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Higher order obstructions to the desingularization
of Einstein metrics∗

Tristan Ozuch

We find new obstructions to the desingularization of compact Ein-
stein orbifolds by smooth Einstein metrics. These new obstructions,
specific to the compact situation, raise the question of whether
a compact Einstein 4-orbifold which is limit of Einstein metrics
bubbling out Eguchi-Hanson metrics has to be Kähler. We then
test these obstructions to discuss if it is possible to produce a
Ricci-flat but not Kähler metric by the most promising desingu-
larization configuration proposed by Page in 1981. We identify 84
obstructions which, once compared to the 57 degrees of freedom,
indicate that almost all flat orbifold metrics on T

4/Z2 should not
be limit of Ricci-flat metrics with generic holonomy while bubbling
out Eguchi-Hanson metrics. Perhaps surprisingly, in the most sym-
metric situation, we also identify a 14-dimensional family of desin-
gularizations satisfying all of our 84 obstructions.

Keywords and phrases: Einstein 4-manifolds, desingularization, re-

duced holonomy.

Introduction

An Einstein metric g satisfies, for some real number Λ, the equation

Ric(g) = Λg.

In dimension 4, they are considered optimal due to the homogeneity of their

Ricci curvature but also as critical points of the Einstein-Hilbert functional

with fixed volume, g �→
∫
M Rg dvolg, and more importantly as minimizers

of the L2-norm of the Riemann curvature tensor, g �→
∫
M |Rmg |2dvolg.

From dimension 4, even under natural assumptions of bounded diame-

ter (compactness) and lower bound on the volume (non-collapsing) Einstein
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metrics can develop singularities. One major goal for 4-dimensional geom-
etry is therefore to understand the compactification of the moduli space of
Einstein metrics on a differentiable manifold M4 defined as

(1) E(M4) :=
{
(M4,g) | ∃Λ ∈ R, Ric(g) = Λg, Vol(M4,g) = 1

}
/D(M4)

where D(M4) is the group of diffeomorphisms of M4 acting on metrics by
pull-back and to compactify it with a useful structure. The metric spaces
which are limit of Einstein 4-manifolds with uniformly controlled diameter
and volume as well as the associated singularity blow-ups have been under-
stood for a long time in the Gromov-Hausdorff sense [And89, BKN89]: they
are respectively Einstein orbifolds and Ricci-flat ALE orbifolds. The metric
completion of (E(M4), dGH) is

(2) E(M4) ∪ ∂oE(M4),

where ∂oE(M4) is the set of orbifold dGH -limits with bounded diameter (i.e.
at finite dGH -distance) of Einstein metrics on M4.

In the present article, we find new types obstructions to the desingular-
ization of Einstein orbifolds which are special to the compact context. They
motivate and indicate positive answers the following questions:

• Assume that (M4
o ,go) ∈ ∂oE(M4) where M4 has the topology of M4

o

desingularized by Eguchi-Hanson metrics. Is go Kähler-Einstein?
• Under the same assumptions, is ∂oE(M4) of codimension 2 in E(M4)?
• Can we desingularize a flat metric on T4/Z2 by smooth Ricci-flat met-
rics with generic holonomy thanks to Eguchi-Hanson metrics?

A new obstruction to the desingularization in the compact case

Any smooth Einstein 4-manifold close to a compact Einstein orbifold in
a mere Gromov-Hausdorff sense has recently been produced by a gluing-
perturbation procedure [Ozu19a, Ozu19b]. In the present paper, for simplic-
ity, we will focus on an Einstein orbifold (Mo,go) with integrable Einstein
deformations (like all known 4-dimensional examples) and consider only the
simplest singularities modeled on R4/Z2 ∼ C2/Z2, whose minimal resolution
has the topology T ∗S2 of the Eguchi-Hanson metric [EH78].

Remark 0.1. This is conjectured to be the only possible topology for an
Einstein desingularization of R4/Z2, see [BKN89].
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Let us denote M the differentiable manifold obtained by minimal res-
olution (in some orientation) of the R4/Z2 ≈ C2/Z2 singularities of Mo.
Using [Ozu19a, Ozu19b], we know that if there exists a sequence of Einstein
metrics on M converging to (Mo,go) in the Gromov-Hausdorff sense, then
an obstruction already noticed in [Biq13] is satisfied at every singular point
of Mo. More precisely, denoting respectively R+

go
(p) and R−

go
(p) the selfdual

and anti-selfdual parts of the curvature at a singular point p ∈ Mo seen as
an endomorphism on the space of 2-forms, we have either detR+

go
(p) = 0 or

detR−
go
(p) = 0. This means that in some basis, we have either

(3) R+
go
(p) =

⎡
⎣0 0 0
0 ∗ ∗
0 ∗ ∗

⎤
⎦ or, R−

go
(p) =

⎡
⎣0 0 0
0 ∗ ∗
0 ∗ ∗

⎤
⎦ .

We will first show that an additional obstruction holds under weaker
assumptions than those of [Biq13].

A physically motivated assumption is that of the stability of the Einstein
metric. This condition essentially means that the linearization of the Ricci
curvature has nonnegative spectrum, see Definition 1.11. We are now ready
to state the first main result of this paper:

Theorem 0.2. Let (M4
o ,go) be a compact Einstein orbifold with Ric(go) =

Λgo for Λ ∈ R, with integrable Einstein deformations and with singularities
R4/Z2. Assume that we have (M4

o ,go) ∈ E(M4)GH for M = Mo#T ∗S2# . . .
#T ∗S2, where # denotes a gluing in the positive or negative orientation and
along the cone R4/Z2. Assume additionally one of the following properties:

1. there exists a sequence (gn)n of stable Ricci-flat (Definition 1.11) met-
rics in E(M4) converging to go in the Gromov-Hausdorff sense, or,

2. Mo has only one singularity and is rigid (i.e. does not admit infinites-
imal Einstein deformations).

Then, for any singular point p of Mo, there exists a basis of the self-
dual 2-forms or anti-selfdual 2-forms in which we have (depending on the
orientation of the gluing):

(4) R+
go
(p) =

⎡
⎣0 0 0
0 0 0
0 0 Λ

⎤
⎦ or R−

go
(p) =

⎡
⎣0 0 0
0 0 0
0 0 Λ

⎤
⎦ .

Notice that a curvature of the form (4) is typical of Kähler-Einstein
metrics.
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Theorem 0.2 is specific to the compact case and is in sharp contrast
with Biquard’s desingularization [Biq13] in the asymptotically hyperbolic
case. Indeed, the degeneration of the asymptotically hyperbolic AdS Taub-
Bolt metrics converges to an orbifold which is rigid and has one singularity
R4/Z2 but does not satisfy (4), see Example 2.1.

Remark 0.3. Since the convergence is allowed to be only in the Gromov-
Hausdorff sense, the assumptions of Theorem 0.2 are weaker than in [Biq13,
Corollary 9.3], where the obstruction (3) at the singular point was first ob-
served. Moreover, the present proof would also yield an obstruction for other
Kleinian singularities by [Biq16, Lemme 9] and [Biq16, Lemme 12].

Another goal here is to obtain a new obstruction result under some tech-
nical assumption of existence of a sequence of metrics in E(M4) sufficiently
transverse to the boundary ∂oE(M4) of (2). We will say that a sequence
of Einstein metrics is a transverse desingularization of the orbifold (Mo,go)
if the sequence is almost orthogonal to ∂oE(M), see Definition 1.29 and
Figure 2. Almost all Einstein metrics obtained by gluing-perturbation are
transverse, see [Top87a, Top87b, LS94, Don12, BK17]. The constructions
of [Biq13, Biq16, Biq17] are notable exceptions. A weaker assumption than
being transverse for an Einstein desingularization is being nondegenerate.
We will say that a sequence of Einstein metrics is a nondegenerate Einstein
desingularization of (Mo,go) ∈ ∂oE(M) if the sequence approaches (Mo,go)
without being “too tangent” to ∂oE(M), see Definition 1.29 and Figure 1.
This notion is in the spirit of the assumption of genericity of [Spo14] and
nondegeneracy of [BR15].

Proposition 0.4. Let (M4
o ,go) be a compact Einstein orbifold with

Ric(go) = Λgo for Λ ∈ R, with integrable Einstein deformations and with
singularities R4/Z2. Assume that we have (M4

o ,go) ∈ E(M4)GH for M =
Mo#T ∗S2# . . .#T ∗S2, where # denotes a gluing in the positive or nega-
tive orientation and along the cone R4/Z2. Assume additionally one of the
following properties:

1. there exists a transverse (Definition 1.29) sequence (gn)n of metrics
in E(M4) converging to go in the Gromov-Hausdorff sense,

2. Λ = 0 and there exists a nondegenerate (Definition 1.29) sequence
(gn)n of metrics in E(M4) converging to go in the Gromov-Hausdorff
sense,

3. Mo has only one singularity and there exists a nondegenerate sequence
(gn)n of metrics in E(M4) converging to go in the Gromov-Hausdorff
sense.
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Then, for any singular point p of Mo, go satisfies the obstruction (4).

Remark 0.5. The proof of Proposition 0.4 relies on the fact that our com-
pact deformations add as many degrees of freedom as new obstructions to
satisfy. The obstruction (4) is not satisfied by the orbifolds of the desingular-
izations of [Biq13, Biq16, Biq17] or Example 2.1, which rely on nondegen-
erate (but not transverse) Einstein deformations coming from the confor-
mal infinity. These deformations from the conformal infinity add an infinite
number of degrees of freedom without adding any obstruction.

It is somewhat expected that the completion E(M) ∪ ∂oE(M) of the
moduli space E(M) is real-analytic or real-subanalytic, see [And10]. This
would imply that the orbifold metrics can be approached by curves of Ein-
stein metrics. An initial intuition for Theorem 0.2 is [Biq17] which shows
that if Λ 
= 0 and the obstruction (4) is not satisfied, then the orbifold met-
rics cannot be approached by curves of Einstein metrics. Our proofs however
do not use this fact and even work in the case when Λ = 0. They rely heav-
ily on the computations of the second variations of the Ricci curvature of
[Biq16] and the formalism of [Fin11].

Is ∂oE(M) a boundary or a filling?

An interesting problem on which Theorem 0.2 sheds some light is the size
of ∂oE(M4) the set of singular metrics in the completion (2) of the moduli
space of Einstein metrics. Anderson proposes the following “optimistic” (in
his own words) conjecture.

Conjecture 0.6 ([And10]). The subspace ∂oE(M4) is of codimension 2 in
E(M4)GH .

This conjecture means that we should not think of ∂oE(M4) as a bound-
ary of E(M4) but rather as a filling of missing pieces as it was pictured in
[And92] in the case of M4 = K3.

Remark 0.7. This is false in the asymptotically hyperbolic context where the
desingularizations of [Biq13] applied to the AdS Taub-Bolt orbifold (Example
2.1) show that ∂oE(M4) is of codimension 1.

With our present vocabulary, Conjecture 0.6 means that given a compact
Einstein orbifold (Mo,go) ∈ ∂oE(M4), the space of Einstein desingulariza-
tions of Mo which are transverse to ∂oE(M4) is at least 2-dimensional.

Theorem 0.2 can be seen as a step towards this conjecture in the situation
where we desingularize by an Eguchi-Hanson metric at a small scale t > 0.
Indeed, its proof shows that:
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• if R+
go
(po) is invertible, then there is no desingularization which is

Einstein up to a o(t) error,
• if the kernel of R+

go
(po) is of dimension 1, then there is no transverse

desingularization which is Einstein up to a o(t2) error and there is
exactly a one-dimensional set of desingularizations which are Einstein
up to a o(t) error,

• if the kernel of R+
go
(po) is of dimension 2 or 3, then the transverse

desingularizations which are Einstein up to a o(t2) error are of dimen-
sion 2 or 3 and in correspondence with the kernel of R+

go
(po).

Finally, recall that Einstein metrics with a curvature tensor of the form
(4) for Λ = 0 at all points are locally hyperkähler metrics. Since we have
only identified the first two obstructions of an infinite list, we might wonder
if the remaining obstructions impose this condition at all points. We ask the
following question.

Question 0.8. Let (M4
o ,go) be a Ricci-flat orbifold, and assume that it

can be desingularized in the Gromov-Hausdorff sense by Einstein metrics
(M4,gn)n∈N∗ forming trees of Kähler Ricci-flat ALE metrics. Are the orb-
ifold (M4

o ,go) and the smooth metrics (M4,gn) necessarily quotients of hy-
perkähler metrics?

A positive answer to the above question combined with the folklore con-
jecture that all Ricci-flat ALE orbifolds are Kähler indicates that it may
not be possible to produce Ricci-flat metrics which are not Kähler by gluing
constructions on Ricci-flat orbifolds. This pessimistic perspective is related
to one of the main issue in Riemannian geometry which is to understand
the structure of Ricci-flat metrics on compact manifolds.

Ricci-flat metrics and reduced holonomy

For a long time, it was believed that compact Ricci-flat metrics should be
flat. The resolution of Calabi’s conjecture by Yau [Yau78] provided many
counter-examples. These so-called Calabi-Yau metrics are the only currently
known examples and they have reduced holonomy (that is different from the
generic holonomy SO(n) in dimension n). A lingering question since then is
therefore the following one.

Question 0.9. Do all compact Ricci-flat manifolds have reduced holonomy?

A physically relevant additional property that one can ask from a Ricci-
flat metric, is that of being stable, see [Ach19].

Question 0.10 ([Ach19]). Do all compact stable Ricci-flat manifolds have
reduced holonomy?
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Construction of hyperkähler metrics by gluing-perturbation

Compact non flat Ricci-flat metrics are not explicit at all, but a classical way
to approach them and to obtain a more concrete picture is to produce them
by gluing various explicit noncompact and singular blocks together into an
approximate Ricci-flat metric and perturb it into an actual Ricci-flat metric.

Gibbons-Pope [GP79] and Page [Pag78] proposed a conjectural and
physically motivated picture for some hyperkähler, hence Ricci-flat, met-
rics on some K3 surfaces. The idea was to desingularize the orbifold T4/Z2

which has 16 singularities of type R4/Z2 by gluing 16 Eguchi-Hanson metrics
in the same orientation and to perturb the result to a hyperkähler metric.
This was rigorously obtained for Eguchi-Hanson metrics glued at compara-
ble scales by Topiwala [Top87a, Top87b] and Lebrun-Singer [LS94], see also
[Don12]. The proof heavily relies on Kähler geometry arguments.

A Ricci-flat but not locally hyperkähler metric?

In 1981, Page [Pag81] asks a new question.

Question 0.11. Is it possible to perturb a gluing of Eguchi-Hanson metrics
in different orientations to the orbifold T4/Z2 into a Ricci-flat metric?

Remark 0.12. It is often conjectured, see for instance [BKN89], that the
only Ricci-flat metric asymptotic to R4/Z2 is the Eguchi-Hanson metric.
This would therefore describe any possible Einstein desingularization of
T4/Z2.

Having different orientations for the Eguchi-Hanson metrics prevents the
use of Kähler geometry techniques. A positive answer to Question 0.11 would
provide a Ricci-flat metric with generic holonomy and a negative answer to
Question 0.9.

Brendle-Kapouleas configuration

In [BK17], Brendle and Kapouleas studied Question 0.11 in the most sym-
metric situation: the orbifold metric comes from the regular lattice Z4, the
points where the gluing are done in the positive or negative orientation follow
a so-called chessboard pattern, and the Eguchi-Hanson metrics in the same
orientation are glued with the same SO(4) or O(4)\SO(4) parameter and
the same size. In this 1-dimensional set of configurations, they exhibit one
interaction between the bubbles glued in different orientation. They remark-
ably use this obstruction to construct an intriguing solution to the Ricci flow
which exhibits a new behavior: it is an ancient Ricci-flow desingularizing the
orbifold T4/Z2.
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Partial answer to Page’s question

In this article, we consider the general situation of the desingularization of
a flat metric on T4/Z2 obtained from a lattice L(Z4) for L ∈ GL(4,R) and
desingularized by Eguchi-Hanson metrics glued in various directions, sizes
and orientations. For each configuration of positively and negatively oriented
Eguchi-Hanson metrics, this yields a 57-dimensional space of candidates to
a Ricci-flat gluing-perturbation as in [Ozu19b] and therefore of potential
positive answers to Question 0.11.

We however identify a great number of interactions between these met-
rics which induce obstructions interpreted as curvature conditions similar to
those of (3) and (4).

Theorem 0.13 (Informal, Corollaries 4.3 and 4.10). We have the follow-
ing numbers of constraints in this 57-dimensional space of desingularization
configurations.

1. For general parameters, there are 57 necessary polynomial equations
that the gluing parameters of the Eguchi-Hanson metrics should satisfy
for an Einstein desingularization to exist. 48 of these equations are
analogous to the obstruction (3).

2. For general parameters, there are 84 necessary polynomial equations
that the gluing parameters should satisfy for a stable Ricci-flat desin-
gularization to exist. 80 of these equations are analogous to the ob-
struction (4).

3. For parameters corresponding to a nondegenerate desingularization,
there are 84 necessary polynomial equations that the gluing parameters
of the Eguchi-Hanson metrics should satisfy for an Einstein desingu-
larization to exist. 80 of these equations are analogous to the obstruc-
tion (4).

The coefficients of these (quadratic and quartic) polynomial equations depend
on the flat metric on T4/Z2 only.

This indicates that generic flat metrics on T4/Z2, should not be Gromov-
Hausdorff limit of Einstein metrics bubbling out Eguchi-Hanson metrics in
different orientations.

Remark 0.14. In the configuration proposed by Brendle and Kapouleas
[BK17], the 57 obstructions of the first point are not satisfied.

A simpler consequence is that a lot of configurations of positively and
negatively oriented Eguchi-Hanson metrics are impossible. We in particular
obtain the following obstruction under a topological assumption.
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Theorem 0.15 (Theorem 4.11). There does not exist a sequence of Einstein
metrics dGH-converging to the regular torus (obtained from the lattice Z4)
by bubbling out exactly one positively oriented Eguchi-Hanson metric and
15 negatively oriented Eguchi-Hanson metrics.

Remark 0.16. It is likely that this result holds without assuming that the
lattice is the usual Z4, see Conjecture 4.14.

Remark 0.17. The desingularization by stable Ricci-flat metrics is much
more restrictive. A direct extension of the proof of Theorem 0.15 states
that the desingularization is impossible with less than 3 positively oriented
Eguchi-Hanson metrics and the rest of negatively oriented, see Corollary
4.15.

A configuration satisfying the first obstructions

Seeing the above obstruction results, one would be tempted to try and prove
that it is impossible to obtain a Ricci-flat but not hyperkähler metric by
gluing-perturbation of Eguchi-Hanson metrics to a flat T4/Z2. One would
maybe expect that the above 84 obstructions should be enough to show that
every configuration is obstructed.

Perhaps surprisingly, we find a set of solutions to our 84 equations.
More precisely, there exists an explicit 14-dimensional set of configurations of
gluing of Eguchi-Hanson metrics which satisfy the 84 above equations. The
orientations of the Eguchi-Hanson metrics follow the chessboard pattern of
[BK17], but their directions and sizes are not constrained.

1. Main definitions

Note 1.1. All along this article, when the name of a metric is in bold, then
it is Einstein.

1.1. Einstein orbifolds and ALE spaces

For Γ a finite subgroup of SO(4) acting freely on S3, let us denote (R4/Γ, e)
the flat orbifold obtained by the quotient of the Euclidean metric on R4 by
the action of Γ, and re := de(., 0).

Definition 1.2 (Orbifold (with isolated singularities)). We will say that a
metric space (Mo, go) is an orbifold of dimension n � 2 if there exists ε0 > 0
and a finite number of points (pk)k of Mo called singular such that we have
the following properties:
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1. the space (Mo\{pk}k, go) is a manifold of dimension n,
2. for each singular point pk of Mo, there exists a neighborhood of pk,

Uk ⊂ Mo, a finite subgroup acting freely on Sn−1, Γk ⊂ SO(n), and
a diffeomorphism Φk : Be(0, ε0) ⊂ Rn/Γk → Uk ⊂ Mo for which, the
pull-back of Φ∗

kgo on the covering Rn is smooth. Here, diffeomorphism
is understood in the orbifold sense, i.e. it is a diffeomorphism between
the cover R4 and the associated cover of Uk.

Remark 1.3. The analysis on an orbifold is exactly the same as the analysis
on a manifold up to using finite local coverings at the singular points.

Definition 1.4 (The function ro on an orbifold). We define ro, a smooth
function on Mo satisfying ro := (Φk)∗re on each Uk, and such that on
Mo\Uk, we have ε0 � ro < 1 (the different choices will be equivalent for
our applications).

We will denote, for 0 < ε � ε0,

(5) Mo(ε) := {ro > ε} = Mo\
(⋃

k

Φk

(
Be(0, ε)

))
.

