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On the mod p cohomology for GL2: the
non-semisimple case
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Let F be a totally real field unramified at all places above p and D
be a quaternion algebra which splits at either none, or exactly one,
of the infinite places. Let r : Gal(F/F ) → GL2(Fp) be a contin-
uous irreducible representation which, when restricted to a fixed
place v|p, is non-semisimple and sufficiently generic. Under some
mild assumptions, we prove that the admissible smooth representa-
tions of GL2(Fv) occurring in the corresponding Hecke eigenspaces
of the mod p cohomology of Shimura varieties associated to D
have Gelfand-Kirillov dimension [Fv : Qp]. We also prove that any
such representation can be generated as a GL2(Fv)-representation
by its subspace of invariants under the first principal congruence
subgroup. If moreover [Fv : Qp] = 2, we prove that such repre-
sentations have length 3, confirming a speculation of Breuil and
Paškūnas.
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1. Introduction

Let p be a prime number. The mod p (and also p-adic) Langlands program
has been emerged starting from the fundamental work of Breuil [6]. Up
to present, the (mod p) correspondence in the case of GL2(Qp) has been
well-understood in various aspects, by the works of [6], [22], [29], and [62].
However, the situation is much more complicated if GL2(Qp) is replaced by a
higher dimensional group, and a large part of the theory remains mysterious.
One of the main obstacles is that we don’t have a satisfactory understanding
of supersingular representations of p-adic reductive groups.

The aim of this paper is to study the mod p Langlands correspondence
for GL2 of a finite unramified extension of Qp, in the context of local-global
compatibility following [16]. By the work of Emerton [29], the mod p corre-
spondence for GL2(Qp) can be realized in the mod p cohomology of modular
curves. It is thus natural to search for this hypothetical correspondence for
GL2 in the cohomology of Shimura curves. To explain this we fix the global
setup.

Let F be a totally real extension of Q in which p is unramified. Let D
be a quaternion algebra with center F . We assume that D splits at exactly
one infinite place in the introduction. For U a compact open subgroup of
(D⊗FAF,f )

× letXU be the associated smooth projective Shimura curve over
F , (in the case (F,D) = (Q,GL2), XU is the compactified modular curve).

We fix a place v above p and let f
def
= [Fv : Qp]. Let F be a sufficiently large

finite extension of Fp (served as the coefficient field). Let r : Gal(F/F ) →
GL2(F) be an absolutely irreducible continuous Galois representation. Fixing

Uv a compact open subgroup of (D ⊗F A{v}
F,f )

× and letting Uv run over

compact open subgroups of (D ⊗F Fv)
× ∼= GL2(Fv), we consider the F-

vector space

(1.1) lim−→
Uv

HomGal(F/F )

(
r,H1

ét(XUvUv
×F F ,F)

)
which is an admissible smooth representation of GL2(Fv) over F.

By carefully choosing the “away from v data” as in [9] and [32], we land
in the so-called minimal case, and denote the resulting representation by
πD
v (r) (see [9, Eq. (28)]). As suggested by [16, Conj. 4.7] and [9, Cor. 3.7.4],



On the mod p cohomology for GL2: the non-semisimple case 265

πD
v (r) is expected to realize a mod p Langlands correspondence. A priori,

πD
v (r) might depend on the various global choices but, conjecturally, πD

v (r)

depends only on ρ
def
= r∨|Gal(F v/Fv)

, the restriction of r∨ to Gal(F v/Fv). For
this reason, in the following we write

π(ρ)
def
= πD

v (r).

There have been a lot of works studying the representation-theoretic
properties of π(ρ), see [16], [36], [37], [8], [9], [32], [44], [47], [53], [52], [25],
etc. These works often have the common aim to determine certain invariants
attached to the restriction of π(ρ) to K

def
= GL2(OFv

), like the socle, the

subspace of invariants under the first principal subgroupK1
def
= 1+pM2(OFv

)
or the pro-p Iwahori subgroup I1, and also some local-global compatibility
related to these subspaces. For example, it is known that (under various
mild assumptions)

(i) socK π(ρ) ∼= ⊕σ∈D(ρ)σ, where D(ρ) is an explicit set of Serre weights
(i.e. irreducible F-representations of K) associated to ρ in [15, §9], see
[37], [32];

(ii) π(ρ)K1 ∼= D0(ρ), where D0(ρ) is a representation of GL2(Fpf ) con-
structed in [15, §13], see [47], [53], [52].

Nonetheless, when Fv �= Qp, a complete description of π(ρ) still seems to be
out of reach.

From now on, we make the following assumptions on r:

(a) r|Gal(F/F ( p
√
1)) is absolutely irreducible, and modular (i.e. π(ρ) is

nonzero);
(b) for w � p such that either D or r ramifies, the framed deformation ring

of r|Gal(Fw/Fw) over the ring of Witt vectors W (F) is formally smooth;

(c) for w|p, w �= v, r|IFw
is generic in the sense of [15, Def. 11.7], where

IFw
is the inertia subgroup at w;

(d) ρ is reducible nonsplit and, when restricted to IFv
, is of the following

form up to twist: (
ω
∑f−1

i=0 pi(ri+1)
f ∗

0 1

)
where ωf denotes Serre’s fundamental character of IFv

of level f . We
assume ρ is strongly generic in the sense that 2 ≤ ri ≤ p− 5 for each
i. In particular, this implies p ≥ 7.
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The following is our first main result.

Theorem 1.1 (Theorem 8.15). Keep the above assumptions on F , D and
r. We have

dimGL2(Fv)(π(ρ)) = f.

Here, dimGL2(Fv)(π(ρ)) denotes the Gelfand-Kirillov dimension of π(ρ)
which, roughly speaking, measures the “size” of π(ρ), see §A.1. The impor-
tance of controlling the Gelfand-Kirillov dimension of π(ρ) was first pointed
out in [38]. Namely, Theorem 1.1 implies that the patched modules con-
structed in [18], commonly denoted by M∞, are flat over the corresponding
patched deformation rings R∞, which are power series rings over W (F) by
(b). Consequently, as explained in [18, §1.1], this allows to define a candi-
date for the p-adic Langlands correspondence, see Theorem 1.5 below for a
precise statement.

The patched modules also play an important role in the proof of The-
orem 1.1. Using them, it is proved in [38, Appendix A] that we always
have dimGL2(Fv)(π(ρ)) ≥ f . Hence, it is enough to prove the upper bound
dimGL2(Fv)(π(ρ)) ≤ f , whose proof relies on the following key criterion
proved in [12]. To state it we introduce some more notation. Let I be the (up-
per triangular) Iwahori subgroup ofK and Z1 the center ofK1. Let F[[K1/Z1]]
(resp. F[[I1/Z1]]) denote the Iwasawa algebra of K1/Z1 (resp. I1/Z1) with

maximal ideal mK1/Z1
(resp. mI1/Z1

). Also let Γ̃
def
= F[[K/Z1]]/m

2
K1/Z1

and

Γ
def
= F[GL2(Fpf )] ∼= F[[K/Z1]]/mK1/Z1

.

Theorem 1.2. ([12, Cor. 5.3.5]) Let π be an admissible smooth represen-
tation of GL2(Fv) over F with a central character. Assume that we have an
equality of multiplicities[

π[m3
I1/Z1

] : χ
]
=
[
π[mI1/Z1

] : χ
]

for each character χ such that
[
π[mI1/Z1

] : χ
]
�= 0. Then dimGL2(Fv)(π) ≤ f .

Using the above criterion, proving Theorem 1.1 is reduced to proving the
following multiplicity one property of π(ρ) (recall that we are considering
the minimal case).

Theorem 1.3 (Corollary 8.12). (i) For any σ∈D(ρ), we have
[
π(ρ)[m2

K1/Z1
] :

σ
]
= 1.
(ii) For any χ : I → F× such that

[
π(ρ)[mI1/Z1

] : χ
]
�= 0, we have[

π(ρ)[m3
I1/Z1

] : χ
]
= 1.
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It is clear that, to apply Theorem 1.2, we only need to study the subspace
π(ρ)[m3

I1/Z1
]. However, the information we could gain from ρ using p-adic

Hodge theory, like the structure of certain Galois deformation rings of ρ,
is about the restriction of π(ρ) to K. In §4, we study the relation between
π(ρ)[m2

K1/Z1
] and π(ρ)[m3

I1/Z1
], and prove a key result, Theorem 4.21, which

reduces the proof of Theorem 1.3 to proving (i) for one single Serre weight
σ0. Namely, Theorem 1.3 will follow if we can prove

(1.2) ∃ σ0 ∈ D(ρ) such that
[
π(ρ)[m2

K1/Z1
] : σ0

]
= 1.

There is a distinguished element in D(ρ), namely the Serre weight σ0
def
=

(r0, · · · , rf−1) (see §2 for the notation), which we call the ordinary one. We
are thus left to verify (1.2) for this σ0, equivalently

dimFHomK(ProjΓ̃ σ0, π(ρ)) = 1,

where ProjΓ̃ σ0 denotes a projective envelope of σ0 in the category of Γ̃-
modules.

The common strategy to prove such a statement is provided by the
Taylor-Wiles patching method, initially due to Emerton, Gee and Savitt
([32]) and later on generalized in [47], [53], [52]. A patched module M∞
(in [18] or [25]) carries simultaneously a continuous action of GL2(Fv) com-
muting with the action of R∞, and is projective when viewed as a pseudo-

compact F[[K/Z1]]-module. By setting M∞(−)
def
= Homcont

K (M∞,−∨)∨ where
(−)∨ denotes Pontryagin dual, we obtain an exact covariant functor from
the category of continuous representations of K on finitely generated W (F)-
modules to the category of finitely generated R∞-modules. By construction,
we have an isomorphism of F[GL2(Fv)]-modules M∞/mR∞

∼= π(ρ)∨, which
implies an isomorphism

M∞(ProjΓ̃ σ0)/mR∞
∼= HomK(ProjΓ̃ σ0, π(ρ))

∨.

Therefore, proving (1.2) is equivalent to proving that M∞(ProjΓ̃ σ0) is cyclic
over R∞. Finally, we prove this cyclicity by combining the result of [52] on
the cyclicity of M∞(ProjΓ σ0) and the semisimplicity of the ordinary part of
π(ρ) (a result of [44] in the indefinite case and of [10] in the definite case).

A general construction in [15, §13] shows that there exists a largest
subrepresentation D̃0(ρ) of

⊕
σ∈D(ρ) InjΓ̃ σ such that [D̃0(ρ) : σ] = 1 for any

σ ∈ D(ρ). Here InjΓ̃ σ denotes an injective envelope of σ in the category

of Γ̃-modules. In Theorem 4.6, we prove that D̃0(ρ) is multiplicity free.
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Combining this result with Theorem 1.3, we obtain the following description

of π(ρ)[m2
K1/Z1

].

Theorem 1.4 (Corollary 8.13). There is an isomorphism π(ρ)[m2
K1/Z1

] ∼=
D̃0(ρ). In particular, π(ρ)[m2

K1/Z1
] is multiplicity free.

We state the following application of Theorem 1.1 mentioned above,

which might be thought of as a candidate for the p-adic Langlands cor-

respondence in this setting (cf. [18, §1.1]). Let E′ be a finite extension of

W (F)[1/p] with ring of integers O′ and residue field F′.

Theorem 1.5 (Corollary 8.17). Let x : R∞ → O′ be a local morphism of

W (F)-algebras. Set

Π(x)0
def
= Homcont

O′ (M∞ ⊗R∞,x O′,O′)

and Π(x)
def
= Π(x)0 ⊗O′ E′. Then Π(x) is a nonzero admissible unitary Ba-

nach representation of G over E′ with G-invariant unit ball Π(x)0 which

lifts π(ρ)⊗F F′.

In a companion paper [12], an analog of Theorem 1.1, and consequently

analogs of Theorem 1.4 and Theorem 1.5, are proved in the case ρ is semisim-

ple and sufficiently generic (but with slightly stronger genericity assumptions

than ours). The proofs in both the semisimple and non-semisimple cases fol-

low the same strategy, by first proving Theorem 1.3 and then applying the

criterion of Theorem 1.2. However, the corresponding proofs of Theorem 1.3

are very different. In [12], (the analog of) Theorem 1.3 is proved by compli-

cated computations of potentially crystalline deformation rings, along the

line in previous works of [32] and [52]. Our proof of Theorem 1.3 relies more

on combinatorial properties of representations of Γ̃ together with a little

computation based on [52]. Namely, we use Theorem 4.21 to reduce the

computation to a minimal level. Another bonus of this treatment is that we

require weaker genericity assumptions on ρ. However, we should point out

that our method only applies to the non-semisimple case, while the method

of [12] should apply in all cases once the corresponding Galois deformation

rings are worked out.

