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Metrics with Positive constant curvature and
modular differential equations∗
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†
, Chang-Shou Lin, and Yifan Yang

‡

Let H∗ = H ∪Q ∪ {∞}, where H is the complex upper half-plane,
and Q(z) be a meromorphic modular form of weight 4 on SL(2,Z)
such that the differential equation L : y′′(z) = Q(z)y(z) is Fuch-
sian on H∗. In this paper, we consider the problem when L is
apparent on H, i.e., the ratio of any two nonzero solutions of L is
single-valued and meromorphic on H. Such a modular differential
equation is closely related to the existence of a conformal metric
ds2 = eu|dz|2 on H with curvature 1/2 that is invariant under
z �→ γ · z for all γ ∈ SL(2,Z).

Let ±κ∞ be the local exponents of L at∞. In the case κ∞ ∈ 1
2Z,

we obtain the following results:

(a) a complete characterization of Q(z) such that L is apparent on H with only
one singularity (up to SL(2,Z)-equivalence) at i =

√
−1 or ρ = (1 +

√
3i)/2,

and
(b) a complete characterization of Q(z) such that L is apparent on H∗ with

singularities only at i and ρ.

We provide two proofs of the results, one using Riemann’s existence
theorem and the other using Eremenko’s theorem on the existence
of conformal metric on the sphere.

In the case κ∞ /∈ 1
2Z, we let r∞ ∈ (0, 1/2) be defined by r∞ ≡

±κ∞ mod 1. Assume that r∞ /∈ {1/12, 5/12}. A special case of an
earlier result of Eremenko and Tarasov says that 1/12 < r∞ < 5/12
is the necessary and sufficient condition for the existence of the
invariant metric. The threshold case r∞ ∈ {1/12, 5/12} is more
delicate. We show that in the threshold case, an invariant metric
exists if and only if L has two linearly independent solutions whose
squares are meromorphic modular forms of weight −2 with a pair
of conjugate characters on SL(2,Z). In the non-existence case, our
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example shows that the monodromy data of L are related to peri-
ods of the elliptic curve y2 = x3 − 1728.
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1. Introduction

A meromorphic function Q on the upper half-plane H is called a meromor-
phic modular form of weight k ∈ Z with respect to SL(2,Z) if Q satisfies

Q(γ · z) = (cz + d)kQ(z), γ =

(
a b
c d

)
∈ SL(2,Z),

and Q is also meromorphic at the cusp ∞. When k = 0, a meromorphic
modular form is called a modular function. We refer to [1] and [18] for the
elementary theory of (holomorphic) modular forms. Given a meromorphic
modular form Q of weight 4 on SL(2,Z), we consider a Fuchsian modular
differential equation of second order on H

(1.1) y′′ = Q(z)y on H, y′ :=
dy

dz
.

The differential equation (1.1) is called Fuchsian if the order of any pole of
Q is less than or equal to 2. At ∞, by using q = e2πiz, (1.1) can be written
as

(1.2)

(
q
d

dq

)2

y = − 1

4π2
y′′ = −Q(z)

4π2
y.

So (1.1) is Fuchsian at ∞ if and only if Q is holomorphic at ∞.
Suppose that z0 is a pole of Q. The local exponents of (1.1) are 1/2±κ,

κ ≥ 0. If the difference 2κ of the two local exponents is an integer, then
the ODE (1.1) might have a solution with a logarithmic singularity at z0.
A singular point z0 of (1.1) is called apparent if the local exponents are 1/2±
κ with κ ∈ 1

2Z≥0 and any solution of (1.1) has no logarithmic singularity
near z0. In such a case, it is necessary that κ > 0. The ODE (1.1) or Q is
called apparent if (1.1) is apparent at any pole of Q on H. Clearly, if (1.1)
is apparent then the local monodromy matrix at any pole is ±I, where I is
the 2× 2 identity matrix.
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A solution y(z) of (1.1) might be multi-valued. For γ ∈ SL(2,Z), y(γ · z)
is understood as the analytic continuation of y along a path connecting z

and γ ·z. Even though y(γ ·z) is not well-defined, the slash operator of weight

k (k ∈ Z) can be defined in the usual way by

(1.3)
(
y
∣∣
k
γ
)
(z) := (cz + d)−ky(γ · z), γ =

(
a b
c d

)
∈ SL(2,Z),

where γ · z = (az + b)/(cz + d). We have the well-known Bol’s identity [2]

(
y
∣∣
−1

γ
)(2)

(z) =
(
y(2)

∣∣
3
γ
)
(z).

Hence, if y(z) is a solution of (1.1), then
(
y
∣∣
−1

γ
)
(z) is also a solution of

(1.1). Here f (k)(z) is the k-th derivative of f(z).

Suppose that (1.1) is apparent and yi, i = 1, 2, are two independent

solutions. Since the local monodromy matrix at any pole of Q is ±I, the ratio

h(z) = y2(z)/y1(z) is well-defined and meromorphic on H. By Bol’s identity,

both
(
yi
∣∣
−1

γ
)
(z) are solutions of (1.1), where y1(γ · z) and y2(γ · z) are

understood as the analytic continuation of y1(z) and y2(z) along the same

path connecting z and γ ·z. Note that since (1.1) is assumed to be apparent,

difference choices of paths from z to γ · z only result in sign changes in

y1(γ · z) and y2(γ · z). Therefore, there is a matrix ρ(γ) in GL(2,C) such

that

(1.4)

⎛⎝(
y1
∣∣
−1

γ
)
(z)(

y2
∣∣
−1

γ
)
(z)

⎞⎠ = ±ρ(γ)

(
y1(z)
y2(z)

)
.

Note that det ρ(γ) = 1 because the two Wronskians of fundamental solutions(
y1
∣∣
−1

γ, y2
∣∣
−1

γ
)
and (y1, y2) are equal. Hence ρ is a homomorphism from

SL(2,Z) to PSL(2,C). In this paper, we call the homomorphism γ �→ ±ρ(γ)

the Bol representation associated to (1.1).

There is an old problem in conformal geometry related to (1.1). The

problem is to find a metric ds2 with curvature 1/2 on H that is locally

conformal to the flat metric and invariant under the change z �→ γ · z,
γ ∈ SL(2,Z). Write ds2 = eu |dz|2. Below, we collect some basic results

concerning the metric which will be proved in Section 2.
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(1) The curvature condition is equivalent to saying that u satisfies the
curvature equation (2.5). Then

(1.5) Q(z) = −1

2

(
uzz −

1

2
u2z

)
is a meromorphic function.

(2) The invariant condition ensures thatQ is a meromorphic modular form
of weight 4 with respect to SL(2,Z) and holomorphic at ∞. Moreover,
Q(∞) ≤ 0.

(3) The metric might have conic singularity at some p ∈ H with a conic
angle θp, and the metric is smooth at p if and only θp = 1. Thus
Q has a pole at p if and only ds2 has a conic singularity at p (i.e.,
θp �= 1), provided that p �∈ {γ · i, γ · ρ : γ ∈ SL(2,Z)}, where i =

√
−1

and ρ = (1 +
√
−3)/2.

(4) Let 1/2 ± κp, κp > 0 be the local exponents at p of (1.1) with this
Q. Then θp = 2κp/ep, where ep is the elliptic order of p. Moreover, if
κp ∈ 1

2Z for any p, then (1.1) is automatically apparent.

We say the solution u or the metric eu |dz|2 realizes Q or the associated
ODE (1.1) is realized by u. We note that for a given Q, finding a metric
eu |dz|2 realizing Q is equivalent to solving the curvature equation (2.5) in
Section 2 with the RHS being 4π

∑
npδp, where np = 2κp − 1, δp is the

Dirac measure at p ∈ H and the summation runs over all poles of Q on
H. In particular, κp ∈ 1

2N, if and only if the coefficient np ∈ N, the set of
positive integers.

In view of this connection, throughout the paper, we assume that the
ODE (1.1) satisfy the following conditions (H1) or (H2).

(H1) The ODE (1.1) is apparent with the local exponents 1/2 ± κp at any
pole p of Q, κp ∈ 1

2N, and Q(∞) ≤ 0. Denote the local exponents at ∞ by
±κ∞. Moreover, if p �∈ {i, ρ}, then κp > 1/2.

Note that Q(z) is smooth at p if and only if κp = 1/2, so the requirement
κp > 1/2 means that that Q(z) has a pole at p. Note that by (4), the angle
θρ at ρ is 2κρ/3 and θi at i is κi.

(H2) The angles θρ and θi are not integers.

Suppose κ∞ �∈ 1
2N. Then there is r∞ ∈ (0, 1/2) such that

(1.6) either κ∞ ≡ r∞ mod 1 or κ∞ ≡ −r∞ mod 1.
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Theorem 1.1. Suppose that (1.1) satisfies (H1), (H2), and κ∞ �∈ 1
2N.

If 1/12 < r∞ < 5/12, then there is an invariant metric of curvature 1/2

realizing Q. Moreover, the metric is unique. Conversely, if Q is realized

then 1/12 ≤ r∞ ≤ 5/12.

Furthermore, assume that r∞ = 1/12 or r∞ = 5/12. Let χ be the char-

acter of SL(2,Z) determined by

χ(T ) = e2πi/6, χ(S) = −1,

where T = ( 1 1
0 1 ) and S =

(
0 −1
1 0

)
. Then there is an invariant metric of

curvature 1/2 realizing Q if and only there are two solutions y1(z) and y2(z)

of (1.1) such that y1(z)
2 and y2(z)

2 are meromorphic modular forms of

weight −2 with character χ and χ, respectively, on SL(2,Z).

Remark. Let H∗ = H ∪ Q ∪ {∞}. Since SL(2,Z)\H∗ is conformally dif-

feomorphic to the standard sphere S2, Theorem 1.1 can be formulated in

terms of the existence of metrics on S2 with prescribed singularities at poles

of Q and prescribed angle θp at each singular point p. In this sense, Theo-

rem 1.1 is a special case of a result of Eremenko and Tarasov [12]1, quoted

as Theorem A.1 in the appendix. In the appendix, we give an alternative

and self-contained proof of their result in the form of Theorem A.3 as it is

elementary and involves only straightforward matrix computation. (In the

notation of Theorem A.3, Theorem 1.1 corresponds to the case θ1 = 1/2,

θ2 = 1/3, and θ3 = 2r∞ or θ3 = 1− 2r∞, depending on whether 2r∞ ≤ 1/2

or 2r∞ > 1/2.)

The threshold case r∞ ∈ {1/12, 5/12} is more delicate. In Section 6, we

provides examples of existence and nonexistence of an invariant metric with

r∞ = 1/12. Our examples suggest that to each Q(z) with r∞ ∈ {1/12, 5/12},
one may associate a meromorphic differential 1-form ω of the second kind

on a certain elliptic curve E, and whether there exists an invariant met-

ric realizing Q hinges on whether ω is exact, i.e., whether ω is the identity

element in the first de Rham cohomology group of E. Also, in the nonexis-

tence example, we find that the entries in the monodromy matrices can be

expressed in terms of periods or the central value of the L-function of the

elliptic curve y2 = x3 − 1728. We plan to study the threshold case in more

details in the future.

1We thank the referee for pointing out this and providing the reference.
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Motivated by Theorem 1.1, we consider the datas given below.

A set of positive half-integers κρ, κi, κj ∈ N/2, j = 1, 2, . . . ,m,

such that 2κρ/3 �∈ N, κi �∈ N; a set of inequivalent points pj ∈ H,

j = 1, 2, . . . ,m; and a positve number κ∞.

(1.7)

Definition 1.2. We say Q is equipped with (1.7) if

(i) {ρ, i, zj : 1 ≤ j ≤ m} are the set of poles of Q;
(ii) The local exponents of Q at ρ, i, zj are 1/2±κρ, 1/2±κi and 1/2±κj ,

respectively;
(iii) Q is apparent on H; and
(iv) The local exponents at ∞ are ±κ∞.

Theorem 1.3. Given (1.7), there are modular forms Q of weight 4 equipped
with (1.7). Moreover, the number of such Q is at most

∏m
j=1(2κj).

To prove the theorem, we first show that there is a finite set of poly-
nomials such that the set of Q(z) equipped with (1.7) is in a one-to-one
correspondence with the set of common zeros of the polynomial. Then the
theorem follows immediately from the clasical Bézout theorem. Note that
Eremenko and Tarasov [12, Theorem 2.4] has proved a stronger result, which
in our setting states that for generic singular points z1, . . . , zm, the number
of Q(z) is precisely

∏m
j=1(2κj).

If the local exponents at ∞ are ±n/4, n is odd, then our second result
asserts that there is a modular form of weight −4 coming from the equation.
In the following, we use T = ( 1 1

0 1 ) and S =
(
0 −1
1 0

)
.

Theorem 1.4. Suppose that (H1) and (H2) hold and κ∞ = n/4, n a positive
odd integer. Then there is a constant c ∈ C such that F (z) := y−(z)2 +
cy+(z)

2 satisfies (
F
∣∣
−2

T
)
(z) =

(
F
∣∣
−2

S
)
(z) = −F (z),

where

y±(z) = q±n/4

⎛⎝1 +
∑
j≥1

c±j q
j

⎞⎠
are solutions of (1.1).

The constant c is rational if all coefficients of Q(z)/π2 in the q-expansion
are rational. We conjecture c is positive, but it is not proved yet. Obviously,
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F (z)2 is a modular form of weight −4 with respect to SL(2,Z). Let Γ2 be
the group generated by T 2 = ( 1 2

0 1 ) and ST =
(
0 −1
1 1

)
, which is an index

2 subgroup of SL(2,Z). Then F is a modular form of weight −2 on Γ2.
This fact can help us to compute c and F (z) explicitly. For example, if
Q(z) = −π2n2E4(z)/4, then F (z) is holomorphic on H, but with a pole of
order n at ∞ (Γ2 has only one cusp ∞ and two elliptic points of order 3).
Thus it is not difficult to prove

Corollary 1.5. Let Q(z) = −π2(n/2)2E4(z), where n is a positive odd
integer. Then there is a polynomial Pn−1(x) ∈ Q[x] of degree (n− 1)/2 such
that

F (z) =
E4(z)

Δ(z)1/2
Pn−1(j(z)).

