+§wlk9%k,z,i,Jj,
(6.21) (R™)i; = D"(Nijk + Njir).-

Taking the trace of (6.18) and plugging in (6.16), we see that
B T o 1 i 2
(622) R = 50.) w %ijkl - ’N’ = 50.) w Rijkl - 2|N| .

. N . .
In the literature, the expression —w”wlkRijkl is sometimes known as the

*-scalar curvature. This relation (6.22) was first discovered by Blair-Tanus
[4], and Blair [3] together with Oproiu [36].
Combining (6.16) with the symmetry of R, we can derive that

Rijkl — Rrtij = DilNjp — DjNigy — D Nyij + Dy Ny
(6.23) +Ny."Njip — NP Niy — Nii" Nijp + Ny, " Nigjp.

As Riju = Rij, k.01, by making use of (6.23), we get
Riigjkt — Rijet = Ruigjkl — Re,g6,05  Riiij — Rijr
= DsiNjjri —DsiNyiks — DilNjg
(6.24) +0 Nt + 2D Nyjj — 20 Niij-

Notice that the LHS of (6.24) does not change if one replace k and [ by Jk
and JI respectively, so we get an interesting identity satisfied by ® N

DsiNpjki — DNk —DseNyij +DpuNjkj
(6.25) = DiNji — DjNitg — D Nigj + D1 Nyij,

which allows us to rewrite one covariant derivative of N in terms of some
other combination of covariant derivatives.
In the same vein we can derive the Bianchi-type identity for R

Rijet + Rjrit + Reiji = —DiNyjk — Dj Ny — D Ny
(6.26) +NPii Niky + NP i Niip + NP Nijp.
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Equation (6.24) accounts for the (2,0)+(0,2)-part of the curvature tensor
R. If we use Greek letters for barred and unbarred directions, then (6.24)
can be translated into

%a575 = @aNgxﬂg - QBNoﬁ& — @ﬁNgaﬁ + @5N7a5
= _Q’VN(;OL[%
%**76 = R 07

**”yg -

which is the content of (2.17) in [47]. Replace i, j, k, [ by &, 3,7, 6 respectively
in the Bianchi-type identity (6.26), we get

Ragve — Rysas = Rapys + Ravas + Ryass = NP5aNspp = N*5aNspa-
This is the content of (2.16) in [47].
6.4. The holonomy of Type IIA geometry

We now restrict ourselves further to Type ITA geometry, namely a triple
(M,w, ) where (M,w) is a symplectic 6-manifold and ¢ is a closed positive
w-primitive 3-form.

Our first task is to prove Theorem 3(a). Recall that |¢| is the norm of
¢ with respect to the metric g,, and that we have defined the metric g, by
G, = |¢|%gy. It is not hard to see that

lels = Ll 2.

Henceforth we shall denote g, g,, and J, by just g, g, and J for simplicity.
It is clear that J is compatible with g and the corresponding Kéahler form
@ = |p|?w satisfies

do=—a N, d’o=Ja N,
where
(6.27) a = dlog |p|; = —dlog |p|*.
It follows from (3.16) that

1 - - - - .
(6.28) Uijr = Z@Ouz'wjk + oy j@ri + gr@ij + QR — Gij),

1 - - - N
(6.29)  Vijr = Z(O‘Jjwki + o gk@ij — @i + argij)-
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We need now the following lemmas for computational purposes.

Lemma 13.
Let p be any differential form, D any affine connection, T = T (D) the
torsion tensor associated to D. Then we have the following formula

(6.30) dp =daz? A Dju+ TR p,

where W is a multiplication operation linear in both factors. We only need
the explicit expression of X when p is a 3-form, in which case T X p is a
4-form given by

(6.31)

(TR ) ijrr = TPij1pkt + TP ripipi; — TP iretipgt — TP jupipire + TP atpipsn + TP jrbtpits

as well as the case p is a 2-form, where T' R u is a 3-form of the form
(6.32) (T® wije =T itk + TP jrpipi + TP kittp-

Proof: We give the proof of (6.32) and leave (6.31) to the reader. For u =
2 mjdxi A dz?, we have

1 ) ,
(6.33) dp = §aauij dz® N dx' A da?.

We write D;W; = O;W; — F(D)kijWk, and obtain
1 ) )
(6.34) du = §(Dk,uij +T(D)Pripg; + T(D)Prjuig) dz® A da® A da?.

This becomes

(6.35)  dp = dz*ADyu

1 , .
30 (F(D)’Bki,ugj + P(D)ﬂjkum + F(D)”Bij,u,gk> da® Ndat Ada?
1 8 8 8 B A da Adad
“rg (F(D) kilig + F(D) ikijg + I'(D) jiﬂk,@) dx” Ndx' Ndx

+

which leads to

1 , .
(6.36) dup = da® A Dy + g(Tﬂkiuﬁ»j + Tﬂjkum + Tﬂijuﬁk)d:ck ANdx' N dz’.

Q.E.D.
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Lemma 14.
In the notation in Lemma 13, the 4-form N X ¢ is of type (2,2).

Proof of the Lemma: By Lemma 13, we know that

(NR@)ije = NPijopes + NPkiopii — NPiwppit — NP j19pik
+NPuppir + N jkopir-

Since N € A®}(TM) and ¢ satisfies Lemma 6, we find

(JINR©))ijir = NPjigjep gk + NP genep.gi0j — NP 1igkep.gj.0
—NP 15 10p, 75,0k + NP 35 710p, 75,76 + NP 15, 180p, 73,71
= NPijepit + NPkippis — NPiropjt — NP jiopik
+NP 0k + NP jropil
= (NN )iju-

As J acts on (3,1) + (1,3)-forms as —1 and acts on (2,2)-forms as 1, we
deduce that N K¢ is a (2,2)-form. Q.E.D.

Lemma 15.
Using the notation in Lemma 13, we have

(6.37) dONp=M(d@)Kp=2aAp,
(6.38) dcOR @ = M(dD) K¢ = 2a A .
Proof. As we have seen d°@ = Ja A @, so the first term in (d@w) X ¢ is
(@@ o = FPU(Ta)g@ij + (Ja)i@jq + (Ja) j0gi) ophi
G @i Pkl + QTP Tk — QP Ti k)
= G0 gqWij Okl — @ 1iPikl + T Piki-

Hence

(d°@ X ¢)ijk

= M gq(@ijpprl + OriPpii — DikPpit — Dj1Ppik + it Ppjk + Wik Ppil)
—Q g Pkl + Qi Pikl — CgEPlLj T O PRij T QJiPjl — AIEPiji
‘o Prik — ik — QJiPrik + nPijk — giPik + ik

= §Moyg(@ippjr — QjpPikt + CrpPijt — Qi) — 3(J A P)iji

= ayg(Jpim — T + Jhpi — Tpin) +3(a A @)iju

= 2(aNQ)ijhl-
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In this proof we only used the fact that ¢ is primitive (4.14) so in the
same manner we have

dOR o =2a N p.
The other identities can be proved similarly. Q.E.D.
Now we are ready to prove Theorem 3 (a).
Since ®.J = 0, there exists a complex-valued 1-form 8 = o+ +/—18 such
that
D=0

Taking its real and imaginary parts, we get

(6.39) Dy = a®e—-FR¢,
(6.40) Do = BRp+a® .

The 1-form « is very easy to find: as ©§ = 0, we know that
dlg| = Di(p, ) = 23(Dp, ) = 2|¢|2a,

hence we conclude that
1
(6.41) a= idlog ]Lp|!2§ = dlog|y|; = —dlog \@]2,

which is the exactly same expression we assigned to « in (6.27). To find £,
we plug (6.39) in (6.30) to get

(6.42) O=dp=ahp—BAS+TRop.
Apply (3.12) to the Hermitian metric g with ¢ = 0, we get

(6.43) T=N-T,

1
where U = Z(dcdj + M(d@)). According to Lemma 15 we have

1 1
TR = N@@—chdjﬁw—ZM(d%)ﬁw
= NNp—aAep.
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Consequently (6.42) can be simplified to
NEg=8A¢.

By Lemma 14, the LHS of the above equation is a (2, 2)-form while the RHS
is a (3,1) + (1, 3)-form. Therefore we conclude that N X ¢ = 0 and 8 = 0.
As a result,

(6.44) DN=axQ,

which implies immediately that © (ﬁ) =0. Q.E.D.

Remark: Heuristically we can argue as follows. Since N accounts for the non-
integrability of J, the form N X ¢ is responsible for the “exotic” component
of dp which vanishes automatically in the integrable case. Because ¢ is a
(3,0) + (0, 3)-form, dep would be a (3,1) + (1,3)-form if J is integrable. As
a result

N X ¢ = (2,2) component of dy = 0.

Corollary 1.
The pair (N, ) satisfies

(6.45) NPiioper + NPgiopis = 0,
(6.46) NPijbpet = NPpidpiy =

Proof: In the proof of Theorem (3) Part (a), we showed that N Xy = 0,
namely

(6.47)
NPiiopkt + NPkiopis — NPikopit — NP jiopie + NPuppjr + N jrppi = 0.

Replace ¢ and j in (6.47) by Ji and Jj, by using symmetry of N and ¢, we
get instead

(6.48)
—NPi50pk1 — NPripi; — NPirppji — NP jippik + NPappjk + NP jrppi = 0.

By combining (6.47) and (6.48) we prove the corollary. Equation (6.46) fol-
lows from (6.45) and Lemma 6. Q.E.D.
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6.5. The curvature in Type ITA geometry

Next, we prove Theorem 3 (b).

As we have seen in Theorem 3 (a), in Type ITA geometry, the nowhere

vanishing (3,0)-form Q/|Q|; is parallel under the connection ©. A direct

consequence is that the first Chern form associated to ® is identically zero,
that is,

(6.49) — 5 R’ = Ry’ = 0.

As § = |¢|%g, one can relate © with © by the conformal change formula.
Combining it with (6.44), it is not hard to see that

1
(6.50) D0 = —5(04—\/—1.](1)@{2
As a consequence, the curvature tensor R satisfies

V=1
(6.51) Rt = R = —d(a —V=1Ja);

2
= —V—1(dd"log|¢l)i,

and we recover the well-known formula for Ricci curvature in the Kahler
case. In fact, (6.50) implies that D%'Q = 0. For an almost Kihler manifold,
the Gauduchon line of connections [26] collapses to a point, so © is also the
Chern connection (in the almost complex setting), hence D% = 9, and we
conclude that €2 is a holomorphic section of the canonical bundle associated
o (M, J). Theorem 3 (b) is proved.

We complete this section with some identities linking the curvature and
Nijenhuis tensor. Recall the globally defined function u = log|p|?. In this
notation we have § = e"g and o = —du. Furthermore (6.51) can be rewritten
as

Rijue't = (dd°u )] —(Di(du) gj = Dj(du) g + N*ijugy)
(6.52) = ( )z Jj (V u)j Ji — QNkijqu.

Substitute (6.52) back to (6.18), we get

1 1
Rij - 2©kNijk - 2(NE)¢]- + §(V2u)ij + §(V2u)JZ‘,Jj — ukaij.
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Since R;; is symmetric, we conclude
k 2 | 1 o
(6.53) = D" (Nyji + Njir) — 2(NZ)ij + §(V u)ij + Q(V ) gi Jj,
k 2 2 J - 1 o
(6.54) =V (Nz'jk + Njik) + Q(N_)Z'j — 2(N+)ij + §(V u)i]’ + Q(V U)Ji’Jj
and that NV satisfies

Therefore the J-invariant and J-anti-invariant components of the Ricci cur-
vature are given by (6.21) and the following refinement of (6.20)

(6.56)  (R7)i; = —2(N%);; + (V*)”).., (R™7)ij = DF(Niji + Njir.)-

ij?
The scalar curvature is
(6.57) R=Au—|NJ
(6.52) then implies that

1 -
Emi]’klwﬂwlk = Au.
It follows from (6.22) that the x-scalar curvature is given by

1 g
(6.58) §Rijk,wﬂwlk = Au+ |N|?.

Similarly we can derive the formulae for R, the curvature tensor associ-
ated to the conformal metric g:

Rj = —(®°— %us)(Nisj + Njsi) + %((6211/)1]@',(]]' — 3(Vu)i; — Augy))
(6.59) —2(N?);; — %uuj + %uﬁujj + %um;gﬁ,
and
(6.60) R = —4Au+3|dul} - |N|Z,

with (6.55) becoming

2©kN]m] = ukaij, Q@kaZJ = 3uka”
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6.6. The Nijenhuis tensor in Type ITA geometry

As we have seen in previous sections, on an almost Kéhler manifold, the
Nijenhuis tensor N is a (0, 2)-type T'M-valued 2-form satisfying the Bianchi
identity (3.8). Moreover, one can define two J-invariant symmetric tensors
Ni and N? satisfying

trN? = N> = 2trN2.

When an almost K&hler structure is enhanced to a Type ITA structure,
the integrability of J is improved, hence one should expect more identities
satisfied by N. For example, we have already seen that certain divergences
of N are actually terms of lower order term (6.55). In this subsection, we
shall derive more identities and differential equations satisfied by IV, showing
that an almost-complex structure coming from a Type ITA geometry is more
“integrable” than a generic one. We shall also complete the proof of Theorem
3 by proving Part (c).

First, we show that N_% and N2 are related to each other:

Proposition 1.
For any Type IIA structure (M,w, ), the Nijenhuis tensor N satisfies

1
(6.61) N? =2N? — Z\N\Qg.
Proof: In view of (6.45), we notice that
(PiapNSthpgt = _(PpstNSthpia = (PsthStpriaa

SO

—2 t bd —2 t
lp|“N*® prtSOiap@jcdwacw = |p| °N? priasostb@jchaCW

bd
s .

Applying Lemma 8 to both sides, we get
2N Njst — N** Nygrgij = 2N Nygi + 2N Nii.
Converting everything into N?F and N2, we get

—2N? 4 2N2 — N** N} g = 2N2.
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By Bianchi identity, we know that
1
— NNy = N (N, — Nygp,) = trN2 — trN2 = §|N|2.

Consequently
1
N? =2N? — Z\N\Qg.

As a corollary, we obtain the inequality

o _ L
(6.62) 0< N2 <IN
since 0 < N? — N2. Q.E.D.

