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Equivariant Grothendieck-Riemann-Roch theorem
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∗
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†

We use the formalism of traces in higher categories to prove a
common generalization of the holomorphic Atiyah-Bott fixed point
formula and the Grothendieck-Riemann-Roch theorem. The proof
is quite different from the original one proposed by Grothendieck
et al.: it relies on the interplay between self dualities of quasi-
and ind- coherent sheaves on X and formal deformation theory of
Gaitsgory-Rozenblyum. In particular, we give a description of the
Todd class in terms of the difference of two formal group structures
on the derived loop scheme LX. The equivariant case is reduced to
the non-equivariant one by a variant of the Atiyah-Bott localization
theorem.
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0. Introduction

Convention. For the rest of the document we will assume that we work
over some base field k of characteristic zero.

In [15] the formalism of traces in symmetric monoidal (∞, 2)-categories
was used to prove the following classical result
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Theorem (Holomorphic Atiyah-Bott fixed point formula). Let X be a

smooth proper k-scheme with an endomorphism X
g

X such that the
graph of g intersects the diagonal in X × X transversely. Then for a lax
g-equivariant perfect sheaf (E, t) (i.e. a sheaf E ∈ QCoh(X)perf equipped

with a map E
t

g∗E ) there is an equality

TrVectk

(
Γ(X,E)

Γ(X,t)
Γ(X,E)

)
=

∑
x=g(x)

TrVectk

(
Ex � Eg(x)

tx
Ex

)
det(1− dxg)

where TX,x
dxg

TX,g(x) � TX,x is the induced map on tangent spaces.

In turns out that the transversality assumption in the theorem above
can be considerably weakened. For example, the following extreme opposite
case (when the equivariant structure is trivial, i.e. g = IdX , t = IdE) was
known a decade before the Atiyah-Bott formula

Theorem (Hirzebruch-Riemann-Roch). Let X be a smooth proper scheme
over k. Then for every perfect sheaf E on X there is an equality

Tr

(
Γ(X,E)

IdΓ(X,E)

Γ(X,E)

)
=

∫
X
ch(E) tdX

where ch(−) and tdX are Chern character and Todd class respectively.

The goal of this work is to provide a common generalization of the two
theorems above as well as their relative versions naturally suggested by the
formalism of traces. In order to state it we first need to introduce a bit of
notations:

Notations 0.0.1. Let X be a smooth scheme equipped with an endomor-

phism X
g

X such that the reduced classical scheme Xg := H0(Xg)red

is smooth (but not necessary connected). We will denote by j : Xg X

the canonical embedding and by N∨
g its conormal bundle. Note that the ac-

tion of g on Ω1
X in particular restricts to an endomorphism g∗|Ng

: N∨
g N∨

g .

We then have

Theorem (Equivariant Grothendieck-Riemann-Roch, Theorem 6.2.13). Let

XgX
f

Y gY
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be an equivariant morphism between smooth proper schemes such that

• Reduced fixed loci XgX and Y gY are smooth.

• The induced morphisms on conormal bundles 1 − (g∗X)|N∨
gX

and 1 −
(g∗Y )|N∨

gY
are invertible.

Then for a lax gX -equivariant perfect sheaf E on X there is an equality

(fg)∗

(
ch(E, t)

tdXgX

egX

)
= ch(f∗(E, t))

tdY gY

egY
∈

⊕
p

Hp,p(Y gY ),

where XgX
fg

Y gY is the induced map on reduced fixed loci, ch(−,−)

is an equivariant Chern character (see Construction 1.1.4 and Proposition

1.3.3), td− are usual Todd classes and eg− are equivariant Euler classes (see

Definition 6.2.8 and Corollary 6.2.10).

If equivariant structures onX and Y are trivial (so egX = 1, egY = 1), the

theorem above reduces to the usual Grothendieck-Riemann-Roch theorem.

On the other hand, if Y = ∗ and XgX is discrete, then tdXgX = 1 and

we recover the holomorphic Atiyah Bott-formula (see corollaries 6.2.16 and

6.2.15 for more details).

Remark 0.0.2. Even in the case of trivial equivariant structures our proof

of Grothendieck-Riemann-Roch is quite different from the original approach

due to Grothendieck et al.: it is valid for arbitrary smooth proper k-schemes

X and in particular does not rely on the trick of factoring a projective

morphism into a composition of a closed embedding and a projection. On

the other hand, due to heavy usage of deformation theory our proof works

only in characteristic zero and we consider the Chern character and the Todd

class as elements of Hodge cohomology H∗,∗(X), not of the Chow ring.

We now explain the key steps in the proof of the Equivariant Grothen-

dieck-Riemann-Roch theorem above.

Non-equivariant part. Let X
f

Y be a morphism of smooth proper

k-schemes and let E be a perfect sheaf on X. Recall that the Grothendieck-

Riemann-Roch theorem asserts an equality

f∗(ch(E) tdX) = ch(f∗(E)) tdY ∈
⊕
p

Hp(Y,Ωp
Y ).
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Our first goal is to give a proof of the Grothendieck-Riemann-Roch theorem
using the formalism of traces. Note that the formula above is equivalent to
the commutativity of the diagram

k
ch(E)

ch(f∗(E))

⊕
p

Hp(X,Ωp
X)

· tdX∼

⊕
p

Hp(Y,Ωp
Y )

· tdY∼⊕
p

Hp(X,Ωp
X)

f∗

⊕
p

Hp(Y,Ωp
Y )

(1)

of k-vector spaces. We now recall

Proposition 0.0.3 ([15, Definition 1.2.6]). Let C,D ∈ Catk be a pair of
dualizable k-linear presentable categories. Suppose we are given a (not nec-
essarily commutative) diagram

C

ϕ

FC
C

ϕT

D

ψ

FD

D,

ψ

where ϕ is left adjoint to ψ and ϕ ◦ FC
T

FD ◦ ϕ is a (not necessary
invertible) natural transformation. Then there exists a natural morphism

Tr2Catk(FC)
Tr2Catk

(ϕ,T )
TrCatk(FD)

in the (∞, 1)-category Hom2Catk(Vectk,Vectk) � Vectk called the morphism
of traces induced by T (in the case when T = Idϕ◦FC

we will further fre-
quently use the notation Tr2Catk(ϕ) := Tr2Catk(ϕ, Idϕ◦FC

)). Moreover the
morphism of traces is functorial in an appropriate sense, see [15, Proposi-
tion 1.2.11.].

We refer the reader to [15, Section 1.2] for a detailed discussion of the
formalism of traces (see also [13] for a more general treatment in the con-
text of (∞, n)-categories and [5] for traces in the context of derived algebraic
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geometry). The main idea of our proof of the Grothendieck-Riemann-Roch
theorem is that one can obtain commutativity of the diagram (1) above
as a corollary of functoriality of the construction of the morphism of traces.
Namely, let 2Catk be the (∞, 2)-category of k-linear stable presentable cate-
gories and continuous functors. Recall that to each derived scheme Z we can
associate the (∞, 1)-category QCoh(Z) ∈ 2Catk of quasi-coherent sheaves
on Z (see [10, Chapter 3]) and a closely related category ICoh(Z) of ind-
coherent sheaves on Z (see [10, Chapter 4]). Then by applying functoriality
of traces to the diagram

Vectk
E⊗−

QCoh(X)

⊗OX∼

f∗
QCoh(Y )

⊗OY∼

ICoh(X)
f∗

ICoh(Y )

in 2Catk we obtain a commutative diagram of traces

k
Tr2Catk

(E⊗−)

Tr2Catk
(f∗(E)⊗−)

Tr2Catk(IdQCoh(X))

Tr2Catk
(−⊗OX)

Tr2Catk(IdQCoh(Y ))

Tr2 Catk
(−⊗OY )

Tr2Catk(IdICoh(X))
Tr2 Catk

(f∗)
Tr2Catk(IdICoh(X))

in Vectk. The bulk of the paper will be devoted to identifying the morphism
of traces in the diagram above with their classical counterparts. Namely

• Section 1: we prove

π0 Tr2Catk(IdQCoh(X)) �
⊕
p

Hp(X,Ωp
X)

π0 Tr2Catk(IdQCoh(Y )) �
⊕
p

Hp(Y,Ωp
Y ).

Moreover, under the isomorphisms above Tr(E⊗−) and Tr(f∗(E)⊗−)
will coincide with the usual Chern characters of E and f∗(E) respec-
tively. In fact, our description of Tr(E ⊗ −) will be in terms of the
Atiyah class of E and is closely related to the description given in [19].
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• Section 2: we have

π0 Tr2Catk(IdICoh(X)) �
⊕
p

Hp(X,Ωp
X)∨

π0 Tr2Catk(IdICoh(Y )) �
⊕
p

Hp(Y,Ωp
Y )

∨.

Moreover, under the two isomorphisms above the morphism of traces

induced by the pushforward functor ICoh(X)
f∗

ICoh(Y ) coin-

cides with the usual pushforward in homology (defined as the Poincaré
dual of the pullback).

• Sections 3, 4: under the Poincaré self-duality⊕
p

Hp(X,Ωp
X) �

⊕
p

Hp(X,Ωp
X)∨

the morphism Tr2Catk(−⊗OX) is given by the multiplication with the
Todd class tdX and analogously for Y .

Using these identifications and the commutative diagram of traces above,
one immediately concludes the Grothendieck-Riemann-Roch theorem.

Equivariant part. We now discuss how one can get an equivariant version of
the GRR theorem. Let X be a smooth proper scheme with an endomorphism
g and (E, t) be a lax g-equivariant perfect sheaf on X. First, it turns out
that if g = IdX there is simple description of the equivariant Chern character
ch(E, t) (see Construction 1.1.4) in the spirit of the Chern-Weil theory (see
Remark 1.4.8):

Example 0.0.4. Let X be a smooth proper scheme with a trivial equivari-
ant structure. Then under the identification

Tr2Catk(IdQCoh(X)) �
⊕
p

Hp(X,Ωp
X)

the equivariant Chern character is equal to Tr(eAt(E) ◦ t), where At(E) is
the Atiyah class of E (see Corollary 1.3.3).

Now if the equivariant structure on X is non-trivial, we in general do
not have a convenient description of Tr2Catk(g∗) and therefore of ch(E, t).
To circumvent this, we shall reduce the situation to the non-equivariant case
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by restricting along the (classical, reduced) fixed point locus j : Xg X

of the endomorphism g, like in the Atiyah-Bott localization theorem. Note

that this indeed gives a good description of the Chern character: since the

restriction of the lax g-equivariant sheaf (E, t) to Xg is naturally equivariant

with respect to the trivial equivariant structure onXg, by the example above

we have a grasp on

ch(j∗(E, t)) ∈ π0 Tr2Catk(IdQCoh(Xg)) �
⊕
p

Hp(Xg,Ωp

Xg
).

Moreover, we will show that under reasonable assumptions the morphism j∗

in fact does not loose any information:

Theorem (Localization theorem, 6.2.2). Assume that the reduced classical

fixed locus Xg is smooth and let N∨
g be the conormal bundle of j. Then the

induced map

π0 Tr2Catk(g∗)
Tr2Catk

(j∗)
π0 Tr(IdQCoh(Xg)) �

⊕
p

Hp(Xg,Ωp

Xg
)

is an equivalence if and only if the determinant det(1− g∗|N∨
g
) is invertible.

Let now

XgX
f

Y gY

be an equivariant morphism from (X, gX) to (Y, gY ) satisfying assumptions

of the Equivariant Grothendieck-Riemann-Roch theorem. Then by applying

Tr2Catk to the commutative diagram

Vectk
E

QCoh(X)

gX∗

⊗OX∼

f∗
QCoh(Y )

gY ∗

⊗OY∼

ICoh(X)

gX∗

f∗
ICoh(Y )

gY ∗

and using the identification from the localization theorem π0 Tr2Catk((gX)∗)�
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⊕
pH

p,p(XgX ) and analogously for Y , we obtain a commutative diagram

k
ch(E,t)

ch(f∗(E,t))

⊕
p

Hp,p(XgX )

· tdgX
∼

⊕
p

Hp,p(Y gY )

· tdgY
∼⊕

p

Hp,p(XgX )
(fg)∗

⊕
p

Hp,p(Y gY )

in Vectk for some equivalences tdgX and tdgY (see Notation 6.1.5). Finally,
by applying the commutative diagram above to the special case when the
morphism is XgX X and using the non-equivariant part it is straight-

forward to identify tdgX with
td

XgX

egX
(Proposition 6.2.12), where egX is the

Euler class (see Definition 6.2.8 and Corollary 6.2.10) and similarly for Y .

Remark 0.0.5. Even if one is only interested in the equivariant part, in
order to reduce it to the non-equivariant version in our approach it is still
necessary to identify the morphism of traces

Tr2Catk(IdQCoh(Xg))
Tr2Catk

(−⊗OXg )
Tr2Catk(IdICoh(Xg))

in classical terms. In other words, we really need to reprove (non-equivariant)
Grothendieck-Riemann-Roch theorem in the language of traces.

Relation to previous work

Our identification of the morphism of traces in the non-equivariant case is
closely related to the work of Markarian [19], where the role of the canonical
action of the Lie algebra TX [−1] on any object of QCoh(X) (via Atiyah
class) was emphasized. Moreover, he provides an interpretation of the Todd
class tdX as an invariant volume form with respect to the Hopf algebra
structure on Hochschild homology. The key difference of our approach is the
systematic use of the formalism of traces, derived algebraic geometry, ind-
coherent sheaves and deformation theory of Gaitsgory-Rozenblyum, allowing
us to give a precise geometric interpretation of Markarian’s ideas in terms of
formal groups over X and to generalize them in some directions. The idea
of such an interpretation of tdX was explained to us by Dennis Gaitsgory
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who in turn learned it from Maxim Kontsevich, according to whom this idea

ultimately goes back to Boris Feigin.

Ideas similar to our trace formalism were used in a series of papers [4],

[5], [6] to derive many interesting trace formulas in various contexts (such

as D-modules on schemes or quasi-coherent sheaves on stacks). However,

as explained in [5, Remark 1.6], some additional work is needed to fully

recover the usual GRR-theorem from their results. Among other things, in

this paper we provide a necessary identifications of morphisms of traces in

classical context by studying the formal geometry of the derived loop scheme.

Localization theory relating equivariant cohomology and ordinary coho-

mology of the fixed locus was studied for a long time already, see e.g. [3] for

the de Rham variant of the theory. For various reasons the methods of [3]

don’t apply directly in our context (e.g. since equivariant cohomology of a

point is too small in the case of a plain endomorphism to invert something

there), but the idea that equivariant cohomology and ordinary cohomology

of the fixed locus agree up to localization of the Euler class is ultimately

motivated by their work.

Formality of derived fibered products was thoroughly studied in [1]. As

an application they prove ([1, Corollary 1.12]) that for a finite order auto-

morphism the derived fixed locus is always formal. Hence our localization

theorem 6.2.2 may be considered as a generalization of this result, providing

formality criterion for an arbitrary endomorphism.

A similar result to that of ours was obtained in [8] over an arbitrary alge-

braically closed field but with an additional assumption that both X,Y are

projective and that both gX , gY are automorphisms of finite order coprime

to the characteristic of the base field. Donovan’s proof is quite different from

ours and is much closer to the original approach due to Grothendieck: it relies

on the fact that an equivariant projective morphism f : (X, gX) (Y, gY )

(with gX , gY being automorphisms of finite orders) can be factored into an

equivariant closed embedding into relative projective space followed by pro-

jection. We do not see how to generalize this approach to the case of a

general endomorphism. On the other hand, Donovan’s formula holds in the

Chow ring, while our proof gives equality only in Hodge cohomology.

One can also extend the classical Grothendieck-Riemann-Roch theorem

in a non-commutative direction by studying traces of maps on Hochschild

homology induced by functors between nice enough (e.g. smooth and proper)

categories (see [22], [16], [20], [7]). But while the Chern character makes per-

fect sense in the non-commutative context, it was already pointed out by

Shklyarov that the Todd class seems to be of commutative nature and is
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missing in general non-commutative GRR-like theorems. Hence the The-
orem 6.2.13 may be considered as a refinement of the more general non-
commutative versions under additional geometricity assumptions on cate-
gories and endofunctors.

Finally, there is a categorified version of the GRR-theorem conjectured
in [23], where (among many other things) the role of the derived loops con-
struction was empasized. See [24] and [14] for proofs and interesting appli-
cations.
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Program. The second author is partially supported by Laboratory of Mirror
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Simons Foundation.

Conventions.
1) All the categories we work with are assumed to be (∞, 1)-categories. For
an (∞, 1)-category C we will denote by (C)� the underlying ∞-groupoid of
C obtained by discarding all the non-invertible morphisms from C.

2) We will denote by S the symmetric monoidal (∞, 1)-category of spaces.
For a field k we will denote by Vectk the stable symmetric monoidal (∞, 1)-
category of unbounded cochain complexes over k up to quasi-isomorphism
with the canonical (∞, 1)-enhancement. We will also denote by Vect♥k the
ordinary category of k-vector spaces considered as an (∞, 1)-category.

3) We will denote by PrL∞ the (∞, 1)-category of presentable (∞, 1)-catego-
ries and continuous functors with the symmetric monoidal structure from
[17, Proposition 4.8.1.15.]. Similarly, we will denote by PrL,st∞ the (∞, 1)-
category of stable presentable (∞, 1)-categories and continuous functors con-
sidered as a symmetric monoidal (∞, 1)-category with the monoidal struc-
ture inherited from PrL∞.

4) Notice that Vectk is a commutative algebra object in PrL,st∞ . By [17, Theo-
rem 4.5.2.1.] it follows that the presentable stable (∞, 1)-category of k-linear
presentable (∞, 1)-categories and k-linear functors Catk := ModVectk(Pr

L,st
∞ )
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admits natural symmetric monoidal structure. We will also denote by 2Catk,
the symmetric monoidal (∞, 2)-category of k-linear presentable (∞, 1)-cat-
egories and continuous k-linear functors so that the underlying (∞, 1)-cat-
egory of 2Catk is precisely Catk.

5) We will denote by PreStack the (∞, 1)-category of functors
Funct(CAlg≤0

k ,S), where CAlg≤0
k := CAlg(Vectk)

≤0 is the (∞, 1)-category of
connective commutative algebras in Vectk. For a prestack X ∈ PreStackk we
will denote the k-linear symmetric monoidal (∞, 1)-category of unbounded
complexes of quasi-coherent sheaves on X by QCoh(X) ∈ CAlg(Catk). We
refer the reader to [10, Part I] for an introduction to the basic concepts of
derived algebraic geometry.