Here E4 and E6 are the Eisenstein series of weight 4 and 6 on SL(2,Z)
respectively:

E4(z) = 1 + 240

∞∑
m=1

m3qm

1− qm
= 1 + 240

∞∑
m=1

⎛⎝∑
d|n

d3

⎞⎠ qn, q = e2πiz,

E6(z) = 1− 504

∞∑
m=1

m5qm

1− qm
= 1− 504

∞∑
m=1

⎛⎝∑
d|n

d5

⎞⎠ qn,

Δ(z) = (E4(z)
3 − E6(z)

2)/1728 = q − 24q2 + · · · , and j(z) = E4(z)
3/Δ(z).

For small n, Pn−1 are shown in the following list.

n F Pn−1

1 y2− + 3(23y+)
2 1

3 y2− + 3(212y+)
2 j − 1536

5 y2− + 3(21871y+)
2 j2 − 2240j + 1146880

7 y2− + 3(22831y+)
2 j3 − 3072j2 + 2752512j − 704643072

9 (7y−)2 + 3(234111131y+)
2

49j4 − 192192j3 + 253034496j2−
− 125954949120j + 19346680184832

In practice, it seems not easy to verify the apparentness at a singular
point with local exponents 1/2± κ, κ ∈ 1

2N. Take a simple example(
q
d

dq

)2

y = − 1

4π2
y′′ =

(n
2

)2
E4(z)y on H.
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The local exponents at ∞ are ±n/2. The standard method to verify the

apparentness at ∞ is to show that there is a solution y−(z) having a q-

expansion

y−(z) = q−n/2

⎛⎝1 +
∑
j≥1

cjq
j

⎞⎠ .

Suppose E4(z) =
∑∞

j≥0 bjq
j . Substituting the q-expansion of y− and E4

into the equation, then the coefficient cj satisfies

(1.8)

((
j − n

2

)2
−
(n
2

)2
)
cj =

(n
2

)2 ∑
k+�=j, �<j

bkc�.

For j = 1, 2, . . . , n−1, cj can be determined from c0 = 1. However at j = n,

the LHS of (1.8) vanishes. Therefore, ∞ is apparent if and only the RHS of

(1.8) is 0 at j = n. If n is small, then it is easy to check that the RHS of

(1.8) is not 0 at j = n. For a general n, nevertheless, it seems not easy to see

why it does not vanish from the recursive relation (1.8). Thus for a modular

ODE, the standard method is not efficient for this purpose. We need other

ideas.

We consider

(1.9) y′′(z) = π2

(
rE4(z) + s

E6(z)
2

E4(z)2
+ t

E4(z)
4

E6(z)2

)
y(z),

where r, s and t are constant parameters. For simplicity, we denote the po-

tential of (1.9) by Q3(z; r, s, t) or Q3(z) for short. Modulo SL(2,Z), (1.9)

has singularities only at ρ and i (recall that E4(z0) = 0 if and only if z0 is

equivalent to ρ under SL(2,Z) and E6(z0) = 0 if and only if z0 is equivalent

to i). Assume the local exponents of (1.9) are 1/2 ± κi at i =
√
−1 and

1/2± κρ at ρ = (1+
√
−3)/2. Then it is easy to prove that s = sκρ

, t = tκi
,

where

(1.10) sκρ
=

1− 4κ2ρ
9

, and tκi
=

1− 4κ2i
4

.

See Section 3 for the computation.

At ∞, the local exponents are ±κ∞ if and only if

r + sκρ
+ tκi

= −(2κ∞)2.
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In the following, we set the triple (ni, nρ, n∞) by

(ni, nρ, n∞) =

(
κi,

2κρ
3

, 2κ∞

)
.

Theorem 1.6. The modular differential equation (1.9) is apparent through-
out H ∪ {cusps} if and only if the triple (ni, nρ, n∞) are positive integers
satisfying (i) the sum of these three integers is odd, and (ii) the sum of any
two of these integers is greater than the third. Moreover, In such a case, the
ratio of any two solutions is a modular function on SL(2,Z).

For example, if

Q(z) = π2

(
23

36
E4(z)−

9n2 − 1

9

E6(z)
2

E4(z)2
− 3

4

E4(z)
4

E6(z)2

)
, n ∈ N,

then we have (ni, nρ, n∞) = (1, n, n). By Theorem 1.6, (1.9) is apparent
throughout H∪{cusps}. On the other hand, ∞ is not apparent for the ODE

y′′(z) = −π2n2E4(z)y(z).

As discussed in (1.8), it seems very difficult to verify (H1). So we would
like to present some examples to show how to verify the condition (H1). The
first example is

(1.11) y′′(z) = π2

(
rE4(z) + s

E6(z)
2

E4(z)2

)
y(z),

where r, s are constant parameters. For simplicity, we denote the potential of
(1.11) by Q1(z; r, s) or Q1(z) for short. The singular points modulo SL(2,Z)
is ρ only. If the local exponents are 1/2 ± κρ, then a simple calculation in
Section 3 shows s = sκρ

, where sκρ
is given in (1.10).

Theorem 1.7. Let κρ ∈ 1
2N.

(a) Assume 3 � 2κρ. Then Q1(z; r, s) is apparent if s = sκρ
and any r ∈ C.

(b) Assume 3|2κρ. Then there exists a polynomial P (x) ∈ Q[x] of degree
2κρ/3 such that Q1(z; r, s) with s = sκρ

is apparent if and only if r is
a root of P (x). Moreover, r satisfies

(1.12) r + sκρ
= −

(

+

1

2

)2

, where 
 = 0, 1, 2, . . . ,
2κρ
3

− 1.
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Next, we consider the ODE

(1.13) y′′(z) = π2

(
rE4(z) + t

E4(z)
4

E6(z)2

)
y(z) on H,

where r and t are constant parameters. For simplicity, the potential of (1.13)
is denoted by Q2(z; r, t) or Q2(z) for short. Similar to (1.11), (1.13) has local
exponents 1/2± κi at i if and only if t = tκi

, where tκi
is given in (1.10).

Theorem 1.8. Let κi ∈ 1
2N.

(a) Assume κi ∈ 1
2 + Z≥0. Then (1.13) is apparent if and only if t = tκi

and any r ∈ C.
(b) Assume κi ∈ N. Then there exists a polynomial P (x) ∈ Q[x] of degree

κi such that (1.13) with t = tκi
is apparent if and only if r is a root of

P (x). Moreover, r satisfies

r + tκi
= −

(

± 1

3

)2

,

{

 = 0, 2, 4, . . . , κi − 1, if κi is odd,


 = 1, 3, 5, . . . , κi − 1, if κi is even.

(1.14)

We use the Frobenius method to prove Part (a) of Theorem 1.7 and
Theorem 1.8. However, due to the modularity, our expansion of functions are
expanded in terms of powers of wρ := (z−ρ)/(z−ρ̄) and wi := (z−i)/(z+i),
not powers of z − ρ and z − i as the standard method does. This kind of
expansion has been used in [19] and [21]. We will see in Section 3 that this
type of expansions not only simplifies computations greatly, but also obtains
the degree of P (x) in Theorem 1.7(b) and Theorem 1.8(b) precisely.

We will present two proofs of (1.12) in Theorem 1.7(b) and (1.14) in The-
orem 1.8(b) in Section 4 and Section 5. One is to apply Riemann’s existence
theorem on compact Riemann surfaces. The other is to apply the existence
theorems of the invariant metrics with curvature 1/2. This geometric theo-
rems are obtained by Eremenko [10, 11]. Hopefully, these methods are useful
for treating this kind of problems in modular differential equations.

The paper is organized as follows. In Section 2, we will discuss the con-
nection between the invariant metric ds2 = eu |dz|2 of curvature 1/2 and
modular ODEs, in particular, the relation among the behavior of u near
cusps, angles and the local exponents of the realized modular ODE by u. In
Section 3, we will explain the expansion of modular forms in terms of the
natural coordinate w = (z − z0)/(z − z̄0), and prove Theorem 1.7(a) and
Theorem 1.8(a). Both Theorem 1.7(b) and Theorem 1.8(b) are proved in
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Section 4, and Theorem 1.6 is proved in Section 5. Finally, we will prove
Theorem 1.1 and Theorem 1.4 to complete the paper in Section 6 and Sec-
tion 7 respectively.

2. Curvature equations and the modular ODEs

2.1.

LetM be a compact Riemann surface, p ∈ M , and z be a complex coordinate
in an open neighborhood U of p with z(p) = 0. We consider the following
curvature equation:

(2.1) 4uzz̄ + eu = f on U,

where f = 4π
∑

αiδpi
is a sum of Dirac measures and 0 �= αi > −1. The

assumption αi > −1 ensures that eu is locally integrable in a neighborhood
of pi. The L1-integrability implies

(2.2) u(z) = 2αi log |z − pi|+O(1) near pi.

This is a general result from the elliptic PDE theory, see [4, 5].
Let w = w(z) be a coordinate change and set

(2.3) û(w) = u(z)− 2 log

∣∣∣∣dwdz
∣∣∣∣ .

Then û(w) also satisfies

4ûww̄ + eû = f̂ , f = 4π
∑

αiδp̂i
,

where p̂i = w(pi). In other words, eu |dz|2 is invariant under a coordinate
change. Since u has singularities at pi, the metric ds2 = eu |dz|2 has a conic
singularity at pi. If u is a solution of (2.1), then the metric ds2 = eu |dz|2
has curvature 1/2 at any point p �∈ {pi}. Suppose that M is covered by {Ui}
and zi is a coordinate in Ui. We call the collection {ui} to be a solution
of (2.1) on M if ui is a solution of (2.1) on Ui for each i and satisfy the

transformation law uj = ui − 2 log
∣∣∣dzjdzi

∣∣∣ on Ui ∩ Uj .

Let g be a metric of M with the curvature K, and the equation (2.1) on
M is equivalent to the curvature equation:

(2.4) Δgû+ eû −K = 4π
∑

αiδpi
on M,
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where Δg is the Beltrami-Laplace operator of (M, g). We could normalize
the metric g such that the area of M is equal to 1. In the case when g has
a constant curvature, (2.4) can be written as

Δgû+ ρ

(
eû∫
eû

− 1

)
= 4π

∑
αi(δpi

− 1) on M.

This nonlinear PDE is often call a mean field equation in analysis. See [3, 5,
4, 8, 7, 6] and [14, 15, 16] for the recent development of mean field equations.

In this paper, we consider the compact Riemann surface that is the
quotient of H∗ := H∪Q∪{∞} by a finite index subgroup Γ of SL(2,Z), and
the equation (2.1) is defined on the upper half space H:

(2.5) 4uzz̄ + eu = 4π
∑

αiδpi
on H,

where the RHS is invariant under the action of Γ, i.e., the set {pi} is invariant
under the action of Γ and αi = αj if pi = γ · pj for some γ ∈ Γ. The
transformation law (2.3) for coordinate change is equivalent to asking u to
satisfy

(2.6) u(γz) = u(z) + 4 log |cz + d| , ∀γ =

(
a b
c d

)
∈ Γ.

Let s be a cusp of Γ and γ ∈ SL(2,Z) be a matrix such that γ ·∞ = s. Then
we define uγ by

uγ(z) := u(γ · z)− 4 log |cz + d| .
Thus, u is required to satisfy the following behavior near s: there is αs > 0
such that

(2.7) euγ(z) = |qN |4αs (c+ o(1)), qN = e2πiz/N , c > 0,

where N is the width of the cusp s and o(1) → 0 as qN → 0. Given the
RHS of (2.5) and a positive αs at the cusp s, we ask for a solution u of (2.5)
satisfying (2.6) and (2.7) at any cusp.

The conic angle θ, defined at a singularity pi or a cusp s, is an important
geometric quantity. Suppose that a metric ds2, conformal to the flat metric
|dz|2, has a conic singularity at p, and w is a coordinate near p with w(p) = 0.
If

(2.8) ds2 = |w|2(θ−1) (c+ o(1)) |dw|2 , c > 0,
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then we call θ the angle at p, and 2πθ the total angle at p. Since ds2 is
required to have a finite area, the angle θ is always positive. Note that ds2

is smooth (as a metric) at p if and only if θ = 1.

Next, we want to calculate the angles of ds2 = eu |dz|2, if u is a solution
of (2.5). Note that z is not a coordinate of M if pi is an elliptic point of order
ei > 1. Indeed, w = (z − pi)

ei is the local coordinate near pi. For simplicity,
we denote z−pi by z (z(pi) = 0). By (2.2), we have u(z) = 2αi log |z|+O(1),
i.e., eu(z) = |z|2αi (c0 + o(1)), c0 > 0. Then

eu(z) |dz|2 = |w|(2αi+2)/ei−2 (d+ o(1)) |dw|2 , d > 0.

By (2.8), we have

(2.9) θi =
αi + 1

ei
.

At a cusp s, the coordinate is qN = e2πiz/N , where N is the width of the
cusp s. By (2.7),

euγ(z) |dz|2 = |qN |4αs−2 (c+ o(1)) |dqN |2 , c > 0.

So the angle θs at s is

(2.10) θs = 2αs.

2.2. Integrability and modular differential equations

Equation (2.5) is also known as an integrable system. There are two impor-
tant features related to the integrability. One is that

(2.11) Q(z) := −1

2

(
uzz −

1

2
u2z

)
is a meromorphic function,

because Q(z)z̄ = −1
2(uzz̄z − uzz̄uz) = 0 by (2.5).

Lemma 2.3. Each pi is a double pole of Q(z) with the expansion
αi

2

(
αi

2 + 1
)
(z − pi)

−2 +O
(
(z − pi)

−1
)
.

Proof. Since u(z) = 2αi log |z − pi| + O(1) near pi, we have uz(z) = αi(z −
pi)

−1 +O(1) and uzz(z) = −αi(z− pi)
−2 +O

(
(z − pi)

−1
)
. Then the lemma

follows immediately.
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On the other hand, the Liouville theorem asserts that locally any solution
u can be expressed as

(2.12) u(z) = log
8 |h′(z)|2(

1 + |h(z)|2
)2 ,

where h(z) is a meromorphic function. Recall the Schwarz derivative

(2.13) {h, z} =

(
h′′

h′

)′
− 1

2

(
h′′

h′

)2

.

Note that the Schwarz derivative can be used to recover h from u. Indeed,
a direct computation from (2.12) yields that

(2.14) {h, z} = −2Q(z).