We now come to the proof of Theorem 3 (c), which is a very powerful
tool for proving identities involving N:

Let us choose a frame at a given point as in Lemma 4. Since N is a (0, 2)-
type T'M-valued 2-form satisfying the Bianchi identity, we get the following
relations:

0 = Nyjj = Ni12 = Nyo1 = Ny3g = Niagz = Nise = Nags,

Nigs = —Ni153 = —Nigg = Nigs = —Noge = Nogs = —Nogs = Nosy,
N1z = —Ni1g3 = N1as = —Nis54 = Nogs = —Nasz = —Nasg = Nogy,
N315 = —N351 = —N326 = N3g2 = —Ny16 = Nag1t = —Nazs = Nuso,
N316 = —N361 = N325 = —N352 = Ny15 = —Ny51 = —Nyzg = Nyeo,
Ns513 = —N531 = —Ns24 = N5a2 = —Ng14 = Nea1 = —Ne23 = Ngsa,
Ns514 = —N541 = Ns23 = —N532 = Ne13 = —Ng31 = —Ngaa = Neaz,

and

Ni13 = —Ni131 = —Ni24 = N1gg = —No1g = Nog1 = —Naaz = Nago,
Ni14 = —Ni1g1 = N123 = —Nisz2 = Noig = —Nagip = —Noog = Noyo,
Ni15 = —Ni151 = —Ni2g = Nig2 = —No1g = Nagt = —Nazs = Nosa,
Ni16 = —Ni1g1 = Ni125 = —Nis2 = Nais = —Nas1 = —Nagg = Noga,
N331 = —N313 = —N342 = N34 = —Ny32 = Nyo3 = —Nyg1 = Ny,
N332 = —N323 = N3q1 = —N314 = Nyg1 = —Ny13 = —Naaz = Nyog,
N335 = —N353 = —N346 = N3gs = —Nuz6 = Nags = —Nags = Nysa,
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N336 = —N363 = N3g5 = —N3s54 = Nags = —Ny53 = —Nagg = Naga,
Ns51 = —N515 = —Nse2 = Ns2¢ = —Ngs2 = Ne2s = —Nee1 = Neue,
Ns52 = —Ns25 = Nsg1 = —Ns16 = Nes1 = —Ne1s = —Nes2 = Nezs,
Ns53 = —Ns35 = —Nse4 = Nsag = —Nesa = Neas = —Neez = Nese,
Ns54 = —Ns45 = N5z = —Ns36 = Nesz = —Ness = —Neea = Neas,

with constraints

Ni3s + N351 + Nsiz3 = 0,
Ni3g + N3e1 + Ne1z =

Furthermore, by evaluating (6.45) at the given point, we get

Ni35 = Ni136 = N315 = N316 = N513 = Ns14,
= N331 — Ns51 = N113 — N553 = Ni15 — V335,
= Ni14 + Nssa = Niie + Nazg = N3z + Nsso.

Therefore N has only 6 independent components at the given point. Q.E.D.
We can choose and name such independent components as
a:= N331, b:= N33, c:=Ni13, d:= Ny, e:=Nyi5, [f:= Nie.
It follows that
IN|? =16(a® + b* + ¢* + d* + * + f?).

We can further express N_% and N2 in terms of these components. For in-
stance, it is straightforward to verify that

Nfr =2X
(12 +a?+b> 0 ac+bd  —ad+bc ae—bf  —af —be]
0 r’4+a?4+b>  ad — bc ac + bd af + be ae —bf
ac+ bd ad —bc  r’+c4d? 0 ce +df cf —de
—ad+bc  ac+bd 0 r’4+c?+d?> —cf +de ce + df
ae —bf af + be ce+df —cf +de r*+e?+ f3 0
| —af —be ae—bf cf —de ce + df 0 r?+e*+ f2)
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1
where 12 = a? + b2 + 2+ d> + e + f2 = E‘N‘Q' Similarly we can find N2

as well. This normal form also allows us to quickly prove that
22 4_ 3
(6.63) INT|® = 48" = E\N\ .

As an application of Theorem 3 (c), we prove that N satisfies the fol-
lowing differential equation:

Lemma 16.
Given a Type IIA structure (M,w, @), the Nijenhuis tensor N satisfies

(6.64) 8NV, Ny = 8N*"D; Ny = D;|N|* + u;| N|2.
Proof: By (6.25), we have

DiNgjt — DsNijt — DjNiis + Dy Njjs
= DyilNysji —DysNyijt — D1 Nytis +D5eNjjis-

Contracting this equation with N, we get
2N*"(D;iNyjt — DsNije + DiNjis) = N (D Nyis — D 1Nt is)-
The LHS can be simplified as follows

LHS = —2N*"D;Ny; +2N"D;Ny; + 2N*"D; Ny,
= 2Nti8(©iNstj + D Njst)
= —2N*"D;Ny;.

On the other hand, we see that
st sti 1 sti 1 2
N*DiNys = —N""DNpg = —§©j(N Nisi) = _Z©j|N| .
Therefore to prove the lemma, we only need to show that
sti 1 2
N9 1iNytis = Zuj\N\ .
or equivalently

) 1
(6.65) NS“@J,Nt,s,Jz’ = Z“Jj‘N‘Q-
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We only need to verify (6.65) pointwise. To do so, at any given point,
we expand the LHS of (6.65) using the normal form of ¢ in Lemma 4.
For simplicity of notation, let us write B = ©;N. Clearly B has the same
symmetry as N, namely it is a T'M-valued type (0,2)-form and it satisfies
the Bianchi identity. By Lemma 4, we get

LHS = ZNsti(QjN)t,st‘

st

= N331(Bs32 — Bi3a + Byz1 — Boss + Bsa1 — Boag — Buao — Bias)
+N331(Bss2 — Bise + Bes1 — Bass + Bse1 + Bass — Bes2 — Bies)
+N332(—B331 — Bozy + Buga + B133 + Baaa — Bag + Bagr — Bay3)
—N332(—Bss1 — Base + Besz2 + Biss + Bse2 — Bies + Bee1 — Bags)
+...

= 4N331(B332 + Bss2) + 4N113(B114 + Bssa) + 4N115(Bi1s + B3se)
+4N332(Bss1 — B3s1) + 4N114(Bss3 — B113) + 4N116(B33s — B1is).

Since )
Djp = 5w+ uy;p),
by taking derivative of (6.45), we get
Qijab(Ppcd + ngpcdSOpab = _quNpab(ﬁpcd;
or equivalently

Bpabcppcd + chdsopab = _quNpab(ﬁpcd-

Evaluating the above equation at the given point using Lemma 4, we get
the following relations

Bss1 — Bss1 = —uj;N332, Bss2 + Bssa = ujjNaau,
B113 — Bsss = —ujjN114, Biia + Bssa = uj;N113,
Bi1s — Bsgs = —uj;N116, Biie + Bsze = ujjNi1s.

It follows that
LHS of (6.65) = 4UJj(N3231 + N3so + Niis + Niig + Niis + Niig)
1 2
= quilNI

Q.E.D.
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7. The flow of the metric in the Type ITA flow

The main task of this section is to prove Theorem 4, which gives explicit
formulas for the flows of ¢ and g, in terms of the curvature and Nijenhuis
tensors.

7.1. A tensor coefficients ODE for ¢: proof of Theorem 4(a)

We begin with the proof of Theorem 4 (a), which gives the flow of ¢. Since
we will be mainly working with the metric g, we shall use g to raise or lower
indices in this subsection.

It is clear that ¢(t) is closed and primitive for any ¢. We can also assume
that ¢ is positive, since this is an open condition and later estimates (7.25)
will show that this property is preserved along the flow. Therefore we get
a family of Type ITA structures (M, w, p(t)). So we can apply formulae in
Type ITA geometry to expand the right hand side of the flow equation. Now
the right hand side is given by dAd(|¢|?¢) = dAd(e*$). Combining (6.40),
(6.30), and = 0, we obtain

(7.1) dp=aAp+3IRE

where T = N — 1(d°G + M(d°@)) by (6.43). Applying Lemma 15, we obtain
dp=NMNX¢ and

d(e"g) =e"(du g+ NKp).

To proceed, we need to compute A(duA @) and A(N K@), which are 2-forms
of type (2,0) + (0,2) and of type (1,1) respectively. We have the following
lemmas:

Lemma 17.
(7.2) (A(du A @))kl = gjiuinpjkl.

Proof: Since (duA@)ijp = Ui Pjkl — UjPiki + UkPiji — W Pijk, by definition
of A, we have

. 1 .. . . . R
(A(du N @) = §w]’(ui<ﬂjkz — W Piki + UEPiji — W Pijk)-

The last two terms in the above expression are zero since ¢ is primitive. In
addition, the first two terms are identical due to the symmetry in switching
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7 and 7, so it follows that
(Mdu A @) = w'uidju = g™ widjr = ¢ wip 1
= ¢"uipj,
where in the last step we make use of Lemma 6. Q.E.D.

Lemma 18.
(7.3) AN B @)y = 297" NP, opjr = =297 N, .
Proof: By (6.31) and (6.46) we see that
AN Q) = wji<Npkl¢pij — N¥y@pji + Ny pijk)-

Notice that the first term above vanishes due to the primitiveness of ¢, and
again, the last two terms are identical because of the symmetry of switching
1 and j, so we conclude that

A(N R @)t = 207 N ppje = =207 NPyop, 150 = 297 N¥yopji.

Here we again used Lemma 6 to simplify our expression. Q.E.D.
Combining Lemma 17 and Lemma 18, we see immediately that

pr = (Ad(e“@)) = e"g” (uipjr + 2NV opik)
(7.4) = (U psp + 2N 1pan) = €2 (u st — 2N 1psur)-

To compute dAd(e*$) = du, we make use of Lemma 13 to get

(7.5) ([d)iar = (TR Wiap+ Y, Dittap-

cyc i,a,b

The first term in (7.5) is already in good shape, since by (6.32) we get

({i X M)i(zb = Z r:gpia/J/pb = 62u Z i‘pia (US(Pspb - 2N8tpsostb)
cyc i,a,b cyc i,a,b
(7.6) = ™ Y 0ua@N, T —uThy),
cyc i,a,b

which is linear in . For the second term in (7.5), we need
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Lemma 19.
(77) éiﬂab = e2u(¢sab(©i + ui)us + 2()Osm(éi + ui)NStb)-

Proof: Plugging in (7.4), we see that

Qilufab = ©i<e2u<us(psab + 2N8tb(psta))
62u(2u’i (“S@sab + 2N5tb<Psta) + Usgi%ab + 2N8tb©igpsta
"Hpsab@ius + Q(PstagiNStb)
(6.44) ~ ~
= e2u(‘psab(©i + Ui)us + 2@31‘@(@1 + ui)NStb).

Q.E.D.

Combining (7.6) and (7.7) we obtain the evolution equation for ¢ stated
in Theorem 4 (a).

Next we justify the remark made after Theorem 4, to the effect that the
function u is determined by §. Indeed g = e"g, and thus to prove the second
part of the statement, we notice that § = e*g, therefore the volume element
associated to g satisfies

3
3uw__

3
dvolz = e”"dvoly, = e 3l

Therefore (in Darboux coordinate) we may write the global function u as
1 -
(7.8) u=z log det g,

which is entirely determined by g. Hence the metric g is also determined
by g, and so is the almost complex structurer .J since w is fixed. It follows
that the Nijenhuis tensor N, the projected Levi-Civita connection D and its
torsion ¥ are also determined by g.

For the convenience of later calculations, we derive a more explicit evo-
lution equation for ¢ than what we have in Theorem 4 Part (a). The starting
point is (7.5), which can be expanded as

(79) (dﬂ)iab = (N X N)iab - (U X :u)iab + Z bi,uab

cyc i,a,b

by using (6.43). The first two terms in (7.9) can be expressed as follows:
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Lemma 20.

(7.10) (N X p1)iap = €2 Z Diap(US NP g, — 2NT, NP ).

cyc i,a,b

Proof of the Lemma: By (6.32), we have

(N X M)iab = Z Npia,upb = 62u Z Npia(us‘ﬁspb + 2NStb‘~Pstp)
cyc i,a,b cyc i,a,b

= e Z Npia(_us(aopsb + 2]\TStb(aO;Dst)

cyc i,a,b
(6.45)

=7 N iap(uNPg — 2N NP ).

cyc i,a,b
Q.E.D.

Lemma 21. For any real 2-form p, we may write p = pu+ + p~, where p+
and p~ are the (1,1) and (2,0) + (0,2) components of u respectively. Then

1._ B 1 _
(7.11) (U R p)iap = —§wqpuq(w A ) piab — 3 Z wgi(B” ) Jab-

cyc i,a,b
In particular, for the specific u in (7.4), we get
2u

1 . e
(7.12) UM iav = @A wwi)iay + 7|du|§%ab

_e2u Z Ui(usgpsab + NStbsosta)

cyclic i,a,b

Proof of the Lemma: By (6.32) and the definition of U (6.28), we have

(U X N)iab = gpq Z qua,ufpb

cyc i,a,b

1. N N N _ _
= ngq Z (2007q@ia + 0 Ji@aq + ja@gi + Aifaq — Calqi) Lpb

cyc i,a,b

1 N N
= 1 Z 207 g Wia phph + CifhJab — CJalbgib + Qiflab — Clafhib

cyc i,a,b

1 1 - -
= 5(04 N 1) iab 1 Z 20" 0y ia fip + OéJz‘(MJa,b - MJb,a)-

cyc i,a,b
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Notice that (@A N)piab = Wialbpb + Wablpi T Whilbpa — Wpatlib — Wpblai — Wpillbas
therefore

O g (@ N ) piab = (A p)iap + 0Py Z Wia tpb-
cyc i,a,b
Hence we find out that

1. - 1
(UM piap = 50Taq(@ A p)piab + > ity = tiva).

cyc i,a,b

Write p = pt + p~, where pt and p~ are the (1,1) and (2,0) + (0,2)
components. Then by definition, we have

(1) gap = W) avas (1 )gap = —(0 ) sba-

So we conclude that
Lo, (~ 1 -
(U X M)iab = _5(*) uq(w A ,Uf)pz'ab - 5 Z uJ’i(:U' )Ja,b-

cyc i,a,b
Now let us apply this to u = Ad(e"). It is clear from (7.4) that
(7.13) (L )ap = eQuusgosab = e2u(L@ug0)ab.

