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Higher order obstructions to the desingularization
of Einstein metrics®

TRISTAN OZUCH

We find new obstructions to the desingularization of compact Ein-
stein orbifolds by smooth Einstein metrics. These new obstructions,
specific to the compact situation, raise the question of whether
a compact Einstein 4-orbifold which is limit of Einstein metrics
bubbling out Eguchi-Hanson metrics has to be Kéhler. We then
test these obstructions to discuss if it is possible to produce a
Ricci-flat but not Kéhler metric by the most promising desingu-
larization configuration proposed by Page in 1981. We identify 84
obstructions which, once compared to the 57 degrees of freedom,
indicate that almost all flat orbifold metrics on T*/Zs should not
be limit of Ricci-flat metrics with generic holonomy while bubbling
out Eguchi-Hanson metrics. Perhaps surprisingly, in the most sym-
metric situation, we also identify a 14-dimensional family of desin-
gularizations satisfying all of our 84 obstructions.

KEYWORDS AND PHRASES: Einstein 4-manifolds, desingularization, re-
duced holonomy.

Introduction

An Einstein metric g satisfies, for some real number A, the equation
Ric(g) = Ag.

In dimension 4, they are considered optimal due to the homogeneity of their
Ricci curvature but also as critical points of the Einstein-Hilbert functional
with fixed volume, g — [ a1 Rg dvoly, and more importantly as minimizers
of the L?-norm of the Riemann curvature tensor, g — [, | Rmy [*dvol,.
From dimension 4, even under natural assumptions of bounded diame-
ter (compactness) and lower bound on the volume (non-collapsing) Einstein
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metrics can develop singularities. One major goal for 4-dimensional geom-
etry is therefore to understand the compactification of the moduli space of
Einstein metrics on a differentiable manifold M* defined as

(1) E(M*) = {(M* g) | 3A € R, Ric(g) = Ag, Vol(M*,g) =1} /D(M*)

where D(M*) is the group of diffeomorphisms of M* acting on metrics by
pull-back and to compactify it with a useful structure. The metric spaces
which are limit of Einstein 4-manifolds with uniformly controlled diameter
and volume as well as the associated singularity blow-ups have been under-
stood for a long time in the Gromov-Hausdorff sense [And89, BKN89]: they
are respectively Einstein orbifolds and Ricci-flat ALE orbifolds. The metric
completion of (E(M*),dgy) is

(2) E(M*) U 9,E(M*),

where 9,E(M*?) is the set of orbifold dgg-limits with bounded diameter (i.e.
at finite dgp-distance) of Einstein metrics on M 4,

In the present article, we find new types obstructions to the desingular-
ization of Einstein orbifolds which are special to the compact context. They
motivate and indicate positive answers the following questions:

e Assume that (M3}, g,) € 9,E(M*) where M* has the topology of M2
desingularized by Eguchi-Hanson metrics. Is g, Kahler-Einstein?

e Under the same assumptions, is 9,E(M*?) of codimension 2 in E(M*)?

e Can we desingularize a flat metric on T*/Zy by smooth Ricci-flat met-
rics with generic holonomy thanks to Eguchi-Hanson metrics?

A new obstruction to the desingularization in the compact case

Any smooth Einstein 4-manifold close to a compact Einstein orbifold in
a mere Gromov-Hausdorff sense has recently been produced by a gluing-
perturbation procedure [Ozul9a, Ozul9b|. In the present paper, for simplic-
ity, we will focus on an Einstein orbifold (M,,g,) with integrable Einstein
deformations (like all known 4-dimensional examples) and consider only the
simplest singularities modeled on R*/Zy ~ C2/Zs, whose minimal resolution
has the topology T*S? of the Eguchi-Hanson metric [EHT7S].

Remark 0.1. This is conjectured to be the only possible topology for an
Einstein desingularization of R*/Zs, see [BKN8I].



Higher order obstructions to the desingularization 903

Let us denote M the differentiable manifold obtained by minimal res-
olution (in some orientation) of the R*/Zy ~ C2?/Zy singularities of M,.
Using [Ozul9a, Ozul9b|, we know that if there exists a sequence of Einstein
metrics on M converging to (M,,g,) in the Gromov-Hausdorff sense, then
an obstruction already noticed in [Biql3] is satisfied at every singular point
of M,. More precisely, denoting respectively Rg (p) and Ry (p) the selfdual
and anti-selfdual parts of the curvature at a singular point p € M, seen as
an endomorphism on the space of 2-forms, we have either det R (p) = 0 or
det Ry (p) = 0. This means that in some basis, we have either

(3) RS (p) = or, Rg (p) =

o O O
* % O
* * O
o O O
* * O
* % O

We will first show that an additional obstruction holds under weaker
assumptions than those of [Biql3].

A physically motivated assumption is that of the stability of the Einstein
metric. This condition essentially means that the linearization of the Ricci
curvature has nonnegative spectrum, see Definition 1.11. We are now ready
to state the first main result of this paper:

Theorem 0.2. Let (M2, g,) be a compact Einstein orbifold with Ric(g,) =
Ag, for A € R, with integrable Einstein deformations and with singularities
RY/Zy. Assume that we have (M}, g,) € E(M*)oy for M = M #T*S*# ...
HT*S?, where # denotes a gluing in the positive or negative orientation and
along the cone R*/Zy. Assume additionally one of the following properties:

1. there exists a sequence (g,)n of stable Ricci-flat (Definition 1.11) met-
rics in B(M*) converging to g, in the Gromov-Hausdorff sense, or,

2. M, has only one singularity and is rigid (i.e. does not admit infinites-
imal Finstein deformations).

Then, for any singular point p of M,, there exists a basis of the self-
dual 2-forms or anti-selfdual 2-forms in which we have (depending on the
orientation of the gluing):

(4) Ry (p) =

o O O

0 0 0 0 0
0 0f orRg(p)=10 0 0
0 A 0 0 A

Notice that a curvature of the form (4) is typical of Kéhler-Einstein
metrics.
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Theorem 0.2 is specific to the compact case and is in sharp contrast
with Biquard’s desingularization [Biql3] in the asymptotically hyperbolic
case. Indeed, the degeneration of the asymptotically hyperbolic AdS Taub-
Bolt metrics converges to an orbifold which is rigid and has one singularity
R*/Zs but does not satisfy (4), see Example 2.1.

Remark 0.3. Since the convergence is allowed to be only in the Gromov-
Hausdorff sense, the assumptions of Theorem 0.2 are weaker than in [Bigl3,
Corollary 9.3/, where the obstruction (3) at the singular point was first ob-
served. Moreover, the present proof would also yield an obstruction for other
Kleinian singularities by [Biq16, Lemme 9] and [Biql6, Lemme 12].

Another goal here is to obtain a new obstruction result under some tech-
nical assumption of existence of a sequence of metrics in E(M*?) sufficiently
transverse to the boundary 9,E(M?*) of (2). We will say that a sequence
of Einstein metrics is a transverse desingularization of the orbifold (M,, g,)
if the sequence is almost orthogonal to 0,E(M), see Definition 1.29 and
Figure 2. Almost all Einstein metrics obtained by gluing-perturbation are
transverse, see [Top87a, Top87b, 1.S94, Donl12, BK17]|. The constructions
of [Biql3, Biql6, Biql7] are notable exceptions. A weaker assumption than
being transverse for an Einstein desingularization is being nondegenerate.
We will say that a sequence of Einstein metrics is a nondegenerate Einstein
desingularization of (M,,g,) € J,E(M) if the sequence approaches (M,, g,)
without being “too tangent” to J,E(M), see Definition 1.29 and Figure 1.
This notion is in the spirit of the assumption of genericity of [Spol4]| and
nondegeneracy of [BR15].

Proposition 0.4. Let (M} g,) be a compact Einstein orbifold with

o
Ric(g,) = Ago for A € R, with integrable Einstein deformations and with
singularities R*/Zy. Assume that we have (M}, g,) € E(M*) 5y for M =
M #T*S?# ... #T*S?, where # denotes a gluing in the positive or nega-
tive orientation and along the cone R*/Zy. Assume additionally one of the

following properties:

1. there exists a transverse (Definition 1.29) sequence (gn)n of metrics
in E(M*) converging to g, in the Gromov-Hausdor(f sense,

2. A = 0 and there exists a nondegenerate (Definition 1.29) sequence
(gn)n of metrics in E(M?) converging to g, in the Gromov-Hausdorff
sense,

3. M, has only one singularity and there exists a nondegenerate sequence
(gn)n of metrics in BE(M?) converging to g, in the Gromov-Hausdorff
sense.



Higher order obstructions to the desingularization 905

Then, for any singular point p of M,, g, satisfies the obstruction (4).

Remark 0.5. The proof of Proposition 0.4 relies on the fact that our com-
pact deformations add as many degrees of freedom as new obstructions to
satisfy. The obstruction (4) is not satisfied by the orbifolds of the desingular-
izations of [Biql3, Biql6, Biql7] or Example 2.1, which rely on nondegen-
erate (but not transverse) Einstein deformations coming from the confor-
mal infinity. These deformations from the conformal infinity add an infinite
number of degrees of freedom without adding any obstruction.

It is somewhat expected that the completion E(M) U 9,E(M) of the
moduli space E(M) is real-analytic or real-subanalytic, see [And10]. This
would imply that the orbifold metrics can be approached by curves of Ein-
stein metrics. An initial intuition for Theorem 0.2 is [Biql7] which shows
that if A # 0 and the obstruction (4) is not satisfied, then the orbifold met-
rics cannot be approached by curves of Einstein metrics. Our proofs however
do not use this fact and even work in the case when A = 0. They rely heav-
ily on the computations of the second variations of the Ricci curvature of
[Biq16] and the formalism of [Finl1].

Is 8,E(M) a boundary or a filling?

An interesting problem on which Theorem 0.2 sheds some light is the size
of 9,E(M*) the set of singular metrics in the completion (2) of the moduli
space of Einstein metrics. Anderson proposes the following “optimistic” (in
his own words) conjecture.

Conjecture 0.6 ([And10]). The subspace O,E(M*) is of codimension 2 in
EM*Y gy

This conjecture means that we should not think of 9,E(M*) as a bound-
ary of E(M?) but rather as a filling of missing pieces as it was pictured in
[And92] in the case of M* = K3.

Remark 0.7. This is false in the asymptotically hyperbolic context where the
desingularizations of [Biql3] applied to the AdS Taub-Bolt orbifold (Example
2.1) show that O,E(M*) is of codimension 1.

With our present vocabulary, Conjecture 0.6 means that given a compact
Einstein orbifold (M,,g,) € 9,E(M?), the space of Einstein desingulariza-
tions of M, which are transverse to 9,E(M?*) is at least 2-dimensional.

Theorem 0.2 can be seen as a step towards this conjecture in the situation
where we desingularize by an Eguchi-Hanson metric at a small scale t > 0.
Indeed, its proof shows that:
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e if R (po) is invertible, then there is no desingularization which is
Einstein up to a o(t) error,

o if the kernel of R} (p,) is of dimension 1, then there is no transverse
desingularization Wthh is Einstein up to a o(t?) error and there is
exactly a one-dimensional set of desingularizations which are Einstein
up to a o(t) error,

o if the kernel of RJr (po) is of dimension 2 or 3, then the transverse
desingularizations Whlch are Einstein up to a 0(752) error are of dimen-
sion 2 or 3 and in correspondence with the kernel of Rg (po).

Finally, recall that Einstein metrics with a curvature tensor of the form
(4) for A = 0 at all points are locally hyperkéhler metrics. Since we have
only identified the first two obstructions of an infinite list, we might wonder
if the remaining obstructions impose this condition at all points. We ask the
following question.

Question 0.8. Let (M3, g,) be a Ricci-flat orbifold, and assume that it
can be desingularized in the Gromov-Hausdorff sense by Finstein metrics
(M4, gn)neN* forming trees of Kdhler Ricci-flat ALE metrics. Are the orb-
ifold (M3}, g,) and the smooth metrics (M*,g,) necessarily quotients of hy-
perkahler metrics?

A positive answer to the above question combined with the folklore con-
jecture that all Ricci-flat ALE orbifolds are Kahler indicates that it may
not be possible to produce Ricci-flat metrics which are not Kéhler by gluing
constructions on Ricci-flat orbifolds. This pessimistic perspective is related
to one of the main issue in Riemannian geometry which is to understand
the structure of Ricci-flat metrics on compact manifolds.

Ricci-flat metrics and reduced holonomy

For a long time, it was believed that compact Ricci-flat metrics should be
flat. The resolution of Calabi’s conjecture by Yau [Yau78] provided many
counter-examples. These so-called Calabi-Yau metrics are the only currently
known examples and they have reduced holonomy (that is different from the
generic holonomy SO(n) in dimension n). A lingering question since then is
therefore the following one.

Question 0.9. Do all compact Ricci-flat manifolds have reduced holonomy?

A physically relevant additional property that one can ask from a Ricci-
flat metric, is that of being stable, see [Ach19].

Question 0.10 ([Ach19]). Do all compact stable Ricci-flat manifolds have
reduced holonomy?
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Construction of hyperkihler metrics by gluing-perturbation

Compact non flat Ricci-flat metrics are not explicit at all, but a classical way
to approach them and to obtain a more concrete picture is to produce them
by gluing various explicit noncompact and singular blocks together into an
approximate Ricci-flat metric and perturb it into an actual Ricci-flat metric.

Gibbons-Pope [GP79] and Page [Pag78] proposed a conjectural and
physically motivated picture for some hyperkahler, hence Ricci-flat, met-
rics on some K3 surfaces. The idea was to desingularize the orbifold T*/Zsy
which has 16 singularities of type R*/Zy by gluing 16 Eguchi-Hanson metrics
in the same orientation and to perturb the result to a hyperkahler metric.
This was rigorously obtained for Eguchi-Hanson metrics glued at compara-
ble scales by Topiwala [Top87a, Top87b] and Lebrun-Singer [L.S94], see also
[Don12]. The proof heavily relies on Kahler geometry arguments.

A Ricci-flat but not locally hyperkahler metric?

In 1981, Page [Pag81] asks a new question.

Question 0.11. Is it possible to perturb a gluing of Equchi-Hanson metrics
in different orientations to the orbifold T*/Zsy into a Ricci-flat metric?

Remark 0.12. [t is often conjectured, see for instance [BKN8Y], that the
only Ricci-flat metric asymptotic to R*/Zy is the Eguchi-Hanson metric.
This would therefore describe any possible Finstein desingularization of

T4/ Zs.

Having different orientations for the Eguchi-Hanson metrics prevents the
use of Kéhler geometry techniques. A positive answer to Question 0.11 would
provide a Ricci-flat metric with generic holonomy and a negative answer to
Question 0.9.

Brendle-Kapouleas configuration

In [BK17], Brendle and Kapouleas studied Question 0.11 in the most sym-
metric situation: the orbifold metric comes from the regular lattice Z*, the
points where the gluing are done in the positive or negative orientation follow
a so-called chessboard pattern, and the Eguchi-Hanson metrics in the same
orientation are glued with the same SO(4) or O(4)\SO(4) parameter and
the same size. In this 1-dimensional set of configurations, they exhibit one
interaction between the bubbles glued in different orientation. They remark-
ably use this obstruction to construct an intriguing solution to the Ricci flow
which exhibits a new behavior: it is an ancient Ricci-flow desingularizing the
orbifold T*/Z.
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Partial answer to Page’s question

In this article, we consider the general situation of the desingularization of
a flat metric on T*/Zs obtained from a lattice L(Z?) for L € GL(4,R) and
desingularized by Eguchi-Hanson metrics glued in various directions, sizes
and orientations. For each configuration of positively and negatively oriented
Eguchi-Hanson metrics, this yields a 57-dimensional space of candidates to
a Ricci-flat gluing-perturbation as in [Ozul9b] and therefore of potential
positive answers to Question 0.11.

We however identify a great number of interactions between these met-
rics which induce obstructions interpreted as curvature conditions similar to

those of (3) and (4).

Theorem 0.13 (Informal, Corollaries 4.3 and 4.10). We have the follow-
ing numbers of constraints in this 57-dimensional space of desingularization
configurations.

1. For general parameters, there are 57 necessary polynomial equations
that the gluing parameters of the Equchi-Hanson metrics should satisfy
for an FEinstein desingularization to exist. 48 of these equations are
analogous to the obstruction (3).

2. For general parameters, there are 84 necessary polynomial equations
that the gluing parameters should satisfy for a stable Ricci-flat desin-
gularization to exist. 80 of these equations are analogous to the ob-
struction (4).

3. For parameters corresponding to a nondegenerate desingularization,
there are 84 necessary polynomial equations that the gluing parameters
of the Eguchi-Hanson metrics should satisfy for an Einstein desingu-
larization to exist. 80 of these equations are analogous to the obstruc-
tion (4).

The coefficients of these (quadratic and quartic) polynomial equations depend
on the flat metric on T*/Zs only.

This indicates that generic flat metrics on T#/Zs, should not be Gromov-
Hausdorff limit of Einstein metrics bubbling out Eguchi-Hanson metrics in
different orientations.

Remark 0.14. In the configuration proposed by Brendle and Kapouleas
[BK17], the 57 obstructions of the first point are not satisfied.