See [3, 14, 15, 16] for the detail of the proofs (2.12)–(2.14). The meromorphic
function h is called a developing map for the solution u. Any two developing
maps hi, i = 1, 2, of u have the same Schwarz derivative by (2.14), thus they
can be connected by a Möbius transformation,

(2.15) h2(z) =
ah1(z) + b

ch1(z) + d
,

(
a b
c d

)
∈ SL(2,C).

By (2.12), we obtain

(2.16)
|h′1(z)|

2(
1 + |h1(z)|2

)2 =
|h′2(z)|

2(
1 + |h2(z)|2

)2 ,

which implies that the matrix
(
a b
c d

)
is an unitary matrix.

Next, we recall the classical Hermite theorem, see [20].

Theorem A. Let yi, i = 1, 2, be two independent solutions of

y′′ = Q(z)y.

Then the ratio h(z) = y2(z)/y1(z) satisfies {h, z} = −2Q(z).

Let Q(z) be the meromorphic function (2.11) obtained from the solu-
tion u. Consider the ODE

(2.17) y′′ = Q(z)y.
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Then (2.11) and the Hermite theorem together imply that h(z) is a ratio of
two solutions of (2.16).

Theorem 2.4. Suppose u is a solution of (2.5). Then (2.17) satisfies (H1)
and the followings hold.

(a) The function Q(z) is a meromorphic modular form of weight 4 with
respect to Γ and holomorphic at any cusp. Moreover, at a cusp s,
Q(s) < 0.

(b) (2.17) is Fuchsian and the local exponents of (2.17) at pi are −αi/2,
αi/2 + 1, and ±αs at a cusp.

(c) If αi ∈ N for all i, then (2.17) is apparent.

Proof. (a) By the chain rule, we have

(u ◦ γ)z(z) = uz(γ · z)(cz + d)−2,

(u ◦ γ)zz(z) = uzz(γ · z)(cz + d)−4 − uz(γ · z) 2c

(cz + d)3
.

Thus

(u ◦ γ)zz −
1

2
(u ◦ γ)2z =

(
uzz(γ · z)− 1

2
u2z(γ · z)

)
× (cz + d)−4 − uz(γ · z) · 2c

(cz + d)3
.

On the other hand, the transformation law (2.6) yields

(u ◦ γ)z(z) = uz(z) +
2c

(cz + d)
,

(u ◦ γ)zz = uzz −
2c2

(cz + d)2
.

Hence, we have

(u ◦ γ)zz −
1

2
(u ◦ γ)2z =

(
uzz −

1

2
u2z

)
− uz(z) ·

2c

(cz + d)
− 4c2

(cz + d)2

=

(
uzz −

1

2
u2z

)
− 2c

(cz + d)
(u ◦ γ)z(z).

Since
−2c

(cz + d)
(u ◦ γ)z =

−2c

(cz + d)3
uz(γ · z),
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we find that Q := −1
2

(
uzz − 1

2u
2
z

)
satisfies

Q(γ · z) = Q(z) · (cz + d)4.

This proves the modularity of Q.
To prove the holomorphy of Q at cusps, without loss of generality, we

may assume that the cusp s is ∞. Then qN = e2πiz/N is the local coordinate
near ∞, where N is the width of the cusp ∞. By the transformation law of
coordinate changes, the solution û in terms of qN should be expressed by

û(qN ) = u(z)− 2 log
∣∣∣dqNdz ∣∣∣. Thus,

eû(qN ) =
8 |h′(z)|2(

1 + |h(z)|2
)2

∣∣∣∣dqNdz
∣∣∣∣2 = 8

∣∣∣∣ d

dqN
h(z)

∣∣∣∣2 (1 + |h(z)|2
)−2

.

Hence the developing map h(z) = ĥ(e2πiz/N ) = ĥ(qN ), where qN = e2πiz/N .
Note that

{h, z} =
{
ĥ, qN

}(
dqN
dz

)2

+ {qN , z}

=
{
ĥ, qN

}
q2N

(
−4π2

N2

)
+

2π2

N2
.

Since

−1

2

{
ĥ, qN

}
= ûqNqN − 1

2
û2qN =

α

2

(α
2
+ 1

)
q−2
N +O

(
q−1
N

)
,

where α = θ − 1, θ is the angle at ∞, we have

lim
Im z→∞

Q(z) = − π2

N2

(
1 +

4α

2

(α
2
+ 1

))
= − π2

N2
(1 + α)2 < 0,

because α > −1. This proves Part (a).
Part (b) is a consequence of Lemma 2.3.
For Part (c), if αi ∈ N then the local exponents −αi/2 and αi/2+ 1 can

be written as 1/2 ± κi, κi = (αi + 1)/2 ∈ 1
2N and by the Liouville theorem

(2.12), we see easily that h(z) can not have a logarithmic singularity at pi.
The fact that h(z) is a ratio of two solutions of (2.17) implies any solution
of (2.17) has no logarithmic singularity. This proves Part (c).

Together with the Liouville theorem, we have



Modular differential equations 993

Proposition 2.5. Suppose Q is a meromorphic modular form of weight 4
on SL(2,Z). If there are two independent solutions y1 and y2 of (2.17) such

that h(z) = y2(z)/y1(z) satisfies h(γz) = ah(z)+b
ch(z)+d for some unitary matrix(

a b
c d

)
depending on γ, for any γ ∈ SL(2,Z), then Q can be realized.

Proof. Let u(z) = log 8|h′(z)|2
(1+|h(z)2|)2 . Since h(z) is unitary, u(z) is well-defined on

H and satisfies (2.6). Further, the Liouville theorem says that u(z) satisfies
(2.5).

2.6. Examples

In this subsection, we will give some examples to indicate how to determine
Q provided that the RHS of (2.5) is known and α∞ is given at ∞. Here,
Γ = SL(2,Z).

Example 1. Assume that the RHS of (2.5) is equal to 0. Then Q :=
−1

2

(
uzz − 1

2u
2
z

)
is a holomorphic modular form of weight 4. Thus,

(2.18) Q(z) = π2rE4(z).

Since ±α∞ are the local exponents of (1.1) at ∞, we have r = −4α2
∞. Thus,

Q is uniquely determined. Note that at ∞, the angle θ∞ is equal to 2α∞.

Example 2. Assume that the RHS of (2.5) is 4πn
∑

δp, where the summa-
tion is over γ · ρ for every γ ∈ Γ. Then Q is a meromorphic modular form of
weight 4 whose poles occur at γ · ρ and the order is 2. Thus, E4(z)

2Q(z) is
holomorphic a modular form of wright 12, and then

Q(z) = π2

(
rE4(z) + s

E6(z)
2

E4(z)2

)
,

where we recall that the graded ring of modular forms on SL(2,Z) is gen-
erated by E4(z) and E6(z). By Theorem 2.4, the local exponents at ρ are
−n/2 and n/2 + 1, which implies κρ = (n + 1)/2, s = (1 − 4κ2ρ)/9, and
−(r + s)/4 = α2

∞. Thus Q is uniquely determined. Moreover, the angles θj
in this example are θi = 1/2, θρ = (n+ 1)/3 and θ∞ = 2α∞.

Example 3. Assume that the RHS of (2.5) is equal to 4πn
∑

δp, where the
summations is over γ · i for any γ ∈ Γ. Reasoning as Example 2, we have

(2.19) Q(z) = π2

(
rE4(z) + t

E4(z)
4

E6(z)2

)
.



994 Jia-Wei Guo et al.

By Theorem 2.4, we have

κi =
n+ 1

2
, t =

1− 4κ2i
4

, and r + t = −4α2
∞.

Thus Q is uniquely determined. Moreover, we have θi = (n+1)/2, θρ = 1/3,
and θ∞ = 2α∞.

Example 4. Assume the RHS of (2.5) is 4π
(
n
∑

p1
δp1

+m
∑

p2
δp2

)
, where

p1, p2 run over zeros of E4(z) and E6(z), respectively. Then

(2.20) Q(z) = π2

(
rE4(z) + s

E6(z)
2

E4(z)2
+ t

E4(z)
4

E6(z)2

)
.

The conditions on the local exponents at ρ, i and ∞ yield that

s =
1− 4κ2ρ

9
, κρ =

n+ 1

2
; t =

1− 4κ2i
4

, κi =
m+ 1

2
;

r + s+ t = −4α2
∞.

Then Q is uniquely determined. Moreover, θ1 = (m + 1)/2, θ2 = (n + 1)/3
and θ∞ = 2α∞.

2.7. Eremenko’s theorem

A. Eremenko [10, 11] gave a necessary and sufficient conditions of the angles
θi, 1 ≤ i ≤ 3, at the three singular points i, ρ,∞ for the existence of u of
(2.5)-(2.7).

When one of angles is an integer, the following conditions are required.

(A) If only one (say θ1) of angles is an integer, then either θ2+θ3 or |θ2 − θ3|
is an integer m of opposite parity to θ1 with m ≤ θ1 − 1. If all the angles
are integers, then (1) θ1 + θ2 + θ3 is odd, and (2) θi < θj + θk for i �= j �= k.

Eremenko’s theorem. If one of θj is an integer, then a necessary and suf-
ficient condition for the existence of a conformal metric of positive constant
curvature on the sphere with three conic singularities of angles θ1, θ2, θ3
(θj �= 1, 1 ≤ j ≤ 3), is that {θ1, θ2, θ3} satisfies (A). Moreover, if (A) holds
and there is only one integral angle, then the metric is unique.
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3. Expansions of Eisenstein series at ρ and i

The q-expansion of a modular form f(z), i.e., the expansion of f(z) with
respect to the local parameter q at the cusp ∞, is frequently studied and
is of great significance in many problems in number theory. Here we shall
review properties of series expansions of modular forms at a point z0 ∈ H,
other than the cusp ∞.

Definition 3.1. Let Γ be a Fuchsian subgroup of the first kind of SL(2,R).
Let f(z) be a meromorphic modular form of weight k on Γ. Given z0 ∈ H,
let

w = wz0(z) =
z − z0
z − z0

.

The expansion of the form

(3.1) f(z) = (1− w)k
∑
n≥n0

bn
n!

wn

is called the power series expansion of f at z0.

One advantage of this expansion is that its coefficients bn have a simple
expression in terms of the Shimura-Maass derivatives of f . To state the
result, we recall that if f : H → C is said to be nearly holomorphic if it is of
the form

f(z) =

n∑
d=0

fd(z)

(z − z)d

for some holomorphic functions fd. If k is an integer and f : H → C is a
nearly holomorphic function such that

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all
(
a b
c d

)
∈ Γ and each fd is holomorphic at every cusp, then we say f is

a nearly holomorphic modular form of weight k on Γ.
For a nearly holomorphic function f : H → C, we define its Shimura-

Maass derivative of weight k by

(∂kf)(z) :=
1

2πi

(
f ′(z) +

kf(z)

z − z

)
.

We have the following important properties of Shimura-Maass derivatives.
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Lemma 3.2 ([19, Equations (1.5) and (1.8)]). For any nearly holomorphic
functions f, g : H → C, any integers k and 
, and any γ ∈ GL+(2,R), we
have

∂k+�(fg) = (∂kf)g + f(∂�g)

and

∂k
(
f
∣∣
k
γ
)
= (∂kf)

∣∣
k+2

γ.

Remark. The second property in the lemma implies that if f is a nearly
holomorphic modular form of weight k on Γ, then ∂kf is a nearly holomor-

phic form of weight k + 2 on Γ.

Set also

∂n
k f = ∂k+2n−2 . . . ∂kf.

Then the coefficients bn in (3.1) has the following expression.

Proposition 3.3 ([21, Proposition 17]). If f(z) is a holomorphic modular
form of weight k on Γ, then the coefficients bn in (3.1) are

bn = (∂n
k f)(z0)(−4π Im z0)

n

for n ≥ 0. That is, we have

f(z) = (1− w)k
∞∑
n=0

(∂n
k f)(z0)(−4π Im z0)

n

n!
wn.

Note that there is a misprint in Proposition 17 [21]. The proof of the
proposition shows that bn = (∂nf)(z0)(−4π Im z0)

n, but the statement
misses the minus sign.

We will use these properties of power series expansions of modular forms
to show that the apparentness of (1.1) at a point z0 will imply the apparent-

ness at γz0 for all γ ∈ SL(2,Z). We first prove two lemmas. The first lemma
relates the power series expansion of a meromorphic modular form at z0 to
that at γz0.

Lemma 3.4. Assume that f is a meromorphic modular form of weight k

on SL(2,Z). Assume that the power series expansion of f at z0 ∈ H is

f(z) = (1− w)k
∞∑

n=n0

anw
n, w = wz0(z) =

z − z0
z − z0

.
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For γ =
(
a b
c d

)
∈ SL(2,Z), let w̃ = wγz0(z) = (z − γz0)/(z − γz0). Then the

power series expansion of f at z̃0 is

(cz0 + d)k(1− w̃)k
∞∑

n=n0

an

(
cz0 + d

cz0 + d

)n

w̃n.

Proof. Since every meromorphic modular form on SL(2,Z) can be written
as the quotient of two holomorphic modular forms on SL(2,Z), it suffices
to prove the lemma under the assumption that f is a holomorphic modular
form.

According to Proposition 3.3, the power series expansions of f at z0 and
at γz0 are

(1− w)k
∞∑
n=0

(∂n
k f)(z0)(−4π Im z0)

n

n!
wn

are

(1− w̃)k
∞∑
n=0

(∂n
k f)(γz0)(−4π Im γz0)

n

n!
w̃n,

respectively. Since ∂nf(z) is modular of weight k + 2n (see the remark fol-
lowing Lemma 3.2), we have

(∂nf)(γz0) = (cz0 + d)k+2n(∂nf)(z0).

Also,

(3.2) Im γz0 =
Im z0

|cz0 + d|2 .

Thus, if the power series expansion of f at z0 is

(1− w)k
∞∑
n=0

bn
n!

wn,

then that of f at γz0 is

(1− w̃)k
∞∑
n=0

bn
n!

(cz0 + d)k+2n

|cz0 + d|2n w̃n

= (cz0 + d)k(1− w̃)k
∞∑
n=0

bn
n!

(
cz0 + d

cz0 + d

)n

w̃n.

This proves the lemma.
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The next lemma expresses y′′(z) in terms of w.

Lemma 3.5. Let z0 ∈ H and set w = wz0(z) = (z − z0)/(z − z0). If

y(z) =
1

1− w

∞∑
n=0

anw
α+n

for some real number α, then

d2

dz2
y(z) =

(1− w)3

(z0 − z0)2

∞∑
n=0

an(α+ n)(α+ n− 1)wα+n−2.

