
Cambridge Journal of Mathematics

Volume 10, Number 1, 195–260, 2022

On the operator norm of non-commutative
polynomials in deterministic matrices and iid

GUE matrices
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Let XN = (XN
1 , . . . , XN

d ) be a d-tuple of N×N independent GUE
random matrices and ZNM be any family of deterministic matri-
ces in MN (C)⊗MM (C). Let P be a self-adjoint non-commutative
polynomial. A seminal work of Voiculescu shows that the empirical
measure of the eigenvalues of P (XN ) converges towards a deter-
ministic measure defined thanks to free probability theory. Let now
f be a smooth function, the main technical result of this paper is
a precise bound of the difference between the expectation of

1

MN
TrN ⊗TrM

(
f(P (XN ⊗ IM , ZNM ))

)
,

and its limit when N goes to infinity. If f is six times differen-
tiable, we show that it is bounded by M2 ‖f‖C6 N−2. As a corollary,
we obtain a new proof and slightly improve a result of Haagerup
and Thorbjørnsen, later developed by Male, which gives sufficient
conditions for the operator norm of a polynomial evaluated in
(XN , ZNM , ZNM ∗

) to converge almost surely towards its free limit.

1. Introduction

Given several deterministic matrices whose spectra are known, the spectrum
of a non commutative polynomial evaluated in these matrices is not well
defined since it also depends on their eigenvectors. If one takes these vectors
at random, this spectrum is well defined and can be estimated when the
dimension of these matrices goes to infinity. Indeed, the limit can then be
computed thanks to free probability. Voiculescu introduced this theory in
the early nineties as a non-commutative probability theory equipped with
a notion of freeness analogous to independence in classical probability the-
ory. Voiculescu showed that this theory was closely related with Random
Matrix Theory in a seminal paper [33]. He considered independent matri-
ces taken from the Gaussian Unitary Ensemble (GUE), which is an N ×N
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self-adjoint random matrix whose distribution is proportional to the measure
exp

(
−N/2TrN (A2)

)
dA, where dA denotes the Lebesgue measure on the set

of N × N Hermitian matrices and TrN the trace on N × N matrices. We
refer to Definition 2.8 for a more precise statement. Voiculescu proved that
given XN

1 , . . . , XN
d independent GUE matrices, the renormalized trace of a

polynomial P evaluated in these matrices converges towards a deterministic
limit α(P ). Specifically, the following holds true almost surely:

(1) lim
N→∞

1

N
TrN

(
P (XN

1 , . . . , XN
d )

)
= α(P ).

Voiculescu computed the limit α(P ) with the help of free probability. If AN

is a self-adjoint matrix of size N , then one can define the empirical measure
of its (real) eigenvalues by

μAN =
1

N

N∑
i=1

δλi
,

where δλ is the Dirac mass in λ and λ1, . . . , λN are the eigenvalue of AN .
In particular, if P is a self-adjoint polynomial, that is such that for any
self adjoint matrices AN

1 , . . . , AN
d , P (AN

1 , . . . , AN
d ) is a N × N self-adjoint

matrix, then one can define the random measure μP (AN
1 ,...,AN

d ). In this case,
Voiculescu’s result (1) implies that there exists a measure μP with compact
support such that almost surely μP (XN

1 ,...,XN
d ) converges weakly towards μP :

it is given by μP (x
k) = α(P k) for all integer numbers k.

However, the convergence of the empirical measure of the eigenvalues of
a matrix does not say anything about the local properties of its spectrum,
in particular about the convergence of the norm of this matrix or the local
fluctuations of its spectrum. When dealing with a single matrix, very precise
results are known. For example, it is well-known that the largest eigenvalue
of a GUE random matrix converges almost surely towards 2. More precisely,
if XN is a GUE random matrix of size N , then almost surely

lim
N→∞

‖XN‖ = 2.

This result extends to the so-called Wigner matrices, namely matrices with
independent centered entries with covariance 1/N . This was first proven
in [15] for entries with finite moments and later obtained under the optimal
assumption that their fourth moment is finite [4]. Concerning the GUE, much
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more precise results were obtained by Tracy and Widom in the early nineties
in [32]. The main result of their paper is the existence of a continuously
decreasing function F2 from R to [0, 1] such that if λ1(X

N ) denotes the
largest eigenvalue of XN ,

lim
N→∞

P
(
N2/3(λ1(X

N )− 2) ≥ s
)
= F2(s).

This was recently generalized to Wigner matrices [30, 13, 31, 21] up to opti-
mal hypotheses. One can as well study the localization of the eigenvalues in
the bulk as well as their fluctuations [12, 13].

On the other hand, fewer results are available when one deals with a
polynomial in several random matrices. In fact, up to today, the only local
fluctuations results are about perturbative polynomials [14], or local laws [11]
under some assumptions which are shown to hold for homogeneous polyno-
mials of degree two. However, a beautiful breakthrough was made in 2005 by
Haagerup and Thorbjørnsen [19]: they proved the almost sure convergence
of the norm of a polynomial evaluated in independent GUE matrices. For P
a self-adjoint polynomial, they proved that almost surely for any ε > 0, for
N large enough,

(2) σ
(
P (XN

1 , . . . , XN
d )

)
⊂ SuppμP + (−ε, ε),

where σ(H) is the spectrum of H and SuppμP the support of the measure
μP . This is equivalent to saying that for any polynomial P ,

∥∥P (XN
1 , . . . , XN

d )
∥∥

converges almost surely towards sup {|x| |x ∈ SuppμP } (see proposition 2.2).
The result (2) was significant progress in free probability. It was refined in
multiple ways. In [28], Schultz used the method of [19] to prove the same
result with Gaussian orthogonal or symplectic matrices instead of Gaussian
unitary matrices. In [8], Capitaine and Donati-Martin proved it for Wigner
matrices under some technical hypothesis on the law of the entries. This
result itself was then extended by Anderson in [2] to remove most of the
technical assumptions. In [22], Male made a conceptual improvement to the
result of Haagerup and Thorbjørnsen by allowing to work both with GUE
and deterministic matrices. Finally, Belinschi and Capitaine proved in [9]
that one could even work with Wigner and deterministic matrices while
keeping the same assumptions on the Wigner matrices as Anderson. It is
also worth noting that Collins and Male proved in [10] the same result with
unitary Haar matrices instead of GUE matrices by mapping this problem
with Male’s previous results.

Except for [10], all of these results are essentially based on the method
introduced by Haagerup and Thorbjørnsen. Their first tool is called the
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linearization trick: it allows to relate the spectrum of a polynomial of degree
d with coefficients in C by a polynomial of degree 1 with coefficients in
Mk(d)(C). The second idea to understand the spectrum of this larger matrix
is to study its Stieltjes transform close to the real axis by using the Dyson-
Schwinger equations. An issue with this method is that it does not give
easily good quantitative estimates. One aim of this paper is to remedy this
problem. We develop a new approach that allows us to provide a new proof
of the main theorem of Male in [22], and thus a new proof of the result of
Haagerup and Thorbjørnsen. Our approach requires neither the linearization
trick nor the study of the Stieljes transform but attacks the problem by using
interpolation. In this sense, the proof is more direct and less algebraic. To
show the strength of this point of view, we will apply this method directly
to the case of GUE random matrices tensorized with deterministic matrices.

A usual strategy to study outliers, that are the eigenvalues going away
from the spectrum, is to study the non-renormalized trace of smooth non-
polynomial functions evaluated in independent GUE matrices i.e. if P is
self-adjoint:

TrN
(
f(P (XN

1 , . . . , XN
d ))

)
.

This scheme was also used by Haagerup, Thorbjørnsen and Male. Indeed it
is easy to see that if f is a function which takes value 0 on (−∞, C − ε], 1
on [C,∞) and in [0, 1] elsewhere, then

P
(
λ1(P (XN

1 , . . . , XN
d )) ≥ C

)
≤ P

(
TrN

(
f(P (XN

1 , . . . , XN
d ))

)
≥ 1

)
.

Hence, it is enough to show that TrN
(
f(P (XN

1 , . . . , XN
d ))

)
converges to-

wards 0 in probability to show that the largest eigenvalue of P (XN
1 , . . . , XN

d )
stays bounded by C with probability going to one. The case where f is a
polynomial function has already been studied a long time ago, starting with
the pioneering works [7, 18], and later formalized by the concept of second
order freeness [23]. However, here we have to deal with a function f which
has compact support and is at best C∞. This makes things considerably
more difficult and forces us to adopt a completely different approach. The
main result of this article is the following Theorem. For the notations, we
refer to Section 2 – for now, let us specify that TrN denotes the usual non-
renormalized trace on N ×N matrices. We will also denote trM = M−1TrM
the renormalized trace on M ×M matrices. Finally, τN is the trace on the
free product of MN (C) with a system of d free semicircular variables. See
notably Definition 2.4 for more information.

Theorem 1.1. Let the following objects be given,
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• XN = (XN
1 , . . . , XN

d ) independent GUE matrices in MN (C),
• x = (x1, . . . , xd) a system of free semicircular variables,
• ZNM = (ZNM

1 , . . . , ZNM
q ) deterministic matrices in MN (C)⊗MM (C),

• P ∈ C〈X1, . . . , Xd+2q〉sa a self-adjoint polynomial,
• f ∈ C6(R).

Then there exists a polynomial LP ∈ R+[X] which only depends on P such
that with

∥∥ZNM
∥∥ = sup

1≤i≤q

∥∥ZNM
i

∥∥, for any N,M ,

∣∣∣∣∣E
[

1

MN
TrMN

(
f

(
P

(
XN ⊗ IM , ZNM , ZNM ∗)) )]

− τN ⊗ trM

(
f

(
P

(
x⊗ IM , ZNM , ZNM ∗)))∣∣∣∣∣

≤ M2

N2
‖f‖C6 LP

(∥∥ZNM
∥∥)

,

where ‖f‖C6 is the sum of the supremum on R of the first six derivatives.
Besides if ZNM = (IN⊗Y M

1 , . . . , IN⊗Y M
q ) and that these matrices commute,

then we have the same inequality without the M2.

This theorem is a consequence of the slightly sharper, but less explicit,
Theorem 3.1. A motivation for the above results is the recent preprint of [20],
which provides a random matrix approach to the Peterson-Thom conjecture.
If we were able to show that the norm of polynomials in XN ⊗I and ZNM =
(IN ⊗ Y M

1 , . . . , IN ⊗ Y M
q ), with independent GUE matrices (Y M

1 , . . . , Y M
q ),

converges to their free limit when N = M , one would solve a crucial open
problem in von Neumann algebras. Our improvement is a step towards this
goal which allows us to take M = o(N1/3). The above Theorem calls for a
few remarks.

• We assumed that the matrices ZNM were deterministic, but thanks
to Fubini’s Theorem we can assume that they are random matrices
as long as they are independent from XN . In this situation though,
LP

(∥∥ZNM
∥∥)

in the right side of the inequality is a random variable
(and thus we need some additional assumptions if we want its expec-
tation to be finite for instance).

• In Theorems 1.1 and 3.1 we have XN ⊗ IM and x ⊗ IM , however
it is very easy to replace them by XN ⊗ Y M and x ⊗ Y M for some
matrices Y M

i ∈ MM (C). Indeed we just need to apply Theorem 1.1 or
3.1 with ZNM = IN ⊗ Y M . Besides, in this situation, LP

(∥∥ZNM
∥∥)

=
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LP

(∥∥Y M
∥∥)

does not depend on N . What this means is that if we have
a matrix whose coefficients are polynomial in XN , and that we replace
XN by x, we only change the spectra of this matrix by M2N−2 in
average.

• Unfortunately we cannot get rid of the M2 in all generality. The specific
case where we can is when ZNM = (IN ⊗ Y M

1 , . . . , IN ⊗ Y M
q ), where

the Y M
i commute: this indicates that the M2 term is really a non-

commutative feature.

A detailed overview of the proof is given in Subsection 3.1. The main
idea is to use a free version of Stein’s method by interpolating GUE matrices
with a free semicircular system with the help of a free Ornstein-Uhlenbeck
process. For a reference, see [5]. When using this process, the Schwinger-
Dyson equations, which can be seen as an integration by parts formula,
appear in the computation. We refer to Proposition 2.10 for more information
which will play a major role in this paper.

Theorem 1.1 is the crux of the paper and allows us to deduce many corol-
laries. Firstly we give a new proof of the following theorem, which is basically
Theorem 1.6 from [22]. The second one is an improvement of Theorem 7.8
from [26] on the size of the tensor from N1/4 to N1/3. This theorem is about
the strong convergence of random matrices, that is, both the convergence of
the trace and the norm of polynomials in these matrices; see Definition 2.1.

Theorem 1.2. Let the following objects be given:

• XN = (XN
1 , . . . , XN

d ) independent GUE matrices of size N ,
• x = (x1, . . . , xd) a system of free semicircular variable,
• Y M = (Y M

1 , . . . , Y M
p ) random matrices of size M , which almost surely,

as M goes to infinity, converge strongly in distribution towards a p-
tuple y of non-commutative random variables in a C∗- probability space
B with a faithful trace τB,

• ZN = (ZN
1 , . . . , ZN

q ) random matrices of size N , which almost surely,
as N goes to infinity, converges strongly in distribution towards a q-
tuple z of non-commutative random variables in a C∗- probability space
with a faithful trace.

Then, the following holds true:

• If XN and ZN are independent, almost surely, (XN , ZN ) converges
strongly in distribution towards F = (x, z), where F belongs to a C∗-
probability space (A, ∗, τA, ‖.‖) in which x and z are free.
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• If (MN )N≥1 is a sequence of integers such that MN = o(N1/3), XN

and Y MN are independent, then almost surely (XN ⊗ IMN
, IN ⊗ Y MN )

converges strongly in distribution to the family F = (x ⊗ 1, 1 ⊗ y) in
the minimal C∗-tensor product A ⊗min B (see definition 4.1). Besides
if the matrices Y MN commute, then we can weaken the assumption on
MN by only assuming that MN = o(N).

As we mentioned earlier, the Stieljes transform of a matrix provides a
powerful approach to study its spectrum. This was an essential point in the
proof of Haagerup and Thorbjørnsen’s Theorem. Our proof does not use
this tool; however, our final result, Theorem 3.1 allows us to deduce the
following estimate with a sharper constant than what has previously been
done. Being given a self- adjoint NM × NM matrix, we denote by GA its
Stieltjes transform:

GA(z) =
1

NM
TrNM

(
1

z −A

)
.

This definition extends to the tensor product of free semi-circular variables
with matrices by replacing (NM)−1 TrNM by τN ⊗ trM .

Corollary 1.3. Given

• XN = (XN
1 , . . . , XN

d ) independent GUE matrices of size N ,
• x = (x1, . . . , xd) a system of free semicircular variable,
• Y M = (Y M

1 , . . . , Y M
p , Y M

1
∗
, . . . , Y M

p
∗
) deterministic matrices of size M

and their adjoints,
• P ∈ C〈X1, . . . , Xd, Y1, . . . , Y2p〉sa a self-adjoint polynomial,

there exists a polynomial LP ∈ R+[X] such that for every Y M , z ∈ C\R,
M,N ∈ N, ∣∣E [

GP (XN⊗IM ,IN⊗Y M )(z)
]
−GP (x⊗IM ,IN⊗Y M )(z)

∣∣
≤ LP

(∥∥Y M
∥∥) M2

N2

(
1

|�(z)|5
+

1

|�(z)|2
)
,

where
∥∥Y M

∥∥ = sup
1≤i≤p

∥∥Y M
i

∥∥.

One of the limitations of Theorem 1.1 is that we need to pick f regular
enough. By approximating f , we can afford to take f less regular at the cost
of a slower speed of convergence. In other words, we trade some degree of
regularity on f for a smaller exponent in N . The best that we can achieve is
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to take f Lipschitz. Thus it makes sense to introduce the Lipschitz-bounded
metric. This metric is compatible with the topology of the convergence in law
of measure. Let FLU be the set of Lipschitz functions from R to R, uniformly
bounded by 1 and with Lipschitz constant at most 1, then

dLU (μ, ν) = sup
f∈FLU

∣∣∣∣∫
R

fdμ−
∫
R

fdν

∣∣∣∣ .
For more information about this metric, we refer to Annex C.2 of [3]. In this
paper, we get the following result:

Corollary 1.4. Under the same notations as in Corollary 1.3, there exists
a polynomial LP ∈ R+[X] such that for every matrices Y M and M,N ∈ N,

dLU
(
E[μP (XN⊗IM ,IN⊗YM )], μP (x⊗IM ,IN⊗YM )

)
≤ LP

(∥∥Y M
∥∥) M2

N1/3
.