6) By ‘scheme’ we will always mean a derived schemes (in the sense of
[10]) if not explicitly stated otherwise. For a smooth classical scheme X we
will sometimes denote its Hodge cohomology Hq(X,Ωp

X) by Hp,q(X).

1. Categorical Chern character

Let X be an almost finite type scheme (see [10, Section 3.5.1]) with an

endomorphism X
g

X and let (E, t) ∈ QCoh(X) be a lax g-equivariant
compact quasi-coherent sheaf on X (i.e. a sheaf E ∈ QCoh(X) together

with a morphism E
t

g∗E ). Our goal in this section is to describe the
categorical Chern character ch(E, t) ∈ Tr2Catk(g∗) obtained by applying the
formalism of traces to the commutative diagram

Vectk

−⊗E

IdVectk
Vectk

−⊗E
T

QCoh(X)

Hom(E,−)

g∗
QCoh(X)

Hom(E,−)

in more concrete terms. This will be done in several steps:

• First, using that the assignment X QCoh(X) lifts to a functor
from an appropriate category of correspondences we will identify

Tr2Catk(g∗) � Γ(Xg,OXg)
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where Xg is the derived fixed locus of g.
• Specializing to the case when g = IdX so thatXg � LX is the so-called
inertia group of X we will show that E admits a canonical action of
LX and compute ch(E, t) in terms of this action.

• Finally, under additional assumption that X is smooth (so that we
can apply QCoh-version of formal deformation theory) we will show
that the canonical action of the LX on E is closely related to the
canonical action of the Lie algebra TX [−1] given by the Atiyah class
of E deducing that

ch(E, t) = Tr(exp(At(E)) ◦ t).

In particular, if t = IdE we will show that ch(E, IdE) coincides with
the classical topological Chern character (defined using the splitting
principle).

1.1. Self-duality of quasi-coherent sheaves and Chern character

We start with a short reminder of self-duality of QCoh. Recall the following

Theorem 1.1.1 ([10, Chapter 3, Proposition 3.4.2 and Chapter 6, Propo-
sition 4.3.2]).

1. For any two X,Y ∈ Schaft (for the definition see [10, Chapter 2, 3.5]) the
morphism

QCoh(X)⊗QCoh(Y ) QCoh(X × Y )

in Catk induced by the functor

QCoh(X)×QCoh(Y )
�

QCoh(X × Y )

is an equivalence.
2. For any X ∈ Schaft the morphisms

Vectk
Δ∗OX

QCoh(X ×X) � QCoh(X)⊗QCoh(X)

and

QCoh(X)⊗QCoh(X) � QCoh(X ×X)
Γ◦Δ∗

Vectk

exhibit QCoh(X) as a self-dual object in Catk.
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Corollary 1.1.2. Let X be an almost finite type scheme with an endomor-

phism X
g

X . Then there is an equivalence

Tr2Catk(g∗) � Γ(X,Δ∗(IdX , g)∗OX) � Γ(Xg,OXg),

where Xg is the derived fixed locus of g defined by the pullback square

Xg i

i

X

(IdX ,g)

X
Δ

X ×X.

Proof. Unwinding the definitions and using the theorem above one finds
that the trace Tr2Catk(g∗) is given by the composite

Vectk
Δ∗OX

QCoh(X×X)
(IdX×g)∗

QCoh(X×X)
Γ◦Δ∗

Vectk

which is given by tensoring with Γ(X,Δ∗(IdX , g)∗OX). Now by applying
the base change for quasi-coherent sheaves (see [10, Chapter 3, Proposition
2.2.2.]) to the diagram above we get

Γ(X,Δ∗(IdX , g)∗OX) � Γ(X, i∗i
∗OX) � Γ(X, i∗OXg) � Γ(Xg,OXg)

proving the claim.

Example 1.1.3. Note that in the case when g = IdX we get an equivalence
Xg � LX where LX is the derived loops scheme of X defined as

LX := Map(S1, X) � X ×
X×X

X

In particular, in the case when X is smooth the Hochschild-Kostant-Rosen-
berg isomorphism (see Corollary 1.3.1) states that

πiΓ(LX,OLX) �
dimX⊕
p−q=i

Hq(X,Ωp
X).

As we will in Theorem 6.2.2 under some reasonable assumptions one can use
the Hochschild-Kostant-Rosenberg isomorphism to get some understanding
of Γ(Xg,OXg) for g which is not necessary an identity.
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We now turn to the categorical Chern character. Recall from [15, Defi-
nition 1.2.9] the following

Construction 1.1.4. Given a compact sheaf E ∈ QCoh(X) together with

an endomorphism E
t

g∗E we can form a diagram

Vectk

−⊗E

IdVectk
Vectk

−⊗E
T

QCoh(X)

Hom(E,−)

g∗
QCoh(X)

Hom(E,−)

in 2Catk with the 2-morphism T induced by the morphism t. The corre-
sponding element

ch(E, t) ∈ Tr2Catk(g∗) � Γ(Xg,OXg)

obtained via the formalism of traces (see Proposition 0.0.3) is called a cate-
gorical Chern character of E.

Recall also the following result

Proposition 1.1.5 ([15, Proposition 2.2.3.]). Assume that X is a quasi-
compact scheme (in this case QCoh(X) is compactly generated by dualizable

objects). Given an endomorphism X
g

X and a dualizable sheaf E ∈
QCoh(X) together with a lax g-equivariant structure E

t
g∗E on E

there is an equality

ch(E, t) � TrQCoh(Xg)

(
i∗E

β

∼ i∗g∗E
i∗(b)

i∗E

)
in Γ(Xg,OXg), where b ∈ HomQCoh(X)(g

∗E,E) is the morphism which
corresponds to t using the adjunction between g∗ and g∗, the morphism

Xg i
X is the inclusion of the derived fixed points and the equivalence

β is induced by the equivalence i � g ◦ i.

It turns out that the equivalence β above is non-trivial even in the case
g = IdX . In fact, it is closely related to the Atiyah class of E, as we will see
further in this section.
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1.2. Canonical LX-equivariant structure

In this subsection we will construct a canonical action of LX on any sheaf
in QCoh(X) and use this structure to give an alternative description to the
morphism β from Proposition 1.1.5. We start with the following

Definition 1.2.1. Let X ∈ PreStack be a prestack and Y ∈ PreStack/X be
a prestack over X. Then for a group G ∈ Grp(PreStack/X) which acts on Y
define a prestack Y/G ∈ PreStack as the colimit

Y/G := colim
Δop

(
. . . G×X G×X Y G×X Y

q2

a
Y

)
in the category of prestacks.

Recall now the following

Definition 1.2.2. Let X ∈ PreStack be a prestack and Y ∈ PreStack/X
be a prestack over X. Then for a group G ∈ Grp(PreStack/X) which acts
on Y we define a category of G-equivariant sheaves on Y denoted by
RepG(QCoh(Y )) simply as

RepG(QCoh(Y )) := QCoh(Y/G).

We will further frequently abuse the notation by considering G-equi-
variant sheaves on X as objects of the category QCoh(Y ) via the pullback
functor

QCoh(Y/G)
h∗

∼ QCoh(Y )

where Y
h

Y/G is the natural projection map.

Construction 1.2.3. Notice that by the definition of Y/G we have an
equivalence of functors a∗h∗ ∼ q∗2h

∗ . Consequently, for every G-equi-

variant quasi-coherent sheaf F ∈ RepG(QCoh(Y )) we get an equivalence

a∗F αF
∼ q∗2F which we will further call an action morphism of G on F .

Remark 1.2.4. Suppose that the action of G on Y is trivial so that a = q2
and therefore for any F ∈ RepG(Y ) the morphism αF is an automorphism.
For dualizable F ∈ QCoh(X) we then define a character χF of the repre-
sentation F as the trace

χF := TrQCoh(G×XY )(αF ) ∈ π0Γ(G×X Y,OG×XY )
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of the action morphism. To justify the notation above, suppose that X =
Y = Spec k and G is an ordinary group scheme over a field k. In this case E
corresponds to some representation ρ ∈ RepG(Vectk) and for every g ∈ G(k)
the pullback g∗αF is equal to ρ(g). In particular, since the pullback functor
is symmetric monoidal we get

χF (g) := g∗ TrQCoh(G×XY )(αF ) = Tr(g∗αF ) = Tr(ρ(g))

i.e. χF defined as above coincides with the usual character of representa-
tion ρ.

Notice now that for a morphism Z
p

X in PreStack together with a

section X
s

Z of p the fiber product G := X×ZX admits the structure
of a group object over X: the morphisms p and s above realize Z as a
pointed object in PreStack/X and the fiber product X ×Z X is simply the
loop object of Z ∈ PreStack/X at the point s. Moreover, we can regard X
as acted on by G by the (necessarily) trivial action and there is an induced

map X/G Z (which is equivalence if and only if the section s is an

effective epimorphism).

In this paper we are interested in the special case when Z := X×X, the
morphism p := q1 is given by the projection to the first component and the
section s := Δ is given by the diagonal morphism. In this case the resulting
group

X ×
X×X

X ∈ Grp(PreStack/X)

is called the inertia group of X and by definition coincides with the de-
rived loop stack LX of X from Example 1.1.3. In particular, by the discus-
sion above we see that LX naturally acts on X and that we have a map

B/XLX c
X ×X (where B/XLX ∈ PreStack/X is the delooping of LX

over X). We are now ready to state the following

Proposition 1.2.5. Every F ∈ QCoh(X) admits a natural LX-equivariant
structure.

Proof. The desired structure is given by the composite

QCoh(X)
q∗2

QCoh(X ×X)
c∗

QCoh(B/XLX) = RepLX(QCoh(X))

where X ×X
q2

X is the projection to the second component.
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Following [11, Chapter 8, 6.2] we will further call this structure the
canonical LX-equivariant structure on F .

Remark 1.2.6. Notice that if one would take the first projection q1 in the
proposition above instead the resulting LX-equivariant structure on every
quasi-coherent sheaf on X will be trivial (since we consider X × X as an
object over X precisely via q1). The canonical LX-equivariant structure is,
however, highly nontrivial as we will see just below.

We are now ready to describe how the categorical Chern character can
be understood using the natural action of LX on X:

Proposition 1.2.7. Let E
t

E be a dualizable quasi-coherent sheaf
on X together with an endomorphism. Then

ch(E, t) = TrQCoh(LX) (i
∗(t) ◦ αE) ∈ π0Γ(LX,OLX)

where ch(E, t) ∈ Tr2Catk(IdQCoh(X)) � Γ(LX,OLX) is the categorical Chern
character and αE is the action morphism of LX on E from Construction
1.2.3 (here E is considered as an LX-equivariant quasi-coherent sheaf on X
using the canonical LX-equivariant structure from Proposition 1.2.5).

Remark 1.2.8. Note that in the case t = IdE the right hand side coincides
by definition with the character of the canonical representation of LX on E
from Remark 1.2.4.

Proof. Let more generally g be arbitrary endomorphism of X and consider
the pullback diagram defining Xg

Xg i

i

X

(IdX ,g)

X
Δ

X ×X q2
X.

Unwinding the definitions, one finds that the morphism β from Proposition
1.1.5 can be rewritten as the composite

i∗E � i∗Δ∗q∗2E ∼ i∗(IdX , g)∗q∗2E � i∗g∗E,

where the middle morphism is induced by the pullback diagram above. In
particular, in the special case when g := IdX and b := t we get an equivalence

ch(E, t) = TrQCoh(LX)(i
∗E

β

∼ i∗E
i∗(t)

i∗E)
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and β is equivalent to the composite

i∗E � i∗Δ∗q∗2E ∼ i∗Δ∗q∗2E � i∗E

with the middle morphism above induced by the pullback diagram

LX i

i

X

Δ

X
Δ

X ×X
q2

X.

Rewriting this diagram as

LX
i

i
X

Δ
X ×X

q2
X

we see that β is precisely the action morphism of LX on Δ∗q∗2E, that is,

an action morphism of LX on E with the canonical LX-equivariant struc-

ture.

1.3. Categorical Chern character as exponential

In this section we give a different description of LX-equivariant structure

on a sheaf E ∈ QCoh(X) on a smooth proper scheme X using the for-

mal deformation theory developed in [11] (we invite the reader to look at

Appendix A for a quick reminder). Recall that in order to conveniently

work with deformation theory one needs to replace the category of quasi-

coherent sheaves QCoh(X) with a closely related but different category

of ind-coherent sheaves ICoh(X) (see section 2.1). However, for a smooth

scheme X there is a natural symmetric monoidal equivalence

QCoh(X)
ΥX

∼ ICoh(X) (see Example 2.1.5), so we will state all needed

results of [11] using QCoh(X) instead of ICoh(X).

As we have seen in Proposition 1.2.7 the Chern character can be de-

scribed using the group structure (over X) on the inertia group LX of X.

Note that the underlying quasi-coherent sheaf of the Lie algebra LieX(LX)

that corresponds to LX via formal groups-Lie algebras correspondence (see
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Theorem A.0.2) is easy to understand: because of the pullback square

LX
i

i
X

Δ

X

e

Δ
X ×X

where e is obtained by pulling back q1 we get an equivalence

e∗TLX/X � e∗i∗TX/X×X � TX/X×X � TX [−1]

in QCoh(X).

Corollary 1.3.1 (Hochschild-Kostant-Rosenberg). For a smooth scheme X

we have

i∗OLX � SymQCoh(X)(Ω
1
X [1]) �

dimX⊕
p=0

Ωp
X [p]

HHi(X) �
dimX⊕
p−q=i

Hq(X,Ωp
X).

Proof. Since by definition HHi(X) := πiΓ(LX,OLX) � πiΓ(X, i∗OLX) the

second equivalence immediately follows from the first one. To get the first

equivalence, note that applying the exponent map (see Theorem A.0.6) we

get an equivalence

V(TX [−1])
expLX

∼ LX

of formal schemes over X. But by smoothness of X we have (TX [−1])∨ �
Ω1
X [1] ∈ Coh<0(X) and hence by Example A.0.5 we get

V(TX [−1]) � Spec/X

(
SymQCoh(X)(ΩX [1])

)
thus obtaining an equivalence i∗OLX � i∗OV(TX [−1]) � SymQCoh(X)(ΩX [1])

in QCoh(X).
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Now the Hochschild-Kostant-Rosenberg theorem above shows us that for
a perfect sheaf with an endomorphism (E, t) the categorical Chern character
ch(E, t) is in fact an element of

π0Γ(LX,OLX) �
dimX⊕
p=0

Hp(X,Ωp
X).

In particular, it makes sense to ask for a more concrete description of
ch(E, t). In order to do this, let us pick a sheaf E ∈ QCoh(X) and ana-
lyze the canonical LX-equivariant structure on E. Since action of a formal
group correspond to the action of the corresponding Lie algebra (see Theo-
rem A.0.2) in the case when our formal group is the inertia group LX we
get an equivalence

RepLX
(
QCoh(X)

)
� ModTX [−1] (QCoh(X)) .

Consequently, we see that the canonical LX-equivariant structure on E ∈
QCoh(X) can be equivalently understood in terms of the corresponding
action of TX [−1] ∈ LAlg(QCoh(X)) on E (which we will further also call
canonical).

In order to understand the canonical action of TX [−1], let us for a sec-
ond discuss a more general situation. Suppose that we have a Lie algebra
g ∈ QCoh(X) which acts on some F ∈ QCoh(X). The associative algebra
structure on EndQCoh(X)(F) ∈ Alg(QCoh(X)) endows it with the structure
of a Lie algebra (we will further denote by glF ∈ LAlg(QCoh(X)) the corre-
sponding Lie algebra) and the action of g on F induces a map g glF in

LAlg(QCoh(X)). Now by Lie algebras-formal groups correspondence from

theorem A.0.2, we can “integrate” this map to obtain a map Ĝ
ρ

GLF

of formal groups, where LieX(Ĝ) � g and LieX(ĜLF ) � glF . It particular,
by functoriality this gives a commutative diagram

V(g)
V(LieX(ρ))

exp
̂G ∼

V(glF )

∼ exp
̂GLF

Ĝ ρ ĜLF

of formal moduli problems over X.
Now applying the above procedure to the canonical action of TX [−1] on

E we arrive at the following
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Definition 1.3.2. Let X be a smooth scheme. Define Atiyah class At(E)

of E ∈ QCoh(X) as the top horizontal map in the commutative diagram

V
(
TX [−1])

) At(E)

expLX ∼

V(glE)

∼ exp
̂GLE

LX αE
ĜLE .

By the Lie algebras–formal groups correspondence Atiyah class of E cor-

responds by definition to the canonical TX [−1]-module structure on E. By

taking dual of the Lie-module structure map TX [−1] EndQCoh(X)(E)

we see that At(E) corresponds to some class inH1(X, EndQCoh(X)(E)⊗LX).

Combining Proposition 1.2.7 with the notation above we obtain:

Corollary 1.3.3. Let X be a smooth proper scheme and E ∈ QCoh(X) is a

perfect sheaf with an endomorphism E
t

E . Then under the Hochschild-

Kostant-Rosenberg identification we have an equality

ch(E, t) = TrQCoh(LX)

(
i∗E ∼

exp(At(E))
i∗E

i∗(t)
i∗E

)

of elements of
⊕
p

Hp(X,Ωp
X).

Example 1.3.4. Recall that for a perfect sheaf E ∈ QCoh(X) we have an

equality

ch0(E) = rk(E) = TrQCoh(X)(IdE)

where ch(E) here is the classical Chern character. Now as we will see below

(Proposition 1.4.9), the categorical Chern character ch(E, IdE) in fact coin-

cides with the classical one ch(E). In particular, the corollary above allows

as to prove a generalization of this statement: for a perfect sheaf (E, t) with

an endomorphism we get an equality

ch(E, t) = Tr

(
t+ t ◦At(E) + t ◦ At(E)∧2

2
+ . . .

)
and therefore since Tr(At(E)∧n) ∈ Hn(X,Ωn

X) we obtain ch0(E, t) = Tr(t).
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1.4. Comparison with the classical Chern character

We will now compare our definition of Atiyah class with a more classical

one. These results are well-known to experts and we include them mostly

for reader’s convenience.

Definition 1.4.1. The prestack Perf of perfect sheaves is defined as

Perf(R) := (ModperfR )�.

Note that since the operation of taking full subcategory of dualizable

objects commutes with limits of symmetric monoidal categories and the

operation of taking maximal subgroupoid commutes with limits of categories

for any prestack Y ∈ PreStack we get a natural equivalence

HomPreStack(Y,Perf) � lim
SpecR∈Aff/Y

HomPreStack(SpecR,Perf) =

= lim
SpecR∈Aff/Y

(ModperfR )� �
(
QCoh(Y )perf

)�
Let us now denote by E ∈ QCoh(Perf) the universal perfect sheaf classified

by the identity morphism IdPerf . We then have

Proposition 1.4.2 ([11, Chapter 8, Proposition 3.3.4.]). There is a canon-

ical equivalence

TPerf [−1] ∼ EndQCoh(Perf)(E)

of Lie algebras.