Proof. We first note that

1− w =
z0 − z0
z − z0

and hence

(3.3)
dw

dz
=

z0 − z0
(z − z0)2

=
(1− w)2

z0 − z0
,

d2w

dz2
= −2

z0 − z0
(z − z0)3

= − 2(1− w)3

(z0 − z0)2
.

Let g(w) =
∑

anw
α+n. We compute that

dy

dz
=

(
1

(1− w)2
g(w) +

1

1− w

dg(w)

dw

)
dw

dz

and

d2y

dz2
=

(
2

(1− w)3
g(w) +

2

(1− w)2
dg(w)

dw
+

1

1− w

d2g(w)

dw2

)(
dw

dz

)2

+

(
1

(1− w)2
g(w) +

1

1− w

dg(w)

dw

)
d2w

dz2
.

Using (3.3), we reduce this to

d2y

dz2
=

(1− w)3

(z0 − z0)2
d2g(w)

dw2
.

This proves the lemma.

Proposition 3.6. Suppose that Q is a meromorphic modular form of weight
4 with respect to SL(2,Z) such that (1.1) is Fuchsian. Let z0 be a pole of Q.
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Then the local exponents of (1.1) at γz0 are the same for all γ ∈ SL(2,Z).
Also, if (1.1) is apparent at z0, then it is apparent at γz0 for all γ ∈ SL(2,Z).

Proof. Let γ =
(
a b
c d

)
∈ SL(2,Z), w = (z − z0)/(z − z0), and w̃ = (z −

γz0)/(z − γz0). It suffices to prove that if

y(z) =
1

1− w
wα

∞∑
n=0

cnw
n

is a solution of (1.1) near z0, then

ỹ(z) =
1

1− w̃
w̃α

∞∑
n=0

cn(Cw̃)n, C =
cz0 + d

cz0 + d
,

is a solution of (1.1) near γz0.
Since (1.1) is assumed to be Fuchsian, the order of poles of Q(z) at z0

is at most 2. We have

Q(z) = (1− w)4
∞∑

n=−2

anw
n

for some complex numbers an. Then by Lemma 3.5, y(z) being a solution
of (1.1) near z0 means that

1

(2i Im z0)2

∞∑
n=0

cn(α+ n)(α+ n− 1)wα+n−2

=

( ∞∑
n=−2

anw
n

)( ∞∑
n=0

cnw
α+n

)
.

(3.4)

On the other hand, by Lemmas 3.5 and 3.4, we have

Q(z) = (cz0 + d)4(1− w̃)4
∞∑

n=−2

an(Cw̃)n

near γz0 and

ỹ′′(z) =
C2(1− w̃)3

(2i Im γz0)2

∞∑
n=0

cn(α+ n)(α+ n− 1)Cnw̃α+n−2

= (cz0 + d)4
(1− w̃)3

(2i Im z0)2

∞∑
n=0

cn(α+ n)(α+ n− 1)Cnw̃α+n−2,
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where in the last step we have used (3.2) and C = (cz0+ d)/(cz0+ d). From
these two expressions and (3.4), we see that if y(z) is a solution of (1.1) near
z0, then ỹ(z) is a solution of (1.9) near γz0, and the proof is completed.

For our purpose, we need the following properties of power series ex-
pansions of modular forms on SL(2,Z). These properties are well-known to
experts (see [13], for example). For convenience of the reader, we reproduce
the proofs here.

Lemma 3.7. Let

wi(z) =
z − i

z + i
.

Then

wi(−1/z) = −wi(z), 1− wi(−1/z) = −iz(1− wi(z)).

Also, let ρ = (1 +
√
−3)/2,

wρ(z) =
z − ρ

z − ρ

and γ =
(
0 −1
1 −1

)
. Then

wρ(γz) = e2πi/3wρ(z), 1− wρ(γz) = e4πi/3(z − 1)(1− wρ(z)).

Proof. The proof is straightforward. Here we will only provide details for
the case of wρ(z).

We have

wρ(z) =

(
1 −ρ
1 −ρ

)
z.

Hence,

wρ(γz) =

(
1 −ρ
1 −ρ

)(
0 −1
1 −1

)
z.

We then compute that(
1 −ρ
1 −ρ

)(
0 −1
1 −1

)(
1 −ρ
1 −ρ

)−1

=

(
(−1−

√
−3)/2 0

0 (−1 +
√
−3)/2

)
.

It follows that

wρ(γz) = e2πi/3wρ(z).
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Then we have

1− wρ(γz) = 1− ρ2wρ(z) = 1− ρ2z + 1

z − ρ
=

(1− ρ2)(z − 1)

z − ρ
,

while

1− wρ(z) =
ρ− ρ−1

z − ρ
.

Hence,

1− wρ(γz) = −ρ(z − 1)(1− wρ(z)) = e4πi/3(z − 1)(1− wρ(z)).

This proves the lemma.

From the lemma, we deduce the following properties of expansions of
modular forms at i and ρ. These properties will be crucial in the proofs of
Theorem 1.7(a) and Theorem 1.8(a).

Corollary 3.8. Let f(z) be a meromorphic modular form of even weight k
on SL(2,Z). Suppose that the power series expansion of f at i is

f(z) = (1− wi(z))
k

∞∑
n=n0

anwi(z)
n, wi(z) =

z − i

z + i
.

Then an = 0 whenever n+k/2 �≡ 0 mod 2. Also, if the power series expansion
of f at ρ = (1 +

√
−3)/2 is

f(z) = (1− wρ(z))
k

∞∑
n=n0

bnwρ(z)
n, wρ(z) =

z − ρ

z − ρ
,

then bn = 0 whenever n+ k/2 �≡ 0 mod 3.

Proof. Here we will only prove the case of ρ. Let γ =
(
0 −1
1 −1

)
. Since f(z) is

a meromorphic modular form of weight k on SL(2,Z), we have

f(γz) = (z − 1)kf(z) = (z − 1)k(1− wρ(z))
k

∞∑
n=n0

bnwρ(z)
n

On the other hand, by the lemma above, we have

f(γz) = e4πik/3(z − 1)k(1− wρ(z))
k

∞∑
n=n0

bne
2πin/3wρ(z)

n.
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Comparing the two expressions, we conclude that bn = 0 whenever n+k/2 �≡
0 mod 3.

To determine local exponents of modular differential equations at ρ and

i, we need to know the leading terms of the expansions of E6(z)
2/E4(z)

2

and E4(z)
4/E6(z)

2.

Lemma 3.9. (a) Let

wρ = wρ(z) =
z − ρ

z − ρ
.

Then we have

π2E6(z)
2

E4(z)2
= (1− w4

ρ)

(
3

4
w−2
ρ +

∞∑
n=1

anw
n
ρ

)

for some complex numbers an such that an = 0 whenever n �≡ 1 mod 3.

(b) Let

wi = wi(z) =
z − i

z + i
.

Then

π2E4(z)
4

E6(z)2
= (1− wi)

4

(
1

4
w−2
i +

∞∑
n=0

bnw
n
i

)

for some complex numbers bn such that an = 0 whenever n �≡ 0 mod 2.

Proof. It is known that, as an analytic function on H, E4(z) has a simple

zero at ρ. Also, E6(ρ) �= 0. Thus, by Corollary 3.8,

π2E6(z)
2

E4(z)2
= (1− wρ)

4

(
a−2w

−2
ρ +

∞∑
n=1

anw
n
ρ

)

for some complex numbers an such that an = 0 whenever n �≡ 1 mod 3. To

determine the leading coefficient a−2, we use the well-known Ramanujan’s

identity

1

2πi
E′

4(z) =
E2(z)E4(z)− E6(z)

3
,
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where E2(z) is the Eisenstein series of weight 2 on SL(2,Z) (see [21, Propo-
sition 15]). Hence,

lim
z→ρ

wρ(z)
E6(z)

E4(z)
=

E6(ρ)

ρ− ρ
lim
z→ρ

z − ρ

E4(z)
=

E6(ρ)√
3i

1

E′
4(ρ)

= −E6(ρ)

2π
√
3

3

E2(ρ)E4(ρ)− E6(ρ)
=

√
3

2π
,

which implies that a−2 = 3/4. This proves Part (a).
The proof of Part (b) is similar. We use another identity

1

2πi
E′

6(z) =
E2(z)E6(z)− E4(z)

2

2

of Ramanujan’s to conclude that the leading term of π2E4(z)
4/E6(z)

2 is
w−2
i /4. We omit the details.

Corollary 3.10. The local exponents of the modular differential equation
(1.9) at ρ and at i are roots of

x2 − x+
9

4
s = 0

and

x2 − x+ t = 0,

respectively.

Proof. Here we prove only the case of ρ; the proof of the case of i is similar.
Let w = wρ(z) = (z − ρ)/(z − ρ). Assume that

y(z) =
1

1− w

∞∑
n=0

anw
α+n, a0 �= 0,

is a solution of (1.9). By Lemmas 3.9 and 3.5, we have

y′′(z) = −(1− w)3

3

(
α(α− 1)a0w

α−2 + · · ·
)

while

π2

(
rE4(z) + s

E6(z)
2

E4(z)2
+ t

E4(z)
4

E6(z)2

)
y(z)

= (1− w)3
(
3

4
sa0w

α−2 + · · ·
)
.
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Comparing the leading terms, we see that the exponent α satisfies α2 −α+
9s/4 = 0.

We are now ready to prove Part (a) of Theorem 1.7.

Proof of Theorem 1.7(a). By Proposition 3.6, we only need to determine
when (1.11) is apparent at ρ.

Let κρ ∈ 1
2N and set s = sκρ

= (1 − 4κρ)/9 so that the local exponents
of the modular differential equation (1.11) with s = sκρ

, i.e.,

(3.5) y′′(z) = π2

(
rE4(z) + sκρ

E6(z)
2

E4(z)2

)
y(z)

at ρ are 1/2± κρ, by Corollary 3.10.
Let w = wρ(z) = (z−ρ)/(z−ρ). According to Corollary 3.8 and Lemma

3.9, we have

(3.6) π2E4(z) = (1− w)4
∞∑
n=1

anw
n,

and

(3.7) π2E6(z)
2

E4(z)2
= (1− w)4

(
3

4
w−2 +

∞∑
n=1

bnw
n

)
,

where an and bn are complex numbers satisfying

(3.8) an = bn = 0 if n �≡ 1 mod 3.

We also remark that a1 �= 0 since the zero ρ of E4(z), as a holomorphic
function on H, is simple.

Now the differential equation (3.5) is apparent at ρ if and only if it has
a solution of the form

y(z) =
1

1− w
w1/2−κρ

∞∑
n=0

cnw
n with c0 = 1.

Plugging this series into (3.5) and using Lemma 3.5, (3.6), and (3.7), we find
that the coefficients cn need to satisfy

(3.9) n (n− 2κρ) cn = −3

n−2∑
j=0

cj(ran−j−2 + sκρ
bn−j−2).
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Due to (3.8) and (3.9), we can inductively prove that

(3.10) cn = 0 if n �≡ 0 mod 3.

Since the left-hand side of (3.9) vanishes when n = 2κρ, (3.5) is apparent at
ρ if and only if

(3.11)

2κρ−2∑
j=0

cj(ra2κρ−j−2 + sκρ
b2κρ−j−2) = 0.

Suppose 3 � 2κρ. Then, j ≡ 0 mod 3 and 2κρ − j − 2 ≡ 1 mod 3 cannot
hold simultaneously. Hence, by (3.8) and (3.10), the condition (3.11) always
holds for any r, i.e., (3.5) is apparent at ρ for any r. This proves (a).

For the case 3|2κρ, considering r as an indeterminate and using (3.9) to
recursively express cn as polynomials in r, we find that cn is a polynomial
of degree exactly n/3 in r when 3|n and n < 2κρ. (Note that we use the fact
that a1 �= 0 to conclude that the degree is n/3.) Thus, the left-hand side of
(3.11) is a polynomial P (r) of degree 2κρ/3 in r and (3.5) is apparent at ρ if
and only if r is a root of this polynomial P (x). This proves Part (b) except
the identity (1.12).

The proof of Theorem 1.8(a) except (1.14) is very similar to that of
Theorem 1.7 and will be omitted.

4. Riemann’s existence theorem and its application

In this section, we will use Riemann’s existence theorem to prove Theorems
1.6, 1.7(b), and 1.8(b). The basic idea is as follows.

Let h(z) be a modular function on some subgroup Γ of finite index of
SL(2,Z). A simple computation shows that both y1(z) = 1/

√
h′(z) and

y2(z) = h(z)/
√

h′(z) are solutions of

y′′(z) = Q(z)y(z), Q(z) = −1

2
{h(z), z},

where {h(z), z} is the Schwarz derivative. Using either properties of Schwarz
derivatives or direct computation, we can verify that {h(z), z} is a meromor-
phic modular form of weight 4 on Γ. When h(z) has additional symmetry,
{h(z), z} can be modular on a larger group. Note that, by construction,
this differential equation y′′(z) = Q(z)y(z) is apparent on H. Thus, one way
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to prove the theorems is simply to prove the existence of a modular func-
tion h(z) such that −{h(z), z}/2 = Q(z) for each Q(z) appearing in the
theorems. To achieve this, we will use Riemann’s existence theorem.

Since some of the readers may not be familiar with Riemann’s existence
theorem, here we give a quick overview of this important result in the theory
of Riemann surfaces. The exposition follows [17, Chapter III].

Let F : X → Y be a (branched) covering of compact Riemann surfaces
of degree d. A point y of Y is a branch point if the cardinality of F−1(y) is
not d and a point x of X is a ramification point if F is not locally one-to-one
near x. (In particular, F (x) is a branch point.) Let B be the (finite) set of
branch points on Y under F . Pick a point y0 ∈ Y − B so that F−1(y0) has
d points, say x1, . . . , xd. Every loop γ in Y −B based at y0 can be lifted to
d paths γ̃1, . . . , γ̃d with γ̃j(0) = xj and γ̃j(1) = xj′ for some xj′ . The map
j �→ j′ is then a permutation in Sd. The permutation depends only on the
homotopy class of γ. In this way, we get a monodromy representation

ρ : π1(Y −B, y0) → Sd.