Next, we turn to the subtler question of determining the structure of

π(ρ) as a representation of GL2(Fv). The conjectural shape of π(ρ) was for-

mulated in the fundamental work of Breuil–Paškūnas [15] (by local means),
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as follows.1 Under the genericity condition in the sense of [15, Def. 11.7],
which is weaker than our genericity in (d), π(ρ) should have length f + 1,
with a unique Jordan–Hölder filtration of the form:

π0 — π1 — · · · — πf−1 — πf ,

where π0 and πf are (irreducible) principal series explicitly determined by
ρ, and πi are supersingular representations for 1 ≤ i ≤ f − 1.

As an application of Theorem 1.3 and the flatness of M∞ over R∞, we
first prove the following.

Theorem 1.6 (Theorem 10.26). π(ρ) is generated by D0(ρ) as a GL2(Fv)-
representation.

Let us sketch the proof of Theorem 1.6 which is somewhat lengthy. Recall
that R∞ is formally smooth over W (F) by our assumption (b) and M∞ is
flat over R∞ satisfying M∞/mR∞

∼= π(ρ)∨. By choosing a regular system of
parameters of R∞, we obtain a Koszul type resolution of π(ρ)∨ by projective
F[[K/Z1]]-modules. However, this resolution is not minimal and M∞ is not
even finitely generated over F[[K/Z1]]. For this reason we further do a base
change from R∞ to a suitable quotient, denoted by Rv in the context. The
resulting Koszul type resolution of π(ρ)∨, denoted by P•, is minimal when
viewed as a complex of F[[K/Z1]]-modules, and partially minimal if further
restricted to F[[I/Z1]] (but we ignore this issue in the introduction).

A consequence of the above resolution is that π(ρ)∨ is essentially self-
dual (see Definition A.7 for this notion). This implies the crucial fact that
the GL2(Fv)-cosocle of π(ρ) is isomorphic to πf , because the socle of π(ρ) is
isomorphic to π0 (this follows from the description of socK π(ρ) and a certain
mod p local-global compatibility). It follows that an I-subrepresentation
W of π(ρ) generates π(ρ) as a GL2(Fv)-representation if and only if the
composite morphism W ↪→ π(ρ) � πf is nonzero, for which it suffices to
find some character χ of I and some i ≥ 0 such that the composite morphism

ExtiI/Z1
(χ,W ) → ExtiI/Z1

(χ, π(ρ)) → ExtiI/Z1
(χ, πf )

is nonzero. Using the resolution P• we can determine the derived ordinary
parts of π(ρ) and show that the quotient π(ρ) � πf induces an isomorphism

Ext2fI/Z1
(χs

0, π(ρ))
∼−→ Ext2fI/Z1

(χs
0, πf ),

1Strictly speaking, the authors of [15] did not state it as a conjecture, and the
family of admissible smooth representations of GL2(Fv) constructed there is much
richer than the one considered in this paper. However, the philosophy is clearly due
to them, see the discussion on page 107 of loc. cit..
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where χs
0 denotes the character of I acting on the space of coinvariants

(σ0)I1 . Hence, π(ρ) can be generated by any I-subrepresentation W such
that the natural morphism

Ext2fI/Z1
(χs

0,W ) → Ext2fI/Z1
(χs

0, π(ρ))

is surjective (or even nonzero).
However, it is in general hard to calculate ExtiI/Z1

for higher degrees; for
example, we don’t know how to write down an injective resolution of W if we
take W = D0(ρ)|I . To solve this issue, we define a certain finite dimensional
I-subrepresentation of π(ρ) denoted by τ(ρ), in an artificial way, of which a
minimal injective resolution can be easily written down. By definition τ(ρ)
is a tensor product of suitable I-representations τ(ρ)κ along all embeddings
κ : Fpf ↪→ F. The construction of τ(ρ)κ is motivated by the case f = 1, see
Example 10.24. For example, if f = 1 and ρ is reducible nonsplit, then τ(ρ)
is the largest subrepresentation of (InjI/Z1

χs
0)[m

3
I1/Z1

] in which χs
0 occurs

with multiplicity one. The advantage to define τ(ρ) in such a way is that we
may explicitly construct a minimal projective resolution of grmI1/Z1

(τ(ρ)∨),
say G•, as a tensor product of resolutions along each embedding; this uses
the fact that the graded algebra of F[[I1/Z1]] with respect to the mI1/Z1

-adic
filtration is isomorphic to the tensor product of the corresponding graded
algebra in the case of GL2(Qp). While it is direct to lift G• to a filt-projective
resolution Q• of τ(ρ)∨, Q• need not be minimal in general. Fortunately, in
our case any lift Q• is automatically minimal. This allows us to calculate
ExtiI/Z1

(τ(ρ)∨, (χs
0)

∨) for any i.

Now, the projectivity of P• allows to lift the quotient morphism π(ρ)∨ �
τ(ρ)∨ to a morphism of complexes P• → Q•. Here comes another complica-
tion: although numerically we have

dimF Ext
i
I/Z1

(π(ρ)∨, (χs
0)

∨) = dimF Ext
i
I/Z1

(τ(ρ)∨, (χs
0)

∨),

it is not at all obvious that the natural morphism

βi : Ext
i
I/Z1

(τ(ρ)∨, (χs
0)

∨) → ExtiI/Z1
(π(ρ)∨, (χs

0)
∨)

is surjective, or even nonzero! To solve this, we use crucially the fact that
P• is a Koszul complex, motivated by an old theorem of Serre [67]. Roughly
speaking, since P• is a Koszul complex, to prove βi is surjective, it suffices
to prove β1 is surjective which itself is a consequence of Theorem 1.3(ii) and
the construction of τ(ρ). In all we obtain that π(ρ) is generated by τ(ρ) as
a GL2(Fv)-representation and Theorem 1.6 follows easily.
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Combining Theorem 1.6 with the explicit structure of D0(ρ) ([52]), and
also the main result of [44], we finally arrive at the following result, confirm-
ing the aforementioned speculation in [15] in the case f = 2, and provides
strong evidence for the general case.

Theorem 1.7 (Theorem 10.37). Assume f = 2. Then π(ρ) is uniserial of
length 3, with a unique Jordan–Hölder filtration of the form

π0 — π1 — π2

where π0, π2 are principal series and π1 is a supersingular representation.

Although limited to the case of GL2(Qp2), Theorem 1.7 provides the first
nontrivial result, beyond the case of GL2(Qp) and some related groups like
SL2(Qp), showing that admissible smooth representations corresponding to
Hecke eigenspaces of the mod p cohomology of Shimura varieties can have
finite length.2

We now give a brief overview of the contents of each section. From §2
to §4, we study modular representation theory of Γ, of Γ̃ and also of I. The
main result is Theorem 4.21. In §5, we recall Emerton’s functor of ordinary
parts and prove Proposition 5.16 which reinterprets the semisimplicity of
the ordinary part of π(ρ) in terms of the restriction of π(ρ) to K. In §6, we
study two classes of quotients of the universal deformation ring of ρ: one is
the reducible deformation ring and the other is the multi-type potentially
Barsotti-Tate deformation rings studied in [52]. In §7, we recall P -ordinary
automorphic forms and its relation to reducible deformation rings. In §8,
we combine all the previous results to prove our (first) main result Theorem
8.15. §9 and §10 are devoted to the proof of our second main results, Theorem
10.26 and Theorem 10.37: §9 contains some preliminary results and the
proofs of the theorems are presented in §10. In Appendix §A, we collect some
useful definitions and results in the theory of non-commutative Iwasawa
algebra.

1.1. Notation

If F is a field, let GF
def
= Gal(F/F ) denote its absolute Galois group. Let ε

denote the p-adic cyclotomic character of GF , and ω the mod p cyclotomic
character.

2Recently, similar finiteness results are proved for semisimple ρ in [13].
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If F is a number field and v is a place of F , let Fv denote the completion
of F at v. If v is a finite place of F , let OFv

denote the ring of integers
of Fv with uniformiser v and residue field kFv

. The cardinality of kFv
is

denoted by qv. We fix an embedding F ↪→ F v so that GFv
identifies with

the decomposition group of F at v, and write IFv
for the inertia subgroup

of GFv
. Let Frobv ∈ GFv

denote a (lift of the) geometric Frobenius element,
and let ArtFv

denote the local Artin reciprocity map, normalized so that it
sends v to Frobv. The global Artin map is compatible with the local Artin
maps and is denoted by ArtF .

We fix a prime number p. Let E/Qp be a finite extension in Qp, with ring

of integers O and residue field F
def
= O/() where  is a fixed uniformizer.

We will often assume without further comment that E and F are sufficiently
large; they will serve as coefficient fields. Let Art(O) denote the category of
local artinian O-algebras with residue field F.

If F is a number field and v is a place of F above p, an inertial type for
Fv is a two-dimensional E-representation τv of the inertia group IFv

with
open kernel, which can be extended to GFv

. Under Henniart’s inertial local
Langlands correspondence [14, Appendice A], a non-scalar tame inertial
type τ corresponds to an irreducible E-representation σ(τ) of GL2(OFv

)
that arises by inflation from an irreducible E-representation of GL2(kFv

)
which is either a principal series or a cuspidal representation. Such σ(τ) is
called a tame type.

If F is a p-adic field, V is a de Rham representation of GF over E,
and κ : F ↪→ E, then we will write HTκ(V ) for the multiset of Hodge-Tate
weights of V with respect to κ. By definition, HTκ(V ) consists of −i with

multiplicity dimE(V ⊗κ,F F̂ (i))GF , e.g. HTκ(ε) = {1} at all embedding κ.
Throughout this paper we fix L a finite unramified extension of Qp

of degree f
def
= [L : Qp]. Denote by OL the ring of integers in L and Fq

the residual field of OL where q
def
= pf . For λ ∈ Fq, [λ] ∈ OL denotes its

Teichmüller lift.
If G is a p-adic analytic group, we denote by RepF(G) (resp. RepladmF (G),

resp. RepadmF (G)) the category of smooth (resp. locally admissible, resp.
admissible) representations of G on F-vector spaces. If ζ : Z(G) → F× is a
continuous character of the center of G then we add a subscript ζ to indicate
that we consider only those representations on which the center Z(G) acts
via ζ. For example, RepF,ζ(G) is the full subcategory of RepF(G) consisting
of smooth representations on which Z(G) acts by the character ζ.

If M is a linear-topological O-module (i.e. it has a topology for which
both addition and the action of O are continuous), then M has a fundamen-
tal system of open neighborhoods of zero which are O-submodules. We write
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M∨ for its Pontryagin dual Homcont
O (M,E/O), where E/O is equipped with

the discrete topology, and we give M∨ the compact open topology. The Pon-
tryagin duality functor M �→ M∨ induces an anti-equivalence of categories
between the category of discrete O-modules and the category of pseudo-
compact O-modules.

If M is a torsion free linear-topological O-module, Md denotes its
Schikhof dual Homcont

O (M,O). The Schikhof duality functor M �→ Md in-
duces an anti-equivalence of categories between the category of pseudo-
compact torsion free O-modules and the category of -adically complete
and separated torsion free O-modules.

If R is a ring (e.g. R = F[G] for a group G) and M is a left R-module,
we denote by socR(M) (resp. cosocR(M)) the socle (resp. cosocle) of M (see
Definition A.3). Inductively we define the socle (resp. cosocle) filtration of
M . If M is of finite length, we denote by JH(M) the multi-set of composition
factors (also called Jordan–Hölder factors) of M . If σ is a simple R-module,
we let [M : σ] denote the multiplicity of σ in JH(M).

Throughout the paper, we assume p > 2.

2. Finite representation theory I

In this section, we study smooth representation theory of GL2(OL).
First introduce some notation. Recall that L is a (fixed) finite unramified

extension of Qp of degree f . Let

K
def
= GL2(OL)

and K1 be the first principal congruence subgroup, i.e. the kernel of the
mod p reduction morphism K � GL2(Fq). Let Z be the center of G and
Z1 = Z ∩K1. Let mK1

= mK1/Z1
denote the maximal ideal of the Iwasawa

algebra F[[K1/Z1]], which carries a conjugate action of K. Denote

Γ
def
= F[GL2(Fq)] ∼= F[[K/Z1]]/mK1

, Γ̃
def
= F[[K/Z1]]/m

2
K1

.