A simpler consequence is that a lot of configurations of positively and
negatively oriented Eguchi-Hanson metrics are impossible. We in particular
obtain the following obstruction under a topological assumption.
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Theorem 0.15 (Theorem 4.11). There does not exist a sequence of Einstein
metrics dgp-converging to the reqular torus (obtained from the lattice 7*)
by bubbling out exactly one positively oriented Equchi-Hanson metric and
15 negatively oriented Eguchi-Hanson metrics.

Remark 0.16. It is likely that this result holds without assuming that the
lattice is the usual Z*, see Conjecture 4.14.

Remark 0.17. The desingularization by stable Ricci-flat metrics is much
more restrictive. A direct extension of the proof of Theorem 0.15 states
that the desingularization is tmpossible with less than 3 positively oriented
Eguchi-Hanson metrics and the rest of negatively oriented, see Corollary
4.15.

A configuration satisfying the first obstructions

Seeing the above obstruction results, one would be tempted to try and prove
that it is impossible to obtain a Ricci-flat but not hyperkéhler metric by
gluing-perturbation of Eguchi-Hanson metrics to a flat T*/Zy. One would
maybe expect that the above 84 obstructions should be enough to show that
every configuration is obstructed.

Perhaps surprisingly, we find a set of solutions to our 84 equations.
More precisely, there exists an explicit 14-dimensional set of configurations of
gluing of Eguchi-Hanson metrics which satisfy the 84 above equations. The
orientations of the Eguchi-Hanson metrics follow the chessboard pattern of
[BK17], but their directions and sizes are not constrained.

1. Main definitions

Note 1.1. All along this article, when the name of a metric is in bold, then
it 1s Finstein.

1.1. Einstein orbifolds and ALE spaces

For I a finite subgroup of SO(4) acting freely on S3, let us denote (R*/T', e)
the flat orbifold obtained by the quotient of the Euclidean metric on R* by
the action of I, and re := de(.,0).

Definition 1.2 (Orbifold (with isolated singularities)). We will say that a
metric space (M, go) is an orbifold of dimension n > 2 if there exists ey > 0
and a finite number of points (pg)r of M, called singular such that we have
the following properties:
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1. the space (Mo\{pk}k, 90) is a manifold of dimension n,

2. for each singular point py of M,, there exists a neighborhood of pg,
Upx C M,, a finite subgroup acting freely on S"1, I'y € SO(n), and
a diffeomorphism @y : Be(0,¢0) C R"/T'y — Uy C M, for which, the
pull-back of ®1g, on the covering R" is smooth. Here, diffeomorphism
1s understood in the orbifold sense, i.e. it is a diffeomorphism between
the cover R* and the associated cover of Uy,.

Remark 1.3. The analysis on an orbifold is exactly the same as the analysis
on a manifold up to using finite local coverings at the singular points.

Definition 1.4 (The function r, on an orbifold). We define r,, a smooth
function on M, satisfying ro = (Pg)s«re on each Uy, and such that on
M\Uy, we have ¢g < 1, < 1 (the different choices will be equivalent for
our applications).

We will denote, for 0 < € < €,

(5) My(e) i= {ro > ¢} = Mo\(Ui)k(Be(O, e))).
k

Let us now turn to ALE metrics.

Definition 1.5 (ALE orbifold (with isolated singularities)). An ALE orb-
ifold of dimension n > 4, (N, gp) is a metric space for which there exists
eo > 0, singular points (pg)r and a compact K C N for which we have:

1. (N,gp) is an orbifold of dimension n,
2. there exists a diffeomorphism U, : (R"/T)\Be(0,¢5') — N\K such
that
TV (Thogs — e)le < Crrg™.
Definition 1.6 (The function r, on an ALE orbifold). We define r, a smooth
function on N satisfying ry := (Vi )«Te on each Uy, and ry := (Voo )sTe 0N
Uso, and such that g < rp < eal on the rest of N (the different choices are

equivalent for our applications).
For 0 < e < ¢y, we will denote

(6)
N(e)i={e<ry < e_l}:N\(U\I/k(Be(O, €)) U Voo (R*/To0)\ Be(0, 6—1))).
k

Now, consider a subset S, of the singular points of M, (respectively S
of N).
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Definition 1.7 (Functionals r, g, and ). We define the functional o g,
(respectively 1y, s) exactly like in Definitions 1.4 (respectively 1.6) by only
considering the sets Uy, containing points of S, (respectively S ).

A metric g close to g, (with some adapted decay at infinity in the non-
compact case) is Einstein and is in Bianchi gauge with respect to g,, that
is satisfies Bg,g 1= (6, + 5dtrg )g = 0, if and only if it satisfies

g, (9) := Ric(g) — Ag+ 6,Bg,9 = 0,

see for instance [Biql3, Section 6]. The linearization of ®¢ at g, is

1 o
Pg, = §V;Vgo — R,
where R is the action of curvature on symmetric 2-tensors: for an orthonor-

mal basis (e;);,

R(h)(X,Y) = Z h(Rm(e;, X)Y,e;).

Definition 1.8 (Infinitesimal Einstein deformations). For a compact or
ALE FEinstein orbifold (M,g) with Ric(g) = Ag, we define O(g) as the
kernel of Py on L*(g).

Definition 1.9 (Einstein modulo obstructions deformations). According to
[Ozu19b] (see also [Ko0i83]), there exists € > 0 such that for any v € O(g)
with ||v]|12g) < €, there exists a unique metric g, satisfying

2. gy — (g +v) Lg O(g),
3. gy — 8llL2(g) < 2€.

All along this article, in order to simplify the exposition and for lack
of nonintegrable examples, we will only consider Einstein metrics with inte-
grable Einstein deformations.

Definition 1.10 (Einstein metric with integrable deformations). An FEin-
stein metric g only has integrable infinitesimal Einstein deformations if for
any v € O(g), the metric g, = gy actually satisfies

1' {)g(gv) = 07
2. gy — (g +v) Lg O(g),
3. llgv — 8llL2(g) < 2e.
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An additional class of metrics we will be interested in is that of stable
Ricci-flat metrics.

Definition 1.11 (Stable Ricci-flat metrics). We will say that g is a stable
Ricci-flat metric if it is Ricci-flat and satisfies: for all smooth compactly
supported symmetric 2-tensor h:

(Pghsh) s g = 0.
All of the known examples of compact Ricci-flat metrics are stable.
1.2. Eguchi-Hanson metrics

Let us describe the Eguchi-Hanson metric [EH78]. In this article, the Ricci-
flat ALE metrics (N, gp) we will consider will almost always be homothetic
transformations of the Eguchi-Hanson metric.

The Eguchi-Hanson metric, which we will denote eh, is defined on T*S?.
It is asymptotic to the flat cone R*/Zy. Denote (1, 22, x3,24) coordinates
in an orthonormal basis of R*, and define r := \/l’% + $§ + x% + 934217 and a
basis of invariant 1-forms on the sphere S?, (a1, as, a3) by

1
o = —Q(xldxg — xodzy + w3dxy — T4dT3)
r
and the other by cyclic permutation of the indices {2, 3,4}.
Outside of the zero section of T*S? represented by r = 0, the metric
eh has the following expression (with the identification T*S*\S? ~ (R*/

Z2)\{0}):

4
(7) eh =/ 1ir4(dr2+r2a%)+ 147402 + a2).

The metric extends to T*S? by adding the zero section S? with metric a%—ka%
at 7 = 0. We will always denote S? that zero-section of T*S?.
This gives the asymptotic development at infinity

1
eh =e— ﬂ(drz +r2a? —r?a3 —r2ad) + O(r™®),

where H* := — 5L (dr? + 1202 —r?a3 —r?a3) is divergence-free and trace-free

with respect to the Euclidean metric e = dr? + r?(a? + a3 + o3).
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1.2.1. Curvature of Eguchi-Hanson metrics. On R* we define the
2-forms

Hf = rdr A ag + r’as A as,

and similarly 9§E and 9§E by cyclic permutations, and we define the usual
bases

wli :=dr1 Ndxo £ dxg A dry

and similarly wgc and w?jf by cyclic permutations. The 9? and wf are selfdual
and the 6, and w, are anti-selfdual. Direct computations yield the following
relation between them: 0; = wf , and for x € R?,

3 T (0t o~
. T
(8) 0 (1) =) —— 5w,
: |z
Jj=1
where wi o w; is the symmetric traceless matrix given by the (commuting)

product of the antisymmetric matrices associated to wf and w; and where
2T is the transpose of .

Remark 1.12. The product wj ow; =w; ©° w;-r is a trace-free involution

and therefore it is characterized by two planes of eigenvalues 1 and —1.
Remark 1.13. We will often use the identification of the traceless sym-
metric 2-tensors Sym2(TM) and QT @ Q= where (wT,w™) € QF x Q™ s
associated to wT ow™ =w” ow™.

For any ¢ = ((1,(2,(3) € R3, we denote
¢t = Quit + Qi + Gt € 0F.

Definition 1.14. We define for any x € R* the linear transformation p,
which to ¢ = ((1, (2, (3) € R3 associates p.(¢) € R whose j’s coordinate is
2T ((Tow) )

pz(Q)j = ng

Remark 1.15. Identifying R* with the space of quaternions and R3 with
the space of pure quaternions, for any x € R*, the map p, : R? — R3 is
exactly the rotation produced on the pure quaternionic part by conjugation
by x. More precisely, identifying ( € R® with the pure quaternion (0,¢) in
the usual basis, we have

(Ova(C)) =T (07C) : x_l-
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The metric eh is Ricci-flat, anti-selfdual and has the following anti-
selfdual curvature:

L8 0 o
(9) R (eh)= 4 [0 —4 0
1o 0 -4

in a basis asymptotic to the basis (6; );, see [EH78]. We also remark that we

+
have H* = —“’12:491 where H* is defined by eh = e+ H*+ O(r~8) at infinity
and where w; 0 0 is the (commutating) composition of the antisymmetric
matrices associated to w; and 6] .

More generally, for any ¢ = (C1, (2, (3) € R3\{0}, consider (C(J;Z))ke{l,z:%}
an orthogonal basis of QF with constant length v/2 = |w;| and C(J];) =

¢T/I¢| = V2¢T/|¢T]. We may replace the above 1-forms oy, = w;' (dr) by
the 1-forms (&)(dr). By a change of variables © = ——, one checks that the

Vid

metric

(10)

4
eher o=\ e (4" + 77 @) + VI (G 4 + ()

is homothetic to eh and more precisely satisfies the following properties.

Proposition 1.16. Let ¢ = ((1,(2,(3) € R3\{0} and denote (T := (iw; +
ng;r + ng;. We have the following properties:

1. at infinity, we have

p(¢)~ o¢t

(11) ehc+ =€ — 27‘4

+O(¢*r ),

2. eh¢+ is isometric to || - eh,

eh(; o)+ = eh, and

4. on S?, denoting (C(—Z))ke{]_’zg} an orthonormal basis of the selfdual 2-
forms of constant length with C(J;) = (*/[¢|, the zero-section of T*S?,

the metric is |Q+|(C(§) (dr)? + C(E) (dr)?). O

~o

Remark 1.17. These metrics ehe+ for ¢ € R3\{0} reach all of the met-
rics obtained by orientation-preserving rotations and rescaling of eh up to
isometry.
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We will need to understand their curvature in the last sections of this
article. From the computations of [EH78] and Proposition 1.16, we have the
following result.

For ¢ = ((1,(2,(3), denote H*(¢1) := —%. Then, the linearization

of the curvature at e in the direction H*(¢") is Ricci-flat anti-selfdual and
we have

pE oo
(12) deR™(HY((T)) == 10 —4 0
1o o -4

in any orthogonal basis with constant length of the anti-selfdual 2-forms of

P&~
Icr -
Identifying the space of endomorphisms of 27, End(27) and O~ @ Q7

this can be rewritten as

R* whose first vector is

(13) doR-(HA(CT)) = 127rtr(p(Cl6 ® p(¢)7)
trh
3

where i h := h — :1I3 is a projection on trace-free matrices.

Remark 1.18. In the constant basis (w] ,wy,ws ), the coefficients of
deR™(H*((T)) (seen as a 3 x 3 matriz) are harmonic by (8) as expected
from [Biq16, Lemme 3].

1.2.2. Infinitesimal variations. The deformations of the Eguchi-Hanson
metric are given by the variations of ¢ in (10).

For ¢ = (1,0,0), an orthogonal basis of the L?(eh)-kernel of Pep, denoted
O(eh) may be computed. Denote (01,02, 03) given by the infinitesimal vari-
ations of ( respectively in the directions (1,0,0), (0,1,0) and (0,0,1). They
have the following developments in the coordinates of the above develop-
ment (11),

Hfoﬂlj

(14) op = Oy + O(rg®) with O = ——1—

r

Remark 1.19. The symmetric 2-tensor OF is equal to twice to the asymp-
totic term H* of eh, see (11).

The infinitesimal deformations 01, 02 and o3 respectively induce the fol-
lowing infinitesimal changes of anti-selfdual curvature in the basis
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(07,0 ,03):
1 8 0 0 1 0 4 0 1 0 0 4
r r r
0 0 —4 0 0O 4 0 0

For another ¢ € R3\{0}, let us consider, thanks to the second point
of Proposition 1.16, a diffeomorphism ¢ such that ¢*ehs+ = |(| - eh. Then,
(06(CT))k = (¢w0k)r forms an orthogonal basis of O(eh¢+) with
[¢+0k L2(en ) = [0kl 2(en) since the L?-norm of 2-tensors is invariant by
rescaling in dimension 4. Recalling that in the same coordinates at infinity,
the first o 4-terms of |¢|p.eh and of eh¢+ coincide, we find

wy O9I> _ (Top¢)”
2rd 2rd

¢l (

and therefore, denoting (C&;)) ke{1,2,3} a basis of the selfdual 2-forms of con-

stant length with Ca) = (T/[¢|, the development at infinity of the ¢.op
is

iy op(C)”
(16) or((") = dror =~ + O Pirc®).
Remark 1.20. We check that op((t) = C&)ehﬁ’ where we denoted

84&)eh4+ the differential of ¢t +— eh¢+ at (T in the direction (&).

1.2.3. Negative orientation. We will also consider negatively oriented
Eguchi-Hanson metrics. For ¢ = ({1, (2, (3) € R*\{0}, we define

(17)

4
ehe = /W (ar?+72¢5(@r)?) + VICZ+ 7 (Cy (dr)? + G (dr)?)

It is isometric to || - eh but has the opposite orientation. At infinity, we
have the development

("op(Q)F

IR ol ).

eh,- =e—
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1.3. Naive desingularizations

Let us now recall the definition of a naive desingularization of an orbifold
from [Ozul9al.

Gluing of ALE spaces to orbifold singularities. Let 0 < 2¢ < ¢
be a fixed constant, t > 0, (M,,g,) an orbifold and ® : B.(0,e) C R*/
Zo — U a local chart of Definition 1.2 around a singular point p € M,.
Let also (N, gp) be an ALE metric asymptotic to R*/Zy, and ¥, : (R*/
Z2)\Be(0,€5't2) — N\K a chart at infinity of Definition 1.5.

For s > 0, define ¢, : # € R*/I' — sz € R*/T". For t < ¢}, we define
M,#N as N glued to M, thanks to the diffeomorphism

og oWt U(Ae(ey ot /%)) = D(Aeley 'V, o))

Consider x : Rt — R™, a C* cut-off function supported on [0,2] and equal
to 1 on [0,1].

Definition 1.21 (Naive gluing of an ALE space to an orbifold). We define
a naive gluing of (N, gy) at scale 0 < t < €* to (M,,g,) at the singular
point p, which we will denote (My#N, go#p.t9p) by putting go#Hp 9o = go 0N
M\U, go#pi9p = tgy on K, and

Gottpigy = X(t 1) Whogy + (1 — x(t 7)) D% go

on Ae(e V1, 2¢).

Definition 1.22 (Function rp on a naive desingularization). On a naive
(M, gP), we define the function smooth function rp in the following way:

1. rp =1, on My(eo) defined in (5),
2. rp = \/tjmy, on each Nj(egt) defined in (6) and
3. rp =16 on Ac(eg V1, €0).

Let us fix a notation for the desingularization by Eguchi-Hanson metrics.

Definition 1.23 (Naive desingularization by Eguchi-Hanson metrics). Let
(M,,8,) be a compact Einstein orbifold with integrable Einstein deforma-
tions (Definition 1.10) and R*/Zy singularities at points j € S, and let
v e O(g,) and ¢ = (C;j)j with ¢; € R3\{0} and ¢; € {+,—}. We define ggv
the naive gluing (as in Definition 1.21) of ehc;j/|<j‘ to gy at scale |(;| using
the ALE coordinates of (10) and (17).
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Definition 1.24 (Approximate obstructions (N)(gCDU)). We define O(g?v)
the linear space spanned by the infinitesimal variations of (v, () — gCDv.

Remark 1.25. The space O(Q?U) is very close to the approximate ob-
struction space of [Ozul9b] and even yields better estimates. The results
of [Ozu19b] therefore hold when using O(ggv) instead of the similar space

O(gP) of [Ozu19b].

We next define the notion of nondegenerate sequence of naive desingu-
larizations in the spirit of [BR15] (see also the notion of generic smoothings
in [Spol4]). It intuitively means that the desingularization sequence reaches
an element 0,E(M) without being too tangent to d,E(M).