One of the advantages of Theorem 1.1 over the original proof of Haagerup
and Thorbjørnsen is that if we take f which depends on N , we get sharper
estimates in N . For example, if we assume that g is a C∞ function with
bounded support, as we will see later in this paper, we like to work with
f : x 
→ g(Nαx) for some constant α. The n-th derivative of this function
is of order Nnα. In the original work of Haagerup, Thorbjørnsen (see [19],
Theorem 6.2), the test function is assumed to have eight derivative even
in the easiest case where the polynomial P is of degree 1, but in Theo-
rem 1.1 we require only the sixth derivative in the general case. If we look
at the sharper Theorem 3.1, the fourth moment of the Fourier transform
appears, which is roughly equivalent to the fourth derivative for our com-
putations. This allows us to compute an estimate of the difference between
E

[∥∥P (XN ⊗ IM , IN ⊗ Y M )
∥∥]

and its limit. To do that, we use Proposition
4.8 from [29, Theorem 1.1] which implies that if we denote by μP (x⊗IM ,1⊗Y M )

the spectral measure of P (x ⊗ IM , 1 ⊗ Y M ), then there exists β ∈ R+ such
that

limsup
ε→0

ε−βμP (x⊗IM ,1⊗Y M )

([∥∥P (x⊗ IM , 1⊗ Y M )
∥∥(3)

−ε,
∥∥P (x⊗ IM , 1⊗ Y M )

∥∥])
> 0.

With the help of standard measure concentration estimates, we then get the
following Theorem, where β is any positive real number such that (3) holds:

Theorem 1.5. We consider
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• XN = (XN
1 , . . . , XN

d ) independent GUE matrices of size N ,
• x = (x1, . . . , xd) a system of free semicircular variable,
• Y M = (Y M

1 , . . . , Y M
p ) deterministic matrices of size M a fixed integer

and their adjoints.

For any polynomial P ∈ C〈X1, . . . , Xd, Y1, . . . , Yp〉, there exists constants K

and C such that for any δ > 0 and N ∈ N,

P
(
N1/4

(∥∥P (XN ⊗ IM , IN ⊗ Y M )
∥∥ −

∥∥P (x⊗ IM , 1⊗ Y M )
∥∥)

≥ δ + C
)(4)

≤ e−Kδ2
√
N + de−N ,

and

P
(
N1/(3+β)

(∥∥P (XN ⊗ IM , IN ⊗ Y M )
∥∥(5)

−
∥∥P (x⊗ IM , 1⊗ Y M )

∥∥)
≤ −δ − C

)
≤ e−Kδ2N

1+β
3+β

+ de−N .

This theorem is interesting because of its similarity with Tracy and
Widom’s result about the tail of the law of the largest eingenvalue of a
GUE matrix. We have a smaller exponent in N , and thus we can only show
the convergence towards 0 with exponential speed. However, we are not re-
stricted to a single GUE matrix; therefore, we can choose any polynomial
evaluated in GUE matrices. Besides by applying Borel-Cantelli’s Lemma, we
immediately get:

Theorem 1.6. We consider

• XN = (XN
1 , . . . , XN

d ) independent GUE matrices of size N ,
• x = (x1, . . . , xd) a system of free semicircular variable,
• Y M = (Y M

1 , . . . , Y M
p ) deterministic matrices of size M a fixed integer

and their adjoints.

Then for any polynomial P ∈ C〈X1, . . . , Xd, Y1, . . . , Yp〉, there exists a con-
stant c(P ) > 0 such that for any α ∈ (0, c(P )), almost surely,

lim
N→∞

Nα
∣∣∣ ∥∥P (XN ⊗ IM , IN ⊗ Y M )

∥∥ −
∥∥P (x⊗ IM , 1⊗ Y M )

∥∥ ∣∣∣ = 0.
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Moreover, if β satisfies (3), then almost surely for any α < (3 + β)−1 and
ε < 1/4, for N large enough,

−N−α ≤
∥∥P (XN ⊗ IM , IN ⊗ Y M )

∥∥ −
∥∥P (x⊗ IM , 1⊗ Y M )

∥∥ ≤ N−ε.

To conclude this introduction, we would like to say that while it is not
always easy to compute the constant β in all generality, it is possible for
some polynomials. In particular, if our polynomial is evaluated in a single
GUE matrix, the computation is heavily simplified because we know the
distribution of a single semicircular variable. Finally, the constant (3+ β)−1

is a worst-case scenario and can be easily improved if β is explicit.
This paper is organized as follows. In Section 2, we recall the definitions

and properties of free probability, non-commutative calculus, and Random
Matrix Theory needed for this paper. Section 3 contains the proof of Theorem
1.1. And finally in Section 4 we give the proof of the remaining Theorems
and Corollaries.

2. Framework and standard properties

2.1. Usual definitions in free probability

To be self-contained, we begin by reminding the following definitions from
free probability.

Definition 2.1. • A C∗-probability space (A, ∗, τ, ‖.‖) is a unital C∗-
algebra (A, ∗, ‖.‖) endowed with a state τ , i.e. a linear map τ : A → C
satisfying τ(1A) = 1 and τ(a∗a) ≥ 0 for all a ∈ A. In this paper we
always assume that τ is a trace, i.e. that it satisfies τ(ab) = τ(ba) for
any a, b ∈ A. An element of A is called a (non-commutative) random
variable. We will always work with a faithful trace, namely, for a ∈ A,
τ(a∗a) = 0 if and only if a = 0. In this case the norm is determined by
τ thanks to the formula:

‖a‖ = lim
k→∞

(
τ
(
(a∗a)2k

))1/2k
.

• Let A1, . . . ,An be ∗-subalgebras of A, having the same unit as A. They
are said to be free if for all k, for all ai ∈ Aji such that j1 �= j2, j2 �= j3,
. . . , jk−1 �= jk:

τ
(
(a1 − τ(a1))(a2 − τ(a2)) . . . (ak − τ(ak))

)
= 0.
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Families of non-commutative random variables are said to be free if the
∗-subalgebras they generate are free.

• Let A = (a1, . . . , ak) be a k-tuple of random variables. The joint distri-
bution of the family A is the linear form μA : P 
→ τ

[
P (A,A∗)

]
on the

set of polynomials in 2k non-commutative indeterminates. By conver-
gence in distribution, for a sequence of families of variables (AN )N≥1 =
(aN1 , . . . , aNk )N≥1 in C∗-algebras

(
AN ,∗ , τN , ‖.‖

)
, we mean the point-

wise convergence of the map

μAN
: P 
→ τN

[
P (AN , A∗

N )
]
,

and by strong convergence in distribution, we mean convergence in dis-
tribution, and pointwise convergence of the map

P 
→
∥∥P (AN , A∗

N )
∥∥.

• A family of non-commutative random variables x = (x1, . . . , xp) is
called a free semicircular system when the non-commutative random
variables are free, selfadjoint (xi = x∗i , i = 1 . . . p), and for all k in N
and i = 1, . . . , p, one has

τ(xki ) =

∫
tkdσ(t),

with dσ(t) = 1
2π

√
4− t2 1|t|≤2 dt the semicircle distribution.

The strong convergence of non-commutative random variables is equiva-
lent to the convergence of the spectrum of their polynomials for the Hausdorff
distance. More precisely, we have the following proposition whose proof can
be found in [10, Proposition 2.1]:

Proposition 2.2. Let xN = (xN1 , . . . , xNp ) and x = (x1, . . . , xp) be p-tuples
of variables in C∗-probability spaces, (AN , .∗, τN , ‖·‖) and (A, .∗, τ, ‖·‖), with
faithful states. Then, the following assertions are equivalent.

• xN converges strongly in distribution to x.
• For any self-adjoint variable hN = P (xN ), where P is a fixed polyno-

mial, μhN
converges in weak-∗ topology to μh where h = P (x). Weak-∗

topology means relatively to continuous functions on C. Moreover, the
spectrum of hN converges in Hausdorff distance to the spectrum of h,
that is, for any ε > 0, there exists N0 such that for any N ≥ N0,

(6) σ(hN ) ⊂ σ(h) + (−ε, ε).
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In particular, the strong convergence in distribution of a single self-adjoint
variable is equivalent to its convergence in distribution together with the
Hausdorff convergence of its spectrum.

It is important to note that thanks to [25, Theorem 7.9], which we re-
call below, given several non-commutative random variables, one can always
consider copies of those random variables which are free.

Theorem 2.3. Let (Ai, φi)i∈I be a family of C∗-probability spaces such that
the functionals φi : Ai → C, i ∈ I, are faithful traces. Then there exist
a C∗-probability space (A, φ) with φ a faithful trace, and a family of norm-
preserving unital ∗-homomorphism Wi : Ai → A, i ∈ I, such that:

• φ ◦Wi = φi, ∀i ∈ I.
• The unital C∗-subalgebras {Wi(Ai)}i∈I form a free family in (A, φ).

Let us finally fix a few notations concerning the spaces and traces that
we use in this paper.

Definition 2.4. • (AN , τN ) is the free product of MN (C) with a system
of d free semicircular variables, this is the C∗- probability space built
in Theorem 2.3. Note that when restricted to MN (C), τN is just the
regular renormalized trace on matrices. The restriction of τN to the
C∗-algebra generated by the free semicircular system x is denoted as τ .

• TrN is the non-renormalized trace on MN (C).
• trM = 1

M TrM is the renormalized trace on MM (C).
• The identity map on MM (C) is denoted by idM , i.e. idM :A∈MM (C)→

A ∈ MM (C).
• MN (C)sa is the set of self adjoint matrix of MN (C). We denote Er,s

the matrix with coefficients equal to 0 except in (r, s) where it is equal
to one.

• We regularly identify MN (C) ⊗ Mk(C) with MkN (C) through the iso-
morphism Ei,j ⊗ Er,s 
→ Ei+rN,j+sN , similarly we identify TrN ⊗Trk
with TrkN .

• If AN = (AN
1 , . . . , AN

d ) and BM = (BM
1 , . . . , BM

d ) are two families of
matrices, then we denote AN ⊗BM = (AN

1 ⊗BM
1 , . . . , AN

d ⊗BM
d ). We

typically use the notation XN⊗IM for the family (XN
1 ⊗IM , . . . , XN

1 ⊗
IM ).

2.2. Non-commutative polynomials and derivatives

We set Pd,q = C〈X1, . . . , Xd, Y1, . . . , Yq, Y
∗
1 , . . . , Y

∗
q 〉 the set of non-commuta-

tive polynomials in d + 2q indeterminates. For R ∈ R fixed, we can endow
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this vector space with the norm

(7) ‖P‖R =
∑

Mmonomial

|cM (P )|RdegM ,

where cM (P ) is the coefficient of P for the monomial M and degM the total
degree of M (that is the sum of its degree in each letter X1, . . . , Xd, Y1, . . . , Yq,

Y ∗
1 , . . . , Y

∗
q ). Let us define several maps which we use frequently in the sequel.

First, for A,B,C ∈ Pd,q, let

A⊗B#C = ACB,

A⊗B#̃C = BCA,

m(A⊗B) = BA.

Definition 2.5. If 1 ≤ i ≤ d, one defines the non-commutative derivative
∂i : Pd,q −→ Pd,q ⊗ Pd,q by its value on a monomial M ∈ Pd,q given by

∂iM =
∑

M=AXiB

A⊗B,

and then extend it by linearity to all polynomials. Similarly one defines the
cyclic derivative Di : Pd,q −→ Pd,q for P ∈ Pd,q by

DiP = m ◦ ∂iP .

The map ∂i is called the non-commutative derivative. This notion was
introduced long ago, and widely used in free probability, see, e.g., [34] for
the inception of the concept. It is related to the Schwinger-Dyson equation
on semicircular variable thanks to the following Property 2.6. One can find
a proof of the first part in [3], Lemma 5.4.7. As for the second part, it is a
direct consequence of the first one, which can easily be verified by taking P

monomial and then concluding by linearity.

Proposition 2.6. Let x = (x1, . . . , xp) be a free semicircular system, y =

(y1, . . . , yq) be non-commutative random variables free from x, if the family
(x, y) belongs to the C∗-probability space (A, ∗, τ, ‖.‖), then for any P ∈ Pd,q,

τ(P (x, y, y∗) xi) = τ ⊗ τ(∂iP (x, y, y∗)) .
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Moreover, one can deduce that if ZNM are matrices in MN (C) ⊗ MM (C)
that we view as a subspace of AN ⊗MM (C), then for any P ∈ Pd,q,

τN ⊗ trM

(
P (x⊗ IM , ZNM , ZNM ∗

) xi ⊗ IM

)
= trM

(
(τN ⊗ idM )

⊗
(τN ⊗ idM )

(
∂iP (x⊗ IM , ZNM , ZNM ∗

)
))

.

We define an involution ∗ on Pd,q such that

(Xi)
∗ = Xi, (Yi)

∗ = Y ∗
i , (Y ∗

i )
∗ = Yi

and then we extend it to Pd,q by the formula (αPQ)∗ = αQ∗P ∗. P ∈ Pd,q is
said to be self- adjoint if P ∗ = P . Self-adjoint polynomials have the property
that if x1, . . . , xd, z1, . . . , zq are elements of a C∗- algebra such as x1, . . . , xd
are self-adjoint, then so is P (x1, . . . , xd, z1, . . . , zq, z∗1 , . . . , z

∗
q ). Now that we

have defined the notion of self-adjoint polynomial we remark for later use
that

Proposition 2.7. Let the following objects be given,

• x = (x1, . . . , xp) a free semicircular system ,
• XN = (XN

1 , . . . , XN
d ) self-ajoint matrices of size N ,

• XN
t = e−t/2XN + (1− e−t)1/2x elements of AN ,

• ZNM matrices in MN (C)⊗MM (C),
• f ∈ C0(R),
• P a self-adjoint polynomial.

Then the following map is measurable:

(XN , ZNM ) 
→ τN ⊗ trM

(
f

(
P (XN

t ⊗ IM , ZNM , ZNM ∗
)
))

.

Proof. This is obvious if f is a polynomial and the general case is obtained
by approximation.

We could easily prove that this map is continuous; however, we do not
need it. The only reason we need this property is to justify that if XN is
a d-tuple of independent GUE matrices, then the random variable τN ⊗
trM

(
f

(
P (XN

t ⊗ IM , ZNM , ZNM ∗
)
))

is well-defined and measurable.

2.3. GUE random matrices

We conclude this section by reminding the definition of Gaussian random
matrices and stating a few useful properties about them.
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Definition 2.8. A GUE random matrix XN of size N is a self adjoint
matrix whose coefficients are random variables with the following laws:

• For 1 ≤ i ≤ N , the random variables
√
NXN

i,i are independent centered
Gaussian random variables of variance 1.

• For 1 ≤ i < j ≤ N , the random variables
√
2N �XN

i,j and
√
2N �XN

i,j

are independent centered Gaussian random variables of variance 1, in-
dependent of

(
XN

i,i

)
i
.

Next, we present two of the most useful tools for computation with Gaus-
sian variables, the Poincaré inequality and Gaussian integration by parts.
Firstly, the Poincaré inequality:

Proposition 2.9. Let (x1, . . . , xn) be i.i.d. centered Gaussian random vari-
able with variance 1, let f : Rn → R be C1, then

Var
(
f(x1, . . . , xn)

)
≤ E

[
‖∇f(x1, . . . , xn)‖22

]
.

For more details about the Poincaré inequality, we refer to Definition
4.4.2 in [3]. As for Gaussian integration by parts, it comes from the following
formula, if Z is a centered Gaussian variable with variance 1 and f a C1

function, then

(8) E[Zf(Z)] = E[∂Zf(Z)] .

A direct consequence of this, is that if x and y are centered Gaussian variable
with variance 1, and Z = x+iy√

2
, then

(9) E[Zf(x, y)] = E[∂Zf(x, y)] and E[Zf(x, y)] = E[∂Zf(x, y)] ,

where ∂Z = 1
2(∂x+ i∂y) and ∂Z = 1

2(∂x− i∂y). When working with GUE ma-
trices, an important consequence of this are the so-called Schwinger-Dyson
equation, which we summarize in the following proposition. For more infor-
mation about these equations and their applications, we refer to [3], Lemma
5.4.7.