Let W = W3, be the vector field defined by W» = —@%u, = (Vu)’'?, we
see that

- N 1 - 1 1
= 5@ U@ A Wpiab = 5w (@ A B))iab = 5 (O A twH)iab — 5 (du A piab,
hence
(713) 1, 1 1
U p)igy = 5( A LW ) iab — §(du A [t)iab — §€2u Z w i’ Psap
cyclic i,a,b
(7_4) 2u

1,
i(w N LW ) iab — 7(du Aig,p+ JduN g, ©)

2 t
—e* Y wiN* .

cyclic i,a,b
From (4.13) we know that

duNp=—JduN Jp,
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by taking interior product with Vu, we get
|du\§<p —duNig,p = 1o, (duN @) =—ig, (JdunJp) = —Jdu g, .

Substitute the RHS of the above equation back to the previous one, we get

62u

1
(U B piav=5 (@ A tw p)iap + - |dulZ0ian — € > ui(u*Geab + N ppsta)-

cyclic i,a,b

Q.E.D.
Combining (7.10), (7.13) and (7.7), we conclude that

(714) 8t§0iab - (dﬂ)mb

1 62u
= —§(w A LW ) iab — 7|du\?730mb + e Z Diap(u?NP g, — 2N NP ;)

cyc i,a,b

23" (Psab(Di + 2ui)u® + 0sta(2Di + 3u;) N).

cyc i,a,b
7.2. The flow of g,: proof of Theorem 4(b)

By definition of g (4.12), we know that

acwbd acwbd

hgi; = —OtPiabPjcdw — QiabOrPjcaw
(7.15) = —0piapPjeaw W + (i ¢ j).

We only need to compute the first term in (7.15) as the full expression is the
symmetrization of the first term there. This term can be calculated using
(7.14). Tt is useful to observe the following:

Lemma 22. Suppose X is a 3-form that can be factorized as the product of
a I1-form with w, i.e. A =v Aw for some 1-form v. Then

(Spiab)\jcd + )\iabgpjcd)wacwbd =0.

Proof of the lemma. By our assumption, Ay = Viwap + VaWpi + VpWia-
Therefore

bd bd
Xiab@jecdw™ W’ = (Viwab + VaWhi + VpWia ) Pjedw™w

d bd
= ViQjcaw™ — VaPjciw™ + U iqw
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_ ac
= 24w Pijcs

where the primitiveness of ¢ is used. After symmetrization in ¢ and j, the
outcome is zero. Q.E.D.

By Lemma 22, we do not need to worry about the first term in (7.14).
For simplicity of notation, let F' be the 3-form defined by

Fiab = Z SDiap(uszsb - 2N8thpst) + Spsab(@i + 2ui)us
cyc i,a,b
+(,05m(2©i + 3ui)N5tb>
(7.16) = Y ( ppan(u*NPy; — 2N*L NP + (D + 2ui)uP)
cyc i,a,b

+sta (2D + 3ui)NStb>7

and hence (7.14) can be rewritten as
1. e 2
8t(p = —§w A twe — 7|dU|gQ0 +e uF,
and we have that

(7.17) e 2 0uGij + |dulgij = —Fiappjeaw™w™ + (i ¢ j).

The goal is to compute Fiabchdwacwbd. By (7.16) we know

ac, bd
Fiappjeaw™w

= ©jeaw™ WD " ( Ppap(u NP — 2N NPy + (D; + 2u;)uP)

cyc i,a,b
+S03ta(2@i + 3ui)NStb)

= wpabgojcdwacwbd(uszsi — 2NSL NP + (D + 2u;)uP)
+20iap P jeaw WP (us NP gy — 2N NP oy + (D + 2up)uP)
(7.18) +stb P jeaw WP (4D g + 6uq) N — (20; + 3u;)N™,))
= (4)+(B)+(0),
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where (A), (B), and (C) denote the first, the second, and the third line in
(7.18) respectively. (A) can be computed using definition of g (4.12) directly:

(A) = —(uijSi — 2N8tiNj5t + (351 + 2ui)uj)
(7.19) = —’LLSN]'SZ‘ + 2(N3)ij — Q(N_%_)ij — @Z'Uj — QUin.
To compute (B) and (C'), we need to invoke Lemma 8. It follows that

(B) = 290mpg0jcdwacwbd(us]\fpsb — NS NP + (D + 2up)uP)
L ova, - . . .
= QW (WijGpd — WpjGid — WidJp, + Wpadij) X
(uszsb — QNSthpst + (@b + 2ub)up)
(@i5 I — @pj I + Gpj6"i — Gij0"p) X

U NP g — AN NP, + (D + 2up)uP)

N =N

(4N, Njs + 2N Ny Gi; + 010Dy,
H(Di + 2ui)uj + (Dgi + 2usi)ugj — (Dus + 2|dul2) ;)
= 2Ny — 2N — (N + Du, + 2dul3)iiy
(7.20) %((i)i 2y + (D + 2ugi)ug; + DGy
and

(C) = Qanpjeaww((4Dq + 6ua)N*'; — (29; + 3u;) N*,))
= %w“(wsjétc — WtjGsc — Wsedtj + Wielsj) X
(4D, + 6uq )Nt — (20 + 3u;)N*,))
= %(a)sjjat — Qg% 4 Gij0%s — Gsj0”t) X
(4D, + 6uq) Nt — (20 + 3u;)N*y))

(7.21) = —(2D° 4 3u®) Nig;.

Combining (7.19), (7.20), (7.21), and (7.17), we get
Btgij = 2 2(©k + Zuk)(Nikj + Njki) + 2u,-uj - QUJZ'UJJ‘

P - - )
(7.22) —|—§(®in +Dju; — D pug; — @Jjuji) + (D%us + |du\£2~, + ’N’g)gq .
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Equation (7.22) is self-contained in the sense that its RHS is entirely deter-
mined by the metric ¢ and the ¢-dependence is fully eliminated. However,
to study its analytic behavior, we need to rewrite it in a more familiar form
as we have in the case of Ricci flow or the Lé-Wang flow [33]. Moreover,
we would like to replace all the D-derivatives to V-derivatives as it is more
convenient for us to apply the conformal change technique.

Notice that

k 2~
C‘Diuj = Viuj — U Nikj + —(wu; +ugug; — |du|ggij),

i
therefore (7.22) can be rephrased as

Nhgi; = e [(2i~7k + 3uF) (Nigj + Nigi) + (V2u)ij — (V) 5i g
+2uuj — 2ugiug; + (Au+ |N|§)§Zj] .
Taking (6.59) into account, we obtain the desired formula
Ohgiy = e [ — 2R;; — 2(V*u)s; + 4u* (Nyj + Njki) — 4(N?);
(7.23) +uuj — uging; + (!du|§ + \N@)glj] .

Q.E.D.

Recalling that v = (1/6) log detg, we can derive from (7.23) that

2u
_ _ 2
o = ( Au— R+ 3|dul? +2]N|)
(7.24) CL0 e2u(Au + |NJ2).

By the maximum principle, we immediately prove the following estimate

Lemma 23. Suppose ¢(t) is a solution to the source-free Type IIA flow on
M x [0,T]. Then

(7.25) [p(t)]* > min [o|*

for any t € [0,T].



756 Teng Fei et al.

This lemma has the important consequence that if ¢(¢) is a solution to
the source-free Type ITA flow on M x [0,7] with primitive closed initial
data, then o(t) remains positive on M x [0, T], which allows us to define the
almost-complex structure J and the metric g. Indeed, the lemma implies
that \/—\, = %|g0\2“§—,3 cannot pass through zero.

7.3. Conformal transformation to a perturbed Ricci flow

In this subsection, we wish to establish the uniqueness of the flow (7.23).
Besides the Ricci curvature, the right hand side of (7.23) also contains the
2nd order term V2u, which cannot be reparametrized away since this would
change the symplectic structure and the reparametrized flow would be non-
local. Therefore we need a different technique to deal with the Hessian term,
namely we absorb it in the Ricci tensor by a conformal change of metric.

More specifically, we consider a family of conformal Hermitian metrics
g = e%tg, where we have ¢(©) = g and ¢(!) = §. Notice that all the metrics
g(s) are equivalent except for s = 0, in which case we need the pair (g, u).
This is because one can solve u from ¢(®) when s # 0 by

1

o log det ¢®*).

u =

Thus we only need to show the short-time existence and uniqueness of any
of the flows satisfied by ¢(*) with s # 0, or that for the coupled flow (g, u).
To begin with, we first compute the evolution equation satisfied by the pair

(9, u).

0:9ij
= (e "giy) = e "(Ogij — Oru - Gij)
= e | — QRZ‘J' — 2(@2u)ij + 4uk(Nikj + N]]m) — 4(NE)Z]

Fuju; — ugiug; + (|du|£2~7 — Au)gz]}

= e | — 2R;j + 2(V2u),;j + Uju; — u U g
(7.26) +4u" (Nigj + Njii) — 4(N2)m}

O3 geu| — (R + (V)™ )ij + ((du® du) ™ );;
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(727) —|—2u8(Nisj + sti) .

Meanwhile (7.24) can be rewritten as
(7.28) dpu = e“(Au + 2|dul® + |NJ?).

Using the same method, we can derive that

v

atg(§) — ols+Du| _ QRZ(;) +(2—45) (V) 2u) 5 + (1 + 25 — 25P)uiu;

(7.29)  —ugiug; + 4" (Nigj + Njri) — 4(N?)ij + s(|dul2e) + N2 ))QU)]

= et [3 (2RO 4 (1= 29)(VO)Rut (14 5 — s2)du 0 du) ™)
L 1]

§<s>> gz(]s)]

(7.30)  +4uF(Nigj + Njpa) + 5 (A(s)u +2(1 - 8)|dul2, + N

Formulae (6.54) and (6.55) now take the form
1

Ry = VN N+ (% = 25)(V)?w)ij + S (V) 2u).gi g
—i—%(l — 2s)usuj + gUJiqu + %uk(]\fikj + Njki)
(7.31) 2Ny —2N})y — 5ACugl) — Z(1 - 29)lduf2 g},
and
(7.32) VENF, = 582_ 2 ¥ Ny

1 1
In particular for s = 3’ from (7.29) we know that the metric § := g3

evolves by
3 - 3
8tgz'j = e2" |: — 2Rij + §U¢Uj —UgiU gy + 4uk(Nikj + Njki) — 4(Nz)ij
1
139y (0 VB .

where the only 2nd order term on RHS is the Ricci curvature term. We
stress that it is important to keep in mind the fact that g;; arises from a
conformal change from a Type IIA geometry.
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7.4. An integrability condition: proof of Theorem 5

We now prove Theorem 5, which provides the key integrability condition
needed later to establish the uniqueness of the Type IIA solutions to the
flow (7.33) of the metrics g;;.

We know that for the Ricci flow, the integrability operator L comes from
the contracted Bianchi identity. Since our flow (7.33) can be viewed as a de-
formation of the Ricci flow, our L should be a deformation of the contracted
Bianchi operator. Let us simplify our notation in (7.33) by introducing the
tensor S defined as

3
(7.34) Sij L= §uiuj - ’U/Ji'LLJj + 4uk(Nikj + Njki) — 4(Nz)ij

1 5
"‘5 (Wé + |N|;27) Jij
so (7.33) can be written as
(7.35) Ougij = ex"(=2Ri; + Sij),

where we can think of S as the lower order deformation term of the Ricci
curvature. Let Ly denote the contracted Bianchi identity operator defined
by

Lo(P); == 24"V Py — gV ; Py,

for any symmetric 2-tensor P. We know that Lo(—2R) = 0. Now we would
like to look for a zeroth order linear operator Z such that (Lo+2Z)(—2R+5S)
is of degree 1 in the metric §. To do so we need to compute Lo(.5) first.

Proposition 2.

. . 8 -
Lo(S); = 4uRy; —8RyN™; — Sl - 16u*(N2)g; + 2usup N*3
1
(7.36) +§uj(2|du|§ —5|N2).

Proof of the Proposition: We apply Lo to each term of S in (7.34) to get

ng(du & du)j =3Au- Uy
—Lo(J*(du ® du)); = 2gikuk(v2u)J¢,Jj—i—vj]du|§—2gikusut7i(Jsttk)
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= 2§ikuk(ﬁ2u)ﬁ,” + ?]]du@ + 4usuk.Nksj,
4LO(Uk(N*k* + N*k;*))] = 8(v2U)Skasj + SUSvi(Nisj + sti),
—4L0(N3)j = —8g’kvk(NE)U + ij|N‘§,

1 5 - .
S Lo ((1dul? + IN2)g) = ~2¥|duf? — 2N 2.
To obtain these expressions, we need to use that

ViJ®r = —2Nj°,

. 1
ViJ®r = —=2Np° + Z(th5si + Gau’® — Gyu® — upJ%;)

and we raise and lower indices using the metric §. Combining the calculation
above, we get

LO(S)j = 3ujAu + 2ui(72u)Ji7Jj + 8(v2u)SkN’“j + SUSvi(Nisj + sti)
(7.37) —8V!(N2);; — Vjldul? + dugu, N*;.

1
Take s = 5 in (7.31) and (7.32), we get

- 3 1, - 1 .
Rij = —(V" - Zuk)(Nikj + Njki) — §(V2U)z‘j + §(V2U)Ji,Jj

1. 1
(7.38) —ZAU - Gij + ZUJZ"LLJ]‘ + Q(Nz)ij — Q(N_%_)ij,
. 3 - 1
(7.39) R=—JAu+ Z|du\§, — N2,
1

(7.40) VFNyi; = ~ufNyij.