Definition 1.26 (Nondegenerate naive desingularization). We will say that
a sequence of naive desingularizations (M, gt’iﬂ)n) of a compact Finstein orb-
ifold (M,,g,) is nondegenerate if, denoting tpmax = maxt, ; and tpmin =
mint, j, we have

: tn,min
1. hmn*H,oo t,— >0 and

n,max

llvn 2
2, e _, ),

tn,min

This technical definition essentially means that the gluing scales are
comparable and the Einstein deformations of the orbifold are not too large.
A stronger notion is that of transverse desingularization.

Definition 1.27 (Transverse naive desingularization). We will say that a
sequence of naive desingularizations (M, ggjvn) of a compact Einstein orb-
ifold (M,, g,) is transverse if we have

: tn,min
1. hmn*)+oo m >0 and

Un
2. Il

tn,min

Remark 1.28. Usual desingularizations are transverse and often even or-
thogonal, with v, = 0. The desingularization of [Biql3] is a notable excep-
tion.

Let us finally recall that according to [Ozul9a, Ozul9b], for any Einstein
orbifold (M,,g,), and any § > 0, there exists € = ¢((My,8,),d) > 0 such
that if an Einstein metric (M, g) satisfies

dGH((M07 go)a (M, g)) <¢,
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then, there exists a naive desingularization (M, g") of (M,,g,) and a dif-
feomorphism ¢ : M — M with

lo*g — QDHcgzj(gD) <9,

where the weighted Holder norms C;f (gP) are defined in Section A in the
Appendix.

We finally define the notions of nondegenerate and transverse sequence
of Einstein metrics desingularizing the orbifold (M,,g,) € G,E(M).

Definition 1.29 (Nondegenerate and transverse Einstein desingulariza-
tion). Let (M*, g, )nen be a sequence of Einstein metrics dgp-converging
to a compact Einstein orbifold (M,,g,) € O,E(M?). By [Ozul9a, Ozu19b],
there exists a sequence of naive desingularizations (gff,un)n such that up to
acting on g, by a diffeomorphism, we have

1. Hg'fl - gtlz,v"
[Ozu19b],

2. gy is in reduced divergence-free gauge (defined in [Ozu19b]) with re-
spect to g,g on

3. gn— gL, is L2(gtlz’<n)—07"thogonal to 0(g£7<n) of Definition 1.2/

czep., ) S € for some € = €(g,) > 0 determined in

We will say that g, is a nondegenerate (respectively transverse) Finstein
desingularization of (M, g,) if the sequence (gg’vn)n is nondegenerate (re-
spectively transverse) in the sense of Definitions 1.26 and 1.27.

(M, g,) € E(M)

(M,,8,) € D, E(M)
Non degenerate desingularization
Figure 1: A nondegenerate desingularization (M,g,)nen approaches

(M,,g,) without being “too tangent” to the boundary 9,E(M): it stays
in the plain green region.
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(M,g,) € E(M)

¢ 8,E(M)
(A‘“'[n: go> S ({)OE(:\[>

Transverse desingularization

Figure 2: A transverse desingularization (M, g, )nen becomes almost or-
thogonal to the boundary 0,E(M) as it approaches (M,, g,): it stays in the
plain green region.

2. New obstructions to the desingularization of Einstein
orbifolds

We first deduce a new type of obstruction to the Gromov-Hausdorff desingu-
larization of Einstein orbifolds which differs from the ones of [Biq13, Biq16,
Ozul9b]. The goal of this section is to prove Theorem 0.2 and Proposi-
tion 0.4.

This obstruction is special to the compact case, or at least not present
in the asymptotically hyperbolic (AH) context if one allows deformations
of the conformal infinity (which are infinitely many new degrees of freedom
which do not add obstructions).

Example 2.1. The AdS Taub-Bolt family of metrics constructed by Page-
Pope [PP87] are asymptotically hyperbolic (AH) Einstein metrics and con-
verge to an AH selfdual Finstein orbifold while bubbling out an Equchi-
Hanson metric (see [Ozu20t, Chapter B] for a precise description of the
degeneration). This orbifold has only one singularity R*/Zy at which we
have Ric® = 0 because it is Finstein, and in the usual bases of QF, we have

-1 0 0
R-=|0 -1 0],
0 0 -1
because it is selfdual, and finally
0 0 O
RT=1|0 -3 o[,
o o -3

only has a one-dimensional kernel.
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The AdS Taub-Bolt orbifold is L?-rigid. If we consider the Einstein de-
formations induced by the conformal changes at infinity, then, there exists
an infinite dimensional space of nondegenerate Einstein desingularizations,
see [Biq13]. This shows that the compactness assumption in Proposition 0.4
18 mecessary.

2.1. Degeneration and obstructions

Let (M,,g,) be a compact Einstein orbifold with integrable Einstein defor-
mations (Definition 1.10) and with a R*/Zy singularity at p € M,, and let
(N, eh) be an Eguchi-Hanson metric. At p, we can choose orbifold coordi-
nates (Definition 1.2) in which the metric g, is in Bianchi gauge with respect
to the flat metric e (see [Ozul9b] for a proof in the more difficult case of
neck regions), that is satisfies Beg, = 0. Since the metric g, is smooth in
the above orbifold coordinates and because of the Zs-invariance, we have
the following development,

(18) g = e+ Hy + Hy+ O(rg),

where the H; are homogeneous symmetric 2-tensors with |H;|e ~ r¢ with
BeHy; = 0. At the infinity of N, in the coordinates of (7), we have the
following development,

(19) eh:e+H4+O(re_8),

where |H*|e ~ 5% and with B.H* = 0.
For a metric g, let us denote QE,Q) the bilinear terms given by the second
derivative of

h > ®,(h) = Ric(h) + 0} Byh

at g (whose linearization is P;). According to [Biql3, Section 3, Section 10
and Lemma 14.1], for any symmetric 2-tensors |Ha|e ~ r2 with PoHy = Ae,

and |Hyle ~ 2 with PoHy = AHy — QP (H,, Hy), there exist
1. a unique symmetric 2-tensor hy and reals (Ar)req1,2,33 on N satisfying:
Penhy = Aeh + Z kO,
k
(20) hy = Hy + O(r ),

/Sz (ho, ok>ehdveh‘82 =0 for all k£ € {1,2,3}.
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2. and a symmetric 2-tensor h, and real numbers (uy)req1,2,3y on N sat-

isfying:
Penhy = Ay — Q) (hy hy) + > pxor.,
k
(21) hy = Hy+ O(r°),
/S2 (hy, ok)ehdveh‘sz =0 for all k¥ € {1,2,3}.
for all € > 0.

Remark 2.2. The above tensor h, is not unique since there are 2-tensors
which are O(1) at infinity in the kernel of Pen. There will be a best choice of
hy in our construction which will ensure that the asymptotics on the orbifold
and the ALE match, see Remark 2.11.

2.1.1. More precision on the first obstruction. Let ¢ € R3\{0}, and
denote oy (¢*) the basis of O(ehx) of (16). Since the metric eh¢+ is homo-
thetic to eh, we also find solutions hy and h, to

1. aunique symmetric 2-tensor h,((T) on N satisfying the following equa-

tions
PehCiEQ(Ci) = AehCi =+ z )‘k(ci)ok(qﬂ:)a
k
(22) hy(CF) = Hy + O(r7?),

/Sz (B2 (¢*), 0k(CF))eh s dVen s o, = 0 for all k € {1,2,3}.

2. and a symmetric 2-tensor h(¢C*) on N satisfying the following equa-

tions
(23)
Pon 2 hy(CF) = Ahy(CF) = Q) (ha(CF), ha(CF)+ D ji(CF)on(¢F),

k
hy(C¥) = Hy + O(r),

/ (h4(CF),08(CF))eh = dven -, = 0 for all k € {1,2,3}.
SQ

for all € > 0.
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We moreover have the following values for the A, (¢F): for some ¢ # 0,

(24) M(CF) = e (RE(H)C*. G )

where (C(ik))ke{lz’g} is an orthogonal basis with ]C(j;)| = /2 and C(il) = ¢*/|¢|.
We can be more precise about the first obstruction and the symmetric

2-tensor hy,.

Lemma 2.3. Let hy be a solution of (22) (where we omit the dependence
in C* for simpler equations). Then, we have

(25) hy = Hy + H3 + O(r=*F¢) for any e > 0,
where Hy is a homogeneous solution to

(26)  PoHj = —Q (H', Ha) + AH' + Y MO}, with |Hjle ~ 15,
k

Moreover, when A\, = 0, then Hé = 0.

Proof. At infinity, in ALE coordinates we have h, = Hy + h' with b’ =
O(rgt¢) for all € > 0. Since eh = e+ H1+O(r; ), we develop the equation
(20) as:

PoHy + Po(W) + QS (H*, Hy) + O(rg®t9)

= Ae+ AH* + ) MO+ O(rg ™),
k

and using the assumption that PoHy = Ae, we find

Po(h) + QP (HY, Hy) = AH' + Y N0} + O(rg#79),
k

which is the stated equation. Now let us consider H? with |H?|e ~ r3? such
that

P.H? = QP (H, Hy) + AH* + Y X0}
k

It exists by Lemma A.5 in the appendix (one checks that there is no log
term). Then, we see that Pe(h' — H?) = O(r;%¢) while b’ = O(r;2*e).
By the theory of elliptic operators between weighted Holder spaces (see for
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instance [PR78] or [LM85]), we therefore find that h’ — +(9( S 6t)
for a constant symmetric 2-tensor Ky, and consequently

K
h }I2 +O( —4+€) H2+ —O+O( —4+e)

e

which proves the stated result.
Let us now prove that if the obstructions Ay, of (20) vanish, then H3 = 0.
The idea is to use the uniqueness of h,y, and show that £,y h, satisfies
the same equation. Indeed, we have:

(27)
0 = L0, (Penhy — Aeh) = QL) (L,o,eh, hy) + PenLyo,hy — ALyo, eh,
= eh£r8 QQ — 4Aeh

+ Q% (L,5,eh — 2eh, hy) — A(L,5 eh — 2¢h)

Remark 2.4. In the last line, we used the fact that QS}E (eh, hy) + Aeh =
0, which comes from the (Bianchi-free version of) the identity Ric(sg) =
Ric(g) as 2-tensors for all s > 0. This implies Dy Ric(g) = 0 for all g and
differentiating again at g in the direction h gives:

D? Ric(h, g) + Dy Ric(h) = 0.

We wuse this formula with g = eh, h = hy and use the assumption that
Den Ric(hy) = Penhy = Aeh because the A\ vanish.

n (27), we recognize —201 = L5, eh — 2eh. Let us show that the last
term vanishes. Using [Biql6, Lemme 3], we find for ¢ # 0,

Q()(ol,h2 Aol—cZR

and by [Biql3], if Ay = Ao = A3 = 0, then, RE(HQ) = RE(Hg) = RIL?,(HQ) =
0, hence,

Qﬁf(ohha) — Aoy =0.

There remains Pen Ly, hy = 4A€eh in (27). Since L, hy ~ L5 Ho = 4Hs
at infinity, we find the same first two equalities of (20) up to a constant 4.
Since 4h4 is the unique solution up to the addition of an element of O(eh),
we find that £,5 hy = 4hy + O(rg?).

The point is now that by homogeneity, £.5 Hy = 0 hence L5 hy =
4Hy + O(rg*), and consequently hy = Hy + O(r3?).
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Remark 2.5. Let us note that the vanishing of Hy is dependent on the
coordinate system we consider for Equchi-Hanson metric. It seems that the
crucial property if these coordinates we use here is that the vector field r0,
is harmonic. Since we will always take eh in the coordinates of (10), we will
always have Hy = 0 as long as the X\, vanish. O

Later on, we will consider deformations of our orbifold as well and we
will need to consider metrics which are not quite asymptotic to our target
Euclidean metric, but a nearby one, i.e. e+ Hy for some constant 2-tensor Hy.

Similarly, let us consider coordinates in which we have g, = e + Hg +
Hy + O(r?) for Hy a traceless constant 2-tensor and let us denote v : R*/
Zo — R*/Zs a linear isomorphism for which ¢*e = e + Hy, in order to
extend Ha to i*ehgx.

Remark 2.6. Here, by y*eh¢+, we really mean the same diffeomorphism
applied to eh = e+ 3 ;- H;,(0)r=2% in the polar coordinates 6 € RP? and
r € [0,400) as in [Kro89a, Proposition 3.14], where (R*/Zy,e) = (RT x
RP3, dr? 4 dr?ggps). The metric has to be “closed-up” by a different S* at
»(0) = 0.

Then the obstructions are:
(28) M(CF) = e (RE(Ha)CE G )

We will moreover need to extend constant 2-tensors to our Eguchi-
Hanson metrics.

Lemma 2.7. Let Hy be a constant 2-tensor on R*/Zs, i.e. constant on R*.
Then, there exists a unique 2-tensor hy on T*S? satisfying:

Pehﬁ() = 07
(29) ho = Ho + Hj + O(r=57) for all e > 0
hy L12(en) O(eh).

Proof. Let Hy = Lx,e be a constant symmetric 2-tensor with X; a linear
vector field. Then, since PoHy = 0, for x a cut-off function supported in
a neighborhood of infinity of eh, we have Pen(xHo) = O(r5®), and an
integration by parts against the oy proves that Pep(xHo) L O(eh) and there
is no obstruction to finding A" with Pen(xHo + k") = 0 and h” = O(rg*c)
for all € > 0, see [Biql3, Proposition 2.1]. This lets us find a solution h to

(30) Pephg = 0, with hy = Ho + O(r3%).
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with Benhy = 0, trenhy = 0 by the maximum principle since trenFPen =
%Vzhvehtreh and BepPen = Ben0y, Beh = %v;hvehBeh. We can make h
unique by additionally assuming: hy L O(eh) and we find a development:

(31) ho = Ho + Hj + O(r55%¢) with |Hf|e ~ 5%

The L2-product between h, and o € O(eh) is a priori ill-defined because
o= O(r~*) and hy = O(1), but since the coefficients of the leading terms re-
stricted to spheres {r = cst} belong to different eigenspaces of the Laplacian
on RP3, this is therefore well-defined.

Remark 2.8. We can prove that we have hy = L, eh for some vector field
xy satisfying 0 = BenLy eh = Vi Venzy and xy = X1 + O(rz3%¢). We
however do not have any application for this at the moment.

The link between the next asymptotic term Hi of the Einstein modulo
obstructions deformation hy = Ha + Hj + ... of Lemma 2.3 and the de-
velopment of hy = Hy + Hé + ... is given by the following integration by
parts:

0= [ (Panls ~ feh— 3~ Avor, o) g v
N k

_ / (Ponhig, hyYendien
N

_ / (hy, Ponho)encven
N

1

+ 5 TE{POO {Te:r}<v<9re (ho); hg)en — (o, Vo, ho)endvgr —r

(32) 0=-3 / (Hy, Hy)edvss /7, — / (Hy, Ho)edvss 7,
S3/Zs S3/Zs

where we used that by homogeneity, we have Vg _Hy = %HQ, Ve, Ho =0,

Vo, Hy = —2Hj and Vp, Hj = — = Hj.
Finally, if Ay = 0, using the fact that Hy = 0 from Lemma 2.3, we find:

(33) / (Hy, Hy)edvss /7, =0
S‘s/Zg
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2.1.2. A first obstruction on the orbifold. We have a similar result for
the extension of tensors on the orbifold. Consider an infinitesimal Ricci-flat
variation of eh .+ in the direction o, = om(Cji) € O(ehcji) where om(CJi)
is the 2-tensor defined in (16) and Remark 1.20. In particular, o,, has a

development o,, = O} + O(|¢]3rg®) with |02 |e ~ |¢|r~2.

Lemma 2.9. We define 6, form € {1,2,3} some solutions to the following
equation

POalen € O<g0)7
(34) of =0 + 027 for any € > 0 at the singular point j
o, L O(go)-

They are determined up to the kernel of Py, in O(rg?) at the singular points
and this choice will not alter the result at this level of precision.

Proof. Let us consider a cut-off function y on M, supported in a small
enough neighborhood of a singular point p. We have Py, (xO2) = O(r—?),
hence there exists a 2 tensor |Ofn72| = O(r=27¢) so that

Py, (x(Op, + O ) = O(r279),

Finally, using the Fredholm properties of Py proven in [Ozul9b], there exists
|W| = O(r—°) for all € > 0 so that:

Pg, (x(O, + Of‘n,2) + 1) € O(g,).

Now, we can uniquely choose it by imposing (x (O3, + Oan) +h') Liag,)
O(g,), where the L? product is a priori ill-defined as in the proof of Lemma
2.7, but makes sense via the orthogonality of the different eigenspaces of the
Laplacian on RP3. O

Proposition 2.10. Let us denote (v;); an orthonormal basis of O(g,). Con-
sider the development of the symmetric 2-tensor hy = Ha + H3 + O(rg6%°)
of (22) (again, we will omit the dependence in ().