Proposition 2.10. Let XN be GUE matrices of size N , Q ∈ Pd,q, then for
any i,

E

[
1

N
TrN (XN

i Q(XN ))

]
= E

[(
1

N
TrN

)⊗2

(∂iQ(XN ))

]
.
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Proof. One can write XN
i = 1√

N
(xir,s)1≤r,s≤N and thus

E

[
1

N
TrN (XN

i Q(XN ))

]
=

1

N3/2

∑
r,s

E
[
xir,s TrN (Er,s Q(XN ))

]
=

1

N3/2

∑
r,s

E
[
TrN (Er,s ∂xi

r,s
Q(XN ))

]
=

1

N2

∑
r,s

E
[
TrN (Er,s ∂iQ(XN )#Es,r)

]
= E

[(
1

N
TrN

)⊗2

(∂iQ(XN ))

]
.

Now to finish this section, we state a property that we use several times
in this paper:

Proposition 2.11. There exist constants C,D and α such that for any
N ∈ N, if XN is a GUE random matrix of size N , then for any u ≥ 0,

P
(∥∥XN

∥∥ ≥ u+D
)
≤ e−αuN .

Consequently, for any k ≤ αN/2,

E
[∥∥XN

∥∥k
]
≤ Ck.

Proof. The first part is a direct consequence of Lemma 2.2 from [17] in the
specific case of the GUE. As for the second part, if k ≤ αN/2, then we have,

E
[∥∥XN

∥∥k
]
= k

∫ ∞

0
P

(∥∥XN
∥∥ ≥ u

)
uk−1du

≤ kDk + k

∫ ∞

D
e−Nα(u−D)uk−1du

≤ kDk + keDNα

∫ ∞

D
e(k−Nα)udu

≤ kDk +
2k

αN
ekD ≤ Ck

for some C independent of N and k. In the third line we used that ln |u| ≤ u

for all positive real numbers.
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3. Proof of Theorem 1.1

3.1. Overview of the proof

To study the difference between the distributions of two families of non-
commutative random variables, (XN ⊗ IM , ZNM ) and (x ⊗ IM , ZNM ), we
shall use an interpolation based on d free, Ornstein-Uhlenbeck processes Xt,N

started in the matrices XN and driven by a free Brownian motion. As we
shall explain below, we are only interested in the law of the time marginals
of this process, which have a simple expression. We will therefore not need
to view it as a stochastic process but refer the interested reader to [5].

Many properties of the free Ornstein-Uhlenbeck process are similar to
the classical case. For example, if (Gt)t≥0 is a classical Ornstein-Uhlenbeck
process with initial condition X0, then it is well-known that for any function
f and t ≥ 0,

E[f(Gt)] = E[f(e−t/2X0 + (1− e−t)1/2G)]

where G is a centered Gaussian random variable of variance 1 independent
of X0. Likewise, if μ is the trace on the C∗-algebra which contains (XN

t )t≥0,
we have for any function f such that this is well-defined and t ≥ 0,

(10) μ(f(XN
t )) = τN

(
f(e−t/2XN + (1− e−t)1/2x)

)
where x is a system of free semicircular variables, free from MN (C). Thus a
free Ornstein-Uhlenbeck process started at a time t has the same distribution
in the sense of Definition 2.1 as the family

e−t/2XN + (1− e−t)1/2x.

Consequently, from now on, we write XN
t = e−t/2XN + (1− e−t)1/2x. Since

our aim in this subsection is not to give a proof but to outline the strategy
used in subsection 3.2, we also assume that we have no matrix ZNM and
that M = 1. Now under the assumption that this is well-defined, if Q ∈
Pd,0 = C〈X1, . . . , Xd〉,

E

[
1

N
TrN

(
Q

(
XN

) )]
− τ

(
Q (x)

)
= −

∫ ∞

0
E

[
d

dt

(
τN

(
Q(XN

t )
) )]

dt.
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On the other hand, it is known that by using the free Markov property of
the free Brownian motion, we have for Q ∈ Ad,0

d

dt
τN (Q(XN

t )) = −1

2

∑
i

{
τN

(
(XN

t )i(DiQ)(XN
t )

)
−τN ⊗ τN

(
(∂iDiQ)(XN

t )
)}

.

One can already recognize the Schwinger-Dyson equation. Indeed thanks to
Proposition 2.10, one can see that

E

[
d

dt
τN (Q(XN

t ))

] ∣∣∣∣
t=0

= −1

2

∑
i

E
[
trN

(
XN

i (DiQ)(XN )
)

− trN ⊗ trN
(
(∂iDiQ)(XN )

)]
= 0 .

And then, thanks to Proposition 2.6,

E

[
d

dt
τN (Q(XN

t ))

] ∣∣∣∣
t=∞

= −1

2

∑
i

{τ (xi (DiQ)(x))− τ ⊗ τ ((∂iDiQ)(x))}

= 0 .

However, what happens at time t is much harder to estimate and is the core of
the proof. The main idea to deal with this issue is to view the family (XN , x)

as the asymptotic limit when k goes to infinity of the family (XN ⊗ Ik, R
kN )

where RkN are independent GUE matrices of size kN and independent of
XN .

Another issue is that to prove Theorem 1.1, we would like to set Q = f(P )

but since f is not polynomial this means that we need to extend the definition
of operators such as ∂i. In order to do so we assume that there exists a
measure μ on R such that,

∀x ∈ R, f(x) =

∫
R

eixy dμ(y) .

While we have to assume that the support of μ is indeed on the real line, μ
can be a complex measure. However, we will usually work with a measure
such that |μ|(R) is finite. Indeed under this assumption, we can use Fubini’s
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Theorem, and we get

E

[
1

M
TrN

(
f

(
P (XN )

) )]
− τ

(
f (P (x))

)
=

∫
R

{
E

[
1

N
TrN

(
eiyP (XN )

)]
− τ

(
eiyP (x)

)}
dμ(y) .

We can then set Q = eiyP . And even though this is not a polynomial function,
since it is a power series, most of the properties associated with polynomials
remain true with some assumption on the convergence. The main difficulty
with this method is finding a bound that does not depend on too high mo-
ments of y. Indeed terms of the form∫

R

|y|l d|μ|(y)

appear in our estimates. Thanks to Fourier integration, we can relate the
exponent l to the regularity of the function f ; thus, we want to find a bound
with l as small as possible. It turns out that with our proof, l = 4.

Finally, let us point out that the idea of using Fourier decomposition of
f , along with estimating the derivatives of f applied to operators in order
to estimate f(A)− f(B) for two operators A and B has a long history; see
for example [1].

3.2. Proof of Theorem 1.1

In this section, we focus on proving Theorem 1.1 from which we deduce all of
the important corollaries. It will be a consequence of the following Theorem:

Theorem 3.1. Let the following objects be given,

• XN = (XN
1 , . . . , XN

d ) independent GUE matrices of size N ,
• x = (x1, . . . , xd) a system of free semicircular variables, free from XN ,
• ZNM = (ZNM

1 , . . . , ZNM
q ) deterministic matrices,

• P ∈ Pd,q a polynomial that we assume to be self-adjoint,
• f : R 
→ R such that there exists a measure on the real line μ with∫

(1 + y4) d|μ|(y) < +∞ and for any x ∈ R,

f(x) =

∫
R

eixy dμ(y) .
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Then, there exists a polynomial LP ∈ R+[X] which only depends on P such
that with

∥∥ZNM
∥∥ = sup

1≤i≤q

∥∥ZNM
i

∥∥, for any N,M ,

∣∣∣∣∣E
[

1

MN
TrMN

(
f

(
P

(
XN ⊗ IM , ZNM , ZNM ∗)) )]

− τN ⊗ trM

(
f

(
P

(
x⊗ IM , ZNM , ZNM ∗)))∣∣∣∣∣

≤ M2

N2
LP

(∥∥ZNM
∥∥) ∫

R

(|y|+ y4) d|μ|(y) .

Let us note that although studying the dependence on M in the above
Theorem is not needed to establish the strong convergence of the GUEs to
semicircular variables, it is crucial for the proof of Theorem 1.2. The proof
is a direct corollary of Lemmas 3.3 and 3.4 below. The first one shows that
the crux of the proof lies in understanding the following quantity:

Definition 3.2. We keep the notation of Theorem 3.1, and let the following
objects be given,

• α, β ∈ [0, 1],
• A,B,C,D ∈ Pd,q monomials,
• XN

t = e−t/2XN + (1− e−t)1/2x
• Wt =

(
XN

t ⊗ IM , ZNM , ZNM ∗).
Then we define:

Sα,β
N,t

(
A,B,C,D

)
= E

[
1

N

∑
1≤s,r≤N

τN ⊗ trM

(
(Es,r ⊗ IM ) ·

(
AeiβyPB

)
(Wt)

· (Er,s ⊗ IM ) ·
(
CeiαyPD

)
(Wt)

)]
− E

[
trM

(
(τN ⊗ idM )

(
(AeiβyPB)(Wt)

)
· (τN ⊗ idM )

(
(CeiαyPD)(Wt)

))]
.

Note that Wt depends on N and M ; however, we do not make this de-
pendency explicit in the notation Wt because, in the entirety of this section,
we will work with N and M fixed. We can now state the next lemma, which
explains why this object appears:
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Lemma 3.3. Let f be a function such that there exists a measure μ such
that for any x ∈ R,

f(x) =

∫
R

eixydμ(y)

We also assume that
∫
R
(1 + y4)d|μ|(y) < ∞. Then one can write

E

[
1

MN
TrMN

(
f

(
P

(
XN ⊗ IM , ZNM , ZNM ∗)))]

− τN ⊗ trM

(
f

(
P

(
x⊗ IM , ZNM , ZNM ∗)) )

as a finite linear combination of terms of the following kinds:

∫ ∞

0
e−t

∫
y2

∫ 1

0
Sα,1−α
N,t (A,B,C,D)dα dμ(y) dt,(11)

and ∫ ∞

0
e−t

∫
y S1,0

N,t(A,B,C,D)dμ(y) dt(12)

where the monomials A,B,C,D ∈ Pd,q and the coefficients of the linear
combination are uniquely determined by P .

Proof. First, we define the natural interpolation between the trace of matri-
ces at size N and the trace of semicircular variables,

s(t, y) = E
[
τN ⊗ trM

(
eiyP (Wt)

)]
.

By definition of f , we have

∫
R

s(0, y) dμ(y) = E

[
1

MN
TrMN

(
f(P (XN ⊗ IM , ZNM , ZNM ∗

))
)]

,∫
R

s(∞, y) dμ(y) = τN ⊗ trM

(
f(P (x⊗ IM , ZNM , ZNM ∗

))
)
.
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Thus, under the assumption that this is well-defined, we have

E

[
1

MN
TrMN

(
f

(
P

(
XN ⊗ IM , ZNM , ZNM ∗)) )]

(13)

− τN ⊗ trM

(
f

(
P

(
x⊗ IM , ZNM , ZNM ∗)) )

= −
∫ ∞

0

∫
R

∂ts(t, y) dμ(y) dt .

We compute

∂ts(t, y) = iy
e−t

2
E

[
τN ⊗ trM

(
eiyP (Wt)

∑
i

∂iP (Wt)(14)

#

((
xi

(1− e−t)1/2
− et/2XN

i

)
⊗ IM

))]
.

Since we assumed that μ is such that
∫
(1 + y4)d|μ|(y) < +∞ and since XN

i

and xi have all moments uniformly bounded by Lemma 2.11, we can find a
constant C independent from y and t such that

|∂ts(t, y)| ≤ C ye−t/2,

we deduce that (13) is well-defined. Besides, writing P =
∑

cV (P )V with
monomials V ∈ Ad,q, we get

∂ts(t, y) = iy
e−t

2

∑
cV (P )

∑
V=BXiA

E

[
τN ⊗ trM

(
A(Wt)e

iyP (Wt) B(Wt)

(15)

×
(

xi

(1− e−t)1/2
− et/2XN

i

)
⊗ IM

)]
.

Hence, ∂ts is a finite linear combination of terms of the form

(16) ye−tSt(A,B) = ye−tS1
t (A,B)− ye−tS2

t (A,B)

with

S1
t (A,B) = St(A,B, (1− e−t)−1/2xi) and S2

t (A,B) = St(A,B, et/2XN
i )



On the operator norm of non-commutative polynomials 217

where

(17) St(A,B,G) = E
[
τN ⊗ trM

(
A(Wt) e

iyP (Wt)B(Wt)×G⊗ IM

)]
.

We first study S2
t (A,B). We denote by Q = AeiyPB. We want to use Gaus-

sian integration by parts: if we set
√
NXN

i = (xis,r)1≤s,r≤N , then with ∂xi
s,r

as in equations (8) and (9), thanks to Duhamel formula

√
Net/2 ∂xi

s,r
Q(Wt) = ∂iA(Wt)#(Er,s ⊗ IM ) eiyP (Wt)B(Wt)(18)

+ iy

∫ 1

0
A(Wt)e

i(1−α)yP (Wt) ∂iP (Wt)

#(Er,s ⊗ IM ) eiαyP (Wt)B(Wt) dα

+A(Wt)e
iyP (Wt) ∂iB(Wt)#(Er,s ⊗ IM ).

Consequently, expanding in S2
t (A,B) the product by XN

i in terms of its
entries, we get by (9)

S2
t (A,B) =et/2E

[
τN ⊗ trM

(
(AeiyPB)(Wt) X

N
i ⊗ IM

)](19)

= N−1/2et/2
∑

1≤s,r≤N

E
[
xis,r τN ⊗ trM

(
Es,r ⊗ IM (AeiyPB)(Wt)

)]
=

1

N

∑
1≤s,r≤N

E
[
τN ⊗ trM

(
Es,r ⊗ IM et/2∂xi

s,r
Q(Wt)

)]

= E

[
1

N

∑
1≤s,r≤N

τN ⊗ trM

(
Es,r ⊗ IM ∂iA(Wt)

#(Er,s ⊗ IM ) eiyP (Wt)B(Wt)
)]

+ iy

∫ 1

0
E

[
1

N

∑
1≤s,r≤N

τN ⊗ trM

(
Es,r

⊗ IM A(Wt)e
i(1−α)yP (Wt)∂iP (Wt)

#(Er,s ⊗ IM ) eiαyP (Wt)B(Wt)
)]

dα
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+ E

[
1

N

∑
1≤s,r≤N

τN ⊗ trM

(
Es,r ⊗ IM A(Wt)e

iyP (Wt) ∂iB(Wt)

#(Er,s ⊗ IM )
)]

where A,B, P are evaluated at ZN
t . To deal with S1

t (A,B), since a priori
we defined free integration by parts only for polynomials, we expand the
exponential as a power series,

τN ⊗ trM

(
A(Wt) e

iyP (Wt) B(Wt)
xi ⊗ IM

(1− e−t)1/2

)
=

∑
k≥0

1

k!
τN ⊗ trM

(
A(Wt) (iyP (Wt))

k B(Wt)
xi ⊗ IM

(1− e−t)1/2

)
.

We define (τN ⊗ idM )
⊗

(τN ⊗ idM ) : (AN ⊗MM (C))⊗2 → MM (C) the linear
map which is defined on simple tensors by (τN⊗idM )

⊗
(τN⊗idM )(A⊗B) =

(τN ⊗ idM )(A)× (τN ⊗ idM )(B). Hence, thanks to Proposition 2.6, with the
convention that A× (B ⊗ C)×D = (AB)⊗ (CD), we have

τN ⊗ trM

(
A(Wt) (iyP (Wt))

k B(Wt)
xi ⊗ IM

(1− e−t)1/2

)
= trM

(
(τN ⊗ idM )

⊗
(τN ⊗ idM )

(
∂iA(Wt) (iyP (Wt))

k B(Wt)
))

+ iy trM

(
(τN ⊗ idM )

⊗
(τN ⊗ idM )

(
A(Wt)(iy)

k−1

×
∑

1≤l≤k

P (Wt)
l−1∂iP (Wt) P (Wt)

k−lB(Wt)
))

+ trM

(
(τN ⊗ idM )

⊗
(τN ⊗ idM )

(
A(Wt) (iyP (Wt))

k ∂iB(Wt)
))

.

Now we can use the fact that

1

k!
=

∫ 1

0

αl−1(1− α)k−l

(l − 1)!(k − l)!
dα,
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to deduce that

trM

(
(τN ⊗ idM )

⊗
(τN ⊗ idM )

(
A(Wt)

∑
k≥1

(iy)k−1

k!