Let us now turn to ALE metrics.

Definition 1.5 (ALE orbifold (with isolated singularities)). An ALE orb-
ifold of dimension n � 4, (N, gb) is a metric space for which there exists
ε0 > 0, singular points (pk)k and a compact K ⊂ N for which we have:

1. (N, gb) is an orbifold of dimension n,

2. there exists a diffeomorphism Ψ∞ : (Rn/Γ∞)\Be(0, ε
−1
0 ) → N\K such

that

rle|∇l(Ψ∗
∞gb − e)|e � Clr

−n
e .

Definition 1.6 (The function rb on an ALE orbifold). We define rb a smooth
function on N satisfying rb := (Ψk)∗re on each Uk, and rb := (Ψ∞)∗re on
U∞, and such that ε0 � rb � ε−1

0 on the rest of N (the different choices are
equivalent for our applications).

For 0 < ε � ε0, we will denote

N(ε) :={ε<rb < ε−1}=N\
(⋃

k

Ψk

(
Be(0, ε)

)
∪Ψ∞

(
(R4/Γ∞)\Be(0, ε

−1)
))

.

(6)

Now, consider a subset So of the singular points of Mo (respectively S
of N).
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Definition 1.7 (Functionals ro,So
and rb,S). We define the functional ro,So

(respectively rb,S) exactly like in Definitions 1.4 (respectively 1.6) by only
considering the sets Uk containing points of So (respectively S).

A metric g close to go (with some adapted decay at infinity in the non-
compact case) is Einstein and is in Bianchi gauge with respect to go, that
is satisfies Bgo

g := (δgo
+ 1

2dtrgo
)g = 0, if and only if it satisfies

Φgo
(g) := Ric(g)− Λg + δ∗gBgo

g = 0,

see for instance [Biq13, Section 6]. The linearization of Φgo
at go is

Pgo
:=

1

2
∇∗

go
∇go

− R̊go
,

where R̊ is the action of curvature on symmetric 2-tensors: for an orthonor-
mal basis (ei)i,

R̊(h)(X,Y ) =
∑
i

h
(
Rm(ei, X)Y, ei

)
.

Definition 1.8 (Infinitesimal Einstein deformations). For a compact or
ALE Einstein orbifold (M,g) with Ric(g) = Λg, we define O(g) as the
kernel of Pg on L2(g).

Definition 1.9 (Einstein modulo obstructions deformations). According to
[Ozu19b] (see also [Koi83]), there exists ε > 0 such that for any v ∈ O(g)
with ‖v‖L2(g) < ε, there exists a unique metric ḡv satisfying

1. Φg(ḡv) ∈ O(g),
2. ḡv − (g + v) ⊥g O(g),
3. ‖ḡv − g‖L2(g) � 2ε.

All along this article, in order to simplify the exposition and for lack
of nonintegrable examples, we will only consider Einstein metrics with inte-
grable Einstein deformations.

Definition 1.10 (Einstein metric with integrable deformations). An Ein-
stein metric g only has integrable infinitesimal Einstein deformations if for
any v ∈ O(g), the metric ḡv = gv actually satisfies

1. Φg(gv) = 0,
2. gv − (g + v) ⊥g O(g),
3. ‖gv − g‖L2(g) � 2ε.
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An additional class of metrics we will be interested in is that of stable
Ricci-flat metrics.

Definition 1.11 (Stable Ricci-flat metrics). We will say that g is a stable
Ricci-flat metric if it is Ricci-flat and satisfies: for all smooth compactly
supported symmetric 2-tensor h:

〈
Pgh, h

〉
L2(g)

� 0.

All of the known examples of compact Ricci-flat metrics are stable.

1.2. Eguchi-Hanson metrics

Let us describe the Eguchi-Hanson metric [EH78]. In this article, the Ricci-
flat ALE metrics (N, gb) we will consider will almost always be homothetic
transformations of the Eguchi-Hanson metric.

The Eguchi-Hanson metric, which we will denote eh, is defined on T ∗S2.
It is asymptotic to the flat cone R4/Z2. Denote (x1, x2, x3, x4) coordinates
in an orthonormal basis of R4, and define r :=

√
x21 + x22 + x23 + x24, and a

basis of invariant 1-forms on the sphere S3, (α1, α2, α3) by

α1 :=
1

r2
(x1dx2 − x2dx1 + x3dx4 − x4dx3)

and the other by cyclic permutation of the indices {2, 3, 4}.
Outside of the zero section of T ∗S2 represented by r = 0, the metric

eh has the following expression (with the identification T ∗S2\S2 ≈ (R4/
Z2)\{0}):

(7) eh :=

√
r4

1 + r4
(dr2 + r2α2

1) +
√

1 + r4(α2
2 + α2

3).

The metric extends to T ∗S2 by adding the zero section S2 with metric α2
2+α2

3

at r = 0. We will always denote S2 that zero-section of T ∗S2.
This gives the asymptotic development at infinity

eh = e− 1

2r4
(dr2 + r2α2

1 − r2α2
2 − r2α2

3) +O(r−8),

where H4 := − 1
2r4 (dr

2+r2α2
1−r2α2

2−r2α2
3) is divergence-free and trace-free

with respect to the Euclidean metric e = dr2 + r2(α2
1 + α2

2 + α2
3).
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1.2.1. Curvature of Eguchi-Hanson metrics. On R4, we define the
2-forms

θ±1 := rdr ∧ α1 ± r2α2 ∧ α3,

and similarly θ±2 and θ±3 by cyclic permutations, and we define the usual
bases

ω±
1 := dx1 ∧ dx2 ± dx3 ∧ dx4

and similarly ω±
2 and ω±

3 by cyclic permutations. The θ+i and ω+
i are selfdual

and the θ−i and ω−
i are anti-selfdual. Direct computations yield the following

relation between them: θ+i = ω+
i , and for x ∈ R4,

θ−i (x) =
3∑

j=1

xT (ω+
i ◦ ω−

j )x

|x|2 ω−
j ,(8)

where ω+
1 ◦ ω−

i is the symmetric traceless matrix given by the (commuting)
product of the antisymmetric matrices associated to ω+

i and ω−
j , and where

xT is the transpose of x.

Remark 1.12. The product ω+
i ◦ ω−

j = ω−
i ◦ ω+

j is a trace-free involution
and therefore it is characterized by two planes of eigenvalues 1 and −1.

Remark 1.13. We will often use the identification of the traceless sym-
metric 2-tensors Sym2

0(TM) and Ω+ ⊗ Ω− where (ω+, ω−) ∈ Ω+ × Ω− is
associated to ω+ ◦ ω− = ω− ◦ ω+.

For any ζ = (ζ1, ζ2, ζ3) ∈ R3, we denote

ζ± := ζ1ω
±
1 + ζ2ω

±
2 + ζ3ω

±
3 ∈ Ω±.

Definition 1.14. We define for any x ∈ R4 the linear transformation ρx
which to ζ = (ζ1, ζ2, ζ3) ∈ R3 associates ρx(ζ) ∈ R3 whose j’s coordinate is

ρx(ζ)j =
xT (ζ+ ◦ ω−

j )x

|x|2 .

Remark 1.15. Identifying R4 with the space of quaternions and R3 with
the space of pure quaternions, for any x ∈ R4, the map ρx : R3 → R3 is
exactly the rotation produced on the pure quaternionic part by conjugation
by x. More precisely, identifying ζ ∈ R3 with the pure quaternion (0, ζ) in
the usual basis, we have

(0, ρx(ζ)) = x · (0, ζ) · x−1.
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The metric eh is Ricci-flat, anti-selfdual and has the following anti-
selfdual curvature:

(9) R−(eh) =
1

r6

⎡
⎣8 0 0
0 −4 0
0 0 −4

⎤
⎦

in a basis asymptotic to the basis (θ−i )i, see [EH78]. We also remark that we

have H4 = −ω+
1 ◦θ−

1

2r4 where H4 is defined by eh = e+H4+O(r−8) at infinity
and where ω+

1 ◦ θ−1 is the (commutating) composition of the antisymmetric
matrices associated to ω+

1 and θ−1 .
More generally, for any ζ = (ζ1, ζ2, ζ3) ∈ R3\{0}, consider (ζ+(k))k∈{1,2,3}

an orthogonal basis of Ω+ with constant length
√
2 = |ω+

1 | and ζ+(k) =

ζ+/|ζ| =
√
2ζ+/|ζ+|. We may replace the above 1-forms αk = ω+

k (dr) by
the 1-forms ζ+(k)(dr). By a change of variables u = r√

|ζ|
, one checks that the

metric

ehζ+ :=

√
r4

|ζ|2 + r4

(
dr2 + r2ζ+(1)(dr)

2
)
+
√

|ζ|2 + r4
(
ζ+(2)(dr)

2 + ζ+(3)(dr)
2
)(10)

is homothetic to eh and more precisely satisfies the following properties.

Proposition 1.16. Let ζ = (ζ1, ζ2, ζ3) ∈ R3\{0} and denote ζ+ := ζ1ω
+
1 +

ζ2ω
+
2 + ζ3ω

+
3 . We have the following properties:

1. at infinity, we have

(11) ehζ+ = e− ρ(ζ)− ◦ ζ+
2r4

+O(|ζ|4r−8),

2. ehζ+ is isometric to |ζ| · eh,
3. eh(1,0,0)+ = eh, and

4. on S2, denoting (ζ+(k))k∈{1,2,3} an orthonormal basis of the selfdual 2-

forms of constant length with ζ+(1) = ζ+/|ζ|, the zero-section of T ∗S2,

the metric is |ζ+|(ζ+(2)(dr)2 + ζ+(3)(dr)
2).

Remark 1.17. These metrics ehζ+ for ζ ∈ R3\{0} reach all of the met-
rics obtained by orientation-preserving rotations and rescaling of eh up to
isometry.
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We will need to understand their curvature in the last sections of this
article. From the computations of [EH78] and Proposition 1.16, we have the
following result.

For ζ = (ζ1, ζ2, ζ3), denote H
4(ζ+) := −ρ(ζ)−◦ζ+

2r4e
. Then, the linearization

of the curvature at e in the direction H4(ζ+) is Ricci-flat anti-selfdual and
we have

(12) deR
−(H4(ζ+)) =

|ζ|2
r6

⎡
⎣8 0 0
0 −4 0
0 0 −4

⎤
⎦

in any orthogonal basis with constant length of the anti-selfdual 2-forms of

R4 whose first vector is ρ(ζ)−

|ζ| .

Identifying the space of endomorphisms of Ω−, End(Ω−) and Ω− ⊗Ω−,
this can be rewritten as

(13) deR
−(H4(ζ+)) =

12πtr(ρ(ζ)
− ⊗ ρ(ζ)−)

r6

where πtrh := h− trh
3 I3 is a projection on trace-free matrices.

Remark 1.18. In the constant basis (ω−
1 , ω

−
2 , ω

−
3 ), the coefficients of

deR
−(H4(ζ+)) (seen as a 3 × 3 matrix) are harmonic by (8) as expected

from [Biq16, Lemme 3].

1.2.2. Infinitesimal variations. The deformations of the Eguchi-Hanson
metric are given by the variations of ζ in (10).

For ζ = (1, 0, 0), an orthogonal basis of the L2(eh)-kernel of Peh denoted
O(eh) may be computed. Denote (o1,o2,o3) given by the infinitesimal vari-
ations of ζ respectively in the directions (1, 0, 0), (0, 1, 0) and (0, 0, 1). They
have the following developments in the coordinates of the above develop-
ment (11),

(14) ok = O4
k +O(r−8

e ) with O4
k = −θ−1 ◦ θ+k

r4
.

Remark 1.19. The symmetric 2-tensor O4
1 is equal to twice to the asymp-

totic term H4 of eh, see (11).

The infinitesimal deformations o1, o2 and o3 respectively induce the fol-
lowing infinitesimal changes of anti-selfdual curvature in the basis
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(θ−1 , θ
−
2 , θ

−
3 ):

(15)
1

r6

⎡
⎣8 0 0
0 −4 0
0 0 −4

⎤
⎦ ,

1

r6

⎡
⎣0 4 0
4 0 0
0 0 0

⎤
⎦ , and

1

r6

⎡
⎣0 0 4
0 0 0
4 0 0

⎤
⎦ .

For another ζ ∈ R3\{0}, let us consider, thanks to the second point

of Proposition 1.16, a diffeomorphism φ such that φ∗ehζ+ = |ζ| · eh. Then,
(ok(ζ

+))k := (φ∗ok)k forms an orthogonal basis of O(ehζ+) with

‖φ∗ok‖L2(ehζ+) = ‖ok‖L2(eh) since the L2-norm of 2-tensors is invariant by

rescaling in dimension 4. Recalling that in the same coordinates at infinity,

the first r−4
e -terms of |ζ|φ∗eh and of ehζ+ coincide, we find

|ζ| · φ∗
(ω+

1 ◦ θ−1
2r4e

)
=

ζ+ ◦ ρ(ζ)−
2r4e

and therefore, denoting (ζ+(k))k∈{1,2,3} a basis of the selfdual 2-forms of con-

stant length with ζ+(1) = ζ+/|ζ|, the development at infinity of the φ∗ok
is

(16) ok(ζ
+) = φ∗ok =

ζ+(k) ◦ ρ(ζ)−

r4e
+O(|ζ+|3r−8

e ).

Remark 1.20. We check that ok(ζ
+) = ∂ζ+

(k)
ehζ+ , where we denoted

∂ζ+
(k)
ehζ+ the differential of ζ+ �→ ehζ+ at ζ+ in the direction ζ+(k).

1.2.3. Negative orientation. We will also consider negatively oriented

Eguchi-Hanson metrics. For ζ = (ζ1, ζ2, ζ3) ∈ R3\{0}, we define

ehζ− :=

√
r4

|ζ|2 + r4

(
dr2+r2ζ−(1)(dr)

2
)
+
√

|ζ|2 + r4
(
ζ−(2)(dr)

2 + ζ−(3)(dr)
2
)
.

(17)

It is isometric to |ζ| · eh but has the opposite orientation. At infinity, we

have the development

ehζ− = e− ζ− ◦ ρ(ζ)+
2r4

+O(|ζ|4r−8).
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1.3. Näıve desingularizations

Let us now recall the definition of a näıve desingularization of an orbifold
from [Ozu19a].

Gluing of ALE spaces to orbifold singularities. Let 0 < 2ε < ε0
be a fixed constant, t > 0, (Mo, go) an orbifold and Φ : Be(0, ε0) ⊂ R4/
Z2 → U a local chart of Definition 1.2 around a singular point p ∈ Mo.
Let also (N, gb) be an ALE metric asymptotic to R4/Z2, and Ψ∞ : (R4/

Z2)\Be(0, ε
−1
0 t

1

2 ) → N\K a chart at infinity of Definition 1.5.
For s > 0, define φs : x ∈ R4/Γ → sx ∈ R4/Γ. For t < ε40, we define

Mo#N as N glued to Mo thanks to the diffeomorphism

Φ ◦ φ√
t ◦Ψ−1 : Ψ(Ae(ε

−1
0 , ε0t

−1/2)) → Φ(Ae(ε
−1
0

√
t, ε0)).

Consider χ : R+ → R+, a C∞ cut-off function supported on [0, 2] and equal
to 1 on [0, 1].

Definition 1.21 (Näıve gluing of an ALE space to an orbifold). We define
a näıve gluing of (N, gb) at scale 0 < t < ε4 to (Mo, go) at the singular
point p, which we will denote (Mo#N, go#p,tgb) by putting go#p,tgb = go on
M\U , go#p,tgb = tgb on K, and

go#p,tgb = χ(t−
1

4 re)Ψ
∗
∞gb +

(
1− χ(t−

1

4 re)
)
Φ∗go

on Ae(ε
−1

√
t, 2ε).

Definition 1.22 (Function rD on a näıve desingularization). On a näıve
(M, gD), we define the function smooth function rD in the following way:

1. rD = ro on Mo(ε0) defined in (5),
2. rD =

√
tjrbj on each Nj(ε

−1
0 ) defined in (6) and

3. rD = re on Ae(ε
−1
0

√
t, ε0).

Let us fix a notation for the desingularization by Eguchi-Hanson metrics.

Definition 1.23 (Näıve desingularization by Eguchi-Hanson metrics). Let
(Mo,go) be a compact Einstein orbifold with integrable Einstein deforma-
tions (Definition 1.10) and R4/Z2 singularities at points j ∈ S, and let
v ∈ O(go) and ζ = (ζ

εj
j )j with ζj ∈ R3\{0} and εj ∈ {+,−}. We define gDζ,v

the näıve gluing (as in Definition 1.21) of ehζ
εj
j /|ζj | to gv at scale |ζj | using

the ALE coordinates of (10) and (17).
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Definition 1.24 (Approximate obstructions Õ(gDζ,v)). We define Õ(gDζ,v)

the linear space spanned by the infinitesimal variations of (v, ζ) �→ gDζ,v.

Remark 1.25. The space Õ(gDζ,v) is very close to the approximate ob-

struction space of [Ozu19b] and even yields better estimates. The results

of [Ozu19b] therefore hold when using Õ(gDζ,v) instead of the similar space

Õ(gD) of [Ozu19b].

We next define the notion of nondegenerate sequence of näıve desingu-

larizations in the spirit of [BR15] (see also the notion of generic smoothings

in [Spo14]). It intuitively means that the desingularization sequence reaches

an element ∂oE(M) without being too tangent to ∂oE(M).

Definition 1.26 (Nondegenerate näıve desingularization). We will say that

a sequence of näıve desingularizations (M, gDtn,vn
) of a compact Einstein orb-

ifold (Mo,go) is nondegenerate if, denoting tn,max = max tn,j and tn,min =

min tn,j, we have

1. limn→+∞
tn,min

tn,max
> 0 and

2.
‖vn‖2

L2(go)

tn,min
→ 0.

This technical definition essentially means that the gluing scales are

comparable and the Einstein deformations of the orbifold are not too large.

A stronger notion is that of transverse desingularization.

Definition 1.27 (Transverse näıve desingularization). We will say that a

sequence of näıve desingularizations (M, gDtn,vn
) of a compact Einstein orb-

ifold (Mo,go) is transverse if we have

1. limn→+∞
tn,min

tn,max
> 0 and

2.
‖vn‖L2(go)

tn,min
→ 0.

Remark 1.28. Usual desingularizations are transverse and often even or-

thogonal, with vn = 0. The desingularization of [Biq13] is a notable excep-

tion.

Let us finally recall that according to [Ozu19a, Ozu19b], for any Einstein

orbifold (Mo,go), and any δ > 0, there exists ε = ε((Mo,go), δ) > 0 such

that if an Einstein metric (M,g) satisfies

dGH

(
(Mo,go), (M,g)

)
< ε,
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then, there exists a näıve desingularization (M, gD) of (Mo,go) and a dif-

feomorphism φ : M → M with

‖φ∗g− gD‖C2,α
β,∗ (g

D) < δ,

where the weighted Hölder norms C2,α
β,∗ (g

D) are defined in Section A in the

Appendix.

We finally define the notions of nondegenerate and transverse sequence

of Einstein metrics desingularizing the orbifold (Mo,go) ∈ ∂oE(M).

Definition 1.29 (Nondegenerate and transverse Einstein desingulariza-

tion). Let (M4,gn)n∈N be a sequence of Einstein metrics dGH-converging

to a compact Einstein orbifold (Mo,go) ∈ ∂oE(M4). By [Ozu19a, Ozu19b],

there exists a sequence of näıve desingularizations (gDtn,vn
)n such that up to

acting on gn by a diffeomorphism, we have

1. ‖gn − gDtn,vn
‖C2,α

β,∗ (g
D
tn,vn

) � ε for some ε = ε(go) > 0 determined in

[Ozu19b],

2. gn is in reduced divergence-free gauge (defined in [Ozu19b]) with re-

spect to gDtn,vn

3. gn − gDtn,vn
is L2(gDtn,ζn)-orthogonal to Õ(gDtn,ζn) of Definition 1.24

We will say that gn is a nondegenerate (respectively transverse) Einstein

desingularization of (Mo,go) if the sequence (gDζn,vn
)n is nondegenerate (re-

spectively transverse) in the sense of Definitions 1.26 and 1.27.

Figure 1: A nondegenerate desingularization (M,gn)n∈N approaches
(Mo,go) without being “too tangent” to the boundary ∂oE(M): it stays
in the plain green region.
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Figure 2: A transverse desingularization (M,gn)n∈N becomes almost or-
thogonal to the boundary ∂oE(M) as it approaches (Mo,go): it stays in the
plain green region.

2. New obstructions to the desingularization of Einstein
orbifolds

We first deduce a new type of obstruction to the Gromov-Hausdorff desingu-
larization of Einstein orbifolds which differs from the ones of [Biq13, Biq16,
Ozu19b]. The goal of this section is to prove Theorem 0.2 and Proposi-
tion 0.4.