Note that Γ̃ is a finite dimensional F-algebra but not a group algebra. Let
I ⊂ K denote the (upper) Iwahori subgroup, I1 ⊂ I the pro-p-Iwahori
subgroup and

H
def
=
{([λ] 0

0 [μ]

)
, λ, μ ∈ F×

q

}
.

We have I = H � I1.
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We call a Serre weight an isomorphism class of irreducible representa-
tions of Γ over Fp. We take F large enough and fix an embedding Fq ↪→ F,
so that any Serre weight is defined over F. Then a Serre weight is (up to
isomorphism) of the form ([5, Prop. 1])

Symr0F2 ⊗F (Sym
r1F2)Fr ⊗F · · · ⊗F (Sym

rf−1F2)Fr
f−1 ⊗F η ◦ det

where 0 ≤ ri ≤ p − 1, η is a character of F×
q and Fr :

(
a b
c d

)
�→
(
ap bp
cp dp

)
is the Frobenius on Γ. Following [15], we denote this representation by
(r0, · · · , rf−1)⊗ η.

For n ≥ 0, we say a Serre weight (r0, · · · , rf−1)⊗ η is n-generic, if

n ≤ ri ≤ p− 2− n, ∀0 ≤ i ≤ f − 1.

Note that the existence of an n-generic Serre weight implies implicitly p ≥
2n+ 2.

If σ is a Serre weight, let ProjΓ σ (resp. ProjΓ̃ σ) be a projective en-

velope of σ in the category of Γ-representations (resp. Γ̃-representations),
and InjΓ σ (resp. InjΓ̃ σ) be an injective envelope of σ in the category of

Γ-representations (resp. Γ̃-representations). Note that ProjΓ σ is isomorphic
to InjΓ σ, but ProjΓ̃ σ is not isomorphic to InjΓ̃ σ. However, we have the
following fact: if ζ denotes the central character of σ then

(2.1) (InjΓ̃ σ)
∨ ∼= ProjΓ̃ σ

∨ ∼= (ProjΓ̃ σ)⊗ ζ−1 ◦ det

where the second isomorphism holds as σ∨ ∼= σ ⊗ ζ−1 ◦ det.
If λ = (λi(xi))0≤i≤f−1 is an f -tuple with λi(xi) ∈ Z ± xi, we define

(following [15, §2])

e(λ)
def
=

1

2

( f−1∑
i=0

pi(xi − λi(xi))
)

if λf−1(xf−1) ∈ Z+ xf−1

e(λ)
def
=

1

2

(
pf − 1 +

f−1∑
i=0

pi(xi − λi(xi))
)

otherwise.

One checks that e(λ) ∈ Z ⊕ (⊕f−1
i=0 Zxi), see [15, Lem. 2.1]. If σ = (r0, · · · ,

rf−1)⊗ η is a Serre weight, we define

(2.2) λ(σ) := (λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)η
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provided that 0 ≤ λi(ri) ≤ p − 1 for all i, in which case we call λ(σ) the
evaluation of λ at σ; otherwise we leave λ(σ) undefined.

The following lemma is an exercise left in the proof of [15, Lem. 12.8].

Lemma 2.1. Let σ = (r0, · · · , rf−1) ⊗ η. Let λ, λ′ be two f -tuples with
λi(xi), λ

′
i(xi) ∈ Z± xi and such that

0 ≤ λi(ri), λ
′
i(ri) ≤ p− 1, ∀0 ≤ i ≤ f − 1.

Assume that λ, λ′ satisfy the following condition:

(2.3) λi(xi) = λ′
i(xi) =⇒ λi−1(xi−1)− λ′

i−1(xi−1) ∈ Z, ∀0 ≤ i ≤ f − 1.

Then λ(σ) ∼= λ′(σ) as Serre weights if and only if λ = λ′ as f -tuples.

Proof. The sufficiency is trivial. To prove the necessity, assume λ(σ) ∼= λ′(σ).
This is equivalent to

(2.4) λi(ri) = λ′
i(ri), ∀0 ≤ i ≤ f − 1

and

(2.5) e(λ)(r0, · · · , rf−1) ≡ e(λ′)(r0, · · · , rf−1) (mod pf − 1).

If λf−1(xf−1) − λ′
f−1(xf−1) ∈ Z, equivalently, either both λf−1(xf−1)

and λ′
f−1(xf−1) lie in Z+ xf−1 or both in Z− xf−1, then (2.4) implies the

equality λf−1(xf−1) = λ′
f−1(xf−1). Hence, the assumption (2.3) allows one

to show inductively that λi(xi) = λ′
i(xi) for all 0 ≤ i ≤ f − 1.

If λf−1(xf−1) − λ′
f−1(xf−1) /∈ Z, equivalently, one of λf−1(xf−1) and

λ′
f−1(xf−1) lies in Z+xf−1 and the other lies in Z−xf−1, then by definition

of e(λ) and (2.4) we have

e(λ)(r0, · · · , rf−1)− e(λ′)(r0, · · · , rf−1) = ±1

2
(pf − 1),

a contradiction to (2.5). This finishes the proof.

Given a Serre weight σ, it is well-known that σI1 is one-dimensional over
F, and we denote by χσ the character of H, also of I, acting on σI1 . Given

a character χ : H → F×, denote by χs the character χs(h)
def
= χ(shs) for

s =
(
0 1
1 0

)
and h ∈ H. If χ �= χs, then there exists a unique Serre weight

denoted by σχ such that H acts on σI1
χ via χ.

For convenience, we often write S for the set Z/fZ, identified with
{0, · · · , f − 1}.
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2.1. The structure of InjΓ σ

Let σ be a Serre weight. The structure of InjΓ σ is studied in detail in [15,
§3-§4] and generalized in [32, §5]. We first recall the following useful result.

Proposition 2.2. Let τ be a Jordan–Hölder factor of InjΓ σ. Among those
subrepresentations of InjΓ σ whose cosocle is isomorphic to τ , there is a
unique one, denoted by I(σ, τ), such that σ occurs with multiplicity 1. More-
over, I(σ, τ) is multiplicity free.

Proof. This is [15, Cor. 3.12] if σ is 0-generic, and is [32, Lem. 5.1.9] in
general.

Corollary 2.3. Let V be a subrepresentation of (InjΓ σ)
⊕s for some s ≥ 1.

Then for any Serre weight τ , we have [V : σ] ≥ [V : τ ]. If, moreover,
cosocΓ(V ) is isomorphic to τ⊕r for some r ≥ 1, then [V : σ] = [V : τ ].

Proof. Using that socΓ(V ) has the form σ⊕s′ for some s′ ≤ s, we can con-
struct a finite filtration of V such that each graded piece has socle isomorphic
to σ and σ occurs only once there. Hence we are reduced to the situation in
which socΓ(V ) = σ and [V : σ] = 1, and the result follows from Proposition
2.2. The second assertion is clear by duality using (2.1).

Following [15, §3], the Jordan–Hölder factors of InjΓ σ can be described
as follows. Let x0, . . . , xf−1 be variables, and define the set I(x0, · · · , xf−1)

of f -tuples λ
def
= (λ0(x0), · · · , λf−1(xf−1)), where λ0(x0) ∈ {x0, p−2−x0±1}

if f = 1, and if f > 1 then

(i) λi(xi) ∈ {xi, xi ± 1, p− 2− xi, p− 2− xi ± 1} for i ∈ S
(ii) if λi(xi) ∈ {xi, xi ± 1}, then λi+1(xi+1) ∈ {xi+1, p− 2− xi+1}
(iii) if λi(xi) ∈ {p− 2−xi, p− 2−xi± 1}, then λi+1(xi+1) ∈ {xi+1± 1, p−

2− xi+1 ± 1}

with the convention xf
def
= x0 and λf (xf )

def
= λ0(x0). By [15, Lem. 3.2],

each Jordan–Hölder factor of InjΓ σ is isomorphic to λ(σ) (see (2.2)) for a
uniquely determined λ ∈ I(x0, · · · , xf−1). If σ is 1-generic, then λ(σ) is a
genuine Serre weight for any λ ∈ I(x0, · · · , xf−1).

For λ ∈ I(x0, · · · , xf−1), set

S(λ) def
=
{
i ∈ S : λi(xi) ∈ {xi ± 1, p− 2− xi ± 1}

}
.

By abuse of notation, we also write S(τ) = S(λ) if τ = λ(σ).
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Recall from [15, Def. 4.10] that, given λ, λ′ ∈ I(x0, · · · , xf−1), we say
that λ and λ′ are compatible if, whenever λi(xi), λ

′
i(xi) ∈ {xi ± 1, p − 2 −

xi−±1}, the signs of the ±1 are the same in λi(xi) and λ′
i(xi). Note that, if

S(λ)∩S(λ′) = ∅, then λ and λ′ are always compatible. The following result
determines the structure of I(σ, τ), see [15, Cor. 4.11] and [32, §5].

Proposition 2.4. Let τ, τ ′ ∈ JH(InjΓ σ) which correspond to λ, λ′ ∈ I(x0,
· · · , xf−1), respectively. Then τ ′ occurs in I(σ, τ) as a subquotient if and
only if λ′ ≤ λ, meaning that S(λ′) ⊆ S(λ) and λ, λ′ are compatible.

The notion of compatibility can be defined for more general f -tuples ν =
(νi(xi))i with νi(xi) ∈ Z±xi in an obvious way: given ν, ν ′ and i ∈ S, we say ν
and ν ′ are compatible at i if, whenever νi(xi), ν

′
i(xi) ∈ {xi±1, p−2−xi−±1},

the signs of the ±1 are the same. We say ν and ν ′ are compatible if they are
compatible at all i ∈ S. Also set

S(ν) def
=
{
i ∈ S : νi(xi) ∈ {xi ± 1, p− 2− xi ± 1}

}
.

We say ν ≤ ν ′ if S(ν) ⊆ S(ν ′) and ν, ν ′ are compatible. Note that if ν1, ν2 ≤
ν ′ for some common ν ′, then ν1 and ν2 are automatically compatible.

We establish some combinatorial lemmas on I(x0, · · · , xf−1) which will
be used in §4.

Lemma 2.5. Let λ, λ′ ∈ I(x0, · · · , xf−1). Let S ′′ be a subset of S(λ)∩S(λ′)
such that λ and λ′ are compatible at any i ∈ S ′′. Then there exists a unique
λ′′ ∈ I(x0, · · · , xf−1) with S(λ′′) = S ′′ and such that λ′′ is compatible with
both λ and λ′.

Proof. This is a direct check; a similar check can be found in [47, Lem. 2.19].
Note that, in the special case S ′′ = S(λ)∩S(λ′), i.e. λ and λ′ are compatible,
λ′′ is given by the intersection λ∩λ′, see [15, Lem. 12.5] and the construction
before it.

Lemma 2.6. Let λ, λ′ be f -tuples with

λi(xi), λ
′
i(xi) ∈

{
xi, xi ± 1, p− 2− xi, p− 2− xi ± 1

}
, ∀i ∈ S.

(i) λ ◦ λ′ is compatible with λ′ and S(λ ◦ λ′) = S(λ)ΔS(λ′).
(ii) If i /∈ S(λ) ∩ S(λ′), then

(λ ◦ λ′)i(xi) ∈ {xi, xi ± 1, p− 2− xi, p− 2− xi ± 1}.

Proof. This is a direct check using the following table.
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λi(λ
′
i(xi)) λ′

i(xi) = xi xi − 1 xi + 1 p− 2− xi p− 1− xi p− 3− xi

λi(xi) = xi xi xi − 1 xi + 1 p− 2− xi p− 1− xi p− 3− xi

xi − 1 xi − 1 xi − 2 xi p− 3− xi p− 2− xi p− 4− xi

xi + 1 xi + 1 xi xi + 2 p− 1− xi p− xi p− 2− xi

p− 2− xi p− 2− xi p− 1− xi p− 3− xi xi xi − 1 xi + 1
p− 1− xi p− 1− xi p− xi p− 2− xi xi + 1 xi xi + 2
p− 3− xi p− 3− xi p− 2− xi p− 4− xi xi − 1 xi − 2 xi

Lemma 2.7. Given λ, λ′ ∈ I(x0, · · · , xf−1), the condition (2.3) of Lemma

2.1 is satisfied for λ and λ′. Moreover, given λ, λ′, μ, μ′ ∈ I(x0, · · · , xf−1),

(2.3) is satisfied for λ ◦ μ and λ′ ◦ μ′.

Proof. The first assertion is immediate by definition of I(x0, · · · , xf−1). The

second one is a direct check using the table in the proof of Lemma 2.6.