Remark 1.4.3. It is not hard to show that the underlying sheaves of LPerf

and EndQCoh(Perf)(E)[−1] are equivalent. Indeed, the pullback diagram

LPerf
i

i

Perf

Δ

Perf
Δ

e

Perf ×Perf

induces an equivalence

LPerf � LPerf /Perf ×Perf [−1] � e∗i∗LPerf /Perf ×Perf [−1] � e∗LLPerf /Perf [−1].
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Now to calculate e∗LLPerf /Perf [−1] we note that by definition for any mor-
phism

SpecR
η

Perf

classifying E ∈ ModperfR and an R-module M ∈ Mod≤0
R the space

HomModR
(η∗e∗LLPerf /Perf ,M)

is equivalent to the space of lifts

SpecR

t

η
Perf

e LPerf

i

SpecR[M ]
ζ

Perf .

Now the morphism ζ classifies the module u∗E where SpecR[M ]
u

SpecR

is the projection map (so that t∗u∗ � IdModR
) and LX classifies a perfect

sheaf together with an automorphism we get

HomModR
(η∗e∗LLPerf /Perf ,M) � AutModR[M]

(u∗E) ×
AutModR

(E)
{IdE} �

� HomModR[M]
(u∗E, u∗E) ×

AutModR
(E)

{IdE} �

� HomModR
(E, u∗u

∗E) ×
AutModR

(E)

{IdE} �

� HomModR
(E,E ⊕ E ⊗R M) ×

AutModR
(E)

{IdE} � HomModR
(E,E ⊗R M) �

� HomModR

(
EndModR

(E),M
)
� HomModR

(
η∗EndQCoh(Perf)(E),M

)
proving the claim, where above we use that any endomorphism of u∗E ∈
ModR[M ] lying over IdE is automatically invertible.

The following proposition provides a convenient description of the Atiyah
class as a map of underlying sheaves:

Proposition 1.4.4. Let E ∈ Perf(X) be a perfect sheaf on a smooth scheme

X classified by the map X
e

Perf . Then the induced map of tangent
spaces

TX e∗TPerf � EndQCoh(X)(E)[1]

is equal to At(E)[1].
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Proof. Note that given two stacks X ,Y admitting deformation theory to-

gether with formal groups H ∈ Grp(M̂oduliX ) and G ∈ Grp(M̂oduliY) over
X and Y respectively the datum of commutative square

X f Y

B̂/XH B̂/YG

determines a morphism

H GX := X ×Y G

of formal groups over X . Unwinding the definitions, one finds that under
the identifications

LieX (H) � TX/( ̂B/XH) LieX (GX ) � f∗ LieY(G) � f∗TY/( ̂B/YG)

the induced map of Lie algebras

TX/( ̂B/XH) � LieX(H) f∗ LieY (G) � f∗TY/( ̂B/YG)

coincides with the natural map of relative tangent sheaves. Applying this
observation to the diagram

X
e

Δ

Perf

Δ

(X ×X)
̂Δ e×e

(Perf ×Perf)
̂Δ

(2)

and using the equivalence TX � TX/(X×X)
̂Δ
[1] (and similarly for Perf) we de-

duce that the map of tangent sheaves TX e∗TPerf � EndQCoh(X)(E)[1]

we are interested in is the shift of the morphism that underlies the map of

Lie algebras induced by the morphism LX X ×Perf L̂Perf of formal

groups over X, where L̂Perf ∈ Grp(M̂oduliPerf) is the completion of LPerf
along the constant loops. Since LPerf classifies a perfect sheaf with an auto-
morphism we get an equivalence X×Perf L̂Perf � ĜL/X(E) of formal groups
over X. Moreover, by commutativity of the diagram (2), the induced group
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morphism LX α
ĜL/X(E) is given precisely by the canonical action.

The result now follows from the definition 1.3.2 of the Atiyah class.

Recall now the following

Construction 1.4.5 (Classical algebraic Chern character). Let X be a

smooth proper scheme and L be a line bundle on X. We define

ch(L) := exp(c1(L)) ∈
⊕
p

Hp(X,Ωp
X),

where c1(L) ∈ H1(X,Ω1
X) is the algebraic (Hodge version of the) first Chern

class defined via the map O∗
X

d log
Ω1
X . For a general perfect sheaf E on X

we define ch(E) ∈
⊕

pH
p(X,Ωp

X) by additivity and the splitting principle.

Warning 1.4.6. Let k = C, X a smooth proper scheme over k and E a

vector bundle on X. Then one has a priori two different notions of the Chern

character: the one constructed above and the topological Chern character

chtop(E) ∈ H∗(X(C),Z) H∗(X(C),C) �
⊕

p,q H
q,p(X) . It turns out

these two notions do not coincide, but are very closely related to each other:

a simple computation on P1 shows that ctop1 (OP1(1)) = −2πi ·c1(OP1(1)) and

hence in general chtopk (E) = (−2πi)k chk(E).

In particular, as a well-known corollary we recover the fact that the

classical Chern character of a sheaf can be expressed in terms of the Atiyah

class:

Corollary 1.4.7. Let X be a smooth proper scheme.

1. Let M be a line bundle on X. Then the Atiyah class At(M) ∈
H1(X, EndQCoh(X)(M)⊗ Ω1

X) � H1(X,Ω1
X) of M coincides with the

first Chern class c1(M) of M.

2. Let E be a perfect sheaf on X. Then the classical Chern character of

E is equal to Tr exp(At(E)).

Proof. For the first claim, note that by Proposition 1.4.4 the Atiyah class

of any perfect sheaf E ∈ QCoh(X)perf can be equivalently described as the

shift of the induced map on tangent spaces

TX e∗TPerf � EndQCoh(X)(E)[1] ,
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where the map X
e

Perf classifies E ∈ QCoh(X)perf . Now if E = M
is a line bundle, the classifying map X Perf factors through BGm

and so it is enough to prove the statement for the universal line bundle L

on BGm. But the canonical map BGm
u

Perf induces an equivalence
TBGm

� u∗TPerf and hence the Atiyah class obtained as the shift of

At(L) : OBGm
[1] � TBGm

EndQCoh(BGm)(L)[1] � OBGm
[1]

is just the identity map, which corresponds to c1(L).
For the second claim, as both ch(E) and Tr(exp(At(E))) are additive in

triangles and commute with pullbacks by the splitting principle it is sufficient
to prove the equality for E = M being a line bundle. But since by the
previous part At(M) = c1(M), we get

Tr(exp(At(M))) = exp(At(M)) = exp(c1(M)) = ch(M)

as claimed.

Remark 1.4.8 (Chern-Weil theory and the Atiyah class). Since ch(E, t) is
k-linear in the second argument, one expects it to be an element of some
k-linear cohomology theory of X like de Rham or Hodge cohomology. Our
description of ch(E, t) is closer to the differential-geometric approach to
characteristic classes. Namely, recall that if X is a smooth proper scheme
over the field C of complex numbers and E is a vector bundle over X one
can give the following description of the algebraic Chern character of E (see
Warning 1.4.6 for the difference between algebraic and topological Chern
characters): choose a smooth connection ∇ on E and let F∇ ∈ End(E)⊗Ω2

X

be the corresponding curvature form. Then

ch(E) = Tr eF∇ ∈ H∗
dR(X,C).

Now assume additionally that ∇ is of type (1, 0). Then the curvature F∇
splits into a sum F 2,0

∇ + F 1,1
∇ . It follows that Tr eF

1,1
∇ is a representative of

ch(E) in Hodge cohomology
⊕

pH
p,p(X) �

⊕
p F

pHp
dR(X,C)/

F p+1Hp
dR(X,C). Finally, it turns out the class F 1,1

∇ ∈ H1(X,Ω1
X ⊗ End(E))

is independent of a choice of ∇ and in fact coincides with the Atiyah class
At(E) (see [2, Proposition 4]), linking the previous corollary and the Chern-
Weil theory.

Finally we obtain a concrete description of the categorical Chern char-
acter of a sheaf with the trivial equivariant structure
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Proposition 1.4.9. Let E be a dualizable object of QCoh(X). Then under
the Hochschild-Kostant-Rosenberg isomorphism 1.3.1

π0 Tr2Catk(IdQCoh(X)) � π0Γ(LX,OLX)
HKR
∼

dimX⊕
p=0

Hp(X,Ωp
X)

the categorical Chern character ch(E, IdE) coincides with the classical one
ch(E).

Proof. By Proposition 1.2.7 we have ch(E, IdE) = TrQCoh(LX)(αE) and by
definition of the Atiyah class we have exp∗LX(αE) = exp(At(E)). Since by
construction HKR = exp∗LX , we conclude by the second part of Corollary
1.4.7.

2. Trace of pushforward functor via ind-coherent sheaves

Recall from [10, Chapter 5, 5.3] the quasi-coherent sheaves functor in fact has
an appropriate 2-categorical functoriality, in a sense that it can be lifted to a
symmetric monoidal functor from a symmetric monoidal (∞, 2)-category of
correspondences (see Appendix B for a discussion of traces and correspon-
dences). This allows us to reformulate many 2-categorical questions about
quasi-coherent sheaves to questions about the category of correspondences,
where they can be in most cases answered by direct diagram chasing. This
observation, for example, gives a direct proof that the morphism of traces
Tr(f∗, Idf∗) induced by the diagram

QCoh(X)

f∗

IdQCoh(X)

QCoh(X)

f∗

QCoh(Y )

f∗

IdQCoh(Y )

QCoh(Y )

f∗

in Catk coincides with the classical pullback of global sections (see Remark
2.2.6). However, the same argument does not apply to the morphism of
traces

dimX⊕
p=0

Hp(X,Ωp
X)�Tr(IdQCoh(Y ))

Tr(f∗,Idf∗ )
Tr(IdQCoh(X))�

dimY⊕
p=0

Hp(Y,Ωp
Y )



Equivariant GRR theorem via formal deformation theory 837

we are interested in. Indeed, due to the post factum knowledge that the
answer should involve the Todd class, one should not expect to obtain a
concrete description of it in a purely formal way.

But as is mentioned in previously, apart from QCoh(X) there is an-
other important (∞, 1)-category we can associate to X: the (∞, 1)-category
ICoh(X) ∈ 2Catk of ind-coherent sheaves on X. As a toy example, for

a smooth classical scheme X there is a functor ICoh(X)
ΨX

∼ QCoh(X)

which identifies the category of ind-coherent sheaves with the category of
quasi-coherent sheaves (see Example 2.1.5) as a plain category, but does not

preserve monoidal structure: via this equivalence the natural
!
⊗-monoidal

structure on ICoh(X) is given by

F
!
⊗ G � F ⊗ G ⊗ ω−1

X .

where ωX ∈ QCoh(X) is the dualizing sheaf.
In this section we will prove that the morphism of traces induced by

pushforward could be understood relatively easy in the setting of ind-coher-
ent sheaves:

• In subsection 2.1 we will review relevant facts about the category of
ind-coherent sheaves.

• Similar to that of QCoh, using (Serre) self-duality of ICoh we will
prove that there is an equivalence

Tr2Catk(g∗) � Γ(Xg, ωICoh
Xg ).

• Then we will show that the morphism of traces

Γ(Xg, ωICoh
Xg ) � Tr2Catk(gX∗)

Tr2Catk
(f∗)

Tr2Catk(gY ∗) � Γ(Y g, ωICoh
Y g )

induced by the diagram

ICoh(X)

f∗

(gX)∗
ICoh(X)

f∗

ICoh(Y )
(gY )∗

ICoh(Y )

in 2Catk coincides with the natural pushforward of distributions. In
particular if both X,Y are smooth and proper with trivial equivariant
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structure, from this we will deduce that the morphism of traces

Tr2Catk(IdICoh(X))
Tr2Catk

(f∗)
Tr(IdICoh(Y ))

⎛⎝dimX⊕
p=0

Hp(X,Ωp
X)

⎞⎠∨
Tr2Catk

(f∗)
Tr(IdICoh(Y ))

⎛⎝dimY⊕
p=0

Hp(Y,Ωp
Y )

⎞⎠∨

coincides with the pushforward in homology.

After dealing with this, we will use further sections to investigate how

one can describe the relation between the morphism of traces induced by

pushforward in the setting of ICoh and in the setting of QCoh.

2.1. Reminder on Ind-coherent sheaves

In this subsection we review some basic facts and constructions related to

ind-coherent sheaves. We refer reader to [10, Part II] and [9] for further

details. We start with the following

Definition 2.1.1. For X ∈ Schaft (see [10, Chapter 4, 1.1.1]) define the

category of ind-coherent sheaves on X denoted by ICoh(X) simply as

ICoh(X) := Ind(Coh(X)),

where we denote by Coh(X) the category of coherent sheaves on X, i.e. the

full subcategory of QCoh(X) consisting of those F ∈ QCoh(X) such that

Hi(F) are non-zero only for finitely many i and are coherent over the sheaf

of algebras H0(OX) in the usual sense.

Properties of the ind-coherent sheaves construction we need in this paper

can be summarized by the following

Proposition 2.1.2.

1) ([10, Chapter 4, Proposition 2.1.2, Proposition 2.2.3]) The assignment of

ind-coherent sheaves can be lifted to a functor

Schaft
ICoh∗

Catk
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such that, moreover, for every morphism X
f

Y in Schaft the diagram

ICoh(X)
ΨX

f∗

QCoh(X)

f∗

ICoh(Y )
ΨY

QCoh(Y )

commutes, where ICoh(X)
ΨX

QCoh(X) is obtained by ind-extending

the natural inclusion Coh(X) ⊆ QCoh(X) (and similar for Y ).

2) ([10, Chapter 4, Corollary 5.1.12]) The assignment of ind-coherent sheaves
can be lifted to a functor

Schopaft,proper
ICoh!

Catk,

such that, moreover, given a proper morphism X
f

Y in Schaft the
induced pullback functor f ! := ICoh!(f) is right adjoint to f∗.

3) ([10, Chapter 4, Proposition 6.3.7; Chapter 5, Theorem 4.2.5]) For ev-
ery X ∈ Schaft the category ICoh(X) is symmetric monoidal and self-dual
as an object of Catk (see Theorem 2.2.1 below for a concrete description

of duality maps). Moreover, for every proper X
f

Y the induced func-
tor f ! is symmetric monoidal. We will further denote the monoidal struc-

ture on ICoh(X) by
!
⊗ and the monoidal unit, the so-called ICoh-dualizing

sheaf, by ωICoh
X ∈ ICoh(X). It is straightforward to see that there is in

fact an equivalence ωICoh
X � p!k, where X

p ∗ is the projection and
k ∈ ICoh(∗) � Vectk.

4) ([10, Chapter 6, 0.3.5, 3.2.5]) The functor QCoh(X)
ΥX

ICoh(X) ob-

tained from ΨX using self-dualities of QCoh(X) and ICoh(X) is symmetric

monoidal and for every proper morphism X
f

Y in Schaft the diagram

QCoh(X)
ΥX

ICoh(X)

QCoh(Y )
ΥY

f∗

ICoh(Y )

f !

commutes.
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In our main case of interest the categories of quasi-coherent sheaves and
ind-coherent sheaves are not that far away to each other. Recall first the
following

Construction 2.1.3. Since X ∈ Schaft is quasi-compact, the global sections
functor

QCoh(X)
p∗

Vectk

is continuous, hence admits a right adjoint p!. We define QCoh-dualizing
sheaf ωX ∈ QCoh(X) by setting ωX := p!(k).

Example 2.1.4. If X is smooth, then by classical Serre duality there is an
equivalence

ωX � ΩdimX
X [dimX]

in QCoh(X). In particular, ωX is dualizable in this case.

Example 2.1.5. Let X be a smooth classical scheme. Since X is quasi-
compact and separated there is an equivalence QCoh(X)� Ind(QCoh(X)perf)
of categories (see e.g. [4, Proposition 3.19]), and by smoothness we also get
Coh(X) � QCoh(X)perf . Consequently, it follows that the canonical func-

tor ICoh(X)
ΨX

QCoh(X) is an equivalence of categories and thus the

functor QCoh(X)
ΥX

ICoh(X) is a symmetric monoidal equivalence of

categories. In particular we can identify ICoh(X) with QCoh(X) with the
twisted monoidal structure

F
!
⊗G � F ⊗ G ⊗ ω−1

X .

We will further need comparison between ωX and ωICoh
X :

Proposition 2.1.6. Let X be a proper derived scheme. Then there is an
equivalence ωX � ΨX(ωICoh

X ) in QCoh(X). In particular Γ(X,ωICoh
X ) �

Γ(X,ωX) where here Γ = p∗ is the pushforward along projection morphism

X
p ∗ in the setting of ind-coherent and quasi-coherent sheaves respec-

tively.

Proof. The first statement follows from the fact that due to [9, Proposition
7.2.2., Proposition 7.2.9(a)] the diagram

ICoh(X)
ΨX

QCoh(X)

Vectk

p!,ICoh

Ψ∗
∼ Vectk

p!,QCoh
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commutes. The assertion about global sections follows from commutativity
of the square

ICoh(X)
ΨX

p∗

QCoh(X)

p∗

Vectk
Ψ∗
∼ Vectk .

Remark 2.1.7. Note that unlike the QCoh-dualizing sheaf, the ICoh-dual-
izing sheaf is defined for much bigger class of prestacks (the quasi-coherent
dualizing sheaf ωX ∈ QCoh(X) exists only if OX ∈ QCoh(X) is compact).
However for the comparison of the morphism of traces induced by pushfor-
ward in QCoh-setting and ICoh-setting it is more convenient to work with
QCoh-version of dualizing sheaf.

2.2. Computing the trace of pushforward

In this subsection we discuss morphism of traces in the setting of ind-
coherent sheaves. We first note that similar to quasi-coherent sheaves, ind-
coherent sheaves are self-dual as an object of Catk:

Theorem 2.2.1 ([10, Chapter 4, Proposition 6.3.4; Chapter 5, Theorem
4.2.5]).

1. For any two X,Y ∈ Schaft (for the definition see [10, Chapter 2, 3.5]) the
morphism

ICoh(X)⊗ ICoh(Y ) ICoh(X × Y )

in Catk induced by the functor

ICoh(X)× ICoh(Y )
!

�
ICoh(X × Y )

is an equivalence.
2. For any X ∈ Schaft the morphisms

Vectk
Δ∗ωICoh

X
ICoh(X ×X) � ICoh(X)⊗ ICoh(X)

and

ICoh(X)⊗ ICoh(X) � ICoh(X ×X)
Γ◦Δ!