Note that since F−1(Y − B) is connected, the image of ρ is a transitive
subgroup of Sd. Also, let b ∈ B and a1, . . . , ak be the points in F−1(b) with
ramification indices m1, . . . ,mk, respectively. We can show that if γ is a
small loop in Y −B around b based at y0, then ρ(γ) is a product of disjoint
cycles of lengths m1, . . . ,mk.

To state the version of Riemann’s existence theorem used in the paper,
let us consider the case Y = P1(C). Let B = {b1, . . . , bn} be the set of
branch points of F : X → P1(C). Let γj , j = 1, . . . , n, be loops that circles
bj once but no other branch points. Then π1(P

1(C)−B, y0) is generated by
the homotopy classes [γj ], subject to a single relation [γ1] . . . [γn] = 1 (with
a suitable ordering of the points bj). Thus, the image of ρ is generated by
σj = ρ(γj) satisfying the relation σ1 · · ·σn = 1. Then Riemann’s existence
theorem states as follows (see [17, Corollary 4.10]).

Theorem B (Riemann’s existence theorem). Let B = {b1, . . . , bn} be a
finite subset of P1(C). Then there exists a one-to-one correspondence between
the set of isomorphism classes of coverings F : X → P1(C) of compact
Riemann surfaces of degree d whose branch points lie in B and the set of
(simultaneous) conjugacy classes of n-tuples (σ1, . . . , σn) of permutations in
Sd such that σ1 . . . σn = 1 and the group generated by the σj’s is transitive.

Moreover, if the disjoint cycle decomposition of σj is a product of k cycles
of lengths m1, . . . ,mk, then F−1(bj) has k points with ramification indices
m1, . . . ,mk, respectively.
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We now use this result to prove Theorems 1.6, 1.7(b), and 1.8(b). Since

the proofs are similar, we will provide details only for Theorem 1.7(b).

Proof of Theorem 1.7(b). Assume that 3|2κρ. Let Γ2 be the subgroup of

index of 2 of SL(2,Z) generated by

γ1 =

(
1 −1
1 0

)
, γ2 =

(
0 1
−1 −1

)
.

Note that

γ1γ2 =

(
1 2
0 1

)
.

The group Γ2 has a cusp ∞ and two elliptic points ρ1 = (1 +
√
−3)/2 and

ρ2 = (−1 +
√
−3)/2 of order 3, fixed by γ1 and γ2, respectively. Let

j2(z) =
E6(z)

η(z)12
,

which is a Hauptmodul for Γ2, and set

J2(z) =
24

j2(z)
.

We have J2(∞) = 0, J2(ρ1) = 1/
√
−3, and J2(ρ2) = −1/

√
−3.

Set 
0 = 2κρ/3. We first show that for each 
 ∈ {0, . . . , 
0−1}, there exists
a modular function h(z) on Γ2 such that the covering h : X(Γ2) → P1(C)
of compact Riemann surfaces is ramified precisely at ∞, ρ1, and ρ2 with

ramification index 2
+1, 
0, and 
0, respectively. Note that by the Riemann-

Hurwitz formula, such a covering has degree 
0 + 
, i.e., such a modular

function h(z) will be a rational function of degree 
0 + 
 in J2(z).

Consider the two 
0-cycles

σ1 = (1, . . . , 
0), σ2 = (
0 + 
, 
0 + 
− 1, . . . , 
+ 1)

in the symmetric group S�0+�. Since 
 < 
0, we have

σ2σ1 = (1, . . . , 
, 
0 + 
, 
0 + 
− 1, . . . , 
0),

which is a (2
+1)-cycle. (Notice that if 
 ≥ 
0, then σ1 and σ2 are disjoint.)

It is clear that when 
 < 
0, the subgroup generated by σ1 and σ2 is a
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transitive subgroup of S�0+�. Thus, by Riemann’s existence theorem, there
exists a covering of compact Riemann surfaces H : X → P1(C) of degree

0 + 
 ramified at three points ζ1, ζ2, and ζ3 of P1(C) with corresponding
monodromy σ1, σ2, and σ−1

1 σ−1
2 , respectively. By the Riemann-Hurwitz for-

mula, the genus of X is 0, and H is a rational function from P1(C) to P1(C).
Furthermore, by applying a suitable linear fractional transformation on the
variable of H, we may assume that the three ramified points in H−1(zj)
are 0 = J2(∞), 1/

√
−3 = J2(ρ1), and −1/

√
−3 = J2(ρ2), respectively. Set

h(z) = H(J2(z)). Then h(z) has the required properties that the only points
of X(Γ2) ramified under h : X(Γ2) → P1(C) are ρ1, ρ2, and the cusp ∞ with
ramified indices 
0, 
0, and 2
+ 1, respectively.

Now consider the Schwarz derivative {h(z), z}, which is a meromorphic
modular form of weight 4 on Γ2. We claim that it is in fact modular on the
bigger group SL(2,Z).

Indeed, to show {h(z), z} is modular on SL(2,Z), it suffices to prove

that {h(z), z}
∣∣T = {h(z), z}, where T = ( 1 1

0 1 ). Let h̃(z) = h(z + 1). Now
the automorphism on X(Γ2) induced by T interchanges ρ1 and ρ2. Thus,

the ramification data of the covering h̃ : X(Γ2) → P1(C) is the same as that

of h. By the Riemann’s existence theorem, h and h̃ are related by a linear
fractional transformation, i.e., h̃ = (ah + b)/(ch + d) for some a, b, c, d ∈ C
with ad− bc �= 0. It follows that {h(z), z}

∣∣T = {h(z), z} by the well-known
property {(af(z) + b)/(cf(z) + d), z} = {f(z), z} of the Schwarz derivative.
This proves that {h(z), z} is a meromorphic modular form of weight 4 on
the larger group SL(2,Z).

Furthermore, since ρ1 is an elliptic point of order 3, a local parameter
for ρ1 as a point on the compact Riemann surface X(Γ2) is w

3, where w =
(z − ρ)/(z − ρ). Therefore, we have

h(z) = d0 +

∞∑
n=3�0

dnw
n,

for some complex numbers dn with d3�0 �= 0 and dn = 0 whenever 3 � n. For
convenience, set

A =

∞∑
n=3�0

ndnw
n−1,

B =

∞∑
n=3�0

n(n− 1)dnw
n−2,
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C =

∞∑
n=3�0

n(n− 1)(n− 2)dnw
n−3.

Using (3.3), we compute that

h′(z) =
(1− w)2

ρ− ρ
A,

h′′(z) =
(1− w)4

(ρ− ρ)2
B − 2

(1− w)3

(ρ− ρ)2
A,

h′′′(z) =
(1− w)6

(ρ− ρ)3
C − 6

(1− w)5

(ρ− ρ)3
B + 6

(1− w)4

(ρ− ρ)3
A,

and hence

{h(z), z} =
(1− w)4

(ρ− ρ)2

(
C

A
− 3

2

B2

A2

)
= −(1− w)4

3

(
1− 9
20
2w2

+ cw + · · ·
)

for some c. It follows that, by (3.7),

{h(z), z}+ 2π2sκρ

E6(z)
2

E4(z)2
, sκρ

=
1− 4κ2ρ

9
=

1

9
− 
20,

is a holomorphic modular form of weight 4 on SL(2,Z). By comparing the
leading coefficients of the Fourier expansions at the cusp ∞, we conclude
that,

{h(z), z} = −2π2

(
rE4(z) + sκρ

E6(z)
2

E4(z)2

)
,

where r = −(2
+1)2/4−sκρ
= 
20−(2
+1)2/4−1/9. Equivalently, 1/

√
h′(z)

and h(z)/
√

h′(z) are solutions of (1.11) which also implies that the singu-
larity of (1.11) at ρ is apparent.

Finally, since we have found 
0 different r such that (1.11) has an ap-
parent singularity at ρ for the given sκρ

, by Part (a), this proves the theo-
rem.
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Example. For small κρ, the modular functions h(z) appearing in the proof
are given by

κρ 
 (r, s) h(z)

3

2
0

(
23

36
,−8

9

)
J2

3 0

(
131

36
,−35

9

)
J2

1− 3J2
2

3 1

(
59

36
,−35

9

)
J3
2

1 + 9J2
2

Proof of Theorem 1.8(b). Assume that κi ∈ N. Let Γ3 be the subgroup of
index 3 of SL(2,Z) generated by

γ1 =

(
1 −2
1 −1

)
, γ2 =

(
1 −1
2 −1

)
, γ3 =

(
0 −1
1 0

)
.

We note that

γ1γ2γ3 =

(
1 3
0 1

)
.

The group Γ3 has one cusp and three elliptic points z1 = 1+i, z2 = (1+i)/2,
and z3 = i of order 2, fixed by γj , j = 1, 2, 3, respectively. Let

j3(z) =
E4(z)

η(z)8

be a Hauptmodul for Γ3 and set

J3(z) = 12j3(z)
−1.

Note that j3(z)
3 is equal to the elliptic j-function j(z). Since j(i) = 1728 and

j(ρ) = 0, we have {J3(z1), J3(z2), J3(z3)} = {1, e2πi/3, e4πi/3}, J3(ρ) = ∞,
and J3(∞) = 0.

Consider the case r+tκi
= −(
+1/3)2 first. Our goal here is to construct

a modular function h(z) on Γ3, for each 
 in the range, such that the covering
h : X(Γ3) → P1(C) has degree

d =
1

2
(3κi + 3
− 1)

and is ramified at precisely the cusp ∞ and the three elliptic points z1, z2,
and z3 with ramification indices 3
+ 1, κi, κi, and κi, respectively. (Notice
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that κi and 
 have opposite parities, so d is an integer.) Since the covering
has four branch points, it is not easy to apply Riemann’s existence theorem
directly to get h(z). Instead, we shall use the following idea.

For convenience, set

(4.1) m =
1

2
(κi + 
− 1), m′ =

1

2
(κi − 
− 1).

We claim that there exists a rational function H(x) of degree d in x of the
form

H(x) =
x3�+1G(x)3

F (x)3
, degF (x) = m, degG(x) = m′,

such that xF (x)G(x) is squarefree and

H(x)− 1 =
(x− 1)κiL(x)

F (x)3

for some polynomial L of degree d−κi with no repeated roots. That is, H(x)
is a rational function such that

(i) the covering H : P1(C) → P1(C) branches at precisely ∞, 0, and 1
(note that by the Riemann-Hurwitz formula, H cannot have other
branch points),

(ii) the monodromy σ∞ around ∞ is a product of m disjoint 3-cycles, the
monodromy σ0 around 0 is a disjoint product of a (3
 + 1)-cycle and
m′ 3-cycles, and the monodromy σ1 around 1 is a κi-cycle,

(iii) the unique unramified point in H−1(∞) is ∞, the unique point of
ramification index 3
+1 in H−1(0) is 0, and the unique ramified point
in H−1(1) is 1.

Suppose that such a rational function H(x) exists. We define h : X(Γ3) →
P1(C) by

h(z) = H(J3(z)
3)1/3 =

J3(z)
3�+1G(J3(z)

3)

F (J3(z)3)
.

From the construction, we see that h ramifies only at z1 = 1+i, z2 = (1+i)/2,
z3 = i, and ∞ with ramification indices κi, κi, κi, and 3
 + 1, respectively.
Then following the proof of Theorem 1.7(b), we can prove that the Schwarz
derivative {h(z), z} is a meromorphic modular form on the larger group
SL(2,Z) and that

{h(z), z} = −2π2

(
rE4(z) + tκi

E4(z)
4

E6(z)2

)
, r = −

(

+

1

3

)2

− tκi
,



1012 Jia-Wei Guo et al.

which is equivalent to the assertion that 1/
√

h′(z) and h(z)/
√

h′(z) are
solutions of (1.13) with t = tκi

and r = −(
+ 1/3)2 − tκi
and hence implies

that (1.13) is apparent with these parameters.
It remains to prove that a rational function H(x) with properties de-

scribed above exists. According to Riemann’s existence theorem, it suffices
to find σ∞ that is a product of m disjoint 3-cycles and σ1 that is a κi-cycle
in Sd such that σ1σ∞ is a disjoint product of a cycle of length 3
 + 1 and
m′ cycles of length 3. Indeed, we find that we may choose

σ∞ = (2, 3, 4)(5, 6, 7) . . . (3m− 1, 3m, 3m+ 1)

and

σ1 = (1, 2, 5, 8, . . . , 3m− 1, 3m′ + 1, 3m′ − 2, . . . , 7, 4).

Then

σ1σ∞ = (1, 2, 3)(4, 5, 6) . . . (3m′ − 2, 3m′ − 1, 3m′)(3m′ + 1, 3m′ + 2, . . . , d).

This settles the case r + tκi
= −(
+ 1/3)2.

The case r + tκi
= −(
− 1/3)2 can be dealt with in the same way. The

difference is that the rational function H(x) in this case has degree

d =
3

2
(κi + 
− 1)

and is of the form

H(x) =
x3�−1G(x)3

F (x)3
, degF (x) = m, degG(x) = m′,

where m and m′ are the same as those in (4.1), such that xF (x)G(x) is
squarefree and

H(x)− 1 =
(x− 1)κiL(x)

F (x)3

for some polynomial L(x) of degree d− κi with no repeated roots. I.e., σ∞
in this case is a disjoint product of m 3-cycles, σ0 is a a disjoint product of
(3
− 1)-cycle and m′ 3-cycles, and σ1 is a κi-cycle. We choose

σ∞ = (1, 2, 3)(4, 5, 6) . . . (3m− 2, 3m− 1, 3m)

and

σ1 = (1, 4, 7, . . . , 3m− 2, 3m, 3m− 3, . . . , 3
)
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with

σ1σ∞ = (1, 2, 3, 4, . . . , 3
− 1)(3
, 3
+1, 3
+2) . . . (3m− 3, 3m− 2, 3m− 1).

The rest of proof is the same as the case of r + tκi
= −(
 + 1/3)2. This

completes the proof that (1.14) is the complete list of parameters r such
that (1.13) with t = tκi

is apparent.

Example. For small κi, the modular functions h(z) in the proof are given
by

κi 
± 1/3 (r, t) h(z)

1
1

3

(
23

36
,−3

4

)
J3

2
2

3

(
119

36
,−15

4

)
J2
3

1 + 2J3
3

2
4

3

(
71

36
,−15

4

)
J4
3

1− 4J3
3

Proof of Theorem 1.6. Assume that ni, nρ, and n∞ are positive integers
satisfying the two conditions. We note that the parameters r, s, and t in
(1.9) are

(4.2) r = −n2
∞ + n2

ρ + n2
i −

13

36
, s =

1

9
− n2

ρ, t =
1

4
− n2

i .