Lemma 2.8. Let τ, τ ′ ∈ JH(InjΓ σ) and assume S(τ) ∩ S(τ ′) = ∅. Then τ ′

is a subquotient of InjΓ τ and I(τ, τ ′) contains σ as a subquotient.

Proof. Let λ, λ′ ∈ I(x0, · · · , xf−1) be the elements corresponding to τ, τ ′ re-
spectively. Let ν = λ′◦λ−1, where λ−1 is the unique element in I(x0, · · · , xf−1)

defined by demanding the formal identities λ−1
i (λi(xi)) = xi for all i ∈ S.

Then ν is an f -tuple with νi(xi) ∈ Z ± xi and such that λ′ = ν ◦ λ. It is

clear that S(λ−1) = S(λ), so S(λ′)∩S(λ−1) = ∅ by assumption and Lemma

2.6(ii) implies that

νi(xi) ∈ {xi, xi ± 1, p− 2− xi, p− 2− xi ± 1}

for all i ∈ S. Moreover, using the fact S(λ′)∩S(λ−1) = ∅, one checks as in the

proof of [47, Lem. 2.20(iii)] that ν is actually an element of I(x0, · · · , xf−1)

and by construction τ ′ = ν(τ). To see that σ occurs in I(τ, τ ′), by Proposi-

tion 2.4 it is equivalent to check that λ−1 ≤ ν, but this follows from Lemma

2.6(i) as S(λ′) ∩ S(λ−1) = S(λ′) ∩ S(λ) = ∅.

2.2. The structure of InjΓ̃ σ

Let σ be a Serre weight. In this subsection, we study the structure of InjΓ̃ σ

under some genericity condition on σ.

We have a short exact sequence (e.g. [1, Prop. 18.4])

(2.6) 0 → InjΓ σ → InjΓ̃ σ → InjΓ σ ⊗F H
1(K1/Z1,F) → 0
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with H1(K1/Z1,F) being equipped with the conjugate action of K. This
action of K on H1(K1/Z1,F) factors through Γ. By [15, Prop. 5.1] we have
a decomposition

H1(K1/Z1,F) ∼=
⊕
i∈S

V2,i,

where V2,i denotes the Γ-representation (Sym2F2 ⊗ det−1)Fr
i

for i ∈ S. Re-
mark that V2,i is self-dual in the sense that (V2,i)

∨ ∼= V2,i.

Definition 2.9. For ∗ ∈ {+,−} and i ∈ S, we define two f -tuples δ∗i and
μ∗
i as follows.

• (δ∗i )i(xi) = xi ∗ 2 and (δ∗i )j(xj) = xj if j �= i.
• If f = 1, μ+

0 (x0) = p − 3 − x0 and μ−
0 (x0) = p − 1 − x0.

3 If f ≥ 2,
(μ∗

i )i(xi) = xi ∗ 1, (μ∗
i )i−1(xi−1) = p− 2− xi−1, and (μ∗

i )j(xj) = xj if
j /∈ {i, i− 1}. It is direct to check that μ∗

i ∈ I(x0, · · · , xf−1).

We make the convention that −∗ = − if ∗ = +, and −∗ = + if ∗ = −.
By definition, we have

(2.7) δ∗i =

{
μ−∗
i ◦ μ∗

i f = 1
μ∗
i ◦ μ∗

i f ≥ 2

(2.8) (x0, · · · , xf−1) =

{
μ∗
i ◦ μ∗

i f = 1
μ−∗
i ◦ μ∗

i f ≥ 2.

Due to these facts, we sometimes need to discuss separately these two cases.
By [15, Cor. 5.6], μ∗

i (σ) are exactly the set of Serre weights which have
non-trivial Γ-extensions with σ. More precisely, dimF Ext

1
Γ(τ, σ) = 1 if and

only if τ = μ∗
i (σ) for some pair (i, ∗). Denote

E (σ)
def
=
{
μ∗
i (σ) : i ∈ S, ∗ ∈ {+,−}

}
,

forgetting the undefined ones. It is clear that τ ∈ E (σ) if and only if σ ∈
E (τ). The following result will be frequently used later on.

Lemma 2.10. (i) Let σ be a Serre weight. Assume σ is 0-generic if f ≥
2, and σ ∼= SymrF2 (up to twist) for 0 ≤ r ≤ p − 3 if f = 1. Then
Ext1K/Z1

(σ, σ) = 0.

3We caution that the definition in the case f = 1 is different from the one of [47,
Def. 2.8].
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(ii) Let σ, σ′ be 0-generic Serre weights and assume σ �= σ′. We have
isomorphisms

Ext1K/Z1
(σ, σ′) ∼= Ext1

Γ̃
(σ, σ′) ∼= Ext1Γ(σ, σ

′),

which are nonzero (hence have dimension 1 over F) if and only if σ′ ∈ E (σ).

Proof. (i) For f ≥ 2, it is proved in [43, Prop. 2.21]. Below we give a simpli-
fied proof (based on loc. cit.) which treats both cases. If f = 1, remark that
Ext1K/Z1

(Symp−2F2, Symp−2F2) �= 0 and Ext1K/Z1
(Symp−1F2, Symp−3F2 ⊗

det) �= 0.
For a contradiction, let 0 → σ → V → σ → 0 be a nonsplit K-extension

on which Z1 acts trivially. Let w ∈ V be an H-eigenvector of character
χσ such that its image in the quotient σ is nonzero and lies in σI1 . We
will prove that w is fixed by I1, thus by Frobenius reciprocity we obtain a
K-equivariant surjection IndKI χσ � V which is impossible. Firstly, as in
the proof of [43, Prop. 2.21], w is fixed by

(
1 OL

0 1

)
because none of the H-

characters {χαi, i ∈ S} can occur in V |H by the genericity of σ (this needs
the assumption r ≤ p − 3 when f = 1). Secondly, let Nk =

(
1 0

pkOL 1

)
for

k ≥ 0 and consider the following operators (recall that we have fixed an
embedding Fq ↪→ F)

Xi :=
∑
λ∈Fq

λ−pi

(
1 0
[λ] 1

)
∈ F[[N0]], i ∈ S.

It is easy to see that Xiw has H-eigencharacter χα−1
i . If we write σ =

(r0, . . . , rf−1) ⊗ η, then none of {χα−(ri+1)
i , i ∈ S} can occur in σ|H by the

genericity of σ, see [15, Lem. 2.7]. We deduce that Xri+1
i w = 0, and so

Xp
i w = 0 for all i ∈ S. Since {Xp

i , i ∈ S} topologically generate the maximal
ideal of F[[N1]], w is fixed by N1. Since I1/Z1 is generated by

(
1 OK

0 1

)
and

N1, w is fixed by I1 as claimed.
(ii) It is a consequence of [15, Cor. 5.6].

On the other hand, denote

Δ(σ)
def
=
{
δ∗i (σ) : i ∈ S, ∗ ∈ {+,−}

}
,

again forgetting the undefined ones.

Lemma 2.11. Let σ1, σ2 ∈ JH(InjΓ σ) be compatible. If σ1 �= σ2, then(
{σ1} ∪Δ(σ1)

)
∩
(
{σ2} ∪Δ(σ2)

)
= ∅.
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Proof. We only give the proof of the assertion Δ(σ1)∩Δ(σ2) = ∅; the other
cases can be treated similarly. It is equivalent to showing that the equation
(δ∗1

i1
◦λ1)(σ) = (δ∗2

i2
◦λ2)(σ), where λ1, λ2 ∈ I(x0, · · · , xf−1) are compatible,

has no solution other than (i1, ∗1) = (i2, ∗2) and λ1 = λ2. By definition
of I(x0, · · · , xf−1), it is clear that the condition (2.3) holds for the pair
(δ∗1

i1
◦ λ1, δ

∗2

i2
◦ λ2), so Lemma 2.1 applies and implies δ∗1

i1
◦ λ1 = δ∗2

i2
◦ λ2

as f -tuples. If i /∈ {i1, i2}, then it is obvious that (λ1)i(xi) = (λ2)i(xi). If
i ∈ {i1, i2}, then we must have (λ1)i(xi) − (λ2)i(xi) ∈ {0,±2,±4}, and the
definition of I(x0, · · · , xf−1) and the compatibility between λ1 and λ2 force
that (λ1)i(xi) − (λ2)i(xi) = 0. Hence λ1 = λ2, and consequently (i1, ∗1) =
(i2, ∗2).

By [15, Prop. 5.1, Prop. 5.4], if σ ∼= (r0, · · · , rf−1) up to twist with
0 ≤ ri ≤ p− 3 for all i, then

(2.9) σ ⊗F H
1(K1/Z1,F) ∼= σ⊕f ⊕

(
⊕δ∈Δ(σ) δ

)
.

In general, for any Serre weight σ, we have by [15, Cor. 5.5]

(2.10) socΓ
(
σ ⊗F H

1(K1/Z1,F)
) ∼= σ⊕f ⊕

(
⊕δ∈Δ(σ) δ

)
.

Proposition 2.12. (i) Assume σ is 2-generic and, if f = 1, σ � Sym2F2⊗
deta. Then there is an isomorphism of Γ-representations

(InjΓ σ)⊗F H
1(K1/Z1,F) ∼=

(
InjΓ σ

)⊕f ⊕
(
⊕δ∈Δ(σ) InjΓ δ

)
.

(ii) If f = 1 and σ ∼= Sym2F2 ⊗ deta, then

(InjΓ σ)⊗FH
1(K1/Z1,F)∼=(InjΓ σ)

⊕f⊕(⊕δ∈Δ(σ) InjΓ δ)⊕(Symp−1F2⊗deta+1).

Proof. (i) It is a general fact that (InjΓ σ)⊗FH
1(K1/Z1,F) is again an injec-

tive Γ-representation, see [1, Lem. 7.4] (combined with [1, Thm. 6.4]). Hence
the natural embedding σ ⊗F H

1(K1/Z1,F) ↪→ (InjΓ σ)⊗F H
1(K1/Z1,F) ex-

tends to an embedding

(2.11) InjΓ
(
σ ⊗F H

1(K1/Z1,F)
)
↪→ (InjΓ σ)⊗F H

1(K1/Z1,F).

By the genericity assumption on σ, the isomorphism (2.9) holds. Moreover,
if δ ∈ Δ(σ) and if δ = (s0, · · · , sf−1) up to twist, then 0 ≤ si ≤ p − 2 for
all i ∈ S if f ≥ 2 (resp. 1 ≤ s0 ≤ p− 2 if f = 1) and not all of si are equal
to 0 so that dimF δ ≥ 2. This implies dimF InjΓ δ = (2p)f , see e.g. [15, §3].
Hence, (2.11) is an isomorphism for the reason of dimensions.

(ii) It is a direct check using [15, Prop. 5.4].
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For the rest of this subsection, we assume that σ is 2-generic. We deduce
from (2.6) and Proposition 2.12 that, ignoring multiplicities,

(2.12) JH(InjΓ̃ σ) = JH(InjΓ σ) ∪
(
∪δ∈Δ(σ) JH(InjΓ δ)

)
where, if f = 1 and σ ∼= Sym2F2 ⊗ deta, there is an extra Jordan–Hölder
factor Symp−1F2 ⊗ deta+1. As a consequence, any Jordan–Hölder factor of
InjΓ̃ σ has the form λ(σ) or (λ ◦ δ∗i )(σ) for some λ ∈ I(x0, · · · , xf−1) and
(i, ∗) ∈ S × {+,−}. Conversely, any Serre weight of one of the two forms is
actually a Jordan–Hölder factor of InjΓ̃ σ. Indeed, this follows from [15, Lem
3.2(i)], noting that the 2-genericity of σ implies that dimF σ, dimF δ

∗
i (σ) /∈

{1, q} if f ≥ 2 or if f = 1 and dimF σ �= 3; if f = 1 and σ ∼= Sym2F2 ⊗ deta

(so dimF δ
−
0 (σ) = 1), although the extra Serre weight Symp−1F2 ⊗ deta+1

is not a Jordan–Hölder factor of InjΓ δ
−
0 (σ) (see [15, Lem. 3.2(ii)]), it is a

Jordan–Hölder factor of InjΓ̃ σ.
Convention. To give a uniform treatment, in the case f = 1 and σ ∼=

Sym2F2⊗deta it is convenient to express Symp−1F2⊗deta+1 as (μ−
0 ◦δ−0 )(σ).

Definition 2.13. Let τ ∈ JH(InjΓ̃ σ). We say that τ is a new (resp. old)
Serre weight, if τ does not occur in InjΓ σ (resp. occurs in InjΓ σ) as a
subquotient.