Vectk

exhibit ICoh(X) as a self-dual object in Catk.
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The proof of the following corollary is similar to that of Corollary 1.1.2

(where we use [10, Chapter 4, Proposition 5.2.2] to perform base change for

ind-coherent sheaves)

Corollary 2.2.2. Let X be an almost finite type scheme with an endomor-

phism g. Then

Tr2Catk(g∗) � Γ(X,Δ!(IdX , g)∗ω
ICoh
X ) � Γ(Xg, ωICoh

Xg ).

In particular, in the case when X is proper by Proposition 2.1.6 we get an

equivalence

Tr2Catk(g∗) � Γ(Xg, ωICoh
Xg ) � Γ(Xg, ωXg).

Remark 2.2.3. Let Z
p ∗ be an almost finite type scheme. Note that

then

Γ(Z, ωZ) � HomQCoh(Z)(OZ , p
!k) � HomVectk(p∗OZ , k) � Γ(Z,OZ)

∨.

In particular, using the previous proposition we obtain an equivalence

Tr2Catk(g∗) � Γ(Xg, ωXg) � Γ(Xg,OXg)∨.

As a corollary, we get

Corollary 2.2.4. Let X be smooth and proper scheme. Then

Tr2Catk(IdICoh(X))�Γ(LX,ωLX)�Γ(LX,OLX)∨
HKR∨

�

⎛⎝dimX⊕
p=0

Hp(X,Ωp
X)

⎞⎠∨

where HKR is the Hochschild-Kostant-Rosenberg equivalence (see Corollary

1.3.1).

We now turn to the computation of morphism of traces. Main result of

this section is the following

Proposition 2.2.5. Let (X, gX)
f

(Y, gY ) be an equivariant proper

morphism in Schaft. Then the induced morphism of traces

Γ(XgX , ωICoh
XgX ) � Tr2Catk(gX∗)

Tr2Catk
(f∗)

Tr2Catk(gY ∗) � Γ(Y gY , ωICoh
Y gY )
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can be obtained by applying the global sections functor Γ(Y gY ,−) to the
morphism

(fg)∗ωICoh
XgX � (fg)∗(fg)!ωICoh

Y gY ωICoh
Y gY

in ICoh(X) induced by the counit of the adjunction (fg)∗ � (fg)!, where

XgX
fg

Y gY is the induced by f morphism on derived fixed points.

Proof. The proof is a direct consequence of the fact that the self-duality of
ind-coherent sheaves arise from the category of correspondences. Namely,
by [10, Chapter 5, Theorem 4.1.2] the ind-coherent sheaves functor can be
lifted to a symmetric monoidal functor

Corr(Schaft)
proper 2Catk,

where Corr(Schaft) is a symmetric monoidal (∞, 2)-category whose objects
are X ∈ Schaft, morphisms from X to Y are spans

X W Y

in Schaft (with the composition given by pullbacks), 2-morphisms are com-
mutative diagrams

W1

hX Y

W2

where h is proper and the monoidal structure is given by the cartesian prod-
uct. Informally speaking, the extension of the ind-coherent sheaves to the

category of correspondences is given by mapping the span X W
ts

Y

to the morphism ICoh(X)
s!

ICoh(W )
t∗

ICoh(Y ) in 2Catk. We re-

fer to [10, Chapter 7, Chapter 5] for a throughout discussion of the category
of correspondences and to Corollary B.1.7 for a complete proof of the propo-
sition.

Remark 2.2.6. One can similarly show that the morphism of traces

Γ(Y gY ,OY gY ) � Tr2Catk(gY ∗)
Tr2 Catk

(f∗)
Tr2Catk(gX∗) � Γ(XgX ,OXgX )
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is induced by the natural map OY gY (fg)∗OXgX . It follows that for

X and Y smooth and proper with trivial equivariant structure, under the

Hochschild-Kostant-Rosenberg equivalence

πiΓ(LX,OLX) �
⊕
p−q=i

Hq(X,Ωp
X) πiΓ(LY,OLY ) �

⊕
p−q=i

Hq(Y,Ωp
Y )

the morphism of traces is exactly the pullback in cohomology.

Note, however, that the strategy above does not give directly the de-

scription of the morphism of traces

Γ(LX,OLX)�Tr2Catk(IdQCoh(X))
Tr2Catk

(f∗)
Tr2Catk(IdQCoh(Y ))�Γ(LY,OLY )

on quasi-coherent sheaves. The reason is that in this case the formalism of

traces uses the right adjoint to f∗ which is f !. However, the functor f ! does

not come from the QCoh functor out of the category of correspondences

(which uses the adjoint pair f∗ � f∗ instead).

Finally, using the identification of Corollary 2.2.4 we obtain

Corollary 2.2.7. Let X,Y be smooth and proper with the trivial equivari-

ant structure. Then under the HKR-identification the morphism of traces

Tr2Catk(IdICoh(X))
Tr2Catk

(f∗)
Tr2Catk(IdICoh(Y ))

⎛⎝dimX⊕
p=0

Hp(X,Ωp
X)

⎞⎠∨
Tr2 Catk

(f∗)

⎛⎝dimY⊕
p=0

Hp(Y,Ωp
Y )

⎞⎠∨

coincides with the pushforward in homology (which we define as the map

dual to the pullback of cohomology).

Proof. Immediately follows from the fact that for a map of schemes

Z
f

W the induced map

Γ(Z,OZ)
∨ � Γ(Z, ωZ) Γ(W,ωW ) � Γ(W,OW )∨

coincides by construction of dualizing sheaves with the map dual to the

pullback of functions.
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3. Orientations and traces

Let X
f

Y be a morphism between smooth proper schemes with trivial

equivariant structure. Our goal in this section is to give some description of
the morphism of traces induced by the pushforward functor

QCoh(X)
f∗

QCoh(Y ) (which is automatically equivariant). Since the

diagram

QCoh(X)
f∗

−⊗OX

QCoh(Y )

−⊗OY

ICoh(X)
f∗

ICoh(Y )

commutes and we already have a description of the morphism of traces in-

duced by the functor ICoh(X)
f∗

ICoh(Y ) (where we take identity endo-

morphisms on both ICoh(X) and ICoh(Y )), it is enough to understand the

morphism of traces induced by QCoh(X)
−⊗OX

ICoh(X) and analogously

for Y . We start by introducing the following

Definition 3.0.1. For an almost finite type scheme Z an orientation on Z

is a choice of an equivalence OZ � ωZ in QCoh(Z).

Remark 3.0.2. Let u: OZ � ωZ be an orientation on Z. Then in particular

we obtain a self-duality equivalence

Γ(Z,OZ) ∼
u

Γ(Z, ωZ) � Γ(Z,OZ)
∨

which is moreover a morphism of Γ(Z,OZ)-modules. Note that the space of
orientations on Z is a torsor over Γ(Z,OZ)

×, i.e. after a choice of particular

orientation, all other orientations are in bijection with invertible functions

on Z.

The relevance of the constructions above to the comparison of traces is

explained by

Remark 3.0.3. If X is smooth proper scheme, then any orientation t on

LX induces an equivalence

π0 Tr2Catk(IdICoh(X))�π0Γ(LX,ωLX) ∼
u−1

π0Γ(LX,OLX)
HKR�

⊕dimX
p=0 Hp(X,Ωp

X).
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3.1. Serre orientation

In this and the next subsections we will introduce several orientations on
the derived fixed schemes and discuss some of their properties. We start by
recalling that there is a well-known isomorphism

⊕
p,q

Hq(X,Ωp
X) �

(⊕
p,q

Hq(X,Ωp
X)

)∨

given by the Poincaré duality. The next construction shows that this equiv-
alence is in fact induced by an orientation:

Construction 3.1.1 (Serre orientation). Let X be a smooth proper scheme

and denote by V(TX [−1])
j

X the evident projection map so that in
particular we have an equivalence of sheaves

j∗OV(TX [−1]) � SymQCoh(X)(ΩX [1])

(see Corollary 1.3.1). By projecting this equivalence to the top exterior sum-
mand we obtain a map

j∗OV(TX [−1]) ωX

in QCoh(X) which using the adjunction j∗ � j! (as the morphism j is proper)
induces an equivalence

OV(TX [−1]) ∼ j!ωX � ωV(TX [−1])

and hence endows V(TX [−1]) � LX with an orientation. We will further
call this equivalence the Serre orientation.

The following proposition is a formal consequence of the construction

Proposition 3.1.2. Let X be smooth proper scheme. Then the equivalence

⊕
p−q=iH

q(X,Ωp
X) ∼

HKR
πiΓ(LX,OLX) ∼

uS
πiΓ(LX,ωLX)

where uS is induced by the Serre orientation, followed by

πiΓ(LX,ωLX) ∼ πiΓ(LX,OLX)∨ ∼
HKR∨ ⊕

q−p=iH
q(X,Ωp

X)∨
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coincides with the one induced by the classical Serre duality. In particular,

it sends a form η ∈
dimX⊕
p,q

Hq(X,Ωp
X) to the functional

∫
X − ∧ η, i.e. it is

given by the usual Poincaré pairing.

Using the proposition above we obtain

Proposition 3.1.3. Let X
f

Y be a morphism of smooth proper
schemes. Then the induced morphism of traces

dimX⊕
p=0

Hp(X,Ωp
X) � Tr2Catk(IdICoh(X))

Tr2 Catk
(f∗)

Tr2Catk(IdICoh(Y )) �
dimY⊕
p=0

Hp(Y,Ωp
Y )

(3)

coincides with the pushforward in cohomology (the Poincaré dual of the
pullback map), where the first and the last equivalences are obtained from
3.0.3 using the Serre orientation 3.1.1.

Proof. By Corollary 2.2.7 the morphism of traces⎛⎝dimX⊕
p=0

Hp(X,Ωp
X)

⎞⎠∨
Tr2 Catk

(f∗)

⎛⎝dimY⊕
p=0

Hp(Y,Ωp
Y )

⎞⎠∨

is dual to the pullback in cohomology. It follows from the Proposition 3.1.2
that the composition (3) first takes Poincaré dual of the form, then pushes
it forward in homology and then again takes the Poincaré dual.

3.2. Canonical orientation

Another important CY-structure is given by the

Construction 3.2.1 (Canonical orientation). Let X be a smooth proper

scheme. Given an endomorphism X
g

X the derived fixed-points of g
defined as the pullback

Xg i

i

X

(IdX ,g)

X
Δ

X ×X
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admits an orientation which is given by the series of equivalences

OXg � i∗ωX ⊗ i∗ω−1
X � i∗ωX ⊗ i∗ωX/X×X � i∗ωX ⊗ ωXg/X � i!ωX � ωXg .

We will further call this orientation on Xg canonical.

To see why the canonical orientation is relevant, we prove the following

Proposition 3.2.2. For a classical smooth scheme X the morphism of
traces

Γ(LX,OLX)
Tr2 Catk

(−⊗OX)

∼ Γ(LX,ωLX)

induced by the diagram

QCoh(X)

−⊗OX

IdQCoh(X)

QCoh(X)

−⊗OX

ICoh(X)
IdICoh(X)

ICoh(X)

is obtained by applying the global sections functor Γ(LX,−) to the canonical

orientation OLX
uC

∼ ωLX on LX.

Proof. The proof essentially boils down to coherence of various operations,
see Theorem B.2.7 in appendix for a full proof.

3.3. Group orientations

The previous subsection raises the question of how one can understand the
canonical orientation more explicitly. Our goal now is to show how one can
obtain Serre and canonical orientations on LX using various formal group
structures on LX. To begin, we first need to fix some concrete way how we
trivialize the tangent sheaf to a group:

Construction 3.3.1. Let Ĝ ∈ Grp(M̂oduli/X) be a formal group over
smooth proper scheme X such that the corresponding Lie algebra g :=
LieX(Ĝ) lies in Coh(X)<0. Consider the pullback diagram

Ĝ
i

i

X

X

e

B̂/XĜ
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where B̂/XĜ is the completion along X of B/XĜ. Since the relative tangent
sheaf by its universal property is stable under pullbacks we get a trivializa-
tion

T
̂G/X � i∗TX/ ̂B/X

̂G � i∗e∗i∗TX/ ̂B/X
̂G � i∗e∗T

̂G/X � i∗g.

Remark 3.3.2. Intuitively, the trivialization T
̂G/X � i∗g above is given by

the left-invariant vector fields.

Now trivialization of the tangent sheaf to a group sometimes allows to
construct orientations. To explain how, recall that for an eventually cocon-

nective almost of finite type morphism of derived schemes Z
f

W , there
is a natural equivalence f !− � ωf ⊗ f∗− of functors, and, moreover, if the
morphism f is a regular embedding one can explicitly identify ωf with the
shifted determinant of the normal bundle of f (see e.g. [9, Corollary 7.2.5.]
and [11, Chapter 9, Section 7] respectively). We will need not only the ex-
istence of the equivalences from loc. cit. but also their constructions, so we
review here relevant parts of the theory in QCoh-language. We start with
the following general

Proposition 3.3.3. Let C = QCoh(X) and let V ∈ C be a dualizable object
such that Symd+1

C (V ) � 0 and Symd
C(V ) 
� 0 for some d ≥ 0. Then:

1. We have Sym>d
C (V ) � 0 and SymC(V ) ∈ C is dualizable.

2. The top symmetric power Symd(V ) is an invertible object of C with
the inverse equivalent to Symd

C(V
∨).

3. The multiplication map followed by the projection on the top sum-
mand

SymC(V )⊗ SymC(V ) SymC(V ) Symd
C(V )

is a perfect pairing, i.e. the induced map SymC(V ) ⊗ Symd
C(V )−1 →

SymC(V )∨ is an equivalence.

Proof. 1. Assume that Symn
C(V ) � 0 for some n ∈ Z>0. Since we are in char-

acteristic zero we have an equivalence Symn
C(V ) � (V ⊗n)Σn and the nat-

ural map (V ⊗n+1)Σn+1 (V ⊗n)Σn admits a section Nm
Σn+1

Σn
/[Σn+1 :

Σn]. Hence Symn+1
C (V ) is a direct summand in (V ⊗n+1)Σn � Symn

C(V )⊗
V � 0, so Symn+1

C (V ) � 0. Finally, using characteristic zero assumption
again we deduce that Symk

C is a colimit over a finite diagram and hence
SymC(V ) �

⊕d
k=0 Sym

k
C(V ) is dualizable as a finite colimit of dualizable

objects.
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2. Let us show that the evaluation map e : Symd
C(V )⊗ Symd

C(V
∨) IC

is an equivalence. Since C = QCoh(X) is a limit of module categories, it is
enough to assume C � ModR for some connective k-algebra R. Moreover,
by derived Nakayama’s lemma we can assume R is discrete. Further, by
the usual Nakayama’s lemma it is enough to prove the statement for all
residue fields of R, in which case the statement is clear.

3. Similar to the previous point.

Let now A ∈ CAlg(C) be a commutative algebra object in a presentably
symmetric monoidal k-linear category C. Note that the forgetful functor

ModA(C)
i

C admits both left i∗ and right i! adjoints explicitly given
by

i∗(F) � A⊗F i!(F) � HomC(A,F),

where HomC(−,−) is the inner hom in C. We then have

Corollary 3.3.4 (Grothendieck’s formula). In the notations above let A :=
SymC(V ) where V ∈ C = QCoh(X) is a dualizable object such that moreover
Symd+1

C (V ) � 0 and Symd
C(V ) 
� 0 for some d ≥ 0. Then for any F ∈ C there

is a natural equivalence

i!(F) � ω ⊗A i∗(F)

in ModA(C), where ω := A⊗ Symd(V [1])−1.

Proof. By the previous proposition A is dualizable and A∨ � ω. Hence

i!(F) � HomC(A,F) � A∨ ⊗F � A∨ ⊗A (A⊗F) � ω ⊗A i∗(F)

as claimed.

By applying The Grothendieck’s formula to the case F = OX , V =
ΩX [1] we thus obtain an equivalence

T ab : ωV(TX [−1])/X � i∗
(
Symtop(ΩX [1])−1

)
�

� Symtop (i∗(TX [−1])) � Symtop(TV(TX [−1])/X),

where in the last equivalence we use the abelian group structure on
V(TX [−1]) to identify i∗(TX [−1]) � TV(TX [−1])/X . Consequently, given any
other trivialization of the relative tangent bundle α : TV(TX [−1])/X �
i∗(TX [−1]) we can precompose Symtop(α) with T ab to obtain an equiva-
lence ωV(TX [−1])/X � i∗ω−1

X . This suggests the following
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Construction 3.3.5 (Loop group and abelian orientations). Let X be a
smooth proper scheme. For any group structure on V(TX [−1]) by Construc-
tion 3.3.1 we obtain a trivialization of the relative tangent sheaf TV(TX [−1])/X

and hence by discussion above an equivalence ωV(TX [−1])/X � i∗ω−1
X . By mul-

tiplying both sides with i∗ωX we obtain an orientation

ωV(TX [−1]) � ωV(TX [−1])/X ⊗ i∗ωX � i∗ω−1
X ⊗ i∗ωX � OV(TX [−1]).

If group structure on V(TX [−1]) is pulled back from LX via the exponent
map expLX , we will call the orientation above loop group orientation. In
the case when group structure on V(TX [−1]) is abelian, we will call the
corresponding orientation abelian orientation.

The orientations on V(TX [−1]) from above are in fact not new ones:

Proposition 3.3.6. Let X be smooth proper scheme. Then:

1. The abelian group orientation on LX coincides with the Serre orientation
from construction 3.1.1.

2. The loop group orientation on LX coincides with the canonical structure
from construction 3.2.1.

Proof. 1. Since V(TX [−1]) is affine over X, the space of orientations
OV(TX [−1]) � ωV(TX [−1]) on V(TX [−1]) is equivalent to the space of
i∗OV(TX [−1])-linear equivalences i∗OV(TX [−1]) � i∗ωV(TX [−1]) in QCoh(X).
Also note that

i∗OV(TX [−1]) � SymQCoh(X)(ΩX [1])

and

i∗ωV(TX [−1]) � HomQCoh(X)

(
Sym(ΩX [1]), ωX

)
.

In particular, unwinding definitions one finds that the Serre orientation
is induced by the non-degenerate pairing given by the multiplication

SymQCoh(X)(ΩX [1])⊗ SymQCoh(X)(ΩX [1]) SymQCoh(X)(ΩX [1])

followed by the projection to the top summand

SymQCoh(X)(ΩX [1]) Symtop
QCoh(X)(ΩX [1]) � ωX .