ZU
Using (7.38) and (7.40), Equation (7.37) can be rearranged as
Lo(S)j = 3UjA’U, + 2ui((v2u)Ji,Jj - (vQU)”) - 4u57i(Njis + Nsij + 3Nijs)
+8(v2u)skasj - S?Z(NE)U + 4usukasj
= 4USRSJ' + 4UJ'AU + 8(v2u)8ka8j — SvZ(NE)U + 4usukaSj
+8u*(N2)sj — (V?)5)
. 8 . - .
= duRy; — qu; R+ 8(V2u) g N*s; — 8VI(N2);; + dusu, N*;

(T41) 480 (VD) = (N2)g) + s (duf? — 4|V )
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By (7.38), we also know that
(V2u)u N*3;
- 3 g 1
= (V7= ) (N + Nips)N*s; — Ry NFs, — Zu’%mvksj
. - 1
= —RuN*; — VP(2Npps + Npsp) N5, — Zu’mSNksj
3
— U (NE+ N2),,
1
Zukustsj
_ P ks . 7P 2y kspye ._}ks .
= —RaN"j 4+ 2VP(N3)p; — 2N*PV, Nysj — Juu’ N

. - 1
= —RyNF; +2N* VPN, — 5up(NE +2N2),; —

1
—iup(NE +2N2),;

. 1
ViING =2

4uku5Nk5j

. - - 1

= —RaN™j+ VI(N2)jj — 2N*PV Nygj +
1

(7.42) —§u5(NE +2N2),;.

Plugging (7.42) in (7.41), we get

. . 8 . - -
Lo(S); = 4u’Ry; — 8R4 N*, — gujR — 16N**V, Ny,sj + 2V;|N|?
7.43 1208 (N2 ) + 2u5up N** 5 + 20 (|dul% — 4] N2
(7.43) —12u®(NZ)gj + 2usuy, J+§uj(‘ uly — 4[N[3).
To deal with the remaining second order terms in (7.43), we rewrite (6.64)
using V-derivatives as

] | 3 -
8Nk3pvaksj + QUJ"N@ — 2ul(N%>ij = §UJ|N|§ + Vj‘N’;

Incorporating this identity, we see (7.43) becomes
. . 8 .
Lo(S); = 4uRg; —8RyN"™; — Sl - 16u* (N2 )g; + 2usu N*°

1
+§uj(2\duy§ —5|N3).

Q.E.D.
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Let Z be the zeroth order linear operator defined by
i st 4 - st
Z(P)j = 2u Pij — 4N szt — gu]g Pst7
then (7.36) says
. 1
Lo(S); = Z(2R.s)j — 16u’(N?)gj + 2usup N*; + guj(2|du|§ — 5IN[2).
Consider the first linear operator L1 = Lo + Z, then
= Lo(S); — Z(2Ru); + Z(S);
1
= —16u*(N?)s; + 2usu N*; + guj(2\du]§ —5|N[?)
2
+8u®(2N2 + N2),; — 2usup N*; — 5uj(|du\§7 +2|N[2)
= —u;|N|3

is of first order in §. Therefore if we define the first order linear operator L

by
L(P) = Ly(e"2"P),

then L is an integrability condition for the flow (7.33). Theorem 5 is proved.
Q.E.D.

7.5. Return to the proof of Theorem 2: uniqueness

It is now easy to establish the uniqueness part in Theorem 2.

Assume that we have two closed, primitive, and positive solutions ¢(t)
and ¢'(t) of the Type ITA flow on some time interval [0,7T) for some T > 0,
with the same initial data ¢(0) = ¢'(0). By Theorem 4, the corresponding
pairs (¢(t), g, (t)) and (¢'(t), g (t)) satisfy the flows in Theorem 4. Since the
geometries (w, Jo, g,,) and (w, Jo, o) are by definition Type ITA geometries,
the corresponding flows for g, (t) and g, (t) satisfy the integrability condi-
tion in Theorem 5. Since the principal symbols in the flow of §;; and the
integrability condition L are the same up to a multiplicative factor as their
counterparts in the Ricci flow, it follows that the flow of g;; together with
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the integrability condition L satisfy all the conditions in the Hamilton-Nash-
Moser theorem ([29], Theorem 5.1). By the uniqueness part in this theorem,
we conclude that g;;(?) and g;;(t) must be equal. But then ¢ and ¢'(t) satisfy
the same ODE with the same initial data and hence must be equal. Q.E.D.

7.6. Monotonicity formulas

Recall that the function u evolves by
(7.44) ru = e“(Au + 2|Vul? + |N?).

From (7.44) one can derive a number of things.

Proposition 3.

(7.45) m]\/i[n u(t) > mj\/iln u(0),

Proof of the Proposition: Apply maximum principle to (7.44). Q.E.D.

This proposition can be interpreted that if ¢q is initially positive, then
p stays positive as long as the flow exists. This is because that the only
possibility for ¢ leaving the positive cone is that it first hits the wall of
degeneracy defined |p| = 0, which contradicts the above C%-estimate.

Like its Type IIB counterpart [20], one has the following monotonicity
formulas for the dilaton functional along the flow.

Proposition 4.

w0’ (p+1)u 2 N
) o [ ei—p [ (- pIval ¢ INP) 5
M : M '

If we denote [ €™ by E,, then it follows that E, is monotonely non-increasing
along the flow for p < 0 and it is monotonely non-decreasing along the flow
for 0 < p < 1. In particular, the Hitchin’s functional Ey [30] is monotonely
non-decreasing along the source-free Type IIA flow.

8. Estimates for the Type 1IA flow

Recall that the Type ITA flow becomes the following flow for the pair

(9(t), u(t)):

8tgij = e“[ — 2R2‘j + QVZ'VJ'U — 4(NE)U + iU — U U
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+Hup (NP5 + Nj73)]
(8.1) du = e"[Au+2|Vul* +|N|?]

In this section, we show that if |u|+|Rm(g)| < C remains bounded on [0,T),
then the flow can be extended to [0,7 + €) for some € > 0.

To start, we examine some consequences of the boundedness of the Rie-
mann curvature tensor. We note that by equation (6.22), a bound on Rm
implies a bound on |N|2. Therefore we may assume

(8.2) lu| + |N|* + |Rm| < C.
Next, since the Ricci curvature Ric is also bounded, so are its J-invariant

and J-anti-invariant parts. From (6.56), we know that the J-invariant part
of the Ricci curvature (R”);; is given by (Ric’) = (VZu)’ — 2N2. As |N|?

1 1
is already bounded, we conclude that §(V2U)i]‘ + §(V2U)JZ’7J]' is bounded,

namely, the J-invariant part of V2u is bounded. Consequently Aw is also
bounded.

Our goal will be to obtain bounds on all derivatives of u, N, Rm. For this,
we must first compute the evolution equations of V¥u, V¥N and V*Rm.

8.1. The evolution of the derivatives of u
In this section, we compute the evolution of |Vu|? and |VVul|?.

8.1.1. The evolution of the gradient of u. We start with
(8.3) Bt]Vu\2 = 2gijvi1lvju — gi“gabgbjuiuj.
The differentiated evolution of u is

(8.4) Vit = e (V;Au+2V;|Vul®> + V;|N|?)
+e¥ (Au +2|Vul® + |N|?) u;

Commuting derivatives

(8.5) ViAu = g’"V;V,Vu = AVu — gqu,;pAqu)\
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Therefore the first term in (8.3)

QQijViiLVju = 2" (gijAviuvju — gqupi)‘quAui + 2gijVi|Vu|2uj>
+g7 VN Pu; + 2¢" (Au + 2|Vul? + |N|?) [Vul?
= “(A|Vul]? = 2|VVul* — 2RMupu; + 8(VVu) T uu;
(8.6) +2¢" V| N [Pu; 4 2Au|Vul® + 4|Vul* + 2|N|*|Vul?)

The second term in (8.3) is

g gy = € |2RY — 2VIVIu + A(N2)1 — du, (NPT 4+ NIPH) |y,

—e!|Vau|* + e [w ugug] [w upug]

(8.7) = €“|2RY —2(VVu)Y + 4(N?)7 | uju; — "|Vul?

The term (NP7 + NIP%)uy,u u, vanishes since NP7 is anti-symmetric in p and
J, and NP is anti-symmetric in p and i. Altogether, (8.3) becomes

(O — e"A)|Vul* = ¢ { —2|VVul? + 2" V;|N|?u; + 2Au|Vul* + 3| Vul*
(8.8) +2|N | Vul? + 6(V2u) Y uu, +4(N3)ijuiuj]

The identity N2 = 2N3_ — %|N|2g implies

(O — e“A)|Vul)? = e“[—2[VVu\2 + 29V N|2uj + 2Au|Vul* + 3|Vu|*
(8.9) +|IN?|Vul? + 6(Vu)uu; + 8(Ni)ijuiuj] .

8.1.2. The evolution of the Hessian of u. We use as usual the notation
u;j = ViVju = (VQU)U‘. The variation of the Hessian is

(8.10) Ayuip = ViVpis — Ijua.

Differentiating (8.4)

VoV = €“|V,ViAu+2V,V;|Vul* + V,V,;|N|?
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+e* [Vl-Au + 2V¢|VU‘2 + VZ‘N‘2:| Up
(8.11) +e" [Au+2|Vu]2+\N]2}uip+(z’Hp)

Commuting derivatives, we see that

VoVidu = ¢V, V. ViViu — gV, (Ria pun)
= ¢""VaV,ViViu — g Rap iting — 9™ Rap™yuin
—g""Vp(Ria™oun)
= AV,Viu— g"Va(Rp iun) — ¢ Rap™itinp — 9" Rap i
—g“"Vp(Ria™bun)

Therefore
VoVt = e"Auy, + e [4gabuiaupb}
+e" [VRm « Vu+ V2N « N + V3u % Vu}
+et [v% * O(Vu,Rm,N) + VN * VN + VN % N x Vu}

Here we used the identity R = Au — |N|? on the term e“Au u;p.

Before further proceeding the computation, we explain the notations
used in the above formula. The terms written as « * 3 represent contractions
of the tensors a and 8 which are linear in both «, 8. In later computation,
we will also use (a4 ) * (6 +n) to represent the linear contractions among
the tensors «, 3,y and 1. The notation O(Vu, Rm, N) indicates terms which
only depend on Vu, Rm and N (but the dependence may be nonlinear). We
will soon prove a gradient estimate |Vu| < C, so that O(Vu, Rm,N) will
be treated as bounded terms.

Next,
"\ g™
(8.12) = Dipux = _T(_vugip + Vpdui + Vigup)ux
Since
(8.13)

Vugij = VM e“(—2Rij+2ViVju—4(N3)ij+uiuj—uJiqu+4up(Nipj+iji))
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we get
—fg\pu,\ = e [VRm * Vu + V3u x Vu| + O(Vu, Rm, N)
(8.14) +e" [VQu * O(Vu, Rm,N) + VN % (N + Vu) « Vu

Therefore
(6t — e“A)uip

= e [4g“bumupb] + O(Vu, Rm, N)
+e" [VRm *Vu—+ V2N x N 4+ V3ux Vu
+et [v% % O(Vu, Rm, N) 4+ VN %« VN + VN % (N + Vu) * Vu

Next, we compute

(0 — e"A)|VZ2ul? = 2¢"gP1(0; — e“"A)uipujq — 2e*|Vul?

(8.15) —9" Gavg" ¢ iptiiq — 97 97" Gabg  uiptijq.
The first term is then
29" gP1(9y — €“A)uipujq

=e¥ [SQCLbumupb(VQU)ip] + O(Vu, Rm, N) * V?u
+e¥ {VRm « Vu+ V2N « N + V3u* Vu| * Vu
+e¥ [v% % O(Vu, Rm,N) + VN %« VN + VN x (N 4 Vu) * Vu [+V?u

Since gqp = 2€"uqp + O(Vu, Rm, N)
(8.16) (0 — €“A)|V2ul?

=el [4g“buiaupb(v2u)ip] — 2e"|V3ul? + O(Vu, Rm, N) x Vu

+e¥ [VRm*Vu—i—VzN*N—i—V?’u*Vu * Vu



Geometric flows for the Type ITA string 767

+e"|V2u  O(Vu, Rm,N) + VN « VN + VN % (N + Vu) * Vu |+V?u

8.2. The evolution of the Nijenhuis tensor: proof of Theorem 6(a)

8.2.1. Rewriting the flow of the complex structure. The almost
complex structure is given by ka = wkigij. Therefore, 3thj = w’”@tgij.
By substituting equation (6.53) for the Ricci curvature R;; into the flow of
metric 0;g;; (8.1), we obtain

b = e“w’“'{zmpNipj — JPJUV  Vpu + ViVju
(8.17) +uiu; — uging; + 2up NPy + 6upNipj}.
This simplifies to
o = e“{ukq@qupj — JUV VEu+ J*, VIV
(8.18) +ulfu; — uFug; + 2u, NPIF 6upNJk’pj}.

Converting covariant derivatives using V,VP = 2,VP + Ng,\pVA, we obtain

48 D,N?; = —4JF D, NP
_4qu(vaqu - NpAqN)\jp + ij)\Nq P — Np/\qujA)

Using the symmetries of the Nijenhuis tensor, this is

4T D NP, = —4JF VNP — AN\ TENYP ;4 ANPA NTF )
= —4JF V,NUP — AN TP NP, 4 ANPA (= N,TF ) — Ny, TF)
(8.19) = —4J% VNP — §(N?)7*; + 4(N2)7*,

using (N2);; = NPA,N,y; and (N2);; = NP, N,,;. Thus

nJ*; = e“{ —4J* V,NUP — J9UN V4 J* VIV ju
+ulFu; — uFugy + 2u, NP7F 4 6u, NP,

(8.20) —8(N2)7*, +4(N3)ka}.
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8.2.2. A first formulation of the evolution of the Nijenhuis tensor.
We start with the identity

(8.21) ViJ*; = —2N;;7’k,
which follows from the formula relating V to ® and V;, ij = —Njy; JE Indeed,
(8.22) Vijkj = @Z‘ka + Ni,\kJ)‘j — Jk/\N,;j)\ = —2Nij‘]k.

We can expand (8.21) and obtain

1 1 1
(8.23) JEpNy? = =5 Vid®j = = 500" = S (TR = JAAT).
Differentiating this gives
. . 1 . 1 . .
(824) JkpNijp + JkpNijP = —Qvijkj - §(F?AJ)\j - JkAF?j)’

which leads to
1 . . 1 . .
(8.25) atNij£ = ijékvijkj + JEkapNijp + i(JekFgJ)‘j + Ffj).