This obstruction is special to the compact case, or at least not present
in the asymptotically hyperbolic (AH) context if one allows deformations
of the conformal infinity (which are infinitely many new degrees of freedom
which do not add obstructions).

Example 2.1. The AdS Taub-Bolt family of metrics constructed by Page-
Pope [PP87] are asymptotically hyperbolic (AH) Einstein metrics and con-
verge to an AH selfdual Einstein orbifold while bubbling out an Eguchi-
Hanson metric (see [Ozu20t, Chapter B] for a precise description of the
degeneration). This orbifold has only one singularity R4/Z2 at which we
have Ric0 = 0 because it is Einstein, and in the usual bases of Ω±, we have

R− =

⎡
⎣−1 0 0

0 −1 0
0 0 −1

⎤
⎦ ,

because it is selfdual, and finally

R+ =

⎡
⎣0 0 0
0 −3

2 0
0 0 −3

2

⎤
⎦ ,

only has a one-dimensional kernel.
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The AdS Taub-Bolt orbifold is L2-rigid. If we consider the Einstein de-
formations induced by the conformal changes at infinity, then, there exists
an infinite dimensional space of nondegenerate Einstein desingularizations,
see [Biq13]. This shows that the compactness assumption in Proposition 0.4
is necessary.

2.1. Degeneration and obstructions

Let (Mo,go) be a compact Einstein orbifold with integrable Einstein defor-
mations (Definition 1.10) and with a R4/Z2 singularity at p ∈ Mo, and let
(N, eh) be an Eguchi-Hanson metric. At p, we can choose orbifold coordi-
nates (Definition 1.2) in which the metric go is in Bianchi gauge with respect
to the flat metric e (see [Ozu19b] for a proof in the more difficult case of
neck regions), that is satisfies Bego = 0. Since the metric go is smooth in
the above orbifold coordinates and because of the Z2-invariance, we have
the following development,

(18) go = e+H2 +H4 +O(r6e),

where the Hi are homogeneous symmetric 2-tensors with |Hi|e ∼ rie with
BeH2 = 0. At the infinity of N , in the coordinates of (7), we have the
following development,

(19) eh = e+H4 +O(r−8
e ),

where |H4|e ∼ r−4
e and with BeH

4 = 0.

For a metric g, let us denote Q
(2)
g the bilinear terms given by the second

derivative of

h �→ Φg(h) := Ric(h) + δ∗hBgh

at g (whose linearization is Pg). According to [Biq13, Section 3, Section 10
and Lemma 14.1], for any symmetric 2-tensors |H2|e ∼ r2e with PeH2 = Λe,

and |H4|e ∼ r4e with PeH4 = ΛH2 −Q
(2)
e (H2, H2), there exist

1. a unique symmetric 2-tensor h2 and reals (λk)k∈{1,2,3} on N satisfying:

(20)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pehh2 = Λeh+
∑
k

λkok,

h2 = H2 +O(r−2),∫
S2

〈h2,ok〉ehdveh|S2
= 0 for all k ∈ {1, 2, 3}.
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2. and a symmetric 2-tensor h4 and real numbers (μk)k∈{1,2,3} on N sat-

isfying:

(21)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pehh4 = Λh2 −Q
(2)
eh (h2, h2) +

∑
k

μkok,

h4 = H4 +O(rε),∫
S2

〈h4,ok〉ehdveh|S2
= 0 for all k ∈ {1, 2, 3}.

for all ε > 0.

Remark 2.2. The above tensor h4 is not unique since there are 2-tensors

which are O(1) at infinity in the kernel of Peh. There will be a best choice of

h4 in our construction which will ensure that the asymptotics on the orbifold

and the ALE match, see Remark 2.11.

2.1.1. More precision on the first obstruction. Let ζ ∈ R3\{0}, and
denote ok(ζ

±) the basis of O(ehζ±) of (16). Since the metric ehζ± is homo-

thetic to eh, we also find solutions h2 and h4 to

1. a unique symmetric 2-tensor h2(ζ
±) onN satisfying the following equa-

tions

(22)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pehζ±
h2(ζ

±) = Λehζ± +
∑
k

λk(ζ
±)ok(ζ

±),

h2(ζ
±) = H2 +O(r−2),∫

S2

〈h2(ζ±),ok(ζ±)〉ehζ±
dvehζ±|S2

= 0 for all k ∈ {1, 2, 3}.

2. and a symmetric 2-tensor h4(ζ
±) on N satisfying the following equa-

tions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pehζ±
h4(ζ

±)=Λh2(ζ
±)−Q

(2)
ehζ±

(h2(ζ
±), h2(ζ

±))+
∑
k

μk(ζ
±)ok(ζ

±),

h4(ζ
±) = H4 +O(rε),∫

S2

〈h4(ζ±),ok(ζ±)〉ehζ±
dvehζ±|S2

= 0 for all k ∈ {1, 2, 3}.

(23)

for all ε > 0.
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We moreover have the following values for the λk(ζ
±): for some c 
= 0,

(24) λk(ζ
±) = c

〈
R±(H2)ζ

±, ζ±(k)

〉
,

where (ζ±(k))k∈{1,2,3} is an orthogonal basis with |ζ±(k)| =
√
2 and ζ±(1) = ζ±/|ζ|.

We can be more precise about the first obstruction and the symmetric
2-tensor h2.

Lemma 2.3. Let h2 be a solution of (22) (where we omit the dependence
in ζ± for simpler equations). Then, we have

(25) h2 = H2 +H4
2 +O(r−4+ε) for any ε > 0,

where H4
2 is a homogeneous solution to

(26) PeH
4
2 = −Q

(2)
e (H4, H2) + ΛH4 +

∑
k

λkO
4
k, with |H4

2 |e ∼ r−2
e .

Moreover, when λk = 0, then H4
2 = 0.

Proof. At infinity, in ALE coordinates we have h2 = H2 + h′ with h′ =
O(r−2+ε

e ) for all ε > 0. Since eh = e+H4+O(r−8
e ), we develop the equation

(20) as:

PeH2 + Pe(h
′) +Q

(2)
e (H4, H2) +O(r−8+ε

e )

= Λe+ ΛH4 +
∑
k

λkO
4
k +O(r−8+ε

e ),

and using the assumption that PeH2 = Λe, we find

Pe(h
′) +Q

(2)
e (H4, H2) = ΛH4 +

∑
k

λkO
4
k +O(r−8+ε

e ),

which is the stated equation. Now let us consider H2 with |H2|e ∼ r−2
e such

that

PeH
2 = −Q

(2)
e (H4, H2) + ΛH4 +

∑
k

λkO
4
k.

It exists by Lemma A.5 in the appendix (one checks that there is no log
term). Then, we see that Pe(h

′ − H2) = O(r−8+ε
e ) while h′ = O(r−2+ε

e ).
By the theory of elliptic operators between weighted Hölder spaces (see for
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instance [PR78] or [LM85]), we therefore find that h′−H2 = K0

r2e
+O(r−6+ε

e )
for a constant symmetric 2-tensor K0, and consequently

h′ = H4
2 +O(r−4+ε

e ) = H2 +
K0

r2e
+O(r−4+ε

e )

which proves the stated result.
Let us now prove that if the obstructions λk of (20) vanish, then H4

2 = 0.
The idea is to use the uniqueness of h2, and show that Lr∂r

h2 satisfies
the same equation. Indeed, we have:

0 = Lr∂r

(
Pehh2 − Λeh

)
= Q

(2)
eh (Lr∂r

eh, h2) + PehLr∂r
h2 − ΛLr∂r

eh,

= PehLr∂r
h2 − 4Λeh

+Q
(2)
eh (Lr∂r

eh− 2eh, h2)− Λ(Lr∂r
eh− 2eh)

(27)

Remark 2.4. In the last line, we used the fact that Q
(2)
eh (eh, h2) + Λeh =

0, which comes from the (Bianchi-free version of) the identity Ric(sg) =
Ric(g) as 2-tensors for all s > 0. This implies Dg Ric(g) = 0 for all g and
differentiating again at g in the direction h gives:

D2
g Ric(h, g) +Dg Ric(h) = 0.

We use this formula with g = eh, h = h2 and use the assumption that
DehRic(h2) = Pehh2 = Λeh because the λk vanish.

In (27), we recognize −2o1 = Lr∂r
eh − 2eh. Let us show that the last

term vanishes. Using [Biq16, Lemme 3], we find for c 
= 0,

Q
(2)
eh (o1, h2)− Λo1 = c

∑
j

R+
1j(H2)oj

and by [Biq13], if λ1 = λ2 = λ3 = 0, then, R+
11(H2) = R+

12(H2) = R+
13(H2) =

0, hence,

Q
(2)
eh (o1, h2)− Λo1 = 0.

There remains PehLr∂r
h2 = 4Λeh in (27). Since Lr∂r

h2 ∼ Lr∂r
H2 = 4H2

at infinity, we find the same first two equalities of (20) up to a constant 4.
Since 4h2 is the unique solution up to the addition of an element of O(eh),
we find that Lr∂r

h2 = 4h2 +O(r−4
e ).

The point is now that by homogeneity, Lr∂r
H4

2 = 0 hence Lr∂r
h2 =

4H2 +O(r−4
e ), and consequently h2 = H2 +O(r−4

e ).
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Remark 2.5. Let us note that the vanishing of H4
2 is dependent on the

coordinate system we consider for Eguchi-Hanson metric. It seems that the
crucial property if these coordinates we use here is that the vector field r∂r
is harmonic. Since we will always take eh in the coordinates of (10), we will
always have H4

2 = 0 as long as the λk vanish.

Later on, we will consider deformations of our orbifold as well and we
will need to consider metrics which are not quite asymptotic to our target
Euclidean metric, but a nearby one, i.e. e+H0 for some constant 2-tensorH0.

Similarly, let us consider coordinates in which we have go = e + H0 +
H2 + O(r4e) for H0 a traceless constant 2-tensor and let us denote ψ : R4/
Z2 → R4/Z2 a linear isomorphism for which ψ∗e = e + H0, in order to
extend H2 to ψ∗ehζ± .

Remark 2.6. Here, by ψ∗ehζ±, we really mean the same diffeomorphism
applied to eh = e +

∑
k�2 H̃k(θ)r

−2k in the polar coordinates θ ∈ RP
3 and

r ∈ [0,+∞) as in [Kro89a, Proposition 3.14], where (R4/Z2, e) = (R+ ×
RP

3, dr2 + dr2gRP3). The metric has to be “closed-up” by a different S2 at
ψ(0) = 0.

Then the obstructions are:

(28) λk(ζ
±) = c

〈
R±(ψ∗H2)ζ

±, ζ±(k)

〉
.

We will moreover need to extend constant 2-tensors to our Eguchi-
Hanson metrics.

Lemma 2.7. Let H0 be a constant 2-tensor on R4/Z2, i.e. constant on R4.
Then, there exists a unique 2-tensor h0 on T ∗S2 satisfying:

(29)

⎧⎪⎨
⎪⎩

Pehh0 = 0,

h0 = H0 +H4
0 +O(r−6+ε) for all ε > 0

h0 ⊥L2(eh) O(eh).

Proof. Let H0 = LX1
e be a constant symmetric 2-tensor with X1 a linear

vector field. Then, since PeH0 = 0, for χ a cut-off function supported in
a neighborhood of infinity of eh, we have Peh(χH0) = O(r−6

e ), and an
integration by parts against the ok proves that Peh(χH0) ⊥ O(eh) and there
is no obstruction to finding h′′ with Peh(χH0 + h′′) = 0 and h′′ = O(r−4+ε

e )
for all ε > 0, see [Biq13, Proposition 2.1]. This lets us find a solution h0 to

(30) Pehh0 = 0, with h0 = H0 +O(r−4
e ).
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with Behh0 = 0, trehh0 = 0 by the maximum principle since trehPeh =
1
2∇∗

eh∇ehtreh and BehPeh = Behδ
∗
ehBeh = 1

2∇∗
eh∇ehBeh. We can make h0

unique by additionally assuming: h0 ⊥ O(eh) and we find a development:

(31) h0 = H0 +H4
0 +O(r−6+ε

e ) with |H4
0 |e ∼ r−4

e .

The L2-product between h0 and o ∈ O(eh) is a priori ill-defined because

o = O(r−4) and h0 = O(1), but since the coefficients of the leading terms re-

stricted to spheres {r = cst} belong to different eigenspaces of the Laplacian

on RP
3, this is therefore well-defined.

Remark 2.8. We can prove that we have h0 = Lx1
eh for some vector field

x1 satisfying 0 = BehLx1
eh = ∇∗

eh∇ehx1 and x1 = X1 + O(r−3+ε
e ). We

however do not have any application for this at the moment.

The link between the next asymptotic term H4
2 of the Einstein modulo

obstructions deformation h2 = H2 + H4
2 + . . . of Lemma 2.3 and the de-

velopment of h0 = H0 + H4
0 + . . . is given by the following integration by

parts:

0 =

∫
N

〈
Pehh2 − Λeh−

∑
k

λkok, h0
〉
eh
dveh

=

∫
N
〈Pehh2, h0〉ehdveh

=

∫
N
〈h2, Pehh0〉ehdveh

+
1

2
lim

r→+∞

∫
{re=r}

〈∇∂re
(h2), h0〉eh − 〈h2,∇∂re

h0〉ehdv{re=r}

0 =− 3

∫
S3/Z2

〈H2, H
4
0 〉edvS3/Z2

−
∫
S3/Z2

〈H4
2 , H0〉edvS3/Z2

,(32)

where we used that by homogeneity, we have ∇∂re
H2 = 2

re
H2, ∇∂re

H0 = 0,

∇∂re
H4

2 = − 2
re
H4

2 and ∇∂re
H4

0 = − 4
re
H4

0 .

Finally, if λk = 0, using the fact that H4
2 = 0 from Lemma 2.3, we find:

(33)

∫
S3/Z2

〈H2, H
4
0 〉edvS3/Z2

= 0
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2.1.2. A first obstruction on the orbifold. We have a similar result for

the extension of tensors on the orbifold. Consider an infinitesimal Ricci-flat

variation of ehζ±
j

in the direction om = om(ζ±j ) ∈ O(ehζ±
j
) where om(ζ±j )

is the 2-tensor defined in (16) and Remark 1.20. In particular, om has a

development om = O4
m +O(|ζ|3r−8

e ) with |O4
m|e ∼ |ζ|r−4.

Lemma 2.9. We define o4m for m ∈ {1, 2, 3} some solutions to the following

equation

(34)

⎧⎪⎨
⎪⎩
Poo

4
m ∈ O(go),

o4m = O4
m +O(r−2−ε

o ) for any ε > 0 at the singular point j

o4m ⊥ O(go).

They are determined up to the kernel of Pgo
in O(r−2

e ) at the singular points

and this choice will not alter the result at this level of precision.

Proof. Let us consider a cut-off function χ on Mo supported in a small

enough neighborhood of a singular point p. We have Pgo
(χO4

m) = O(r−4),

hence there exists a 2 tensor |O4
m,2| = O(r−2−ε) so that

Pgo
(χ(O4

m +O4
m,2)) = O(r−2−ε).

Finally, using the Fredholm properties of Pgo
proven in [Ozu19b], there exists

|h′| = O(r−ε) for all ε > 0 so that:

Pgo
(χ(O4

m +O4
m,2) + h′) ∈ O(go).

Now, we can uniquely choose it by imposing (χ(O4
m+O4

m,2)+h′) ⊥L2(go)

O(go), where the L
2 product is a priori ill-defined as in the proof of Lemma

2.7, but makes sense via the orthogonality of the different eigenspaces of the

Laplacian on RP
3.

Proposition 2.10. Let us denote (vl)l an orthonormal basis of O(go). Con-

sider the development of the symmetric 2-tensor h2 = H2 +H4
2 +O(r−6+ε

e )

of (22) (again, we will omit the dependence in ζ±).

For ζ± ∈ Ω± and the symmetric 2-tensor H4 = H4(ζ±) with PeH
4 = 0

and BeH
4 = 0, there exists (h

4
, (νl)l) with a symmetric 2-tensor h

4
and real
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numbers (νl)l on Mo satisfying the following equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Poh
4
=
∑
l

νlvl +
∑
k

λko
4
k,

h
4
= H4 +H4

2 +O(|ζ|2r−ε
o ) for any ε > 0 at the singular point j

h
4 ⊥ O(go).

(35)

We moreover have the following value for the obstruction when λk = 0
for k ∈ {1, 2, 3}

(36) νl = 3

∫
S3/Z2

〈H4, Vl,2〉edvS3/Z2
.

where we have vl = Vl,0 + Vl,2 +O(r4e) with |Vl,m|e ∼ rme .

Remark 2.11. The next term in the development of h
4
is H4

4 with |H4
4 |e =

O(rεe + r−ε
e ) for any ε > 0 (it will typically be logarithmic in re) for which

we have

h
4
= H4 +H4

2 +H4
4 +O(|ζ|2r2−ε

o ).

It satisfies

(37) PeH
4
4 +Q

(2)
e (H4, H4) +Q

(2)
e (H4

2 , H2) +Q
(3)
e (H4, H2, H2) = 0.

for Q
(m)
e the m-linear terms of the development of h �→ (Ric−Λ+δ∗e+hBe)(e+

h) around h = 0. The equality (37) is exactly the equation satisfied by the
next term in the development of h4 defined in (21) or (23). That was what
made h4 non unique: one could add any element of the kernel of Peh asymp-
totic to a constant 2-tensor to it. We can make it unique (and still existing)
by imposing that we have for the above H4

4 :

h4 = H4 +H4
4 +O(r−2+ε).

Proof. Consider χ a cut-off function supported in the neighborhood of the
singular point j ∈ Mo. From PeH

4 = 0, rke |∇k
e(go − e)|e = O(r2e) and using

(26), we find

Po(χ(H
4 +H4

2 ))−
∑
k

λko
4
k ∈ r−2

o Cα
β (go)
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for 0 < β < 1 where the norms are defined in the Appendix A.

Moreover, by integration by parts and using o4k ⊥L2(go) O(go), we find

(38)

∫
Mo

〈
Po(χ(H

4 +H4
2 )),vl

〉
go
dvgo

=

∫
Mo

〈
χ(H4 +H4

2 ), Po(vl)
〉
go
dvgo

+
1

2
lim
r→0

∫
{ro=r}

〈∇∂ro
(χH4),vl〉go

− 〈χH4,∇∂ro
vl〉go

dv{ro=r}

+
1

2
lim
r→0

∫
{ro=r}

〈∇∂ro
(χH4

2 ),vl〉go
− 〈χH4

2 ,∇∂ro
vl〉go

dv{ro=r}

=3

∫
S3/Z2

〈H4, Vl,2〉edvS3/Z2
+

∫
S3/Z2

〈H4
2 , Vl,0〉edvS3/Z2

Indeed, since once restricted to S3/Z2, the coefficients of H4 and Vl,0 are

eigenfunctions of the Laplace-Beltrami operator and associated to different

eigenvalues, the product against the first asymptotic term Vl,0 vanishes. Note

that this also justifies the orthogonality of (35). For the second term Vl,2,

we use the homogeneity of H4 and Vl,2 which yield ∇∂re
H4 = − 4

re
H4 and

∇∂re
Vl,2 = 2

re
Vl,2 and the above value. Thanks to the Fredholm properties

of Po proved in [Ozu19b], we have the stated result.

When λk = 0 for k ∈ {1, 2, 3}, then, we can use Lemma 2.3, hence plug

H4
2 = 0 into (38) and find the expected value.

Similarly, if (Mo,go) has several R
4/Z2 singularities, denote h

4
j the sym-

metric 2-tensors of (35) asymptotic to H4(ζ±j ) + H4
2 (ζ

±
j ) at the singular

point j. The symmetric 2-tensor

h
4
:=

∑
j singular

h
4
j

satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Poh
4
=
∑
k

νlvl +
∑
j

∑
k

λj
ko

4
j,k,

h
4
= H4(ζ±j )+H4

2 (ζ
±
j )+O(r−ε

o ) for any ε > 0 at each singular point j

h
4 ⊥ O(go).

(39)
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2.1.3. First variation of the initial obstruction. By [Ozu19b, Propo-
sition 5.17], around a singular point j, in coordinates where go = e+Hj,2+
O(r4e), for v ∈ O(go) small enough and with v = Vj,0 + Vj,2 + O(r4e) in the
same coordinates, we have

gv = (e+ Ṽj,0) + (Hj,2 + Ṽj,2) +O(r4e),

with Ṽj,0 = Vj,0+O(‖v‖2L2(go)
) and Ṽj,2 = Vj,2+O(‖v‖2L2(go)

r2e). We also de-

note ψ(Ṽj,0) : R
4/Z2 → R4/Z2 the linear isomorphism for which ψ(Ṽj,0)

∗e =
e+ Ṽj,0.