For ¢t € QF and the symmetric 2-tensor H* = H*((*) with P.H* =0
and BeH* = 0, there exists (54, (1);) with a symmetric 2-tensor 7t and real
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numbers (v;); on M, satisfying the following equations
(35)
POE4 = Z yvy) + Z )\kﬁi,
l k
Pt =Ht HY + O([¢|*r;€) for any € > 0 at the singular point j
—4
h™ L O(go).

We moreover have the following value for the obstruction when A\ = 0

for k € {1,2,3}
(36) v = 3/ <H4, W,2>edv83/Z2'
S3/Z-

where we have v = Vig + Vo + O(ra) with |V mle ~ r.

Remark 2.11. The next term in the development ofﬁ4 is Hi with |H}|e =
O(rs +rg€) for any e > 0 (it will typically be logarithmic in re) for which
we have

B' = H*+ HE + HY + O(|¢|>r¥).

It satisfies
(37)  PoH{+ QY (HY Hy) + QY (Hj, Ho) + Q) (H*, Ha, Hz) = 0.

for Q,(em) the m-linear terms of the development of h — (Ric —A+67, , Be)(e+
h) around h = 0. The equality (37) is exactly the equation satisfied by the
next term in the development of hy defined in (21) or (23). That was what
made hy non unique: one could add any element of the kernel of Pep, asymp-
totic to a constant 2-tensor to it. We can make it unique (and still existing)
by imposing that we have for the above Hj :

hy = Hy+ Hj + O(r—2%°).
Proof. Consider x a cut-off function supported in the neighborhood of the

singular point j € M,. From P.H* = 0, r¥|VE(g, — €)|e = O(r2) and using
(26), we find

P,(x(H* + H3)) = Y _ Mo} € 1,°C8 (80)
k
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for 0 < 8 < 1 where the norms are defined in the Appendix A.
Moreover, by integration by parts and using o) L 12(g,) O(80), we find

[Pttt + ) v, dog

N /M (X(H* + H3), Po(vi)) dug,

1

(38) + 5 }g% (o= }<v87‘o (XH4)»Vl>gu - <XH47 V8T0Vl>godv{'r,,:'r}

1.,
+ 5 lim (Va, (xH3), vi)g, — (xH3, Vo, Vi)g,dv(r,—py

2 r—0 {ro=r}

3 / (H* Visbedvgs 2, + / (H2 Vi) edus 1,
S3/Z2 SS/ZQ

Indeed, since once restricted to S3/Zs, the coefficients of H 4 and Vio are
eigenfunctions of the Laplace-Beltrami operator and associated to different
eigenvalues, the product against the first asymptotic term V; o vanishes. Note
that this also justifies the orthogonality of (35). For the second term Vj s,
we use the homogeneity of H* and Vi,2 which yield Vg _H 4 = —%H 4 and
Vo, Vig = %VI,Z and the above value. Thanks to the Fredholm properties
of P, proved in [Ozul9b], we have the stated result.

When A\, =0 for k € {1,2,3}, then, we can use Lemma 2.3, hence plug
H3 =0 into (38) and find the expected value. O

Similarly, if (M,, g,) has several R*/Zs singularities, denote E? the sym-
metric 2-tensors of (35) asymptotic to H4(C]i) + Hg({f) at the singular
point j. The symmetric 2-tensor

4 —4
Ri= )k
j singular
satisfies
(39)
4 -
P,h = Z vy + Z Z /\io;{k,
k ik
7t = H4(§;E)+H§(Cf)+(9(r;€) for any € > 0 at each singular point j
7' 1 0(g,).
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2.1.3. First variation of the initial obstruction. By [Ozul9b, Propo-
sition 5.17], around a singular point j, in coordinates where g, = e+ Hj 2 +
O(r?), for v € O(g,) small enough and with v = Vjo + Vj2 + O(r2) in the
same coordinates, we have

go = (e+ Vjo) + (Hjz + Vj2) + O(ry),

with Vjo = Vjo + O(|[v]72(,)) and Vio = Via+ O(|[v]| 7.4, yre)- We also de-
note 1(Vj o) : RY/Zy — R*/Zy the linear isomorphism for Wthh Y(Vig)'e =
e+ ‘73‘70.

For k € {1,2,3} and a singular point j, and ¢ = ({;); with ¢; € R3\{0},
we will denote Ai((, v) the real numbers of (28) obtained for Hy = f/j,o and
Hy = Hjs+ f/jg, that is for ¢ > 0,

(M0)  NCw) = e{RE(6(T0)(Hy + Vo)) G ).

We find a link between the variations of the first obstruction A; on the
Eguchi-Hanson metric and the first obstructions v; on the orbifold.

Corollary 2.12. Consider (M,,g,) an integrable Einstein orbifold with only
R*/Zy singularities. Consider also a small enough v € O(g,), the orthonor-
mal basis (v;); of Proposition 2.10 and the Einstein deformation g, of g, of
Definition 1.10. Assume that we have X (¢,0) =0 for all k, j.

Then, for some constant C' € R*, we have the following control:

(41) D IGIMGY) =CD (v, viyu(S,0) + O(l[v]13: 1<),
l

J singular

where the vy are real numbers of (39), and where || = max; |(j].

Proof. Let (M,,g,) be like in the statement above and consider a small
enough v € O(g,) and g, the Einstein deformation of g, of Definitions 1.9
and 1.10, denote X} (¢,v) the constant in (40) above. Our goal is to show
that the first variation of v — 3, |¢j|A (¢, v) around (¢,0) is proportional
to Zk<va Vl)”l(ga 0)

From the expression (40) and the formula [Biql3, Proposition 3.2], we
see that for the singular point j, the first variation of v — IGiIA] (¢ v) is

Z \Cg\/ (V2, 0j 1) dvss 7,
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up to a multiplicative constant. Using the equality H 4((;:) = %O}{l(gji)
together with (39), we see that this equals ), (v, v;)1; up to a multiplicative
constant and the estimate (41) follows. O

2.1.4. Values for the second obstruction. Let Hy be a quadratic sym-
metric 2-tensor with PoHs = Ae, and Hy with |Hyle ~ 72 and PoHy =
AH,— QY (Hs, Hs), and recall the notation R (Hj) as the common selfdual
part of the curvature at re = 0 of Riemannian metrics with a development
e+ Hy + O(r?). As seen above, we have A := c¢(RT(Ha)(wy ), w; ) for the
Ak of (20) and ¢ > 0. In particular, if for all k£, Ay = 0, then we have

0 O 0
RT(Hy)= |0 Ras Ros|,
0 Rsz» Rs3

and in this case, for a positive constant C' > 0, by [Biq16, Lemme 9] we have

(42) w1 = Cdet [Rm RQS]

Rz  Rss

Remark 2.13. If Ric(Hz) = 0, then we have trR (Hy) = 0 and therefore

det [R22 R23} <0

Rz  Rss

with equality if and only if R (Hz) = 0.

In general, we might only know that the Ay are small rather than exactly
vanishing. We still have the following estimate.

Lemma 2.14. Let Hy and Hy be homogeneous symmetric 2-tensors as
above. We have

)

R22 R23 —2
43 = C'det +O(D [Nl - I 2H
( ) H1 € |:R32 R33:| ( - | k| ’T 2

Proof. According to [Biql6, Lemma 7], we have

Cil)\l Cil)\g Cilkg
R7(Hs) = |c'XA2 Ry2 R
c A3 Rss  Rss
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Exactly like in the proof of [Biql6, Lemma 8], we use the expression of
Q,(f) given in [Biql6, Lemma 3] in order to express p1. The value of i is a
quadratic form in the coefficients of R*(Hz). It is composed of products of
a A\; and a A;, products of the A, with the remaining R;;, and its last part
involving RQQ, R23, R32 and R33 is

can[Bn Rl

R3s  Rs3

as proven in [Biql6, Lemma 8]. Since all of the A, as well as the R;; are
linear in Hy and are therefore are controlled by |r;2Hsl,, . We deduce the
stated estimate. O

For another Eguchi-Hanson metric eh¢+, one has similar estimates with
the matrix expression of R (Hs) in the basis (¢F, || ‘Cé), q -Cé)) onR-¢*t
and its orthogonal. Note that in that case, we have A\, ~ [¢| and p1 ~ |¢|?.

2.2. Approximate Einstein metrics and obstructions

Let (M,,g,) be a compact Einstein orbifold with integrable Einstein de-
formations and only R*/Zy singularities. For v € O(g,) small enough and
(= (Cf)j with ¢; € R3\{0}, we recall the notations:

1. g, the Einstein deformation of g, of Definition 1.10,

2. for a singular point j, symmetric 2-tensors h;,(v,() and h; 4(v, () of
(22) and (23) by extending the asymptotic terms of g, on eh + and

3. a symmetric 2-tensor 54(1), ¢) of (39) extending the r—* term of eh «

on (Mm gv)'
4. gP or gP for the naive desingularization and rp the associated radial
parameter, see Definitions 1.23 and 1.22

Definition 2.15 (Approximate Einstein modulo obstructions metric gév).
We define an approzximate Einstein modulo obstructions metric g as the
naive gluing of the metrics ehCi +h;o(v,¢)+h;4(v,C) at the smgular points

J of (Mo, gy + 7' (v,0)).
There exists C' = C(g,) > 0 such that we have
o 1k |VE h s ho| < Cr%,

o H|VE ih4| Cri,, and
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b T%|V’e€h<¢h | < C’|<|2"4D )
J

we have the following controls: on M,(¢) (defined in (5))
(44) r%‘vk(gév - gg'u)’ggv < C|C|27

and on the connected component of M\ M,(e) containing the singular point
jes:

k ki A D 2. .—4 2
(45) TD‘V (gc,v - gg,v)‘ggv < C <1{TD>|CJI%}|CJ" TD + ]l{rD<2|Cj|i}7aD> .

where 1 4 is the indicator function for A.
We now approximate the kernel of the linearization of the Einstein op-
erator at 9?,1;'

Definition 2.16 (Approximate obstructions O(Q?U)). We define O(Q?U)
the linear space spanned by the infinitesimal variations of (v, () — gév.

More precisely for the element oy, € O(eh<¢) with oy, = 8<j_(k)ehc¢, we
define

~ L A
O := 0¢; 1) Ye o

and, for w € O(g,), we define W the associated infinitesimal deformation
of v gév.

Remark 2.17. As in Remark 1.25, the space O(gév) is very close to the
space O(ggv) of [Ozu19b] and even yields better estimate. The results of
[Ozu19b] therefore hold when replacing (~)(g£v) by O(gév).

We have the following estimates which show that the space O(gév) is
an approximate L?-cokernel of the linearization of the Einstein equation.

Lemma 2.18. For 6, € O(gév) and W € O(gév) as in Definition 2.16
above, we have for any symmetric 2-tensor h on M,

(46) [(Pyp, hy01) 1240, | < ClCI- Hth};f;(gg{v)HOkHL?(ehC;E) and

(47) [(Pyp, hy W) 2gp,)| < CIC] - [Pllczege 1wl (g,)-
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Proof. By integration by parts and symmetry of cho on the closed mani-
fold M, it is equivalent to control

/M <h, ngv Ok>g£v dvchvu and /M <h, ng”w>g£v dvggu.

On the region where gé)v = eh.+, we have Pgéa 0r = 0. There remains
I J sV

the region where gCDv = g, on which by differentiating (39) with respect to
C;E, we find

P b Ok = 284] VIV + Za@ *) )\m )

zm

where (w;); denotes an orthonormal basis of O(g,), and where the J, , v

are the derivatives of the v; = v(v,() of (39) in the direction (j . Given

the expressions (24), (16) and (39), that gives for some C' = C(g,) > 0,
P50, sen ) < €I ou(Gen

We find that

L e (P86 o, < CICL Ihllong 1ok sty

Finally, on the gluing region where |Cji\i <rp< 2[Cf|%, we have for all
leNand C; >0

rHIVI(9D, — ehs)lye. < GG Prpt + 1)

and
rp|V (8 — on)lge, < C(IGHrp + 16 Prp),

and we find that on the gluing region where |Cji|i <rp< 2|C]j-[|i, we have

(ngvak

D ’Pg U(Ok _Ok) ‘(ngDu _Pehgi)(ok)’g?

9w 9ew J

C\ ’ HOkHB eh i)

We therefore globally find the estimate (46).



Higher order obstructions to the desingularization 935

For the second estimate, note first that on the region where g?v = g,
we have

ngvW = 0,

and by a similar argument to the above one, by differentiating (22) and (23),
on each region where gCDv = ehci, we have

ngvv?/ = 28W()\k + Mk)Ok(C;-t),
k

and we find that there exists C' = C(g,) > 0 such that |Ow (Mg + k)| < C[C].
Together with a control on the gluing region like the above one, one obtains
the estimate (47). O

Proposition 2.19. Assume that there exists an Einstein metric g¢, satis-
fying:

1. ‘I’ggv (ggv) = O,

2 —gf, L O(gd

- 8w g(,v (gC,v)
3. ”gC,v_gévHCl";fj(g&) < € fore > 0 small enough determined in [Ozu19b]
depending only on g,.

Then, we actually have for alll for the obstructions of (35):

(43) m = 0(¢[),
and for each j, and all k € {1,2,3} for the obstructions of (22) and (23):
(49) N+ g = O(G19).

Proof. Let us denote To(g,)" the L2(g?v)—orthog0nal projection on

C)(gév)L. Thanks to the obstruction result of [Ozu20t, Proposition 5.1],
- A ;
we only have to understand the value of HWO(gg‘,v)Lq)gffv (gQU)Hr;fC“(ggv)’ in
A .
order to control both [|g7, — ng”HCE’,Z‘(g&) and the obstructions, where the

norms are defined in Definition A.3 in the Appendix.
The estimate on the different Eguchi-Hanson regions has been done in
[Biq13, Section 14]. There remains to understand the orbifold region. Using

the definition of 54, we control the first variation

3
Pe i =Y uvi+ Y Mok,
l

J k=1
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and on the region where gév =g, + 7t with 7' = O(|§|2r54), we have:

(92 Z vvi+ Y Z Xt +O([¢'rpt)

7 k=1

which is exactly analogous to the estimate [Biql3, (108)]. The gluing region
is treated exactly as in [Biql3, Section 14] for instance, see also the above
proof of Lemma 2.18. We conclude like in [Biql3, (109)] that

(50) 762, ®a2, (9802 o) < CICIETF.

We conclude exactly like in order to prove [Biql3, (112)] that we have the
stated control (see also [Ozu20t, Proposition 5.1]). O

2.3. A new obstruction to the desingularization of Einstein
orbifolds

By [Ozul9a, Ozul9b], we know that Einstein metrics which are close to
an Einstein orbifold (M,,g,) result from a gluing-perturbation procedure.
To prove that it cannot be desingularized, we just need to prove that an
obstruction to this procedure does not vanish.

2.3.1. Approximate obstructions. Let us denote ( = t- ¢ with t =
(tj); = (I¢;]); and ¢ = (¢5); = (C;E/Kj\)j. By Proposition 2.19, we find the
following estimate for any singular point j, any k € {1,2,3}:

5

(51) tj)‘i;((ﬁ]v )+t2 (¢Jv v) = (trgnaX)v and

(52) y(t-¢,v) = O(téﬂax), for each [,

where the )\i(qﬁj, v) and ,ui,(qﬁj, v) and v(t- ¢, v) are the constants of Lemma
(22), (23) and (39) for each eh,+ associated to the development of g, at the
singular point j.

Our goal is to prove that for all j, both all of the )\i and ,u{ have to
vanish when ¢ — 0. The main concern is to rule out the compensation of
zu{ by tj)\{ just like in the desingularization case of [Biql3, Theorem 14.3].
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Proof of Theorem 0.2 and Proposition 0.4. Let us consider (M,,g,) €
E(M)sp for M having the topology of M, desingularized by T*S? in an
orientation at each of its singular point and assume that g, only has inte-
grable Einstein deformations (see Definition 1.10). Let us assume that there
exists a sequence of Einstein metrics (M, g, ), desingularizing (M,,g,). We

will discuss at the end of the proof in which situation we shall assume that
this sequence is nondegenerate, transverse or stable.

Then, by [Ozul9a, Ozul9b], there exists a sequence of naive desingu-
larizations gCDmvn such that the metrics (M, g,) are Einstein perturbations
of 93,% with ¢, = ((n,;);. We will use the notations t, = (t,;);, with

+

tnj = |Cnjl > 0 and ¢, = (dnj)j, Onj = é”—h satisfying C;L—L’j =tnj - Onj
and we will denote t,, - ¢, = (tn jdn,j);-

By compactness, up to taking a subsequence, we can assume that for any
Js $n,j = $oo,; on the sphere while ¢, — 0 and v, — 0 since by assumption
the limit is g,.

Denote Ai((bn,j,vn) and ,ui(qﬁn,j,vn) the real numbers of (20) and (21)
for these configurations. According to (51), we have the following controls:
for all 5 and k,

(53) tn,j)‘i;(ﬁbn,ja Un) + ti,jﬂi(ﬁﬁn,jv vn) = Ot} max)-

The first obstruction of [Biq13, Ozul9b] means that at the limit, for any
singular point j, we have A)(¢oo;,0) = 0 for k € {1,2,3}, there exists a
basis of the selfdual or anti-selfdual (depending on the orientation of the
gluing) 2-forms starting with ¢ j = lim;j_ 1 Ci j/ |Cn,j| in which we have

00 O
(54) Ry(j)= [0 a; 0
0 O aé

Our goal is to prove that for all j we have, M{(qboo,j, 0) = 0. By Lemma
(2.14), this will then imply that either a, = 0 or a = 0 in (54).