Let

d =
1

2
(ni + nρ + n∞ − 1).

By the second condition, we have

d− ni =
1

2
(nρ + n∞ − ni − 1) ≥ 0

and similarly, d− nρ ≥ 0. Thus, there are cycles of lengths ni and nρ in the
symmetric group Sd. Choose

σ1 = (1, . . . , ni), σ2 = (d, d− 1, . . . , d− nρ + 1)

By the second condition again, we have

ni − (d− nρ + 1) =
1

2
(ni + nρ − n∞ − 1) ≥ 0.
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In other words, the two cycles are not disjoint. We then compute that

σ2σ1 = (1, . . . , d− nρ, d, d− 1, . . . , ni).

This is a cycle of length

d− nρ + (d− ni + 1) = 2d− nρ − ni + 1 = n∞.

It is clear that the subgroup of Sd generated by σ1 and σ2 is transitive. Thus,
by Riemann’s existence theorem, given three distinct points ζ1, ζ2, and ζ3
on P1(C), there is a covering H : X → P1(C) of compact Riemann surfaces
of degree d branched at ζ1, ζ2, and ζ3 with monodromy σ1, σ2, and σ3 =
σ−1
1 σ−1

2 , respectively. By the Riemann-Hurwitz formula, the genus of X is 0
and we may assume that X = P1(C). Applying a suitable linear fractional
transformation (i.e., an automorphism of X) if necessary, we may assume
that the ramification points on X are 1728 = j(i), 0 = j(ρ), and ∞ = j(∞)
with ramification indices ni, nρ, and n∞, respectively. Let h : X0(1) → P1(C)
be defined by h(z) = H(j(z)). Following the same computation as in the
proof of Theorem 1.7(b), we can show that

{h(z), z} = −2π2

(
rE4(z) + s

E6(z)
2

E4(z)2
+ t

E4(z)
4

E6(z)2

)
with r, s, and t given as (4.2) (details omitted). This implies that the sin-
gularities of (1.9) are all apparent.

Conversely, assume that the differential equation (1.9) is apparent
throughout H ∪ {cusps}. Let ±n∞/2 be the local exponents at ∞. Then
a fundamental pair of solutions near ∞ is

y±(z) = q±n∞/2

(
1 +

∞∑
n=1

c±n q
n

)
.

Let h(z) = y+(z)/y−(z). Since (1.9) is apparent throughout H, h(z) is a
single-valued function on H. Arguing as in the second proof of Theorem 1.6,
we see that h(z) is a modular function on SL(2,Z). Now since

{h(z), z} = −2π2

(
rE4(z) + s

E6(z)
2

E4(z)2
+ t

E4(z)
4

E6(z)2

)
have poles only at points equivalent to ρ or i under SL(2,Z), the covering
X0(1) → P1(C) defined by z �→ h(z) can only ramify at ρ, i, or ∞. From the
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computation above, we see that their ramification indices must be nρ, ni,
and n∞, respectively. Then by the Riemann-Hurwitz formula, nρ +ni +n∞
must be odd and the degree of the covering is (nρ+ni+n∞−1)/2. Since the
ramification indices nρ, ni, and n∞ cannot exceed the degree of the covering,
we conclude that the sum of any two of nρ, ni, and n∞ must be greater than
the remaining one. This completes the proof of the theorem.

5. Eremenko’s Theorem and its applications

Second proof of (1.12). In Section 2.3, Example 2 shows that the angle of
Q1 at i, ρ and ∞ are

(5.1) θ1 =
1

2
, θ2 =

2κρ
3

, and θ∞ =
√

−(r + sκρ
).

First, we consider θ2 is even, say θ2 = 2
0. By Eremanko’s Theorem in
Section 2, the curvature equation (2.5) has a solution if and only if either
|θ∞ − θ1| = 2
 + 1 or θ∞ + θ1 = 2
 + 1 for some 
 ∈ Z≥0 and 
 ≤ 
0 − 1.
Since θ∞ > 0, the condition |θ∞ − θ1| = 2
 + 1 ≥ 1 implies θ∞ − θ1 > 0
and then θ∞ − θ1 = 2
 + 1. This is equivalent to −(r + sκρ

) = θ2∞ =
(2
+ 1 + 1/2)2, 
 = 0, . . . , 
0 − 1. The second condition θ∞ + θ1 = 2
+ 1 is
equivalent to −(r + sκρ

) = θ2∞ = (2
 + 1/2)2, 
 = 0, . . . , 
0 − 1. Therefore,
there are exactly 2
0 different θ∞ such that the curvature equation (2.5)
has a solution and each of such a curvature equation is associated with the
modular form Q1(z; r, sκρ

) with (r, sκρ
) where r+sκρ

= −(
+1/2)2 for some

 ∈ {0, . . . , 2
0 − 1}. By Theorem 2.4, for each (r, sκρ

), the ODE (1.11) is
apparent. However, the first part of Theorem 1.7(b) says that there exists
a polynomial P (x) of degree 2κρ/3 such that (2.5) with (r, sκρ

) is apparent
if and only if P (r) = 0. Therefore, P (r) has distinct roots and each root
satisfies r + sκρ

= −(
+ 1/2)2 for some integer 
, 0 ≤ 
 ≤ 2
0 − 1 = θ2 − 1.
The proves (1.12) when θ2 is even.

For the case θ2 is odd, the idea of the proof is basically the same.
By noting θ1 = 1/2, the Eremenko theorem in Section 2 implies either
|θ∞ − 1/2| = 
 or θ∞ +1/2 = 
, where 
 is even because θ2 is odd. The first
condition can be replaced by θ∞ − 1/2 = 
. Thus we have θ∞ = 
+ 1/2 or
θ∞ = 
−1/2 = (
−1)+1/2, that is r+s = −(
+1/2)2, 
 = 0, 1, 2, . . . , θ2−1.
The proof of (1.12) is complete.

Second proof of (1.14). The angles for Q2(z) are θ1 = κi, θ2 = 1/3, and
θ∞ =

√
−(r + ti), where

1
2 ± κi are the local exponents of (1.13). Hence

κi −
1

2
+ 1 = m+

1

2
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i.e., θ1 = κi is an integer. Hence, there is a solution u of (2.5)-(2.7) with the
RHS equals to 4πn

∑
δp, where the summation runs over γ ·i, γ ∈ SL(2,Z), if

and only if either θ∞−θ2 = |θ∞ − θ2| = 
 or θ∞+θ2 = 
 where 
 ≤ κi−1 and

 has the opposite parity of κi. Hence, θ∞ = 
±1/3 and r+ti = −(
±1/3)2.
This proves (1.14).

Second proof of Theorem 1.6. Suppose that the ODE (1.9) has local expo-
nents ±n∞ at ∞, n∞ ∈ 1

2N. We claim that (1.9) is apparent throughout H∗

if and only if Q3(z) = Q3(z; r, s, t) is realized by a metric with curvature
1/2. It is clear that the second statement implies the first statement. So it
suffices to prove the other direction.

Suppose that (1.9) is apparent throughout H∗. Let y±(z) =
q±n∞/2 (1 +O(q)) be two solutions of (1.9) and set h(z) = y+(z)/y−(z).
Since (1.9) is apparent on H, h(z) is a meromorphic single-valued function
on H and its Schwarz derivative is −2Q3(z). Recall Bol’s theorem that there
is a homomorphism ρ : SL(2,Z) → PSL(2,C) such that⎛⎝(

y1
∣∣
−1

γ
)
(z)(

y2
∣∣
−1

γ
)
(z)

⎞⎠ = ±ρ(γ)

(
y1(z)
y2(z)

)
, γ ∈ SL(2,C).

Clearly, ρ(T ) = ±I because ∞ is apparent. Note that ker ρ is a normal
subgroup of SL(2,Z) and contains γTγ−1 for any γ ∈ SL(2,Z). In particular,
ker ρ contains both T = ( 1 1

0 1 ) and STS−1 =
(

1 0
−1 1

)
, where S =

(
0 −1
1 0

)
.

Since ( 1 1
0 1 ) and

(
1 0
−1 1

)
generate SL(2,Z), we conclude that ker ρ = SL(2,Z).

In other words, ρ(γ) = ±I and h(z) is a modular function on SL(2,Z). Thus

we have a solution u := log 8|h′(z)|2

(1+|h(z)|2)2
which realizes Q3. This proves the

claim.
Now, we apply the Eremenko theorem with the angles given by θ1 = κi,

θ2 = 2κρ/3 and θ3 = n∞. Our necessary and sufficient condition in Theorem
1.6 is identically the same as the condition of Eremenko’s theorem for the
existence of u with three integral angles. This proves Theorem 1.6.

Theorem 5.1. Suppose κi ∈ N and κρ, κ∞ ∈ 1
2N such that 2κρ/3 ∈ N. If

Q3(z; r, s, t) is apparent at ρ and i, then Q can be realized.

Proof. By the assumption, we have that θi, 1 ≤ i ≤ 3, are all integers. Now,
given κi and κρ, s and t are determined by the same formula in our paper.
Further, there are polynomials P1 and P2:

• Q3(z; r, s, t) is apparent at i if and only if P1(r) = 0, and degP1(r) =
κi.
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• Q3(z; r, s, t) is apparent at ρ if and only if P2(r) = 0, and degP2 =

2κρ/3.

Therefore, Q3(z; r, s, t) is apparent at i and ρ if and only if

r ∈ {r : P1(r) = P2(r) = 0} .

Now, we claim that under the assumption θ1 ∈ N, Q3(z; r, s, t) is apparent if

and only if the local exponents at ∞ are ±κ∞/2, κ∞ ∈ N and the curvature
equation has a solution.

By Eremenko’s Theorem (Section 2.4), (recall θ1 = κi, θ2 = 2κρ/3,
θ3 = 2κ∞) the curvature equation has a solution if and only if θ1 + θ2 + θ3
is odd and θi < θj + θk, i �= j �= k. This condition is equivalent to

(a)

θ2 − θ1 < θ3 < θ2 + θ1, and

(b)

θ1 − θ2 < θ3 < θ1 + θ2.

Since θ1 + θ2 + θ3 is odd, we have θ2 solutions of the curvature equation if

θ1 > θ2, θ1 solutions if θ2 > θ1.

Now, degP1 = κi = θ1 and degP2 = 2κρ/3 = θ2. Then

min {θ1, θ2} ≥ |{r : P1(r) = P2(r) = 0}|
=≥ # of curvature equations ≥ min {θ1, θ2} .

Thus

|{r : P1(r) = P2(r) = 0}| = # of curvature equations.

This proves the theorem.

Remark. In fact, the proof shows that if degPi ≤ degPj , then Pi is a factor

of Pj .

6. proof of Theorem 1.1 and Theorem 1.4

Proof of Theorem 1.1. Let ρ be the Bol representation associated to (1.1),
and set T = ( 1 1

0 1 ), S =
(
0 −1
1 0

)
, and R = TS =

(
1 −1
1 0

)
. They satisfy

(6.1) S2 = −I, and R3 = −I.
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Assume that (H1) and (H2) hold. It follows from either [12, Theorem 2.5],
quoted as Theorem A.1 in the appendix, or Theorem A.3 (with θ1 = 1/2,
θ2 = 1/3, and θ3 = 2r∞ or θ3 = 1− 2r∞, depending on whether 2r∞ ≤ 1/2
or 2r∞ > 1/2) in the appendix that if 1/12 < r∞ < 5/12, then an invariant
metric realizing Q(z) exists, and if 0 < r∞ < 1/12 or 5/12 < r∞ ≤ 1/2,
then there does not exist an invariant metric realizing Q(z). So here we are
concerned with the case r∞ = 1/12 or r∞ = 5/12.

Assume that r∞ = 1/12. Then there exists a basis {y1(z), y2(z)} for the
solution space of (1.1) such that

(6.2) ρ(T ) = ±
(
ε 0
0 ε

)
, ε = e2πi/12.

Since S2 = −I, we have ρ(S)2 = ±I. The matrix ρ(S) cannot be equal to ±I
as the relation R = TS will imply that the eigenvalues of ρ(R) are ±e2πi/12

or ±e−2πi/12, which is absurd. It follows that tr ρ(S) = 0 and we have

(6.3) ρ(S) = ±
(
a b
c −a

)
, ρ(R) = ±ρ(T )ρ(S) = ±

(
εa εb
ε̄c −aε̄

)
for some a, b, c ∈ C. Since ρ(R)3 = ±I, det ρ(R) = 1, and ρ(R) �= ±I by
a similar reason as above, the characteristic polynomial of ρ(R) has to be
x2−x+1 or x2+x+1. In particular, we have tr ρ(R) = ±1, i.e., a(ε−ε) = ±1
and hence a = ±i and bc = 0. Under the assumption that there is an
invariant metric realizing Q(z), the matrices ρ(S), ρ(T ), and ρ(R) must be
unitary, after a simultaneous conjugation. (See the discussion in Section 2.2.)
If one of b and c is not 0, this cannot happen. Therefore, we have b = c = 0.
This implies that the function y1(z)

2, which is meromorphic throughout H
since the local exponents at every singularity are in 1

2Z, satisfies

y1(Tz)
2 = e2πi/6y1(z)

2, y1(Sz)
2 = −z−2y1(z)

2.

It follows that y1(z)
2 is a meromorphic modular form of weight −2 with

character χ on SL(2,Z). Likewise, we can show that y2(z)
2 is a meromorphic

modular form of weight −2 with character χ. This proves that if there is
an invariant metric realizing Q(z), then there are solutions y1(z) and y2(z)
with the stated properties. The proof of the case r∞ = 5/12 is similar and
is omitted.

The proof of the converse statement is easy. If there exist solutions y1(z)
and y2(z) of (1.1) such that y1(z)

2 and y2(z)
2 are meromorphic modular
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forms of weight −2 with character χ and χ, respectively, on SL(2,Z), then
y1(Tz)

2 = e2πi/6y1(z)
2 and y2(Tz)

2 = e−2πi/6y2(z)
2, which implies that

y1(z)
2 and y2(z)

2 are of the form y1(z)
2 = q1/6

∑
j≥n0

cjq
j and y2(z)

2 =

q−1/6
∑

j≥n0
djq

j . It follows that r∞ = 1/12 or r∞ = 5/12. It is clear that
with respect to the basis {y1(z), y2(z)}, the Bol representation is given by

ρ(T ) = ±
(
e2πi/12 0

0 e−2πi/12

)
, ρ(S) = ±

(
±i 0
0 −i

)
,

and hence is unitary. It follows that there is an invariant metric of curvature
1/2 realizing Q(z). This proves the theorem.