×
k∑

l=1

P (Wt)
l−1∂iP (Wt) P (Wt)

k−lB(Wt)
))

=

∫ 1

0

∑
k≥1

k∑
l=1

trM

(
(τN ⊗ idM )

⊗
(τN ⊗ idM )

×
(
A(Wt)

(iyαP (Wt))
l−1

(l − 1)!
∂iP (Wt)

(iy(1− α)P (Wt))
k−l

(k − l)!
B(Wt)

))
dα

=

∫ 1

0
trM

(
(τN ⊗ idM )

⊗
(τN ⊗ idM )

×
(
A(Wt) e

i(1−α)yP (Wt) ∂iP (Wt) e
iαyP (Wt) B(Wt)

))
dα.

Thus, after summation, we obtain

S1
t (A,B)

= trM

(
(τN ⊗ idM )

⊗
(τN ⊗ idM )

(
∂iA(Wt) e

iyP (Wt)B(Wt)
))

+ iy

∫ 1

0
trM

(
(τN ⊗ idM )

⊗
(τN ⊗ idM )

×
(
A(Wt)e

i(1−α)yP (Wt) ∂iP (Wt) e
iαyP (Wt)B(Wt)

))
dα

+ trM

(
(τN ⊗ idM )

⊗
(τN ⊗ idM )

(
A(Wt) e

iyP (Wt) ∂iB(Wt)
))

.

Therefore, after making the difference (16) to compute St(A,B), we conclude
that the difference we wish to estimate in (13) is a linear combination of
terms, whose coefficients only depend on P , of the form (11) and (12).

Thus the next step is to study the quantity Sα,β
N,t (A,B,C,D). More pre-

cisely we show:

Lemma 3.4. There is a polynomial L ∈ R+[X] which only depends on
A,B,C,D and P such that with

∥∥ZNM
∥∥ = sup

1≤i≤q

∥∥ZNM
i

∥∥, for any α, β ∈
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[0, 1], N ∈ N, t ∈ R+ and y ∈ R,

∣∣∣Sα,β
N,t

(
A,B,C,D

)∣∣∣ ≤ (1 + y2)M2

N2
L

(∥∥ZNM
∥∥)

.

This lemma is a direct consequence of Lemmas 3.6 and 3.7. We first
show that the family (XN ⊗ IM , x ⊗ IM , ZNM ) is actually the asymptotic
distribution (in the sense of Definition 2.1) as k goes to infinity of the family
(XN⊗IkM , RkN⊗IM , ZNM⊗Ik) where RkN is a family of independent GUE
random matrices of size kN . The advantage of this representation is that it
allows us to use classical analysis and treat the GUE variables and the semi-
circle variables in a more symmetric way. A direct proof using semi-circular
variables should, however, be possible.

Proposition 3.5. If RkN is a family of independent GUE random matrices
of size kN , independent of XN , we set

W k
t =

( (
e−t/2XN ⊗ Ik + (1− e−t)1/2RkN

)
⊗ IM , ZNM ⊗ Ik, Z

NM ∗ ⊗ Ik

)
.

Then if q = AeiβyPB, we have that PXN -almost surely for any t,

(τN ⊗ idM )
(
q(Wt)

)
= lim

k→∞
ER

[
(trkN ⊗ idM )

(
q(W k

t )
)]

,

where ER is the expectation with respect to RkN . Here M,N are kept fixed.

Proof. This proposition is mostly a corollary of Theorem 5.4.5 of [3]. Indeed
this theorem states that if RkN are GUE matrices and DkN are deterministic
matrices such that

sup
l∈N

max
i

sup
k∈N

(
1

N
Tr(|DkN

i |l)
)1/l

< ∞,

and if DkN converges in distribution towards a family of non-commutative
random variables d, then the family (RkN , DkN ) in the non-commutative
probability space (MkN (C), ∗,E[ 1

kN Tr]) converges in distribution towards
the family (x, d) where x is a system of free semicircular variables free from
d. In our situation we can write for every i,

ZNM
i =

∑
1≤r,s≤N

Er,s ⊗AM
r,s,i.
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Thus, if EN = (Er,s)1≤r,s≤N , we fix DkN = (XN ⊗ Ik, E
N ⊗ Ik), d =

(XN , EN ), and we can apply Theorem 5.4.5 from [3] to get that for any
non-commutative polynomial P ,

lim
k→∞

ER

[
trkN (P (RkN , XN ⊗ Ik, E

N ⊗ Ik))
]
= τN

(
P (x,XN , EN )

)
.

Consequently, for any non-commutative polynomial P , we also have

lim
k→∞

ER

[
trkN ⊗ idM

(
P (RkN ⊗ IM , XN ⊗ IkM , EN ⊗ IkM , IkN ⊗AM ,

IkN ⊗ (AM )∗)
)]

= τN
(
P (x⊗ IM , XN ⊗ IM , EN ⊗ IM , IN ⊗AM , IN ⊗ (AM )∗)

)
.

Hence, for any P ∈ Pd,q,

(20) lim
k→∞

ER

[
trkN ⊗ idM (P (W k

t ))
]
= τN ⊗ idM (P (Wt)) .

Thanks to Proposition 2.11, we know that there exist α > 0 and D < ∞
such that for all u ≥ D, for N large enough, ∀i ∈ [1, d],

(21) P
(∥∥∥RkN

i

∥∥∥ ≥ u
)
≤ e−α u kN .

Since if cM (P ) is the coefficient of P associated with the monomial M , one
has ∥∥∥P (W k

t )
∥∥∥ ≤

∑
M monomials

|cM (P )|
∥∥∥M(W k

t )
∥∥∥ ,

there exist constants L and C which do depend on
∥∥∥ZNM

j

∥∥∥ and
∥∥XN

i

∥∥ such
that for N large enough

(22) P
(∥∥∥P (W k

t )
∥∥∥ ≥ C

)
≤ e−LkN .

Knowing this, let fε ∈ C[X] be a polynomial which is ε-close from x 
→ eiβyx

on the interval [−1 − C,C + 1]. Since one can always assume that C >

‖P (Wt)‖, we have, with q = AeiβyPB:

‖(τN ⊗ idM )
(
q(Wt)

)
− (τN ⊗ idM )

(
(Afε(P )B)(Wt)

)
‖ ≤ Dε,
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where D is some constant which can depend on the dimensions N,M but
not on k. Thus

‖(τN ⊗ idM )
(
q(Wt)

)
− ER

[
(trkN ⊗ idM )

(
q(W k

t )
)]

‖

≤ Dε+DER

[∥∥∥(q −Afε(P )B)(W k
t )

∥∥∥1‖P (W k
t )‖≥C+1

]
+ ‖(τN ⊗ idM )

(
(Afε(P )B)(Wt)

)
− ER

[
(trkN ⊗ idM )

(
(Afε(P )B)(W k

t )
)]

‖

The last term goes to zero as k goes to infinity by (20). Besides

ER

[∥∥∥(q −Afε(P )B)(W k
t )

∥∥∥1‖P (W k
t )‖≥C+1

]
≤ ER

[(∥∥∥A(W k
t )

∥∥∥∥∥∥B(W k
t )

∥∥∥ +
∥∥∥(Afε(P )B)(W k

t )
∥∥∥)2

]1/2
× P

(∥∥∥P (W k
t )

∥∥∥ ≥ C + 1
)1/2

.

The first term is bounded independently of k thanks to (21) and the second
converges exponentially fast towards 0 thanks to (22). Consequently

limsup
k→∞

‖(τN ⊗ idM )
(
q(Wt)

)
− ER

[
(trkN ⊗ idM )

(
q(W k

t )
)]

‖ ≤ Dε.

Hence the conclusion follows since the left-hand side does not depend on ε.

Recall that by definition

(23) Sα,β
N,t

(
A,B,C,D

)
:= E[Λα,β

N,t

(
A,B,C,D

)
]

with, following the notations of Definition 3.2:

Λα,β
N,t

(
A,B,C,D

)
=

1

N

∑
1≤s,r≤N

τN ⊗ trM

(
(Es,r ⊗ IM ) ·

(
AeiβyPB

)
(Wt)

· (Er,s ⊗ IM ) ·
(
CeiαyPD

)
(Wt)

)
− trM

(
(τN ⊗ idM )

(
(AeiβyPB)(Wt)

)
· (τN ⊗ idM )

(
(CeiαyPD)(Wt)

))
.
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By Proposition 3.5, we deduce that

(24) Λα,β
N,t

(
A,B,C,D

)
= lim

k→∞
Λα,β
k,N,t

(
A,B,C,D

)
where Λα,β

k,N,t

(
A,B,C,D

)
equals

ER

[
1

N

N∑
s,r=1

trkN ⊗ trM

(
(Es,r ⊗ Ik ⊗ IM ) ·

(
AeiβyPB

)
(W k

t )(25)

· (Er,s ⊗ Ik ⊗ IM ) ·
(
CeiαyPD

)
(W k

t )
)]

− trM

(
ER

[
trkN ⊗ idM

(
(AeiβyPB)(W k

t )
)]

· ER

[
trkN ⊗ idM

(
(CeiαyPD)(W k

t ))
)] )

We can now prove the following intermediary lemma to derive Lemma
3.4.

Lemma 3.6. Define W k
t as in Proposition 3.5, and let

• P1,2 = IN ⊗ E1,2 ⊗ IM ,
• Q1 = (AeiβyPB)(W k

t ),
• Q2 = (CeiαyPD)(W k

t ).

Then there is a constant C and a polynomial L ∈ R+[X,Y ] which only
depend on A,B,C,D and P such that with

∥∥ZNM
∥∥ = sup

1≤i≤q

∥∥ZNM
i

∥∥ and∥∥XN
∥∥ = sup

1≤i≤d

∥∥XN
i

∥∥, for any α, β ∈ [0, 1], M,N ∈ N, t ∈ R+ and y ∈ R,

|Λα,β
k,N,t

(
A,B,C,D

)
| ≤ (1 + y2)M2

N2
L

(∥∥ZNM
∥∥ ,

∥∥XN
∥∥)

(26)

+ k3| trM (ER [(trkN ⊗ idM )(Q1P1,2)]

× ER [(trkN ⊗ idM )(Q2P1,2)])|.

Proof. We denote in short Λα,β
k,N,t

(
A,B,C,D

)
=Λk,N,M =trM (ER[Γk,N,M ])−

Θk,N,M with

Γk,N,M =
1

N

∑
1≤s,r≤N

trkN ⊗ idM (Es,r ⊗ Ik ⊗ IM Q1 Er,s ⊗ Ik ⊗ IM Q2)

Θk,N,M = trM
(
ER [trkN ⊗ idM (Q1)]ER [trkN ⊗ idM (Q2))]

)
(27)
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Let (gi)i∈[1,N ] and (fi)i∈[1,k] be the canonical basis of CN and Ck, Ei,j is the
matrix whose only non-zero coefficient is (i, j) and this coefficient has value
1, the size of the matrix Ei,j will depend on the context. We use the fact
that Er,s = grg

∗
s and Ik =

∑
l El,l with El,l = f∗

l fl to deduce that

Γk,N,M

(28)

=
1

N

∑
1≤s,r≤N

∑
1≤l,l′≤k

trkN ⊗ idM (Es,r ⊗ El,l ⊗ IM Q1 Er,s ⊗ El′,l′ ⊗ IM Q2)

=
1

N2k

∑
1≤l,l′≤k

∑
1≤r≤N

g∗r ⊗ f∗
l ⊗ IM Q1 gr ⊗ fl′ ⊗ IM

×
∑

1≤s≤N

g∗s ⊗ f∗
l′ ⊗ IM Q2 gs ⊗ fl ⊗ IM

=
1

k

∑
1≤l,l′≤k

(trN ⊗ idM ) (IN ⊗ f∗
l ⊗ IM Q1 IN ⊗ fl′ ⊗ IM )

× (trN ⊗ idM ) (IN ⊗ f∗
l′ ⊗ IM Q2 IN ⊗ fl ⊗ IM )

= k
∑

1≤l,l′≤k

(trkN ⊗ idM )
(
Q1 IN ⊗ El′,l ⊗ IM

)
(trkN ⊗ idM )

×
(
Q2 IN ⊗ El,l′ ⊗ IM

)
.

The last line of the above equation prompts us to set Pl′,l = IN ⊗El′,l ⊗ IM .
If (ei)i∈[1,M ] is the canonical basis of CM , we set

F q
l,l′,u,v(R

kN ) = e∗u (trkN ⊗ idM )
(
q
((

e−t/2XN ⊗ Ik + (1− e−t)1/2RkN
)

⊗ IM , ZNM ⊗ Ik, Z
NM ∗ ⊗ Ik

)
Pl′,l

)
ev

with q = q1 = AeiβyPB or q = q2 = CeiαyPD. We thus have with (28)

trM (ER [Γk,N,M ]) = k
∑

1≤l,l′≤k

trM
(
ER

[
(trkN ⊗ idM )

(
Q1 Pl′,l

)
(29)

× (trkN ⊗ idM )
(
Q2 Pl,l′

)])
=

k

M

∑
1≤l,l′≤k
1≤u,v≤M

CovR

(
F q1
l,l′,u,v(R

kN ), F q2
l′,l,u,v(R

kN )
)
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+ k
∑

1≤l,l′≤k

trM
(
ER

[
(trkN ⊗ idM )

(
Q1 Pl′,l

)]
× ER

[
(trkN ⊗ idM )

(
Q2 Pl,l′

)] )
.

However, the law of W k
t is invariant under conjugation by IN⊗U⊗IM , where

U ∈ Mk(C) is a permutation matrix. Therefore, if l = l′, ER[trkN (Q1 Pl′,l)] =

ER[trkN (Q1 P1,1)], and if l �= l′, ER[trkN (Q1 Pl′,l)] = ER[trkN (Q1 P1,2)]. We
get the same equation when replacing Q1 by Q2. Consequently, we get

k
∑

1≤l,l′≤k

ER

[
(trkN ⊗ idM )

(
Q1 Pl′,l

)]
ER

[
(trkN ⊗ idM )

(
Q2 Pl,l′

)]
= k2 ER[(trkN ⊗ idM )(Q1P1,1)] ER[(trkN ⊗ idM )(Q2P1,1)]

+(k − 1)k2 ER[(trkN ⊗ idM )(Q1P1,2)] ER[(trkN ⊗ idM )(Q2P1,2)].

where the trace trM of the first term in the right hand side equals

Θk,N,M = trM (ER[(trkN ⊗ idM )(Q1)]ER[(trkN ⊗ idM )(Q2)])

because IM =
∑

l Pl,l. Thus equation (29) yields

|Λk,N,M ≤ k

M

∑
1≤l,l′≤k
1≤u,v≤M

∣∣∣CovR (
F q1
l,l′,u,v(R

kN ), F q2
l′,l,u,v(R

kN )
)∣∣∣

(30)

+
∣∣∣k3 trM (

ER[(trkN ⊗ idM )(Q1P1,2)] ER[(trkN ⊗ idM )(Q2P1,2)]
)∣∣∣ .

Hence, we only need to bound the first term to complete the proof of the
lemma. Thanks to Cauchy-Schwartz’s inequality, it is enough to bound the
variance of F q

l,l′,u,v(R
kN ), for q = q1 and q2. To study these variances, we shall

use the Poincaré inequality, see Proposition 2.9. If we set xir,s and yir,s the real
and imaginary part of

√
2kN(RkN

i )r,s for r < s and xir,r =
√
kN(RkN

i )r,r,
then these are real centered Gaussian random variables of variance 1 and one
can view F q

l,l′,u,v as a function on (xir,s)r≤s,i and (yir,s)r<s,i. By a computation
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similar to (18), we find

kN

1− e−t

∥∥∥∇F q
l,l′,u,v(R

kN )
∥∥∥2

2
(31)

=
∑
i

∑
1≤r,s≤kN

e∗u (trkN ⊗ idM )
(
∂iq(W

k
t )#Er,s ⊗ IM Pl′,l

)
ev

× e∗v (trkN ⊗ idM )
(
∂iq(W

k
t )#Er,s ⊗ IM Pl′,l

)∗
eu.