For k ∈ {1, 2, 3} and a singular point j, and ζ = (ζj)j with ζj ∈ R3\{0},
we will denote λj

k(ζ, v) the real numbers of (28) obtained for H0 = Ṽj,0 and

H2 = Hj,2 + Ṽj,2, that is for c > 0,

(40) λj
k(ζ, v) = c

〈
R±(ψ(Ṽj,0)∗(Hj,2 + Ṽj,2)

)
ζ±j , ζ±j,(k)

〉
.

We find a link between the variations of the first obstruction λ1 on the
Eguchi-Hanson metric and the first obstructions νl on the orbifold.

Corollary 2.12. Consider (Mo,go) an integrable Einstein orbifold with only
R4/Z2 singularities. Consider also a small enough v ∈ O(go), the orthonor-
mal basis (vl)l of Proposition 2.10 and the Einstein deformation gv of go of
Definition 1.10. Assume that we have λj

k(ζ, 0) = 0 for all k, j.

Then, for some constant C ∈ R∗, we have the following control:

(41)
∑

j singular

|ζj |λj
1(ζ, v) = C

∑
l

〈v,vl〉νl(ζ, 0) +O(‖v‖2L2 |ζ|2),

where the νl are real numbers of (39), and where |ζ| = maxj |ζj |.

Proof. Let (Mo,go) be like in the statement above and consider a small
enough v ∈ O(go) and gv the Einstein deformation of go of Definitions 1.9
and 1.10, denote λj

1(ζ, v) the constant in (40) above. Our goal is to show

that the first variation of v �→
∑

j |ζj |λ
j
1(ζ, v) around (ζ, 0) is proportional

to
∑

k〈v,vl〉νl(ζ, 0).
From the expression (40) and the formula [Biq13, Proposition 3.2], we

see that for the singular point j, the first variation of v �→
∑

j |ζj |λ
j
1(ζ, v) is

∑
j

|ζj |
∫
S3/Z2

〈
V2, O

4
j,1

〉
e
dvS3/Z2

,
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up to a multiplicative constant. Using the equality H4(ζ±j ) = |ζj |
2 O4

j,1(ζ
±
j )

together with (39), we see that this equals
∑

k〈v,vl〉νl up to a multiplicative
constant and the estimate (41) follows.

2.1.4. Values for the second obstruction. Let H2 be a quadratic sym-
metric 2-tensor with PeH2 = Λe, and H4 with |H4|e ∼ r4e and PeH4 =

ΛH2−Q
(2)
e (H2, H2), and recall the notation R+(H2) as the common selfdual

part of the curvature at re = 0 of Riemannian metrics with a development
e +H2 +O(r3e). As seen above, we have λk := c

〈
R+(H2)(ω

+
1 ), ω

+
k

〉
for the

λk of (20) and c > 0. In particular, if for all k, λk = 0, then we have

R+(H2) =

⎡
⎣0 0 0
0 R22 R23

0 R32 R33

⎤
⎦ ,

and in this case, for a positive constant C > 0, by [Biq16, Lemme 9] we have

(42) μ1 = C det

[
R22 R23

R32 R33

]

Remark 2.13. If Ric(H2) = 0, then we have trR+(H2) = 0 and therefore

det

[
R22 R23

R32 R33

]
� 0

with equality if and only if R+(H2) = 0.

In general, we might only know that the λk are small rather than exactly
vanishing. We still have the following estimate.

Lemma 2.14. Let H2 and H4 be homogeneous symmetric 2-tensors as
above. We have

(43) μ1 = C det

[
R22 R23

R32 R33

]
+O

(∑
k

|λk| · |r−2
e H2|ge

)
.

Proof. According to [Biq16, Lemma 7], we have

R+(H2) =

⎡
⎣c−1λ1 c−1λ2 c−1λ3

c−1λ2 R22 R23

c−1λ3 R32 R33

⎤
⎦ .
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Exactly like in the proof of [Biq16, Lemma 8], we use the expression of

Q
(2)
e given in [Biq16, Lemma 3] in order to express μ1. The value of μ1 is a

quadratic form in the coefficients of R+(H2). It is composed of products of
a λk and a λj , products of the λk with the remaining Rij , and its last part
involving R22, R23, R32 and R33 is

C det

[
R22 R23

R32 R33

]
,

as proven in [Biq16, Lemma 8]. Since all of the λk as well as the Rij are
linear in H2 and are therefore are controlled by |r−2

e H2|ge . We deduce the
stated estimate.

For another Eguchi-Hanson metric ehζ± , one has similar estimates with
the matrix expression of R+(H2) in the basis (ζ±, |ζ| · ζ±(2), |ζ| · ζ

±
(3)) on R · ζ±

and its orthogonal. Note that in that case, we have λk ∼ |ζ| and μ1 ∼ |ζ|2.

2.2. Approximate Einstein metrics and obstructions

Let (Mo,go) be a compact Einstein orbifold with integrable Einstein de-
formations and only R4/Z2 singularities. For v ∈ O(go) small enough and
ζ = (ζ±j )j with ζj ∈ R3\{0}, we recall the notations:

1. gv the Einstein deformation of go of Definition 1.10,
2. for a singular point j, symmetric 2-tensors hj,2(v, ζ) and hj,4(v, ζ) of

(22) and (23) by extending the asymptotic terms of gv on ehζ±
j
and

3. a symmetric 2-tensor h
4
(v, ζ) of (39) extending the r−4 term of ehζ±

j

on (Mo,gv).
4. gD or gD for the näıve desingularization and rD the associated radial

parameter, see Definitions 1.23 and 1.22

Definition 2.15 (Approximate Einstein modulo obstructions metric gAζ,v).

We define an approximate Einstein modulo obstructions metric gAζ,v as the
näıve gluing of the metrics ehζ±

j
+hj,2(v, ζ)+hj,4(v, ζ) at the singular points

j of (Mo,gv + h
4
(v, ζ)).

There exists C = C(go) > 0 such that we have

• rkD|∇k
eh

ζ
±
j

h2| � Cr2D,

• rkD|∇k
eh

ζ
±
j

h4| � Cr4D, and
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• rkD|∇k
eh

ζ
±
j

h
4| � C|ζ|2r−4

D ,

we have the following controls: on Mo(ε) (defined in (5))

(44) rkD
∣∣∇k(gAζ,v − gDζ,v)

∣∣
gD
ζ,v

� C|ζ|2,

and on the connected component of M\Mo(ε) containing the singular point

j ∈ S:

rkD
∣∣∇k(gAζ,v − gDζ,v)

∣∣
gD
ζ,v

� C
(
1{rD>|ζj |

1
4 }|ζj |

2r−4
D + 1{rD<2|ζj |

1
4 }r

2
D

)
.(45)

where 1A is the indicator function for A.

We now approximate the kernel of the linearization of the Einstein op-

erator at gAζ,v.

Definition 2.16 (Approximate obstructions Õ(gAζ,v)). We define Õ(gAζ,v)

the linear space spanned by the infinitesimal variations of (v, ζ) �→ gAζ,v.

More precisely for the element ok ∈ O(ehζ±
j
) with ok = ∂ζj,(k)

ehζ±
j
, we

define

õk := ∂ζj,(k)
gAζ,v

and, for w ∈ O(gv), we define w̃ the associated infinitesimal deformation

of v �→ gAζ,v.

Remark 2.17. As in Remark 1.25, the space Õ(gAζ,v) is very close to the

space Õ(gDζ,v) of [Ozu19b] and even yields better estimate. The results of

[Ozu19b] therefore hold when replacing Õ(gDζ,v) by Õ(gAζ,v).

We have the following estimates which show that the space Õ(gAζ,v) is

an approximate L2-cokernel of the linearization of the Einstein equation.

Lemma 2.18. For õk ∈ Õ(gAζ,v) and w̃ ∈ Õ(gAζ,v) as in Definition 2.16

above, we have for any symmetric 2-tensor h on M,

∣∣〈PgD
ζ,v
h, õk〉L2(gD

ζ,v)

∣∣ � C|ζ| · ‖h‖C2,α
β,∗ (g

D
ζ,v)

‖ok‖L2(eh
ζ
±
j
) and(46)

∣∣〈PgD
ζ,v
h, w̃〉L2(gD

ζ,v)

∣∣ � C|ζ| · ‖h‖C2,α
β,∗ (g

D
ζ,v)

‖w‖L2(go).(47)
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Proof. By integration by parts and symmetry of PgD
ζv

on the closed mani-
fold M , it is equivalent to control∫

M

〈
h, PgD

ζ,v
õk

〉
gD
ζ,v

dvgD
ζ,v

and

∫
M

〈
h, PgD

ζ,v
w̃
〉
gD
ζ,v

dvgD
ζ,v
.

On the region where gDζ,v = ehζ±
j
, we have PgD

ζ,v
õk = 0. There remains

the region where gDζ,v = gv on which by differentiating (39) with respect to

ζ±j , we find

PgD
ζ,v
õk =

∑
l

∂ζj,(k)
νlwl +

∑
i,m

∂ζj,(k)
(λm

i o4i,m),

where (wl)l denotes an orthonormal basis of O(gv), and where the ∂ζj,(k)
νl

are the derivatives of the νl = νl(v, ζ) of (39) in the direction ζj,(k). Given
the expressions (24), (16) and (39), that gives for some C = C(go) > 0,∥∥PgD

ζ,v
õk
∥∥
L2(eh

ζ
±
j
)
� C|ζ| · ‖ok(ζ±j )‖L2(eh

ζ
±
j
).

We find that∫
{rD>2|ζ±

j |1/4}

〈
h, PgD

ζ,v
õk

〉
gD
ζ,v

dvgD
ζ,v

� C|ζ| · ‖h‖C0(gD
ζ,v)

‖ok(ζ±j )‖L2(eh
ζ
±
j
).

Finally, on the gluing region where |ζ±j | 14 < rD < 2|ζ±j | 14 , we have for all
l ∈ N and Cl > 0

rlD|∇l(gDζ,v − ehζ±
j
)|gD

ζ,v
� Cl

(
|ζ±j |2r−4

D + r2D
)

and

rlD|∇l(õk − ok)|gD
ζ,v

� C
(
|ζ±j |4r−8

D + |ζ±j |2r−2
D

)
,

and we find that on the gluing region where |ζ±j | 14 < rD < 2|ζ±j | 14 , we have

∣∣∣PgD
ζ,v
õk

∣∣∣
gD
ζ,v

�
∣∣∣PgD

ζ,v
(õk − ok)

∣∣∣
gD
ζ,v

+
∣∣(PgD

ζ,v
− Peh

ζ
±
j

)
(ok)

∣∣
gD
ζ,v

� C|ζ±j | · ‖ok‖L2(eh
ζ
±
j
).

We therefore globally find the estimate (46).
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For the second estimate, note first that on the region where gDζ,v = gv,
we have

PgD
ζ,v
w = 0,

and by a similar argument to the above one, by differentiating (22) and (23),
on each region where gDζ,v = ehζ±

j
, we have

PgD
ζ,v
w̃ =

∑
k

∂w(λk + μk)ok(ζ
±
j ),

and we find that there exists C = C(go) > 0 such that |∂w(λk+μk)| � C|ζ|.
Together with a control on the gluing region like the above one, one obtains
the estimate (47).

Proposition 2.19. Assume that there exists an Einstein metric gζ,v satis-
fying:

1. ΦgD
ζ,v
(gζ,v) = 0,

2. gζ,v − gAζ,v ⊥ Õ(gAζ,v)

3. ‖gζ,v−gAζ,v‖C2,α
β,∗ (g

D
ζ,v)

< ε for ε > 0 small enough determined in [Ozu19b]

depending only on go.

Then, we actually have for all l for the obstructions of (35):

(48) νl = O(|ζ| 52 ),

and for each j, and all k ∈ {1, 2, 3} for the obstructions of (22) and (23):

(49) λj
k + μj

k = O(|ζj |
5

2 ).

Proof. Let us denote πÕ(gA
ζ,v)

⊥ the L2(gAζ,v)-orthogonal projection on

Õ(gAζ,v)
⊥. Thanks to the obstruction result of [Ozu20t, Proposition 5.1],

we only have to understand the value of
∥∥πÕ(gA

ζ,v)
⊥ΦgD

ζ,v
(gAζ,v)

∥∥
r−2
D Cα(gD

ζ,v)
, in

order to control both ‖gAζ,v − gζ,v‖C2,α
β,∗ (g

D
ζ,v)

and the obstructions, where the

norms are defined in Definition A.3 in the Appendix.
The estimate on the different Eguchi-Hanson regions has been done in

[Biq13, Section 14]. There remains to understand the orbifold region. Using

the definition of h
4
, we control the first variation

Pgo
h
4
=
∑
l

νlvl +
∑
j

3∑
k=1

λj
ko

4
j,k,
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and on the region where gAζ,v = go + h
4
with h

4
= O(|ζ|2r−4

D ), we have:

ΦgD
ζ,v
(gAζ,v) =

∑
l

νlvl +
∑
j

3∑
k=1

λj
ko

4
j,k +O(|ζ|4r−10

D )

which is exactly analogous to the estimate [Biq13, (108)]. The gluing region

is treated exactly as in [Biq13, Section 14] for instance, see also the above

proof of Lemma 2.18. We conclude like in [Biq13, (109)] that

(50)
∥∥πÕ(gA

ζ,v)
⊥ΦgD

ζ,v
(gAζ,v)

∥∥
r−2
D Cα(gD

ζ,v)
� C|ζ| 32−

β

4 .

We conclude exactly like in order to prove [Biq13, (112)] that we have the

stated control (see also [Ozu20t, Proposition 5.1]).

2.3. A new obstruction to the desingularization of Einstein

orbifolds

By [Ozu19a, Ozu19b], we know that Einstein metrics which are close to

an Einstein orbifold (Mo,go) result from a gluing-perturbation procedure.

To prove that it cannot be desingularized, we just need to prove that an

obstruction to this procedure does not vanish.

2.3.1. Approximate obstructions. Let us denote ζ = t · φ with t =

(tj)j = (|ζj |)j and φ = (φj)j =
(
ζ±j /|ζj |

)
j
. By Proposition 2.19, we find the

following estimate for any singular point j, any k ∈ {1, 2, 3}:

tjλ
j
k(φj , v) + t2jμ

j
k(φj , v) = O(t

5

2
max), and(51)

νl(t · φ, v) = O(t
5

2
max), for each l,(52)

where the λj
k(φj , v) and μj

k(φj , v) and νl(t ·φ, v) are the constants of Lemma

(22), (23) and (39) for each ehζ±
j
associated to the development of gv at the

singular point j.

Our goal is to prove that for all j, both all of the λj
k and μj

1 have to

vanish when t → 0. The main concern is to rule out the compensation of

t2jμ
j
1 by tjλ

j
1 just like in the desingularization case of [Biq13, Theorem 14.3].
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Proof of Theorem 0.2 and Proposition 0.4. Let us consider (Mo,go) ∈
E(M)GH for M having the topology of Mo desingularized by T ∗S2 in an

orientation at each of its singular point and assume that go only has inte-

grable Einstein deformations (see Definition 1.10). Let us assume that there

exists a sequence of Einstein metrics (M,gn)n desingularizing (Mo,go). We

will discuss at the end of the proof in which situation we shall assume that

this sequence is nondegenerate, transverse or stable.

Then, by [Ozu19a, Ozu19b], there exists a sequence of näıve desingu-

larizations gDζn,vn
such that the metrics (M,gn) are Einstein perturbations

of gDζn,vn
with ζn = (ζn,j)j . We will use the notations tn = (tn,j)j , with

tn,j = |ζn,j | > 0 and φn = (φn,j)j , φn,j =
ζ±
n,j

|ζn,j | satisfying ζ±n,j = tn,j · φn,j ,

and we will denote tn · φn = (tn,jφn,j)j .

By compactness, up to taking a subsequence, we can assume that for any

j, φn,j → φ∞,j on the sphere while tn → 0 and vn → 0 since by assumption

the limit is go.

Denote λj
k(φn,j , vn) and μj

k(φn,j , vn) the real numbers of (20) and (21)

for these configurations. According to (51), we have the following controls:

for all j and k,

(53) tn,jλ
j
k(φn,j , vn) + t2n,jμ

j
k(φn,j , vn) = O(t

5

2
n,max).

The first obstruction of [Biq13, Ozu19b] means that at the limit, for any

singular point j, we have λj
k(φ∞,j , 0) = 0 for k ∈ {1, 2, 3}, there exists a

basis of the selfdual or anti-selfdual (depending on the orientation of the

gluing) 2-forms starting with φ∞,j = limj→+∞ ζ±n,j/|ζn,j | in which we have

(54) R±
go(j) =

⎡
⎣0 0 0

0 aj2 0

0 0 aj3

⎤
⎦ .

Our goal is to prove that for all j we have, μj
1(φ∞,j , 0) = 0. By Lemma

(2.14), this will then imply that either aj2 = 0 or aj3 = 0 in (54).

Assume towards a contradiction that both aj2 
= 0 and aj3 
= 0. Let us

use the variations of the φ �→ λj
k(φ, 0) computed in [Biq13, Lemma 12.2] at

φ∞,j , we first have the controls:

λj
1(φn,j , 0) = O(|φn,j − φ∞,j |2),(55)
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because the first variation of the smooth map φ �→ λj
1(φ, 0) vanishes at φ∞,j .

Similarly since we assumed towards a contradiction that aj2 
= 0 and aj3 
= 0,

there exists c > 0 depending on (aj2, a
j
3), so that

(56)
∣∣(λj

2(φn,j , 0), λ
j
3(φn,j , 0)

)∣∣ � c|φn,j − φ∞,j |,

since the first order variations of φ �→ (λj
2(φ, 0), λ

j
3(φ, 0)) is invertible at

φ∞,j . For the variations induced by vn ∈ O(go), for any k ∈ {1, 2, 3}, from
the expression (40), we have

|λj
k(φn,j , vn)− λj

k(φn,j , 0)| = O(‖vn‖L2(go)).

For the μj
k, we have the control μ

j
k(φn,j , vn) = μj

k(φ∞,j , 0)+O(|φn,j−φ∞,j |)+
O(‖vn‖L2(go)). Therefore for k = 2 or k = 3, (53) gives

tn,jλ
j
k(φn,j , vn)

(57)

= −t2n,j
(
μj
k(φ∞,j , vn) +O(|φn,j − φ∞,j |) +O(‖vn‖L2(go))

)
+O(t

5

2
n,max).

At any singular point j, we must therefore have
∣∣(λj

2(φn,j , vn), λ
j
3(φn,j , vn)

)∣∣=
O(tn,j+

t5/2n,max

tn,j
), and by (56), this implies that |φn,j−φ∞,j | = O

(
‖vn‖L2(go)+

tn,j +
t5/2n,max

tn,j

)
.

1. In the transverse (Definition 1.27) situation, where we have tn,max =
O(tn,j) and ‖vn‖L2(go) = o(tn,min). By rewriting (53) for k = 1, in-
cluding the bound (55) with the new information that |φn,j − φ∞,j | =
O(tn,j) and using |λ1(φ∞,j , vn,j) − λ1(φ∞,j , 0)| = O(‖vn,j‖L2(go)) =
o(tn,min), we consequently find

o(t2n,j)+t2n,j
(
μj
1(φ∞,j , 0)+O(|φn,j−φ∞,j |)+O(‖vn‖L2(go))

)
=O(t

5

2
n,max),

(58)

and therefore μj
1(φ∞,j , 0) = 0.

2. As proven in [Biq17, Proof of Theorem 3], and thanks to the esti-
mate (50), we know that the linearization of Ric in Bianchi gauge at
gn denoted Pgn

, satisfies for some on,j,k ∈ L2(gn) (constructed from
on,j,k ∈ O(ehζn,j

)) for k ∈ {1, 2, 3}:〈
Pgn

on,j,1, on,j,1
〉
L2(gn)

= o(1) · ‖on,j,1‖L2(gn), and
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〈
Pgn

on,j,k, on,j,k
〉
L2(gn)

= (ajk + o(1)) · ‖on,j,k‖L2(gn),

for k ∈ {2, 3}. That means that the metric cannot be stable as in

Definition 1.11 if aj2 = −aj3 
= 0. Consequently, we necessarily have

aj2 = aj3 = 0 for stable Ricci-flat desingularizations.

3. If the orbifold satisfies O(go) = {0} and only has one R4/Z2 singular-

ity, then the transversality assumption is automatically satisfied and

the result follows.