We will introduce some notation to group terms. We first introduce the
tensor Z given by

(8.26) Zy?t = T4, + T

Next, we denote J¥; = e*E*;, where by (8.20),

EF;, = —4J* VNP — JUV Va4 JF VIV
+Jkpupuj — Jpjukup + 2Jkgupije + 6Jkgup]\7[pj
(8.27) —8JF (N2 + 4T%(N2)Y,.
We write
V.EY;, = —4JF,V,V,N9P — J9V,V V4 J* V,VIV,u
(8.28) + I Vi(uPug) — JP Vi (uPuy) + Vi,

where

Y,k = —av,.JF VNP — Y, UV Vi + Y, JF, VIV ju
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+V, JE Py — Y, JP juF g, + 2V, (T uy NPE) + 6V, (% u, NP5

(829) =8V, (JE(N2) ) + 4V, (JF(ND))
Therefore
Jfkvijkj = Jfkvie“Ekj—kJéke“ViEkj

= v [4%vaij R A% £ VAV VAT VA VA VY
(8.30) —Vi(ueuj) — JekajVi(ukup) + JekY;kj + uZ'EJej .
Substituting this,

1 1
XNt = e [ —2V,;V,N?; — §ﬂkﬁjviqu’m - 5viv‘vju

1 1 1
—ivi(uﬁuj) — §J€kﬂjvi(ukup) + §ﬂknkj
1 1
(8.31) +§uiE”j + J%ER NP |+ §Zz-j-”.

To interpret the highest order terms, we will need the following identity. We

claim:
1
ANije = =2ViVpNe’j = ViBej — 5V (Ryije — Ry,i,gj,¢)
1 1
Vi, Vp NPy + 5ViVeVju+ S ViP5V Vau)
(8.32) +2 [vp(prNm) — VP(Nij" Npr) + Vi(N2)gj — Vi(N2)g5] -

We assume identity (8.32) for now and give the proof in §8.2.3. The evolution
of N becomes

1
Nyt = et [ANU@ — ViV'Vu+ ViR + §Vp(Rpijz — Rypi.gj00)
1 ¢ Je ITa)..¢ e—“Z Je
—i(uiuju +uiUJju )+( a)i]’ + 7 ij

(8.33) +Rm* N + VN % (N + Vu) + N> + N2 Vu + N  (Vu)?
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where terms involving VVu will need to be tracked for future use, and are
given explicitly by
1 1 1,
(Ma)i" = =2 Vilu'uy) = 5J5I75Vilubup) = 59" Vi( I T15) (V2u)pg
1
+§ﬂk { — ViJG(V2u)F + Vi T5 (V2u) ) + 205, (V2u), NP7
1
+6J’€r(v2u)ipzvmj] + iuiﬂk [ — JL (V)R + TF (V)
B3 | = ST ST N
which, using V;J* j = —2Ny; Jk and simplifying, become

1 1
(Ha)ijé = —§Vi(uéuj) — iﬂkﬂ’jvi(ukup) + Nig‘]p(v2u)p7jj —Nij‘]q(Vzu)”q
WLNZ‘J'J(I(VQU)qJZ + Niqg(v2u)qj - (v2“)ipij€ - 3(V2U)ipN€pj

1
(835)  —juw (qu)”Jﬁ(v?u)Q} — {(VQU)J,,Ju(v?u)fp Nij?.
Next, we claim that

) 1 : . 1 .
ZZHJP = Vig*; + 5(—Vpgij + ngpi) + §(wernj — w"erj)VTgin
(8.36) +(NP" gjr + Nig"g"r).
We assume identity (8.36) for now and give the proof later in §8.2.3. Sub-

stituting the evolution of g;; (8.1) into this expression for Z;;7? and then in
our expression for atNijf, we obtain

1
O N; L= e A]\Q‘jZ — VZ‘VEVJ'U + VZ‘RKJ' + §Vp(Rpije — gETR ,i’Jj7J7«)

1 1

~V,RY; — 5(—V£Rij +V,;RY) - §(WJ"J- — W)V Rin
1 l 0 1 rl n nt gr

+§(—V VZ‘V]'U + VjV Viu) + §(w J j—w J j)VTVNnu

+V,VV,u + Ric* Vu + (ITa);; + (ITb);;

(8.37) +Rm* N + VN % (N + Vu) + N> + N? % Vu + N * (Vu)?
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where terms of order (Vu)? (e.g. u;uju’) have cancelled and the additional
terms involving V2u are

1
(Hb)ijg = §[Vz(u£u3 — u‘]gujj) + 4(V2u)m’(Népj + ijg) + 2ui(V2u)€j]
1 74 2 4 p P 072
=1 [V (i = wgiug;) + 4V (NP + NjPi) + 2u7(VVu)ij)
1
+1 Vi (i’ —ugu®) + A(V2u)py (NP NP2+ 205 (VP0), ]
1
+Z(WMJ”]’ — wMJTj)[VT(uiun — UJiUJj) + 2ur(V2u)m]
(8.38) FA(V2U)pr (NP + NoPi) + (N7 (V) jp + Nij" (V20)).

Since we can commute V,V;Vu = V;V,V;u — Ry;P;u,, the terms of order
V3u in (8.37) cancel. We are left with

1 1
BtNijf = e¥ A]\/Vijz + §VpRpij£ — §anjrjvapirn + Ricx Vu

1
2
1

+5(—Rj2piup + RJeiijup — Rijip"Mup) -+ (Ha)ijé + (Hb)ijé

—_

(=V* Ry + V;RY) — (W™ — w™J" )V, Riy,

\)

(8.39) +Rm* N + VN x (N + Vu) + N> + N? % Vu + N * (Vu)?|.

The terms of order VRm also cancel. Indeed, the Bianchi identity is

VPR i + VIR jpi + V;RPp = 0

and hence
I prn ¢ _ loppi 1 ¢ ¢
(8.40) §V Rpij = §V Rj pi = 5(—V Rij + VjR z)
For the terms involving w, J, the same argument gives
(8.41)
1 nl 3r ~xo7p 1 nl r op 1 nt r
— iw J jV sz‘rn = —§w J jV Rn”'p = iw J j(van‘ - VTRm)

This is the same thing as

1 1
(8.42) - §w”4JijpRpm = 5(MJ”]- — W™ J" )V, Rin
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Putting these identities back to (8.39), we get the cancellation of the VRm
terms. Thus

8tNijk = e ANi]’k + (Rm * Vu)”k + (Ha)”k + (IIb)Uk
(8.43) +Rm* N + VN % (N + Vu) + N3 + N2« Vu + N * (Vu)?|,

where the (IT) terms involve V2u and are explicitly given in (8.35) and (8.38)
and Rm x Vu is of the form
(8.44)

1 .
(Rm * Vu);;* = 5(—Rjkpiup + RIMP jiup — Ry Fuy) + (Ric x V)",

8.2.3. Proof of identity (8.32) and identity (8.36). Proof of iden-
tity (8.32): The starting point is the identity (6.11) for the action of J on
the Riemann curvature tensor. Recall that in the case dw = 0, (6.4) and
(6.5) specialize to A = N = T, and so the identity (6.11) becomes

Rijykg— Riji = 2(DiNji —DjNigy + N"ijNypa)
(8.45) = 2(®iNjp —DjNiws + Nji" Newy — Nij"Nywg),

using Njjr + Niij + Njx; = 0. We can convert DN to VN. For example,
(8.46) QiNjkl = ViNjkl + Nierrkl + NikTNjTl + Nierjkr‘

After converting ® to V, (8.45) becomes

1
(8.47) VjNigk = Vl‘Njgk + §(Rjik€ - Rj,i,Jk,JZ) - 2NjkrNiér + 2NikrN]'@T'

Differentiating this identity, we obtain
1
VoVplNiij = VoViNpij + 5Va(Byrji = Rpr,1,71)
(848) —2vq(ijTN]%‘T) + 2vq(N]€erpir).
By the Bianchi identity,

ANijk = _ANkij"‘ANjik
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1
= —VpVilNPij = 5V (Bykji — Ry k.5j,01)

(8.49) —{—QVP(ijTNkiT) - QVP(NijNpiT) + ANjik
Therefore
1
—ANji, + ANy, = —VipVpNPi; — §Vp(Rpka‘ — Ry k.75.7i)

+[Vk, Vp]Npij + QVP(NPJ'TNMT) — 2Vp(NijNpir)
1
= ViVpN%i = VeVpNi®j = o VP (Rprji — By 1,71)
(8.50) +[Vi, VI NPy + 2VP (Np;" Niirr) — 2VP(Nigj" Nyir)

The formula for Ricci curvature in Type ITA geometry given in (6.54) is
(8.51)

1 1
VNP = =V,N/*; — R;; + 2(N3)ij — Q(N?r)ij + §(V2u)i]~ + §(V2U)JZ'7J]'.
Substituting this into (8.50),
1
= —2VEVpNiy = ViRij = SV (Bykji — Rypyp.1,01)

1 1
+[Vi, VNP + §VkViVju + ﬁvk(inquvaqu)
(8.52)  +2VP(Np;" Niir) — 2VP(Ni;" Npir) + 2V(N2)i5 — 2V (N3 )5

This proves the identity after using N;;i + Ng;; + Njx = 0. Q.E.D.

Proof of Identity (8.36): The variation of the Christoffel symbol is given
by

. ps
Thus
. . gpS
Zijp = anjnj — JpnF”ij = 7(—ngz‘njnj + Vigan"j + J"jVan‘s)
ns
(8.54) g JPn(=Vsgij + Vidsj + Vjdis)-

2
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Therefore
Je g’ . n - "o
Zz'j = TJ p(—ngmJ j+ Vigsnd 4§+ J jvngis)
ns

(8'55) _%Jept]pn(_vsgij + vigsj + ngz’s)a
which becomes

Jp gPe r . n 1 p: -p -p

Zij"t = = I Vigm "+ 5 (=Y + Vighi + V%)
1

(8.56) +§(prJ”ergin — w”erergm).
From the evolution equation of g, we have the identity J";g,nJ"; = —gij.

Therefore the first term

9 o m
(8.57) —7J SV,;ng 7

gP® ) gP® ) grs .

= _TVi(Jrsgranj) + 7viJrsg7‘anj + TJTSQTnViJnj
simplifies to
ps . 1_ . . .
(8.58) - %Jrsvigrnt]nj =5 Vig'y + Ni¥"grj + g nNij".
Therefore
. 1 ) . 1 . , .

Zii’" = VP + 5(_vpgij + V;gPi) + §(WTpJnergm —wW"J" iV Gin)
(859) +Nip7“grj + gpnNZ'jn.
Q.E.D.

8.2.4. The evolution of the norm of N. The norm of the Nijenhuis
tensor, which is |N|? = gijgpqngNipkqug, evolves by

(0 — e“A)N|? = 2N, (9 — e“A)N;;* — 2e*|VN|?
(8.60) —9" 4rsg® Nipe NjP* — 26%" 4,3 g* Nipp N2 .

By the equation for the evolution of g;; (8.1), this is of the form

(0 — e"A)|N|? = 2NY(0; — e“"A)N;;F — 2¢*|VN|?
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+e"| — 2(V2u)ijNipkijk — 4(V2u)k€NipkNipg
(8.61) +N?% (Rm+ N+ N + Vu* Vu+ Vu x N)

Substituting (8.43), we obtain
(0 — e“A)|NJ?
= €| = 2|VN* + 2N (ITa + IIb);;* — 2(V2u)" N;pp N;P*
—4(V2u)MNipkNipg + 2N, (Rm * Vu)ijk + Rm x N?
(8.62) +VN * N * (N + Vu) + N* + N3« Vu + N2« (Vu)?|.
The expressions for the terms (Ila+1Ib) are given in (8.35) and (8.38). A cal-
culation can be done to verify that each term N%y(Ila);;* and N (IIb);;*
only contributes terms of the type (V2u) * N? since the others vanish by
symmetry. For example, if we denote the terms on each line of (IIb) (8.38)
by (@) + (i) + (ii) + (iv) + (v), we have
, 1 i
(Z) = iszg[vi(uZUj) — JZTJSjVZ-(uTuS) + 4upi(N6pj + ijﬁ) + 2uiu€j]
- —aay g,
(8.63)= 2uf;(N“J + NIYNyj, + 2upi (N9  NI9YNj, = 0
where we used the symmetry N¥, = —N%/J the identity N>/7 ;. = N¥,,

and the Bianchi identity N;ji+Ny;j+Njr; = 0. The symmetry N4, =—NtJ
allows us to combine the (i7) 4 (¢i7) terms:

(8.64) (i4) + (4id)
1 .
= —§N”3[V£(uiuj) — J’"Z’Jsjvﬁ(u,«us) + 4upZ(Nipj + iji) + 2u£uij]

1 ..
= —§N”g[2u€iuj + 4up£(Nipj + iji) + QUE’LLU]
= 2u, (N N;;P) + 2u, (N, N;;P)

where we used N/477, = — N, Next,

1 ..
(iv) = §N”gwMJ”j[VT(uiun)—inanVT(upuq)
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+up, (NP + NpPi) + 2uruin)
= Nijng’EJ"j [Upitin, + Uity + 2Upr (Ni¥n + Nps) + trttin)
= =N 50g" [urittn + uittrn + 20 (NP + NiPs) + trttin]
= —N"ubu, + uby + 20 (NP, + NoPo) + ubugn)
(8.65) = 2u',(N"™NipP) 4 2u (N NpiP).

The computations of the other terms is similar. The result is then
(8.66) (8, — e“A)|N|?

= | = 2[VNP> + (V2u) * N? 4 2N (Rm * Vu);;*
+Rm* N2 + VN % N % (N + Vu) + N* + N3« Vu 4+ N? % (Vu)?

where (V2u)*N? is an expression involving (Vu)” (N%);; and (Vu)™ (N2);;.
The expression for the term (Rm * Vu);;® is given in (8.44), and using
N&Ji 5 = N¥y, and symmetries of the curvature tensor, it becomes

(8.67) N (Rm * Vu)ii® = —RPu, N9* + N9y (Ric * V)~

By (6.16)7 we can convert RP;j, = D‘ipijkjkVNjLNQ. Since RP; 55 71 = RPyji
and N®/37k — _ Nk the term U{fjk]\f”k = 0 by symmetry. Similarly, we
can reduce terms of the form NijkukRij = NijkukR;jJ where R;j‘] is the J-

anti-invariant part of the Ricci tensor given in (6.56) by Ric™/ = VN+NxN.
Absorbing these terms gives the expression

(0 — e“A)|N* = e*| —2|VN|? + (V2u) * N2 + Rm * N?
(8.68) +VN * N % (N 4+ Vu) + N* + N3« Vu + N? « (Vu)?|.