It is worth noting that here the matrices Er,s have size kN in this formula.
Thanks to Poincaré inequality (see Proposition 2.9), we deduce

k

M

∑
1≤u,v≤M

VarR(F
q
l,l′,u,v(RkN )) ≤ k

M

∑
1≤u,v≤M

E

[∥∥∥∇F q
l,l′,u,v(R

kN )
∥∥∥2

2

]
(32)

≤ 1

N

∑
i

∑
1≤r,s≤kN

ER

[
1

M

∑
1≤u,v≤M

e∗u (trkN ⊗ idM )

×
(
∂iq(W

k
t )#Er,s ⊗ IM Pl′,l

)
eve

∗
v

× (trkN ⊗ idM )
(
∂iq(W

k
t )#Er,s ⊗ IM Pl′,l

)∗
eu

]
≤ 1

N

∑
i

∑
1≤r,s≤kN

ER

[
trM

(
(trkN ⊗ idM )

(
∂iq(W

k
t )#Er,s ⊗ IM Pl′,l

)
× (trkN ⊗ idM )

(
∂iq(W

k
t )#Er,s ⊗ IM Pl′,l

)∗)]
.

Moreover we have, if el is an orthornormal basis of Ck,

∑
1≤l,l′≤k

trM

(
(trkN ⊗ idM )

(
∂iq(W

k
t )#Er,s ⊗ IM Pl′,l

)(33)

× (trkN ⊗ idM )
(
∂iq(W

k
t )#Er,s ⊗ IM Pl′,l

)∗)
=

1

k2

∑
1≤l,l′≤k

trM

(
e∗l ⊗ IM (trN ⊗ idkM )

(
∂iq(W

k
t )#Er,s ⊗ IM

)
el′e

∗
l′ ⊗ IM

× (trN ⊗ idkM )
(
∂iq(W

k
t )#Er,s ⊗ IM

)∗
el ⊗ IM

)
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=
1

k
trk ⊗ trM

(
(trN ⊗ idkM )

(
∂iq(W

k
t )#Er,s ⊗ IM

)
× (trN ⊗ idkM )

(
∂iq(W

k
t )#Er,s ⊗ IM

)∗)
.

Hence by combining equations (32) and (33) we have proved that

k

M

∑
1≤l,l′≤k
1≤u,v≤M

VarR

(
F q
l,l′,v,u(R

kN )
)(34)

≤ 1

kN

∑
i

∑
1≤r,s≤kN

ER

[
trk ⊗ trM

(
(trN ⊗ idkM )

(
∂iq(W

k
t )#Er,s ⊗ IM

)
(trN ⊗ idkM )

(
∂iq(W

k
t )#Er,s ⊗ IM

)∗)]
Moreover, let us remind that, with the convention A × (B ⊗ C) × D =

(AB)⊗ (CD), we have (for q1 = AeiβyPB but with obvious changes for q2 )

∂iq1 = ∂iA eiβyP B + iβyA

∫ 1

0
ei(1−u)βyP ∂iP eiuβyP Bdu+A eiβyP ∂iB.

Consequently, for q = q1, (34) is a finite linear combination of terms of the
three following types H i

N = ER[h
i
N ], 1 ≤ i ≤ 3, with

h1N =
1

kN

∑
1≤r,s≤kN

trk ⊗ trM

(
(τN ⊗ idkM )

(
A1Er,s ⊗ IM A2e

iβyP A3

)
(τN ⊗ idkM )

(
B3Es,r ⊗ IM B2e

−iβyP B1

))
,

h2N =
βy

kN

∫ 1

0

∑
1≤r,s≤kN

trk ⊗ trM

(
(τN ⊗ idkM )

(
A1e

i(1−u)βyP A2Er,s ⊗ IM A3e
iuβyP A4

)
(τN ⊗ idkM )

(
B3 Es,r ⊗ IM B2e

−iβyP B1

))
du,
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h3N =
(βy)2

kN

∫ 1

0

∫ 1

0

∑
1≤r,s≤kN

trk ⊗ trM

(
(τN ⊗ idkM )

(35)

×
(
A1e

i(1−u)βyP A2Er,s ⊗ IM A3e
iuβyP A4

)
× (τN ⊗ idkM )

(
B4e

−ivβyP B3Es,r

⊗ IM B2e
−i(1−v)βyP B1

))
du dv,

where the Ai and Bi are monomials in W k
t . Besides the coefficients of this

linear combination only depend on A,B and P . We first show how to estimate
h3N . Let us recall that we set (ei)1≤i≤N , (fi)1≤i≤k and (gi)1≤i≤M as the
canonical basis of CM , Ck and CN . Then, for any matrices A,B,C,D ∈
MN (C)⊗Mk(C)⊗MM (C), we have

∑
1≤r,s≤kN

TrkM

(
TrN ⊗ idkM

(
A Er,s ⊗ IM B

)(36)

× TrN ⊗ idkM

(
C Es,r ⊗ IM D

))
=

∑
1≤a,b,r1,s1≤N
1≤c,d,r2,s2≤k
1≤e,f,g,h≤M

g∗a ⊗ f∗
c ⊗ e∗e A gr1 ⊗ fr2 ⊗ ef × g∗s1 ⊗ f∗

s2 ⊗ e∗f B ga ⊗ fd ⊗ eg

× g∗b ⊗ f∗
d ⊗ e∗g C gs1 ⊗ fs2 ⊗ eh × g∗r1 ⊗ f∗

r2 ⊗ e∗h D gb ⊗ fc ⊗ ee

=
∑

1≤a≤N
1≤c,d≤k

1≤e,f,g,h≤M

g∗a ⊗ f∗
c ⊗ e∗e A IN ⊗ Ik ⊗ (efe

∗
h) D IN ⊗ (fcf

∗
d )⊗ (eee

∗
g)

× C IN ⊗ Ik ⊗ (ehe
∗
f ) B ga ⊗ fd ⊗ eg

=
∑

1≤u,v≤M

TrN

(
idN ⊗TrkM (A IkN ⊗ eue

∗
v D)

× idN ⊗TrkM (C IkN ⊗ eve
∗
u B)

)
.

Let KM be a GUE matrix of size M , independent of everything else. Per-
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forming a Gaussian integration by parts, we get

1

M

∑
1≤u,v≤M

TrN

(
idN ⊗TrkM (A IkN ⊗ eue

∗
v D)(37)

× idN ⊗TrkM (C IkN ⊗ eve
∗
u B)

)
= EK

[
TrN

(
idN ⊗TrkM

(
A

× IkN ⊗KM D
)

idN ⊗TrkM

(
C IkN ⊗KM B

))]
.

Consequently by combining equations (36) and (37), we have

h3N =

(
βyM

N

)2 ∫ 1

0

∫ 1

0
EK

[
trN

(
(idN ⊗ trkM )

(
A1e

i(1−u)βyPA2

× IkN ⊗KM B2e
−i(1−v)βyPB1

)
× (idN ⊗ trkM )

(
B4e

−ivβyPB3 IkN ⊗KM A3e
iuβyPA4

))]
du dv.

Since P is self-adjoint, we know that for any r ∈ R,
∥∥∥ei rP (W k

t )
∥∥∥ = 1. Besides

‖idN ⊗ trkM (A)‖ ≤ ‖A‖, thus we can bound h3N in (35) by
(38)

|h3N | ≤
(
yM

N

)2

‖A1‖ ‖A2‖ ‖A3‖ ‖A4‖ ‖B1‖ ‖B2‖ ‖B3‖ ‖B4‖ EK

[
‖KM‖2

]
.

Finally, by [15], EK

[
‖KM‖2

]
is bounded by 3. One can bound similarly h1N

and h2N , the only difference on the final result is that we would have 1 or
y instead of y2. Finally after taking the expectation with respect to RkN

in equation (38) and using Proposition 2.11, we deduce that there exists a
polynomial S which only depends on A,B and P , hence is independent of
N,M, y, t, α or β, such that (34) is bounded by

k

M

∑
1≤l,l′≤k
1≤u,v≤M

VarR

(
F q
l,l′,v,u(R

kN )
)
≤ (1 + y2)M2

N2
S

(∥∥XN
∥∥ ,

∥∥ZNM
∥∥)

.
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Thus, we deduce that there exists a polynomial H which only depends
on A,B,C,D and P such that the first term in the right-hand side of (30)
is bounded by

k

M

∑
1≤l,l′≤k
1≤u,v≤M

∣∣∣CovR (
F q1
l,l′,u,v(R

kN ), F q2
l′,l,u,v(R

kN )
)∣∣∣(39)

≤ (1 + y2)M2

N2
H

(∥∥XN
∥∥ ,

∥∥ZNM
∥∥)

.

This completes the proof of the Lemma in the general case. For the specific
case where ZNM = (IN ⊗ Y M

1 , . . . , IN ⊗ Y M
q ) and that these matrices com-

mute, we can get better estimate in equation (38) thanks to a refinement
of equation (37). Indeed if A,B,C,D are monomials in W k

t , then we can
write A = A1 ⊗A2 in MkN (C)⊗MM (C) and likewise for B,C,D such that
A2, B2, C2, D2 commute. Thus,

1

M

∑
1≤u,v≤M

TrN

(
idN ⊗TrkM (A IkN ⊗ eue

∗
v D)

× idN ⊗TrkM (C IkN ⊗ eve
∗
u B)

)
=

1

M
TrN

(
idN ⊗Trk(A1D1) idN ⊗Trk(C1B1)

)
×

∑
1≤u,v≤M

TrM (A2 eue
∗
v D2) TrM (C2 eue

∗
v B2)

=
1

M
TrN

(
idN ⊗Trk(A1D1) idN ⊗Trk(C1B1)

)
TrM (D2A2B2C2)

=
1

M
TrN

(
idN ⊗Trk(A1D1) idN ⊗Trk(C1B1)

)
TrM (A2D2C2B2)

=
1

M
TrNM

(
idNM ⊗Trk(AD) idNM ⊗Trk(CB)

)
.

By linearity and density this equality is true if we assume that A,B,C,D
are power series in W k

t . Thus combining this equality with equation (36), we
get that in this case

|h3N | ≤
( y

N

)2
‖A1‖ ‖A2‖ ‖A3‖ ‖A4‖ ‖B1‖ ‖B2‖ ‖B3‖ ‖B4‖ .

The same argument as in the general case applies, and the proof follows.

To prove Lemma 3.4, we show in the following lemma that the term
appearing in the second line of equation (26) vanishes.
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Lemma 3.7. Let W k
t , P1,2, Q1 and Q2 be defined as in Lemma 3.6, then

PXN -almost surely,

lim
k→∞

k3 trM (ER [(trkN ⊗ idM )(Q1P1,2)]ER [(trkN ⊗ idM )(Q2P1,2)]) = 0.

Proof. It is enough to show that given y ∈ R and monomial A and B, we
have

lim
k→∞

k3/2ER

[
(trkN ⊗ idM )((A eiyP B)(W k

t ) P1,2)
]
= 0.

For this purpose, let us define for monomials A,B and y ≥ 0

fA,B(y) = ER

[
(TrkN ⊗ idM )((A eiyP B)(W k

t ) P1,2)
]
.

We want to show that fA,B goes to zero faster than k−1/2. We first show that
we can reduce the problem to the case y = 0. To this end, we also define

dn(y) = sup
deg(A)+deg(B)≤n

‖fA,B(y)‖ .

We know thanks to Proposition 2.11 that there exist constants α and C such
that for any i and n ≤ αkN/2,

E
[∥∥∥RkN

i

∥∥∥n]
≤ Cn.

Besides, with as previously (fi)i∈[1,k] the canonical basis of Ck,∥∥∥(TrkN ⊗ idM )((A eiyP B)(W k
t ) P1,2)

∥∥∥
=

∥∥∥(TrN ⊗ idM )(f∗
2 ⊗ IMN (A eiyP B)(W k

t ) f1 ⊗ IMN )
∥∥∥

≤ N ×
∥∥∥f∗

2 ⊗ IMN (A eiyP B)(W k
t ) f1 ⊗ IMN

∥∥∥
≤ N ×

∥∥∥A(W k
t )

∥∥∥∥∥∥B(W k
t )

∥∥∥ .

Consequently, PXN -almost surely, there exist constants γ and D (which do
depend on, N ,

∥∥XN
∥∥ and

∥∥ZNM
∥∥) such that for any n ≤ γk,

(40) dn(y) ≤ Dn.

It is crucial to point out that this constant D can be very large when N is,
it does not matter since, in the end, we will show that this quantity will go
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towards 0 when k goes to infinity, and the other parameters such as N,M

or y are fixed. Next, we define

gk,a(y) =
∑

0≤n≤γk

dn(y)a
n.

But we have

dfA,B(y)

dy
= iER

[
(TrkN ⊗ idM )((A PeiyP B)(W k

t ) P1,2)
]

so that if we set cL(P ) to be the coefficient associated to the monomial L in
P , P =

∑
cL(P )L,∣∣∣∣dfA,B(y)

dy

∣∣∣∣ ≤ ∑
L monomials

|cL(P )| ddeg(A)+deg(B)+deg(L)(y).

Thus, for any y ≥ 0, any monomials A,B with deg(A) + deg(B) = n,

fA,B(y) ≤ fA,B(0) +
∑

L monomials

|cL(P )|
∫ y

0
dn+deg(L)(u) du.

Therefore, we have for y ≥ 0 and any n ≥ 0,

andn(y) ≤ andn(0)+
∑

L monomials

|cL(P )|a−deg(L)

∫ y

0
dn+deg(L)(u)a

n+deg(L) du.

And with ‖.‖a−1 defined as in (7), thanks to (40), we find a finite constant
ca independent of k such that

gk,a(y) ≤ gk,a(0) + ca(aD)γk + ‖P‖a−1

∫ y

0
gk,a(u)du,

As a consequence of Gronwall’s inequality, we deduce that for y ≥ 0,

(41) gk,a(y) ≤
(
gk,a(0) + ca(aD)γk

)
ey‖P‖

a−1 .

Next we will prove that for a small enough, gk,a(0) = O(1/k). Then at the
cost of by replacing P by −P , thanks to equation (41) we have that for a

small enough and any y ∈ R, gk,a(y) = O(1/k). This completes the proof



On the operator norm of non-commutative polynomials 233

since with A,B,C,D as in Lemma 3.6, for a small enough and k large enough∣∣k3 trM (ER [(trkN ⊗ idM )(Q1P1,2)]ER [(trkN ⊗ idM )(Q2P1,2)])
∣∣

≤ k × ddeg(A)+deg(B)(βy)ddeg(C)+deg(D)(αy)

≤ k × a− deg(A)−deg(B)−deg(C)−deg(D)gk,a(βy) gk,a(αy)

Hence, it is enough to find an estimate on gk,a(0). First for any j, one
can write ZNM

j =
∑

1≤u,v≤N Eu,v ⊗ Ik ⊗ Aj
u,v for some matrices Aj

u,v, then
we define

UN,k =
(
RkN , XN ⊗ Ik, (Eu,v ⊗ Ik)u,v

)
,

cn = sup
deg(L)≤n, L monomial

|ER [TrkN (L(UN,k) P1,2)]| .

Note that since we are taking the trace of L(UN,k)P1,2 with P1,2 = IN ⊗
f1f

∗
2 ⊗ IM , we have c0 = c1 = 0. We consider K the supremum over u, v, j of∥∥∥Aj
u,v

∥∥∥, we also assume without loss of generality that K ≥ 1. Thus, since

ZNM
j =

∑
1≤u,v≤N

Eu,v ⊗ Ik ⊗Aj
u,v, XN

t = e−t/2XN ⊗ Ik + (1− e−t)1/2RkN ,

if L is a monomial in W k
t = (XN

t ⊗IM , ZNM⊗Ik, Z
NM ∗⊗Ik) of degree n, then

we can view L(W k
t ) as a sum of at most 2nN2n monomials in e−t/2XN ⊗ Ik,

(1 − e−t)1/2RkN , Eu,v ⊗ Ik ⊗ Aj
u,v, Ev,u ⊗ Ik ⊗ Aj

u,v
∗
. Consequently, since

supu,v,j

∥∥∥Aj
u,v

∥∥∥ ≤ K, we have∥∥∥ER

[
TrkN ⊗ idM (L(W k

t )P1,2)
]∥∥∥ ≤ 2nN2nKncn.

Thus, if we set

fp(a) =
∑

0≤n≤p

cna
n,

we have

(42) gk,a(0) ≤ fγk(2N
2Ka).

Now we need to study the behaviour of fk(a) when k goes to infinity
for a small enough. In order to do so, let us consider a monomial L in
UN,k. Since XN ⊗ Ik and Eu,v ⊗ Ik commute with P1,2, one can assume that
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L = RkN
i S for some i (unless L is a monomial in XN ⊗ Ik and Eu,v ⊗ Ik in

which case TrkN (LP1,2) = 0), thus thanks to Schwinger-Dyson equation (see
Proposition 2.10),

ER [TrkN (LP1,2)] =
1

Nk
ER [TrkN ⊗TrkN (∂i(SP1,2))](43)

=
1

Nk

∑
S=URiV

E[TrNk(U) TrNk(V P1,2)].