We now give two examples with r∞ = 1/12, one of which can be realized
by some invariant metric of curvature 1/2, while the other of which can not.
Note that Theorem 1 of [10] implies that when (1.1) does not have SL(2,Z)-
inequivalent singularities outside {i, ρ}, 1/12 < r∞ < 5/12 is the necessary
and sufficient condition for the existence of an invariant metric of curvature
1/2 realizing Q. The examples we provide below show that when (1.1) has
SL(2,Z)-inequivalent singularities other than i and ρ, this condition is no
longer a necessary condition.

Example. Let η(z) = q1/24
∏∞

n=1(1− qn) = Δ(z)1/24,

(6.4) x(z) =
E4(z)

η(z)8
= q−1/3 + · · · , y(z) =

E6(z)

η(z)12
= q−1/2 + · · · ,

and h(z) = x(z)/y(z) = q1/6 + · · · . They are modular functions on the
unique normal subgroup Γ of SL(2,Z) of index 6 such that SL(2,Z)/Γ is
cyclic. (Another way to describe Γ is that Γ = kerχ, where χ is the character
of SL(2,Z) such that χ(S) = −1 and χ(R) = e2πi/3.) Using Ramanujan’s
identities

DqE2(z) =
E2(z)

2 − E4(z)

12
,

DqE4(z) =
E2(z)E4(z)− E6(z)

3
,

DqE6(z) =
E2(z)E6(z)− E4(z)

2

2
,

where Dq = qd/dq (see [21, Proposition 15]) and the relation Δ(z) =
(E4(z)

3 − E6(z)
2)/1728, we can compute that

{h(z), z} = (2πi)2Q0(z)
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where

Q0(z) = E4(z)

(
− 1

72
− 9(E4(z)

3 − E6(z)
2)2

(3E4(z)3 − 2E6(z)2)2
+

5

2

E4(z)
3 − E6(z)

2

3E4(z)3 − 2E6(z)2

)
.

Thus,

y+(z) =
h(z)√
Dqh(z)

= q1/12 + · · · , y−(z) =
1√

Dqh(z)
= q−1/12 + · · ·

are solutions of the differential equation y′′(z) = Q(z)y(z), where Q(z) =
−(2πi)2Q0(z)/2. The meromorphic modular formQ(z) has only one SL(2,Z)-
inequivalent singularity at the point z1 such that 3E4(z1)

3 − 2E6(z1)
2 = 0

and is holomorphic at the elliptic points i and ρ. In the notation of The-
orem 1.1, we have r∞ = 1/12. This provides an example of an invariant
metric of curvature 1/2 realizing a meromorphic modular form of weight 4
with a threshold r∞. Note that with respect to the basis {y+, y−}, the Bol
representation is given by

ρ(T ) = ±
(
e2πi/12 0

0 e−2πi/12

)
, ρ(S) = ±

(
i 0
0 −i

)
,

both of which are unitary. (The information about ρ(S) follows from the
transformation formula η(−1/z) =

√
z/iη(z) and the fact that Dqh(z) =

Cη(z)4(3E4(z)
3 − 2E6(z)

2)/E6(z)
2 for some constant C.)

Example. Let x(z) and y(z) be defined by (6.4), and Γ be the unique
normal subgroup of SL(2,Z) of index 6 such that SL(2,Z)/Γ is cyclic. The
modular curve X(Γ) := Γ\H∗ has one cusp of width 6, no elliptic points,
and is of genus 1. Since the modular functions x(z) and y(z) on Γ have only
a pole of order 2 and 3, respectively, at the cusp ∞ and are holomorphic
elsewhere, they generate the function field of X(Γ). Then from the relation
E4(z)

3 − E6(z)
2 = 1728η(z)24, we see that x(z) and y(z) satisfies

y2 = x3 − 1728,

which we may take as the defining equation for X(Γ). Let f(z) be a mero-
morphic modular form of weight 2 on Γ such that all residues on H are 0.
Equivalently, let ω = f(z) dz be a meromorphic differential 1-form of the
second kind on X(Γ). Consider

y1(z) =
1√
f(z)

∫ z

z0

f(u) du, y2(z) =
1√
f(z)

,
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where z0 is a fixed point in C that is not a pole of f(z). Under the assumption

that all residues of f(z) are 0, the integral in the definition of y1(z) does not

depend on the choice of path of integration from z0 to z. A straightforward

computation shows that the Wronskian of y1 and y2 is a constant and hence

y1(z) and y2(z) are solutions of the differential equation y′′(z) = Q(z)y(z),

where

Q(z) =
3f ′(z)2 − 2f(z)f ′′(z)

4f(z)2

can be shown to be a meromorphic modular form of weight 4 on Γ. (The nu-

merator of Q(z) is a constant mulitple of the Rankin-Cohen bracket [f, f ]2
and hence a mermomorphic modular form of weight 8. See [9].) By con-

struction, this differential equation is apparent throughout H. Furthermore,

if f(z) is chosen in a way such that f(γz) = χ(γ)(cz + d)2f(z) holds for all

γ =
(
a b
c d

)
∈ SL(2,Z) for some character χ of SL(2,Z) with Γ ⊂ kerχ, then

Q(z) is modular on SL(2,Z). We now utilize this construction of modular

differential equations to find Q(z) that cannot be realized, i.e., the mon-

odromy group is not unitary.

We let ω1 = dx/y and ω2 = d(x/y3). Note that ω1 is a holomorphic

1-form on the curve y2 = x3 − 1728, while ω2 is an exact 1-form and hence

a meromorphic 1-form of the second kind. Using Ramanujan’s identities, we

check that ω1 = f1(z) dz and ω2 = f2(z) dz with

f1(z) = −2πi

3
η(z)4, f2(z) = 2πi

η(z)4

E6(z)4

(
7

6
E4(z)

3Δ(z) + 576Δ(z)2
)
.

Now we choose, say,

ω = − 3

2πi
(ω1 + ω2)

and let f(z) = q1/6+ · · · be the meromorphic modular form of weight 2 such

that ω = f(z) dz. Let y′′(z) = Q(z)y(z) be the differential equation obtained

from f(z) using the construction described above. Note that f(z + 1) =

e2πi/6f(z) and using η(−1/z) =
√

z/iη(z), we have f(−1/z) = −z2f(z).

Thus, f(γz) = χ(γ)(cz+d)2f(z) for all γ =
(
a b
c d

)
∈ SL(2,Z), where χ is the

character of SL(2,Z) such that χ(T ) = e2πi/6 and χ(S) = −1. According

the discussion above, the function Q(z) is a meromorphic modular form

of weight 4 with trivial character on SL(2,Z). Note that f(z) has zeros at

points where 6E6(z)
4 − 7E4(z)

3Δ(z)− 3456Δ(z)2 = 0. Now let us compute

its Bol representation.



1022 Jia-Wei Guo et al.

We choose z0 = i∞ and find that

y2(z) = q−1/12

⎛⎝1 +

∞∑
j=1

cjq
j

⎞⎠ , y1(z) = q1/12
∞∑
j=0

djq
j

for some cj and dj with d0 �= 0. Therefore, the local exponents at ∞ are

±1/12 and

ρ(T ) = ±
(
e2πi/12 0

0 e−2πi/12

)
.

Also, since f(−1/z) = −z2f(z), we have∫ −1/z

i∞
f(u) du =

∫ z

0
f(−1/u)

du

u2
= −

∫ z

0
f(u) du

= −
∫ i∞

0
f(u) du−

∫ z

i∞
f(u) du.

Thus,

ρ(S) = ±
(
i C
0 −i

)
, C = i

∫ i∞

0
f(u) du.

Now recall that ω = f(z) dz is equal to −3(ω1 + ω2)/(2πi). Since ω2 =

d(x/y3) is an exact 1-form on X(Γ) and the modular curve X(Γ) has only

one cusp, which in particular says that ∞ and 0 are mapped to the same

point on X(Γ) under the natural map H∗ → X(Γ), the integral
∫ i∞
0 f2(u) du

is equal to 0. Therefore, we have

C = i

∫ i∞

0
η(u)4 du.

This constant C can be expressed in terms of the central value of the L-

function of the elliptic curve E : y2 = x3 − 1728, which is known to be

nonzero. From this, it is straightforward to check that there is no simulta-

neous conjugation such that ρ(T ) and ρ(S) both become unitary.

Proof of Theorem 1.4. We use the notations in the proof of Theorem 1.1.

Since κ∞ = n/4 for some odd integer n, with respect to the basis

{y+(z), y−(z)}, we have ρ(T ) = ±
(
i 0
0 −i

)
. If ρ(S) = ±I, then ρ(R) =

±
(
i 0
0 −i

)
, which is a contradiction to ρ(R)3 = ±I. Hence, ρ(S) �= ±I, and
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we have tr ρ(S) = 0. Then, by a choosing a suitable scalar r, the matrix of
ρ(S) with respect to {ry+(z), y−(z)} will be of the form

ρ(S) = ±
(
a b
b −a

)
for some a, b ∈ C with a2 + b2 = −1, while ρ(T ) is still ±

(
i 0
0 −1

)
. Set

F (z) = r2y+(z)
2 + y−(z)2. We then compute that F (Tz) = −F (z) and

(F |−2S) (z) = (ary+(z) + by−(z))
2 + (bry+(z)− ay−(z))

2

= −r2y1(z)
2 − y2(z)

2 = −F (z).

This proves the theorem.

7. Existence of the curvature equation

In this section, we will prove Theorem 1.3 equipped with the data (1.7). The
main purpose of this section is to prove the existence and the number of such
Q equipped with data (1.7). The discussion will be divided into several cases
depending on κρ and κi.

Lemma 7.1. Suppose F (z) is a modular form of weight 4 with respect to
SL(2,Z), and is holomorphic except at ρ and i. If the pole order of F (z) at
ρ or i ≤ 1, then F (z) is holomorphic.

Proof. Let n1 and n2 be the orders of poles at i and ρ respectively. The
counting zero formula of meromorphic modular form (see [18]) says

m− n1

2
− n2

3
=

4

12
, m is a non-negative integer.

By the assumption, ni ≤ 1. From the identity, it is easy to see n1 ≤ 0 and
n2 ≤ 0.

Let tj = E6(zj)
2/E4(zj)

3 and define Fj(z) = E6(z)
2 − tjE4(z)

3. By the
theorem of counting zeros of modular forms [18, p. 85, Theorem 3], Fj(z)
has a (simple) zero at zj ∈ H.

Lemma 7.2. Suppose that Q satisfies the conditions (i) and (ii) in Defini-
tion 1.2. Then

Q = π2

⎛⎝Q3(z; r, s, t) +

m∑
j=1

r
(j)
1 E4(z)

4Fj(z) + r
(j)
2 E4(z)

7

Fj(z)2

⎞⎠ ,(7.1)
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where r, r
(j)
1 are free parameters and s, t, r

(j)
2 are uniquely determined by

s = sκρ
:= (1− 4κ2ρ)/9, t = tκi

= (1− 4κ2i )/4, and

r
(j)
2 = r

(j)
2,κj

= tj(tj − 1)2(1− 4κ2j )/4.
(7.2)

Proof. Let Q̂ denote the RHS of (7.1). Then it is a straightforward compu-
tation to show that (ii) in Definition 1.2 holds at pj if and only if s = sκρ

if pj = ρ, t = tκi
if pj = i, and r

(j)
2 = r

(j)
2,κj

if pj = zj . By the choice of s, t

and r
(j)
2 , Q− Q̂ might contain simple poles only. Further, we can choose r

(j)
1

to make Q − Q̂ holomorphic at zj . By Lemma 7.1, Q − Q̂ is automatically

smooth at ρ and i. Therefore, Q−Q̂ is a holomorphic modular form of weight
4, and the lemma follows immediately because E4(z), up to a constant, is
the only holomorphic modular form of weight 4.

Now we are in the position to prove Theorem 1.3.

Proof of Theorem 1.3. We first calculate the parameters r, r
(j)
1 , 1 ≤ j ≤ m,

such that Q is apparent at zj . For simplicity, we assume j = 1. From (7.1),
we do the Taylor expansion at z = z1.

Q(z) = a−2(z − z1)
−2 + (r1b−1 + a−1)(z − z1)

−1

+

∞∑
j=0

(
aj + r1bj + cj

(
r, r

(2)
1 , . . . , r

(m)
1

))
(z − z1)

j :=

∞∑
j=−2

Aj (z − z1)
j ,

where aj , bj are independent of r, r
(j)
1 and cj(r, r

(2)
1 , . . . , r

(m)
1 ) is linear in all

variables, and also

y(z) = (z − z1)
1/2−κ1

⎛⎝1 +

∞∑
j=1

dj(z − z1)
j

⎞⎠ .

Then we derive the recursive formula by comparing both sides of (1.1) with
Q in (7.1),

(7.3) j(j − 2κ1)dj =
∑

k+�=j−2, k<j

dkA�, A−1 = a−1 + r1b−1,

where d0 = 1 and

d1 =
1

1− 2κ1
d0A−1 =

b−1

1− 2κ1
r1 + terms of lower orders.
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By induction,

j(j − 2κ1)dj = dj−1A−1 + dj−2A0 + dj−3A1 + · · ·+ d0Aj−2(7.4)

=
bj−1
−1

(1− 2κ1) · · · ((j − 1)− 2κ1)
rj−1
1 + terms of lower orders.

At j = 2k1, the RHS of (7.4) is

P1

(
r, r

(1)
1 , . . . , r

(m)
1

)
:= d2κ1−1A−1 + d2κ1−2A0 + · · ·+ d0Aκ1−2.

Clearly, degP1 = 2κ1 and

(7.5) P1 = B0r
2κ1

1 + terms of lower orders, B0 �= 0.

We summarized what are known:

• κi �∈ N, then Q is apparent at i for any tuple
(
r, r

(j)
1

)
.