We remark that from this expression, we see that if [N|> = 0 at the initial
time, that |N|?> = 0 along the flow. To see this, we assume |N|? < 1 and
|Rm| + |V2u| + |Vu| < C on [0,¢) and apply the maximum principle to
e M N|? for A> 1.

8.2.5. The evolution of the gradient of N. We compute the evolution
of VN.

(869) 815V@Nijk = V@Ni]’k - NAijZ - NZ)\kF?j + I.‘IEANZ‘]'/\
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Using the equation (8.1) for g;;, we can compute the time derivative of the
Christoffel symbol as

e gk“

(8.70) = e“(VRm# g+ Vuxg+ (VN + VZu+1) * O(Vu, N, Rm)).
Substituting (8.43),

6thNij’“

= e"|V/AN,® + (VRm + V2N + V3u) * (N + Vu)

+(VN + V2u) * (VN 4+ V2u) + (VN + V2u + 1) * O(Vu, N, Rm)

We can commute the derivatives V@ANijk up to lower order terms, and so

(0 — e“A)V,N;;*

= ¢“|(VRm+ V2N + V3u) x (N + Vu)

+(VN + V2u) % (VN + V2u) + (VN + V2u + 1) * O(Vu, N, Rm)

The evolution of the norm |[VN|? is
(0 — e“A)|VN|? =2((9; — e"A)VN,VN) — 2¢“|V2N|? + dig * VN * VN
Altogether,

(8; — e“A)|[VN|?
< —2eYVEN2 4 Cet | |[VNP 4 |[V2u||[VN 2 4 V22|V N|
+HIVN|([VRm| + |[V2N| + |V3u|)(IN] + |Vul)
(8.71) +O(Vu, N, Rm)(|[VN|? + |VN||VZu| +1)|.
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8.3. The evolution of the curvature: proof of Theorem 6(b)

The general formula for the variation of the curvature tensor (see e.g. [29])
is

d 1 . . . .
R 5 (ViVigu = ViVigje = V;Vigu + ViVigir)
1. 1,
(8.72) +§gk>\R]’¢)‘z - §gl>\Rji)\k‘

In our case, we write the evolution of g;; (8.1) as

gij = e“(—2Rij + 2V¢Vju + Ew’),
(8.73) E,;, = —4(N3)ij + uuj — ugiug; + 4up(NZ'pj + iji)-
Differentiating once gives

(8.74)
Vigie = eu(_QVkRjg+2VijVeU+vkEj€)+6u(_2Rj€+2vjv€u+Ejf)vku'

Differentiating twice gives

ViVigje = e“(—QVNkRjg +2V; Vi V;Vou + VinEjg)
e (—2Vi Ry + 2V Y Vou + Vi Ejo) Viu + (i < k)
+e"(—2Rjo + 2V;jVu+ Ej)V;Viu
+e“(—2Rjp + 2V,;Vyu + Ej) ViuViu.

We can group this as

Vivkgjg = e"(—2V,-VkRje + QVinVjVeu)
+e“(VRm + V3u + VEN) « O(Vu, N) + VN « VN

(8.75) +VN * (V2u+ O(Vu, N)) + O(Rm, N, V?u, Vu, ).
We have
(8.76) ViViV;Vu — ViV;ViVu = Vi(— Ry uy)

and (Lemma 7.2 in [29])

(8.77) Vikajg — Vz‘Vszk — Vjkaig + VngRik = —ARjikz + Rm x Rm.
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Substituting all this into (8.72), we obtain
(0 — e“"A)Rm = e |(VRm + V3u + V2N) x+ O(Vu, N) + O(Rm, N, Vu)
(8.78) +VN * (V2u+ O(Vu, N)) + VN % VN + VZu x VZu|.

The norm evolves by
(8.79)
(9 — e*A)|Rm|? = 2((9; — e*A)Rm, Rm) — 2¢*|V Rm|*> 4+ d;g * Rm * Rm.

Therefore

(8.80) (0 — e“A)|Rm)?
= e"| —2|VRm|* + (VRm + V3u + V?N) * O(Rm, Vu, N)

+(VN % VN + V?u * VZu + 1) * O(Rm, Vu, N)|.

8.4. Lower order estimates

8.4.1. Gradient estimate. In this section, we estimate the gradient of
u.

Proposition 5. Suppose over a finite interval [0,T') the flow exists and that
lu| + |Rm| < C, then there exists a constant C' such that |Vu|? < C' in the
time interval [0,T).

We recall that by our work so far, we know that |N|? is bounded and
the J-invariant part of VZu is bounded.

Equation (8.9) for the evolution of |Vu|? together with the evolution
(0 — e*A)u = e*(2|Vul? + |N|?) of u imply

(8.81) (8 — e“A)(eP*|Vul?)

- e(pﬂ)“( —2|V2ul? + (6 — 4p)(VZu)iju'u’ + 8(NZ)iju'!

+2u V| N|? + |Vul|?(2Au + (3 + 2p — p?)|Vul* + (1 +p)\N\2)> .
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Let V = eP%(|N|? + |Vu|?) for some constant p. From (2.12) and (8.81), we
see that

e~ PG, — AV

= (—2|VN|2+(V2u) * N2 + N (Rm + VN) * (N + Vu)
FN (N + V0P = 2000, N = (5~ 20) DN + 1T
+< — 2| V2ul® + (6 — 4p) (VZu)jju't? + 8(N3)iju'v? + 2u* V| N
+|Vaul?(2Au + (3 + 2p — p?)|Vul? + (1 +p)!NI2)>.

We note that (V2u) * N2 represent terms of the form a(VZu)¥(N2);; +
b(V?u)¥(N2);; for some constant a and b. Those terms are also bounded
since N2 is J-invariant hence only the J-invariant part of V2u contributes

to this term, which is bounded. Also, we can control all the terms linear in
VN by the good term —|V N |2. Therefore

e~ PHIY(G, — " A)V
< =2[VPul’ 4 (6 — 4p)(VZu)iu'v! + (3 + 2p — p*)|Vul*
(8.82) +C(p)|Vul® + C(p).

To handle the term (V2u);ju’u’, we need to make use of the fact that the
J-invariant part of V2u is bounded. To do so, let us denote the J-invariant
and the J-anti-invariant parts of V2u by V?]u and V2 su respectively. Under
this notation, we see that

—2|V2u[? 4 (6 — 4p)(V2u)iju'e? + (3 + 2p — p*)|Vaul*
= —2|VZul* = 2|V2 ju* 4 (6 — 4p)(Viu + V2 ju, Vu ® Vu)
+(3+2p —p?)|Vul*
—2|V2 jul* 4 (6 — 4p) (V2 ju, Vu @ Vu) + C|Vul?
(8.83) +(3 4 2p — p?)|Vult.

IN

The advantage of this consideration is that only the J-anti-invariant part of
Vu ® Vu, namely %(uluj — ugiujj), contributes to the inner product term.
Therefore

9| V2ul? + (6 — 4p) (V2u)iyuinsd + (3 + 2p — p)|Vul*
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< =2|VZ ul* + (3 - 2p)(VZ ju)? (ujuj — uyug;) + C|Vul?
+(3+2p — p*)|Vul*

= —2UVZju)iy + 50— )iy — wgiwgg)|” + 5 (0 = 5) iy — wsiug;
+(3+2p — p*)|Vul* + C|Vul?
1 3

< 5= 5)2!%‘%‘ —ugiugil® + (34 2p — p*)|Vul' + C|Vul?.

The J-anti-invariant part of Vu ® Vu has half of the norm square compared
to the full Vu ® Vu:

(8.84) luiuj — ugiug;]? = 2|Vu ® Vul|? = 2|Vaul*.
So the conclusion is that

—2|V2ul* + (2 — 4p)(V*u)iju'e’ + (3+ 2p — p*)|Vu/*

IN

3
(0= 5)% =1 +2p+3)|Vul' + C|Vul?

= (-p+ Z +3)|Vul! + C|Vul?
< —|Vu|' + C|Vu?
for p = (9/4) + 4. Thus
(8.85) e PTG, — " AYW < —|Vul* + C(p)|Vul® + C(p).

Then by maximum principle and the boundedness of u, we prove the propo-
sition.

8.4.2. Second order estimate. In this section, we obtain estimates on
IVN| + |V2u|. We refer to VN and V2u as second order terms since they
involve two derivatives of ¢.

Proposition 6. Let (g;;(t),u(t)) evolve by Type IIA flow on M x [0,T].
Suppose

(8.86) sup <|Rm| + |N| + |Vu| + |u|> <A.
Mx[0,T]

Then there exists a constant C' depending on A and (g;;(0),u(0)) such that

(8.87) sup <|VN| - |v2uy> <C.
M x[0,T]
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A basic building block in the construction of our test function for this
estimate will be

(8.88) 7(2) = N> + |Vul?.

It satisfies 7 < C, and using our work so far, its evolution can be estimated
by

(8.89) (0 — e"A)T < —|VN|? — |VZu)? + C.
We start with the test function

B |V2u|?2 + [VN|?

(8.90) Q i

where K is a large constant to be determined. We can compute its evolution

(&5 —BUA)Q
_ 1 o 212 2y IV?ul* + [VNJ? o
= K—T(at e"A)(|VZu|* + |VN|*) + K12 (0y — e“A)T
28t o2 2 Nwi W V2ul® + [VN|? 2
(K—T)Qvl(,v ul® + |[VN|*)V'r — 2e K 1P |Vr|*.

By our evolution equations (8.71), (8.16), (8.89) for [VN|?, |V2u|?, and T,
we obtain the estimate

e’lL

<

T (K1)
+C|VRm||VN| + C|VRm||V?u| + C|VN||V3ul
+C|VN|?|V2u| + C|V2N||V?u| + C
VN VRt [V A VNP

(8, — e"A)Q — |V3u|? — |V2N 2 + C|VN]? + C|V?ul?

(K—-7) (K-1) (K —1)
[V2ul? + |[VN]?  _|V2u]? + |[VN|* _
+C K—1) 2 K1) V]
2

————Vi(|V?u|* + |VN[*)V'

G VIV + [N
By the bound on |N| and |Vul|, we can choose K —7 > & large. The terms
|[VN|* and |VZu|* can absorb lower order terms. We also drop the last term.

eu

S ®o0

1
(0 — e*A)Q — |V3u? — V2N % + E'VR’”‘Q + CO(K)
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VNPT V2t V2P| VNP
2K 2K K

2 2,12 2 %
Vi(|V VN[5V
7y ViV £ (VNPT

(8.91) -

Using |[V7| < C(|V2u| 4+ |[VN| 4 1), we can estimate

2

(8.92) "9

Vi(|V2ul + |[VN[))V'r
C
< ZIVIVRu? + VIVNP[[ V7]
C
< % <|V3u|(V2u|2 + [V?u||[VN]) + [V2N|(JVN|* + |V2u\|VN|)>
Loz e, Loy, Coio2 4, Cooo 2 2, €0 o
Choose K large such that K > 4Cy > 1. Then the main inequality becomes

u

[VN|E [Vl

(3t—€ A)Q AK AK

€ Los 2 1o
< — | -= — Z|V2N]2 -
= (K—T)|: g Voul” = IV

(8.93) +%|VRm|2 + C(K)} .

We can now prove that if |u| + |Vu| + |N| + |Rm| < C along the flow, then
we can bound |VN| and |[V2u|. Consider the test function

(8.94) S =Q+|Rm|.

By (8.93) and (2.13), we can estimate the evolution of @ and |Rm/|?.

et 1 1 VN[ V2l
_Lu <« O | w32 - 2IveNI2 = _
(0 —e"A)S < (K—T)[ Vil = oI VINT == 4K
1
+E|VRm\2+C(K)] — €“|VRm/|?
(8.95) +C|V3u| + C|V2N| + C|VN? + C|V2ul?* + C

As long as K is large enough such that K — 7 > 1, it follows that at a
maximum point (zg,ty) of S with ¢y > 0, then

(8.96) VN 2(wo, to) + [V?ul*(z0, to) < C(K).
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Since Q = w, it follows that Q(zo,t9) < C and hence S(zg,ty) <
C.

Therefore S is bounded on M x [0, T']. It follows that if |u|+|Vu|+|N|+
|[Rm| < Cy on M x [0,T], then

(8.97) IVN| + |V?u| < C
where C depends on Cy and the initial data.

8.5. Higher order estimates

In this section, we prove the following estimate.

Proposition 7. Let (gi;(t),u(t)) evolve by Type IIA flow on M x [0,T].
Suppose

(8.98) sup <|Rm| + |VN|+ |N| + |V2u| + |Vu| + |u|> < A.
Mx[0,T]

Then for each integer k > 1, there exists a constant Cy depending on k, A
and (gi5(0),u(0)) such that

(8.99) sup <\kam| + |[VFHN| + yvk+2uy> < C.
Mx[0,T]

Note: in earlier work, we showed that the estimate |u|+|Rm/| < C implies
the estimate |Vu| + |V2u| + |N| + |[VN| < C. Combining these two results,
we conclude that if |u| + |Rm| < C remains bounded along the flow, then
all geometric terms remain bounded.

Let I denote any combination of geometric terms of derivative order
< k in the metric. For example,

L = f(u,Vu,V*u,N,VN, Rm),
(8.100) Iy = f(u,Vu,V*u,V3u, N,VN, V2N, Rm,VRm).

In this section, we will evolve all higher order geometric terms appearing in
the equation of the metric Type IIA flow.
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8.5.1. The evolution of |[V¥Rm|2. We write the evolution of the cur-
vature as

(8.101) (0y — e"A)Rm = E(Rm),
where
(8.102) E(Rm) = (V3u + V>N + VRm) * I + L.