Assume towards a contradiction that both ag # 0 and ag # 0. Let us
use the variations of the ¢ — )\i(gb, 0) computed in [Biql3, Lemma 12.2] at
®oo,j, We first have the controls:

(55) )‘{ (¢n,j70) = O(‘(ﬁn,j - ¢oo,j‘2)7
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because the first variation of the smooth map ¢ +— )\{ (¢,0) vanishes at ¢ ;.
Similarly since we assumed towards a contradiction that af, # 0 and a} # 0,
there exists ¢ > 0 depending on (a3, a}), so that

(56) | (X (B0 0), My (D, 0)) | = €léhnj — ool

since the first order variations of ¢ — ()é(gb, O),)\%(qb, 0)) is invertible at
$o0,j- For the variations induced by v, € O(g,), for any k € {1,2,3}, from
the expression (40), we have

N (g Un) = No(Dnj 0)] = O([[vnll 12(e))-

For the ui, we have the control ,ui(qbn,j, Up) = ,ui(qboo,j, 0)+O(|pn,j — Poo i)+
O(||vnllz2(g,))- Therefore for k =2 or k = 3, (53) gives
(57)

tn,j)\i(@m,j; ’Un)

= 2 (1 (doo,js vn) + Olénj — dooil) + Ol r2(g,))) + Ot max)-

At any singular point j, we must therefore have | ()\% (n,js vn)s Ny(Pn s vn)) } =

5/2
O(tn,j+ t"’""‘"‘), and by (56), this implies that [¢, j — ¢oo ;| = O(anHLz(go) +

, ln,j
5/2

tn,max)
tny /7

b,

1. In the transverse (Definition 1.27) situation, where we have t,, max =
O(tny) and [[vnllr2(g,) = 0(tnmin). By rewriting (53) for k = 1, in-
cluding the bound (55) with the new information that |¢y, ; — ¢oo j| =
O(tn,;) and using [A1(¢oo,js Vn,j) — M (oo, 0)] = O(llonjllr2(g,)) =
0(tn,min), we consequently find

(58)
o(th ;). (11 (6s0,5, 0)+O(|6nj — boo i) +Olvnll12(g,))) = O(th max),
and therefore ,uﬂi(%o,j, 0) = 0.

2. As proven in [Biql7, Proof of Theorem 3], and thanks to the esti-
mate (50), we know that the linearization of Ric in Bianchi gauge at

g, denoted Py , satisfies for some o, j, € L*(g,) (constructed from
Onjk € O(ehcﬂ,,j)) for k € {1,2,3}:

(Pg,0n..1,0n1) 12 = 0(1)  lonjallz2(g,), and
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<Pgn0n,j,ka 0”7j7k>L2(gn) = (a?@ + 0(1)) : ||OTIJJ€||L2(gn,))

for k € {2,3}. That means that the metric cannot be stable as in
Deﬁmtlon 1.11 if a} = —aj # 0. Consequently, we necessarily have

a]2 = a} = 0 for stable Ricci-flat desingularizations.

. If the orbifold satisfies O(g,) = {0} and only has one R*/Z, singular-
ity, then the transversality assumption is automatically satisfied and
the result follows.

. In the Ricci-flat situation, then the nondegeneracy assumption is
enough because we can use Remark 2.13. Indeed first, the nonde-

generacy assumption gives |¢,, j — ¢oo j| = 0(¢2 ), hence [A1(¢n;,0)| =
o(tn,;) by (55); second from (41), we moreover have a better control
over the sum of the t?)\]l(c ,v), namely:

(59) >N (b gy vn) — 2N (60, 0)
J

= Otraxl|vnllza(g,)) + O(FaxllvnllZag,))-

which together with (55) and (51) and using ||’Un”%2(go) = o(tn,;) yields
the estimate

5 1
Z 0<t§n,j + tfz,maxt;’j + t?,qmaxtn,j)
J

+ Zt /h ¢oo,g7 0) + O(|¢n,j - ¢00,j|) + O(an”Lz(go)))

5

— O(tn,jt%,max) 5

which with ¢, max = O(tn,;) from the nondegeneracy assumption im-

Z U{(¢oo,j7 0)
J

plies that

and since all of the u{(d)oqj,()) are nonpositive by Remark 2.13, for
any j, we have u{(¢w7j,0) =0.

. Similarly for Einstein but non Ricci-flat orbifolds with only one sin-
gularity, we use (41) as in the previous point since there is only one
term in the sum.
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Remark 2.20. The estimate (52) also implies that: for any l, one has

t th - b
tim (g, ) = tim O )
n—+00 n,max n—+00 tn,max
which has an interpretation in terms of curvature by (39) and (41). [

Remark 2.21. The same obstruction result also holds if we consider desin-
gularizations by smooth Ricci-flat ALE of A1, Dy or Ei singularities by
[Biq16, Lemme 9]. An obstruction is also satisfied for Ay singularities but
it also involves derivatives of the curvature [Biql6, Lemme 12]. It also ex-
tends to Kahler Ricci-flat ALE manifolds by taking their hyperkdhler finite
cover.

We also believe that the nondegeneracy assumption is purely technical.
Understanding higher order obstructions should yield the following conjec-
tural statement which already holds under a stability assumption.

Conjecture 2.22. Let (My,,g,)n be a sequence of compact smooth Ricci-
flat metrics converging in the Gromov-Hausdorff sense towards a Ricci-flat
orbifold (M,, g,) while bubbling Eguchi-Hanson metrics. Then the curvature
of g, at its singular points is either selfdual or anti-selfdual depending on
the orientation of the Equchi-Hanson metrics.

3. Ricci-flat modulo obstructions desingularizations of T*/Z,

Let us now work with the flat orbifold T*/Zs. We will study the question of
whether or not it is possible to desingularize it by Ricci-flat metrics obtained
by gluing Eguchi-Hanson metrics in different orientations at its singular
points.

3.1. The orbifold T*/Zy and its deformations

We define T*/Zs as the quotient of R*/(2LZ*) for some L € GL(4,R) by
the action of {Id, —Id}. A metric on T*/Zy can be seen as an 2LZ*-invariant
and Zs-invariant metric on R*. It is therefore determined by its values on
any cube L([a,a + 1]*) for a € R. We will denote (T*/Zs,gr) the orbifold
obtained with the matrix L.

All of the infinitesimal Ricci-flat deformations of a flat T*/Zy are inte-
grable. More precisely, all of the Ricci-flat deformations of T*/Zy are flat
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and can be seen as either varying the above invertible matrix L, or as mod-
ifying the scalar product, that is by adding a constant symmetric 2-tensor
of norm smaller than 1 to the metric gy.

This orbifold has 16 singular points with R?*/Zy singularities. We will
denote

S = {L(e1, €2, €3,€4),¢; € {0,1}} + 2LZ*
its singular set on R* before the taking the quotients by 2LZ* and {Id, —1d}.

Remark 3.1. Since this orbifold is flat, it clearly satisfies our obstruction
(0.2).

3.2. Partial hyperkahler desingularizations and estimates

In the rest of the article, we consider (M, gP ¢) a naive desingularization of

(T*/Zs,g1) for L € GL(4,R) by positively oriented Eguchi-Hanson metrics
(ehy+)ies, for ¢; € R3\{0} at a subset S, of the 16 singular points of

T*/Zy and by negatively oriented (ehCI )jes. for ¢; € R3\{0} at a subset

S_ of the singular points. We denote ¢ = ((Cj)i€5+,(gj_)j657). We will
first be interested in its partial hyperkahler desingularizations obtained by
perturbation of the metric only desingularized by Eguchi-Hanson metrics in
the same orientation.

3.2.1. Hyperkihler partial desingularizations of T*/Zs and approx-
imations. Let us define (My, g?) := (Msi,ggci) the partial desingular-
izations where the only points which are desingularized are Si by the above
Eguchi-Hanson metrics (ehcii)ieg .. They can be perturbed to hyperkahler
orbifolds.

Lemma 3.2. Let g := ggci be a naive desingularization of T*/Zo thanks
to Eguchi-Hanson metrics (7) glued in one given orientation at some or all
singular points.

Then, the Einstein modulo obstructions perturbation of g¥, denoted
g+ = grc+ and defined in [Ozul9b] is hyperkdihler.

Sketch of proof. 1t is well-known (or can be proven from [Donl2]) that the
moduli space of the Ricci-flat and even hyperkahler (orbifold) metrics on
M is of maximal dimension 3|S4| 4+ 9 which is the same as the space of
Ricci-flat modulo obstructions metrics of [Ozul9b]. Using a connectedness
argument similar to that of [Ozu20t, Proposition 5.70] for the moduli space of
Kronheimer’s gravitational instantons, we conclude that any Einstein mod-
ulo obstruction perturbation of a metric g? is actually Ricci-flat (and even
hyperkéhler). O



942 Tristan Ozuch

To obtain more information about these hyperkédhler metrics g4, it suf-
fices to construct metrics which are approximately Ricci-flat by [Ozul9b].

Remark 3.3. We will in particular need to have a good approrimation of
the Riemannian curvature tensor of g+ at the remaining singular points.
We will see that we have |Rg,| ~ |¢F|%, and the previous control (50) in

O(|Ci\§_§) is not sufficient for our purpose.

3.2.2. Approximation of the partial hyperkéhler desingularizations.
We want to find good enough approximations to be able to control the cur-
vature of our hyperkéhler partial desingularizations. Consider the following
construction.

On the orbifold (T*/Zs, gr), for any harmonic homogeneous symmetric
2-tensor on R*/Zy with |H*|e ~ 5% and a singular point i € S, we can solve
the equation

PLE4 =0, and BLE4 =0,
(60) Rt=HYv0+ O(r~°) for any € > 0 at the singular point 7,
7' 1L 0o(gr).

somewhat explicitly (notice that there is no obstruction contrarily to (35)).
Indeed, as in [BK17], one would expect the periodization of the sum of the
symmetric 2-tensors H to be a solution. At 2 € R*, this would look like

(61) > HY(L(2a) + z — i).

a€Z*

However except in the most symmetric cases, like the one treated in [BK17],
this periodization diverges (it is a sum of terms in r~* over a Z* grid). One
way around it is simply to substract to each term of the sum the mean value
of it over a period, namely, we define

(62) B(z) =Y (HYL(2a) + z — i) — Hy,(L,i,2a)),

a€Z*
where H2 (L,i,2a) is the average of H*(x) on the set i + L(2a + [—1,1]*).
This sum converges because we have V! H* = O(r;4~!) which is summable
on Z*\{0} for [ > 0. In particular, the curvature is summable. Note moreover

. —4 . . .
that, by construction, h~ of (62) is indeed orthogonal to the infinitesimal
deformations of g, which are constant symmetric 2-tensor and that BgLE4 =

0 as well as trgLE4 =0.
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Remark 3.4. The point is that the symmetric 2-tensors we have substracted
are constant and therefore, the curvature induced are the same as those of
the sum (61).

Let, H4(Cii) for i € S+ be the r—*-asymptotic terms of the metric eh z,

see (11). Consider the unique symmetric 2-tensor 54(Cii) as in (62) which
is asymptotic to H 4((?) at ¢ and bounded everywhere else while satisfying
4

h(¢) Lg. O(ge)-

Consider now a singular point i € Sx and denote |(F| = maxyes, |CF.
We have the following expansion of the sum 3, 54(@-#) = Ho(i)+ Ha (i) +
O(d(i,.)*) at i with |Ho(i)| = O(|¢*|?) a constant symmetric 2-tensor, and
|Hy(i)| = O(|¢F|?)r2. For some linear isomorphism ¢; with, ||¢; — Id|| =
O(|¢*?), we have e + Ho(i) = ¢fe. In the coordinates of (7), the metric
oy ehCi (see Remark 2.6 for the meaning of this action of the diffeomorphism)
is asymptotic to e + Hp(i). Consider now hy(i) a solution to Ppren s hy (i) €
O(¢;eh. ), with hy(i) = Ha(i) + +O(r=%+¢) for all € > 0 from (20). Since
the perturbation g, is Ricci-flat, we actually have

(63) Pyren . b (i) = 0.

Note that hy(i) it is determined up to O(¢;eh ). We choose the solution
which is orthogonal to O(qb:-‘ehcii) for the L?-product induced by ¢;eh = on
S? as in (20).

Definition 3.5 (Approximate hyperkihler metric g4). We define the ap-
prozimate hyperkahler metric gﬁ in a way similar to Definition 1.21): we
glue the different ¢7eh .+ +ho(i) fori € Sy to the metric gL+ ;cq. E4(Cl-i)

at the points i € St with cut-off at distance at \Cii]é, that is with the fol-
lowing metric on the gluing region:

MG e (@fehes + (@) + (1= x(IGHFre) (g2 + D2 FH(GH).

1€ESL
3.2.3. Control of the partial hyperkdhler desingularizations. We
now justify the qualifier “approximate” for the metric g

Proposition 3.6. We have the following control on the metric: for all k €
N, there exists C = C(k,L) > 0, such that

B
6 .

(64) g8 — g=llcx gp) < CICTPH3
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In particular, at each remaining singular point p, we have

(65) Ry —Rg.| <Ol

9%

Remark 3.7. We a priori had Rg. = O(|¢*]?) so this is indeed a good

approzimation of Rg, as (* — 0. The controls of (50) in \C\%_g are not
precise enough here.

Proof. Thanks to [Ozu20t, Proof of Theorem 4.51], it is enough to control
the values of @, (gi) inr D2C’k “(g2) in order to obtain (64), where for two
metrics g and ¢’, we define

®,(g) == Ric(g') + 05 Byg’'

as in the first section. Estimates similar to [Biql3, Lemma 14.2] and [BK17,

Proposition 3.4], yield the following controls. For all £ € N, there exists
C} > 0 for which for a given singular point ig, in the neighborhood of g

1. in the region where rp > 2|Cif]é, we have g = g1, + 7" and g? =gr

and therefore, since the linear terms vanish, that is dg, <I>gL54 =0, the

|2

: - 4
error is at least quadratic. Since r%|V¥h |gp < C|¢*?r5t, we have

rHIVE® (g:t)’gi Crl¢F|*rp™

2. in the region where rp < \C s, we have g4 = eh.: + hy and gP =
eh.+. Like above, by (63) we also only have to control the nonlinear

terms, and since ’I"D|vkﬁ2|g£ < C|¢E %3, we find
k ok A +4
rplV q’gf(.gi)’gi = ’C | 702D7

3. in the region where ]Cﬂ% <rp< 2\(;:]%, g4 and g¥ are respectively

. . —4 - . .
an interpolation between gy + h and ehgi + ho and an interpolation
between g, and eh.+ thanks to a cut-off function. Now we have

|V (g2 + ') = (ehes +Bo) )| < CIcE Py +|¢5*5°, and

rh|VH(gr — ehes )| < CICTArh + ¢ P,

and since |¢F|'/0 < rp < 2|¢F|V/0, by controlling the cut-off function,

we find 15 |VEB p (g4)] 40 < C|CH5.
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Finally, since the control is straightforward away from the singular points,
we obtain

A + 2_8
||(I)g£ (gi)HrE,ZCS"’(gfg) g C|C ’2+3 6,

which gives the estimate (64), see the argument of [Ozu20t, Theorem 4.51].
O

3.2.4. Approximation of the infinitesimal deformations. Let us ap-
proximate the kernel of Py, , O(g+) thanks to the following symmetric 2-
tensors.

Definition 3.8. We define O(gﬁ) the linear space spanned by the infinites-
imal variations of (L,(T) — g4 = gﬁgi.

Let us start by recalling a general lemma for operators between Banach
spaces which will be useful to approximate the elements of the kernel of our
operator on the hyperkéhler partial desingularizations.

Lemma 3.9 ([Ozul9b)). Let P,P' : X — Y be two operators between two
Banach spaces X and Y for which there exists C > 0 ﬁ >€e>0anda
finite-dimensional linear subspace K' and S’ a supplement of K' in X such
that we have

1. for any x € X, ||(P — P)z|y < €|z x,
2. for any x € 5, ||z||x < C||P'z|y,

3. for any x € K', ||P'z|ly < €||z|x,

4. dim(ker P) = dim(K’).

Then, for any element k' of K', there exists an element k of ker P such that

2 1w
1—Ce'" 0

[k —Kx <

Proposition 3.10. Let O(g+) be the kernel of Pg,. Then, for any o4 €
O(g+), there exist o4 € O(g4) such that we have

A +124+2-8
lo+ = 0%l gy < CICH[TT3 5.
Proof. Let us apply Lemma 3.9 with P = Py, , P' = Pya, K' = 0(g?) and

S = O(g4)*. We have the following controls: there exists C' > 0 indepen-
dent of |¢*| small enough
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1. for any h € 02’3(95), by Proposition 3.6, we have
2_8
[(Pas = Py )bl socsony < CICEE3 8 Rl gamgp:

2. for any h € C’;f(gf) N O(gﬁ)l, by [Ozul9b], we have
HhHC’;(:( D CHP AhH’I‘DQCO‘ D)’

3. by an estimation very similar to that of Proposition 3.6, which we
therefore omit, for any o € O(g4),
A +1242-8 A
||Pg’i*0 ||7’BQC§‘(g:€) < C|¢| 3 s |lo Hc,i;f:(ggy
4. and, dimO(gs) = dimO(g4) since every gluing configuration can be
perturbed to a Ricci-flat manifold by Lemma 3.2.