4. In the Ricci-flat situation, then the nondegeneracy assumption is

enough because we can use Remark 2.13. Indeed, first, the nonde-

generacy assumption gives |φn,j−φ∞,j | = o(t
1

2

n,j), hence |λ1(φn,j , 0)| =
o(tn,j) by (55); second from (41), we moreover have a better control

over the sum of the t2jλ
j
1(ζ, v), namely:

∑
j

t2jλ
j
1(φn,j , vn)− t2jλ

j
1(φn,j , 0)(59)

= O(t
5

2
max‖vn‖L2(go)) +O(t2max‖vn‖2L2(go)

).

which together with (55) and (51) and using ‖vn‖2L2(go)
= o(tn,j) yields

the estimate

∑
j

o
(
t3n,j + t

5

2
n,maxt

1

2

n,j + t2n,maxtn,j

)

+
∑
j

t3n,j
(
μj
1(φ∞,j , 0) +O(|φn,j − φ∞,j |) +O(‖vn‖L2(go))

)

= O(tn,jt
5

2
n,max),

which with tn,max = O(tn,j) from the nondegeneracy assumption im-

plies that ∑
j

μj
1(φ∞,j , 0) = 0

and since all of the μj
1(φ∞,j , 0) are nonpositive by Remark 2.13, for

any j, we have μj
1(φ∞,j , 0) = 0.

5. Similarly for Einstein but non Ricci-flat orbifolds with only one sin-

gularity, we use (41) as in the previous point since there is only one

term in the sum.
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Remark 2.20. The estimate (52) also implies that: for any l, one has

lim
n→+∞

νl

( tn
tn,max

· φn , vn

)
= lim

n→+∞
νl(tn · φn , vn)

t2n,max

= 0

which has an interpretation in terms of curvature by (39) and (41).

Remark 2.21. The same obstruction result also holds if we consider desin-

gularizations by smooth Ricci-flat ALE of A1, Dk or Ek singularities by

[Biq16, Lemme 9]. An obstruction is also satisfied for Ak singularities but

it also involves derivatives of the curvature [Biq16, Lemme 12]. It also ex-

tends to Kähler Ricci-flat ALE manifolds by taking their hyperkähler finite

cover.

We also believe that the nondegeneracy assumption is purely technical.

Understanding higher order obstructions should yield the following conjec-

tural statement which already holds under a stability assumption.

Conjecture 2.22. Let (Mn,gn)n be a sequence of compact smooth Ricci-

flat metrics converging in the Gromov-Hausdorff sense towards a Ricci-flat

orbifold (Mo,go) while bubbling Eguchi-Hanson metrics. Then the curvature

of go at its singular points is either selfdual or anti-selfdual depending on

the orientation of the Eguchi-Hanson metrics.

3. Ricci-flat modulo obstructions desingularizations of T4/Z2

Let us now work with the flat orbifold T4/Z2. We will study the question of

whether or not it is possible to desingularize it by Ricci-flat metrics obtained

by gluing Eguchi-Hanson metrics in different orientations at its singular

points.

3.1. The orbifold T4/Z2 and its deformations

We define T4/Z2 as the quotient of R4/(2LZ4) for some L ∈ GL(4,R) by

the action of {Id,−Id}. A metric on T4/Z2 can be seen as an 2LZ4-invariant

and Z2-invariant metric on R4. It is therefore determined by its values on

any cube L([a, a + 1]4) for a ∈ R. We will denote (T4/Z2,gL) the orbifold

obtained with the matrix L.

All of the infinitesimal Ricci-flat deformations of a flat T4/Z2 are inte-

grable. More precisely, all of the Ricci-flat deformations of T4/Z2 are flat
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and can be seen as either varying the above invertible matrix L, or as mod-
ifying the scalar product, that is by adding a constant symmetric 2-tensor
of norm smaller than 1 to the metric gL.

This orbifold has 16 singular points with R4/Z2 singularities. We will
denote

S := {L(ε1, ε2, ε3, ε4), εi ∈ {0, 1}}+ 2LZ4

its singular set on R4 before the taking the quotients by 2LZ4 and {Id,−Id}.
Remark 3.1. Since this orbifold is flat, it clearly satisfies our obstruction
(0.2).

3.2. Partial hyperkähler desingularizations and estimates

In the rest of the article, we consider (M, gDL,ζ) a näıve desingularization of

(T4/Z2,gL) for L ∈ GL(4,R) by positively oriented Eguchi-Hanson metrics
(ehζ+

i
)i∈S+

for ζi ∈ R3\{0} at a subset S+ of the 16 singular points of

T4/Z2 and by negatively oriented (ehζ−
j
)j∈S− for ζj ∈ R3\{0} at a subset

S− of the singular points. We denote ζ = ((ζ+i )i∈S+
, (ζ−j )j∈S−). We will

first be interested in its partial hyperkähler desingularizations obtained by
perturbation of the metric only desingularized by Eguchi-Hanson metrics in
the same orientation.

3.2.1. Hyperkähler partial desingularizations of T4/Z2 and approx-
imations. Let us define (M±, gD± ) := (MS± , g

D
L,ζ±) the partial desingular-

izations where the only points which are desingularized are S± by the above
Eguchi-Hanson metrics (ehζ±

i
)i∈S± . They can be perturbed to hyperkähler

orbifolds.

Lemma 3.2. Let gD± := gDL,ζ± be a näıve desingularization of T4/Z2 thanks
to Eguchi-Hanson metrics (7) glued in one given orientation at some or all
singular points.

Then, the Einstein modulo obstructions perturbation of gD± , denoted
g± := gL,ζ± and defined in [Ozu19b] is hyperkähler.

Sketch of proof. It is well-known (or can be proven from [Don12]) that the
moduli space of the Ricci-flat and even hyperkähler (orbifold) metrics on
M± is of maximal dimension 3|S±| + 9 which is the same as the space of
Ricci-flat modulo obstructions metrics of [Ozu19b]. Using a connectedness
argument similar to that of [Ozu20t, Proposition 5.70] for the moduli space of
Kronheimer’s gravitational instantons, we conclude that any Einstein mod-
ulo obstruction perturbation of a metric gD± is actually Ricci-flat (and even
hyperkähler).
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To obtain more information about these hyperkähler metrics g±, it suf-
fices to construct metrics which are approximately Ricci-flat by [Ozu19b].

Remark 3.3. We will in particular need to have a good approximation of
the Riemannian curvature tensor of g± at the remaining singular points.
We will see that we have |Rg± | ∼ |ζ±|2, and the previous control (50) in

O(|ζ±| 32− β

4 ) is not sufficient for our purpose.

3.2.2. Approximation of the partial hyperkähler desingularizations.
We want to find good enough approximations to be able to control the cur-
vature of our hyperkähler partial desingularizations. Consider the following
construction.

On the orbifold (T4/Z2,gL), for any harmonic homogeneous symmetric
2-tensor on R4/Z2 with |H4|e ∼ r−4

e and a singular point i ∈ S, we can solve
the equation

(60)

⎧⎪⎪⎨
⎪⎪⎩
PLh

4
= 0, and BLh

4
= 0,

h
4
= H4 + 0 +O(r−ε) for any ε > 0 at the singular point i,

h
4 ⊥ O(gL).

somewhat explicitly (notice that there is no obstruction contrarily to (35)).
Indeed, as in [BK17], one would expect the periodization of the sum of the
symmetric 2-tensors H to be a solution. At x ∈ R4, this would look like

(61)
∑
a∈Z4

H4(L(2a) + x− i).

However except in the most symmetric cases, like the one treated in [BK17],
this periodization diverges (it is a sum of terms in r−4 over a Z4 grid). One
way around it is simply to substract to each term of the sum the mean value
of it over a period, namely, we define

(62) h
4
(x) =

∑
a∈Z4

(
H4(L(2a) + x− i)−H4

av(L, i, 2a)
)
,

where H4
av(L, i, 2a) is the average of H4(x) on the set i + L(2a + [−1, 1]4).

This sum converges because we have ∇lH4 = O(r−4−l
e ) which is summable

on Z4\{0} for l > 0. In particular, the curvature is summable. Note moreover

that, by construction, h
4
of (62) is indeed orthogonal to the infinitesimal

deformations of gL which are constant symmetric 2-tensor and that BgL
h
4
=

0 as well as trgL
h
4
= 0.
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Remark 3.4. The point is that the symmetric 2-tensors we have substracted
are constant and therefore, the curvature induced are the same as those of
the sum (61).

Let, H4(ζ±i ) for i ∈ S± be the r−4-asymptotic terms of the metric ehζ±
i
,

see (11). Consider the unique symmetric 2-tensor h
4
(ζ±i ) as in (62) which

is asymptotic to H4(ζ±i ) at i and bounded everywhere else while satisfying

h
4
(ζ±i ) ⊥gL

O(gL).
Consider now a singular point i ∈ S± and denote |ζ±| = maxi′∈S± |ζ±i′ |.

We have the following expansion of the sum
∑

i′ �=i h
4
(ζ±i′ ) = H0(i)+H2(i)+

O(d(i, .)4) at i with |H0(i)| = O(|ζ±|2) a constant symmetric 2-tensor, and
|H2(i)| = O(|ζ±|2)r2e. For some linear isomorphism φi with, ‖φi − Id‖ =
O(|ζ±|2), we have e + H0(i) = φ∗

i e. In the coordinates of (7), the metric
φ∗
i ehζ±

i
(see Remark 2.6 for the meaning of this action of the diffeomorphism)

is asymptotic to e+H0(i). Consider now h2(i) a solution to Pφ∗
i ehζ

±
i

h2(i) ∈
O(φ∗

i ehζ±
i
), with h2(i) = H2(i) + +O(r−2+ε) for all ε > 0 from (20). Since

the perturbation g± is Ricci-flat, we actually have

(63) Pφ∗
i ehζ

±
i

h2(i) = 0.

Note that h2(i) it is determined up to O(φ∗
i ehζ±

i
). We choose the solution

which is orthogonal to O(φ∗
i ehζ±

i
) for the L2-product induced by φ∗

i ehζ±
i
on

S2 as in (20).

Definition 3.5 (Approximate hyperkähler metric gA±). We define the ap-
proximate hyperkähler metric gA± in a way similar to Definition 1.21): we

glue the different φ∗
i ehζ±

i
+h2(i) for i ∈ S± to the metric gL+

∑
i∈S±

h
4
(ζ±i )

at the points i ∈ S± with cut-off at distance at |ζ±i | 16 , that is with the fol-
lowing metric on the gluing region:

χ(|ζ±i |− 1

6 re)
(
φ∗
i ehζ±

i
+ h2(i)

)
+
(
1− χ(|ζ±i |− 1

6 re)
)(

gL +
∑
i∈S±

h
4
(ζ±i )

)
.

3.2.3. Control of the partial hyperkähler desingularizations. We
now justify the qualifier “approximate” for the metric gA±.

Proposition 3.6. We have the following control on the metric: for all k ∈
N, there exists C = C(k, L) > 0, such that

(64) ‖gA± − g±‖Ck
β,∗(g

D
± ) � C|ζ±|2+ 2

3
− β

6 .
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In particular, at each remaining singular point p, we have

(65)
∣∣∣RgA

±
−Rg±

∣∣∣
gD
±

� C|ζ±|2+ 2

3
− β

6 .

Remark 3.7. We a priori had Rg± = O(|ζ±|2) so this is indeed a good

approximation of Rg± as ζ± → 0. The controls of (50) in |ζ| 32− β

4 are not
precise enough here.

Proof. Thanks to [Ozu20t, Proof of Theorem 4.51], it is enough to control

the values of ΦgD
±
(gA±) in r−2

D Ck,α
β (gD± ) in order to obtain (64), where for two

metrics g and g′, we define

Φg(g
′) := Ric(g′) + δ∗g′Bgg

′

as in the first section. Estimates similar to [Biq13, Lemma 14.2] and [BK17,
Proposition 3.4], yield the following controls. For all k ∈ N, there exists
Ck > 0 for which for a given singular point i0, in the neighborhood of i0

1. in the region where rD > 2|ζ±i0 |
1

6 , we have gA± = gL + h
4
and gD± = gL

and therefore, since the linear terms vanish, that is dgL
ΦgL

h
4
= 0, the

error is at least quadratic. Since rkD|∇kh
4|gD

±
� C|ζ±|2r−4

D , we have

rkD|∇kΦgD
±
(gA±)|gA

±
� Ck|ζ±|4r−10

D ,

2. in the region where rD < |ζ±i0 |
1

6 , we have gA± = ehζ±
i
+ h2 and gD± =

ehζ±
i
. Like above, by (63) we also only have to control the nonlinear

terms, and since rkD|∇kh2|gD
±

� C|ζ±|2r2D, we find

rkD|∇kΦgD
±
(gA±)|gA

±
= |ζ±|4r2D,

3. in the region where |ζ±i0 |
1

6 < rD < 2|ζ±i0 |
1

6 , gA± and gD± are respectively

an interpolation between gL + h
4
and ehζ±

i
+ h2 and an interpolation

between gL and ehζ±
i
thanks to a cut-off function. Now we have

rkD

∣∣∣∇k
((

gL + h
4)− (ehζ±

i
+ h2

))∣∣∣
e

� C|ζ±|2r4D + |ζ±|4r−8
D , and

rkD

∣∣∣∇k
(
gL − ehζ±

i

)∣∣∣
e

� C|ζ±|2r2D + |ζ±|2r−4
D ,

and since |ζ±|1/6 < rD < 2|ζ±|1/6, by controlling the cut-off function,

we find r2+k
D |∇kΦgD

±
(gA±)|gA

±
� C|ζ±|2+ 2

3 .
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Finally, since the control is straightforward away from the singular points,

we obtain

‖ΦgD
±
(gA±)‖r−2

D Ck,α
β (gD

± ) � C|ζ±|2+ 2

3
− β

6 ,

which gives the estimate (64), see the argument of [Ozu20t, Theorem 4.51].

3.2.4. Approximation of the infinitesimal deformations. Let us ap-

proximate the kernel of Pg± , O(g±) thanks to the following symmetric 2-

tensors.

Definition 3.8. We define Õ(gA±) the linear space spanned by the infinites-

imal variations of (L, ζ±) �→ gA± = gAL,ζ±.

Let us start by recalling a general lemma for operators between Banach

spaces which will be useful to approximate the elements of the kernel of our

operator on the hyperkähler partial desingularizations.

Lemma 3.9 ([Ozu19b]). Let P, P ′ : X → Y be two operators between two

Banach spaces X and Y for which there exists C > 0 1
100C > ε > 0 and a

finite-dimensional linear subspace K ′ and S′ a supplement of K ′ in X such

that we have

1. for any x ∈ X, ‖(P − P ′)x‖Y � ε‖x‖X ,

2. for any x ∈ S′, ‖x‖X � C‖P ′x‖Y ,
3. for any x ∈ K ′, ‖P ′x‖Y � ε‖x‖X ,

4. dim(kerP ) = dim(K ′).

Then, for any element k′ of K ′, there exists an element k of kerP such that

‖k − k′‖X � 2Cε

1− Cε
‖k′‖X .

Proposition 3.10. Let O(g±) be the kernel of Pg±. Then, for any o± ∈
O(g±), there exist oA± ∈ Õ(gA±) such that we have

‖o± − oA±‖C2,α
β,∗ (g

D
± ) � C|ζ±|2+ 2

3
− β

6 .

Proof. Let us apply Lemma 3.9 with P = Pg± , P
′ = PgA

±
, K ′ = Õ(gD± ) and

S′ = Õ(gA±)
⊥. We have the following controls: there exists C > 0 indepen-

dent of |ζ±| small enough
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1. for any h ∈ C2,α
β,∗ (g

D
± ), by Proposition 3.6, we have

‖(Pg± − PgA
±
)h‖r−2

D Cα
β (gD

± ) � C|ζ±|2+ 2

3
− β

6 ‖h‖C2,α
β,∗ (g

D
± ),

2. for any h ∈ C2,α
β,∗ (g

D
± ) ∩ Õ(gA±)

⊥, by [Ozu19b], we have

‖h‖C2,α
β,∗ (g

D
± ) � C‖PgA

±
h‖r−2

D Cα
β (gD

± ),

3. by an estimation very similar to that of Proposition 3.6, which we
therefore omit, for any oA ∈ Õ(gA±),

‖PgA
±
oA‖r−2

D Cα
β (gD

± ) � C|ζ±|2+ 2

3
− β

6 ‖oA‖C2,α
β,∗ (g

D
± ),

4. and, dimO(g±) = dimÕ(gA±) since every gluing configuration can be
perturbed to a Ricci-flat manifold by Lemma 3.2.

We can therefore apply Lemma 3.9 and obtain the stated estimate.

Using the control of o± of Proposition 2.19, we moreover have the fol-
lowing estimate of the infinitesimal variation of Rg in the direction of o±:
for C > 0, we have

(66)
∣∣∣∂o±Rg± − ∂oA

±
RgA

±

∣∣∣
gA
±

� C|ζ±|2+ 2

3
− β

6 ‖o±‖L2(g±)

where we denoted ∂o±Rg± the differential of g± �→ Rg± at g± in the direc-
tion o±.

3.3. Total desingularizations modulo obstructions

Let us start by using a notation which will be convenient for this section.

Definition 3.11. For a section s on (R4/Z2)\{0}, we will write s ∝ rke if
s ∈ rkeC

l
−ε(R

4/Z2) for all l ∈ N and ε > 0.
For k ∈ Z and f : (R3)16 �→ R+

∗ , we will write s ∝ f(ζ)rke if as the
parameters ζ → 0, we have s = (f(ζ) + o(f(ζ))s′ for s′ ∝ rke.

Remark 3.12. For any l � 0, we have rke log
l(re) ∝ rke.

Let us now consider the total desingularization of the partial hyperkähler
desingularizations g± by gluing the Eguchi-Hanson metrics ehζ∓

j
at the re-

maining singular points j ∈ S∓. Here, the hyperkähler orbifold (M±,g±)
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will play the role of (Mo,go) in Section 2. From the obstruction result of
Theorem 0.2, we can already say that in order to desingularize the orbifold
(M±,g±) by a nondegenerate sequence of Einstein manifolds in the Gromov-
Hausdorff sense, it is necessary that the condition Rg± = 0 is satisfied at
every remaining singular point. This was done thanks to an approximate
development at order 4, see Definition 2.15.

In this section, we are interested in the more challenging situation of a
sequence of desingularization of a sequence of metrics g±,n, and this requires
an approximation at an even higher order.

3.3.1. An approximate Einstein modulo obstructions metric. Let

L ∈ GL(4,R) and ζ =
(
(ζ±i )i∈S± , (ζ

∓
j )j∈S∓

)
∈ (R3)|S±| × (R3)|S∓| ∼ (R3)16.

Definition 3.13 (Total desingularizations, gDL,ζ). We define gDL,ζ the näıve
gluing at all j ∈ S∓ of the metrics ehζ∓

j
to the metric g±. Recall the notation

|ζ±| = maxi∈S± |ζi|.

As in Section 2, the goal of the present section is to construct better
approximate Einstein modulo obstructions metric in order to identify the
obstructions.

Proposition 3.14. Let L0 ∈ GL(4,R). Then there exists C > 0 and a
neighborhood U of (L0, 0) ∈ GL(4,R)×(R3)16 such that there exists a smooth
family of metrics (gAL,ζ)(L,ζ)∈U for which if we denote Õ(gAL,ζ) the space of

the infinitesimal deformations of (L, ζ) �→ gAL,ζ , we have

1. ‖gAL,ζ − gDL,ζ‖C2,α
β,∗ (g

D
L,ζ)

→ 0 as ζ → 0,

2. gAL,ζ − gDL,ζ ⊥L2(gA
L,ζ)

Õ(gAL,ζ), and

3. ‖ΦgA
L,ζ

(gAL,ζ)− oAL,ζ‖r−2
D Cα

β (gD
L,ζ)

� C|ζ±|1+ β

12 |ζ∓|3− β

4 for oAL,ζ ∈ Õ(gAL,ζ)

explicited in the proof.

Let us consider the development of the metric g± at the singular point
j ∈ S∓,

(67) g± = e+
∑
m∈N∗

Hj,2m, with Hj,2m ∝ |ζ±|2r2me

by Proposition 3.6, and similarly, for each j, at infinity we have

(68) ehζ∓
j
= e+

∑
m∈N∗

H4m(ζ∓j ), with H4m(ζ∓j ) ∝ |ζ∓|2mr−4m
e .
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3.3.2. Extension of the first asymptotic terms. As in Section 2,
we define 2-tensors satisfying the following equations for (oj,k)k a basis of
O(ehζ±

j
) and λk

j ∈ R as in (22):

(69)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Peh
ζ
∓
j

hj,2 =
∑
k

λj
koj,k

hj,2 = Hj,2 +O(|ζ±|2 · |ζ∓j |2r−2+ε
e ),∫

S2

〈hj,2,oj,k〉ehζ
∓
j

dveh
ζ
∓
j

|S2
= 0 for all k ∈ {1, 2, 3}

for Hj,2 as in (67) and we have a converging development in a neighborhood
of infinity.