We have for example
(8.103) VE(Rm) = (Viu+V3N+V2Rm)*I1+(V3u+V2N+VRm)xlo+1;
and in general

VEE(Rm) = (VFP3u+ VAN + VA Rm) « I
(8.104) H(VF2y - VBN + VR Rm) « I 4 T yy

Then

OVFRm = 0,(0+T)*Rm

E—1
= VHO:Rm)+> VoI v¥'"Rm
i=0
k=1 '
(8.105) = VFE(Rm)+ V*(e"ARm) + Y _ VoI V* 1" Rm
i=0
We have the general commutator formula
(8.106) VFAA = AVFA + VE(Rm * A)

which implies
k . .
(0 — e"A)V*Rm = V*(Rmx Rm)+ V*E(Rm) + ) _V'e" « V* ' ARm
=1
k—1 A A
(8.107) +> VIO« VT Rm
=0
We note

(8.108) O = (V3u+ V2N + VRm) « I + I,
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and
vkatl-\ _ (vk+3u + vk-‘r?N + vk-l—lRm) % I]_
(8.109) +(VF 2y 4 VBN 4 VR Rm) * Iy + Ty 1.
Therefore
(0 — e"A)WFRm = I % (VF3u4 VFEN + VA Rm)
(8.110) +1o % (VEP2 + VN + VERm) + I

The norm is evolving by

(0 — e“A)|VFRm|> = 2((0; — e*A)V*Rm, V¥ Rm)
(8.111) —2e*| VL Rm? + 0,9  VFRm * V¥ Rm.

Thus

(8.112) (8, — e“A)|VFRm|?
= —2eYVFIRm2 + I % (VFP3u + VAN + VL Rm) « VERm
1y % (VF2u + VN 4 VERm)? 4 Iy g + VERmM.

8.5.2. The evolution of |[VEN|2. We will evolve VFN in this section
for all £k > 2. We write (0; — e*A)N = E(N). Higher order terms evolve by

OVFN = 0(0+T)"N
k—1
= VHON)+ > Viar«vH-I-in
=0

k
= VFE(N)+e"VFAN + ) Vie" « VI AN
=1
(8.113) +> VoI« VTN,
=0

Using (8.106) to commute derivatives gives
(8.114) (8, — e"A)VFN
k—1

k
=1 i=0
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By (8.43),

(8.115) E(N) = (V*u+ VN + Rm) * I + I.
Differentiating this once gives

(8.116) VE(N) = (V3u+ V2N + VRm) = I; + I.
Differentiating again, we obtain

V2E(N) = (VYu+ V3N +V2Rm)*1,
(8.117) +(V3u + V2N + VRm) * I + I.

Higher order derivatives are

VFE(N) = (VF2u+ VFIN + VFRm) « I
(8.118) +(VF Ly + VEN + VFIRm) « I + I,

for k > 2. Substituting this and (8.108) into (8.114)

(0 — “"A)WVFN = (VF2u+ VN £V Rm) « I
(8.119) H(VF Ly + VEN + VI Rm) + I + 1.

The norm evolves by

(8 — e“"A)|VEN]? = —2¢¥|VFHIN|? 1+ 2((8; — e*A)VEN, VFN)
(8.120) +0,g * VFN « VFN.
Therefore

(8 — e“A)|VFN|?
— —26“|Vk+1N]2—|—11 *(vk+2u+vk+1N+kam)*Vk‘N
(8.121)  +Iyx (VM + VAN + VEIRm)? + I x VFN.

8.5.3. The evolution of |[V*u|2. Denote as before (0; — e"A)u = E(u).
We will compute the evolution of V*u for k > 3.

oVFu = 9,0+T1) ou
k—2
= VFOwm)+ ) VoI« Vi
=0
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k k—2
e"VFAu + VPE(u) + Z Vie"VF I Au + Z Vi « Vi1,
i=1 =0
= "AVFu+ Y V'Rm« VFu+ VVE(u)
i=0
koo ' k=2 '
(8.122) +Y Ve VAU Y VT« VI
i=1 i=0
The evolution of u is of the form E(u) = I;. We will differentiate this

3 times before it becomes linear enough to use in our general argument.
Differentiating once

(8.123) VE(u) = (V*u+VN+ Rm) I + I,
twice
(8.124) V2E(u) = (V3u + V2N + VRm) x I + I,

and three times
(8.125) V3E(u) = (Vu+V3N+V2Rm)+ I +(V3u+V2N+V Rm) I+ 1.
Higher order derivatives are

(8.126) VFE(w) = (VM4 VAN + VE1Rm) I,
+(VFu+ V"IN + V*2Rm) « I + I, 1,

for k > 3. Substituting this and (8.108) into (8.122)

(0 — "A)WVFu = (V¥ + VEN + VEIRm) + [y
(8.127) +(VFu+ VFIN + VF2Rm) « I + I;,_1.
Using the evolution of the norm

(0 — e"A)|VFu)? = =2 VF M u? 4 2((0; — e"A)VFu, VFu)
(8.128) +0sg % VEu x VFu,
we conclude
(8.129) (9 — e A)|[VFul?

— _2€u|vk+1u|2 _|_ Il * (vk-‘rlu + ka + vk—lRm) * vku
+1 % (VFu + VFIN + VF2Rm)? + I, + VFu.
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8.5.4. Estimates: proof of Theorem 7. Putting everything together,
we obtain

(0 — " A)(IV*ul* + |V*IN? + [V*2Rm )
_ —26“(|Vk+1u|2 + |ka‘2 + |Vk_1Rm|2)
+1; % (V¥ + VEN + VEIRm) « (VFu + VF7IN + VEF2Rm)
41 % (VFu + VFIN + V2 Rm)?
(8.130) +I;_1 * (VFu+ VFIN + V¥ 2Rm)

Let k > 3. Suppose I_1 < C. Then

(8 — e“A)(|VFu> + |[VFINP + |[VF2Rm|?)
< _eu(|vk+1u|2 + |ka|2 + |Vk—1Rm|2)
(8.131) +C|VFu? + C|VFIN2 4+ C|VF2Rm|* + C

and

(0 — " A)(IVF 1l + VPPN + [V R )
(8.132) < —e"(|VFul? +[VEINP 4+ [VE2RmI?) 4 C.

It follows that the test function

(0 — e“A) ||[VFul]? + |[VEIN 2 4+ |[VF2Rm?

+A(|vk—1u|2 + ’Vk_2N|2 + |Vk_3Rm]2)
(8.133) < —|VFu]? — |VFINP? — [V 2Rm|? + AC

for A > 1 large. By the maximum principle, we conclude that if I, 1 < K
then

(8.134) |VFu|? + |[VEIN|2 4+ |[VE2Rm|? < O(K, g(0))

and hence [ is bounded along the flow. This argument shows that if I is
bounded, then I} is bounded for all k.

8.6. Long-time existence

Let (u(t),g(t)) be a solution to the Type IIA flow on [0,7). Suppose |u| +
|Rm| < C on M x [0,T). We have shown that in this case |V*u| 4+ |[V*N| +
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|VERm| < C for all k > 1. We now give the standard argument (see e.g. [29])
which shows that the flow can be extended past ¢ = 1. Denote 0;g;; = Ej;.
Our estimates imply that

(8.135) |E| +|V*E| < C

where V is with respect to the evolving metric g(t). If we take z € M,
v €T, M and t1,ts € (0,T), then

(8.136) | logg(ta) (v, v) — logg(t1) (v, v)

=) w0)
/tl Y(v.0)"

g(7)(v,v

< Clty —t1].

It follows that g(t) is a Cauchy sequence as t — T and
(8.137) e”“Tg(0) < g(t) < “Tg(0)

and the metrics g;; do not degenerate on [0, T). Let V denote the covariant
derivative with respect to g = g(0). We have

(8.138) aﬁkgij = ?kgij = ViE;; + (f —T) % E;;

The difference between two connections is

(8.139) rk Tk = %Qkp(_?pgij + Vigpi + Vigpi),
and hence

(8.140) xVg=Vg*E+0O(1).
Therefore

(8.141) 0|Vylz < C|Vgl; + C|Vgls

and hence |Vg|; < C(T) on [0,T ). Higher order derivatives are similar:
indeed, let k& > 1 and suppose that |V¢g|; < C for all £ < k. Then a similar
calculation gives

(8.142) Vg =Vklgx B4 0(1),
from which it follows that

(8.143) (VFHgl; < O(T).
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Therefore, the evolving metrics g;; and all their derivatives are bounded on
[0,T). Since we showed g(t) is Cauchy, it follows that g(t) — g(T) smoothly
as t — T. A similar argument shows that u(t) — u(T).

This produces a limiting pair (¢(7),u(7T)). The linear ODE for ¢ given
in Theorem 4 has coefficients which only depend on g;; = e“g;;, thus these
coefficients are smoothly defined on [0, 7. It follows that ¢(¢) has a smooth
solution on [0, T']. By the non-degeneracy estimate (7.25), we have that ¢(7T')
is closed, primitive, and in the positive cone (—\,) > 0. By the short-time
existence theorem, the flow can be extended to [0, T +¢) for some € > 0. The
discussion here also implies that [V¥p| < C on [0,T) for any multi-index a.
This completes the proof of Theorem 7.

9. Examples and applications

In this section, we discuss a range of examples and applications of the Type
ITA flow with no sources.

9.1. The stationary points: proof of Theorem 8

We begin with the proof of Theorem 8. First, we note that —d*(|p[>¢) =
Ad(|¢?@) = 0_(|p|>p), where O_ is a first order differential operator intro-
duced in [50] such that

d(|ol*?) = w A O-(l¢[*¢)

and 0_(|p|?$) is a primitive 2-form. Therefore the stationary point equation
dAd(|p]? * ) = 0 can be expressed as d0_(|p|?$) = 0. In particular,

(9.1) 0= /M 40_(|p*3) A & = — /M o_(1p%3) A d.

Combining (6.40), (6.30), and 3 = 0 implies dp = oA § + TR ¢. By (6.43),
we have T = N — 1(d°@® + M(d°@)). By Lemma 15, we see that

(9.2) dp=NK¢@
which is a (2,2)-form (by the argument in the proof of Lemma 14). Therefore

(9-3) d(|ol*?) = lpl*(~a ng + NR @),
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where the first term is a (3,1) + (1, 3)-form, the second is a (2, 2)-form, and
a = —d|p|?. Tt follows that

9o = MNKQ),
0-(Ipf@) = lel*(~AlaA@)+0-9),

where A(N X ¢) is a (1,1)-form and A(a A @) is a (2,0) + (0, 2)-form. Thus
(9.1) becomes

0 = /’SO|2(—A(04/\¢)+8_¢)/\00/\8_¢=/ 2w A O_p A O_p
M M
3
oW
o04) =~ [ IePlo-gP%
M

Consequently we conclude that 0_¢ = 0 and dp = w A Id—¢ = 0. In view of
Lemma 7, the almost-complex structure J is integrable and the form ¢ is
harmonic. Now we use the integration by parts argument again to get

0 = / da_<|so\2¢>Arso|2¢:— /MwAa_uw%)Aa_ueoF@)

= — [l NP

So we deduce that A(a A ¢) = 0, hence a A ¢ = 0 and a = 0, so |p| is a
constant. Q.E.D.

9.2. Integrable almost-complex structures: proof of Theorem 9

Next, we give the proof of Theorem 9. The following identity for any smooth
function f and any differential form is well-known:

(9.5) d'(fp) = fd'p—vvpp.
Indeed, it can be quickly verified by using d'p = —u1,(V¥pu).

Back to the proof of Theorem 9, we apply Theorem 1 and the identity
(9.5) to rewrite the Type ITA flow without sources as

O = —d(lel’d'e — tgipe) +2d(|0*NT - @)
(9.6) = Lype —d(|eld'e) +2d(|o?NT - ).
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On any orbit of the diffeomorphism group which contains a form ¢ with an
integrable almost-complex structure, we have N = 0 and, in view of Lemma
7, d'p = 0. Thus the flow reduces to

(9.7) Nhp = Lyjp2¢

and a solution is given by the reparametrizations of ¢ along the time-
dependent vector field V|p|?. By the uniqueness part of Theorem 2, this
is the unique solution.

We now re-express the Type IIA flow in an equivalent formulation, but
with a fixed complex structure. For this, let f; be the flow generated by the
time-dependent vector field —V|p|? in the sense that

99) © hw) = ~Vlpl(t,2)

for any z € X and time ¢. It follows that

d

E(ft*(pt) = f{Owpr + [y L_v)pp2pt = 0,

hence f; o = o is a constant 3-form on X. We see immediately that if we
reparametrize M by the time-dependent diffeomorphism f;, then along the
flow, the 3-form fy; and hence the complex structure f;"J; are fixed. In
this new gauge, the Kahler metric w; = f;w evolves by the equation

(9.9) Owy = fi L_g)ppw.

Notice that

(9.10) L_yjpw = —diy|ppw = dJd|p|* = —dd°|p|?
so the flow of w; can be written as

(9.11) we = —dd°|p|2,.

We remark that this equation can be viewed as a T-dual of the Anomaly flow
for conformally Kéhler data. In that case, we are given a fixed holomorphic
(3,0) form € on a Calabi-Yau threefold and the evolving Kéhler metrics &
satisfy (see equation (4.10) in [20])

(9.12) Aoy = dd°|Q2.
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We see that R = |Q|? is exchanged with 1/R = |p|?.

This type of duality was observed in [20] on semi-flat Calabi-Yau three-
folds. To connect with the work there, we can consider the conformally
changed metric n; = || %w;. It follows that ||, = |¢|2,, hence n; satisfies
the conformally balanced equation d(|¢l,,n?) = 0 since

eln i = |l (015 we)? = wi

is closed. Moreover its evolution equation is

Oi(lelnni) = Ou(wi) = 2wy A By
= 2w A (—dd®|p|?) = —4idd(|p|?, wr)
(9.13) = —4i00(|plym),

which is exactly (up to a positive constant) the dual Anomaly flow in com-
plex dimension 3 firstly introduced in [20]. Since we are in the conformally
Kahler case, by the results of [20], we know the flow (9.11) is equivalent
to the inverse MA-flow introduced by Cao-Keller [9] and Collins-Hisamoto-
Takahashi [10], which converges to the unique Ricci-flat Kéhler metric in
the cohomology class [wp].