To use this Schwinger-Dyson equation as an inductive bound we shall use
Poincaré inequality to bound the covariance in the above right hand side.We
hence compute for any monomial V ,

‖∇TrkN (V P1,2)‖22 =
1

Nk

∑
i

∑
r,s

TrkN (∂sV#Er,sP1,2) TrkN (∂sV#Es,rP1,2)
∗

=
∑
i

∑
V=ARiB,V=CRiD

1

Nk
TrkN (BP1,2AC∗P ∗

1,2D
∗)(44)

Thus with Θ = max
{
C,

∥∥XN
∥∥ , 1

}
, since P1,2 is of rank N , we get

VarR(TrkN (V P1,2)) ≤
1

k
(deg V )2Θ2 deg V .

Likewise, for any monomial U , we find

VarR(TrkN (U)) ≤ (degU)2Θ2 degU .

Therefore, if n is the degree of L, we deduce from (44), (43) and Poincaré
inequality that

|ER [TrkN (LP1,2)]| ≤
1

k3/2N

n−2∑
i=0

i(n− 2− i)Θn

+
∑

S=URiV

∣∣∣∣ 1

Nk
ER[TrkN (U)]ER[TrkN (V P1,2)]

∣∣∣∣
≤ n3Θn

k3/2N
+

∑
S=URiV

|ER[TrkN (V P1,2)]|ΘdegU .
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By replacing D by max{D,Θ}, we can always assume that Θ < D. We also
bound N−1 by 1, thus for n ≥ 2,

cn ≤ n3Dn

k3/2
+

n−2∑
i=0

ciD
n−2−i.

We use this estimate to bound fg(a) with g such that g3Dg ≤
√
k. Since

c0 = c1 = 0 and for any n ≤ g, n3Dnk−3/2 ≤ k−1, we have for aD < 1

fg(a) =

g∑
n=2

cna
n ≤ 1

k
× a2 − ag+1

1− a
+ a2

g−2∑
m=0

m∑
n=0

ciD
n−ian

≤ 1

k
× a2

1− a
+ a2

fg(a)

1−Da
.

Thus, for a small enough,

fg(a) ≤
(1−Da)a2

(1− a)(1−Da− a2)
× 1

k
.

Besides, we want g such that g3Dg ≤
√
k, hence we can take g the integer

part of ln k
2(lnD+3) . Since by definition we have cn ≤ Θn, this also means that

cn ≤ Dn, thus

∑
g<n≤γk

cna
n ≤

∑
n>g

(Da)n ≤ (Da)g+1

1−Da
≤ k

ln(Da)

2(lnD+3) × 1

1−Da
.

Thus, if we fix a small enough, fγk(a) = O(1/k). Hence, we deduce from
(42) that for a small enough (depending on N,K but not k) there exists a
finite constant C independent of k such that

gk,a(0) ≤ fk(2N
2Ka) ≤ C

k
.

Now that Theorem 3.1 is proved, we proceed to the proof of Theorem
1.1.

Proof of Theorem 1.1. It is based on Theorem 3.1. To use it, we would like to
take the Fourier transform of f and use Fourier inversion formula. However
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we did not assume that f is integrable. Thus the first step of the proof is to
show that up to a term of order e−N , we can assume that f has compact
support. Thanks to Proposition 2.11, there exist constants D and α such
that for any N and i, for any u ≥ 0,

P
(∥∥XN

i

∥∥ ≥ u+D
)
≤ e−αuN .

Thus, we find finite constants C and K, independent of M,N,P and f , such
that ∣∣∣∣E [

1

MN
Tr

(
f

(
P

(
XN ⊗ IM , ZNM , ZNM ∗)) )

1{∃i,‖XN
i ‖>D+1}

]∣∣∣∣
≤ E

[∥∥∥f (
P

(
XN ⊗ IM , ZNM , ZNM ∗))∥∥∥1{∃i,‖XN

i ‖>D+1}

]
≤ ‖f‖∞ P

(
∃i,

∥∥XN
i

∥∥ > D + 1
)
≤ C ‖f‖∞ e−KN .

There exists a polynomial H ∈ R+[X] which only depends on P such that∥∥∥P (
XN ⊗ IM , ZNM , ZNM ∗)∥∥∥1{∀i,‖XN

i ‖≤D+1} ≤ H
(∥∥ZNM

∥∥)
.

We can also assume that
∥∥P (x⊗ IM , ZNM , ZNM ∗

)
∥∥ ≤ H

(∥∥ZNM
∥∥)

. We
take g a C∞-function which takes value 1 on [−H

(∥∥ZNM
∥∥)

, H
(∥∥ZNM

∥∥)
],

0 on [−H
(∥∥ZNM

∥∥)
− 1, H

(∥∥ZNM
∥∥)

+ 1]c and belongs to [0, 1] elsewhere.
From the bound above, we deduce∣∣∣∣E [

1

MN
Tr

(
f

(
P

(
XN ⊗ IM , ZNM , ZNM ∗)))]

(45)

− τ
(
f

(
P

(
x⊗ IM , ZNM , ZNM ∗)) )∣∣∣

≤
∣∣∣∣∣E

[
1

MN
Tr

(
f

(
P

(
XN ⊗ IM , ZNM , ZNM ∗)))

1{∀i,‖XN
i ‖≤D+1}

]

− τ
(
f

(
P

(
x⊗ IM , ZNM , ZNM ∗)))∣∣∣∣∣ + C ‖f‖∞ e−KN

≤
∣∣∣∣∣E

[
1

MN
Tr

(
(fg)

(
P

(
XN ⊗ IM , ZNM , ZNM ∗)) )]

− τ
(
(fg)

(
P

(
x⊗ IM , ZNM , ZNM ∗)))∣∣∣∣∣ + 2C ‖f‖∞ e−KN .
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Since fg has compact support and can be differentiated six times, we can
take its Fourier transform and then invert it so that with the convention
ĥ(y) = 1

2π

∫
R
h(x)e−ixydx, we have

∀x ∈ R, (fg)(x) =

∫
R

eixyf̂ g(y) dy.

Besides, since if h has compact support bounded by K then
∥∥∥ĥ∥∥∥

∞
≤ 2K ‖h‖∞,

we have∫
R

(|y|+ y4)
∣∣∣f̂ g(y)∣∣∣ dy

≤
∫
R

|y|+ |y|3 + y4 + y6

1 + y2

∣∣∣f̂ g(y)∣∣∣ dy

≤

∫
R

∣∣∣(̂fg)(1)(y)∣∣∣ + ∣∣∣(̂fg)(3)(y)∣∣∣ + ∣∣∣(̂fg)(4)(y)∣∣∣ + ∣∣∣(̂fg)(6)(y)∣∣∣
1 + y2

dy

≤ 2
(
H

(∥∥ZNM
∥∥)

+ 1
)
‖fg‖C6

∫
R

1

1 + y2
dy

≤ C
(
H

(∥∥ZNM
∥∥)

+ 1
)
‖f‖C6 ,

for some absolute constant C. Hence fg satisfies the hypothesis of Theorem
3.1 with μ(dy) = f̂ g(y)dy. Therefore, combining with equation (45), we
conclude that∣∣∣∣E [

1

MN
Tr

(
f

(
P

(
XN ⊗ IM , ZNM , ZNM ∗)) )]

− τ
(
f

(
P

(
x⊗ IM , ZNM , ZNM ∗)) )∣∣∣

≤ ‖f‖∞ e−KN +
M2

N2
LP

(∥∥ZNM
∥∥) ∫

R

(|y|+ y4)
∣∣∣f̂ g(y)∣∣∣ dy

≤ M2

N2

(
CLP

(∥∥ZNM
∥∥) (

H
(∥∥ZNM

∥∥)
+ 1

)
+ e−KN

)
‖f‖C6 .

4. Consequences of the main result

In this section, we deduce Corollaries 1.3 and 1.4, as well as Theorems 1.2
and 1.5.
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4.1. Proof of Corollary 1.3

We could directly apply Theorem 1.1 to fz : x → (z − x)−1, however we
have ‖f‖

C6 = O
(
(�z)7

)
when we want an exponent of 5. Since GP (x)(z) =

GP (x)(z) we can assume that �z < 0, but then

fz(x) =

∫ ∞

0
eixy (ie−iyz) dy.

Consequently, with μz(dy) = ie−iyz dy, we have∫ ∞

0
(y + y4) d|μz|(y) =

1

|�z|2 +
24

|�z|5 .

Thus, by applying Theorem 3.1 with ZNM =
(
IN ⊗ Y M

1 , . . . , IN ⊗ Y M
p

)
, P

and fz, we have∣∣E [
GP (XN⊗IM ,IN⊗Y M )(z)

]
−GP (x⊗IM ,IN⊗Y M )(z)

∣∣
≤ M2

N2
LP

(∥∥ZNM
∥∥) ∫

R

(1 + y4) d|μz|(y).

Now since ∥∥ZNM
∥∥ = sup

1≤i≤p

∥∥Y M
i

∥∥ =
∥∥Y M

∥∥
which does not depend on N , we get the desired estimate∣∣E [

GP (XN⊗IM ,IN⊗Y M )(z)
]
−GP (x⊗IM ,IN⊗Y M )(z)

∣∣
≤ M2

N2
LP

(∥∥Y M
∥∥)(

1

|�z|2 +
24

|�z|5
)
.

4.2. Proof of Corollary 1.4

Let f : R → R be a Lipschitz function uniformly bounded by 1 and with
Lipschitz constant at most 1. We want to bound from above the quantity

ΔN,M (f) =

∣∣∣∣∣E
[

1

MN
TrNM

(
f

(
P

(
XN ⊗ IM , IN ⊗ YM

)) )]
(46)

− τ ⊗ trM

(
f (P (x⊗ IM , IN ⊗ YM ))

)∣∣∣∣∣
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Firstly, one can see that with the same argument as in the proof of Theorem
1.1 (in particular equation (45)), we can assume that the support of f is
bounded by a constant S = H(

∥∥Y M
∥∥) for some polynomial H independent

of everything. However, we cannot apply Theorem 1.1 directly since f is not
regular enough. To deal with this issue, we use the convolution with Gaussian
random variable, thus let G be a centered Gaussian random variable and set

fε : x → E[f(x+ εG)].

Since f has Lipschitz constant 1, we have for any x ∈ R,

|E[f(x+ εG)]− f(x)| ≤ ε.

Since fε is regular enough; we could now apply Theorem 1.1; however, we a
get a better result by using Theorem 3.1. Indeed we have

fε(x) =
1√
2π

∫
R

f(x+ εy)e−y2/2 dy

=
1√
2π

∫
R

f(y)
e−

(x−y)2

2ε2

ε
dy

=
1

2π

∫
R

f(y)

∫
R

ei(x−y)ue−(uε)2/2 du dy.

Since the support of f is bounded, we can apply Fubini’s Theorem:

fε(x) =
1

2π

∫
R

eiux
∫
R

f(y)e−iyu dy e−(uε)2/2 du.

And so with the convention ĥ(u) = 1
2π

∫
R
h(y)e−iuydy, we have

fε(x) =

∫
R

eiuxf̂(u)e−(uε)2/2 du.

Thus, if we set με(dy) = f̂(y)e−(yε)2/2 dy, then, since ‖f‖∞ ≤ 1,∫
R

(1 + y4)d|με|(y) ≤ 2S

∫
R

(1 + y4)e−y2/2 dy ε−5.

Consequently, we can apply Theorem 3.1 with fε and since ‖f − fε‖∞ ≤ ε,
there exists a polynomial RP such that the difference in (46) can be bounded
by:

ΔN,M (f) ≤ 2ε+RP

(∥∥Y M
∥∥) M2

N2ε5
.
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We finally choose ε = N−1/3 to get the desired bound

ΔN,M (f) ≤ 2RP

(∥∥Y M
∥∥) M2

N1/3
.

4.3. Proof of Theorem 1.2

We first define the operator norm of a tensor product of C∗-algebras properly.
When writing the proof, it appears that we should work with the minimal
tensor product.

Definition 4.1. Let A and B be C∗-algebras with faithful representations
(HA, φA) and (HB, φB), then if ⊗2 is the tensor product of Hilbert spaces,
A⊗min B is the completion of the image of φA⊗φB in B(HA⊗2HB) for the
operator norm in this space. This definition is independent of the represen-
tations that we fixed.

In addition, A ⊗min − defines a functor on C∗-algebras. If it is exact,
then we say that A is an exact C∗-algebra. We refer to [6], section 3.9 for
further detail.

The following two lemmas are well-known facts in operator algebra. The
first one is Lemma 4.1.8 from [6]:

Lemma 4.2. Let (A, τA) and (B, τB) be C∗-algebra with faithful traces, then
τA ⊗ τB extends uniquely to a faithful trace τA ⊗min τB on A⊗min B.

We did not find a reference with an explicit proof for the following
Lemma, so we give our own. To learn more about this second lemma, in
particular, how to weaken the hypothesis, we refer to [26].

Lemma 4.3. Let C be an exact C∗-algebra endowed with a faithful state τC,
let Y N ∈ AN be a sequence of families of non-commutative random variables
in a C∗-algebra AN which converges strongly towards a family Y in a C∗-
algebra A endowed with a faithful state τA. Let S ∈ C be a family of non-
commutative random variables, then the family (S ⊗ 1, 1 ⊗ Y N ) converges
strongly in distribution towards the family (S ⊗ 1, 1⊗ Y ).

Proof. The following sets

M =

{
(xN )N∈N

∣∣∣∣ xN ∈ AN , sup
N≥0

‖xN‖ < ∞
}
,

I =

{
(xN )N∈N ∈ M

∣∣∣∣ lim
N→∞

‖xN‖ = 0

}
,
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are C∗-algebras for the norm ‖x‖ = supN≥0 ‖xN‖. We also define

B = C∗ ((YN )N∈N , I) ,

the C∗-algebra generated by I and the family (YN )N∈N. Since I is a closed
ideal of B, by Theorem 3.1.4 of [24], B/I is a C∗-algebra for the quotient
norm. We naturally have the following exact sequence

0 → I → B → B/I → 0.

And by hypothesis, since C is exact, we have the following exact sequence

0 → C ⊗min I → C ⊗min B → C ⊗min (B/I) → 0.

By definition, this means that (C⊗minB)/(C⊗min I) � C⊗min (B/I). If πI is
the quotient map from B to B/I, the isomorphism between these two spaces
is

ρ : x+ C ⊗min I 
→ idC ⊗min πI(x).

Hence

(47) ρ(P
(
1⊗ (YN )N∈N, S ⊗ 1

)
+ C ⊗min I) = P

(
1⊗ ((YN )N∈N + I), S ⊗ 1

)
.

Let (H,ϕ) be a faithful representation of C, and (HN , ϕN ) a faithful repre-
sentation of AN . The direct sum (

⊕
N∈N HN ,

⊕
N∈N ϕN ) is a faithful rep-

resentation of M and consequently of B too. More precisely, it is defined
by ⊕

N∈N
HN =

{
(xN )N∈N

∣∣∣∣∣ xN ∈ HN ,
∑
N

‖xN‖22 < ∞
}
.

Consequently, by definition of the spatial tensor product, it is the comple-
tion of the algebraic tensor C ⊗ B in the operator space B (H ⊗2 (⊕NHN ))
endowed with the operator norm. This space is isomorphic to ⊕N (H⊗2HN ),
indeed it means that if P is a non-commutative polynomial, then∥∥P (

1⊗ (YN )N∈N, S ⊗ 1
)∥∥

C⊗minB = sup
N≥0

∥∥P (
1⊗ YN , S ⊗ 1

)∥∥
C⊗minAN

.

Consequently by using the definition of the quotient norm, we have∥∥P (
1⊗ (YN )N∈N, S ⊗ 1

)
+ C ⊗min I

∥∥
(C⊗minB)/(C⊗minI)(48)

= limsup
N→∞

∥∥P (
1⊗ YN , S ⊗ 1

)∥∥
C⊗minAN

.
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Since ρ is a C∗-algebra isomorphism, thanks to (47), we have∥∥P (
1⊗ (YN )N∈N, S ⊗ 1

)
+ C ⊗min I

∥∥
(C⊗minB)/(C⊗minI)

=
∥∥P (

1⊗ ((YN )N∈N + I), S ⊗ 1
)∥∥

C⊗min(B/I) .