(70) hj,2 = Hj,2 +H4
j,2 +

∑
m�2

H4m
j,2 , with H4m

j,2 ∝ |ζ±|2|ζ∓|2mr2−4m
e .

We then define the extension of the obstructions o4j,m for m ∈ {1, 2, 3}
as the unique solutions to the following equation as in (34):

(71)

⎧⎪⎨
⎪⎩
Pg±o

4
j,m ∈ O(go),

o4j,m = O4
j,m +O(r−2−ε

e ) for any ε > 0 at the singular point j

o4j,m ⊥ O(go)

for O4
j,m ∝ |ζ∓j |r−4

e and O4
j,m,2 ∝ |ζ±|2|ζ∓j |r−2

e the asymptotic term of the
infinitesimal variation of h2 of (70) as ehζ∓

j
is perturbed in the direction

oj,m like in Section 2.
For the first approximation term on M±,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Pg±h
4
=
∑
k

λj
ko

4
j,k +

∑
l

νlvl,

h
4
= H4(ζ∓j ) +H4

j,2 +O(|ζ±|2 · |ζ∓|2r−ε
e )

for any ε > 0 at the singular point j,

h
4 ⊥ O(go)

(72)

for H4(ζ∓j ) as in (68) with H4
j,2 determined in (70) and we have a converging

development

(73) h
4
= H4(ζ∓j ) +H4

j,2 +
∑
m�2

H4
j,2m
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in a neighborhood of each singular point j, with H4
j,2m ∝ |ζ∓j |2|ζ±|2r2m−4

e .
Let us come back to the development (67) of g± at a singular point

j ∈ S∓ and the term Hj,4. We know that Hj,4 ∝ |ζ±|2r4e and satisfies

PeHj,4 +Q
(2)
e (Hj,2, Hj,2) = 0.

Since Hj,2 ∝ |ζ±|2r2e, one would therefore expect by homogeneity to have
Hj,4 ∝ |ζ±|4r4e instead of the above Hj,4 ∝ |ζ±|2r4e. The reason is that
Hj,4 might have a harmonic part in |ζ±|2r4e while its part compensating the
quadratic terms in Hj,2 is ∝ |ζ±|4r4e. By Lemma A.5 in the Appendix, there

exists H̊j,4 such that H̊j,4 ∝ |ζ±|2r4e such that Hj,4 − H̊j,4 ∝ |ζ±|4r4e and

satisfying PeH̊j,4 = 0. The crucial thing to note is that the extension of the

harmonic part H̊j,4 on ehζ∓
j
does not induce any obstruction by [Biq16, (25),

proof of Lemma 9]. This will ensure that we can indeed “see” the second
obstruction μj,1 = 0 for all j. More precisely, there exists h̊j,4 for which we
have:

(74)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Peh
ζ
∓
j

h̊j,4 = 0

h̊j,4 = H̊j,4 +O(|ζ±|2 · |ζ∓j |2rεe), for any ε > 0∫
S2

〈̊hj,4,oj,k〉ehζ
∓
j

dveh
ζ
∓
j

|S2
= 0 for all k ∈ {1, 2, 3}.

We can therefore define the following 2-tensors on each (T ∗S2, ehζ∓
j
):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Peh
ζ
∓
j

hj,4 +Q
(2)
eh

ζ
∓
j

(hj,2, hj,2) =
∑
k

μj
koj,k

hj,4 = Hj,4 +H4
j,4 +O(|ζ±|2 · |ζ∓j |2r−2+ε

e ) for any ε > 0,∫
S2

〈hj,4,oj,k〉ehζ
∓
j

dveh
ζ
∓
j

|S2
= 0 for all k ∈ {1, 2, 3}

(75)

where H4
j,4 is defined in (73) and satisfies

PeH
4
j,4+Q

(2)
e (Hj,4, H

4(ζ∓j ))+Q
(2)
e (Hj,2, H

4
j,2)+Q

(3)
e (Hj,2, Hj,2, H

4(ζ∓j )) = 0

which ensures that (75) has a unique solution as in Section 2. The coefficients
μj
k are the same as in (23), and one has

(76)
∥∥∥∑

k

μj
koj,k

∥∥∥
L2(eh

ζ
∓
j
)
= O(|ζ±|4|ζ∓|2).
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Remark that the factor |ζ±|4 comes from the previous discussion about

extending a harmonic tensor H̊4 and the difference between H4 − H̊4 ∝
|ζ±|4r4e.

We will need to extend higher order terms of the orbifold and ALE in

order to produce a better approximation of the Einstein modulo obstructions

perturbation of gDζ,v. We have to obtain good enough controls to “see” an

obstruction of the same order as in (76).

3.3.3. Extension of the higher order terms. We then also extend the

obstructions of the orbifold g± to the Eguchi-Hanson metrics to ensure a

good approximation. Consider the development of vl ∈ O(g±) at the singu-

lar point j: vl = Vj,l,0+Vj,l,2+Vj,l,4+Vj,l,6+O(‖vl‖L2 ·|ζ±|2r8e), we define the
extensions vj,l,

0
= Vj,l,0+O(|ζ∓|2r−4+ε

e ), vj,l,
2
= Vj,l,2+O(|ζ±|2|ζ∓|2r−2+ε

e )

and vj,l,
4
= Vj,l,4 +O(|ζ±|2|ζ∓|2rεe) for all ε > 0 satisfying:

Pehζj
vj,l,

0
= 0,

where there are no obstructions by Lemma 2.7,

Pehζj
vj,l,

2
+Q

(2)
ehζj

(h2,vj,l,
0
) ∈ O(ehζ∓

j
) and

Pehζj
vj,l,

4
+Q

(2)
ehζj

(hj,2,vj,l,
2
) +Q

(2)
ehζj

(hj,4,vj,l,
0
) +Q

(3)
ehζj

(hj,2, hj,2,vj,l,
0
)

∈ O(ehζ∓
j
),

and we will take the solutions which are orthogonal to O(ehζ∓
j
) for the

L2-product on S2 induced by ehζ∓
j
.

Like in the decomposition for Hj,4, from the 2-tensor Hj,6 of (67) there

exists H̊j,6 ∝ |ζ±|2r6e for which we have Hj,6 − H̊j,6 ∝ |ζ±|4r6e, and

(77) PeH̊j,6 = 0,

Indeed, considering the quadratic 2-tensor Hj,6 satisfying

PeHj,6 +Q
(2)
e (Hj,2, Hj,4) +Q

(3)
e (Hj,2, Hj,2, Hj,2) = 0,

as |ζ±| → 0, one finds a 2-tensor H̊j,6 satisfying (77) and Hj,6 − H̊j,6 ∝
|ζ±|4r6e, since Hj,2 ∝ |ζ+|2r2e and Hj,4 ∝ |ζ+|2r4e by Lemma A.5 in the

Appendix.
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Lemma 3.15. There exists a unique 2-tensor h̊j,6 satisfying the following
identity:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Peh
ζ
∓
j

h̊j,6 −
∑
l

νlvj,l,
0
= 0

h̊j,6 = H̊j,6 + H̊4
j,6 +O(|ζ±|2 · |ζ∓j |2r−4+ε

e ) for any ε > 0∫
S2

〈̊hj,6,oj,k〉ehζ
∓
j

dveh
ζ
∓
j

|S2
= 0 for all k ∈ {1, 2, 3},

(78)

where H̊4
j,6∝|ζ±|2|ζ∓|2r2e satisfies PeH̊

4
j,6=−Q

(2)
e (H̊j,6, H

4(ζ∓j ))+
∑

l νlVj,l,0

while the restriction of the coefficients of H̊4
j,6 in a basis of the covering R4,

once restricted to S3 are L2(S3)-orthogonal to the eigenfunctions associated
to the second eigenvalue of the Laplacian on S3.

Remark 3.16. Note that H̊4
j,6 is different from H4

j,6 defined in (73). They

are both ∝ |ζ±|2|ζ∓|2r2e, and so is their difference.

Proof. Let H̊j,6 be as in (77). The term H4
j,6 in the development (73) satisfies

for all ε > 0:

(79) PeH
4
j,6 +Q

(2)
e (H̊j,6, H

4(ζ∓))−
∑
l

νlVj,l,0 = O(|ζ±|4|ζ∓|2rεe),

since we have Hj,6 − H̊j,6 ∝ |ζ±|4r6e, Hj,2 ∝ |ζ±|2r2e and Hj,4 ∝ |ζ±|2r4e.
Thanks to Lemma A.5, we therefore find H̊4

j,6 with H̊4
j,6 ∝ |ζ±|2|ζ∓|2r2e

satisfying

(80) PeH̊
4
j,6 +Q

(2)
e (H̊j,6, H

4(ζ∓))−
∑
l

νlVj,l,0 = 0.

The 2-tensor H̊4
j,6 is defined by (80) up to the harmonic quadratic 2-tensors

on R4/Z2, and we choose the unique solution such that the restriction of the
coefficients of H̊4

j,6 in a basis of the covering R4, once restricted to S3 are

L2(S3)-orthogonal to the eigenfunctions associated to the second eigenvalue
of the Laplacian on S3.

Without loss of generality by rescaling and by acting on Hj,6, H̊j,6 and

Vj,0 by an element of O(4)\SO(4), we will study the existence of h̊j,6 and
the vanishing of the associated obstructions on eh, that is, as if we had
ζ±j = (1, 0, 0)+.



952 Tristan Ozuch

Remark 3.17. This may change the orientation and in particular makes the
curvature of H̊j,6 become selfdual. This will let us use the more convenient
usual Eguchi-Hanson metric in our computations.

For a smooth cut-off function χ supported at the infinity of eh we have
Peh(χ(H̊j,6+H̊4

j,6))−
∑

l νlvj,l,
0
= O(|ζ±|2r−4

e ). By [Biq13, Proposition 2.1],

one can find a smooth 2-tensor h′ decaying at infinity such that

Peh(χ(H̊j,6 + H̊4
j,6) + h′)−

∑
l

νlvj,l,
0
∈ O(eh), with

∥∥Peh

(
χ(H̊j,6 + H̊4

j,6) + h′
)
−
∑
l

νlvj,l,
0

∥∥
r−2
eh Cα

β (eh)
� C|ζ±|2

for some C > 0 depending on the metric eh only.

There now remains to prove that the obstruction actually vanishes. For
this, again by [Biq13, Proposition 2.1], we need to prove that for all k ∈
{1, 2, 3} ∫

T ∗S2

〈
Peh(χ(H̊j,6 + H̊4

j,6))−
∑
l

νlvj,l,
0
, ok

〉
eh
dveh = 0.

Let us use the formalism of [Biq16] in order to show this. Let us denote Ω
the closed anti-selfdual 2-form generating of the L2-cohomology of eh as in
[Biq13, (5)]. We will need its asymptotics at infinity:

(81)
Ω =

θ−1
r4

−
θ−1 + 1

2ω
+
1

r8
+O(r−12

e )

= d
(
dC
( 1

r2

)
+

α1

4r6
+O(r−11

e )
)
,

where dC is the operator defined as dC = 1
2iπ (∂ − ∂) in complex geometry.

As in the first Section, we use the identification of traceless 2-tensors
and (commuting) compositions of a selfdual and an anti-selfdual 2-form, see
Remark 1.13. We will use this on both the flat metric e for which a basis
of Ω+(e) is (ω+

k )k∈{1,2,3} and for the Eguchi-Hanson metric, we will use the

basis (ω̃+
k )k∈{1,2,3} of Ω+(eh) satisfying ω̃+

k = ω+
k + O(r−4

e ) at infinity. We
can therefore rewrite

• H̊j,6 =
∑

k φ̃
k
j,6 ◦ ω̃+

k for φ̃k
j,6 ∈ Ω−(eh), as well as H̊j,6 =

∑
k φ

k
j,6 ◦ ω+

k

for φk
j,6 ∈ Ω−(e),
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• H̊4
j,6 =

∑
k φ̃

4,k
j,6 ◦ ω̃+

k for φ̃4,k
j,6 ∈ Ω−(eh), as well as H̊4

j,6 =
∑

k φ
4,k
j,6 ◦ω+

k

for φ4,k
j,6 ∈ Ω−(e),

•
∑

l νlvj,l,
0
=
∑

k Ṽ
k
j,0 ◦ ω̃+

k , for Ṽ k
j,0 ∈ Ω−(eh) as well as

∑
l νlVj,l,0 =∑

k V
k
j,0 ◦ ω+

k , for V
k
j,0 ∈ Ω−(e),

• ok = Ω ◦ ω̃+
k see [Biq16],

• recall also that H4 = − θ−
1 ◦ω+

1

2r4e
.

This lets us rewrite several of the above identities:

• the equality (77) becomes

(82) (d−d
∗)eφ

k
j,6 = 0, or equivalently (dd∗)eφ

k
j,6 ∈ Ω+(e)

• the equality (80) becomes:

(83) (d−d
∗)eh(φ

k
j,6 + φ4,k

j,6 )− Ṽ k
0 = O(r−4

e )

• a direct extension of [Biq16, Lemme 3] to the computation of the bi-
linear terms of the selfdual part of the Riemannian curvature. Let
φ :=

∑
k φk ◦ω+

k and ψ :=
∑

k ψk ◦ω+
k be infinitesimal Ricci-flat defor-

mations of e which satisfy Be(φ) = Be(ψ) = 0. Assume additionally
that treφ = 0 and d∗dφk = 0, then the second variation of the selfdual
part of the curvature at e in the directions φ and ψ, is:

R
+,(2)
e (φ, ψ) = −1

2
[ae(φ), ae(ψ)]+,

where ae(φ) and ae(ψ) are respectively the first variations of the
connection on the bundle of selfdual 2-forms at e in the directions
φ and ψ. In the particular case of φ = H4 and ψ = H̊j,6, since

ae(H
4) = − ∗ d

( θ−
1

2r4e

)
= 0, we find

(84) R
+,(2)
e (H̊j,6, H

4) = 0.

• the equalities (80) and (84) imply that in a neighborhood of infinity
we have

dd∗eh
(
φ̃k
j,6 + φ̃4,k

j,6

)
− Ṽ k

0 = (d+d
∗)eφ

k
j,6 + (d+d

∗)eφ
4,k
j,6 +O(r−4

e )

= −deR
+(H̊j,6)− deR

+(H̊4
j,6) +O(r−4

e ).

(85)
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Following the integration by parts of the proof of [Biq16, Lemma 7],

since Ω ∈ Ω−(eh), by (81) and by (85), we have

1

‖ok‖L2

∫
T ∗S2

〈
Peh(χ(H̊j,6 + H̊4

j,6))−
∑
l

νlvj,l,
0
, ok

〉
eh
dveh

= − 1

‖Ω‖L2

∫
T ∗S2

Ω ∧
(
dd∗eh

(
φ̃k
j,6 + φ̃4,k

j,6

)
− Ṽ k

0

)
= − 1

‖Ω‖L2

∫
T ∗S2

d
(
dC
( 1

r2e

)
+

α1

4r6e
+O(r−11

e )
)
∧
(
dd∗eh

(
φ̃k
j,6 + φ̃4,k

j,6

)
− Ṽ k

0

)

= − 1

‖Ω‖L2

lim
r→+∞

∫
{re=r}

(
dC
( 1

r2e

)
+

α1

4r6e

)
∧
(
(d+d

∗)eφ
k
j,6 + (d+d

∗)eφ
4,k
j,6

)
= +

1

‖Ω‖L2

lim
r→+∞

r4
∫
{re=1}

dC
( 1

r2e

)
∧ deR

+(H̊j,6)(ω
+
k )

+
1

‖Ω‖L2

lim
r→+∞

∫
{re=1}

α1

4r6e
∧ deR

+(H̊j,6)(ω
+
k )

+
1

‖Ω‖L2

lim
r→+∞

∫
{re=1}

dC
( 1

r2e

)
∧ deR

+(H̊4
j,6)(ω

+
k ).

(86)

Now, the coefficients of deR
+(H̊j,6)(ω

+
k ) are harmonic functions in r4e

and their restrictions to a sphere {re = r} = r · S3/Z2 are eigenfunctions of

the Laplacian associated to the second eigenvalue on S3/Z2 (fourth eigen-

value on S3). They are therefore L2(S3/Z2)-orthogonal to the coefficients of

the restriction of dC
(

1
r2e

)
or α1

4r6e
to S3/Z2.

Similarly, by the two formulas of [Biq13, Proposition 2.1] and [Biq16,

Lemme 7], we know that
∫
{re=r} d

C
(

1
r2e

)
∧deR

+(H̊4
j,6)(ω

+
k ) is proportional to∫

S3/Z2

〈
H̊4

j,6, O
4
k

〉
dvS3/Z2

, where O4
k is explicited in (14) and once restricted

to a sphere {re = r}, O4
k has eigenfunctions of the Laplacian on S3/Z2

associated to the first eigenvalue as coefficients. By construction, H̊4
j,6 is

orthogonal to this eigenspace. The obstructions therefore vanish.

We then extend the next term of the development of om, form ∈ {1, 2, 3}
to the orbifold. Recall that oj,m = O4

j,m + O8
j,m +O(|ζ|5r−12

e ), with O4
j,m ∝

|ζ∓|r−4
e and O8

j,m ∝ |ζ∓|3r−8
e . We can therefore find by the general method
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of [Biq13, Section 10] o8j,m satisfying

⎧⎪⎪⎨
⎪⎪⎩
Pg±o

8
j,m +Q

(2)
g±(o

4
j,m,o4j,m) +Q

(2)
g±(o

4
j,m, h

4
) ∈ O(g±)

o8j,m = O8
m(ζ∓j ) +O(|ζ±|2|ζ∓|4r−6−ε

e ) for any ε > 0 at the point j

o8j,k ⊥ O(go).

(87)

We then need to come back to the orbifold in order to find:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Pg±h
8
+Q

(2)
g±(h

4
, h

4
)−

∑
k

λj
ko

8
j,m ∈ O(g±)

h
8
= H8(ζ∓j ) +H8

j,2 +H8
j,4 + H̊8

j,6 + H̊8
j,8 +O(|ζ±|2|ζ∓|4r−2−ε

e ),

∀ε > 0 at j

h
8 ⊥ O(go)

(88)

with H8(ζ∓j ), H8
2 , H

8
4 and H̊8

6 from (67), (70), and the asymptotic terms

of (75) and (78) and H̊8
j,8 ∝ |ζ±|2|ζ∓|4. We moreover have a converging

development

h
8
= H8(ζ∓j ) +H8

j,2 +H8
j,4 + H̊8

j,6 + H̊8
j,8 +

∑
m�5

H8
j,2m

with H8
j,2m ∝ |ζ±|2|ζ∓|4r2m−8

e in a neighborhood of j. We moreover have

the control

(89)
∥∥Pg±h

8
+Q

(2)
g±(h

4
, h

4
)−

∑
k

λj
ko

8
j,m

∥∥
L2(g±)

= O(|ζ±|2 · |ζ∓j |4)

which will be sufficient on the orbifold.

As for H̊j,6 defined in (77) from Hj,6, one finds H̊j,8 from Hj,8 of (67).

More precisely, we have Hj,8 − H̊j,8 ∝ |ζ±|4r8e where H̊j,8 ∝ |ζ±|2r8e satisfies

PeH̊j,8 =
∑

l νlVj,l,2.

As in Lemma 3.15, we prove that one can extend H̊j,8 on ehζ∓
j
without

obstruction.

Lemma 3.18. There exists a unique 2-tensor h̊j,8 satisfying the following
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identity:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Peh
ζ
∓
j

h̊j,8 −
∑
l

νlvj,l,
2
= 0

h̊j,8 = H̊j,8 + H̊4
j,8 + H̊8

j,8 +O(|ζ±|2 · |ζ∓j |2r−6+ε
e ) for any ε > 0∫

S2

〈̊hj,8,oj,k〉ehζ
∓
j

dveh
ζ
∓
j

|S2
= 0 for all k ∈ {1, 2, 3},

(90)

where H̊4
j,8 ∝ |ζ±|2|ζ∓|2r4e satisfies PeH̊

4
j,8 = −Q

(2)
e (H̊j,8, H

4(ζ∓j )) +∑
l νlVj,l,2, and where H̊8

j,8 ∝ |ζ±|2|ζ∓|4 satisfies

PeH̊
8
j,8 = −Q

(2)
e (H̊j,8, H

8(ζ∓j ))−Q
(2)
e (H̊j,8, H

4(ζ∓j ), H4(ζ∓j )) +
∑
l

νlV
4
j,l,2,

for V 4
j,l,2 defined by vj,l,

2
= Vj,l,2 + V 4

j,l,2 + o(|ζ±|2|ζ∓|4r−6
e )

Proof. The proof of the existence of h̊j,8 satisfying

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Peh
ζ
∓
j

h̊j,8 −
∑
l

νlvj,l,
2
∈ O(eh)

h̊j,8 = H̊j,8 + H̊4
j,8 + H̊8

j,8 +O(|ζ±|2 · |ζ∓j |6r−6+ε
e ) for any ε > 0∫

S2

〈̊hj,8,oj,k〉ehζ
∓
j

dveh
ζ
∓
j

|S2
= 0 for all k ∈ {1, 2, 3},

(91)

is very similar to that of h̊j,6 of Lemma 3.15 once H̊4
j,8 and H̊8

j,8 are identified

like H̊4
j,6 is in Lemma 3.15. We will therefore omit the proof.