But this is precisely the same pairing which we used to construct an
equivalence ωV(TX [−1])/X � Symtop (i∗(TX [−1])) (see Proposition 3.3.4).
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2. Consider more generally arbitrary formal group structure on V(TX [−1])

induced by a pullback diagram

V(TX [−1])
i

i

X

X B̂

for some B̂ ∈ M̂oduliX//X . This diagram induces an equivalence

C : ωV(TX [−1])/X � i∗(ωX/ ̂B)

of relative dualizing sheaves. Since ωX/ ̂B � ω−1
X , by multiplying C with

i∗ωX we obtain an orientation u
̂B on V(TX [−1]). As an example, if we

consider B = (X ×X)
̂Δ the orientation obtained this way by definition

coincides with the canonical one. Let now α : TV(TX [−1])/X � i∗(TX [−1])

be the trivialization of the tangent sheaf obtained from the pullback di-

agram above. Unwinding the definitions, one finds that the composite

equivalence

ωV(TX [−1])/X
T ab

∼ Symtop(TV(TX [−1])/X)
Symtop(α)

∼ Symtop(i∗TX [−1]) ∼ i∗(ω−1
X )

coincides with C. But by definition this equivalence tensored by i∗(ωX) is

the group orientation and C ⊗ i∗(ωX) = u
̂B, hence the group orientation

coincides with u
̂B as claimed.

4. The Todd class

From Proposition 3.2.2 and Proposition 3.3.6 we know that the morphism

of traces

Γ(LX,OLX)�Tr2Catk(IdQCoh(X))
Tr2 Catk

(−⊗OX)
Tr2Catk(IdICoh(X)) � Γ(LX,ωLX)

is given by Γ(LX, uC), where uC is the canonical orientation from Construc-

tion 3.2.1. In Proposition 4.1.3 we will prove that the composite equivalence

OLX
uC

∼ ωLX ∼
u−1
S OLX
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is given by the determinant (we refer the reader to [21, Section 3.1] for the

construction of the determinant map det : Perf(X) Pic(X) ) of the

derivative of the exponential map

d expLX : i∗TX [−1] � TV(TX [−1])/X � exp∗LX TLX/X � i∗TX [−1],

where the first equivalence above is via abelian group structure on

V(TX [−1]), and the second one uses exponent and loop group structure

on LX. In this and next sections we will prove that the determinant of the

morphism above coincides with the classical Todd class tdX which is de-

fined as a multiplicative characteristic class. Our proof is motivated by the

following

Example 4.0.1. Let G be a real Lie group with the corresponding Lie alge-

bra g. In a small enough neighborhood of 0 we then have two trivializations

of TG induced by the group structure on G and abelian group structure on

g (via the exponential map g
expG

G ). One can then compute (see Lemma

5.3.3 for the proof in the formal power series setting) that for x ∈ g close

enough to 0 and e(x) := expG(x) the change of trivialization isomorphism

g � Tg,0 ∼
+x

Tg,x ∼
(d expG)x

TG,e(x) ∼
(dLe(x)−1 )e(x)

Tg,0 � g ,

(where for g ∈ G we denote by G
Lg

G the left translations maps by g)

is given by the linear operator (1− e− adg(x))/ adg(x). Note that in this way

we obtain an End(g)-valued function on g

x
1− e− adg(x)

adg(x)
.

In this section we will imitate the example above:

• Given a map g
ρ EndC(E) in a k-linear presentably symmetric

monoidal category C and a power series f ∈ k[[t]] we will construct an

EndC(E)-valued “formal function on g” (which is by definition simply a

map SymC(g)
f(ρ) EndC(E) in C) which informally sends an element

x ∈ g to f(ρ(x)). In the special case C = QCoh(X) and g = TX [−1]

we will give an interpretation of multiplicative characteristic classes in

these terms.
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• Using the interpretation from the previous step the problem of com-
paring Todd classes reduces to proving that

det

(
1− e− adTX [−1]

adTX [−1]

)
= det(d expLX),

where the left hand side is obtained by applying determinant to the
formal function constructed from f(t) = (1− e−t)/t and ρ = adTX [−1].
In order to prove this, we show that both sides make sense for any
Lie algebra g ∈ LAlg(C). Moreover, since both sides are functorial
with respect to continuous symmetric monoidal functors the equiva-
lence above can be checked in the classifying category for Lie algebras
ULie (see Construction 5.2.1). We will show that ULie admits a set of
functors to Vectk which detects non-zero morphisms, hence reducing
the problem to ordinary gln in Vectk for which the statement is well-
known.

4.1. Group-theoretic Todd class

We return our discussion to the trivialization of tangent bundle to a group:
note that if a formal moduli problem over X has two different structures of
a formal group, Construction 3.3.1 gives two a priori different trivializations
of the tangent sheaf. In order to conveniently measure the difference between
these trivializations we introduce the following

Construction 4.1.1. Let Y ∈ (M̂oduli/X)∗ be a pointed formal moduli
problem over smooth proper scheme X such that the pullback of the tan-
gent sheaf (TY/X)|X ∈ QCoh(X) is perfect (so that TY/X ∈ QCoh(Y) is
itself perfect) and let s1, s2 be two formal group structures on Y. Then by
Construction 3.3.1 we get two trivialization of the tangent sheaf TY/X and
thus by applying the first trivialization and then inverse of the second triv-
ialization we get an automorphism γs1,s2 : TY/X � TY/X in QCoh(Y). We
define the group-theoretic Todd class of Y denoted by tdY,s1,s2 ∈ Γ(Y,OY)×

as the determinant tdY,s1,s2 := det(γs1,s2).

Construction 4.1.2. In the case when Ĝ is a formal group overX it has two
distinguished group structures: the abelian one s1 coming from the exponent
map and the given one s2. In this case we will further use the notation

d exp
̂G := γs1,s2 and td

̂G := det(d exp
̂G) ∈ Γ(Ĝ,O

̂G)
×

for the corresponding automorphism and its determinant.
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Note that from Proposition 3.3.6 we get

Proposition 4.1.3. Let OLX
uS

∼ ωLX be the Serre orientation (con-

struction 3.1.1) and OLX
uC

∼ ωLX be the canonical orientation (construc-

tion 3.2.1). Then the composite automorphism

OLX
uC

∼ ωLX ∼
u−1
S OLX

is given by tdLX , where we consider LX as a formal group over X using the

derived loops group structure.

Proof. By construction and Proposition 3.3.6 under the equivalence

EndQCoh(LX)(OLX) � EndQCoh(LX)(i
∗ω−1

X ) � EndQCoh(LX)

(
Symtop(i∗TX [−1])

)
the composite u−1

C ◦ uS is given by the induced map on Symtop applied to

the composite autoequivalence

d expLX : i∗TX [−1] ∼ TLX/X ∼ i∗TX [−1] ,

which under the equivalence Symd(V [−1]) � Λd(V )[−d] is given by the map

Λtop(d expLX [1]). On the other hand

tdLX = det(d expLX) = det(d expLX [1])−1 = Λtop(d expLX [1])−1.

It follows tdLX = (u−1
C ◦ uS)−1 = u−1

S ◦ uC .

Thus using Propositions 3.2.2 and 3.1.3 we conclude

Corollary 4.1.4. Let X be a smooth proper scheme. Then under Serre

orientation equivalence u−1
S the morphism of traces

Tr2Catk(IdQCoh(X))
Tr2Catk

(−⊗OX)
Tr2Catk(IdICoh(X))

Γ(LX,OLX)
Tr2Catk

(−⊗OX)
Γ(LX,ωLX)

u−1
S� Γ(LX,OLX)

is given by multiplication with tdLX .
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4.2. Formal functions

In this subsection we will introduce a construction of formal functions men-
tioned in the introduction to this section. We first recall the following

Construction 4.2.1. Let C be a presentably symmetric monoidal category
and let V ∈ C be an object of C. We define symmetric algebra with divided
powers Symdp,C(V ) on V as

Symdp,C(V ) :=

∞⊕
n=0

(V ⊗n)Σn .

Note that there exists a canonical map Symdp,C(V ) FreeE1

C (V ) where

FreeE1

C denotes the free associative algebra functor in C.

Remark 4.2.2. There is also a canonical norm map
SymC(V ) Symdp,C(V ) which is an equivalence in characteristic zero.

Construction 4.2.3. Let C be a k-linear presentably symmetric monoidal

category and g ∈ C be an object together with a map g
ρ EndC(E). Also

let

f(t) =

∞∑
n=0

fnt
n ∈ k[[t]]

be a power series with f0 = 1. Define then an “EndC(E)-valued formal
function f(ρ) on g” as the composite

f(ρ) :Symdp,C(g)
Symdp(ρ)

Symdp,C(EndC(E)) FreeE1

C (EndC(E))
f EndC(E)

where the map FreeE1

C (EndC(E))
f EndC(E) is defined on the n-th com-

ponent as the composition map ◦ : EndC(E)⊗n EndC(E) followed by
the multiplication by the coefficient fn.

Variant 4.2.4. By adjunction

HomC

(
Symdp,C(g), EndC(E)

)
� HomC

(
Symdp,C(g)⊗ E,E

)
the morphism f(ρ) corresponds to some map Symdp,C(g)⊗ E E which

we by abuse of notations will also denote by f(ρ).
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Example 4.2.5. Let g be a Lie algebra in Vectk and let g
ρ EndVectk(E)

be a representation of g. Then by definition for any power series f(t) ∈ k[[t]]

as above and x ∈ g we have f(ρ)(x⊗n) = fnρ(x)
◦n.

We now give a more geometric description of f(ρ) in the case C =

QCoh(X).

Construction 4.2.6. Let g be a Lie algebra such that g ∈ Coh(X)<0

(whereX is smooth proper scheme) and let g
ρ EndQCoh(X)(E) be some

representation where E ∈ QCoh(X)perf . Then the composite

SymQCoh(X)(g) ∼ Symdp,QCoh(X)(g)
ρ(g) EndQCoh(X)(E)

induces a map

OX SymQCoh(X)(g
∨)⊗ EndQCoh(X)(E)

and hence an element in

HomQCoh(X)

(
OX , SymQCoh(X)(g

∨)⊗ EndQCoh(X)(E)
)
�

� Γ
(
X, j∗j

∗EndQCoh(X)(E)
)
� Γ

(
V(g), EndQCoh(V(g))(j

∗E)
)
�

� EndQCoh(V(g))(j
∗E),

which we will by abuse of notation denote by the same symbol f(ρ) ∈
AutQCoh(V(g))(j

∗E) (where V(g)
j

X is the projection map and f(ρ)

is invertible since f0 
= 0 and V(g) is a nil-thickening of X). Moreover,

since pullbacks preserve perfect objects, the sheaf j∗E ∈ QCoh(V(g)) is also
perfect. Consequently, we can take the determinant of the automorphism

f(ρ) above to obtain an element

cfg(E) := det
(
f(ρ)

)
∈ AutQCoh(V(g))(OV(g)) � Γ(V(g),OV(g))

×.

4.3. tdLX and multiplicative characteristic classes

We now show that the construction above is closely related to the theory of

multiplicative characteristic classes. Namely, recall the following
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Definition 4.3.1. For a power series f ∈ 1 + tk[[t]] define a multiplicative
characteristic class

K0(X)
cf

dimX⊕
p=0

Hp(X,Ωp
X)

by setting it to be f(c1(M)) on line bundles and extending to all vector
bundles by multiplicativity and the splitting principle.

We now prove the following

Proposition 4.3.2. Let X be a smooth algebraic variety, E ∈ QCoh(X)
be a perfect sheaf considered as a TX [−1] � LieX(LX)-module via the
canonical LX-equivariant structure from 1.2.5. Then for any power series f
as above the determinant

cf
TX [−1](E) ∈ Γ

(
V(TX [−1]),OV(TX [−1])

)
�

dimX⊕
p=0

Hp(X,Ωp
X)

is equal to cf (E).

Proof. Let us denote the canonical action of TX [−1] on E by a. Since both

cf
TX [−1](E) = det (f(a)) and cf (E) commute with pullbacks and map di-

rect sums to products, by the splitting principle it is enough to prove the
statement in the case when E := M is a line bundle. In this case via the
equivalence ĜL(M) � Ĝm the morphism det (f(a)) corresponds to f(a) and
so it is left to show that the map

OX
f(a)∨

SymQCoh(X)(TX [−1])∨ � SymQCoh(X)(ΩX [1]).

dual to the morphism f(a)

SymQCoh(X)(TX [−1])
SymQCoh(X)(a)

SymQCoh(X)(OX) ∼ FreeE1(OX)
f OX

coincides with cf (M), where we use above that EndQCoh(X)(M) � OX asM
is a line bundle. Since by Proposition 1.4.7 the representationTX [−1]

a M
classifies At(M) � c1(M) (see Corollary 1.4.7) we have a∨ = c1(M), and so
unwinding the construction we find f(a)∨ = f(c1(M)) which is by definition
cf (M).
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4.4. Comparison with the classical Todd class

Recall by Corollary 4.1.4 that the morphism of traces

Tr2Catk(IdQCoh(X))
Tr2Catk

(−⊗OX)
Tr2Catk(IdICoh(X))

Γ(LX,OLX)
Tr2Catk

(−⊗OX)
Γ(LX,ωLX)

u−1
S� Γ(LX,OLX)(4)

is closely related to d expLX . The following theorem provides a description
of d exp

̂G for an arbitrary formal group Ĝ over X

Theorem 4.4.1. Let Ĝ be a formal group over X such that g := LieX(Ĝ) ∈
Coh<0. Then

d exp
̂G =

1− e− adg

adg
.

Remark 4.4.2. In the theorem above one can drop any assumptions on g

and smoothness assumption on X if instead of QCoh-version one considers
g as a Lie algebra in ICoh(X).

The proof of (a generalization of) this theorem is the content of the next
section. Here we will only use this theorem to deduce that the group theoretic
Todd class tdLX (see Construction 4.1.2) coincides with the classical one and
thus will give a concrete description of the morphism of traces (4). Namely,
recall that the classical Todd class tdX of X is defined as

tdX := c1/f (TX) = cf (TX [−1]) where f(t) =
1− e−t

t
.

Corollary 4.4.3. Let X be a smooth proper scheme. Then tdLX = tdX .

Proof. Note that by Proposition 4.3.2 above we have

tdX = det

(
1− e− adTX [−1]

adTX [−1]

)
,

where adTX [−1] is the adjoint representation of TX [−1]. Consequently, since
the group-theoretic Todd class tdLX was defined as the determinant of
d expLX it is enough to prove that

d expLX =
1− e− adTX [−1]

adTX [−1]
,
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which is a special case of the Theorem 4.4.1 above.

Finally, we can describe the morphism of traces (4) in the classical terms

Corollary 4.4.4. Let X be a smooth proper scheme. Then under the Serre
orientation and HKR identifications the morphism of traces given by the
composite of ⊕

p,q

Hq,p(X)
HKR� π∗ Tr2Catk(IdQCoh(X))

π∗ Tr2Catk(IdQCoh(X))
Tr2Catk

(−⊗OX)
π∗ Tr2Catk(IdICoh(X))

π∗ Tr2Catk(IdICoh(X))
HKR◦u−1

S�
⊕
p,q

Hq,p(X)

is given by multiplication with tdX .

Proof. By Corollary 4.1.4 we know that the morphism of traces is given by
multiplication with the group theoretic Todd class tdLX , and by the previous
Corollary tdLX = tdX .

5. Abstract exponential

The goal of this section is to prove Theorem 4.4.1 by first extending it to
arbitrary Lie algebras in any stable presentably symmetric monoidal k-linear
category and then by reducing this more general statement to the case of
glV for V ∈ Vect♥k . More concretely, let Ĝ be a formal group over X with

the corresponding Lie algebra g. Note that the morphism i∗g
d exp

̂G
i∗g via

a series of adjunctions similar to that in Construction 4.2.6 corresponds to
some morphism

d̃ exp
̂G : SymQCoh(X)(g)⊗ g g

and the same is true for (1− e− adg)/ adg by Variant 4.2.4. We will show in
this section that these two morphisms are actually equal. Before proceeding
to the proof, we will first discuss theory of tangent comodules of arbitrary
cocommutative coalgebra (which plays the role of tangent space to a formal
moduli problem) and review some generalities about operads.
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5.1. Tangent comodule

In this subsection we describe the construction of relative tangent sheaf in
an abstract setting. Informally, the construction will be dual to the cotan-
gent complex formalism developed in [17, Section 7.3]. However, since in
[17, Section 7.3] for most of the statements the category C is assumed to
be presentable and we are rather interested in the case of Cop (so that
CAlg(Cop) = coCAlg(C)op is the opposite to the category of cocommuta-
tive coalgebras in C) we explain the construction here in full details. We
start by introducing the following formal

Definition 5.1.1. Let C be a finitely cocomplete category (i.e. C admits all
finite colimits). Define then a costabilization of C denoted by coStab(C)
as

coStab(C) := Stab(Cop)op.

Remark 5.1.2. Notice that the category coStab(C) is always stable. More-
over, since by definition the costabilization coStab(C) of C can be concretely
described as the limit of the diagram

...
Σ

C/∅
Σ

C/∅
Σ

C/∅

in Cat∞, where ∅ ∈ C is the initial object, we see that if the category C

is presentable then so is coStab(C). In particular, in this case the evident
projection functor

Σ∞
co : coStab(C) = Stab(Cop)op

(Ω∞
Cop )op

(Cop)op � C

by the adjoint functor theorem admits a right adjoint which we will further
denote by Ω∞

co .

Remark 5.1.3. Let C be a finitely cocomplete category and A
f

B be

a morphism in C. Then the induced functor CA/
−�AB

CB/ preserves

colimits and consequently induces a colimit-preserving functor

coStab(CA/)
f∗

coStab(CB/) .

Moreover, in the case C is presentable by the adjoint functor theorem we see
that the functor f∗ admits a right adjoint f∗ � f∗.
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Example 5.1.4. Let C ∈ CAlg(PrL,st∞ ) be a stable presentably symmetric
monoidal category and let C ∈ coCAlg(C) be a cocommutative coalgebra
object in C. We then get an equivalence

coStab(coCAlg(C)C/) = Stab
(
(coCAlg(C)C/)

op
)op

=

= Stab
(
CAlg(Cop)/C

)op � ModC(C
op)op = coModC(C)

where the middle equivalence follows from [17, Theorem 7.3.4.13].

Example 5.1.4 and Remark 5.1.2 above motivate the following

Definition 5.1.5. Let C be a presentable category and A ∈ C be an object.
Define then a tangent complex to A denoted by TA ∈ coStab(CA/) as the

image of (A
IdA

A) ∈ CA/ under the functor

CA/
Ω∞

co
coStab(CA/).