By definition of I, if P is a non-commutative polynomial, we have

‖P ((YN )N∈N + I)‖B/I = ‖P (Y )‖A .

Without loss of generality, we can assume that A = C∗(Y ). Indeed, there is an
isometric inclusion C ⊗min C∗(Y ) → C ⊗min A, since a faithful representation
of A is automatically also a faithful representation of C∗(Y ). Therefore, the
map

P ((YN )N∈N + I) ∈ C〈(YN )N∈N + I〉 
→ P (Y ) ∈ C〈Y 〉
is well-defined and is an isometry. Thus since C〈(YN )N∈N + I〉 is dense in
B/I and C〈Y 〉 is dense in A, this isometry extends into an isomorphism
between B/I and A. Consequently∥∥P (

1⊗ ((YN )N∈N + I), S ⊗ 1
)∥∥

C⊗min(B/I) =
∥∥P (

1⊗ Y, S ⊗ 1
)∥∥

C⊗minA .

Thus, combined with (48), we have

(49) limsup
N→∞

∥∥P (
1⊗ YN , S ⊗ 1

)∥∥
C⊗minAN

=
∥∥P (

1⊗ Y, S ⊗ 1
)∥∥

C⊗minA .

Finally let f be a function which takes value 0 on (−∞, ‖P (1 ⊗ Y,
S ⊗ 1)‖C⊗minA − ε] and positive value on (‖P (1⊗ Y, S ⊗ 1)‖C⊗minA − ε,∞).
Since the family (S ⊗ 1, 1 ⊗ Y N ) converges clearly in distribution towards
the family (S ⊗ 1, 1⊗ Y ), we have

lim
N→∞

τC ⊗min τAN

(
f(P (1⊗ YN , S ⊗ 1))

)
= τC ⊗min τA

(
f(P (1⊗ Y, S ⊗ 1))

)
.

Thanks to Lemma 4.2, we know that τC ⊗min τA is faithful, consequently

τC ⊗min τA
(
f(P (1⊗ Y, S ⊗ 1))

)
> 0.

This means that for N large enough, τC ⊗min τAN

(
f(P (1⊗YN , S⊗1))

)
> 0,

thus for any ε > 0,

liminf
N→∞

∥∥P (
1⊗ YN , S ⊗ 1

)∥∥
C⊗minAN

≥
∥∥P (

1⊗ Y, S ⊗ 1
)∥∥

C⊗minA − ε.
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This allows to conclude with (49) that

lim
N→∞

∥∥P (
1⊗ YN , S ⊗ 1

)∥∥
C⊗minAN

=
∥∥P (

1⊗ Y, S ⊗ 1
)∥∥

C⊗minA .

In order to prove Theorem 1.2, we use well-known concentration proper-
ties of Gaussian random variable coupled with an estimation of the expec-
tation, let us begin by stating the concentration properties (see [3] Lemma
2.3.3).

Proposition 4.4. Let G be a Lipschitz function on Rn with Lipschitz con-
stant K for the �2- norm ‖γ‖2 = (

∑
i γ

2
i )

1/2, γ = (γ1, . . . , γn) independent
centered Gaussian random variable of variance 1. Then for all δ > 0,

P (G(γ)− E[G(γ)] ≥ δ) ≤ e−
δ2

2K2 .

In our situation, we have p independent GUE matrices (XN,i)s of size
N , hence we fix γ the random vector of size dN2 which consists of the union
of (

√
NXN,i

s,s )i,s, (
√
2N �XN,i

s,r )s<r,i and (
√
2N �XN,i

s,r )s<r,i which are indeed
centered Gaussian random variable of variance 1 as stated in Definition 2.8.
We would like to apply Proposition 4.4 to

GN (γ) =
∥∥∥P ∗P (XN ⊗ IM , ZNM , ZNM ∗

)
∥∥∥ .

However GN is not Lipschitz on RdN2 because of its polynomial behaviour at
infinity. Hence we cannot use directly Proposition 4.4. The following lemma
is a well-known tool for this kind of situation, the proof can be found in [16,
Lemma 5.9].

Lemma 4.5. Let (X, d) be a metric space and μ a probability measure on
(X, d) which satisfies a concentration inequality, i.e. for all f : X → R with
Lipschitz constant |f |L, for all δ > 0,

μ
(
|f − μ(f)| ≥ δ

)
≤ e

−g
(

δ

|f|L

)

for some increasing function g on R+. Let B be a subset of X and |f |BL
be the Lipschitz constant of f as a function from B to R. Let δ(f) =
μ( 1x∈Bc(|f(x)|+ supu∈B |f(u)|+ |f |BLd(x,B)) ), then

μ
(
|f − μ(f)| ≥ δ + δ(f)

)
≤ μ(Bc) + e

−g

(
δ

|f|BL

)
.
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We can now prove the concentration inequality that we will use in the
rest of this paper. To simplify notations, we will write M instead of MN . We
also set ZNM = (ZN ⊗ IM , IN ⊗ Y M ) and Z = (z ⊗ 1, 1⊗ y).

Proposition 4.6. Let P ∈ Pd,p+q, there are some polynomials HP ,KP ∈
R+[X] which only depends on P such that with

∥∥ZNM
∥∥ = sup

1≤i≤q

∥∥ZNM
i

∥∥, for

any N,M ,

P
( ∣∣∣∥∥∥P ∗P (XN ⊗ IM , ZNM , ZNM ∗

)
∥∥∥ − E

[∥∥∥P ∗P (XN ⊗ IM , ZNM , ZNM ∗
)
∥∥∥]∣∣∣

≥ δ +KP

(∥∥ZNM
∥∥)

e−N
)
≤ d e−2N + e

− δ2N

HP (‖ZNM‖) .

Proof. We want to use Lemma 4.5 and Proposition 4.4. The metric space
we will work with is Rn endowed with the Euclidian norm, and we can take
the function g to be g : x 
→ x2/2 by Lemma 4.4. Thus we get that for any
B ⊂ Rn, for any G : Rn 
→ R, if γ = (γ1, . . . , γn) is a vector of independent
centered Gaussian random variables of variance 1, then for all δ > 0,

(50) P (G(γ)− E[G(γ)] ≥ δ + δ(G)) ≤ e
− δ2

2(|G|BL )2 + P(Bc).

If 0 ∈ B as it will be the case later on, we have δ(G) ≤ E[1γ /∈B(|G(γ)| +
supu∈B |G(u)| + |f |BL ‖γ‖2)]. We set BN =

{
∀i,

∥∥XN
i

∥∥ ≤ D
}

where D was
chosen thanks to Proposition 2.11 such that for any N and i,

(51) P
(∥∥XN

i

∥∥ ≥ D
)
≤ e−2N .

Thus we have P(Bc
N ) ≤ d e−2N . With γ the vector of size dN2 which consists

of the union of (
√
NXN,i

s,s )i,s, (
√
2N �XN,i

s,r )s<r,i and (
√
2N �XN,i

s,r )s<r,i, we
set

GN (γ) =
∥∥∥P ∗P (XN ⊗ IM , ZNM , ZNM ∗

)
∥∥∥ .

One can see that on BN we can find a polynomial H ′
P such that for any N

and ZNM ,

|GN (γ)−GN (γ̃)| ≤ H ′
P

(∥∥ZNM
∥∥)∑

i

∥∥∥XN
i − X̃N

i

∥∥∥ ,

where ‖.‖ is the operator norm. Besides

∑
i

∥∥∥XN
i − X̃N

i

∥∥∥ ≤
∑
i

TrN

(
(XN

i − X̃N
i )∗(XN − X̃N

i )
)1/2

≤ 2d√
N

‖γ − γ̃‖2 .
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Thus, on BN , GN has Lipschitz constant 2dH ′
P

(∥∥ZNM
∥∥)

N−1/2. Conse-
quently with (50) and (51), we get that

P (GN (γ)− E[GN (γ)] ≥ δ + δ(GN )) ≤ e
− δ2N

2d+1H′
P (‖ZNM‖)2 + de−2N .

Therefore, we set HP = 2d+1H ′
P , we also have that ‖γ‖22 = N

∑
iTrN ((XN

i )2).
Consequently we have some polynomial K ′

P such that,

δ(G) ≤ E

[
1{∃i,‖XN

i ‖>D}

(
|GN (γ)|+K ′

P (
∥∥ZNM

∥∥)
+ 2dH ′

P

(∥∥ZNM
∥∥)

N1/2

√∑
i

∥∥XN
i

∥∥2

)]

Hence the conclusion thanks to Proposition 2.11 and our choice of D in
equation (51).

We can now prove Theorem 1.2. Firstly, we can assume that ZN and
Y M are deterministic matrices by Fubini’s Theorem. The convergence in
distribution is a well-known theorem, we refer to [3], Theorem 5.4.5. We
set g a C∞ function which takes value 0 on (−∞, 1/2] and value 1 on
[1,∞), and belongs to [0, 1] otherwise. Let us define fε : t 
→ g(ε−1(t −
‖PP ∗(x⊗ 1, Z, Z∗)‖)). By Theorem 1.1, there exists a constant C which
only depends on P , supM

∥∥Y M
∥∥ and supN

∥∥ZN
∥∥ (which is finite thanks to

the strong convergence assumption on ZN ) such that,∣∣∣∣∣E [
TrMN

(
fε

(
PP ∗

(
XN ⊗ IM , ZNM , ZNM ∗)) )]

−MNτN ⊗ trM

(
fε

(
PP ∗

(
x⊗ IM , ZNM , ZNM ∗)) )∣∣∣∣∣ ≤ C(1 + ε−6)

M3

N
.

According to Theorem A.1 from [22], (x, ZN )N≥1 converges strongly in distri-
bution towards (x, z). Besides thanks to Lemma 4.3 and Corollary 17.10 from
[27] stating that the C∗-algebra generated by freely independent semicircu-
lar elements is exact, we have that (x⊗ IM , 1⊗ Y M )M≥1 converges strongly
in distribution towards (x ⊗ 1, 1 ⊗ y). In Theorem 1.2, we are interested in
the situation where ZNM = ZN ⊗ IM or ZNM = IN ⊗ Y M . So, without
loss of generality, we restrict ourselves to this kind of ZNM . We know that
(x⊗IM , ZNM ) converges strongly towards (x⊗1, Z), and therefore for every
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κ > 0, for N,M large enough, the spectrum of PP ∗(x⊗ IM , ZNM , (ZNM )∗)
is contained in (−∞, ‖PP ∗(x⊗ 1, Z, Z∗)‖+ κ]. Then, for ε > κ, we have

τN ⊗ τM

(
fε(PP ∗(x⊗ IM , ZNM , ZNM ∗

))
)
= 0 ,

and therefore thanks to Proposition 2.2, for N large enough,

(52) E
[
TrMN

(
fε

(
PP ∗

(
XN ⊗ IM , ZNM , ZNM ∗)) )]

≤ C(1 + ε−6)
M3

N
.

Hence, using Proposition 2.11, we deduce for N large enough,

E
[∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM ∗

)
∥∥∥]

− ‖PP ∗(x⊗ IM , Z, Z∗)‖

≤ κ+

∫ ∞

κ
P
( ∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM ∗

)
∥∥∥

≥ ‖PP ∗(x⊗ IM , Z, Z∗)‖+ α
)

dα

≤ κ+

∫ K

κ
P

(
TrNM

(
fε(PP ∗(XN ⊗ IM , ZNM , ZNM ∗

))
)
≥ 1

)
dε+ Ce−N

≤ κ+ Cκ
M3

N
.

Finally, since M3/N → 0 as N → ∞, we get that,

limsup
N→∞

E
[∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM ∗

)
∥∥∥]

≤ ‖PP ∗(x⊗ IM , Z, Z∗)‖ .

The reverse inequality holds by the following well-known argument. We
know thanks to Theorem 5.4.5 of [3] that if h is a continuous function tak-
ing positive values on (‖PP ∗(x⊗ 1, Z, Z∗)‖ − ε,∞) and taking value 0 else-
where. Then

1

MN
TrMN (h(PP ∗(XN ⊗ IM , Z, Z∗)))

converges almost surely towards τA ⊗min τB(h(PP ∗(x ⊗ 1, Z, Z∗))). If this
quantity is positive for any h, then for any ε > 0, for N large enough,∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM ∗

)
∥∥∥ ≥ ‖PP ∗(x⊗ 1, Z, Z∗)‖ − ε.

Since h is non-negative and the intersection of the support of h with the spec-
trum of PP ∗(x⊗1, Z, Z∗) is non-empty, we have that h(PP ∗(x⊗1, Z, Z∗)) ≥
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0 and is not 0. Besides, we know that the trace on the space where z is de-
fined is faithful, and so is the trace on the C∗-algebra generated by a single
semicircular variable, hence by Theorem 2.3, so is τA. Thus, since both τA
and τB are faithful, by Lemma 4.2, so is τA⊗minτB and τA⊗minτB(h(PP ∗(x⊗
1, Z, Z∗))) > 0. As a consequence, almost surely,

(53) liminf
N→∞

∥∥∥P (XN ⊗ IM , ZNM , ZNM ∗
)
∥∥∥ ≥ ‖P (x⊗ 1, Z, Z∗)‖ .

Thanks to Fatou’s Lemma, we deduce

liminf
N→∞

E
[∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM ∗

)
∥∥∥]

≥ ‖PP ∗(x⊗ IM , Z, Z∗)‖ .

We conclude that

(54) lim
N→∞

E
[∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM ∗

)
∥∥∥]

= ‖PP ∗(x⊗ IM , Z, Z∗)‖ .

To upgrade the convergence in expectation to almost sure convergence, we
resort to concentration inequalities. For this purpose, let us define the fol-
lowing objects,

εN =
∣∣∣E [∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM ∗

)
∥∥∥]

− ‖PP ∗(x⊗ IM , Z, Z∗)‖
∣∣∣ ,

K = sup
N,M≥0

KP

(∥∥ZNM
∥∥)

+HP

(∥∥ZNM
∥∥)

.

K is finite thanks to the strong convergence of the families ZN and Y M .
Then thanks to Proposition 4.6, we have that for any δ > 0,

P
( ∣∣∣ ∥∥∥P ∗P (XN ⊗ IM , ZNM , ZNM ∗

)
∥∥∥ − ‖PP ∗(x⊗ IM , Z, Z∗)‖

∣∣∣
≥ δ +Ke−N + εN

)
≤ d e−2N + e−

δ2N

K .

Since this is true for any δ > 0, by Borel-Cantelli’s Lemma, almost surely,

lim
N→∞

∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM ∗
)
∥∥∥ = ‖PP ∗(x⊗ 1, Z, Z∗)‖ .

We finally conclude thanks to the fact that for any y in a C∗-algebra, ‖yy∗‖ =

‖y‖2.
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4.4. Proof of Theorem 1.5

In this subsection we have to work with fixed M . Indeed due notably to
Proposition 4.8, we cannot get good estimate with respect to M . This means
in particular that many of the constants in this subsection will depend on
M even if we don’t necessarily say so. The first step is the following estimate
which we use multiple times during the proofs.

Lemma 4.7. Let g be a C∞ function which takes value 0 on (−∞, 1/2],
value 1 on [1,∞), and in [0, 1] otherwise. We set fε : t 
→ g(ε−1(t−α)) with
α =

∥∥PP ∗(x⊗ IM , 1⊗ Y M )
∥∥, then there exists a constant C such that for

any ε > 0 and N ,

E

[
1

MN
TrNM

(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)]
≤ C

max(ε−4, ε−1)

N2
.

Note that this result improves on Theorem 1.1 which would give an upper
bound of order ε−6/N2. This is especially important for equation (4) since it
directly translates into the N1/4, whereas should we work directly with the
estimate of order ε−6/N2, we would only get N1/6.

Proof. To estimate the above expectation we use the same method as in the
proof of Theorem 1.2 and Corollary 1.4 with a few refinements to have an
optimal estimate with respect to ε. We set fκ

ε : t 
→ g(ε−1(t− α))g(ε−1(κ−
t) + 1) with α = ‖PP ∗(x⊗ IM , 1⊗ YM )‖ and κ > α. Since g has compact
support and is sufficiently smooth we can apply Theorem 3.1. Setting h :

t 
→ g(t− ε−1α)g(ε−1κ+ 1− t) = fκ
ε (εt), we have

2π

∫
y4|f̂κ

ε (y)| dy =

∫
y4

∣∣∣∣∫ g(ε−1(t− α))g(ε−1(κ− t) + 1)e−iyt dt

∣∣∣∣ dy

=

∫
y4

∣∣∣∣∫ h(t)e−iyεt εdt

∣∣∣∣ dy

= ε−4

∫
y4

∣∣∣∣∫ h(t)e−iyt dt

∣∣∣∣ dy

≤ ε−4

∫
1

1 + y2
dy

∫
(|h(4)(t)|+ |h(6)(t)|) dt.