Let us focus on showing that the obstructions vanish. Again, after rescal-
ing and acting by a rotation in O(4)\SO(4), we will work on the usual metric
eh. Mimicking the computation of (86), and dropping the terms not con-
tributing to the boundary term, we find

〈
Peh

(
χ(H̊j,8 + H̊4

j,8 + H̊8
j,8)
)
−
∑
l

νlvj,l,
2
, ok

〉(92)

= lim
r→+∞

(∫
{re=r}

(
dC
( 1

r2e

)
+

α1

4r6e

)
∧ deR

+(H̊j,8)(ω
+
k )
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+

∫
{re=r}

dC
( 1

r2e

)
∧ deR

+(H̊4
j,8)(ω

+
k )

)

= lim
r→+∞

(
r6
∫
{re=1}

dC
( 1

r2e

)
∧ deR

+(H̊j,8)(ω
+
k )

+ r2
∫
{re=1}

α1

4r6e
∧ deR

+(H̊j,8)(ω
+
k )

+ r2
∫
{re=1}

dC
( 1

r2e

)
∧ deR

+(H̊4
j,8)(ω

+
k )

)

because of the homogeneity of each term:

• dC
(

1
r2e

)
∝ r−3

e ,

• α1

4r6e
∝ r−7

e

• deR
+(H̊j,8)(ω

+
k ) ∝ |ζ±|2r6e

• deR
+(H̊4

j,8)(ω
+
k ) ∝ |ζ±|2|ζ∓|2r2e.

We see that the obstruction either vanishes or is infinite. However〈
Peh

(
χ(H̊j,8 + H̊4

j,8 + H̊8
j,8)
)
−
∑

l νlvj,l,
2
,ok
〉

is finite because both

Peh

(
χ(H̊j,8+H̊4

j,8+H̊8
j,8)
)
−
∑

l νlvj,l,
2
and ok are in L2(eh). The obstruction

therefore necessarily vanishes.

Similarly, there exists h̊j,10 satisfying: for H̊j,10 the harmonic part of

Hj,10 from (67) and H̊4
j,10 and H̊8

j,10 associated from the development of h
4

of (72) and h
8
of (88):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Peh
ζ
∓
j

h̊j,10 −
∑
l

νlvj,l
4
∈ O(ehζ∓

j
)

h̊j,10 = H̊j,10 + H̊4
j,10 + H̊8

j,10 +O(|ζ±|2 · |ζ∓j |6r−2+ε
e ) for any ε > 0∫

S2

〈̊hj,10,oj,k〉ehζ
∓
j

dveh
ζ
∓
j

|S2
= 0 for all k ∈ {1, 2, 3},

(93)

with ‖Peh
ζ
∓
j

h̊j,10 −
∑
l

νlvj,l
4
‖L2(eh

ζ
∓
j
) = O(|ζ±|2|ζ∓|5).(94)

Remark 3.19. The obstruction may not vanish here, but it is small enough
for our present purpose: it is better than μ1 ∼ |ζ±|4|ζ∓|2 when ζ± ∼ ζ∓ as
for transverse or nondegenerate desingularizations.
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Let us define

eh
[10]

ζ∓
j

:= ehζ∓
j
+ hj,2 + hj,4 +

5∑
m=3

h̊j,2m

which is a metric for re � 1, and

g
[8]
± := g± + h

4
+ h

8

which is a metric for |ζj |
1

2 � re. On the region where |ζj |
1

2 � re � 1, we
have

(95) rke

∣∣∣∇k
(
eh

[10]

ζ∓
j

− g
[8]
±
)∣∣∣ � C

(
|ζ±|2r12e + |ζ∓j |6r−12

e + |ζ±|2|ζ∓j |2r2
)
,

which is minimized at re = |ζ±|− 1

12 · |ζ∓j | 14 , in a neighborhood of the singular
point j.

Proof of Proposition 3.14. We define an approximate desingularization gAL,ζ

as the gluing of eh
[10]

ζ∓
j

to g
[8]
± at the singular point j and with a gluing scale at

|ζ±|− 1

12 · |ζ∓j | 14 < re < 2|ζ±|− 1

12 · |ζ∓j | 14 . As in Definition 2.16, we will denote

Õ(gAL,ζ) the space of the infinitesimal deformations of (L, ζ±i , ζ∓j ) �→ gAL,ζ .

Remark 3.20. The space Õ(gAL,ζ) is different from the space Õ(gD) of

[Ozu19b] but yields better estimates. The results of [Ozu19b] with Õ(gD)
therefore hold with Õ(gAL,ζ).

Denote oAL,ζ as the element of Õ(gAL,ζ) associated to the same variations of

L and the ζ±i as
∑

l νlvl(L, ζ) ∈ O(g±) defined in (72), and to the variations

of each ζ∓j associated to
∑

k(λ
j
k(L, ζ)+μj

k(L, ζ))oj,k. From the construction

of the eh
[10]

ζ∓
j

and g
[8]
± we find:

1. on the region where gAL,ζ = ehζ∓
j
+ hj,2 + hj,4 +

∑5
m=3 h̊j,2m, we have:

(Ric−Λ)(gAL,ζ) =
∑
k

(
λj
k + μj

k +O(|ζ±|2|ζ∓|5)
)
oj,k

+
∑
l

(νl +O(|ζ±|2|ζ∓|4))(vj,l,
0
+ vj,l,

2
+ vj,l,

4
)

+O(|ζ±|4r4e + |ζ±|2r10e ),
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2. on the region where gAL,ζ = g± + h
4
+ h

8
, we have:

(Ric−Λ)(gAL,ζ) =
∑
k

(λj
k + μj

k +O(|ζ±|2|ζ∓|5)
)
(o4j,k + o8j,k)

+
∑
l

(νl +O(|ζ±|2|ζ∓|4))vl

+O(|ζ∓|6r−14
e )

3. on the gluing region at j, we find:

(Ric−Λ)(gAL,ζ) =
∑
k

(λj
k + μj

k +O(|ζ±|2|ζ∓|5)
)
oj,k

+
∑
l

(νl +O(|ζ±|2|ζ∓|4))vl

+O(|ζ±|4r4e + |ζ±|2r10e + |ζ∓|6r−14
e ).

Let us finally mention the controls on the elements of Õ(gAL,ζ) which let us

conclude. Recall that for ζj,(k) ∈ Ω∓, we have oj,k = ∂ζj,(k)
ehζ∓

j
, and consider

vl one of the elements of the orthonormal basis of O(go). On the region

where gAL,ζ = eh
[10]

ζ∓
j

, where rD < |ζ±|− 1

12 · |ζ∓j | 14 : r2D
∣∣∂ζj,(k)

gAL,ζ − oj,k
∣∣
eh

ζ
∓
j

�

C|ζ±|2|ζ∓|2r−2
D , on the region where gAL,ζ = g

[8]
± , where rD > 2|ζ±|− 1

12 · |ζ∓j | 14

r2D
∣∣∂ζj,(k)

gAL,ζ −
(
o4j,k + o8j,k

)∣∣
g±

< C
(
|ζ±|6r−12

D + |ζ±|2|ζ∓|2r−2
D

)
.

We have similar controls between ∂vl
gAL,ζ and vl where gAL,ζ = g

[8]
± and

between ∂vl
gAL,ζ and vj,l,

0
+ vj,l,

2
+ vj,l,

4
where gAL,ζ = eh

[10]

ζ∓
j

.

As a consequence, using the fact that on the gluing region where
|ζ±|− 1

12 |ζ∓j | 14 � rD � |ζ±|− 1

12 · |ζ∓j | 14 , the difference between the metrics
is controlled by (95) we globally find

‖ΦgA
L,ζ

(gAL,ζ)− oAL,ζ‖r−2
D Cα

β
� C|ζ±|1+

β

12 |ζ∓|3−
β

4 .

which proves the statement of Proposition 3.14.

3.3.4. Controls on the approximate Einstein modulo obstructions
metric. By [Ozu19b], we can always solve the Einstein equation modulo
obstructions.
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Definition 3.21 (Total Einsteinmodulo obstructions desingularization ĝL,ζ).
For L ∈ GL(4,R), and ζ small enough depending on L (as determined in
[Ozu19b]), we define ĝL,ζ as the unique metric satisfying for some ε = ε(L) >
0 independent on ζ determined in [Ozu19b]:

• ‖ĝL,ζ − gAL,ζ‖C2,α
β,∗ (g

A
L,ζ)

< ε,

• ΦgA
L,ζ

(ĝL,ζ) ∈ Õ(gAL,ζ), and

• ĝL,ζ − gAL,ζ is L2(gAL,ζ)-orthogonal to Õ(gAL,ζ).

First, we have a good control on the projection on Õ(gAL,ζ). The proof
is analogous to the proof of Lemma 2.18 above so we omit it, compare also
with [Biq13, Lemma 13.2].

Lemma 3.22. Let h be a symmetric 2-tensor on M , and let oA ∈ Õ(gAL,ζ),
then we have the following estimate, there exists C > 0 such that∣∣∣∣〈PgD

L,ζ
h,oA

〉
L2(gD

L,ζ)

∣∣∣∣ � C|ζ±|2|ζ∓|1−
β

2 ‖h‖C0
β,∗

‖oA‖L2 .

Replacing the control [Ozu20t, (4.46), Lemma 4.46] by the above Lemma
3.22 in the proof of [Ozu20t, Proposition 5.1], we get the following statement
as a direct consequence.

Lemma 3.23. There exists ε > 0 and C > 0 such that we have

(96) ‖ĝL,ζ − gAL,ζ‖C2,α
β,∗ (g

A
L,ζ)

� C
∥∥ΦgA

L,ζ
(gAL,ζ)− oAL,ζ

∥∥
r−2
D Cα

β (gA
L,ζ)

,

and moreover if the metric (M, ĝL,ζ) is an Einstein metric, then, we have

‖oAL,ζ‖L2(gA
L,ζ)

� C
(
‖ΦgA

L,ζ
(gAL,ζ)− oAL,ζ‖r−2

D Cα
β (gA

L,ζ)
+ |ζ∓|1−

β

2 |ζ±|2
)

× ‖ΦgA
L,ζ

(gAL,ζ)− oAL,ζ‖r−2
D Cα

β (gA
L,ζ)

.(97)

Together with the control of Proposition 3.14, Lemma 3.23 implies both
a control of the metric and the obstructions.

Remark 3.24. For small ζ, we can essentially treat the obstructions com-
ing from variations of different ζ±i , ζ∓j or L as orthogonal to each other.
Indeed, for the different infinitesimal variations, we have the following con-
trols showing where each of the infinitesimal deformation has most of its
mass:

• |∂z∓
j
gALk,ζk

|gA
Lk,ζk

� C|ζ∓j |‖∂z∓
j
gALk,ζk

‖L2

(
|ζ∓j | 12 + dgA

Lk,ζk

(j, .)
)−4
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• |∂z±
i
gALk,ζk

|gA
Lk,ζk

� C|ζ±i |‖∂z±
i
gALk,ζk

‖L2

(
|ζ±i | 12 + dgA

Lk,ζk

(i, .)
)−4

• |∂KgALk,ζk
|gA

Lk,ζk

� C‖∂KgALk,ζk
‖L2.

Estimating the L2-product of two of the above infinitesimal, we see that as
|ζ| → 0, they become arbitrarily close to being orthogonal.

Corollary 3.25. We have the following controls:

• ‖ĝL,ζ − gAL,ζ‖C2,α
β,∗ (g

A
L,ζ)

� C|ζ±|1+ β

12 |ζ∓|3− β

4 ,

• and ‖oAL,ζ‖L2(gA
L,ζ)

� C|ζ±|3+ β

12 |ζ∓|4− 3β

4 which rewrites as, for all j ∈
S∓ and k ∈ {1, 2, 3}, for any 0 < β < 1 (chosen small enough)

(98) λj
k(L, ζ) + μj

k(L, ζ) = O(|ζ±|2|ζ∓|5 + |ζ±|3+
β

12 |ζ∓|4−
3β

4 ),

with |ζ±|2|ζ∓|5 from (94), and for all l,

(99) νl(L, ζ) = O(|ζ±|2|ζ∓|4 + |ζ±|3+
β

12 |ζ∓|4−
3β

4 ),

where the additional error in |ζ±|2|ζ∓|4 comes from (89).

Remark 3.26. Recall that a priori, we only had λj
k(L, ζ) = O(|ζ±|2|ζ∓|),

μj
k(L, ζ) = O(|ζ±|4|ζ∓|2) and νl = O(|ζ±|2|ζ∓|2).

3.4. Obstruction to the total desingularization

We will now prove that there are obstructions to the Gromov-Hausdorff
desingularization of T4/Z2 by Einstein metrics.

Proposition 3.27. Assume that there exists a sequence of Einstein modulo
obstructions metrics (ĝLn,ζn = gLn,ζn)n∈N which are actually Einstein with
ζn → 0 and Ln → L∞ where det(L∞) > 0. Up to taking a subsequence, we

consider the following limits:
ζ∓
n,j

|ζ∓
n | → ζ∓∞,j,

ζ±
n,i

|ζ±
n | → ζ±∞,i and

ζ∓
n,j

|ζ∓
n,j |

→ φ∓
∞,j, as

well as the limit

(100) RL∞,ζ±
∞
:= lim

n→∞
1

|ζ±n |2
Rg±,n

= lim
n→∞

1

|ζ±n |2
RgA

±,n
.

Then,

1. one always has

(101) RL∞,ζ±
∞
(j)(φ∓

∞,j) = 0,
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for all the deformations (0, z±) of (L∞, ζ±∞), we have

(102)
∑
j∈S±

〈
∂(0,z±)RL∞,ζ±

∞
(j)(ζ∓∞,j), ζ

∓
∞,j

〉
= 0,

and for all the deformations (K, 0) of (L∞, ζ±∞), and (vl)l an orthonor-

mal basis of O(g±) and νl(L∞, ζ∞) the obstructions of (72), we have

(103)
∑
l

〈∂(K,0)g±,vl〉L2(g±)νl(L∞, ζ∞) = 0.

2. If we assume that the sequence (gLn,ζn)n∈N is a nondegenerate or sta-

ble sequence of Einstein desingularizations, then, one moreover has:

(104) RL∞,ζ±
∞
(j) = 0 at every j ∈ S∓.

Remark 3.28. The assumption det(L∞) > 0 for L∞ ∈ GL(4,R) ensures

that there is no collapsing and a bounded diameter in our degeneration and

therefore that we stay in the context of [And89, BKN89, Ozu19a, Ozu19b].

Remark 3.29. When (101) is satisfied, from (41), we have the following

rewriting of the obstruction (103):

(105)
∑
j∈S±

〈
∂(K,0)RL∞,ζ±

∞
(j)(ζ∓∞,j), ζ

∓
∞,j

〉
= 0.

Proof of Proposition 3.27. Let us assume that there exists a sequence of

Einstein modulo obstructions (ĝLn,ζn = gLn,ζn)n∈N which are Einstein with

ζn → 0 and Ln → L∞ = Id. By compactness, up to taking a subsequence,

for all j ∈ S∓ and all i ∈ S±, we have
ζ∓
n,j

|ζ∓
n,j |

→ ζ∓∞,j ,
ζ±
n,i

|ζ±
n | → ζ±∞,i and

ζ∓
n,j

|ζ∓
n,j |

→ φ∓
∞,j as n → +∞. By (98) and (99), for any 0 < β < 1 (chosen

small enough), we have

(106) λj
k(Ln, ζn) + μj

k(Ln, ζn) = O(|ζ±n |2|ζ∓n |5 + |ζ±n |3+
β

12 |ζ∓n |4−
3β

4 ),

and for all l,

(107) νl(Ln, ζn) = O(|ζ±n |2|ζ∓n |4 + |ζ±n |3+
β

12 |ζ∓n |4−
3β

4 ),
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We directly see from (106) that

lim
n→∞

λj
k(Ln, ζn)

|ζ±n |2|ζ∓n |
= 0

because μj
k(Ln, ζn) = O(|ζ±n |4|ζ∓n |2) which proves (101) by the value the

obstruction (24) and the control of the curvature of Proposition 3.6.
Similarly, from (107) we find

lim
n→∞

νl(Ln, ζn)

|ζ±n |2|ζ∓n |2
= 0

which proves (103). In order to prove (102), we note that the constant part
(the limit at the singular point) of ∂(0,z±)g± scales like |ζ±n |2. Thanks to
the expression (36) of the obstruction, this tells us that the obstruction
induced by the constant part (the limit at the singular point) scales like
|ζ±n |4|ζ∓n |2 because we have H4

2 ∝ |ζ±n |2|ζ∓n |2r−2
e in the development (70). In

the limit, we are left with the obstruction coming from the nonconstant part
of ∂(0,z±)g± whose interpretation in (41) yields the obstruction (102) using
the control of the variations of the curvature (66).
We conclude exactly as in the proof of Theorem 0.2 by using (106) as a
replacement for (51). More precisely, if we assume towards a contradiction

that the obstruction (104) is not satisfied, that is limn→∞
μj,1(Ln,ζn)

|ζ±
n |4|ζ∓

n |2 = 0 is

not satisfied, then since we have |Rg± | ∼ |ζ±n |2, the estimates (55) and (56)
become

λj
1(L∞, φn,j) = O(|ζ±n |2|φn,j − φ∞,j |2), and∣∣(λj

2(L∞, φn,j), λ
j
3(L∞, φn,j)

)∣∣ � c|ζ±n |2|φn,j − φ∞,j |, for some c > 0.

As in the proof of Theorem 0.2, we find a contradiction using (106) for
k = 2, 3 and then k = 1. Similarly, as in the proof of Theorem 0.2 one
can use the eigenvalue estimate of [Biq17] to deal with the stable situation
thanks to the estimate of Corollary 3.25.

Remark 3.30. Allowing some Eguchi-Hanson metrics to be glued at negli-
gible scale might not preserve the obstruction R± = 0 at the associated point
and might reduce the number of obstructions by 2 per such point. Indeed,
R± is in the 5-dimensional space of traceless symmetric 2-tensors and the
first obstructions λk = 0, give 3 independent equations. But we will see that
the scale being negligible means that we lose the 3 degrees of freedom. These
situations should therefore be more obstructed even without the obstruction
R± = 0.



964 Tristan Ozuch

4. Explicit obstructions to the desingularization of T4/Z2

Let us now make the obstructions of Proposition 3.27 more explicit as the
vanishing of polynomial functions of the ζ±, whose coefficients depend on
the flat metric gL alone.

Recall from (13) that the curvature of the Eguchi-Hanson metric ehζ+

and by their first asymptotic term ζ+◦ρ(ζ)−
r4 has the form 12πtr

ρ(ζ)−⊗ρ(ζ)−

r6

where ρ(ζ)− is defined in Definition 1.14.

Note 4.1. During all of this section, we will often identify R3 and Ω+ or Ω−

thanks to the bases (ω±
i )i∈{1,2,3}. This will make it more convenient to find

identities relating different obstructions in Lemma 4.6 for instance. That is
why we are defining the selfdual or anti-selfdual curvature-like quantities bx
and BL

x on R3. We will also use the identification R3 ⊗ R3 ≈ Ω± ⊗ Ω± ≈
(Ω±)∗ ⊗ Ω± ≈ End(Ω±).

For x ∈ R4 and ζ, ζ ′ ∈ R3\{0}, we define bx(ζ, ζ
′) := 12ρx(ζ)−⊗ρx(ζ′)−

|x|6 ,

where ρx for x ∈ R4 is the rotation explicited in (8). Note that ρ−x = (ρx)
t =

(ρx)
−1 = ρx. For any z, z′ ∈ R3, we have

(108)
〈
bx(ζ, ζ

′)z, z′
〉
:= 12

〈ρx(ζ), z〉〈ρx(ζ ′), z′〉
|x|6 .

We also define the following bilinear form with values in R3 ⊗ R3:

(109) BL
x (ζ, ζ

′) := πtr
∑
a∈Z4

bL(x−2a)(ζ, ζ
′)

for x ∈ R4 and L a 4× 4 matrix, where πtr is the projection on the traceless
part.