• 2κp/3 �∈ N, then Q is apparent at ρ for any tuple
(
r, r

(j)
1

)
,

• 1/2±κj , there is a polynomial Pj

(
r, r

(1)
1 , . . . , r

(m)
1

)
of degree 2κj such

that Q is apparent at zj if and only if Pj

(
r, r

(1)
1 , . . . , r

(m)
1

)
= 0.

Since κ∞ is given, we have κ∞ =
√

−Q(∞)/2, and then

(7.6) r +

m∑
j=1

(1− tj) r
(1)
j + e = 0,

where e is given. By Bezout’s theorem, we have N =
∏m

j=1(2κj) common
roots with multiplicity of (7.5) and (7.6) because by (7.5) it is easy to see
that there are no solutions at ∞. This proves the theorem.

Appendix A. Curvature equations on S2 with multiple
singularities

Let H∗ = H ∪ Q ∪ {∞}. Since SL(2,Z)\H∗ � C ∪ {∞}, the equation (2.5)
in the case Γ = SL(2,Z) can be transformed into the mean field equations
on C:

(A.1)

{
Δu+ eu = 4π

(
α1δ0 + α2δ1 +

∑m
j=1 njδpj

)
on C,

u(z) = −(4 + 2α3) log |z|+O(1) as |z| → ∞,
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where we assume that the isomorphism maps the points i =
√
−1, ρ =

(1 +
√
−3)/2, and ∞ of SL(2,Z)\H∗ to 0, 1, and ∞, respectively, δp is the

Dirac measure at p ∈ C, αk > −1 for k = 1, 2, 3 and nj ∈ N. For any solution
u of (A.1), the conformal metric eu|dz|2 has the angles λ1, λ2, and σj at 0,
1, and pj , respectively, where

(A.2) λ1 = α1 + 1, λ2 = α2 + 1, σj = nj + 1.

Throughout the appendix, we assume that αk are not integers for k =
1, 2, 3 and all pj are distinct. To find a solution for (A.1), we first associate
to (A.1) a second-order ODE

(A.3) y′′(z) +Q(z)y(z) = 0, z ∈ C,

where

Q(z) =

( α1

2 (α1

2 + 1)

z2
+

r1
z

)
+

( α2

2 (α2

2 + 1)

(z − 1)2
+

r2
z − 1

)
(A.4)

+

m∑
j=1

nj

2 (
nj

2 + 1)

(z − pj)2
+

sj
z − pj

for some free parameters r0, r1, sj . It is known that (A.1) has a solution if
and only if the monodromy group of (A.3) is projectively unitary.

Note that the local exponents of (A.3) at 0 and 1 are {−α1/2, 1+α1/2}
and {−α2/2, 1 + α2/2}, respectively. Since α1, α2 /∈ Z, the differences of
the local exponents are not integers. At each pj , there is a polynomial
Pj(r1, r2, sj) such that (A.3) is apparent if and only if Pj(r1, r2, sj) = 0.
The derivation of the polynomials Pj is the same as Lemma 7.2. Moreover,
the asymptotic behavior of u at ∞ yields that (A.3) is Fuchsian at ∞ with
local exponents −α3/2 and 1 + α3/2. Thus, we have

r1 + r2 +
∑
j

sj = 0

and

α∞
2

(
α∞
2

+ 1) = lim
z→∞

z2Q(z)

=r1 +

m∑
j=1

sjpj +
∑

k∈{0,1}

αk

2
(
αk

2
+ 1) +

m∑
j=1

nj

2
(
nj

2
+ 1).
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Therefore, for given local exponent data for (A.1), the Bézout theorem im-
plies that there are at most

∏m
j=1(nj +1) distinct Q such that (A.3) realizes

the mean field equation (A.1) for given data. Theorem 2.5 of [12] is to give a
necessary and sufficient condition to ensure that the projective monodromy
group of (A.3) is unitary, i.e., that (A.1) has a solution.

Theorem A.1 ([12, Theorem 2.5]). Suppose that α1, α2, α3 are not integers
and all combinations

(A.5) α1 ± α2 ± α3 are not integers

for any choice of signs. Then (A.1) has a solution if and only if

cos2 πα1 + cos2 πα2 + cos2 πα3 + 2(−1)σ+1 cosπα1 cosπα2 cosπα3 < 1,

where σ =
∑m

j=1 nj. Moreover, the number of distinct solutions of (A.1) is
less than or equal to

∏m
j=1(nj + 1).

We remark that the notations αj here differ from those used in [12] by 1.

Note that when (A.1) arises from the differential equation (1.1) consid-
ered in Theorem 1.1, we have

α1 = κi − 1, α2 = 2κρ/3− 1, α3 = 2κ∞, nj = 2κpj
− 1,

where κi, κρ, κpj
∈ 1

2N are the local exponent data in (H1) and (H2). Hence,
α1 ∈ 1

2 + Z and α2 = ±1
3 + Z and the condition (A.5) is equivalent to

r∞ �= 1/12, 5/12. Thus, the first half of Theorem 1.1 is a special case of
Eremenko and Tarasov’s theorem. In the remainder of the appendix, we
provide an alternative and self-contained proof of Theorem A.1.

For k = 1, 2, 3, let θk ∈ (0, 1/2] be real numbers such that

(A.6) αk ≡ ±θk mod 1, and αk = 
k ± θk.

Let S = {0, 1,∞, p1, . . . , pm} be the set of singular points of (A.3). Choose a
base point z0 near ∞ and consider the monodromy represenation ρ : π1(C \
S, z0) → SL(2,C) of (A.3). Let βj , γk ∈ π1(C\S, z0) such that βj , 1 ≤ j ≤ m,
(resp. γ0, γ1) is a simple loop encircling pj (resp. 0, 1) counterclockwise, while
γ∞ is a simple loop around ∞ clockwise such that

γ0γ1

m∏
j=1

βj = γ∞, in π1(C \ S, z0).
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Since the local exponents at ∞ are {−α3/2, 1+α3/2} with α3 = 
3±θ3 and
any solution has no logarithmic singularities, we can choose local solutions
y∞,+, y∞,− near ∞ such that with respect to (y∞,+, y∞,−), the monodromy
matrix ρ(γ∞) is given by

ρ(γ∞) =

(
eπi(θ3±�3) 0

0 e−πi(θ3±�3)

)
= (−1)�3

(
eπiθ3 0
0 e−πiθ3

)
=: (−1)�3T.

(A.7)

For any 1 ≤ j ≤ m, since the local exponents at pj are {−nj/2, 1 + nj/2}
with nj ∈ N, we see that the monodromy matrix ρ(βj) is (−1)njI2. Set

(A.8) R := (−1)�1ρ(γ0)
−1, S := (−1)�2ρ(γ1).

We have

(−1)�1+�2R−1S

m∏
j

(−1)njI2 = (−1)�3T,

i.e.,

(A.9) S = (−1)
∑

j nj+
∑

k �kRT.

Let R, S, and T be three matrices in SL(2,C) such that

(i) the eigenvalues of R, S, and T are δ±1
1 , δ±1

2 and δ±1
3 , respectively,

where δj = e±πiθj with 0 < θj < 1 and i =
√
−1,

(ii) the triple (θ1, θ2, θ3) satisfies

0 < θi + θj ≤ 1, ∀i �= j,

and
(iii) θ3 = max1≤j≤3 θj and T = diag(δ3, δ̄3) =

(
δ3 0
0 δ̄3

)
∈ SU(2,C).

Lemma A.2. Suppose R =
(
a b
c d

)
, T , S = RT ∈ SL(2,C) satisfy (i)-(iii).

Then the following hold.

(a) |a| < 1 if and only if θ1 + θ2 > θ3.
(b) |a| = 1 if and only if θ1 + θ2 = θ3.

Proof. Note

S = RT =

(
a b
c d

)(
δ3 0
0 δ̄3

)
=

(
δ3a bδ̄3
δ3c dδ̄3

)
.
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Using the invariance of trR and trS under conjugation, we have{
a+ d = δ1 + δ̄1 ∈ R,

δ3a+ δ̄3d = δ2 + δ̄2 ∈ R.

Since δ3 �= ±1, we easily obtain

(A.10) d = ā, a =
δ2 + δ̄2 − δ̄3(δ1 + δ̄1)

δ3 − δ̄3
.

Consequently,

a =
2 cosπθ2 − 2δ̄3 cosπθ1

±2i sinπθ3
= ± i(δ̄3 cosπθ1 − cosπθ2)

sinπθ3
.

Thus

|a|2 = (δ̄3 cosπθ1 − cosπθ2)(δ3 cosπθ1 − cosπθ2)

sin2 πθ3

=
cos2 πθ1 − 2 cosπθ1 cosπθ3 cosπθ2 + cos2 πθ2

sin2 πθ3
.

(A.11)

Let

Δ := cos2 πθ1 − 2 cosπθ1 cosπθ2 cosπθ3 + cos2 πθ2 − sin2 πθ3

= cos2 πθ1 + cos2 πθ2 + cos2 πθ3 − (1 + 2 cosπθ1 cosπθ2 cosπθ3).

Then (A.11) implies that Δ < 0 if and only if |a| < 1.
Now using the formulas cos(x+y) = cosx cos y− sinx sin y and cos2 x =

(1 + cos(2x))/2, we deduce that

Δ = cos2 πθ3 − cosπθ3(cosπ(θ1 + θ2) + cosπ(θ1 − θ2))

+
1

2
(cos(2πθ1) + cos(2πθ2))

= cos2 πθ3 − cosπθ3(cosπ(θ1 + θ2) + cosπ(θ1 − θ2))

+ cosπ(θ1 + θ2) cosπ(θ1 − θ2),

so

Δ = (cosπθ3 − cosπ(θ1 + θ2)) (cosπθ3 − cosπ(θ1 − θ2)) .

Since the assumptions (i)-(iii) give 1 > θ3 > |θ1 − θ2|, we have cosπθ3 −
cosπ(θ1 − θ2) < 0, so the desired results follow. The proof is complete.
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We now give an alternative proof of Theorem A.1, which is stated in the
following equivalent form.

Theorem A.3. Assume that (A.5) holds.

(a) Suppose that
∑3

k=1 
k +
∑m

j=1 nj is an even integer. Then (A.1) has a
solution if and only if θi + θj > θk for any i �= j �= k.

(b) Suppose that
∑3

k=1 
k +
∑m

j=1 nj is an odd integer. Then (A.1) has a
solution if and only if θ1 + θ2 + θ3 > 1.

Proof. Let R, S, and T be defined by (A.7) and (A.8). We need to deter-
mine when they are simultaneously conjugate to unitary matrices, under the
assumption that (A.5) holds.

Consider first the case
∑


k +
∑

nj is even. In such a case, we have
S = RT . Since for any permutation τ of the three points 0, 1, and∞, there is
always a Möbius transformation γ satisfying γz = τ(z) for all z ∈ {0, 1,∞},
without loss of generality, we may assume that θ3 = maxk θk. Then the
condition θi+θj > θk for any i �= j �= k simply means θ1+θ2 > θ3, which we

assume now. Moreover, we may assume that T =
(

δ3 0
0 δ3

)
after a common

conjugation, where δ3 = eπiθ3 .
Write R =

(
a b
c d

)
. By (A.10), we have d = a. By Lemma A.2, θ1+θ2 > θ3

if and only if |a| < 1 and hence bc = |a|2 − 1 < 0. Set P =
(
μ 0
0 1

)
, where μ is

a real number such that

μ2 = − bc

|c|2 = −b

c
.

We have P−1TP = T and

P−1RP =

(
a μ−1b
μc d

)
,

which is unitary since μ−1b = −μc = −μc. This proves that if θ1 + θ2 > θ3,
then (A.1) has a solution.

Conversely, suppose that (A.1) has a solution. Then there exists a matrix
P such that T̂ = P−1TP and R̂ = P−1RP are both unitary. Now it is
known that every matrix in SU(2,C) is conjugate to a diagonal matrix and
the conjugation can be taken inside SU(2,C). Hence, there exists a matrix Q
in SU(2,C) such that Q−1T̂Q = T . Then Q−1R̂Q ∈ SU(2,C). In particular,
the (1, 1)-entry of Q−1R̂Q has absolute value ≤ 1. Since PQ commutes with
T and T is diagonal but not a scalar matrix, PQ must be a diagonal matrix.
Therefore, the (1, 1)-entry of R also has absolute value ≤ 1. It follows that,
by Lemma A.2, θ1 + θ2 > θ3 (as the case θ1 + θ2 = θ3 is excluded from
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our consideration by (A.5)). We conclude that under the assumptions that

(A.5) holds and that
∑


k +
∑

nj is even, (A.1) has a solution if and only

if θi + θj > θk for any i �= j �= k.

For the case
∑


k +
∑

nj is odd, we simply apply the result in Part

(a) to θ1, θ2, 1 − θ3 with T replaced by −T and conclude that (A.1) has a

solution if and only if θ1 + θ2 + θ3 > 1. This completes the proof.

References

[1] Tom M. Apostol. Modular functions and Dirichlet series in number

theory, volume 41 of Graduate Texts in Mathematics. Springer-Verlag,

New York, second edition, 1990. MR1027834

[2] Gerrit Bol. Invarianten linearer differentialgleichungen. Abh. Math.

Sem. Univ. Hamburg 16 (1949), 1–28. MR33411

[3] Ching-Li Chai, Chang-Shou Lin, and Chin-Lung Wang. Mean field

equations, hyperelliptic curves and modular forms: I. Camb. J. Math.

3 (2015), 127–274. MR3356357

[4] Chiun-Chuan Chen and Chang-Shou Lin. Mean field equations of Liou-

ville type with singular data: sharper estimates. Discrete Contin. Dyn.

Syst. 28 (2010), 1237–1272. MR2644788

[5] Chiun-Chuan Chen and Chang-Shou Lin. Mean field equation of Li-

ouville type with singular data: topological degree. Comm. Pure Appl.

Math. 68 (2015), 887–947. MR3340376

[6] Zhijie Chen, Ting-Jung Kuo, and Chang-Shou Lin. Simple zero property

of some holomorphic functions on the moduli space of tori. Sci. China

Math. 62, 2089–2102. MR4028265

[7] Zhijie Chen and Chang-Shou Lin. Critical points of the classical Eisen-

stein series of weight two. J. Differential Geom. 113 (2019), 189–226.

MR4023291

[8] Zhijie Chen and Chang-Shou Lin. Spectrum of the Lamé operator and
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