For example, Serre weights in Δ(σ) are all new.

Lemma 2.14. Let δ = δ∗i (σ) for some pair (i, ∗) ∈ S × {+,−} and λ ∈
I(x0, · · · , xf−1). Then λ(δ) is new (in InjΓ̃ σ) if and only if

(2.13) λi(xi) ∈
{
xi, xi ∗ 1, p− 2− xi, p− 2− xi − (∗1)

}
.

As a consequence, if λ(δ) is new, then so is any Jordan–Hölder factor of
I(δ, λ(δ)).

Proof. We assume ∗ = +, the case ∗ = − being similar. Write ν = λ ◦ δ+i .
Assuming (2.13) holds, we have λi(xi) ∈ {xi, xi + 1, p − 2 − xi, p − 3 − xi}
and

νi(xi) ∈ {xi + 2, xi + 3, p− 4− xi, p− 5− xi},
so ν(σ) is not a subquotient of InjΓ σ by Lemma 2.1 (cf. the proof of Lemma
2.11), namely ν(σ) is new. For the converse, assume (2.13) does not hold,
i.e. λi(xi) = xi−1 or p−1−xi, then νi(xi) = xi+1 or p−3−xi, respectively.
On the other hand, νj(xj) = λj(xj) for j �= i. It is then direct to check that
ν defines an element in I(x0, · · · , xf−1), i.e. λ(δ) is old. This proves the first
assertion and the second one follows from this combined with Proposition
2.4.
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Lemma 2.15. Let τ be a Jordan–Hölder factor of InjΓ̃ σ which is new. Then
there exists a unique δ ∈ Δ(σ) such that τ occurs in InjΓ δ.

Proof. A Jordan–Hölder factor of InjΓ δ
∗
i (σ) has the form ν(σ) with ν =

λ ◦ δ∗i , for λ ∈ I(x0, · · · , xf−1). If ∗ = +, then

(2.14) νi(xi) ∈ {p− 3− xi, p− 4− xi, p− 5− xi, xi + 1, xi + 2, xi + 3},

while if ∗ = −, then

(2.15) νi(xi) ∈ {p+ 1− xi, p− xi, p− 1− xi, xi − 3, xi − 2, xi − 1}.

Therefore, for any i ∈ S, InjΓ δ+i (σ) and InjΓ δ
−
i (σ) can not have common

Jordan–Hölder factors by Lemma 2.1 (cf. the proof of Lemma 2.11).
Next, we show that if i �= i′ and if τ is a common subquotient of

InjΓ δ
∗
i (σ) and InjΓ δ

∗′

i′ (σ), then τ is an old Serre weight, i.e. τ ∈ JH(InjΓ σ).
We only check this for (∗, ∗′) = (+,+), and the other cases can be treated
similarly. Let λ ∈ I(x0, · · · , xf−1) (resp. λ′) be the element corresponding
to τ when viewed as a subquotient of InjΓ δ

+
i (σ) (resp. InjΓ δ

+
i′ (σ)), so that

τ = ν(σ) = ν ′(σ) where ν = λ ◦ δ+i and ν ′ = λ′ ◦ δ+i′ . Then ν = ν ′ in view of
Lemma 2.1. Since i �= i′, we have

(2.16) νj(xj) = ν ′j(xj) ∈ {xj , xj ± 1, p− 2− xj , p− 2− xj ± 1}

for any j ∈ S; indeed, this relation holds for νj(xj) if j �= i and for ν ′j(xj)
if j �= i′, and we recall i �= i′. One then checks that ν defines an element of
I(x0, · · · , xf−1), so that the corresponding Serre weight τ is old.

Remark 2.16. (i) Here is an example of an old Serre weight which occurs
in InjΓ δ for distinct δ ∈ Δ(σ). Take f = 2 and σ = (r0, r1), then (p − 3 −
r0, p− 3− r1)⊗ detr0+1+p(r1+1) is old and occurs in both InjΓ δ1 and InjΓ δ2,
where δ1 = (r0 + 2, r1)⊗ det−1 and δ2 = (r0, r1 + 2)⊗ det−p.

(ii) The proof of Lemma 2.15 shows that if τ is a common subquotient of
InjΓ δ

∗
i (σ) and InjΓ δ

∗′

i′ (σ) with i �= i′, then i, i′ ∈ S(ν) and so |S(ν)| ≥ 2. For
example, in the case (∗, ∗′) = (+,+), this follows from (2.14) and (2.16).
As a consequence, if τ is a Serre weight such that Ext1Γ(τ, σ) �= 0 so that
|S(τ)| = 1, then there is at most one δ ∈ Δ(σ) such that τ occurs in InjΓ δ.
Actually, δ does exist: if τ = μ∗

i (σ), then δ = δ∗i (σ).

The next auxiliary lemma will be used in §4.

Lemma 2.17. Let i ∈ S and ∗ ∈ {+,−}. Let λi, λ
′
i, μi be functions of the

form Z± xi. Assume
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(a) λi(xi) ∈ {xi, xi ∗ 1, p− 2− xi, p− 2− xi − (∗1)};
(b) λ′

i(xi), μi(xi) ∈ {xi, xi ± 1, p− 2− xi, p− 2− xi ± 1};
(c) the relation λi(xi ∗ 2) = λ′

i(μi(xi)) holds.

Then i /∈ S(λ) and i ∈ S(λ′) ∩ S(μ). Moreover, μi(xi) ∈ {xi, xi ∗ 1, p − 2 −
xi, p− 2− xi − (∗1)}.

Proof. Without loss of generality, we may assume ∗ = +, and therefore

λi(xi + 2) ∈ {xi + 2, xi + 3, p− 4− xi, p− 5− xi}.

By (b), the table in the proof of Lemma 2.6 lists all the possible values of
λ′
i(μi(xi)). Together with (c), we deduce that either

λi(xi + 2) = xi + 2, λ′
i(xi) =

{
xi + 1
p− 1− xi

resp. μi(xi) =

{
xi + 1
p− 3− xi

in which case λi(xi) = xi, or

λi(xi+2) = p−4−xi, λ′
i(xi) =

{
xi − 1
p− 3− xi

resp. μi(xi) =

{
p− 3− xi
xi + 1

in which case λi(xi) = p− 2− xi. The result follows from this.

2.3. An extension lemma

If σ, σ′ are two distinct 0-generic Serre weights such that Ext1
Γ̃
(σ′, σ) �= 0,

then this space has dimension 1 by Lemma 2.10(ii). We denote by Eσ,σ′ the

unique up to isomorphism nonsplit Γ̃-extension (actually Γ-extension)

0 → σ → Eσ,σ′ → σ′ → 0.

The aim of this subsection is to prove the following (easy) fact about the
structure of the tensor product Eσ,μ±

i (σ)⊗F V2,i for i ∈ S, where V2,i denotes

the Γ-representation (Sym2F2 ⊗ det−1)Fr
i

. It will be used in the proof of
Theorem 2.23.

Lemma 2.18. Assume σ is 2-generic. Let μ = μ∗
i (σ) for some i ∈ S and

∗ ∈ {+,−}. Then Eσ,μ⊗FV2,i admits a quotient isomorphic to Eδ−∗
i (σ),μ−∗

i (σ).

Proof. The genericity condition on σ implies that μ is 1-generic. By (2.9)
and Lemma 2.11, Eσ,μ ⊗F V2,i has Loewy length 2 and is multiplicity free,
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with Jordan–Hölder factors {σ, δ±i (σ), μ, δ±i (μ)}. We claim that

HomΓ̃(Eσ,μ ⊗F V2,i, δ
−∗
i (σ)) = 0.

By [1, Lem. 7.3], this is equivalent to showing HomΓ̃(Eσ,μ, δ
−∗
i (σ)⊗FV2,i) = 0

(as V2,i is self-dual). It suffices to show that μ is not a Jordan–Hölder factor
of δ−∗

i (σ) ⊗F V2,i. Write δ−∗
i (σ) = (s0, · · · , sf−1) up to twist. Since σ is 2-

generic, we have 0 ≤ si ≤ p−2 and 2 ≤ sj ≤ p−4 for j �= i. If 0 ≤ si ≤ p−3,
then [15, Lem. 3.5, Prop. 5.4(i)] implies that

δ−∗
i (σ)⊗F V2,i

∼= δ−∗
i (σ)⊕ σ ⊕ δ−∗

i (δ−∗
i (σ)),

forgetting the undefined ones. Noting that the condition (2.3) holds for the
pair (μ, δ−∗

i ) and also for (μ, δ−∗
i ◦ δ−∗

i ), Lemma 2.1 implies that μ does not
occur in the above decomposition, proving the claim. If si = p − 2 and if
f ≥ 2, then using [15, Prop. 5.4(ii)] we have

JH(δ−∗
i (σ)⊗F V2,i) =

{
σ, δ−∗

i (σ)⊕2, μ±
i+1(δ

−∗
i (σ))

}
and the claim follows as above. Finally, the case f = 1 and s0 = p − 2 can
be checked directly and we leave it to the reader.

There exists a unique quotient of Eσ,μ ⊗F V2,i with socle δ−∗
i (σ), say Q.

Since Eσ,μ ⊗F V2,i has Loewy length 2 and since δ−∗
i (σ) does not occur in

its cosocle by the claim, Q also has Loewy length 2 and only Serre weights
in E (δ−∗

i (σ)) can occur in cosoc(Q). Comparing Jordan–Hölder factors, we
find cosoc(Q) ⊆ δ−∗

i (μ) if f ≥ 2 or cosoc(Q) ⊆ δ∗i (μ) if f = 1, which has
to be an equality because cosoc(Q) is nonzero. In both cases, one checks
cosoc(Q) = μ−∗

i (σ), which finishes the proof.

Remark that, under a slightly stronger genericity condition on σ, the
precise structure of Eσ,μ±

i (σ) ⊗F V2,i is determined in [12, §6.3].

2.4. The representation I(σ, τ )

The aim of this subsection is to generalize Proposition 2.2 to Γ̃-represent-
ations.

Definition 2.19. Fix (i, ∗) ∈ S × {+,−}. If λ ∈ I(x0, · · · , xf−1) satisfies
(2.13), i.e.

λi(xi) ∈
{
xi, xi ∗ 1, p− 2− xi, p− 2− xi − (∗1)

}
,

we define λ! ∈ I(x0, · · · , xf−1) to be the unique element satisfying (2.13),
compatible with λ, and such that S(λ!) = S(λ) ∪ {i}.
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The uniqueness of λ! in Definition 2.19 is clear, because for each j ∈
S(λ!) = S(λ) ∪ {i} we have chosen a sign ±1 for (λ!)j(xj). The existence
of λ! is also easily verified. Remark that the definition of λ! depends on the
fixed pair (i, ∗), although this is not indicated in the notation. Note that
λ ≤ λ! and λ is compatible with any λ′ ∈ I(x0, · · · , xf−1) satisfying λ′ ≤ λ!,
by the discussion after Proposition 2.4.

Remark 2.20. Fix (i, ∗) ∈ S×{+,−} and let λ ∈ I(x0, · · · , xf−1) satisfying
(2.13). It is direct to check that: if i ∈ S(λ) then λ! = λ; if i /∈ S(λ), then

λ! =

{
μ∗
i ◦ λ if λi(xi) = xi

μ−∗
i ◦ λ if λi(xi) = p− 2− xi.

Lemma 2.21. Let σ be a Serre weight and δ = δ∗i (σ) be well-defined for
some (i, ∗) ∈ S × {+,−}. Let λ ∈ I(x0, · · · , xf−1) satisfying (2.13) and
assume (λ ◦ δ∗i )(σ) is well-defined.

(i) If i ∈ S(λ), then Ext1Γ(λ(δ), σ
′) = 0 for any σ′ ∈ JH(InjΓ σ).

(ii) If i /∈ S(λ), then λ!(σ) is the unique Jordan–Hölder factor of InjΓ σ
which has nontrivial Γ-extensions with λ(δ).

Proof. (i) This is a direct check. We assume ∗ = + without loss of generality.
By (2.13), the condition i ∈ S(λ) is equivalent to λi(xi) ∈ {xi+1, p−3−xi}.
As a consequence, we have

(λ ◦ δ∗i )i(xi) ∈ {xi + 3, p− 5− xi},

so λ(δ) can not lie in E (σ′) for any σ′ ∈ JH(InjΓ σ) by Lemma 2.1 together
with (a variant of) Lemma 2.7. This proves (i).