Lemma 4.2. Let (M±, gA±) be one of the partial desingularizations of T4/Z2

of Definition (3.5). Then, for any j0 ∈ S− and any ζ ∈ R3 and the associated
ζ− ∈ Ω− (thanks to the basis (ω−

i )i∈{1,2,3}), we have

(110) R−
gA
+
(j0)ζ

− =
∑
i∈S+

(
BL

j0−i(ζi, ζi)ζ
)−

where again BL
j0−i(ζi, ζi)ζ ∈ R3 and

(
BL

j0−i(ζi, ζi)ζ
)− ∈ Ω−.

Proof. Away from the glued Eguchi-Hanson metrics, gA+ equals

gL +
∑

i∈S+
h
4
ζ+
i

where the h
4
ζ+
i

are explicited in (62). By Remark 3.4 and
the formula (13), the induced curvature is therefore given by (110).
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We have the following properties for BL
x (ζ, ζ

′) for any x ∈ R4 and
ζ, ζ ′ ∈ R3

1. BL
x (ζ, ζ

′) = BL
x (ζ

′, ζ),
2. BL

x (ζ, ζ
′) = BL

−x(ζ, ζ
′),

3. BL
x+a(ζ, ζ

′) = BL
x (ζ, ζ

′) for a ∈ Z4,

Corollary 4.3. The obstruction (101) rewrites for all j0 ∈ S−,

(111)
∑
i∈S+

〈
BL

j0−i(ζi, ζi)ζj0 , ζj0
〉
= 0.

and from (102) for j0 ∈ S− and an infinitesimal deformation of ζj0 in the
direction zj0 :

(112)
∑
i∈S+

〈
BL

j0−i(zj0 , ζj0)ζi, ζi
〉
= 0.

For the value of the obstructions (105), against a deformation K of the
matrix L, denoting ∂KBL

j−i the linearization of L �→ BL
j−i for i ∈ S+ and

j ∈ S− at L and in the direction K, we have

(113)
∑
i∈S+

∑
j∈S−

〈
∂KBL

j−i(ζi, ζi)ζj , ζj
〉
= 0.

Finally, the obstruction (104) rewrites for any j0 ∈ S−:

(114)
∑
i∈S+

BL
j0−i(ζi, ζi) = 0

The analogous obstructions hold for the other orientation.

Remark 4.4. The obstruction identified in [BK17] corresponds to the non-
vanishing of the one obstruction∑

i∈S+

∑
j∈S−

〈
BL

j−i(ζi, ζi)ζj , ζj
〉
= 0

(which is clearly implied by (111)), in the particular situation where

• L = Id,
• the sets S± follow a chessboard pattern (see [BK17] or Section 4.3),
• for all i ∈ S+, j ∈ S−, ζi = (1, 0, 0) and ζj = (1, 0, 0).
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Remark 4.5. If the Eguchi-Hanson metrics are glued at comparable scales,
then:

• the obstructions (111) correspond to 3|S+| equations for 3|S−|+ 9 pa-
rameters given by the |S−| vectors ζ−j and the matrix L,

• the obstructions (114) correspond to 5|S+| equations since R is sym-
metric trace-free for 3|S−|+9 parameters given by the |S−| vectors ζ−j
and the matrix L,

• the obstructions (113) are 9 equations, for the different deformations
of the torus, for 3|S+|+ 3|S−|+ 9 = 57 parameters,

• the obstructions (112) are 3|S−| equations for 3|S+|+ 9 parameters.

Since we have analogous obstructions in the other orientation, we see that
we a priori have many more obstructions to satisfy than parameters. We
will reduce the number of these equations in the next section.

4.1. Equivalent obstructions

Let us show that many of the above equations are actually equivalent. Let us
therefore just assume that we have the obstructions (114) at every singular
point in both orientations and prove that some of the other obstructions are
already satisfied.

4.1.1. Against the deformation of the Eguchi-Hanson metrics.

Lemma 4.6. We have the following equality for all i ∈ S+, j ∈ S−, ζ ∈
(R3)|S+| × (R3)|S−| and z ∈ R3,〈

BL
j−i(ζi, z)ζj , ζj

〉
=
〈
BL

j−i(ζj , ζj)ζi, z
〉
,

and therefore the above obstruction (114) at all singular points in the oppo-
site orientation implies that the obstructions (112) vanish.

Remark 4.7. This shows that the first obstructions coming from the defor-
mations of the Eguchi-Hanson metrics are seen whether we first desingular-
ize the positive ones or the negative ones.

Proof. Given the expression of BL
j−i of (109), we will study for a ∈ Z4 a

term of the above expressions. Because of the symmetries of B, we can
simply study 〈πtrbx(ζi, z)ζj , ζj〉. We will first consider z proportional to ζi
to obtain 〈

πtrbx(ζi, ζi)ζj , ζj
〉
=
〈(
12ρx(ζi)⊗ ρx(ζi)− 4|ζi|2I3

)
ζj , ζj

〉
(115)
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= 12
〈
ρx(ζi), ζj

〉2 − 4|ζi|2|ζj |2(116)

= 12
〈(
ρx(ζj)⊗ ρx(ζj)− 4|ζj |2I3

)
ζi, ζi

〉
(117)

=
〈
πtrbx(ζj , ζj)ζi, ζi

〉
,(118)

where we used the fact that ρ−x = (ρx)
T = (ρx)

−1 = ρx. For z ⊥ ζi,

〈πtrbx(ζi, z)ζj , ζj〉 =
〈(
12ρx(ζi)⊗ ρx(z)

)
ζj , ζj

〉
(119)

= 12
〈
ρx(ζi), ζj

〉〈
ρx(z), ζj

〉
(120)

= 12
〈(
ρx(ζj)⊗ ρx(ζj)− 4|ζj |2I3

)
ζi, z

〉
(121)

= 〈πtrbx(ζj , ζj)ζi, z〉.(122)

This proves the statement.

4.1.2. Against the flat deformations of the torus. The last deforma-
tions to consider are the flat deformations of the torus which are equivalent
to variations of the matrix L used in the definition of BL

x . For the form of
the obstruction (105), we compute the following expression and leave the
details to the reader.

Lemma 4.8. Let us consider an infinitesimal variation of the flat torus
seen as an infinitesimal variation of the matrix L in the direction KL−1,
and assume that the obstruction (114) is satisfied in both orientations.

Then, the obstruction (105) for a variation KL−1 of L is equivalent to

∑
i∈S+

∑
j∈S−

∑
a∈Z4

〈L(i− j − 2a),K(i− j − 2a)〉
|L(i− j − 2a)|2

〈
πtrbL(i−j−2a)(ζi, ζi)ζj , ζj

〉
= 0

(123)

Remark 4.9. The deformations of the matrix Id orthogonal to those in the
space spanned by the πtr(ek ⊗ ek) for (ek)k∈{1,2,3,4} the usual basis of R4,
are equivalent to rotations of the torus and therefore to the rotation of the
Eguchi-Hanson metrics and have already been considered above.

Corollary 4.10. The obstructions of Corollary 4.3 reduce to 84 polynomial
equations in the ζi and ζj with coefficients depending on L only.



968 Tristan Ozuch

4.2. Some obstructed situations

We therefore see from Remark 4.5 that even though some obstructions are

equivalent, there are many remaining ones that outnumber the degrees of

freedom we have. Indeed, we have only ruled out the last type of obstructions

corresponding to (112).

Let us now give an example of configuration of desingularization which

cannot yield Ricci-flat (or even Einstein) metrics thanks to the obstructions

identified in Corollary 4.3.

Theorem 4.11. There does not exist a sequence Einstein metrics

(M,gn)n∈N converging in the Gromov-Hausdorff sense to (T4/Z2,gL∞) with

L∞ = Id by bubbling out exactly 1 positively oriented Eguchi-Hanson metric

and 15 negatively oriented one.

Remark 4.12. This is an obstruction to any Gromov-Hausdorff desingu-

larization under a topological assumption.

Proof. Let (M,gn)n∈N be a sequence of Einstein metrics converging to (T4/

Z2,gL∞) with L∞ = Id in the Gromov-Hausdorff sense while bubbling out

Eguchi-Hanson metrics and let us assume without loss of generality that

S+ = {0} and S− is the complement of {0} among the singular points of

T4/Z2. Then, according to [Ozu19b], up to taking a subsequence, for all

n, there exist Ln, ζ
+
n,0 and ζ−n,j for j ∈ S−, such that the metrics gn are

isometric to Einstein modulo obstructions perturbations of gDLn,ζn
.

Let us show that the limit rescaled curvature R−
L∞,ζ+

∞
(j) defined in

Proposition 3.27 is invertible at a singular point j ∈ S−. This will lead

to a contradiction by the obstruction (101).

By Lemma 4.2, we have an expression of R−
L∞,ζ+

∞
(j): it is a nonvanishing

multiple of

(124)
∑
a∈Z4

πtr
θ−1 ((1, 0, 0, 0) + 2a)⊗ θ−1 ((1, 0, 0, 0) + 2a)

|(1, 0, 0, 0) + 2a|6 .

The value of the summand at a = 0 and a = (−1, 0, 0, 0) is

(125) πtr(ω
−
1 ⊗ ω−

1 ) =
1

3
(2ω−

1 ⊗ ω−
1 − ω−

2 ⊗ ω−
2 − ω−

3 ⊗ ω−
3 ),

which is invertible on Ω−. For the sum of the norms of the remaining terms,
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that is,

∑
a∈Z4\{0,(−1,0,0,0)}

∣∣∣πtr θ−1 ((1, 0, 0, 0) + 2a)⊗ θ−1 ((1, 0, 0, 0) + 2a)

|(1, 0, 0, 0) + 2a|6
∣∣∣,

we numerically have the control

∑
a∈Z4\{0,(−1,0,0,0)}

1

|(1, 0, 0, 0) + 2a|6 ≈ 0.19 <
2

3
.

This is not enough to make the sum (124) non invertible given the expression
(125). The result follows by (111).

Remark 4.13. The above proof works for many other limits than L∞ = Id
and it is likely that it is true for any L∞, but it requires some control of
the compactness of the lattice generated by L∞. Theorem 4.11 particular
holds even with some of the most compact lattices like the D4 lattice. By
compactness, we loosely mean how close the points of the lattice are to each
other.

Conjecture 4.14. The statement of Theorem 4.11 holds even without the
assumption L∞ = Id, but only assuming that det(L∞) > 0.

For stable or nondegenerate Ricci-flat deformations, one does not sim-
ply have R−

L∞,ζ+
∞
(j) invertible, but R−

L∞,ζ+
∞
(j) = 0. Since it is a sum of

terms of the form (124) based at each singular point, it is direct to see that
R−

L∞,ζ+
∞
(j) = 0 requires at least 3 Eguchi-Hanson metrics in this orientation.

Corollary 4.15. There does not exist a sequence of stable Ricci-flat metrics
(M,gn)n∈N converging in the Gromov-Hausdorff sense to (T4/Z2,gL∞) with
L∞ = Id by bubbling out at most 3 positively oriented Eguchi-Hanson metric
and the rest of negatively oriented ones.

4.3. A family of desingularizations satisfying the obstructions

Let us now specialize our discussion to the regular torus with L = Id and
with the so-called chessboard pattern considered in [BK17]. We study the 48-
dimensional space of gluings to the (fixed) regular torus and test it against
the 16× 5 + 4 = 84 obstruction equations identified in Section 4.

Perhaps surprisingly, in this most symmetric situation, we will find a
family of solutions to all of our 84 equations. This family of solutions is
14-dimensional.
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Remark 4.16. It will be clear from our proof and computations in this

section that in the configuration considered in [BK17], many of these 84

equations are not satisfied.

The chessboard configuration already considered in [BK17] is defined as:

S− =
(
{(a1, a2, a3, a4) ∈ Z

4, a1 + a2 + a3 + a4 ∈ 2Z}/Z4
)
/Z2 and

S+ =
(
{(a1, a2, a3, a4) ∈ Z

4, a1 + a2 + a3 + a4 ∈ 1 + 2Z}/Z4
)
/Z2.

Remark 4.17. In this chessboard configuration, let i ∈ S±. Then, we have

the following configuration of other singular points:

• at distance 0 is i ∈ S±
• at distance 1, there are 4 points in S∓
• at distance

√
2, there are 6 points in S±,

• at distance
√
3, there are 4 points in S∓, and

• at distance 2, there is a point in S±.

We will denote ic the opposite of i which is the point at maximal distance

2 from i.

Here we will work under the assumption that for all i,

ζi = ζic .

We will denote e1 = (1, 0, 0, 0) ∈ S+ and similarly ei ∈ S+ for i ∈ {1, 2, 3, 4}
the other vectors of the canonical basis of R4. Let us introduce the following

notations for the coordinates of our gluing parameters ζei :

ζei =: (xi, yi, zi),

for i ∈ {1, 2, 3, 4}. Let us denote x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) and

z = (z1, z2, z3, z4) the three vectors in R4 we obtain.

Proposition 4.18. Using the above notations, let us assume that the family

(x, y, z) of vectors of R4 forms an orthogonal family of R4 with constant

length. Then, the obstructions (105) and the obstructions (104) at every

j ∈ S− are satisfied.

Sketch of proof (some computer-based arguments involved). Let us consider

a desingularization configuration as above.
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Let us study the curvature at the singular point 0 ∈ S− induced by
the other Eguchi-Hanson metrics glued at the points of S+. From (110), we
know that this exactly equals

(126)

4∑
i=1

BId
ei ((xi, yi, zi), (xi, yi, zi)) +BId

eci
((xi, yi, zi), (xi, yi, zi)).

Numerically, we obtain the following form for BId
ei ((xi, yi, zi), (xi, yi, zi))+

BId
eci
((xi, yi, zi), (xi, yi, zi)):⎡
⎣a · (2x2i − y2i − z2i ) b · xiyi b · xizi

b · xiyi a · (−x2i + 2y2i − z2i ) b · yizi
b · xizi b · yizi a · (−x2i − y2i + 2z2i )

⎤
⎦ ,

for some real numbers a ≈ 0.69 and b ≈ 2.0, and similar formulas for the
other i by symmetries. Therefore, the equation

(127)

4∑
i=1

BId
ei ((xi, yi, zi), (xi, yi, zi)) +BId

eci
((xi, yi, zi), (xi, yi, zi)) = 0.

coming from the obstruction (114) reduces to having both

4∑
i=1

x2i =

4∑
i=1

y2i =

4∑
i=1

z2i , and

4∑
i=1

xiyi =

4∑
i=1

xizi =

4∑
i=1

yizi = 0.

This means that we are looking for an orthogonal family of 3 vectors x =
(xi)i, y = (yi)i and z = (zi)i with same length in R4. This is given by an
element of R+ × RP 3 × O(3). More precisely, the element of R is equal to∑4

i=1 x
2
i =

∑4
i=1 y

2
i =

∑4
i=1 z

2
i , the element of RP 3 is a line orthogonal to

(x, y, z) in R4 and O(3) is the orthonormal basis (x/|x|, y/|y|, z/|z|) in the
orthogonal of the element of RP 3. This set is 7-dimensional.

Similarly, we can study the variations of the curvature when L = Id in
the directions ei ⊗ ei for i ∈ {1, 2, 3, 4}. We again find numerically that the
obstructions (105) are of the form:⎡

⎣c · (2x2i − y2i − z2i ) d · xiyi e · xizi
d · xiyi c · (−x2i + 2y2i − z2i ) f · yizi
e · xizi f · yizi c · (−x2i − y2i + 2z2i )

⎤
⎦ ,
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for some nonvanishing real numbers c, d, e, f which depend on the direction
in which the deformation is done. Therefore, they also vanish under the
conditions

∑4
i=1 x

2
i =

∑4
i=1 y

2
i =

∑4
i=1 z

2
i and

∑4
i=1 xiyi =

∑4
i=1 xizi =∑4

i=1 yizi = 0.
Moreover, because we have similar equations and degrees of freedom

in the other orientation, we obtain a 14-dimensional family of candidates
satisfying all of the obstructions of Corollary 4.3.

Example 4.19. Some examples of solutions to the above equations are

ζ1 = (1, 1, 1), ζ2 = (1,−1,−1), ζ3 = (−1, 1,−1) and ζ4 = (−1,−1, 1) and
(128)

ζ1 = (1, 0, 0), ζ2 =
(
0, 1/

√
2, 0
)
, ζ3 =

(
0, 0, 1/

√
2
)

and ζ4=(1, 0, 0).

(129)

Appendix A. Function spaces

For a tensor s, a point x, α > 0 and a Riemannian manifold (M, g). The
Hölder seminorm is defined as

[s]Cα(g)(x) := sup
{y∈TxM,|y|<injg(x)}

∣∣∣s(x)− s(expgx(y))

|y|α
∣∣∣
g
.

For orbifolds, we consider a norm bounded for tensors decaying at the
singular points.

Definition A.1 (Weighted Hölder norms on an orbifold). Let β ∈ R, k ∈ N,
0 < α < 1 and (Mo, go) an orbifold. Then, for any tensor s on Mo, we define

‖s‖Ck,α
β (go)

:= sup
Mo

r−β
o

( k∑
i=0

rio|∇i
gos|go + rk+α

o [∇k
gos]Cα(go)

)
.

For ALE manifolds, we will consider a norm bounded for tensors decay-
ing at infinity.

Definition A.2 (Weighted Hölder norms on an ALE orbifold). Let β ∈ R,
k ∈ N, 0 < α < 1 and (N, gb) be an ALE manifold. Then, for all tensor s
on N , we define

‖s‖Ck,α
β (gb)

:= sup
N

rβb

( k∑
i=0

rib|∇i
gbs|gb + rk+α

b [∇k
gbs]Cα(gb)

)
.
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On M , using a partition of unity 1 = χM t
o
+
∑

j χNt
j
with χM t

o
equals to

1 where gDt = go and χNt
j
equals to 1 where gDt = tjgbj (see [Ozu19a]), we

can define a global norm.

Definition A.3 (Weighted Hölder norm on a näıve desingularization). Let
β ∈ R, k ∈ N and 0 < α < 1. We define for s ∈ TM⊗l+ ⊗ T ∗M⊗l− a tensor
(l+, l−) ∈ N2, with l := l+ − l− the associated conformal weight,

‖s‖Ck,α
β (gD) := ‖χM t

o
s‖Ck,α

β (go)
+
∑
j

T
l

2

j ‖χNt
j
s‖Ck,α

β (gbj )
.

A.1. Decoupling norms

We actually need a last family of norms to get good analytic properties for
our operators, see [Ozu19b]. With the notations of Definition 1.2, denote
for each singular point k, Ak(t, ε0) := (Φk)∗Ae(ε

−1
0

√
tk, ε0) and Bk(ε0) :=

(Φk)∗Be(0, ε0), as well as cut-off functions χAk(t,ε0) and χBk(ε0) respectively
supported in Ak(t, ε) and Bk(ε0), and equal to 1 on Ak(t, 2ε0) and Bk(ε0/2).

Definition A.4 (Ck,α
β,∗ -norm on 2-tensors). Let h be a 2-tensor on (M, gD),

(Mo, go) or (N, gb). We define its Ck,α
β,∗ -norm by

‖h‖Ck,α
β,∗

:= inf
h∗,Hk

‖h∗‖Ck,α
β

+
∑
k

|Hk|ge ,

where the infimum is taken on the (h∗, (Hk)k) satisfying h = h∗ +∑
k χAk(t,ε0)Hk for (M, gD) or h = h∗+

∑
k χBk(ε0)Hk for (Mo, go) or (N, gb),

where each Hk is some constant and trace-free symmetric 2-tensors on
R4/Γk.

A.2. An application of the analysis on weighted spaces

Consider for n ∈ N, for γ ∈ N\{3− n, . . . ,−1} and 0 < β < 1 the Fredholm
operator

Pe : rγeC
2,α
−β (R

n\{0}) �→ rγ−2
e Cα

−β(R
n\{0}),

where the norms C l,α
−β(R

n\{0}) on symmetric 2-tensors denote the norm on
Rn\{0} seen as orbifold at 0 like in Definition A.1 and ALE at infinity like
in definition A.2. This operator is Fredholm and its kernel is composed of
homogeneous harmonic 2-tensors in rγe . Its L

2-cokernel is the kernel of

Pe : rn+2−γ
e C2,α

β (Rn\{0}) �→ rn−γ
e Cα

β (R
n\{0}),
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which is reduced to {0}. As a direct consequence of the open mapping the-
orem, we have the following result.

Lemma A.5. Let n ∈ N, for γ ∈ N\{3− n, . . . ,−1} and 0 < β < 1. Then,
there exists C>0 such that for any symmetric 2-tensor v∈rγ−2

e Cα
−β(R

n\{0}),
there exists a 2-tensor h satisfying Peh = v, with

‖h‖rγeC2,α
−β (Rn\{0}) � C‖v‖rγ−2

e Cα
−β(R

n\{0}).
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