The derivatives h(4) and h(6) are uniformly bounded independently of κ or
ε. Indeed, g is uniformly bounded and its derivatives are smooth and with
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compact support, hence uniformly bounded. Since the support of these func-
tions is included in [ε−1α, ε−1α + 1] ∪ [ε−1κ, ε−1κ + 1], there is a universal
constant C such that for any ε and κ,∫

y4|f̂κ
ε (y)| dy ≤ Cε−4.

With similar computations we can find a constant C such that for any ε and
κ,

(55)
∫

(|y|+ y4)|f̂κ
ε (y)| dy ≤ Cmax(ε−4, ε−1).

Since the support of fκ
ε is disjoint from the spectrum of PP ∗(x ⊗ IM , 1 ⊗

Y M ), for any ε and N one have τ ⊗ trM

(
fκ
ε (PP ∗(x⊗ IM , 1⊗ Y M ))

)
= 0.

Consequently, thanks to Theorem 3.1, we have a constant C such that for
any N , ε and κ,

E

[
1

MN
TrNM

(
fκ
ε (PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)]
≤ C

max(ε−4, ε−1)

N2
.

Then by the monotone convergence Theorem, we deduce

E
[
TrNM

(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)]
= lim

κ→∞
E

[
TrNM

(
fκ
ε (PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)]
.

Hence we have a constant C such that for any N and ε > 0,

E

[
1

MN
TrNM

(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)]
≤ C

max(ε−4, ε−1)

N2
.

We finally complete the proof of Theorem 1.5. One can view XN =
(XN

1 , . . . , XN
d ) as the random vector of size dN2 which consists of the union

of (
√
NXN,i

s,s )i,s, (
√
2N �XN,i

s,r )s<r,i and (
√
2N �XN,i

s,r )s<r,i which are indeed
centered Gaussian random variable of variance 1 as stated in Definition 2.8.
Thus we can apply the Poincaré inequality (see Proposition 2.9) to the func-
tion

ϕ : XN 
→ 1

MN
TrMN

(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)
,

and we get
Var

(
ϕ(XN )

)
≤ E[‖∇ϕ(XN )‖22]
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Besides, as in the proof of Lemma 3.6, if Q ∈ Pd,p+q,

N
∥∥∇TrMN

(
Q(XN ⊗ IM , IN ⊗ Y M )

)∥∥2

2

=
∑
s

∑
i,j

TrMN

(
DsQ Ei,j ⊗ IM

)
TrMN

(
DsQ Ei,j ⊗ IM

)∗
.

Besides, if fk is a polynomial with a single variable, then Dsfk(PP ∗) =
∂s(PP ∗)#̃f ′

k(PP ∗). Thus, taking fk such that f ′
k converges towards f ′

ε for
the sup norm on the spectrum of PP ∗(XN ⊗ IM , IN ⊗Y M ), we deduce that

Var
(
ϕ(XN )

)
≤ 1

M2N3

∑
s,i,j

E
[
TrMN

(
∂s(PP ∗)#̃f ′

ε(PP ∗) Ei,j ⊗ IM

)
× TrMN

(
∂s(PP ∗)#̃f ′

ε(PP ∗) Ei,j ⊗ IM

)∗]
.

Now with A = ∂s(PP ∗)#̃f ′
ε(PP ∗),∑

i,j

TrMN

(
A Ei,j ⊗ IM

)
TrMN

(
A Ei,j ⊗ IM

)∗

=
∑
i,j,k,l

g∗j ⊗ e∗kAgi ⊗ ek g∗i ⊗ e∗lA
∗gj ⊗ fl

=
∑
j,k,l

g∗j (IN ⊗ e∗k A IN ⊗ ek IN ⊗ e∗l A∗ IN ⊗ el) gj

= TrN (idN ⊗TrM (A) idN ⊗TrM (A∗))

= TrN (idN ⊗TrM (A) (idN ⊗TrM (A))∗) .

So by contractivity of the conditional expectation over MN (C)⊗ IM , that is
idN ⊗ 1

M TrM , we have∑
i,j

TrMN

(
A Ei,j ⊗ IM

)
TrMN

(
A Ei,j ⊗ IM

)∗
≤ TrMN (AA∗) M.

As a consequence, we find that

Var
(
ϕ(XN )

)
≤ 1

N3M

∑
s

E
[
TrMN

(
∂s(PP ∗)#̃f ′

ε(PP ∗) (∂s(PP ∗)#̃f ′
ε(PP ∗))∗

)]
.
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Besides, if U, V and W are monomials,∣∣TrMN (Uf ′
ε(PP ∗)V f ′

ε(PP ∗)W )
∣∣

≤
√

TrMN (Uf ′
ε
2(PP ∗)U∗) TrMN (V f ′

ε(PP ∗)WW ∗f ′
ε(PP ∗)V ∗)

≤ TrMN (f ′
ε
2
(PP ∗)) ‖U‖ ‖V ‖ ‖W‖ .

Therefore there is a constant C depending only on P and supi
∥∥Y M

i

∥∥ such
that

Var
(
ϕ(XN )

)
≤ C

N2
E

[∏
s

(∥∥XN
s

∥∥2 degP
+ 1

) 1

MN
TrNM(56)

×
(∣∣f ′

ε(PP ∗(XN ⊗ IM , IN ⊗ Y M ))
∣∣2) ]

.

Thanks to Proposition 2.11, we can find w and α such that for any s and
u ≥ 0,

P
(∥∥XN

s

∥∥ ≥ w + u
)
≤ e−αuN .

Since f ′
ε is uniformly bounded by ‖g′‖ ε−1, we can bound the expectation

in the right hand side of (56) separately on ∩s{
∥∥XN

s

∥∥ ≤ L − 1} with L =
w + α−1 + 1 and its complement to find that

Var
(
ϕ(XN )

)(57)

≤ C

N2

(
L2 degPdE

[
1

MN
TrNM

(∣∣f ′
ε(PP ∗(XN ⊗ IM , IN ⊗ Y M ))

∣∣2)]
+

‖g′‖2

ε2
e−N

)
≤ C

N2

(
E

[
1

MN
TrNM

(
(f ′

ε)
2(PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)]
+ ε−2e−N

)
.

for some finite constant C independent of N and ε.
We can now apply Theorem 3.1 to the right hand side of the above

equation, noticing that (55) still holds if we replace fκ
ε by (εf ′

ε)
2. As a con-

sequence, we find an inequality similar the one of Lemma 4.7 and thus a
constant C such that for any N or ε,

Var

(
1

MN
TrNM (fε(PP ∗(XN ⊗ IM , IN ⊗ Y M )))

)
≤ Cε−2 × 1 + ε−4

N4
.
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Therefore, thanks to Lemma 4.7 there exists a constant C such that for any
N ∈ N and ε such that ε4 > CM

N ,

P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ ≥
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥ + ε
)

≤ P

(
1

MN
TrNM

(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)
≥ 1

MN

)
≤ P

( ∣∣∣∣ 1

MN
TrNM (fε(PP ∗))− E

[
1

MN
TrNM (fε(PP ∗))

]∣∣∣∣
≥ 1

MN
− Cmax(ε−4, ε−1)

N2

)
≤ Cε−2 × 1 + ε−4

N4
×

(
1

MN
− Cmax(ε−4, ε−1)

N2

)−2

.

Let us now set s = cN−1/4 with c a constant such that for N large enough,

1

MN
− Cmax(s−4, s−1)

N2
≥ 1

2MN
.

Therefore, if x+ = max(x, 0), we have for some finite constant C,

E
[(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ −
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥)
+

]
=

∫
R+

P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ ≥
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥ + ε
)
dε

≤ s+ 4CM2N−2

∫ ∞

s
ε−6 + ε−2 dε ≤ s+ 4CM2N−2(s−5 + s−1)

≤ CN−1/4.

We deduce that, on one hand, we have, for any κ > 0,

P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ − E
[∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥]
≥ κ

)
= P

(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )
∥∥ −

∥∥PP ∗(x⊗ IM , 1⊗ Y M )
∥∥

≥ E[
∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ −
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥] + κ
)

≥ P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ −
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥ ≥ κ

+ E
[(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ −
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥)
+

] )
≥ P

(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )
∥∥ −

∥∥PP ∗(x⊗ IM , 1⊗ Y M )
∥∥
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≥ κ+ CN−1/4
)

= P

( ∥∥P (XN ⊗ IM , IN ⊗ Y M )
∥∥ −

∥∥P (x⊗ IM , 1⊗ Y M )
∥∥

≥ κ+ CN−1/4

‖P (XN ⊗ IM , IN ⊗ Y M )‖+ ‖P (x⊗ IM , 1⊗ Y M )‖

)

≥ P

(∥∥P (XN ⊗ IM , IN ⊗ Y M )
∥∥ −

∥∥P (x⊗ IM , 1⊗ Y M )
∥∥

≥ κ+ CN−1/4

‖P (x⊗ IM , 1⊗ Y M )‖

)
On the other hand, thanks to Proposition 4.6, we have

P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ − E
[∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥]
≥ δ +KP

(∥∥Y M
∥∥)

e−N
)
≤ e

− δ2

HP (‖Y M‖)
N
+ de−2N .

Hence, taking κ =
∥∥P (x⊗ IM , 1⊗ Y M )

∥∥ (
δ +KP

(∥∥Y M
∥∥)

e−N
)

we find
constants K and C such that for any N ∈ N and δ > 0,

P
(∥∥P (XN ⊗ IM , IN ⊗ Y M )

∥∥ −
∥∥P (x⊗ IM , 1⊗ Y M )

∥∥ ≥ δ + CN−1/4
)

≤ e−Kδ2N + de−2N .

And we get (4) by replacing δ by N−1/4δ.

The other inequality is trickier because we need to study the spectral
measure of PP ∗(x ⊗ IM , 1 ⊗ Y M ), which is far from easy. We mainly rely
on Theorem 1.1 from [29]. We summarize the part of this theorem that is
interesting for us in the proposition below.

Proposition 4.8. Let x = (x1, . . . , xd) be a system of free semicircular
variables, pi,j ∈ C〈X1, . . . , Xd〉 be such that S = (pi,j(x))i,j is self-adjoint
with spectral measure ρ with support K. Then there exists a finite subset
A ⊂ R such that if I is a connected component of R\A, then either ρ|I = 0,
or I ⊂ K. In the second situation there exists an analytic function g defined
for some δ > 0 on

W := {z ∈ C| |�z| < δ} \
⋃
a∈A

{
a− it

∣∣ t ∈ R+
}
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such that for each a ∈ A, there exist N ∈ N and ε > 0 such that (z− a)lg(z)

admits an expansion on W∩{z ∈ C| |z − a| < ε} as a convergent powerseries
in rl(z − a) where rl(z) is the analytic lth-root of z defined with branch
C \ {−it| t ∈ R+}. Then �g|I is the probability density function of ρ|I .

What this means for us is that at the edge of the spectrum of PP ∗(x⊗
IM , 1⊗ Y M ), either we have an atom or the density of the spectral measure
decays like 1

|x−a|r with r ∈ Q when approaching a. Consequently we can find
β ≥ 0 such that if ρ is the spectral measure of PP ∗(x ⊗ IM , 1 ⊗ Y M ) then
for ε > 0 small enough,

ρ
([∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥ − ε,∞
])

≥ εβ.

Consequently if once again g is a C∞ function which takes value 0 on (−∞, 0],
1 on [1/2,∞), and belongs to (0, 1] otherwise. We then take fε : t 
→ g(ε−1(t−∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥ + ε)) for some ε ≥ 0. Then

P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ ≤
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥ − ε
)

= P

(
1

MN
TrNM

(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)
= 0

)
≤ P

( ∣∣∣∣ 1

MN
TrNM (fε(PP ∗))− E

[
1

MN
TrNM (fε(PP ∗))

]∣∣∣∣
≥ E

[
1

MN
TrNM (fε(PP ∗))

] )
≤

Var
(

1
MN TrNM (fε(PP ∗))

)
E

[
1

MN TrNM (fε(PP ∗))
]2 .

Thanks to (57), we have

Var

(
1

MN
TrN (fε(PP ∗))

)
≤ C

N2

(
E

[
1

MN
TrNM

(
(f ′

ε)
2(PP ∗)

)]
+ ε−2e−N

)
≤ C

N2

(∥∥f ′
ε

∥∥2
+ ε−2

)
≤ C ′

N2
ε−2.

On the contrary, with the same kind of computations which gave Lemma
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4.7, thanks to Proposition 4.8, we can find constants C and K such that

E

[
1

MN
TrNM (fε(PP ∗))

]
≥ τ ⊗ trM (fε(PP ∗))− C

max(ε−4, ε−1)

N2

≥ ρ
([∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥ − ε/2,∞
])

− C
max(ε−4, ε−1)

N2

≥ Kmin(1, ε)β − C
max(ε−4, ε−1)

N2
.

Therefore we find finite constants C and K such that

P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ ≤
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥ − ε
)

≤ K

N2ε2

(
min(1, ε)β − C

max(ε−4, ε−1)

N2

)−2

.

Now we fix r = cN−1/(3+β), with c constant such that for any N ,

min(1, r)β − Cmax(r−4, r−1)

N2
≥ min(1, r)β

2
.

Then, we have

E
[(∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥ −
∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥)
+

]
=

∫
R+

P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ ≤
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥ − ε
)
dε

≤ r + 4KN−2

∫ ∞

r
ε−2min(1, ε)−2β dε ≤ r + 4KN−2(r−1−2β + 1)

≤ CN−1/(3+β).

We deduce the following bound

P
( ∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ − E
[∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥]
≤ −δ −KP

(∥∥Y M
∥∥)

e−N
)

≥ P
( ∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ −
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥
≤ −δ −KP (

∥∥Y M
∥∥)e−N − E

[( ∥∥PP ∗(x⊗ IM , 1⊗ Y M )
∥∥
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−
∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ )
+

])
≥ P

( ∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )
∥∥ −

∥∥PP ∗(x⊗ IM , 1⊗ Y M )
∥∥

≤ −δ − CN−1/(3+β)
)
.

Since on the event
{
∀i,

∥∥XN
i

∥∥ ≤ D
}

with D as in (51), we have∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )
∥∥ −

∥∥PP ∗(x⊗ IM , 1⊗ Y M )
∥∥

≤
(∥∥P (XN ⊗ IM , IN ⊗ Y M )

∥∥ −
∥∥P (x⊗ IM , 1⊗ Y M )

∥∥)
×

(
JP (

∥∥Y M
∥∥) + ∥∥P (x⊗ IM , 1⊗ Y M )

∥∥)
,

we deduce that

P
( ∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ − E
[∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥]
≤ −δ −KP

(∥∥Y M
∥∥)

e−N
)

≥ P
( ∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ −
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥
≤ −δ − CN−1/(3+β) and ∀i,

∥∥XN
i

∥∥ ≤ D
)

≥ P

(∥∥P (XN ⊗ IM , IN ⊗ Y M )
∥∥ −

∥∥P (x⊗ IM , 1⊗ Y M )
∥∥

≤ −δ − CN−1/(3+β)

JP (‖Y M‖) + ‖P (x⊗ IM , 1⊗ Y M )‖

)
− P(∃i,

∥∥XN
i

∥∥ ≥ D)

≥ P

(∥∥P (XN ⊗ IM , IN ⊗ Y M )
∥∥ −

∥∥P (x⊗ IM , 1⊗ Y M )
∥∥

≤ −δ − CN−1/(3+β)

JP (‖Y M‖) + ‖P (x⊗ IM , 1⊗ Y M )‖

)
− de−2N .

On the other side, thanks to Proposition 4.6, we have

P
( ∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ − E
[∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥]
≤ −δ −KP

(∥∥Y M
∥∥)

e−N
)
≤ d e−2N + e

− δ2N

HP (‖Y M‖) .

Hence we can find constants K and C such that for any N ∈ N and δ > 0,

P
( ∥∥P (XN ⊗ IM , IN ⊗ Y M )

∥∥ −
∥∥P (x⊗ IM , 1⊗ Y M )

∥∥ ≤ −δ − CN−1/(3+β)
)

≤ e−Kδ2N + 2d e−2N .
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And we get (5) by replacing δ by N−1/(3+β)δ.
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