(ii) We have λ ◦ δ∗i = δ∗i ◦ λ if λ ∈ Z + xi and λ ◦ δ∗i = δ−∗
i ◦ λ if

λi(xi) ∈ Z − xi. Hence, when i /∈ S(λ), using (2.7) and Remark 2.20, we
have if f ≥ 2

λ(δ) = (λ◦δ∗i )(σ) =
{

(δ∗i ◦ λ)(σ) = (μ∗
i ◦ λ!)(σ) if λi(xi) = xi

(δ−∗
i ◦ λ)(σ) = (μ−∗

i ◦ λ!)(σ) if λi(xi) = p− 2− xi.

If f = 1, we need to replace μ∗
i by μ−∗

i (only the case λi(xi) = xi can
happen). This implies Ext1Γ(λ(δ), λ!(σ)) �= 0. The rest can be checked as in
(i).

The main result of this subsection is Theorem 2.23 below. Before stating
it, we first prove the following general fact without any genericity assumption
on σ.
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Lemma 2.22. For any Serre weight σ and any τ ∈ JH(InjΓ̃ σ), there exists
a subrepresentation V of InjΓ̃ σ such that cosocΓ̃(V ) = τ and [V : σ] = 1
(hence σ occurs in V as subobject).

Proof. The assumption τ ∈ JH(InjΓ̃ σ) implies that there exists a nonzero
morphism ProjΓ̃ τ → InjΓ̃ σ. Using (2.1) we obtain a nonzero morphism
ProjΓ̃ σ → InjΓ̃ τ . If we take such a nonzero morphism f : ProjΓ̃ σ → InjΓ̃ τ
with [Im(f) : σ] minimal, then Q = Im(f) is a quotient of ProjΓ̃ σ with socle
τ and such that [Q : σ] = 1 (otherwise, 1 ≤ [rad(Q) : σ] < [Q : σ], and we
could construct a nonzero morphism f ′ : ProjΓ̃ σ → rad(Q) ↪→ InjΓ̃ τ which
contradicts the choice of f). Taking dual and twisting suitably, we obtain a
subrepresentation V of InjΓ̃ σ as required.

As a byproduct, we see that τ ∈ JH(InjΓ̃ σ) if and only if σ ∈ JH(InjΓ̃ τ).

Theorem 2.23. Let σ be a 2-generic Serre weight and τ ∈ JH(InjΓ̃ σ). Let
V be a subrepresentation of InjΓ̃ σ such that cosocΓ̃(V ) = τ and [V : σ] = 1,
as in Lemma 2.22.

(i) If τ is a new Serre weight (cf. Definition 2.13), and if τ = λ(δ) for
(uniquely determined) δ = δ∗i (σ) ∈ Δ(σ) and λ ∈ I(x0, · · · , xf−1)
satisfying (2.13) (cf. Lemmas 2.14, 2.15), then V K1 = I(σ, τ!) and
there exists a short exact sequence

(2.17) 0 → I(σ, τ!) → V → I(δ, τ) → 0,

where τ!
def
= λ!(σ) and I(σ, τ!), I(δ, τ) are Γ-representations constructed

in Proposition 2.2. In the case f = 1, dimF σ = 3 and τ = (μ−
0 ◦δ−0 )(σ),

the sequence should be replaced by

0 → I(σ, τ!) → V → τ → 0.

Moreover, such a representation V is unique (up to isomorphism); we
denote it by I(σ, τ).

(i) If τ is an old Serre weight, then V is actually a Γ-representation and
coincides with the representation I(σ, τ) constructed in Proposition
2.2; in particular, such a representation V is unique (up to isomor-
phism).

Remark 2.24. The genericity condition in Theorem 2.23 may not be op-
timal. But, the following example shows that the result is false without any
genericity condition: when f = 1, there exists a uniserial Γ̃-representation
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of length 3, with (the graded pieces of) the socle filtration given by Sym1F2,
Symp−2F2 ⊗ det, Symp−2F2 ⊗ det.

Before giving the proof of Theorem 2.23, we first establish some conse-
quences.

Corollary 2.25. Keep the notation in Theorem 2.23. The representation
I(σ, τ) is multiplicity free.

Proof. If τ is a subquotient of InjΓ σ, then it follows from Proposition 2.2.
Otherwise, we use the exact sequence (2.17): on the one hand, both I(σ, τ!)
and I(δ, τ) are multiplicity free, on the other hand, since τ is a new Serre
weight any Jordan–Hölder factor of I(δ, τ) is also new by Lemma 2.14.

Corollary 2.26. If V is a subrepresentation of (InjΓ̃ σ)
⊕s for some s ≥ 1,

then [V : σ] ≥ [V : τ ] for any Serre weight τ . If, moreover, cosoc(V ) is
isomorphic to τ⊕r for some 2-generic Serre weight τ and some r ≥ 1, then
[V : σ] = [V : τ ].

Proof. The proof is the same as that of Corollary 2.3.

We divide the proof of Theorem 2.23 into two lemmas: Lemma 2.27 for
Case (i) and Lemma 2.29 for Case (ii).

Lemma 2.27. Theorem 2.23(i) is true.

Proof. The exceptional case f = 1, dimF σ = 3 and τ = (μ−
0 ◦ δ−0 )(σ) can be

checked directly, so we omit this case for the rest of the proof.
Let V be a subrepresentation of InjΓ̃ σ as in the statement, i.e. cosoc(V ) =

τ and [V : σ] = 1. We identify InjΓ σ with the subspace of K1-invariants of
InjΓ̃ σ. Since V

K1 = V ∩ InjΓ σ, there is an embedding by Proposition 2.12(i)

(2.18) C
def
= V/V K1 ↪→ InjΓ̃ σ/ InjΓ σ

∼= (InjΓ σ)
⊕f ⊕

(
⊕δ′∈Δ(σ) InjΓ δ

′).
Using the fact [C : σ] = 0, (2.18) factors through an embedding C ↪→
⊕δ′ InjΓ δ

′ and finally

C ↪→ InjΓ δ,

where δ = δ∗i (σ) is as in the statement of the theorem. In particular, C has
socle δ and cosocle τ .

Step 1. Prove that C ∼= I(δ, τ). By Proposition 2.2 it suffices to prove
[C : δ] = 1. Taking K1-invariants of the short exact sequence 0 → V K1 →
V → C → 0 gives an injection

(2.19) C ↪→ H1(K1/Z1, V
K1) ∼= V K1 ⊗F H

1(K1/Z1,F).



On the mod p cohomology for GL2: the non-semisimple case 289

Knowing that [C : δ] ≥ 1, it suffices to prove

[V K1 ⊗F H
1(K1/Z1,F) : δ] = 1.

However, any σ′ ∈ JH(V K1) is 1-generic, hence by (2.9) [σ′⊗FH
1(K1/Z1,F) :

δ] = 1 if and only if δ ∈ Δ(σ′), if and only if σ′ ∼= σ by Lemma 2.11 (note that
σ is always compatible with σ′). Since [V K1 : σ] = 1 and [σ⊗FH

1(K1/Z1,F) :
δ] = 1, the result follows. As a consequence, C is multiplicity free. On the
other hand, since [V K1 : σ] = 1, V K1 is multiplicity free by Corollary 2.3,
hence V is also multiplicity free as in the proof of Corollary 2.25.

Step 2. Prove that V K1 ∼= I(σ, τ!). First, if τ
′ ∈ JH(I(δ, τ)) with τ ′ =

λ′(δ) for λ′ ∈ I(x0, · · · , xf−1), then τ ′ is also a new Serre weight by Lemma
2.14. By definition it is easy to see that S(λ′

!) ⊆ S(λ!) and λ′
! is compatible

with λ!, hence τ
′
!
def
= λ′

!(σ) occurs in I(σ, τ!) by Proposition 2.2. Using Lemma
2.21 we deduce by dévissage that if σ′ ∈ JH(InjΓ σ) which does not occur in
I(σ, τ!), then

Ext1
Γ̃

(
I(δ, τ), σ′) = 0,

and consequently HomΓ̃(V
K1 , σ′) ∼= HomΓ̃(V, σ

′) by Step 1. However, since
V has irreducible cosocle τ which is new, HomΓ̃(V, σ

′) = 0 for any σ′ as
above and so HomΓ̃(V

K1 , σ′) = 0. Using the fact that V K1 is multiplicity
free, we deduce V K1 ⊆ I(σ, τ!).

It remains to show the inclusion I(σ, τ!) ⊆ V K1 , for which it suffices to
show that τ! occurs in V K1 as a subquotient. First assume i ∈ S(λ), so that
λ! = λ by Remark 2.20. Using the embedding (2.19), we know that

[V K1 ⊗F H
1(K1/Z1,F) : τ ] ≥ 1.

However, since τ = λ(δ) ∈ Δ(τ!) (as λ! = λ), by Lemma 2.11 σ′ = τ! is the
unique subquotient of I(σ, τ!) with the property [σ′⊗FH

1(K1/Z1,F) : τ ] �= 0.
We deduce that τ! occurs in V K1 as a subquotient. Assume now i /∈ S(λ).
Then τ! = μ∗

i (λ(σ)) if λi(xi) = xi, or τ! = μ−∗
i (λ(σ)) if λi(xi) = p − 2 − xi,

see Remark 2.20. We prove the assertion in two steps.

(a) The special case S(λ) = ∅, i.e. τ = δ. Then τ! = μ∗
i (σ), and I(σ, τ!) is

just the nonsplit extension of τ! by σ. Since we already know V K1 ⊂
I(σ, τ!), it suffices to prove V K1 �= σ, which is obvious as Ext1

Γ̃
(δ, σ) = 0

by Lemma 2.10(ii) (both σ and δ are 0-generic). As a consequence, any
Γ̃-representation with socle σ and cosocle δ contains τ! as a subquo-
tient.
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(b) The general case i /∈ S(λ). In this case, the same argument as in the
case i ∈ S(λ) shows that the Serre weight λ(σ) occurs in V K1 . Hence,
V admits a quotient, say V , whose socle is λ(σ) and cosocle is τ . On the
other hand, the proof of Lemma 2.21 shows τ = δ∗i (λ(σ)) if λi(xi) = xi
or τ = δ−∗

i (λ(σ)) if λi(xi) = p − 2 − xi. Hence, applying (a) to V we
obtain [V : τ!] �= 0, and therefore [V : τ!] = [V K1 : τ!] �= 0 (as τ! is an
old Serre weight of InjΓ̃ σ).

Step 3. Prove the uniqueness of V . By Step 1 and Step 2, it suffices to
prove

dimF Ext
1
Γ̃
(I(δ, τ), I(σ, τ!)) ≤ 1,

and the equality would then follow by the existence of V . The Hochschild-
Serre spectral sequence gives an exact sequence

0 → Ext1Γ(I(δ, τ), I(σ, τ!)) → Ext1
Γ̃
(I(δ, τ), I(σ, τ!))

→ HomΓ

(
I(δ, τ), I(σ, τ!)⊗F H

1(K1/Z1,F)
)
.

On the one hand, since the Jordan–Hölder factors of I(δ, τ) are all new
by Lemma 2.14, a standard dévissage argument shows that Ext1Γ(I(δ, τ),
I(σ, τ!)) = 0. On the other hand, Lemma 2.11 implies

JH(I(δ, τ)) ∩
(
{σ} ∪Δ(σ)

)
= {δ}

because any Jordan–Hölder factor of I(δ, τ) has the form δ±i (σ
′) for some

σ′ ∈ JH(InjΓ σ). Since the socle of I(σ, τ!)⊗F H
1(K1/Z1,F) is equal to σ⊗F

H1(K1/Z1,F) ∼= σ⊕f ⊕ (⊕δ′∈Δ(σ)δ
′), we deduce that

dimF HomΓ

(
I(δ, τ), I(σ, τ!)⊗F H

1(K1/Z1,F)
)

≤ dimFHomΓ

(
δ, I(σ, τ!)⊗F H

1(K1/Z1,F)
)
= 1.

This proves the uniqueness of V and finishes the proof.

We have the following direct consequence of Lemma 2.27, which will be
used in the proof of Theorem 2.23(ii) (i.e. Lemma 2.29) below.

Corollary 2.28. Keep the notation of Theorem 2.23. Assume τ = δ∗i (σ)
for some (i, ∗) ∈ S × {+,−}. Then I(σ, τ) is uniserial of length 3, and (the
graded pieces of) the socle filtration is given by σ, τ!, τ , with τ! = μ∗

i (σ). For
any subrepresentation V of InjΓ̃ σ with [V : τ ] ≥ 1, there exists an embedding
I(σ, τ) ↪→ V . Moreover, we have [V : σ] ≥ [V : τ ].
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Lemma 2.29. Theorem 2.23(ii) is true.