We can therefore apply Lemma 3.9 and obtain the stated estimate. O

Using the control of oL of Proposition 2.19, we moreover have the fol-
lowing estimate of the infinitesimal variation of Rg in the direction of o4:
for C > 0, we have

2_B8
(66) Jo, Rg, — aog‘:Rgi g < C’Ci|2+3 © HO:I:”B(gi)

+

where we denoted 0o, Rg, the differential of g+ — Rg, at g+ in the direc-
tion o.

3.3. Total desingularizations modulo obstructions

Let us start by using a notation which will be convenient for this section.

Definition 3.11. For a section s on (R*/Z3)\{0}, we will write s o< & if
s €rECL _(R*/Zsy) for alll €N and € > 0.

For k € Z and f : (R®) — R, we will write s o< f()rk if as the
parameters ¢ — 0, we have s = (f(¢) + o(f(¢))s" for s' oc rk.

Remark 3.12. For any | > 0, we have r%log!(re) oc 7%,

Let us now consider the total desingularization of the partial hyperkéahler
desingularizations g4+ by gluing the Eguchi-Hanson metrics eh F at the re-

maining singular points j € S. Here, the hyperkéahler orblfold (My,g1)
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will play the role of (M,,g,) in Section 2. From the obstruction result of
Theorem 0.2, we can already say that in order to desingularize the orbifold
(M4, g+) by a nondegenerate sequence of Einstein manifolds in the Gromov-
Hausdorff sense, it is necessary that the condition Rg, = 0 is satisfied at
every remaining singular point. This was done thanks to an approximate
development at order 4, see Definition 2.15.

In this section, we are interested in the more challenging situation of a
sequence of desingularization of a sequence of metrics g+ ,, and this requires
an approximation at an even higher order.

3.3.1. An approximate Einstein modulo obstructions metric. Let
L e GL(4,R) and ¢ = ((c-i)@-esi7 (gj)jes;) € (R3)15: x (R3)IS#] ~ (R3)16,

7

Definition 3.13 (Total desingularizations, gLDC). We define gLDC the naive
gluing at all j € S+ of the metrics ehc; to the metric g+. Recall the notation
J

‘Ci| = mMaX;es, |<Z’
As in Section 2, the goal of the present section is to construct better

approximate Einstein modulo obstructions metric in order to identify the
obstructions.

Proposition 3.14. Let Ly € GL(4,R). Then there exists C > 0 and a
neighborhood U of (Lg,0) € GL(4,R) x (R3)'6 such that there exists a smooth
family of metrics <9f,§)(L,C)€M for which if we denote C)(gfyg) the space of
the infinitesimal deformations of (L, () — gﬁc, we have

1 gzt - gf,ch;:g(ggC) —0as¢—0,
2. gf,g — ggc Lraggp ) O(géc), and
8 _8 ~
3. 1®ys (920) = 0fcllrizosgp ) < CICHF3ICTPTS for of € Olgz)
explicited in the proof.

Let us consider the development of the metric g+ at the singular point
j € S:F)
(67) gr=e+ Y Hjop, with Hjom o [(F[*r2"
meN*
by Proposition 3.6, and similarly, for each j, at infinity we have

(68)  ehe=e+ > H™(G), with H*™(CF) oc [CF[mrg ™™,

meN*
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3.3.2. Extension of the first asymptotic terms. As in Section 2,
we define 2-tensors satisfying the following equations for (o; ), a basis of
O(eh.+) and )\? € R as in (22):

; —32 Z)‘ Ojk
(69) hjo = Hjs+ O(I(F? - [¢FPrg?1),

/ <hj,270j,k>ehC¢ d’Ueh&‘SZ =0 for all k£ € {1, 2, 3}
S2 J 3

for Hj o as in (67) and we have a converging development in a neighborhood
of infinity.

(70)  hjp=Hjo+ Hjs+ Y  Hj%, with Hi5 oc [(FP[CFPmr2=tm,

m>=2

We then define the extension of the obstructions o ?" for m € {1,2,3}

as the unique solutions to the following equation as in (34):
Pgioj m € O(go)y
(71) j’m = O;{m + O(rg27°) for any € > 0 at the singular point j
Sjm L O(go)

for OF,,, oc [(F[rg® and OF,, , o< [(F[?|¢F|rg? the asymptotic term of the
infinitesimal variation of QQ of (70) as ehﬁ is perturbed in the direction
0;m like in Section 2.

For the first approximation term on My,

(. T4
Pgih = Z)\iO]k + ZI/ZVZ,
k l
_4 i
(72) W =HY() + Hyjy + O(IC P - [¢T1Pre)
for any € > 0 at the singular point j,
R L O(g,)

for H 4({?) as in (68) with H;{Q determined in (70) and we have a converging
development

(73) K'=HACG) v B, + > HE

m>=2
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in a neighborhood of each singular point j, with HﬁQm x |C;F|2Ki|2r2m_4.
Let us come back to the development (67) of g4 at a singular point
j € St and the term H;4. We know that Hj 4 oc [(F|?rs and satisfies

4+Q ( Hjs,Hj2) =0.

Since Hjo o |¢F|2r2, one would therefore expect by homogeneity to have
H;y oc |[¢F|*r? instead of the above Hj4 o< [(*]?ri. The reason is that
Hj; 4 might have a harmonic part in |¢ *)274 while its part compensating the
quadratic terms in Hj is oc [(F|*rd. By Lemma A.5 in the Appendix, there
exists ﬁjA such that fonA oc [¢F[?rd such that H;4 — Ifle oc |¢F|*rd and
satisfying Pe H 4= 0. The crucial thing to note is that the extension of the
harmonic part H 40n ehﬁ does not induce any obstruction by [B1q16 (25),
proof of Lemma 9]. This will ensure that we can indeed “see” the second
obstruction pj1 = 0 for all j. More precisely, there exists ﬁjA for which we
have:

Peh%;ﬁjA =0

(74) hjy = Hja+ O(CF? - [CF[?rs), for any ¢ >0
/ <ﬁj7470j,k>ehc; dveh<¢|s2 =0 for all k € {1,2,3}.
S2 J J

We can therefore define the following 2-tensors on each (7*S?, ehc;):

(75)
(2)
Pehgj; hja+ th hjashjo) Z #kOJ k

h.,=His+H:,+0 iQ :FZ 5 27€) for any € > 0,
3,4 J; 4

/82 <hj747 Oj,k;>eh<_¥ dUehﬁW =0 for all k € {1,2,3}
where H;-lA is defined in (73) and satisfies

(2 3
Pl + QP (Hja, H(CF)) + QS (Hjo, HY ) + QY (Hj o, Hyn, HA(GF)) = 0
which ensures that (75) has a unique solution as in Section 2. The coefficients
117, are the same as in (23), and one has

(76) | > o
k

= O(ICF[*ICT ).

L?(eh )
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Remark that the factor |¢*|* comes from the previous discussion about

extending a harmonic tensor H4 and the difference between H* — H4 x
|CF[*re.

We will need to extend higher order terms of the orbifold and ALE in
order to produce a better approximation of the Einstein modulo obstructions

perturbation of g . We have to obtain good enough controls to “see” an
obstruction of the same order as in (76).

3.3.3. Extension of the higher order terms. We then also extend the
obstructions of the orbifold g+ to the Eguchi-Hanson metrics to ensure a
good approximation. Consider the development of v; € O(g4) at the singu-
lar point j: v; = Vj 10+ Vji2+Vjia+Viie+O(||vil 2+ [¢E[*r8), we define the
extensions Vil = Viio+ O(|CF [Pro*te), Vi, = Viia+ O(|CE2|¢F [2ra2te)
and vy, = V4 + O(|CF|?[¢T|?re) for all € > 0 satisfying:

Pehcj Vil O,

—L50
where there are no obstructions by Lemma 2.7,
2
Peh(j Mg + Qt(al‘zgj (h27 MO) S O(ehq) and
ehg; Vil eh, 25,20 Viilg ehg, jas Vil che, Bjoshjos Vi,

and we will take the solutions which are orthogonal to O(ehg;) for the
2_product on S? induced by ehq.
Like in the decomposition for H; 4, from the 2-tensor Hjg of (67) there
exists Ijljﬁ o |¢F|?r8 for which we have Hjg — Ijlm oc [¢E[*r8, and

(77) PoHjs =0,
Indeed, considering the quadratic 2-tensor Hj ¢ satisfying
P H; s+ QY (H 2, H )+Qe (Hjz2,Hj2,Hj2) =0,
as |Ci| — 0, one finds a 2-tensor lEIjﬁ satisfying (77) and Hjp — ﬁjﬁ x

|¢E|*rS, since Hjo o |¢(T]?r2 and Hj4 o |¢(T|?rd by Lemma A5 in the
Appendix.
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Lemma 3.15. There exists a unique 2-tensor ﬁjﬁ satisfying the following
identity:

(78)

Pen ,—16 Zylvjl

h],ﬁ - HJG + H46 + O(Kﬂ ‘C:FP 4+6) fO?” any € > 0

/S2 <éj76>0j,k>eh€f dUEhcﬁs’z =0 for all k € {1,2,3},
where Hgoc|CE[2/CF 22 satisfies PolTls =—QP (Hie, HA(CF)) + X Vi
while the restriction of the coefficients of H}‘jﬁ in a basis of the covering R?,

once restricted to S® are L?(S?)-orthogonal to the eigenfunctions associated
to the second eigenvalue of the Laplacian on S3.

Remark 3.16. Note that ﬁ;i,(s is different from H;{6 defined in (73). They
are both oc |CF2|¢TF|2r2, and so is their difference.

Proof. Let H .6 be asin (77). The term H;'L,(s in the development (73) satisfies
for all € > 0:

(79)  PoHie+ QY (Hje, H(CT)) ZVZVJ,I,o— (ICEHICT2re),

since we have Hjg — IjI]G o< [¢E[4S, Hjo oc [¢F]2r2 and Hjy oc |CF|rd.
Thanks to Lemma A.5, we therefore find H ¢ with H 6 oc [CE2|CT P2 2
satisfying

(30) Polt + Q) (116, H(CT)) =2 mVito =

The 2-tensor H 46 is defined by (80) up to the harmonic quadratic 2-tensors
on R*/Zs,, and we choose the unique solution such that the restriction of the
coefficients of H ;4’6 in a basis of the covering R?, once restricted to S? are
L?(S3)-orthogonal to the eigenfunctions associated to the second eigenvalue
of the Laplacian on S>.

Without loss of generality by rescaling and by acting on Hjg, H j,6 and

Vio by an element of O(4)\SO(4), we will study the existence of h;4 and
the vanishing of the associated obstructions on eh, that is, as if we had
¢ =(1,0,0)".
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Remark 3.17. This may change the orientation and in particular makes the
curvature of Hjg become selfdual. This will let us use the more convenient
usual Eguchi-Hanson metric in our computations.

For a smooth cut-off function x supported at the infinity of eh we have
Peh(x(Hj76+Hﬁ6)) —> UVjl,, = O(|¢F|*rsh). By [Biql3, Proposition 2.1],
one can find a smooth 2-tensor h’ decaying at infinity such that

Peh(X(ﬁ[jﬁ + IO{;'L,G) +h) — Zylmo € O(eh), with
l

P (<B4 i) 41) = 300tz < CIC*F

for some C' > 0 depending on the metric eh only.

There now remains to prove that the obstruction actually vanishes. For
this, again by [Biql3, Proposition 2.1], we need to prove that for all k €
{1,2,3}

/ <Peh(X(f{j,6 + f{ E I/lV]7 d’Ueh 0.
T*S?

Let us use the formalism of [Biql6] in order to show this. Let us denote 2
the closed anti-selfdual 2-form generating of the L?-cohomology of eh as in
[Biq13, (5)]. We will need its asymptotics at infinity:

07 O0r + 3wl
Q=-L -1 271

(81) r ré
—d<dc( >+4 s +0(r ‘”)),

where d° is the operator defined as d¢ = 2m (0 — 0) in complex geometry.
As in the first Section, we use the identification of traceless 2-tensors
and (commuting) compositions of a selfdual and an anti-selfdual 2-form, see
Remark 1.13. We will use this on both the flat metric e for which a basis
of O (e) is (w] )kef1,2,3 and for the Eguchi-Hanson metric, we will use the

+ (’)(re_m)

basis (@] Jkeq1,2,3y of QT (eh) satisfying ©f = w;” + O(rg?) at infinity. We
can therefore rewrite

e Hig=,¢ ~§6 o, for @?}6 € Q (eh), as well as Hjg = >, (ﬁ;?ﬁ ow;
for <Z>k6 € Q (e),
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. ﬁﬁ(; => &jg oy for g?);lg € Q7 (eh), as well as .FOI;-L’G =>u gbj:’g 0wy
4,k z
for ¢ € 27 (e), ) i
* > VYl = >k Vj’fo ocD,j, for Vj’fo € Q (eh) as well as Y, V)0 =
>k Vi owy, for Vi € Q7 (e),
e o = Qo see [Bigl6],

— ot
e recall also that H* = —9122‘;’1 .

This lets us rewrite several of the above identities:

e the equality (77) becomes
(82) (d—d*)edls =0, or equivalently (dd*)e¢’s € QT (e)
e the equality (80) becomes:

(83) (d—d")en(¢hs + 038) — Vi = O(rg ")

e a direct extension of [Biql6, Lemme 3] to the computation of the bi-
linear terms of the selfdual part of the Riemannian curvature. Let
b= O ow: and ¢ ==Y, Py, ow; be infinitesimal Ricci-flat defor-
mations of e which satisfy Be(¢) = Be(¢) = 0. Assume additionally
that tre¢ = 0 and d*d¢y = 0, then the second variation of the selfdual
part of the curvature at e in the directions ¢ and 1, is:

RED(6,9) = — 5 0e(6), ae(W)]+

where ae(¢) and ae(1)) are respectively the first variations of the
connection on the bundle of selfdual 2-forms at e in the directions
¢ and . In the particular case of ¢ = H* and ¢ = Hj g, since

ae(H*) = — *d(el_) =0, we find

2
(84) RS (Hj 6, HY) = 0.

e the equalities (80) and (84) imply that in a neighborhood of infinity
we have
(85)

ddgy, (W56 + 078) — Vi = (dped el + (dyd )ed s + Olrg™)

B

= —deR" (Hj5) — deR* (H}g) + O(rg?).
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Following the integration by parts of the proof of [Biql6, Lemma 7],
since 2 € Q™ (eh), by (81) and by (85), we have

1
m /T*sz <Peh( Hjg + H Z VIVl s ehdveh
1 - o i
R /TS QA (ddgn (356 + 35) — Vi)
1 ) o . )
~ oL / IICHCIRS" 47«6 +0(rg™) A (dden (9 + 358) - V)

c 041 ok ok
||g2HL2 7‘_)"—00 /{T 77‘} d r2 ) /\ ((d+d )e¢j,6 + (d+d )e¢j76)

1
— li 4 C +
=+—— lim r Are:l}d <7’g)/\dR ( i6) (W)

HQHL2 r——+00
1
Tl o — AdeR* +
el rii“oo/{ 3 MR (i) )
(86)
! C 1 + /174 +
el 1€2] - TEJ”X’/{r :1}d <r§)/\deR (Hjg) (wy )-

Now, the coefficients of deRJ’(I;Tj,G)(w,j) are harmonic functions in 72

and their restrictions to a sphere {ro = r} = r - §3/Zy are eigenfunctions of
the Laplacian associated to the second eigenvalue on S?/Zs (fourth eigen-
value on S?). They are therefore L?(S3/Zs)-orthogonal to the coefficients of
the restriction of dc(%) or leg to S?/Zs.
Similarly, by the two formulas of [Biql3, Proposition 2.1] and [Biq16,
Lemme 7], we know that f{ =) d°(% ) Ad, R*(H;lﬁ)(w,j) is proportional to
83 /7, <H 569 Ok>d'US5 /z,, Where O is exphmted in (14) and once restricted
to a sphere {re = r}, O} has eigenfunctions of the Laplacian on S*/Z,
associated to the first eigenvalue as coefficients. By construction, ﬁj‘%ﬁ is
orthogonal to this eigenspace. The obstructions therefore vanish. O

We then extend the next term of the development of o,,, for m € {1, 2, 3}
to the orbifold. Recall that o;,, = O;{m + O?’m + O([¢|Prg'2), with O;{m x
|¢F|rg? and 08 o [¢FPrg8. We can therefore find by the general method
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of [Biql3, Section 10] o7, satisfying

(87)
Pgi ]m+Qgi( 7,m> jm)+Qgi( ]mvﬁ ) € O(gi)
m:Ofn(C;F)—i—(’)(Ki] |¢F|*r; 7€) for any € > 0 at the point j

6?,]@ 1L O(go)'

We then need to come back to the orbifold in order to find:

(88)
B+ QG (R R Z)\ g+)
_8 —92 ¢
W= HY((F) + Hyg + Hiy + Hyg+ Hyg + O(CPICF g *79),
Ve >0 at j
R L O(go)

\

with HB(C;-F), HS, H} and JEIS from (67), (70), and the asymptotic terms

of (75) and (78) and Hg8 o [¢F?|¢TI%. We moreover have a converging
development

_8 o o
Ro=HNCF) + HSy + HY + Hig+ Hig+ Y HS
m2>=5

with H$

7,2m
the control

oc [¢E2|¢TF|*r2m™=8 in a neighborhood of j. We moreover have

(89)  ||Peh’+ QY (R EY ZAH I eesy = OUC - IGFI)

which will be sufficient on the orbifold.