Remark 5.1.6. Let C be a presentable category and A
f

B be a mor-
phism in C. Since the diagram

coStab(CA/)

Σ∞
co

f∗
coStab(CB/)

Σ∞
co

CA/ −�AB
CB/

by construction commutes, we see that the diagram of right adjoints

coStab(CA/) coStab(CB/)
f∗

CA/

Ω∞
co

CB/

Ω∞
co

also commutes. In particular, we get an equivalence Ω∞
co(A

f
B) � f∗TB

in coStab(CA/).

Using the remark 5.1.6 we can introduce the following
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Definition 5.1.7. Let C be a presentable category and A
f

B be a
morphism in C. Define then the relative tangent complex denoted by
TA/B ∈ coStab(CA/) as the fiber

TA/B := fib(TA f∗TB),

where the morphism TA f∗TB is obtained by applying the functor

CA/
Ω∞

co
coStab(CA/) to the morphism A

f
B in CA/.

We end this subsection with the following

Proposition 5.1.8. Let C be a presentable category and

A
f

g

B

t

C
h

D

be a pullback square in C. Then there is a canonical equivalence

TA/C � f∗TB/D

in coStab(CA/).

Proof. Since the diagram above can be also considered as a pullback square

in CA/ and the functor CA/
Ω∞

co
coStab(CA/) preserves limits (being right

adjoint) using the remark 5.1.6 we get a pullback

TA f∗TB

g∗TC f∗t∗TD

in coStab(CA/). In particular, passing to the fibers of the vertical morphisms
we get an equivalence

TA/C = fib(TA g∗TC) � fib(f∗TB f∗t∗TD) �

� f∗fib(TB t∗TD) = f∗TB/D

as claimed.
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5.2. Monoidal category built from an operad

In this subsection we describe the construction of the universal category one
can assign to an operad we need in the proof of Proposition 5.3.2.

Proposition 5.2.1. Let O be an ∞-operad in Vectk (we refer the reader to
[11, Chapter 6, Section 1] and [17, Chapter 2] for a discussion of ∞-operads).
Then there exists a symmetric monoidal k-linear category UO ∈ CAlg(Catk)
such that for any symmetric monoidal k-linear category C ∈ CAlg(Catk)
there is a natural equivalence

FunctCAlg(Catk)(UO,C) � AlgO(C),

where FunctCAlg(Catk)(UO,C) is the full subcategory of Funct⊗(UO,C)
spanned by k-linear symmetric monoidal functors.

Proof. The category UO is simply the category of Vectk-presheaves
Pshk(Envk(O)) on the Vectk-enriched analogue Envk(O) of the monoidal en-
velope of O from [17, Proposition 2.2.4.1] with the Day convolution monoidal
structure (see [17, Example 2.2.6.17] and [12]). The desired universal prop-
erty follows from Vectk-enriched version of [17, Proposition 2.2.4.9] and [12,
Lemma 2.13].

Remark 5.2.2. Suppose that the operad O has only one color. Then the
category UO can be informally constructed as follows: first, one considers the
(∞, 1)-category Envk(O) whose objects are natural numbers and morphisms
are described as

HomEnvk(O)(n,m) �
⊕

f :n→m

m⊗
i=1

O(f−1(i)).

Moreover, the category Envk(O) has a natural symmetric monoidal struc-
ture given by addition. The category UO is then the category of Vectk-
presheaves on Envk(O) with the symmetric monoidal structure determined
by the fact that it preserves colimits and that the Yoneda’s embedding
Envk(O) UO is symmetric monoidal. The equivalence

FunctCAlg(Catk)(UO,C) ∼ AlgO(C)

for C ∈ CAlg(Catk) is then simply given by the evaluation at
HomEnvk(O)(−, 1) ∈ UO.
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5.3. Proof of Theorem 4.4.1

In this section we prove a generalization of the Theorem 4.4.1 to an arbitrary

k-linear presentably symmetric monoidal category C with the monoidal unit

I ∈ C. Our first step is to define d exp
̂G in this context. Note that given

a formal group Ĝ ∈ Grp(M̂oduli/X) one can trivialize its tangent sheaf by

applying the base change to the pullback diagram

Ĝ
i

Δ

X

e

Ĝ× Ĝ
Id

̂G × invG

Ĝ× Ĝ m Ĝ

(5)

where the lower horizontal map informally sends a pair (g, h) to g · h−1.

The morphism d exp
̂G is then defined by comparing two trivializations of

the tangent sheaf that come from two formal group structures on Ĝ (the

initial one and the abelian one).

Using the formalism of tangent comodules one can emulate the same

construction in algebraic setting. Note first that by Yoneda’s lemma the

diagram analogous to (5) is fibered for any group object in any category

admitting finite limits. Consequently, we can introduce the following

Construction 5.3.1. Let C be a k-linear symmetric presentably monoidal

category and g ∈ LAlg(C) be a Lie algebra in C (so that we get a group

object U(g) in the category coCAlg(ICoh(X)) of cocommutative coalgebras

in C). Consider the pullback square of cocommutative coalgebras

U(g) I

U(g)⊗ U(g) U(g).

Using Proposition 5.1.8 this diagram induces an equivalence of U(g)-comod-

ules TU(g) � U(g) ⊗ g. As in Construction 4.1.2 by comparing the trivial

Lie algebra structure on g with the given one we obtain an autoequivalence

d expg : U(g)⊗ g ∼ U(g)⊗ g of U(g)-comodules and hence by adjunc-

tion a morphism d̃ expg : U(g)⊗ g g in C.
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If we take C = QCoh(X) and g = LieX Ĝ in the construction above the

morphism d̃ expg is precisely d̃ exp
̂G from the introduction to this section.

Consequently, to conclude it is left to prove

Proposition 5.3.2. Let C be a stable symmetric presentably monoidal k-
linear category, g ∈ LAlg(C) be a Lie algebra in C. Then

d̃ expg =
1− e− adg

adg
,

where the morphism on the right is obtained from Variant 4.2.4 by applying
f = (1− e−t)/t to the adjoint representation of g.

Proof. We first argue that it is sufficient to prove the equality holds in Vectk

for discrete free Lie algebras. Indeed, since both of the morphisms d̃ expg
and (1 − e− adg)/adg are functorial with respect to continuous monoidal

functors, to show that d̃ expg − (1− e− adg)/adg = 0 it is sufficient to prove
the statement for the Lie algebra g := HomEnvk(Lie)(−, I) ∈ Lie(ULie), where
Envk(Lie) and ULie are the universal categories from Proposition 5.2.1. Now
since

HomULie
(U(g)⊗ g, g) � HomULie

(
⊕
n≥0

g⊗n+1, g) �

�
∏
n≥0

HomULie
(g⊗n+1, g) �

∏
n≥0

Lie(n+ 1)

we see that if d̃ expg − (1 − e− adg)/adg 
= 0, then there exists n ∈ N such

that prLie(n+1)(d̃ expg−(1−e− adg)/adg) 
= 0. In particular, since the evident
map

Lie(n+ 1) HomVectk

(
Free(n+ 1)⊗n+1,Free(n+ 1)

)
is injective, where Free(n+ 1) ∈ LAlg(Vect♥k ) ⊂ LAlg(Vectk) is the discrete
free Lie algebra in Vectk on (n + 1)-dimensional vector space, we see that

d̃ expg − (1 − e− adg)/adg should be nonzero for Free(n + 1). Consequently,
to conclude the statement of the proposition it is sufficient to prove that

d̃ expg = (1− e− adg)/adg for discrete free Lie algebras in Vectk.
Now since for a free, discrete Lie algebra the adjoint representation is

faithful, we can further assume that g=glV forV ∈Vect♥k . In geometric terms,

we want to compute the derivative d exp
̂GLV

: exp
̂GLV ∗ TV(glV ) T

̂GLV
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of the exponential map exp
̂GLV

: V(glV ) ĜLV . Since by construction

tangent complexes are determined by their restriction to A-points, it is

enough to compute the induced map for any SpecA
x V(glV ) . More-

over, since formal moduli are determined by their restriction to Artinian

local k-algebras, we can assume that this is the case. Since by construction

the ICoh-tangent sheaf is defined as the Serre dual of Pro(QCoh)-cotangent

sheaf L̂− (see [11, Chapter 1, Section 4.4]), it is enough to compute the

induced map on pro-cotangent sheaves (we need to work with the pro-

categories since glV is an ind-scheme for infinite dimensional V ). Let M be a

connective A-module and let A⊕M be the corresponding trivial square zero

extension. By definition the space HomPro(ModA)(x
∗L̂V(glV ),M) classifies lifts

in the diagram

SpecA
x V(glV )

SpecA⊕M

and the differential map

HomPro(ModA)(x
∗L̂V(glV ),M) HomPro(ModA)(x

∗ exp∗
̂GLV

L̂
̂GLV

,M)

correspond to the postcomposition with exp
̂GLV

. Unwinding the definitions,

one finds that x∗L̂V(glV ) � ” lim←− ”A ⊗k V ∨
i ∈ Pro(ModA) where {Vi} is the

diagram of finite dimensional k-vector subspaces of V and analogously for

x∗L̂
̂GLV

. Hence both x∗L̂V(glV ) and x∗ exp∗
̂GLV

L̂
̂GLV

are pro-free of finite

rank A-modules (as V ∈ Vect♥k ), and so by Yoneda’s lemma it is enough to

understand the morphism HomPro(ModA)(exp
∗
̂GLV ,x

,M) for all free of finite

rank modules M . Further, since each such module is a direct sum of A,

we can assume M = A (in this case A ⊕ M � A[ε] := A ⊗k k[ε], where

k[ε] := k[ε]/(ε2) with deg(ε) = 0).

Now unwinding the definitions one finds that for a local Artinian aug-

mented k-algebra A we have

V(glV )(A) � glV (mA) := EndModA
(V ⊗k A) ×

Endk(V )
{0}

ĜLV (A) � ĜLV (mA) := AutModA
(V ⊗k A) ×

Autk(V )
{IdV }



868 Grigory Kondyrev and Artem Prikhodko

and the exponential map exp
̂GLV

(A) sends a matrix X to
∑∞

n=0
Xn

n! . Hence
the general case follows from the following well-known lemma:

Lemma 5.3.3. Let V be a discrete k-vector space and let A be a local
Artinian augmented k-algebra. Then for each X,Y ∈ glV (mA) we have an
equality

e−XeX+εY = 1 + ε · 1− e− adX

adX
(Y )

in ĜLV (A[ε]).

Proof. It is sufficient to prove the statement in the universal case when
A = Q[ε]〈〈X,Y 〉〉 the free ring of non-commutative power series on two
variables over Q[ε]. We have

e−XeX+εY = e−X
∞∑
n=0

(X + εY )n

n!
=(6)

= e−X ·
∞∑
n=0

1

n!

(
Xn+ε

n−1∑
k=0

XkY Xn−1−k

)
=1+e−X ·

∞∑
n=0

ε

n!

n−1∑
k=0

XkY Xn−1−k.

Note that

adX

(
n−1∑
k=0

XkY Xn−1−k

)
=

n−1∑
k=0

(
Xk+1Y Xn−1−k−XkY Xn−k

)
=XnY−Y Xn.

Hence by applying adX to both sides of (6) we obtain

adX
(
e−XeX+εY

)
= adX

(
e−X ·

∞∑
n=0

ε

n!

n−1∑
k=0

XkY Xn−1−k

)
=

= e−X
∞∑
n=0

ε

n!
(XnY − Y Xn) = ε · e−X ·

(
eXY − Y eX

)
=

= ε · (Y −Ade−X (Y )) = ε ·
(
1− e− adX

)
(Y )

It follows that e−XeX+εY and (1+ε·(1−e− adX )/ adX)(Y ) differ by something
commuting with X, i.e. there exists a formal power series f(X) such that

e−XeX+εY −
(
1 + ε · 1− e− adX

adX
(Y )

)
= f(X).
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Setting Y = 0 in the last equality we find that f(X) = 0.

6. Equivariant Grothendieck-Riemann-Roch

In this section we finally bring the results of previous sections together to
give a proof of the classical Grothendieck-Riemann-Roch theorem as well as
its equivariant analogue.

6.1. Abstract GRR theorem

We start by introducing the context we are interested in:

Definition 6.1.1. Let (X, gX) and (Y, gY ) be a pair of derived schemes

with endomorphisms. An equivariant morphism (X, gX)
f

(Y, gY ) is a
commutative diagram

X

f

gX
X

f

Y gY
Y

where X
f

Y is some morphism of schemes. In this setting we will

further denote by XgX
fg

Y gY the induced map on fixed points.

Remark 6.1.2. Note that for a lax gX -equivariant sheaf F t
(gX)∗F

its pushforward f∗F ∈ QCoh(Y ) to Y automatically admits a gY -lax equiv-
ariant structure given by the composite

f∗F
f∗(t)

f∗(gX)∗F ∼ (gY )∗f∗F .

We will further use the notation f∗(F , t) for f∗F ∈ QCoh(Y ) together with
the above lax equivariant structure.

The definition above motivates the following

Definition 6.1.3. Let (X, g) be a smooth scheme with an endomorphism.
We will denote by Kg

0 (X) the usual K0-group of the category of lax g-
equivariant perfect sheaves on X.
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Remark 6.1.4. Note that for a proper equivariant morphism

(X, gX)
f

(Y, gY ) between smooth schemes1 the induced pushforward

functor f∗ is exact and preserves perfect sheaves (as Coh(Y ) � QCoh(Y )perf

and proper morphism preserves coherent sheaves) and therefore there is an

induced morphism

KgX
0 (X) KgY

0 (Y )

which we will also denote by f∗.

Motivated by Corollary 4.4.4 we also introduce the following

Notation 6.1.5. Given a smooth proper scheme together with an endomor-

phism X
g

X we will further denote the canonical orientation OXg �
ωXg (see Construction 3.2.1) on Xg by tdg and call it an equivariant Todd

distribution on (X, g).

Now the abstract formalism of traces readily gives us the

Proposition 6.1.6 (Abstract Grothendieck-Riemann-Roch). Let

(X, gX)
f

(Y, gY )

be an equivariant morphism between smooth proper schemes. Then the di-

agram

KgX
0 (X)

ch(−,−) tdgX

f∗

π0Γ(X
gX , ωXgX )

(fg)∗

KgY
0 (Y )

ch(−,−) tdgY

π0Γ(Y
gY , ωXgY )

is commutative, i.e. for any perfect gX -lax equivariant sheaf (E, t) on X

there is an equality

(fg)∗(ch(E, t) tdgX ) = ch(f∗(E, t)) tdgY

in Γ(Y gY , ωY gY ), where ch(E, t) ∈ Γ(XgX ,OXgX ) here is the categorical

Chern character 1.1.4.

1In fact it is enough to assume that Y is smooth.
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Proof. By passing to the induced morphism of traces 0.0.3 in the commuta-
tive diagram

Vectk
E

QCoh(X)

gX∗

⊗OX∼

f∗
QCoh(Y )

gY ∗

⊗OY∼

ICoh(X)

gX∗

f∗
ICoh(Y )

gY ∗

by functoriality we obtain a commutative diagram

k
ch(E,t)

ch(f∗(E,t))

Γ(XgX ,OXgX )

· tdgX
∼

Γ(Y gY ,OY gY )

· tdgY
∼

Γ(XgX , ωXgX )
(fg)∗

Γ(Y gY , ωY gY )

where we use Corollaries 1.1.2, 2.2.2, B.1.7 and Proposition B.2.7 to identify
morphisms of traces in the above diagram.

6.2. Equivariant GRR theorem

Now it may be hard to apply Proposition 6.1.6 in practice as in general we
don’t have a good description of Γ(XgX ,OXgX ) and of the Todd distribution
tdgX . Fortunately, under some reasonable assumptions one can use ideas of
localization to express it in a more computable form.

Assumption 6.2.1. We will further assume that (X, g) is a smooth scheme

with an endomorphism X
g

X such that the reduced classical scheme
Xg := H0(Xg)red is smooth (but not necessarily connected). We will denote

by Xg
j

X the canonical embedding and by N∨
g its conormal bundle.

Note that the action of g on Ω1
X in particular restricts to an endomorphism

N∨
g

g∗
|Ng N∨

g . We will sometimes call Xg the classical fixed locus of g.

Note that the embedding Xg
j

X is equivariant with respect to the
trivial equivariant structure on Xg and the given one on X thus induces a
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morphism jg : LXg Xg. The theorem below gives a criterion when jg

is an equivalence:

Theorem 6.2.2 (Localization theorem). Let (X, g) be as in the previous
notation. Then the pullback map jg is an equivalence if and only if the
determinant det(1− g∗|N∨

g
) ∈ Γ(Xg,OXg) is an invertible function.

Proof. Since the map jg : LXg Xg is a nil-isomorphism, by [11, Chap-
ter 1, Proposition 8.3.2] the morphism jg is an equivalence if and only if the

induced map on cotangent spaces α : (jg)∗LXg LLXg is an equiva-

lence. Moreover, since the inclusion Xg LXg is a nil-isomorphism, it
is enough to prove that α|Xg is an equivalence.

Consider now the following commutative diagram of derived schemes

Xg

j

Δ
Xg ×Xg

j×j

XgΔ

j

X
Δ

X ×X X.
(IdX ,g)

By definition the limit of the top row is LXg, the limit of the bottom row
is Xg and jg is precisely the induced map on the limits. By applying the
absolute cotangent complex functor and pulling everything back to LXg and

then further pulling back along Xg LXg we then obtain a commuta-
tive diagram of sheaves

Ω1
Xg

Ω1
Xg

⊕ Ω1
Xg

∇ ∇
Ω1
Xg

j∗Ω1
X

j∗

j∗Ω1
X ⊕ j∗Ω1

X∇

j∗⊕j∗

(1,g∗)
j∗Ω1

X

j∗

(where by ∇ we denote the codiagonal map) in QCoh(Xg). By the Lemma
6.2.3 below, the pushout of the top row is (LLXg)|Xg , the pushout of the

bottom row is (LXg)|Xg and the induced map between pushouts is α|Xg .
It follows α|Xg is an equivalence if and only if the pushout of fibers of the
vertical maps

N∨
g N∨

g ⊕N∨
g

∇ (1,g∗
|N∨

g
)

N∨
g
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is nullhomotopic. The above pushout may be computed as the cofiber of the

map N∨
g ⊕N∨

g N∨
g ⊕N∨

g given in block-matrix form by

(
1 1
1 g∗|N∨

g

)
.(7)

Finally, the matrix (7) is invertible if and only if g∗|N∨
g
−1 is invertible if and

only if the determinant det(1− g∗|N∨
g
) is invertible.

Lemma 6.2.3. Let

X
p

q r

Y

Z W

be a fibered square of derived schemes. Then the induced square

r∗LW p∗LY

q∗LZ LX

is a pushout in QCoh(X).