Proof. Let V be a subrepresentation of InjΓ̃ σ as in the statement, i.e.
cosoc(V ) = τ and [V : σ] = 1. It is enough to prove V = V K1 , because
then V is actually a Γ-representation, and Proposition 2.2 applies. Again,
as in the proof of Lemma 2.27, there is an embedding

(2.20) C
def
= V/V K1 ↪→

⊕
δ∈Δ(σ)

InjΓ δ.

We need to prove C = 0. Assume this is not the case for a contradiction.

Case 1. Assume Ext1Γ(τ, σ) �= 0, i.e. τ = μ∗
i (σ) for some i ∈ S and

∗ ∈ {+,−}. In this case, Remark 2.16(ii) implies that C ↪→ InjΓ δ where

δ
def
= δ∗i (σ). Moreover, we have C = I(δ, τ): indeed, this is equivalent to

[C : δ] = 1 by Proposition 2.2; but if we had [C : δ] ≥ 2, then [V : δ] ≥ 2 and
Corollary 2.28 would imply [V : σ] ≥ 2, a contradiction. Since Ext1Γ(τ, δ) �= 0,
C = I(δ, τ) is exactly the nonsplit extension 0 → δ → Eδ,τ → τ → 0.
Consider V as a nonzero extension class in Ext1

Γ̃
(Eδ,τ , V

K1). As in the proof

of Lemma 2.27, it induces an embedding Eδ,τ ↪→ V K1 ⊗FH
1(K1/Z1,F), and

further an embedding

Eδ,τ ↪→ V K1 ⊗F V2,i

because τ is not a subquotient of V K1 ⊗F V2,j for any j �= i by Lemma 2.15.
By [1, Lem. 7.3] and the self-duality of V2,i, we finally obtain a nonzero
morphism

∂ : Eδ,τ ⊗F V2,i → V K1 .

On the other hand, letting μ
def
= μ−∗

i (σ), Lemma 2.18 implies a surjection
Eσ,μ ⊗F V2,i � Eδ,τ . By [1, Lem. 7.3] and the self-duality of V2,i, it induces
a morphism

ι : Eσ,μ → Eδ,τ ⊗F V2,i

which is injective by examining the socles. For the same reason the com-
position ∂ ◦ ι is also injective. Hence, Eσ,μ embeds in V and V/σ admits a
quotient Q with socle μ (and cosocle τ). But, one checks that τ = δ∗i (μ) if
f ≥ 2, resp. τ = δ−∗

i (μ) if f = 1, so Corollary 2.28 applies and implies that
σ occurs in V/σ as a subquotient. Remark that μ need not be 2-generic in
which case Corollary 2.28 does not apply, but if this happens, then τ has to
be 2-generic and we may apply Corollary 2.28 to the dual of Q. Therefore,
we obtain [V : σ] ≥ 2, a contradiction. In conclusion, we deduce that C = 0
and V = V K1 .
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Case 2. Now treat the general case. As observed in Remark 2.16(i), τ

may occur in InjΓ δ for distinct δ ∈ Δ(σ). We choose one δ in such a way

that (2.20) induces a nonzero morphism C → InjΓ δ when composed with

the natural projection to InjΓ δ; let Cδ denote the image. As in Case 1, we

have Cδ
∼= I(δ, τ). Write δ = δ∗i (σ) for some (i, ∗) ∈ S × {+,−} and set

τ ′
def
= μ∗

i (σ) = μ−∗
i (δ). Then τ ′ has nontrivial extensions with both σ and

δ. We claim that τ ′ is a subquotient of I(δ, τ). Indeed, writing τ = λ(δ)

for λ ∈ I(x0, · · · , xf−1), then Lemma 2.14 implies λi(xi) ∈ {xi − (∗1), p −
2 − xi + (∗1)} because τ is old by assumption; in particular i ∈ S(λ). On

the other hand, viewing τ ′ as a subquotient of InjΓ δ, it corresponds to μ−∗
i

which is compatible with λ at {i} = S(μ−∗
i ). The claim follows from this

using Proposition 2.4. By the claim, we may construct a subrepresentation

of V with cosocle τ ′ which is not fixed by K1, but this contradicts Case

1.

Note that I(σ, τ) can be viewed as a quotient of ProjΓ̃ τ . Using Corollary

2.25, we have the following dual version of Theorem 2.23.

Theorem 2.30. Let τ be a 2-generic Serre weight. Among the quotients

of ProjΓ̃ τ whose socle is isomorphic to σ (not necessarily 2-generic), there

exists a unique one, denoted by I(σ, τ), in which τ occurs with multiplicity

1. If moreover σ is 2-generic, then this representation coincides with the one

constructed in Theorem 2.23.

Combining Theorems 2.23 and 2.30, we see that I(σ, τ) is well-defined

provided that either σ or τ is 2-generic.

Corollary 2.31. Let τ be a 2-generic Serre weight. Let Q be a quotient of

ProjΓ̃ τ satisfying the following conditions:

(a) [Q : τ ] = 1;

(b) for any Serre weight σ in socΓ̃(Q), σ is a subquotient of ProjΓ τ .

Then Q is multiplicity free and a quotient of ProjΓ τ , i.e. Q is annihilated

by mK1
.

Proof. First note thatQ is multiplicity free by (the dual version) of Corollary

2.26. In particular, socΓ̃(Q) is multiplicity free. If σ is a Serre weight occur-

ring in socΓ̃(Q), then Q admits I(σ, τ) as a quotient by Theorem 2.30. The

morphism Q → ⊕σI(σ, τ), where σ runs over all Serre weights in socΓ̃(Q),

is injective as it is injective on socΓ̃(Q). By (b), each I(σ, τ) is annihilated

by mK1
, hence so is Q, i.e. Q is a quotient of ProjΓ τ .
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Corollary 2.32. Let τ be a 2-generic Serre weight. Let Q be a quotient of

ProjΓ̃ τ satisfying the following conditions:

(a) socΓ̃(Q) ∼= τ⊕r for some r ≥ 1;

(b) radΓ̃(Q)/ socΓ̃(Q) is nonzero and does not admit τ as a subquotient.

Then radΓ̃(Q)/ socΓ̃(Q) is semisimple and there is an embedding

radΓ̃(Q)/ socΓ̃(Q) ↪→
⊕

σ∈E (τ)

σ.

Moreover, the length of radΓ̃(Q)/ socΓ̃(Q) is greater than or equal to r.

Proof. Consider the quotient Q/ socΓ̃(Q), which is a quotient of ProjΓ̃ τ and

in which τ occurs once by condition (b). Then Q/ socΓ̃(Q) is multiplicity

free by (the dual version) of Corollary 2.26. We denote by soc1(Q) the socle

of Q/ socΓ̃(Q). If σ ↪→ soc1(Q), then Ext1
Γ̃
(σ, socΓ̃(Q)) �= 0, and therefore

σ ∈ E (τ) by (a). As in the proof of Corollary 2.31, we obtain an embedding

Q/ socΓ̃(Q) ↪→ ⊕σI(σ, τ) where σ runs over the Serre weights in soc1(Q).

Note that I(σ, τ) is just the nonsplit extension of τ by σ, so Q/ socΓ̃(Q) fits

in a short exact sequence

0 → soc1(Q) → Q/ socΓ̃(Q) → τ → 0.

Thus, we may identify soc1(Q) with radΓ̃(Q)/ socΓ̃(Q), proving the first

assertion.

It remains to show soc1(Q) has length ≥ r. In fact, this follows from (a),

which implies

dimF Ext
1
Γ̃
(soc1(Q), τ) ≥ r,

while dimF Ext
1
Γ̃
(σ, τ) = 1 for any σ ∈ E (τ) by Lemma 2.10(ii).

Remark 2.33. It will be proved in Proposition 3.12 that there exists a

(unique) representation Q as in Corollary 2.32 such that radΓ̃(Q)/ socΓ̃(Q) ∼=⊕
σ∈E (τ) σ.

2.5. The structure of I(σ, τ )

Let σ be a 2-generic Serre weight. It will be useful to have an explicit de-

scription of the lattice structure of subrepresentations of I(σ, τ) for τ ∈
JH(InjΓ̃ σ). The case when τ ∈ JH(InjΓ σ) is treated in [15, Cor. 4.11].
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Definition 2.34. Fix (i, ∗) ∈ S × {+,−}. Set

(2.21) Ĩ(i,∗)
def
=
{
(λ, T ) ∈ I(x0, · · · , xf−1)× {∅, (i, ∗)} :

λi(xi) satisfies (2.13) if T = (i, ∗)
}
.

We define a partial order Ĩ(i,∗) as follows. Given two elements λ̃ = (λ, T ),

λ̃′ = (λ′, T ′), we say λ̃′ ≤ λ̃ if and only if one of the following holds:

• T ′ = T and λ′ ≤ λ, meaning that λ′, λ are compatible and S(λ′) ⊂
S(λ);

• T ′ = ∅, T = (i, ∗), and λ′ ≤ λ!, where λ! ∈ I(x0, · · · , xf−1) is as in
Definition 2.19.

We define a length function on Ĩ(i,∗) by setting

(2.22) �(λ̃) = �(λ, T )
def
=

{
|S(λ)| if T = ∅
|S(λ)|+ 2 if T = (i, ∗).

To λ̃ = (λ, T ) ∈ Ĩ(i,∗), we associate a Jordan–Hölder factor of InjΓ̃ σ, as
follows:

(2.23) λ̃(σ) =

{
λ(σ) if T = ∅
λ(δ∗i (σ)) if T = (i, ∗).

It is a direct consequence of Proposition 2.12 and Lemma 2.14 that any
Jordan–Hölder factor of InjΓ̃ σ is isomorphic to λ̃(σ) for some pair (i, ∗) and
some λ̃ ∈ Ĩ(i,∗).

Corollary 2.35. Fix (i, ∗) ∈ S×{+,−} and let λ̃ ∈ Ĩ(i,∗). Then the Jordan–

Hölder factors of I(σ, λ̃(σ)) are given by{
λ̃′(σ) : λ̃′ ∈ Ĩ(i,∗), λ̃′ ≤ λ̃

}
and the graded pieces of its socle filtration4 are given by:

I(σ, λ̃(σ))k =
⊕

λ̃′≤λ̃, 
(λ̃′)=k

λ̃′(σ).

4If V is a Γ̃-module, (Vk)k≥0 denotes the graded pieces of its socle filtration with
convention V0 = soc(V ).
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In the exceptional case f = 1, dimF σ = 3 and λ̃ = (μ−
0 , (0,−)), we forget the

Serre weight δ−0 (σ) which corresponds to λ̃′ = (x0, (0,−)) in JH
(
I(σ, λ̃(σ))

)
,

and set �(λ̃) = 2 in the formula of the socle filtration.

Proof. It is a reformulation of Theorem 2.23 using Proposition 2.4.

3. Finite representation theory II

In this section, we study the smooth representation theory of the Iwa-
hori subgroup I (over F) and its relation to representation theory of K =
GL2(OL) studied in §2.

3.1. I-extensions

Let α : H → F× be the character sending
( [a] 0

0 [d]

)
to ad−1, where a, d ∈ F×

q .

Let αi := αpi

for i ∈ S (recall S = {0, . . . , f − 1}).

Lemma 3.1. If χ, χ′ : I → F× are smooth characters such that Ext1I/Z1
(χ,

χ′) �= 0, then χ′ ∈ {χα±1
i , i ∈ S}. Moreover, in this case we have dimF

Ext1I/Z1
(χ, χ′) = 1.

Proof. See [43, Lem. 2.4(i)], which is based on [61, Prop. 5.2].

We denote by E (χ) the set of characters χ′ such that Ext1I/Z1
(χ, χ′) �= 0.

For χ′ ∈ E (χ), we denote by Eχ′,χ the unique nonsplit I-extension

0 → χ′ → Eχ′,χ → χ → 0.

Remark that K1 acts trivially on Eχ′,χ if and only if χ′ = χαi for some
i ∈ S, see [43, Lem. 2.4(ii)].