As for ﬁjﬁ defined in (77) from Hjg, one finds ﬁj,g from H;g of (67).
More precisely, we have H;g — ﬁj,g oc [¢E|*r8 where Ijlig oc [¢F]2r8 satisfies
P.Hjs =Y, Vi

As in Lemma 3.15, we prove that one can extend H j.8 on ehq without
obstruction.

Lemma 3.18. There exists a unique 2-tensor Ej,S satisfying the following
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identity:
(90)
ehgq:—_] 8 Z Vlv.]ylaz
ﬁj,S H 8t H48 + H88 +O(ICFP |C$’2 0T for any e > 0
/S2 <ﬁj,g,0j,k>eh<j; dveh<f|s2 =0 for all k € {1,2,3},

where Hiy o |CEPICTrd satisfies Pollly = —Q& (Hys HY(GT)) +
> Vi, and where HSg o [(E[2CF|* satisfies

PeﬁJB = Qe ( ]78’H8(€:F)) Qe ( ]787H4(C:F) H4 €:F +Zyl 0,29

for Vf,ll,z defined by v, = Vji2 + sz,Q +o(ICF[CF|*r s ©)
Proof. The proof of the existence of ﬁj@ satisfying

(91)
Pen - hjs = > i, € O(eh)
l
his = Hjs + Hig+ Hig + O(ICE - |CF[0rg6%€) for any € > 0

/ <Ej,8’0j7k>ehcrr alveh(ﬂ§2 =0 for all k € {1,2,3},
S2 J g "

is very similar to that of h ;¢ of Lemma 3.15 once H 48 and H 8 ‘s are identified

like H 46 is in Lemma 3. 15 We will therefore omit the proof

Let us focus on showing that the obstructions vanish. Again, after rescal-
ing and acting by a rotation in O(4)\SO(4), we will work on the usual metric
eh. Mimicking the computation of (86), and dropping the terms not con-
tributing to the boundary term, we find

(92)

<Peh(X(ﬁIj,8 + ﬁf;ﬁs + ﬁjg,s)) - ZWMQ ’ 0’“>
I

i (L (7))



Higher order obstructions to the desingularization 957

+/{rer}dc<r2) A deRH () (w ))

. H 6 C +
= lim_ (7‘ /{Te:l}d <T2)/\dR (Hjs)(w)

—1—7'2/{ L dRT (Hjg)(w])

re=1} 47’6

1
2 C + (174
d deR H
+r /{re:u <T2) A (Hjg)(w ))
because of the homogeneity of each term:

° dc<%) X Tg -3,

* F XTg

o doRF(H;s)(w)) oc [¢5[2r8

o d RJF(H;LS)(wk) oc [CFPPICTPre.
We see chat the obstruction either vanishes or is infinite. However
(Pen(x(Hjs + H48 + HJ88)) - > Vle,l,270k> is finite because both
P., (X(IO{j,8+H48 —I—HJSS)) > VIVj,, and oy, are in L?(eh). The obstruction
therefore necessarily vanishes. O

Similarly, there exists h 10 satisfying for I—QI] 10 the harmonic part of
Hj 19 from (67) and H 4 10 and 0 associated from the development of nt

of (72) and 7° of (88).
(93)
Pehgj_; Ej,m - Z Vv, S O(ehg;)
l
b0 = o + Hjro + H3 10+ O(CE - [(F|0rg ) for any € > 0

/ <Ej,1070j7k>ehc¥ dveh<¥‘g2 — 0 for al]. k S {1, 2, 3},
S2 J J

(94) with || Pen 1 119 Zylvjl 2 ch s O(ICEPICTP).

Remark 3.19. The obstruction may not vanish here, but it is small enough
for our present purpose: it is better than uy ~ |¢T|*|¢T|? when ¢t ~ ¢F as
for transverse or nondegenerate desingularizations.
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Let us define

5
ehé}o} = ehCJ:F =+ hj,2 + EjA =+ Z hj,2m

m=3

which is a metric for re < 1, and
[ b= =g+ + 7! + 7

which is a metric for \Cj| & re. On the region where ](J] Lre K1, we
have

(95)

(enl! —g)| < C(I¢H2ri2 + G717 ™2 + ¢ PIGT 1r2),

which is minimized at re = [¢F|” i - |C:F| 4, in a neighborhood of the singular
point j.
Proof of Proposition 3.14. We define an approximate desingularization gf,g

as the glulng of eh[ o to g[g]

sk Kﬂ4 < Te < 2/¢E| 1 |Cﬂ As in Definition 2.16, we will denote
O(g? ¢) the space of the infinitesimal deformations of (L, ¢, gj) g7 o

at the singular point j and with a gluing scale at

Remark 3.20. The space (N)(gf?g) is different from the space O(gP) of

[Ozu19b] but yields better estimates. The results of [Ozul9b] with O(g")
therefore hold with O(gﬁc).

Denote of ¢ as the element of C)(gf C) associated to the same variations of
L and the ¢ as >, vi(L,¢) € O(gy+) defined in (72), and to the variations
of each (J associated to Zk(/\j( NQER/ I(L, ¢))oj - From the construction

of the eh[c;} and g[ } we find:

1. on the region where gLC = ehC; +hjot+hjs+ Z we have:

m=3 ]2771’

(Ric —A)(gf’c) = Z ()\] +Mk +O(I¢CFPICFP ))0j
k

30+ OUCPICFIN (Vi + Vi, + Vi)
l

+O(ICfre + [,
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2. on the region where gﬁé =gt + 7! + ES, we have:

(Ric —A) (g1t c) = Y (M + puf, + O(CEPICT)) (05 + 5 )
k

+> (+O(CPICTH)vi
I
+O(|¢FPrg 1)
3. on the gluing region at j, we find:

(Ric—A)(gie) =S (N, + i + O(CEPICT)) 0j
k

+ >+ O(CEPICTI)ve
l
+O(ICH fre + 1¢5 e + [CF g ™).

Let us finally mention the controls on the elements of O(gf C) which let us
conclude. Recall that for (j ) € QF, we have o, = 0, (k)eh<q=, and consider
v; one of the elements of the orthonormal ba51s of O(go) On the region

where gﬁc = eh%], where rp < [¢(F| 71 |G |5 3|0, (k>9Lc Ojvk|eh<; <
J

C|¢F|?|¢F2r 2, on the region where gfg = gg[], where rp > 2[¢E| 1 - ]gﬂi

|0, 90c = (05 +054) |5, < CUCTIrR + CFPICTPrp?).

(8]

We have similar controls between 0Oy, gf ¢ and v; where gf ¢ = 8+ and

between 3ngL ¢ and Vil t Vil, Vil where gf,( = eh[éo].

72 3
As a consequence, usmg the fact that on the gluing region where
\Ci|fﬁ|§]ﬂ4 < rp < |¢H i |(:F| the difference between the metrics

is controlled by (95) we globally ﬁnd
A A + EN _B
[®gp (97.¢) = 0L cllrp2es < CIC |z ¢T3
which proves the statement of Proposition 3.14. OJ
3.3.4. Controls on the approximate Einstein modulo obstructions

metric. By [Ozul9b], we can always solve the Einstein equation modulo
obstructions.
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Definition 3.21 (Total Einstein modulo obstructions desingularization gy, ¢ ).
For L € GL(4,R), and ¢ small enough depending on L (as determined in
[Ozu19b]), we define g1, ¢ as the unique metric satisfying for some e = (L) >
0 independent on ¢ determined in [Ozul9b]:

* |9rc — gf,chj;jj(ggC) <6

d (I:'gfv4 (Grc) € O(gég); and

® Grc— gfc is L2(gf<)—0rth0gonal to O(géc).

First, we have a good control on the projection on (N)(gf’g). The proof

is analogous to the proof of Lemma 2.18 above so we omit it, compare also
with [Biql3, Lemma 13.2].

Lemma 3.22. Let h be a symmetric 2-tensor on M, and let o? € O(gﬁc),
then we have the following estimate, there exists C > 0 such that

'<Pg£<h’oA>L2<g£¢>

Replacing the control [Ozu20t, (4.46), Lemma 4.46] by the above Lemma
3.22 in the proof of [Ozu20t, Proposition 5.1], we get the following statement
as a direct consequence.

_B
< OICPICTI = [Ihlleg, o™ 2.

Lemma 3.23. There exists € > 0 and C' > 0 such that we have

N A A A
(96) 19z.¢ = gz ¢llezeqgn ) < CH‘I’gg{C(gL,g) — 0oL ‘rgzcg(gf&)v

and moreover if the metric (M, gr.¢) is an Einstein metric, then, we have

A A A Bt
loZ¢llz2(en ) < C(I1 @y (92.) — 0% cllrszeggn ) + ICFI' = (¢CRP)

A A
(97) X ||@gp (92.0) — 0L cllipzosgn ) O
Together with the control of Proposition 3.14, Lemma 3.23 implies both
a control of the metric and the obstructions.

Remark 3.24. For small {, we can essentially treat the obstructions com-
ing from wvariations of different Cl-i, C;F or L as orthogonal to each other.
Indeed, for the different infinitesimal variations, we have the following con-
trols showing where each of the infinitesimal deformation has most of its
mass:

1 . —4
© 10,597, ¢ lop . < CIGNO 592, ¢ N2 (16712 +dgy . (5,))
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+ +1 oo\ 4
o 10502 o lop . < IGO0 ol (IG1% +dgs ()
° ‘8Kgfk7<k‘gfk,(k S CHaKgLIka”LZ'

Estimating the L?-product of two of the above infinitesimal, we see that as
|| — 0, they become arbitrarily close to being orthogonal.

Corollary 3.25. We have the following controls:
o lgr.c = 9 cllezegp ) < CICHT = ICFPS,

e and Hof,gHL?(gu < C]Ci|3+5|<ﬂ4_T which rewrites as, for all j €
S+ and k € {1,2,3}, for any 0 < 8 < 1 (chosen small enough)

(98) M (L, Q) + pl(L,C) = O(ICERICFP + [¢E[FHi|cF|*= ),
with, |C£[2|CFI from (94), and for all I,

r _38
(99) m(L, Q) = O(CHPICH + |¢HF e ¢FIT ),
where the additional error in |¢F|2|¢T|* comes from (89).

Remark 3.26. Recall that a priori, we only had )\i(L,C) = O(|CF?ICT)),
1L, €) = O(ICHHCTI?) and v = O(|CFPCT?).

3.4. Obstruction to the total desingularization

We will now prove that there are obstructions to the Gromov-Hausdorff
desingularization of T*/Zs by Einstein metrics.

Proposition 3.27. Assume that there exists a sequence of Einstein modulo
obstructions metrics (Jr, ¢, = 8L,.c.)neN which are actually Einstein with
Cn — 0 and L,, — Lo where det(Ls) > 0. Up to taking a subsequence, we

Lol & Cr
|C j’KTg)COO’LandK:F *}QS

00,77 as

well as the limit

(100) Rp Re. ., =

worCE T G2 ,}g&, |<‘%’2Rgi,n'

Then,

1. one always has

(101) RLOO,C;E ()( :oFo_y) =0,
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for all the deformations (0,2%) of (Lo, (L), we have
(102) > (00 Re 2 (DT )., ) =0,
JESt

and for all the deformations (K,0) of (Leo, (L), and (v;); an orthonor-
mal basis of O(g+) and vj(Loo, () the obstructions of (72), we have

(103) D (0,084 Vi) L2 (g1 (Loos Goo) = 0.
;

2. If we assume that the sequence (8, ¢, )nen 15 a nondegenerate or sta-
ble sequence of Einstein desingularizations, then, one moreover has:

(104) Rmei(j) =0 at every j € S%.

Remark 3.28. The assumption det(Lo) > 0 for Lo, € GL(4,R) ensures
that there is no collapsing and a bounded diameter in our degeneration and
therefore that we stay in the context of [And89, BKN89, Ozul9a, Ozul9b].

Remark 3.29. When (101) is satisfied, from (41), we have the following
rewriting of the obstruction (103):

JESL

Proof of Proposition 3.27. Let us assume that there exists a sequence of
Einstein modulo obstructions (gr., ¢, = 8L..¢, )nen Which are Einstein with
(o, — 0 and L, — Ly = Id. By compactness, up to taking a subsequence,

for all j € S and all ¢ € Sy, we have Igf—jl - (X \CCT\ — Cofm- and
¥
é’;ﬁ — ¢L; as n — +oo. By (98) and (99), for any 0 < 3 < 1 (chosen

small enough), we have

, . 8 _38
(106)  X(LnsGn) + (L, Gn) = O(GPICTP + G PG,
and for all [,

(107) V(Lns Go) = O(IGEPICTIY + [GEPH2 ¢TI ),
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We directly see from (106) that

A I Ga) _
nee |G PG

because ui(Ln,Cn) = O(|¢F|*¢T|?) which proves (101) by the value the
obstruction (24) and the control of the curvature of Proposition 3.6.
Similarly, from (107) we find

Yy (Lm Cn)
e [GIGEE
which proves (103). In order to prove (102), we note that the constant part
(the limit at the singular point) of 9 ,+)g+ scales like |¢E|2. Thanks to
the expression (36) of the obstruction, this tells us that the obstruction
induced by the constant part (the limit at the singular point) scales like
ICE14|¢F|? because we have Hi oc [¢F|?|¢F|?r? in the development (70). In
the limit, we are left with the obstruction coming from the nonconstant part
of J(p .+)g+ whose interpretation in (41) yields the obstruction (102) using
the control of the variations of the curvature (66).
We conclude exactly as in the proof of Theorem 0.2 by using (106) as a
replacement for (51). More precisely, if we assume towards a contradiction

that the obstruction (104) is not satisfied, that is lim,_ u\él(\“L\Z§IT;) =0is

not satisfied, then since we have |Rg, | ~ |¢F|?, the estimates (55) and (56)
become

N (Loos dn5) = O(CE?|6n,j — doojl?), and
|(M(Los, $nj)s Xy(Loos dnj)) | = €|CE1bnj — booyj|, for some ¢ > 0.

As in the proof of Theorem 0.2, we find a contradiction using (106) for
k = 2,3 and then £ = 1. Similarly, as in the proof of Theorem 0.2 one
can use the eigenvalue estimate of [Biql7] to deal with the stable situation
thanks to the estimate of Corollary 3.25. O

Remark 3.30. Allowing some Eguchi-Hanson metrics to be glued at negli-
gible scale might not preserve the obstruction Ry = 0 at the associated point
and might reduce the number of obstructions by 2 per such point. Indeed,
R™ is in the 5-dimensional space of traceless symmetric 2-tensors and the
first obstructions A\, = 0, give 3 independent equations. But we will see that
the scale being negligible means that we lose the 3 degrees of freedom. These
situations should therefore be more obstructed even without the obstruction
R* =0.
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4. Explicit obstructions to the desingularization of T*/Z,

Let us now make the obstructions of Proposition 3.27 more explicit as the
vanishing of polynomial functions of the ¢+, whose coefficients depend on
the flat metric gy, alone.

Recall from (13) that the curvature of the Eguchi-Hanson metric ehg+

and by their first asymptotic term % has the form 127rtrp(07;%
where p({)~ is defined in Definition 1.14.

Note 4.1. During all of this section, we will often identify R and QT or Q~
thanks to the bases (%’i)ie{lz,s}- This will make it more convenient to find
identities relating different obstructions in Lemma 4.6 for instance. That s
why we are defining the selfdual or anti-selfdual curvature-like quantities b,
and BL on R3. We will also use the identification R? @ R? ~ QF @ QF ~
(Q%)* ® OF =~ End(QF).

For x € R* and ¢, ¢’ € R3\{0}, we define b,((,(') := 12%,
where p, for € R* is the rotation explicited in (8). Note that p_, = (p.)! =
(pz) "' = pg. For any z, 2" € R3, we have

(p2(©): 2)(pa ('), 2)

||

(108) <bx(§,§’)z,z’> =12
We also define the following bilinear form with values in R3 @ R3:

(109) Ba%((? CI) ‘= T Z bL(:c—2a) (C? CI)

a€Z*

for x € R* and L a 4 x 4 matrix, where 7, is the projection on the traceless
part.

Lemma 4.2. Let (Mi,gﬁ) be one of the partial desingularizations of T*/Zs
of Definition (3.5). Then, for any jo € S— and any { € R and the associated
¢~ € Q7 (thanks to the basis (w; )ie{1,2,3}), we have

(110) R (0)¢™ = D (Bji-s(Gi.G)¢) ™
i€Sy
where again B jO (6, G)C ER? and (BJLO (G G)) e,
Proof. Away from the glued Eguchi-Hanson metrics, gi‘ equals

8L+ D jes, h + where the h + are explicited in (62). By Remark 3.4 and
the formula (13) the 1nduced curvature is therefore given by (110). O
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We have the following properties for BL(¢, (') for any » € R* and
¢, eR?