9.3. Symplectic manifolds with non-integrable almost complex
structures

Next, we work out the Type ITA flow on some model symplectic manifolds
with non-integrable almost-complex structures, more specifically tori, sym-
plectic half-flat manifolds, and nilmanifolds.

9.3.1. The Type ITA flow on a torus. Consider the 6-torus M =
(R/Z)%, with coordinates {x7 }?:1 and the standard symplectic form w =
do'? +daz3t + da’S. Let o, 8,7,6 : R/Z — R be smooth functions depending
only on the variable z'. Consider

(9.14) ¢ = e“dz' —ePdat® — da®* — dz®0 + ydx'30 4 §dat®.

Clearly ¢ is closed and primitive. It is straightforward to find out that

ol = 2\/4e0+5 — (7 - 5)?
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and

>
I

#(—e“w 1 8)da'® 4 (2678 — y(y — 6))da

+(2e*F £ 5(y — 6))da' ™ + € (v + 6)da 0 + 2e*dx?P
+(y — 8)da?30 — (y — §)da®® — 28 dx?*5).

Consequently we see that

Apl?@) = 2da™ A (2(c?Yda® + (v - 8) (da®® — du™) — 2(e") d™),
Ad(pl%0) = 202(e)da™ + (v — 8) (da™ — dar®®) — 2(eP) da®),
IN(pl*p) = 4(e)'dx™ + 2y — )" (da® — da'®) — a(e?)"d™.

So the Type ITA flow in this case reduces to

(9.15) di(e®) = 4(e®)”, B’ =
(916) 8t7 == 2(’7 - 5)//, 8t6 =-2

)

4(€ﬁ)u
(v=9)"

v

For calculations, it is convenient to introduce a = 2e®,b = 2eP, ¢ = y—§,d =
v+ and

‘90’2 — 2\/4ea+/3 — (fy — (5)2 =2v/ab — 2.

It follows that d is a constant along the flow, while a, b, ¢ satisfy the standard
heat equation:

©.17) 5 [g g] 4 [z g]

c .
b] converges to a constant matrix as ¢t goes to

infinity. Moreover along the flow the positive-definiteness is preserved and

Obviously the matrix

the limiting matrix is also positive definite. Thus ¢; converges to a positive
primitive harmonic form.

Now let us analyze the behavior of |N|? along the flow. The easiest way
to find |N|? is to use (7.28), which says that

(9.18) IN2 = e “Ou — (Au + 2|dul?).
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The key is to compute Awu. Observe that the metric g can be expressed as

[ab+ d? — 2 —2d
—2d 4
2a —2c¢
. —U
(9.19) g=e oe 9
2a 2c
2¢ 2b]

As Au = g% (u; —Ffjuk) = guu”—gijl“ilju’, and the Christoffel symbol term
can be simplified to

3 1 ..
gTy = 59”9”(@'9;’1 + 0;9i1 — O19i5)
. 1 y
= 9"9"g5 — 59" 9"},
1 1
= —(g")’d + 9" 9" d + (97 — 29" 9*%) gho

2 2

~9" (9% 43 + 297 g3y + 9" ga)
= 8e 34 (ab — %) — (a'b+ abl — 2¢c))
(9.20) = 8e 3uy/,

1
where v = ab — ¢ and u = log2 + 3 log v. Therefore
(9.21) Au = de " — 873 u/v = de (" — (u')?).

Consequently

INI? = e “Ouu — (Au + 2|dul?)
_,a"b+ab” —2ec”

= 2 —de (W + (u)?)
v
Voocd\?  ab— 2
.22 = 16e %Y o _ & _ @ EpUACE
(9.22) 6e (ab( €= " ) +t— (ab” — a'b)

This calculation suggests that J is integrable if and only if a, b, c are pro-
portional to each other. In summary we have proved

Proposition 8. Under our ansatze (9.14), the Type IIA flow on (R/Z)°
reduces to the standard heat equation on R/Z. If initially ¢ is of the form
(9.14) whose associated almost complex structure is not integrable, the Type
1A flow still converges to Kdahler Calabi- Yau geometry.



Geometric flows for the Type ITA string 797

9.3.2. The Type ITA flow on homogeneous symplectic half-flat
manifolds. Because of Theorem 8, the convergence of the Type ITA flow
is only possible when the underlying manifold is Kéhler. We shall see in this
subsection and the next that the Type ITA flow can be used to find optimal
almost complex structures compatible with a given symplectic form, even
when the underlying manifold does not admit any Kéahler structure.

In order to run the Type ITA flow, we first need compact symplectic
6-manifolds with Type ITA structures. A special case of Type IIA structures
can be found on the so-called symplectic half-flat manifolds (firstly intro-
duced by de Bartholomeis [12], also known as special generalized Calabi-Yau
manifolds [13]). In our terminology, a symplectic half-flat manifold is sim-
ply a symplectic manifold with Type IIA structure (M,w, ¢) and the extra
condition that |p|? is constant. Many compact symplectic half-flat mani-
folds can be constructed as quotients of Lie groups by co-compact lattices,
where all the structures are homogeneous under the natural group action.
Therefore we shall call symplectic half-flat manifolds constructed in this way
homogeneous. It is clear that for homogeneous symplectic half-flat manifolds,
their geometry up to covering is fully characterized by the underlying Lie
algebra, or equivalently the exterior differential system defined by invariant
1-forms. Moreover, homogeneous symplectic half-flat structures have been
fully classified by [11] and [22] when the Lie group is nilpotent or solvable
respectively.

It is clear that if we run the Type IIA flow on a homogeneous sym-
plectic half-flat manifold with homogeneous initial data, the homogeneity
is preserved and the Type ITA flow reduces to a polynomial ODE system.
Moreover, in the homogeneous setting, the function u and |N|? are constants
on the manifold, therefore we have the following monotonicity formulas

Proposition 9. Along the Type IIA flow on homogeneous symplectic half-
flat manifolds, the following monotonicity formulae hold

(9.23) o = e“IN|?> >0,
(9.24) HNPZ = —2e"|(R™7)y]* <0.

Proof. The first formula follows directly from (7.28). For the second
formula, we note that Blair-Tanus [4] proved that

w3

3
(9.25) &s/ N2 =/ (Brgijs (B~ )ig) 57
v 3 S 3!
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In our case u is a constant, hence (7.27) becomes 9;g;; = —2e*“(R™7);;, and
(9.25) simplifies to

3 3
(9.26) at/ N2 = _2/ e [(R);;2%-
v 3! M 3!

As everything is homogeneous, so all the scalars must be constant, conse-
quently (9.26) still holds without integration, and (9.24) is proved. Q.E.D.

Corollary 2. Let (M,w) be a compact 6-dimensional homogeneous symplec-
tic manifold. If (M,w) admits a homogeneous symplectic half-flat structure
(M, w, o) with which the Type ITA flow exists for all time, then there exist
homogeneous almost complex structures compatible with w and with arbitrary
small Nijenhuis tensor.

Proof of the Corollary: We run the Type IIA flow with initial data .
By monotonicity formulas above, we know that

(9.27) et = —|IN]? <0,
d2
(9.28) et = 2¢"|(R™7) ;% > 0.

So e™* is a monotone non-increasing and convex function with lower bound.
If the flow exists for all time, then we must have

d
lim N> = — lim —e % =0,
t—00 t—oo dt

as was to be shown. Q.E.D.

The Type ITA flow on a nilmanifold. Now let us consider some explicit
examples.

Consider the homogeneous symplectic half-flat structure in [13, Example
5.2], where the Lie algebra of the nilpotent Lie group is characterized by
invariant 1-forms {e!, ..., e®} satisfying

de' = de? = de® = de® = 0,

de* = e'®, deb = el3.
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Clearly w = e!'? + €34 4 €56 defines an invariant symplectic structure. More-
over, this nilpotent Lie group admits co-compact lattices so all the construc-
tions descend to compact nilmanifolds. Consider the ansatze

(929) (p — Soa’b — (1 + a)6135 . 6146 . 6245 o 6236 + b(€134 . 6156),

it is straightforward to check that ¢, is primitive and closed for any a, b.
1
The positivity condition for ¢gp is that 1—6\g0]4 = 14+a—b% > 0. By straight-

forward calculations, we get
@ =4lp| (14 a — b?)e' A€ + e*) + e A (be®* + (1 + a)e?® —e*® —be®)).
It follows that

d(|p|2p) = 4e'2(3 4 2665 — ),
Ad(|@>@) = 4(e3t 4 2be® — €50),  dAd(|p|*@) = 8%,

Therefore under our ansatze the Type ITA flow reduces to the following ODE
system

Hence the unique solution to the Type ITA flow is
(9.30)  @(t) = (1 4+ ag + 8t)e!35 — 146 _ 245 _ 236 4 p(131 _ 156

which exists for all time ¢ > 0.
One can easily verify that lim;_,., J; does not exist and

(9.31) INP?=(1+a—b*)"3%=(1+ag+ 8t —b2)~3/?

is decreasing to zero as t — oo. This is an explicit example where Corollary
2 applies.

The Type IIA flow on a solvmanifold. Consider the symplectic half-
flat structure on the solvmanifold M constructed by Tomassini and Vezzoni
in [46, Theorem 3.5]. The geometry of this solvmanifold is characterized by
invariant 1-forms {e’ }§:1 satisfying

del = —Xe'®,  de? = \e?, de® = —)\e3F,
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de* = Xe®, de® =0, deb =0,

3+V5

where \ = log . One can easily check that w = e'? + e3* + €0 is an

invariant symplectic form on M. A particular symplectic half-flat structure
on M takes the form

V2
o = . (6135 4136 4 Q145 _ 146 | 235 236 _ 245 6246)

2
_ %d(eli’» 4ol B )

so [¢] =0 € H3(M;R).
Consider the ansatze

(9'32) o= 04(6135 +€136) +ﬂ(€145 o 6146) —|—’y(e235 o 6236) _ 5(6245 + 6246).
A direct calculation gives

‘¢|2¢ — 8(—01,8’}/(6135 —6136) +O[ﬁ(5(€145 +€146)
+Oé")/(5(€235 + 6236) +,8")/(5(€245 . 6246)).

The nondegenerate condition is that |¢|* = 64a3v6 > 0. It follows that

d(lel*¢) = 16A(aBye'® + aBde® — ay§e? 4 Bryet0),
Ad(lplP¢) = 16X (apfye’ + aBdet® — ayde® + pyoe*t),
dAd(|¢l*@) = 16X*(aBry (e + ') + afa(e!?® — ')

+a,}/5(e235 o 6236) o ,6"}/(5(6245 + 6246)).
After time rescaling, the Type ITA flow under our ansatze reduces to

Oy = afy, OB = afé,
Oy = ayd, 06 = [~6.

It is easy to see that there exist time-independent nonzero constants C'; and

Cy such that «a(t) = C1(t) and 5(t) = Cay(t). The ODE system simplifies
to

Oy = C1v62, 916 = Cyy?6.
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Integrate these equations we know there is a constant C' such that Cyy? —
C16% = C, hence
0y =(Cy* = O).

One can solve explicitly

_ C’}/g 52 (t) _ C(Sg@QCt .
Coya (1 — e2Ct) + Ce2Ct” C16% + C — Ch63e2Ct

(9.33) 2*(1)

Assuming ¢ is initially positive, we know that C7, Cy are positive constants
and 7o, do are initial values of v and § satisfying By —ad = Ca73 —C163 = C.
When C = 0, the above formula should be understood as

’Yg 2 53

9.34 2=__ 0 =0
(9.34) T 20973t 1—2C63t

From the above explicit formulas, we can deduce that, no matter what C'
is, the flow has finite time singularity. A more symmetric expression for the
solution (without time rescaling) is

— 32A2,80’Yot
alt) = a0\/ (Boyo — apdo)e

5070632/\20405@ _ a050632)\2,30’)/0t’

B(t) = ﬁo\/ (Boyo — 060(50)632>\2ao60t

60,-)/0632)\20{050t _ a050632)\25070t’

_ 32A2apdpt
’y(t) o '70\/ (/8070 O5050)6

- /80,-}/0632)\206060t _ a0(50632)\2ﬁ0’)/0t,

(5(t) =4 (BO’VO — 0‘060)632)\250'701t

and in the critical case when agdyp = Boyo =S > 0, one has

alt)= ——2 __ puy=
VI — 32)25¢ /I — 32)251
Yo do
) |\ NS 1) W —
") = =g = =5

From these explicit expressions, we see that the maximal existence time T
is given by

1 log(ado) — log (Bovo)

9.35 T =
(9:35) 32)2 apdo — Boo
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of a, 3,7, 0 tend to infinity as ¢t — T, therefore |¢|? = 8(01575)1/2 — 0.

To compute |N|?, the quickest way is to use (9.23):

R 1 ) i WS SSVLUR oe
|N| = e “Owu=—0e = 16 3t(aﬁ’y(5) =2\ (aﬁfy(g)l/z
2)2 ) 2
B (a0Bo000) /2 <a050616)\ (Boro=eodolt 4 Byype =16} (5070*a060)t)

ITA

> 4)\2

Now let us analyze the behavior of ¢ in detail. We shall see that the Type
flow naturally leads us to optimal almost-complex structures compatible

with w.

1. No matter what the integral constant C' = By — agdg is, the flow of ¢

blows up when ¢t — T', and the same is true for the metric §. However
the expressions of g, J, and N extend smoothly to t = T'. In fact, the
limit ||ty as t — T exists.

2. In the critical case C' = By — apdp = 0, the flow of ¢ (as well as §)

is a self-expander in the sense that

(936) A0 = s

for a positive constant S determined by initial data. In this case, all
of g, J and N are stationary with |N|? = 4\2. In fact such J provide
examples of harmonic almost-complex structures in the sense of Blair-
Tanus [4], namely almost-complex structures compatible with w and
satisfying

_ 1
(9.37) (R = 5 (Bij = Ryigj) = 0.

These harmonic almost-complex structures are critical points of the
energy functional studied by Blair-Ianus [4] and Lé-Wang [33].

3. When the integral constant C' = Byy9 — apdpg is not zero, all of g, J

and N are evolving. When ¢ approaches T, the limit lim;_,7 J(¢) exists
and is a harmonic almost-complex structure, which is also a minimizer
of |[N|? among all almost complex structures associated to our ansatze
(9.32).
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