Proof. Formal from the definition of QCoh-cotangent complex and the uni-

versal property of the limit.2

Remark 6.2.4. The theorem above tells us that if the determinant det(1−
g∗|Ng

) is invertible (a condition which is often easy to verify in practice), then

the ring Γ(Xg,OXg) (which naturally appears in the abstract GRR-theorem

6.1.6) is equivalent to a ring that we understand much better:

−|LXg : Γ(Xg,OXg)
(jg)∗

∼ Γ(LXg,OLXg) �
⊕
p,q

Hp,q(Xg)[p− q].

2In fact, one can analogously prove the following more general statement:
let X• : I PreStack be a diagram of prestacks admitting cotangent com-
plex. Then X := limI Xi admits cotangent complex and the natural map
colim p∗iLXi LX is an equivalence where pi : X Xi are the natural

projections.
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Moreover, for a perfect g-equivariant sheaf (E, t) on X it is convenient to
describe the categorical Chern character ch(E, t) ∈ Γ(Xg,OXg) in these
terms: by Corollary 1.3.3 we have an equality

ch(E, t)|L(Xg) = TrQCoh(Xg)

(
exp

(
At(E|Xg)

)
◦ t|Xg

)
in π0Γ(Xg,OXg) �

⊕
pH

p,p(Xg). Since the rings Γ(Xg,OXg) and

Γ(LXg,OLXg) under assumptions of the localization theorem are canoni-
cally equivalent, by abuse of notations we will sometimes identify ch(E, t)
with its image in π0Γ(LXg,OLXg).

The conditions of Theorem 6.2.2 are sometimes automatically satisfied.
To see this recall the following well-known lemma:

Lemma 6.2.5. Let X be a smooth variety over an algebraically closed
field k of characteristic zero and let G be a reductive group acting on X.
Then for each G-fixed point x ∈ X one can choose a set of local coordinates
{x1, . . . , xn} of OX,x � k[[x1, . . . , xn]], such that G acts linearly with respect
to them. In particular, the fixed locus XG is smooth.

Proof. Let mOX,x
be the maximal ideal of OX,x. Since the category of G-

representations is semisimple, for each n ≥ 2 the natural surjection mOX,x
/

mn
OX,x

mOX,x
/m2

OX,x
admits a G-equivariant section. Passing to the

limit n → ∞ we obtain a G-equivariant section s:mOX,x
/m2

OX,x
mOX,x

.

Let {x1, . . . xn} be a basis of TX,x � mX,x/m
2
OX,x

and put xi := s(xi). By
Nakayama’s lemma {x1, . . . , xn} are local coordinates at the point x and G
by construction acts linearly withe respect to them.

Corollary 6.2.6. Let X be a smooth scheme equipped with an automor-
phism g of finite order. Then the fixed locus Xg is smooth and the natural
map LXg Xg is an equivalence, i.e. the derived fixed locus Xg is
formal.

Remark 6.2.7. This result for finite order automorphism was also obtained
in [1, Corollary 1.12] by different methods.

In order to proceed further we introduce the following

Definition 6.2.8 (Euler classes). Let (X, g) be as above. Define an Euler
class of g as

eg := (jg)∗ ch
(
j∗(OXg , IdOXg )

)
∈ π0Γ

(
LXg,OLXg

)
,
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where LXg
jg

Xg is the induced map on fixed loci (see Remark 6.1.2
for the notation j∗(−,−)).

To describe the Euler class more explicitly, we recall the following stan-
dard result, the proof of which we include here for reader’s convenience:

Lemma 6.2.9. Let Z
i

X be a closed embedding of smooth schemes.
Then there exists a canonical isomorphism

H−k(i∗i∗OZ) � Λk(N∨
Z/X)

of quasi-coherent sheaves on Z.

Proof. The case k = 0 is obvious, since i is a closed embedding. For k = 1
note that by applying the pullback functor i∗ to the exact sequence

0 IZ OX i∗OZ 0

we obtain an isomorphism H−1(i∗i∗OZ) � H0(i∗IZ) � IZ/I2
Z . But by

smoothness assumption IZ/I2
Z is isomorphic to the conormal bundle N∨

Z/X
of Z in X.

Finally, the isomorphism N∨
Z/X � H−1(i∗i∗OZ) and multiplication in-

duce a map of algebras in QCoh(Z)

α∗ : Λ∗(NZ/X) H−∗(i∗i∗OZ).

By smoothness assumption, Z is a locally complete intersection in X, hence
locally both parts are exterior algebras and thus since H−1(α) is an isomor-
phism so is α∗.

Corollary 6.2.10. We have

eg = ch
(
Sym(N∨

g [1]), Sym(g∗|N∨
g [1])

)
=

∑
k

(−1)k ch
(
Λk(N∨

g ),Λ
k(g∗|N∨

g
)
)
.

Proof. By definition

eg = (jg)∗ ch
(
j∗(OXg , IdOXg )

)
= ch

(
j∗j∗(OXg , IdOXg )

)
.

Next, by the lemma above there is a (Postnikov) filtration on the complex
j∗j∗OXg with associated graded Sym(N∨

g [1]). The statement then follows
from the fact that ch(−,−) is additive in fiber sequences.
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Corollary 6.2.11. Let (X, g) be as in Assumption 6.2.1. Then the following
conditions are equivalent:

1. The morphism 1− (g∗)|N∨
g
is invertible.

2. The induced map jg : LXg Xg is an equivalence.
3. The Euler class eg is invertible.

Proof. The equivalence of the first two assertions is the content of Theo-
rem 6.2.2. To see that the first and the last conditions are equivalent, note

that since the natural inclusion Xg LXg is a nil-isomorphism, the
Euler class eg is invertible if and only if its zero term eg,0 is. But by Corol-
lary 6.2.10 and Example 1.3.4 we get

eg,0 =
∑
k=0

(−1)k ch0(Λ
k(N∨

g ), g
∗
|Λk(N∨

g )) =
∑
k

(−1)k Tr(g∗|Λk(N∨
g ))

= det(1− g∗|N∨
g
).

Using the Euler class and corollary above, we can describe the Todd
distribution tdg (see Notation 6.1.5) in more concrete terms

Proposition 6.2.12. Let (X, g) be as in 6.2.1 and assume that the Euler

class eg is invertible (and so the natural morphism jg : LXg Xg is an
equivalence). Then under the composite equivalence

π0Γ(X
g, ωXg)

(jg)∗

∼ π0Γ(LXg, ωLXg) �
⊕
p

Hp,p(Xg)

the Todd distribution tdg ∈ Γ(Xg, ωXg) corresponds to
tdXg

eg
, where tdXg is

the ordinary Todd class.

Proof. By applying Proposition 6.1.6 to the canonical inclusion Xg
j

X
we obtain

(jg)∗(tdXg) = (jg)∗
(
ch(OXg , IdOXg ) tdXg

)
= ch

(
j∗(OXg , IdOXg )

)
tdg .

Consequently, by pulling back along jg (and using that (jg)∗(jg)∗ is identity)
we obtain

tdXg = (jg)∗(jg)∗(tdXg) = (jg)∗
(
ch(j∗(OXg , IdOXg )) tdg

)
= eg · (jg)∗(tdg).

We conclude by dividing both parts by eg.
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As a corollary we obtain:

Theorem 6.2.13 (Equivariant Grothendieck-Riemann-Roch). Let

(X, gX)
f

(Y, gY )

be an equivariant morphism between smooth proper schemes such that

• Reduced fixed loci XgX and Y gY are smooth.
• The induced morphisms on conormal bundles 1 − (g∗X)|N∨

gX
and 1 −

(g∗Y )|N∨
gY

are invertible.

Then for a perfect lax gX -equivariant sheaf (E, t) on X we have an equality

(fg)∗

(
ch(E, t)

tdXgX

egX

)
= ch

(
f∗(E, t)

)tdY gY

egY

in
⊕

pH
p,p(Y gY ).

Proof. This follows immediately from the abstract Grothendieck-Riemann-
Roch 6.1.6 and the identification of tdg above.

Specializing to the case when Y = ∗, we get

Corollary 6.2.14 (Equivariant Hirzebruch-Riemann-Roch). Let (X, g) be
as in the theorem above. Then for any lax g-equivariant perfect sheaf (E, t)
on X we have ∫

Xg

ch(E, t)
tdXg

eg
= TrVectk Γ(X, t).

Specializing even further we recover

Corollary 6.2.15 (Holomorphic Atiyah-Bott fixed point formula). Assume
that the graph of g intersects the diagonal in X ×X transversely. Then

∑
x=g(x)

Tr(g∗|Ex
)

det(1− dxg)
= TrVectk Γ(X, t).

Proof. By assumption on g the derived fixed locus Xg is discrete, hence
LXg � Xg and the corollary above reads as

∑
x=g(x)

ch(E, t)|Xg

eg
= TrVectk Γ(X, t).
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Let x ∈ Xg be a fixed point of g. Since Xg is discrete, for any perfect lax

g-equivariant sheaf At(E|Xg) � 0, hence by Corollary 1.3.3 we have

ch(E, t)x = x∗ TrQCoh(Xg)(g
∗
|E|Xg

) = Tr(g∗|Ex
).

Moreover, the conormal bundle N∨
g in this case is just the cotangent space

at fixed points, hence by the vanishing of the Atiyah class on Xg we deduce

(eg)x = (eg,0)x = det(1− dxg).

Specializing in the other direction, we recover

Corollary 6.2.16 (Grothendieck-Riemann-Roch). Let X,Y be smooth

proper schemes and X
f

Y be a morphism. Then for any perfect sheaf

E on X we have

f∗(ch(E) tdX) = ch(f∗E) tdY

where above ch(E) and ch(f∗E) are the classical Chern characters.

Proof. Consider the Theorem 6.2.13 in the case when gX , gY , are morphisms.

Note that we have Xg = X and the map

LX � LXg
jg

Xg � LX

(and analogously for Y ) is tautologically equivalent to the identity. More-

over, since the conormal bundles N∨
gX and N∨

gY are in this case trivial, we

have egX = 1 and egY = 1. Hence by Theorem 6.2.13 we obtain

f∗(ch(E, IdE) tdX) = ch(f∗(E, IdE)) tdY .

It is left to note that by Proposition 1.4.9 the categorical Chern character

ch(E, IdE) = ch(E) coincides with the classical one.

Appendix A. Reminder on formal deformation theory

In this section we review main results of formal deformation theory devel-

oped in [11, Chapters 5-9] relevant to this work (hence we need to work over

a field of characteristic zero). We start with the following
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Definition A.0.1 ([11, Chapter 5, Definition 1.1.1]). Define an (∞, 1)-

category of formal moduli problems over X denoted by M̂oduli/X as the
full subcategory of PreStacklaft /X (see ([10, Chapter 2, 1.6]) on objects

Y
p

X such that:

• The morphism p is inf-schematic ([11, Chapter 2, Definition 3.1.5]).
• The morphism p is nil-isomorphism, i.e. the induced morphism

redY
redp redX

is an equivalence.

Group objects in the category of formal moduli problems over X are called
formal groups over X.

Let now Y p
X be a formal moduli problem over X. The functor p∗

being left adjoint to a symmetric monoidal functor f ! is left lax-monoidal.
Hence p∗ωY is naturally a cocommutative coalgebra object of ICoh(X), that
is, an object of coCAlg(ICoh(X)). Moreover since the functor

M̂oduli/X coCAlg(ICoh(X))

Y p∗ωY

is symmetric monoidal (e.g. p∗ωY×XZ � p∗ωY ⊗ p∗ωZ) for a formal group

Ĝ ∈ Grp(M̂oduli/X) the sheaf p∗ω ̂G is a group object in the category of
cocommutative coalgebras, i.e. a cocommutative Hopf algebra. In particular,
we can define a functor

Grp(M̂oduli/X)
LieX

LAlg(ICoh(X))

by setting

LieX(Ĝ) := Prim(p∗ω ̂G) ∈ LAlg(ICoh(X))

for a formal group Ĝ ∈ Grp(M̂oduli/X), where

HopfAlg(ICoh(X))
Prim

LAlg(ICoh(X))

is the functor of primitive elements.
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Now the following crucial theorem relates groups in the category of for-
mal moduli problems over X and Lie algebras in the category of quasi-
coherent sheaves on X:

Theorem A.0.2 ([11, Chapter 7, Theorem 3.6.2 and Proposition 5.1.2]).
We have:

1. There is an equivalence of (∞, 1)-categories

Grp(M̂oduli/X)
LieX
∼ LAlg(ICoh(X)),

where LAlg(ICoh(X)) is the (∞, 1)-category of algebras in ICoh(X) over

the Lie operad. Moreover, for a formal group Ĝ ∈ Grp(M̂oduli/X) the

underlying ind-coherent sheaf of LieX(Ĝ) ∈ LAlg(ICoh(X)) is equivalent

to T
̂G/X,e := e!T

̂G/X , where X
e

Ĝ is the identity section and T
denotes tangent sheaf.

2. For Ĝ ∈ Grp(M̂oduli/X) there is an equivalence of (∞, 1)-categories

Rep
̂G(ICoh(X)) ∼ ModLieX( ̂G)(ICoh(X)).

Now in classical theory of Lie groups for a (real) Lie group G with Lie

algebra g there is an exponential map g
expG

G , which is a diffeomorphism
in a small enough neighborhoods of 0 ∈ g and 1G ∈ G. The same story
works even better in the formal world since one does not need to consider
neighborhoods. In order to formulate this statement explicitly in our setting,
we first need the following

Definition A.0.3. For E ∈ ICoh(X) define a vector prestack V(E) ∈
M̂oduliX//X of E by the property that for any Y ∈ M̂oduliX//X there is
a natural equivalence

Hom
M̂oduliX//X

(Y,V(E)) := HomQCoh(X)(I(p∗ωY), E),

where for a coaugmented coalgebra C ∈ coCAlgcoaug(QCoh(X)) we let

I(C) := cofib(OX C) to be the coaugmentation ideal of C.

Remark A.0.4. In fact vector prestack can be seen as a part of a more
general construction. Namely, define a functor

coCAlg(ICoh(X))
SpecinfX

M̂oduli/X
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as the right adjoint to the functor Y p∗ωY so that for any formal

moduli problem Y ∈ M̂oduli/X we have an equivalence

Hom
M̂oduli/X

(Y, SpecinfX C) � HomcoCAlg(ICoh(X))(p∗ωY , C).

Then it is straightforward to see that for a sheaf E ∈ ICoh(X) there is a
natural equivalence V(E) � SpecinfX (Sym(E)), where

ICoh(X)
Sym

coCAlgnil(ICoh(X)) E �→
∞⊕
n=0

(E⊗n)Σn

is the symmetric algebra functor, endowed with its canonical cofree ind-
nilpotent co commutative coalgebra structure. We refer interested reader
to [11, Chapter 7, 1.3] for through discussion of the inf-spectrum functor
Specinf .

Example A.0.5. Unwinding the definitions one finds that for E ∈ QCoh(X)
such that E∨ ∈ Coh<0(X) the vector prestack V(ΥX(E)) is equivalent to
the “vector bundle associated to E”, i.e.

V(ΥX(E)) � Spec/X(SymQCoh(X)(E
∨)).

In the case when E∨ ∈ Coh≤0(X), there is a similar equivalence if we take
the formal completion at the zero section of the right-hand side.

In these notations we finally have

Theorem A.0.6 ([11, Chapter 7, Corollary 3.2.2.]). Let Ĝ∈Grp(M̂oduli/X)
be a formal group over X. Then there is a functorial equivalence

V(LieX(Ĝ))
exp

̂G

∼ Ĝ

of formal moduli problems over X.

Idea of the proof. Given a Lie algebra g ∈ ICoh(X) its universal enveloping
algebra is naturally a cocommutative Hopf algebra, i.e. a group object in
the category coCAlg(ICoh(X)). Since the functor Specinf is monoidal, we see

that expX(g) := Specinf (U(g)) is a group object in M̂oduli/X . In fact, one

can show that the construction g expX(g) is the inverse to the LieX
functor from Theorem A.0.2. But by [11, Chapter 6, Corollary 1.7.3] there
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is canonical equivalence of cocommutative coalgebras U(g) � SymICoh(X)(g)

(aka Milnor-Moore theorem), hence for g = LieX(Ĝ) we have

Ĝ � expX(g) = Specinf (U(g)) � Specinf
(
SymICoh(X)(g)

)
= V(g).

Remark A.0.7. Notice that for a formal group Â ∈ Grp(M̂oduli/X) with

abelian Lie algebra the map exp
̂A above is not only an equivalence of for-

mal moduli problems, but moreover an equivalence of formal groups. For

example, in the case Ĝ := Ĝm the map

Ĝa � V(LieX(Ĝm))
exp

̂Gm

∼ Ĝm

is the usual formal exponent.

Appendix B. Correspondences and traces

B.1. Ind-coherent sheaves and morphism of traces

In this section we discuss how one can calculate the morphism of traces in

the setting of ind-coherent sheaves using the category of correspondences.

We start with the following

Theorem B.1.1 ([10, Chapter 5, Theorem 2.1.4., Theorem 4.1.2]). The

ind-coherent sheaves functor can be lifted to a symmetric monoidal functor

Corr(Schaft)
proper ICoh

2Catk .

Where Corr(Schaft)
proper is the (∞, 2)-category which can be informally de-

scribed as follows:

1. Its objects are those of Schaft.

2. Given X,Y ∈ Schaft a morphism from X to Y in Corr(Schaft)
proper is

given by a span

X W
fg

Y

and the composition of morphisms is given by taking pullbacks.
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3. Given two morphismsW1,W2 ∈ HomCorr(Schaft)proper(X,Y ) a 2-morphism
from W1 to W2 is given by a commutative diagram

W1

hX Y

W2

in Schaft where h is proper.

The symmetric monoidal structure on Corr(Schaft)
proper is given by the carte-

sian product of underlying objects of Schaft. Once again, we refer to [10,
Part III] for a discussion of the category of correspondences.

Remark B.1.2. In [10, Chapter 7] the category Corr(Schaft)
proper was de-

noted by Corr(Schaft)
proper
all,all .

Informally speaking, the functor above maps X ∈ Schaft to the category

ICoh(X) ∈ Catk and a morphism X W
fg

Y in Corr(Schaft)
proper

to the composite ICoh(X)
g!

ICoh(W )
f∗

ICoh(Y ) in 2Catk.