L. By(¢.¢") = By(¢,0),
2. By(¢,¢) = BL,(¢.¢),
3. BL,,(¢,¢") = BE(¢, () for a € Z4,
Corollary 4.3. The obstruction (101) rewrites for all jo € S_,

(]_1]_) Z < Jo—1 C17C1 <J0a<]0> =

€S,

and from (102) for jo € S— and an infinitesimal deformation of (j, in the
direction zj,:

(112) Z< Jo— z(Z]ovgjo)C27€z> -

For the value of the obstructions (105), against a deformation K of the
matriz L, denoting 8KBJ-L71- the linearization of L — BjLﬂ- fori e Sy and
j € S_ at L and in the direction K, we have

(113) Z Z <8K —1 CzyCz <]7C3>

Z€S+ jES

Finally, the obstruction (104) rewrites for any jo € S—:

(114) > Bi (G G) =

ZES+

The analogous obstructions hold for the other orientation.

Remark 4.4. The obstruction identified in [BK17] corresponds to the non-
vanishing of the one obstruction

Z Z < —1 C’UC’L CJ?C]>

l€S+ ]GS_

(which is clearly implied by (111)), in the particular situation where

L=1d,
e the sets Sy follow a chessboard pattern (see [BK17] or Section 4.3),
o forallie Sy, jesS_, (=(1,0,0) and (; = (1,0,0).
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Remark 4.5. If the Eguchi-Hanson metrics are glued at comparable scales,
then:

e the obstructions (111) correspond to 3|Sy| equations for 3|S_| +9 pa-
rameters given by the |S_| vectors C; and the matriz L,

o the obstructions (114) correspond to 5|Sy| equations since R is sym-
metric trace-free for 3|S_|+9 parameters given by the |S_| vectors G
and the matrixz L,

e the obstructions (113) are 9 equations, for the different deformations
of the torus, for 3|S4|+ 3|S—| +9 = 57 parameters,

o the obstructions (112) are 3|S_| equations for 3|S4|+ 9 parameters.

Since we have analogous obstructions in the other orientation, we see that
we a priori have many more obstructions to satisfy than parameters. We
will reduce the number of these equations in the next section.

4.1. Equivalent obstructions

Let us show that many of the above equations are actually equivalent. Let us
therefore just assume that we have the obstructions (114) at every singular
point in both orientations and prove that some of the other obstructions are
already satisfied.

4.1.1. Against the deformation of the Eguchi-Hanson metrics.

Lemma 4.6. We have the following equality for alli € Sy, j € S_, €
(R34 x (R?)15-1 and 2 € R3,

(Bii(Gir2)G5, €)= (BF-i(, ) Gin 2),

and therefore the above obstruction (114) at all singular points in the oppo-
site orientation implies that the obstructions (112) vanish.

Remark 4.7. This shows that the first obstructions coming from the defor-
mations of the Equchi-Hanson metrics are seen whether we first desingular-
ize the positive ones or the negative ones.

; of (109), we will study for a € Z* a
term of the above expressions. Because of the symmetries of B, we can
simply study (mb, (G, 2)Cj, (). We will first consider z proportional to ¢
to obtain

Proof. Given the expression of Bij-

(115) (b (G, GGG G = ((1202(G) ® pa (&) — 41GIP18) ¢, &)



Higher order obstructions to the desingularization 967

(116) =12(pa (), ) — 4GP 1
(117) = 12((p2 (&) @ pa () — 41¢1°13) G i)
(118) = (mrbe (85, C5)Gis i)

where we used the fact that p_, = (pz)7 = (pz) ™! = pe. For z L ¢,

) (b (Giy 2)C55 G) = ((1202(8) @ pa(2)) 55 G)

) =12(px(Gi), ) (P=(2),¢j)

) = 12((p2(¢)) @ pa() — 41¢1%13) Gis 2)
) = <7Ttrbx(<jagj)gz‘yz>-

This proves the statement. O

4.1.2. Against the flat deformations of the torus. The last deforma-
tions to consider are the flat deformations of the torus which are equivalent
to variations of the matrix L used in the definition of BX. For the form of
the obstruction (105), we compute the following expression and leave the
details to the reader.

Lemma 4.8. Let us consider an infinitesimal variation of the flat torus

seen as an infinitesimal variation of the matriz L in the direction KL ™!,

and assume that the obstruction (114) is satisfied in both orientations.
Then, the obstruction (105) for a variation KL~ of L is equivalent to

(123)
Z Z Z He LTL (i —>‘7I—((22a_)\g 2 <”trbL(i—j—2a)(<"’Ci)Cj’<j> =0

1€Sy jJES_ acZ?

O

Remark 4.9. The deformations of the matriz Id orthogonal to those in the
space spanned by the mi(ex @ ex) for (er)ref1,2,3,4y the usual basis of R?,
are equivalent to rotations of the torus and therefore to the rotation of the
Eguchi-Hanson metrics and have already been considered above.

Corollary 4.10. The obstructions of Corollary 4.3 reduce to 84 polynomial
equations in the ¢; and (; with coefficients depending on L only.
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4.2. Some obstructed situations

We therefore see from Remark 4.5 that even though some obstructions are
equivalent, there are many remaining ones that outnumber the degrees of
freedom we have. Indeed, we have only ruled out the last type of obstructions
corresponding to (112).

Let us now give an example of configuration of desingularization which
cannot yield Ricci-flat (or even Einstein) metrics thanks to the obstructions
identified in Corollary 4.3.

Theorem 4.11. There does not exist a sequence FEinstein metrics
(M, g,)nen converging in the Gromov-Hausdorff sense to (T*/Zs, gy, ) with
Lo = 1Id by bubbling out exactly 1 positively oriented Equchi-Hanson metric
and 15 negatively oriented one.

Remark 4.12. This is an obstruction to any Gromov-Hausdorff desingu-
larization under a topological assumption.

Proof. Let (M, g,)nen be a sequence of Einstein metrics converging to (T*/
Zo,gr.. ) with Lo, = Id in the Gromov-Hausdorff sense while bubbling out
Eguchi-Hanson metrics and let us assume without loss of generality that
St = {0} and S_ is the complement of {0} among the singular points of
T*/Zs. Then, according to [Ozul9b], up to taking a subsequence, for all
n, there exist Ly, C o and Cn for j € S_, such that the metrics g, are
isometric to Einstein modulo obstructlons perturbations of ngCn'

Let us show that the limit rescaled curvature R, C+(') defined in
Proposition 3.27 is invertible at a singular point j € S_ This will lead
to a contradiction by the obstruction (101).

By Lemma 4.2, we have an expression of sz & (7): it is a nonvanishing
multiple of

((1,0,0,0) +2a) ® 0 ((1,0,0,0) +2a)
(124) 2 e (1,0,0,0) + 2a[°

a€Z*
The value of the summand at a = 0 and a = (—1,0,0,0) is

. I S . . _ . .
(125) mir(wp ®wp) = (2w @wy —wy Bwy —wy ®wz),

which is invertible on Q7. For the sum of the norms of the remaining terms,
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that is,

T | (00,0 +20) ©87((1.0.0.0) + 20
tr (1,0,0,0) + 2al[® ’

a€Z*\{0,(—1,0,0,0)}

we numerically have the control

E 1

a 1 ~ 0.19 < —.
) + 2a 6

€Z4\{07(71,0707 )} ‘( ’ 07 07 0) | 3

This is not enough to make the sum (124) non invertible given the expression
(125). The result follows by (111). O

Remark 4.13. The above proof works for many other limits than Lo, = 1d
and it is likely that it is true for any Lo, but it requires some control of
the compactness of the lattice generated by Lo.. Theorem 4.11 particular
holds even with some of the most compact lattices like the Dy lattice. By
compactness, we loosely mean how close the points of the lattice are to each
other.

Conjecture 4.14. The statement of Theorem 4.11 holds even without the
assumption Lo, = 1d, but only assuming that det(Lso) > 0.

For stable or nondegenerate Ricci-flat deformations, one does not sim-

ply have RZWC; (7) invertible, but RZWC; () = 0. Since it is a sum of

terms of the form (124) based at each singular point, it is direct to see that

R, ct (j) = 0 requires at least 3 Eguchi-Hanson metrics in this orientation.

Corollary 4.15. There does not exist a sequence of stable Ricci-flat metrics
(M, gn)nen converging in the Gromov-Hausdorff sense to (T*/Zy, gr ) with
Lo = 1d by bubbling out at most & positively oriented Equchi-Hanson metric
and the rest of negatively oriented ones.

4.3. A family of desingularizations satisfying the obstructions

Let us now specialize our discussion to the regular torus with L = Id and
with the so-called chessboard pattern considered in [BK17]. We study the 48-
dimensional space of gluings to the (fixed) regular torus and test it against
the 16 x 5 + 4 = 84 obstruction equations identified in Section 4.

Perhaps surprisingly, in this most symmetric situation, we will find a
family of solutions to all of our 84 equations. This family of solutions is
14-dimensional.
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Remark 4.16. It will be clear from our proof and computations in this
section that in the configuration considered in [BK17], many of these 84
equations are not satisfied.

The chessboard configuration already considered in [BK17] is defined as:

S_ = ({(a1,as,a3,a4) € Z*, a1 + as + a3 + as € 22}/Z*) /Z3 and

St = ({(a1,a2,a3,a4) € Z*, a1 + ay + a3 + ay € 1 4+ 22}/ ) | Z».

Remark 4.17. In this chessboard configuration, let i € S+. Then, we have
the following configuration of other singular points:

at distance 0 is 1 € Sy

at distance 1, there are 4 points in S+

at distance \/2, there are 6 points in S+,

at distance /3, there are 4 points in S+, and
at distance 2, there is a point in Si.

We will denote i€ the opposite of i which is the point at mazximal distance
2 from 1.

Here we will work under the assumption that for all 7,

G = Gie-

We will denote e; = (1,0,0,0) € S; and similarly e; € Sy fori € {1,2,3,4}
the other vectors of the canonical basis of R%. Let us introduce the following
notations for the coordinates of our gluing parameters (,:

Cei = (miv Yi, Zi)7

for i € {1,2,3,4}. Let us denote x = (x1,x2,x3,24), ¥y = (Y1, Y2, Y3, Y1) and
z = (21, 22, 23, z4) the three vectors in R* we obtain.

Proposition 4.18. Using the above notations, let us assume that the family
(z,y,2) of vectors of R* forms an orthogonal family of R* with constant
length. Then, the obstructions (105) and the obstructions (104) at every
Jj € S_ are satisfied.

Sketch of proof (some computer-based arguments involved). Let us consider
a desingularization configuration as above.
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Let us study the curvature at the singular point 0 € S_ induced by
the other Eguchi-Hanson metrics glued at the points of Sy. From (110), we
know that this exactly equals

4

(126) Z B (i, yis 20)s (s Yir 21)) + Bed (i, i, 20), (4,93, 21)).-
i=1

Numerically, we obtain the following form for B ((zi, yi, z:), (%4, yi, 2i)
B (i, i, zi), (i, 9, 20)):

a- (207 —y? — 22 b - x;y; b- iz
by a-(—a? +2y2 — 22) b-yizi ,
b-xiz b-yizi a-(—x? —y?+222)

for some real numbers a ~ 0.69 and b ~ 2.0, and similar formulas for the
other ¢ by symmetries. Therefore, the equation

4

(127) > B (wi,yi ), (6, i 20)) + BE (i, yi, ), (i, i, 21)) = 0,
=1

coming from the obstruction (114) reduces to having both
4 4 4
IEED I SER
i=1 i=1 i=1
4 4 4
Z-Tiyi = Zl'izi = Zyizi =0.
i=1 i=1 i=1

This means that we are looking for an orthogonal family of 3 vectors x =
(73)i, v = (yi); and z = (z;); with same length in R*. This is given by an
element of RT x RP3 x O(3). More precisely, the element of R is equal to
Z?Zl x? = Z?‘Zl y? = Z?Zl 22, the element of RP? is a line orthogonal to
(z,y,2) in R* and O(3) is the orthonormal basis (z/|z|,y/|yl,2/|z|) in the
orthogonal of the element of RP3. This set is 7-dimensional.

Similarly, we can study the variations of the curvature when L = Id in
the directions e; ® e; for i € {1,2,3,4}. We again find numerically that the
obstructions (105) are of the form:

c-(2a:12—yl-2—zi2) d - x;y; e T;%
d - z;yi - (—af + 2y — 27) [ vizi ;
ez vz e (—x? —y? +222)
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for some nonvanishing real numbers ¢, d, e, f which depend on the direction
in which the deformation is done. Therefore, they also vanish under the
conditions Yoj_ 27 = Yy uf = iy 2 and i wy = M, vz =
Yoi vizi = 0.

Moreover, because we have similar equations and degrees of freedom
in the other orientation, we obtain a 14-dimensional family of candidates
satisfying all of the obstructions of Corollary 4.3. O

Example 4.19. Some examples of solutions to the above equations are

(128)
G=({1,1,1), ¢2=(1,-1,-1), ¢3=(-1,1,—-1) and ¢4 =(-1,—-1,1) and
(129)
G =(1,0,0), (o= (o, 1/V2, o), G = (o,o, 1/\/5) and  Ci=(1,0,0).

Appendix A. Function spaces

For a tensor s, a point x, & > 0 and a Riemannian manifold (M, g). The
Hoélder seminorm is defined as

[S]Ca( )(JI) — sup S(l‘) - S(GXI)%(?/)) )
g {yeT M, ly|<inj, ()} ly|® g

For orbifolds, we consider a norm bounded for tensors decaying at the
singular points.

Definition A.1 (Weighted Hélder norms on an orbifold). Let 8 € R, k € N,
0 <a<1and(M,,go) an orbifold. Then, for any tensor s on M,, we define

k
- ] ] k k
Islloge g,y = suprs ﬁ(ZréWzos!go + ""o+anos]Cﬂ<go>)'
o i=0

For ALE manifolds, we will consider a norm bounded for tensors decay-
ing at infinity.

Definition A.2 (Weighted Holder norms on an ALE orbifold). Let 8 € R,
EeN,0<a<1land (N,g) be an ALE manifold. Then, for all tensor s
on N, we define

k

o . L
||5||c;;~a(gb) = Sngf(ZTﬂngbS’gb + TbJra[vng]Ca(gb))'
i=0
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On M, using a partition of unity 1 = x st + Zj XN with xase equals to
1 where gP = g, and XNt equals to 1 where gP = tjg, (see [Ozul9a)]), we
can define a global norm.

Definition A.3 (Weighted Holder norm on a naive desingularization). Let
BeER, keN and 0 < a < 1. We define for s € TM®+ @ T*M®!- a tensor
(Iy,1-) € N2, with | :== I, — l_ the associated conformal weight,

I8l e goy = lIxarssllgre g,y + ZT]’EHXN;SHCZ‘“(Q%)'
j

A.1. Decoupling norms

We actually need a last family of norms to get good analytic properties for
our operators, see [Ozul9b]. With the notations of Definition 1.2, denote
for each singular point k, Ag(t,e0) 1= (®)«Ae(eg vk, €0) and By(ey) :=
(@r)«Be(0, €0), as well as cut-off functions x 4, (t,¢,) and xp, (e,) Tespectively
supported in A (¢, €) and By(ep), and equal to 1 on Ag(t,2¢y) and Bg(eo/2).

Definition A.4 (Clg’f—norm on 2-tensors). Let h be a 2-tensor on (M, gP),
(M,,go) or (N, gp). We define its Cg:f-norm by

Hh’Hcf’jf = hl*I,lI—fI,c Hh*Hcflj" + zk: ’Hk‘gw

where the infimum is taken on the (h, (Hy)r) satisfying h = hy +

Zk XAk(t,€0)Hk fOT (M7 gD) orh = h*+2k XBk(€0)Hk fOT‘ (Moa go) or (Na gb)7
where each Hy is some constant and trace-free symmetric 2-tensors on

R*/T..
A.2. An application of the analysis on weighted spaces

Consider for n € N, for vy € N\{3 —n,...,—1} and 0 < 8 < 1 the Fredholm
operator

Pa s 13CR5(RM\(0) > 11 72C%5(R™\{0}),

where the norms C’i% (R™\{0}) on symmetric 2-tensors denote the norm on
R™\{0} seen as orbifold at 0 like in Definition A.1 and ALE at infinity like
in definition A.2. This operator is Fredholm and its kernel is composed of
homogeneous harmonic 2-tensors in 7¢. Its L?-cokernel is the kernel of

Pe : rgP*ICF(RM\{0}) = ra O (R™\{0}),
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which is reduced to {0}. As a direct consequence of the open mapping the-
orem, we have the following result.

Lemma A.5. Letn € N, fory € N\{3—n,...,—1} and 0 < 5 < 1. Then,
there exists C >0 such that for any symmetric 2-tensor v € rg_QCfﬁ(R”\{O}),
there exists a 2-tensor h satisfying Peh = v, with

12llz 08 @evgoy) < Cllvllz—20e @ jop)- -
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