Remark B.1.3. Since by ([10, Chapter 9, Proposition 2.3.4.]) every object
X ∈ Corr(Schaft)

proper is self-dual via the morphisms

∗ X
p Δ

X ×X

and

X ×X X
Δ p ∗

we see that the category ICoh(X) ∈ 2Catk is also self-dual. Moreover, note
that by ([10, Chapter 9, Proposition 2.3.4.]) every morphism in
Corr(Schaft)

proper of the form

X X
IdX f

Y

where f is proper admits a right adjoint given by

Y X
IdXf

X
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Our goal now is to understand morphism of traces in the setting of

correspondences. We start by calculating classical traces in the category of

correspondences

Proposition B.1.4. The trace of the endomorphism X Y
g f

X

in Corr(Schaft)
proper is given by

∗ Xf=g ∗ ,

where Xf=g is defined as the pullback

Xf=g i

j

Y

(f,g)

X
Δ

X ×X.

Proof. By definition, the trace is given by the composite

X
p Δ

Y ×X
g×IdX f×IdX

X
Δ p

∗ X ×X X ×X ∗.

Since the composition in Corr(Schaft)
proper is given by taking pullback, the

result follows.

Corollary B.1.5. Applying the functorCorr(Schaft)
proper ICoh

2Catk

we see that the trace of the endomorphism ICoh(X)
f∗g!

ICoh(X) in

2Catk is given by Γ(Xf=g, ωICoh
Xf=g).

We are now going to understand morphism of traces in the setting of

correspondences (and therefore in the setting of ind-coherent sheaves). In

order to simplify notation we will denote a morphism

X W
g f

Y

by 〈 g
XW f

Y 〉. Here is the main
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Proposition B.1.6. Given a (not necessary commutative) diagram

X

〈 IdX
XXs

U 〉

〈 g
XY f

X 〉
X

〈 IdX
XXs

U 〉T

U
〈 b
UV a

U 〉
U

in Corr(Schaft)
proper where the 2-morphism T is given by a choice of some

commutative diagram

Y
s◦fg

tX U

X s×b
U V

a◦prVprX

α1 : b ◦ prV ◦t � s ◦ prX ◦t
α2 : prX ◦t � g

α3 : a ◦ prV ◦t � s ◦ f

where t ∈ HomSchaft
(Y,X s×b

U V ) is proper, the induced morphism of traces

Xf=g�TrCorr(Schaft)proper
(
〈 g
XY f

X 〉
) Tr

(
〈 IdX

XXs
U 〉,T

)
TrCorr(Schaft)proper

(
〈 b
UV

a
U 〉

)
�Ua=b

is obtained as the map of pullbacks from the commutative diagram

Xf=g Xf=g

s◦iX

Xf=g

prV ◦t◦jX

Xf=g

(s◦iX ,s◦iX)

Ua=b iU

jU

U

Δ

V
(b,a)

U × U,
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where the commutativity of the front square is given by the equivalences

b ◦ prV ◦t ◦ jX
α1◦jX� s ◦ prX ◦t ◦ jX

s◦α2◦jX� s ◦ g ◦ jX � s ◦ iX

and

a ◦ prV ◦t ◦ jX
α3◦jX� s ◦ f ◦ jX � s ◦ iX .

Proof. Unwinding the definitions, we see that the morphism of traces is
induced by the diagram

∗

Id∗

〈 ∗X
Δ
X×X 〉

X ×X
〈 g×IdX

X×XY×X
f×IdX
X×X 〉

X ×X
〈 Δ
X×XX∗ 〉 ∗

Id∗

∗
〈 ∗U

Δ
U×U 〉

U × U
〈 b×IdU

U×UV×U
a×IdU
U×U 〉

U × U
〈 Δ
U×UU∗ 〉

∗

where

1. The two middle vertical morphisms are given by 〈 IdX × IdX

X×XX ×Xs×s
U×U 〉

(see remark B.1.3).
2. The left square is induced by the 2-morphism

X
(s,s)

s∗ U × U

U
Δ

in Corr(Schaft)
proper.

3. The middle square is induced by the 2-morphism

Y ×X
(s◦f)×sg×IdX

t×IdXX ×X U × U

(X s×b
U V )×X

(a◦prV )×sprX × IdX
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in Corr(Schaft)
proper.

4. The right square is induced by the 2-morphism

X
Δ

X ×X ∗

X ×U X

in Corr(Schaft)
proper.

Consequently, we see that the whole morphism of traces is given by the
composite of the morphisms

Y (f,g)×Δ
(X×X) X Y (f,g)×(X×X) (X ×U X) � X Δ×g×IdX

(X×X) (Y ×X) (s◦f)×s×Δ
U×U U

X Δ×g×IdX

(X×X) (Y ×X) (s◦f)×s×Δ
U×U U X Δ×prX × IdX

(X×X)

(
(X ×V Y )×X

)
(a◦prV )×s×Δ

U×U U

and

X Δ×prX × IdX

(X×X)

(
(X ×V Y )×X

)
(a◦prV )×s×Δ

U×U U � X (s,s)×(b,a)
(U×U) V U Δ×(b,a)

(U×U) V.

In particular, we can rewrite the whole composition as the left vertical mor-
phism from Xf=g to Ua=b in the commutative diagram

Xf=g Y
f

X

Xf=g jX

jX

Y
f

X

Δ

Y s◦f×s◦g
U Y Y s◦f×s

U X X s×s
U X

Y
(IdY ,g)

(g,prV ◦t)

Y ×X

t×IdX

f×IdX

X ×X

A (X s×b
U V ) a◦prV ×s

U X V
(IdV ,a)

X s×b
U V

ΔX×UV

prV

(X s×b
U V )×X

prV ×s
V × U

Ua=b Ua=b

jU

jU
V

(IdV ,a)

V V
(IdV ,b)

V × U
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where all the horizontal squares are pullback squares. Consequently, we see

that we can rewrite the morphism of traces as the left vertical morphism

from Xf=g to Ua=b in the commutative diagram

Xf=g Y

Xf=g

jX

jX
Y

(IdY ,f)

Y s◦f×s◦g
U Y Y s◦f×s

U X

Y

(g,prV ◦t)

(IdY ,g)
Y ×X

(prV ◦t)×s

A V
(IdV ,a)

X s×b
U V

prV

s×IdV
V × U

Ua=b V
(IdV ,a)

V
(IdV ,b)

V × U.

It is only left to note that the above morphism can be rewritten precisely

as in the statement of the proposition.

Corollary B.1.7. Applying in the setting of the above proposition the

functor

Corr(Schaft)
proper ICoh

2Catk

we see that given a commutative diagram

X
gX

f

X

f

Y gY
Y
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the morphism of traces

Γ(XgX , ωICoh
XgX )�Tr2Catk

(
(gX)∗

)
Tr2Catk

(
(gY )∗

)
�Γ(Y gY , ωICoh

Y gY )

induced by the diagram

ICoh(X)

f∗

(gX)∗
ICoh(X)

f∗

ICoh(Y )

f !

(gY )∗
ICoh(Y )

f !

is given by the counit of the adjunction (fg)∗ � (fg)! where XgX
fg

Y gY

is the induced morphism between fixed points.

B.2. Decorated correspondences and orientations

Our goal in this section is to show the morphism of traces

Γ(Xg,OXg)�Tr2Catk(g
QCoh
∗ )

Tr2Catk
(−⊗OX)

∼ Tr2Catk(g
ICoh
∗ )�Γ(Xg, ωXg)

induced by the diagram

QCoh(X)

−⊗OX

g∗
QCoh(X)

−⊗OX

ICoh(X) g∗
ICoh(X)

is induced by the canonical orientation (Construction 3.2.1). Using the fact

that for an eventually coconnective morphism X
f

Y almost of fi-
nite type between Noetherian schemes one has a Grothendieck formula
f !− � ωf ⊗ f∗− ([9, Corollary 7.2.5.]) we will reduce the calculation of
the morphism of traces to a simple calculation in a version of the category
of correspondences.

We start with the following
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Definition B.2.1. We define an (∞, 2)-category of correspondences deco-

rated by QCoh denoted by Corr(Sch)QCoh as follows:

1. Its objects are those of Sch.

2. Given X,Y ∈ Sch a morphism from X to Y in Corr(Sch)QCoh is given

by a span

X W
fg

Y

together with a quasi-coherent sheaf FW ∈ QCoh(Y ) on W and the

composition of morphisms is given by taking pullbacks of schemes and

box products of sheaves.

3. Given two morphisms (W1,FW1
), (W2,FW2

) ∈ HomCorr(Sch)QCoh(X,Y )

a 2-morphism from (W1,FW1
) to (W2,FW2

) is given by a commutative

diagram

W1

hX Y

W2

in Sch and a morphism h∗FW2
FW1

in QCoh(FW1
).

Notation B.2.2. We will further denote by 〈 g
XW f

Y ,FW 〉 the morphism

X (W,FW )
g f

Y in Corr(Sch)QCoh with the correspondence given

by X W
fg

Y and a sheaf given by FW ∈ QCoh(W ) and depict it

as

(W,FW )

g f

X Y.

In the case we omit FW from notation we assume that it is given by OW .

Now note that the (∞, 2)-category Corr(Sch)QCoh is symmetric monoidal

with the monoidal structure given by the cartesian product of underlying

objects of Sch (the morphisms are tensored by taking box product of the

corresponding sheaves). Moreover, if X ∈ Sch is a scheme and M ∈ Pic(X)
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is a line bundle on X then it is straightforward to see that the morphisms

(X,M)

Δp

(X,M−1)

Δ p

∗ X ×X X ×X ∗

in Corr(Sch)QCoh exhibit X ∈ Corr(Sch)QCoh as a self-dual object.

Proposition B.2.3. Let X ∈ Sch be a scheme with an endomorphism

X
g

X and M ∈ Pic(X) be a line bundle on X. Then there is an

equivalence

TrMCorr(Sch)QCoh(g)
ηM� 〈 ∗(Xg)∗ 〉

in HomCorr(Sch)QCoh(∗, ∗), where TrMCorr(Sch)QCoh(g) is the trace of X
g

X

in Corr(Sch)QCoh with respect to the dualization data

∗ (X,M)
Δp

X ×X

and

X ×X (X,M−1)
pΔ ∗

on X ∈ Corr(Sch)QCoh.

Proof. By definition the trace TrMCorr(Sch)QCoh(g) is given by the composite

(X,M)

Δp

X ×X
IdX × IdX g×IdX

(X,M−1)

Δ p

∗ X ×X X ×X ∗

which composing the first two morphisms can be rewritten as

(X,M)

p (g,IdX)

(X,M−1)

pΔ

∗ X ×X ∗.
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The equivalence ηM is now induced from the pullback diagram

Xg i

i

X

Δ

X
(IdX ,g)

X ×X

and the equivalence i∗M⊗ i∗M−1 � OXg .

We now prove the following

Proposition B.2.4. LetX be a scheme with an endomorphism X
g

X

and M1,M2 ∈ Pic(X) be two line bundles on X. Then the morphism of

traces

〈 ∗(Xg)∗ 〉
ηM1� TrM1

( Corr(Sch)QCoh)2−op(g) TrM2

( Corr(Sch)QCoh)2−op(g)
ηM2� 〈 ∗(Xg)∗ 〉

in Hom(Corr(Sch)QCoh)2−op(∗, ∗) induced by the commutative diagram

X

IdX

g
X

IdX

X g X

is given by the identity 2-morphism

Xg

IdXg∗ ∗

Xg

Proof. By [15, Example 1.2.5] the morphism of traces is induced by the
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diagram

∗

Id∗

〈 ∗X
Δ
X×X ,M1 〉

X ×X
〈 IdX×X

X×XX×X
g×IdX
X×X 〉

X ×X
〈 Δ
X×XX∗,M−1

1 〉
∗

Id∗

∗
〈 ∗X

Δ
X×X ,M2 〉

X ×X
〈 IdX×X

X×XX×X
g×IdX
X×X 〉

X ×X
〈 Δ
X×XX∗,M−1

2 〉
∗

where the vertical morphisms are given by

X ×X (X ×X,M−1
1 � M2)

IdX×XIdX×X

X ×X.

The result now follows from equivalences

〈 Δ
X×XX∗,M−1

1 〉 ◦ 〈 IdX×X

X×XX ×Xg×IdX

X×X 〉 ◦ 〈 ∗XΔ
X×X ,M1 〉 � 〈 ∗(Xg)∗ 〉 ,

〈 Δ
X×XX∗,M−1

2 〉 ◦ 〈 IdX×X

X×XX ×X
IdX×X

X×X ,M−1
1 � M2 〉 ◦

◦ 〈 IdX×X

X×XX ×Xg×IdX

X×X 〉 ◦ 〈 ∗XΔ
X×X ,M1 〉 � 〈 ∗(Xg)∗ 〉,

〈 Δ
X×XX∗,M−1

2 〉 ◦ 〈 IdX×X

X×XX ×Xg×IdX

X×X 〉 ◦

◦ 〈 IdX×X

X×XX ×X
IdX×X

X×X ,M−1
1 � M2 〉 ◦ 〈 ∗XΔ

X×X ,M1 〉 � 〈 ∗(Xg)∗ 〉,

〈 Δ
X×XX∗,M−1

2 〉 ◦ 〈 IdX×X

X×XX ×Xg×IdX

X×X 〉 ◦ 〈 ∗XΔ
X×X ,M2 〉 � 〈 ∗(Xg)∗ 〉

and the fact that the corresponding 2-morphisms are given by identity maps
IdXg .

To see why the proposition above is useful, we have the following gener-
alization of [10, Chapter 5, 5.3.1]

Theorem B.2.5. The quasi-coherent sheaves functor can be lifted to a
symmetric monoidal functor

(
Corr(Sch)QCoh

)2−op Q̃Coh
2Catk

where:
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• An object X ∈ Corr(Sch)QCoh is sent to the category of quasi-coherent
sheaves QCoh(X) ∈ 2Catk on it.

• A morphism

(W,FW )

g f

X Y

in Corr(Sch)QCoh is sent to the morphism

QCoh(X)
f∗(FW⊗g∗−)

QCoh(Y )

in 2Catk.
• A 2-morphism

(W1,FW1
)

fg

hX Y

(W2,FW2
)

st

with h∗FW2

η FW1
is sent to the 2-morphism

s∗(FW2
⊗ t∗−) s∗(h∗h∗FW2

⊗ t∗−) �

� s∗h∗(h∗FW2
⊗ h∗t∗−) � f∗(h∗FW2

⊗ g∗−)
η

f∗(FW1
⊗ g∗−)

in 2Catk.

Example B.2.6. Let X be a Gorenstein Noetherian scheme. Then the

functor Q̃Coh sends the morphism

(X,ωX)

Δp

∗ X ×X

in
(
Corr(Sch)QCoh

)2−op
to

Δ∗ωX ∈ Hom2Catk(Vectk,QCoh(X ×X)) � QCoh(X ×X)
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and the morphism

(X,ω−1
X )

Δ p

X ×X ∗

to

Γ(X,ω−1
X ⊗Δ∗−) � Γ(X,ωΔ ⊗Δ∗−) �

� Γ(X,Δ!−) ∈ Hom2Catk(QCoh(X ×X),Vectk).

We can now prove

Proposition B.2.7. For a classical smooth scheme X together with an

endomorphism X
g

X the morphism of traces

Γ(Xg,OXg)
αQCoh� Tr2Catk(g

QCoh
∗ )

Tr2Catk
(−⊗OX)

∼ Tr2Catk(g
ICoh
∗ )

α−1
ICoh� Γ(Xg, ωXg)

induced by the diagram

QCoh(X)

−⊗OX

g∗
QCoh(X)

−⊗OX

ICoh(X) g∗
ICoh(X),

can be obtained by applying the global sections functor Γ(Xg,−) to the

canonical orientation OXg
uC

∼ ωXg (see Construction 3.2.1) on Xg, where

the equivalences αQCoh and αICoh above are given by Corollary 1.1.2 and
Corollary 2.2.2 respectively.

Proof. Due to the equivalence ICoh(X) � QCoh(X) as X is smooth and
classical (see Example 2.1.5) and Example B.2.6 above we note that the
morphism of traces we are interested in can be obtained by applying the

functor
(
Corr(Sch)QCoh

)2−op Q̃Coh
2Catk to the morphism of traces

TrOX(
Corr(Sch)QCoh

)2−op(g) TrωX(
Corr(Sch)QCoh

)2−op(g)
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in
(
Corr(Sch)QCoh

)2−op
. Now using equivalences ηOX

and ηωX
we can form

a commutative diagram

Γ(Xg,OXg)
αQCoh

∼ Q̃Coh

(
TrOX(

Corr(Sch)QCoh

)2−op(g)

)
Q̃Coh(ηωX

)∼

Tr2 Catk
(−⊗OX)

∼ Q̃Coh

(
TrωX(

Corr(Sch)QCoh

)2−op(g)

)
α−1

ICoh

∼ Γ(Xg, ωXg)

Q̃Coh(〈 ∗(Xg)∗ 〉) Q̃Coh(〈 ∗(Xg)∗ 〉)

Q̃Coh(η−1
ωX

) ∼

Since the left diagonal morphism is identity by the construction and the
bottom horizontal morphism is identity by Proposition B.2.4, we see that the
morphism of traces Tr2Catk(−⊗OX) is given by the right diagonal morphism,
that is, unwinding the definition of the morphism ηωX from Proposition B.2.3
by the composite of

Γ(Xg,OXg) � Γ(Xg, i∗ω−1
X ⊗ i∗ωX) �

� Γ(X,ω−1
X ⊗ i∗i

∗ωX) � Γ(X,ω−1
X ⊗Δ∗(g × IdX)∗Δ∗ωX)

and

Γ(X,ω−1
X ⊗Δ∗(g × IdX)∗Δ∗ωX) � Γ(X,Δ!(IdX , g)∗ωX) �

� Γ(X, i∗i
!ωX) � Γ(X, i∗ωXg) � Γ(Xg, ωXg).

The result now follows from observation that the morphisms

i∗OXg � i∗(i
∗ω−1

X ⊗ i∗ωX) � ω−1
X ⊗ i∗i

∗ωX �

� ω−1
X ⊗Δ∗(g, IdX)∗ωX � Δ!(IdX , g)∗ωX � i∗i

!ωX � i∗ωXg

and

i∗i
∗OXg � i∗(i

∗ω−1
X ⊗ i∗ωX) � i∗(i

∗ωX/X×X ⊗ i∗ωX) �

� i∗(ωXg/X ⊗ i∗ωX) � i∗i
!ωX � i∗ωXg

coincide and Construction 3.2.1.

Remark B.2.8. Using the fact that the functor

(
Corr(Sch)QCoh

)2−op QCoh
2Catk

sends a morphism

(X,E)

IdXp

∗ X
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in
(
Corr(Sch)QCoh

)2−op
to the morphism Vectk

E
QCoh(X) in 2Catk

one can also obtain a proof of [15, Proposition 2.2.3.] by calculating appro-
priate trace in the category of decorated correspondences and then mapping
it to 2Catk.
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