For a character χ : I → F×, ProjI/Z1
χ denotes a projective envelope of

χ in the category of pseudo-compact F[[I/Z1]]-modules. For n ≥ 1, define

Wχ,n
def
= ProjI/Z1

χ/mn,

where m = mI1/Z1
denotes the maximal ideal of F[[I1/Z1]]. Clearly, the Loewy

length of Wχ,n is equal to n. We will mainly be concerned with the cases
n = 2, 3. For example, Wχ,2 fits in a short exact sequence

0 →
⊕
i∈S

χα±1
i → Wχ,2 → χ → 0.
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For Wχ,3, we have 0 → socI(Wχ,3) → Wχ,3 → Wχ,2 → 0, with socI(Wχ,3)

isomorphic to

χ⊕2f ⊕
⊕

0≤i≤j≤f−1

χαiαj ⊕
⊕

0≤i≤j≤f−1

χα−1
i α−1

j ⊕
⊕

0≤i �=j≤f−1

χαiα
−1
j ,

see [12, §5.3]. Let X ′′ denote the direct sum of characters in socI(Wχ,3)

which are not isomorphic to χ and set

(3.1) Wχ,3
def
= Wχ,3/X

′′.

This representation will play a prominent role in the whole paper. By defi-

nition, Wχ,3 fits in the following exact sequence

(3.2) 0 → χ⊕2f → Wχ,3 → Wχ,2 → 0.

Lemma 3.2. We have socI(Wχ,3) ∼= χ⊕2f and there exists a short exact

sequence

(3.3) 0 →
⊕

χ′∈E (χ)

Eχ,χ′ → Wχ,3 → χ → 0.

Proof. We know that χ⊕2f embeds in Wχ,3. LetW
′
χ,3 be the largest quotient

of Wχ,3 whose socle is isomorphic to χ⊕2f . We claim that Wχ,3 = W
′
χ,3 from

which the first assertion follows. By a similar argument as in the proof of

Corollary 2.32, we have

dimF rad(W
′
χ,3)/ soc(W

′
χ,3) ≥ 2f.

Since rad(W
′
χ,3)/ soc(W

′
χ,3) ↪→ ⊕χ′∈E (χ)χ

′ and |E (χ)| = 2f , the above in-

equality is an equality and the embedding is an isomorphism. Comparing

Jordan–Hölder factors, we get Wχ,3 = W
′
χ,3.

Prove (3.3). Let χ′ ∈ E (χ) which is a Jordan–Hölder factor of Wχ,3.

Then as seen above χ′ occurs in rad(Wχ,3)/ soc(Wχ,3). Consequently, the

extension Eχ,χ′ embeds in Wχ,3. Taking sum, we obtain an embedding∑
χ′∈E (χ)Eχ,χ′ ↪→ Wχ,3. To conclude it suffices to check that∑

χ′∈E (χ)

Eχ,χ′ =
⊕

χ′∈E (χ)

Eχ,χ′ .
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It is equivalent to show [
∑

χ′ Eχ,χ′ : χ] = 2f , equivalently [Q : χ] = 1, where

Q denotes the quotient of Wχ,3 by
∑

χ′ Eχ,χ′ . Since [Wχ,3 : χ′] = 1 for any
χ′ ∈ E (χ), we have [Q : χ′] = 0, and Q admits only χ as subquotients. Since
the cosocle of Q is χ and Ext1I/Z1

(χ, χ) = 0, we must have Q = χ. This
finishes the proof.

Corollary 3.3. The I-representation Wχ,3 is annihilated by m2
K1

.

Proof. Let W ′ be the subrepresentation of Wχ,3 defined by

0 → soc(Wχ,3) → W ′ →
⊕
j∈S

χα−1
j → 0

and W ′′ the corresponding quotient. It is easy to see that W ′ is isomorphic
to χ⊕f ⊕ (⊕j∈SEχ,χα−1

j
), thus W ′ is annihilated by mK1

, as each Eχ,χα−1
j

is. On the other hand, by (3.3), W ′′ embeds in ⊕j∈SEχαj ,χ, hence is also
annihilated by mK1

. The result follows.

3.2. Induced representations

In this subsection, we study the structure of IndKI Wχ,2.
Let r be the unique integer in {0, . . . , q−2} such that χ(

(
a 0
0 d

)
) = arη(ad)

for some character η : F×
q → F×. Write r =

∑
i∈S piri with 0 ≤ i ≤ p − 1.

For n ≥ 0, we say χ is n-generic, if n ≤ ri ≤ p− 2− n for all i.
Following [15, §2], we let P(x0,· · ·, xf−1) be the subset of I(x0, · · · , xf−1)

consisting of λ such that λ0(x0) ∈ {x0, p− 1− x0} if f = 1, and if f ≥ 2,

λi(xi) ∈ {xi, xi − 1, p− 2− xi, p− 1− xi}, ∀i ∈ S.

For λ ∈ P(x0, · · · , xf−1), set

J(λ)
def
= {i ∈ S, λi(xi) ∈ {p− 2− xi, p− 1− xi}} ⊆ S.

In this way, one checks that P(x0, · · · , xf−1) is in bijection to the set of
subsets of S. By [15, Lem. 2.2], IndKI χ is multiplicity free with Jordan–
Hölder factors

(λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)η

for λ ∈ P(x0, · · · , xf−1). For notational convenience, if τ ∈ JH(IndKI χ) and
corresponds to λ, we also write J(τ) for J(λ).
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Since we prefer to use IndKI χ rather than IndKI χs, to be compatible
with the notation in [15, §2], we introduce the following notation. Let σ∅ =
(p− 1− r0, · · · , p− 1− rf−1)⊗ detrη. For J ⊂ S, let λJ ∈ P(x0, · · · , xf−1)
be the unique element with J(λJ) = J and set (as in (2.2))

σJ
def
= λJ(σ∅).

Note that in the case r �= 0, the socle (resp. cosocle) of IndKI χ is irreducible
and isomorphic to σ∅ (resp. σS). With the notation introduced at the begin-
ning of §2, we have σ∅ = σχs and σS = σχ. Moreover, χ is n-generic if and
only if σχ is n-generic.

Lemma 3.4. Let χ be a 2-generic character. Then IndKI Wχ,2 is multiplicity
free.

Proof. This is a direct check using the 2-genericity of χ.

Definition 3.5. Let τ (resp. τ ′) be a Jordan–Hölder factor of IndKI χ (resp.
IndKI χ′) such that Ext1K/Z1

(τ, τ ′) �= 0. We say that the extension Eτ ′,τ occurs

in IndKI Eχ′,χ if IndKI Eχ′,χ admits a subquotient isomorphic to Eτ ′,τ .

Lemma 3.6. Let λ, λ′ ∈ P(x0, · · · , xf−1). Assume that for some j ∈ S,

j − 1 /∈ J(λ), J(λ′) = J(λ) ∪ {j − 1}.

If f = 1, then λ0(x0) = x0, λ
′
0(x0) = p− 1− x0, and λ′ = μ−

0 ◦ λ. If f ≥ 2,
then

λ′ =

{
μ−
j ◦ λ if λj(xj) = xj (⇔ λ′

j(xj) = xj − 1)

μ+
j ◦ λ if λj(xj) = p− 2− xj (⇔ λ′

j(xj) = p− 1− xj).

Conversely, given λ such that j−1 /∈ J(λ) and define λ′ by the above formula,
then J(λ′) = J(λ) ∪ {j − 1}.

Proof. This is a direct check by definition of P(x0, · · · , xf−1).

From now on, let χ be a 2-generic character of I and χ′ ∈ E (χ).

Lemma 3.7. Assume χ′ = χα−1
j for some j ∈ S. Let τ (resp. τ ′) be a

Jordan–Hölder factor of IndKI χ (resp. IndKI χ′), with parametrizing subset
J(τ) (resp. J(τ ′)). Then the following statements are equivalent:

(i) Ext1Γ(τ
′, τ) �= 0;

(ii) j − 1 /∈ J(τ) and J(τ ′) = J(τ) ∪ {j − 1}.
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If these conditions hold, then Eτ ′,τ occurs in IndKI Eχ′,χ.

Proof. We only treat the case f ≥ 2 (the case f = 1 can be treated similarly).
Let σ∅ (resp. σ′

∅) be the socle of IndKI χ (resp. IndKI χ′), and λ (resp. λ′) be
the element of P(x0, · · · , xf−1) such that τ = λ(σ∅) (resp. τ ′ = λ′(σ′

∅)).

One checks that σ∅ = δ−j (σ
′
∅).

Assume (ii) holds. Using Lemma 3.6, we have (since f ≥ 2)

τ = λ(σ∅) = (λ ◦ δ−j )(σ′
∅) = (μ∗

j ◦ λ′ ◦ δ−j )(σ′
∅)

where ∗ = + (resp. ∗ = −) if λj(xj) = xj (resp. if λj(xj) = p − 2 − xj).
As noted in the proof of Lemma 2.21(ii), we have correspondingly λ′ ◦ δ−j =

δ−j ◦ λ′ (resp. λ′ ◦ δ−j = δ+j ◦ λ′). Hence, we finally obtain τ = (μ∓
j ◦ λ′)(σ′

∅)
and proves (ii) ⇒ (i). To prove (i) ⇒ (ii), running back the above argument
and using Lemma 2.1, we need to show that the equation λ ◦ δ−j = μ∗

i ◦ λ′

for (i, ∗) ∈ S × {+,−} admits a unique solution, and we may conclude by
Lemma 3.6. We leave the details to the reader.

The last statement is a consequence of [15, Lem. 18.4], which says that
either Eτ ′,τ or Eτ,τ ′ occurs in IndKI Eχ′,χ, but it is clear that Eτ,τ ′ can not
occur.

Lemma 3.8. Assume χ′ = χαj for some j ∈ S. Let τ (resp. τ ′) be a
Jordan–Hölder factor of IndKI χ (resp. IndKI χ′), with parametrizing subset
J(τ) (resp. J(τ ′)). Then the following statements are equivalent:

(i) Ext1Γ(τ
′, τ) �= 0;

(ii) j − 1 /∈ J(τ ′) and J(τ) = J(τ ′) ∪ {j − 1}.

If these conditions hold, then Eτ ′,τ occurs in IndKI Eχ′,χ.

Proof. The equivalence (i) ⇔ (ii) is checked as in Lemma 3.7. In particular,
if we let σ∅, σ

′
∅, λ, λ

′ be as in the proof of loc. cit., then τ = (μ∗
j ◦ λ′)(σ′

∅).

Note, however, that the assumption χ′ = χαj implies σ∅ = δ+j (σ
′
∅).

Since IndKI Eχ′,χ is multiplicity free by Lemma 3.4, there exists a unique
subrepresentation, say Vτ ⊂ IndKI Eχ′,χ, with cosocle τ , and Eτ ′,τ occurs in
IndKI Eχ′,χ if and only if Vτ admits Eτ ′,τ as a quotient. It is clear that Vτ

fits in a short exact sequence

(3.4) 0 → Vτ ∩ IndKI χ′ → Vτ → I(σ∅, τ) → 0.

Here, note that since IndKI Eχ′,χ is a Γ-representation as Eχ′,χ is by [43,
Lem. 2.4(ii)], the representation I(σ∅, τ) is well-defined by §2.1. We claim
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that Vτ ∩ IndKI χ′ �= 0. Otherwise, we would obtain a K-equivariant em-
bedding I(σ∅, τ) ↪→ IndKI Eχ′,χ, hence a nonzero I-equivariant morphism
I(σ∅, τ) → Eχ′,χ by Frobenius reciprocity. However, using the explicit basis
given in [15, Lem. 2.7(ii)] and the assumption j − 1 ∈ J(τ), one checks that
I(σ∅, τ)|I does not admit Eχ′,χ as a quotient (this holds true even when
f = 1 in which case I(σ∅, τ) is equal to IndKI χ).

The claim implies that σ′
∅ ↪→ Vτ , hence Vτ admits I(σ′

∅, τ) as a quotient.
It suffices to prove that Eτ ′,τ occurs in I(σ′

∅, τ) (as a quotient), or equiva-
lently τ ′ is a subquotient of I(σ′

∅, τ). Note that I(σ′
∅, τ) is a Γ-representation,

because IndKI Eχ′,χ is. Viewing both τ and τ ′ as subquotients of InjΓ σ
′
∅ and

using Proposition 2.4, it suffices to check that τ and τ ′ are compatible and
S(τ ′) ⊂ S(τ). We have seen that τ = (μ∗

i ◦ λ′)(σ′
∅) at the beginning of the

proof. By Lemma 2.6(ii), we have μ∗
i ◦ λ′ and λ′ are always compatible and

S(μ∗
i ◦ λ′) = {j}ΔS(λ′) = S(λ′) ∪ {j};

here the last equality holds as j /∈ S(λ′) (equivalent to j − 1 /∈ J(λ′), see
[15, §2]). This completes the proof.

Let τ be a Jordan–Hölder factor of IndKI Wχ,2. Since IndKI Wχ,2 is mul-
tiplicity free, there exists a unique (up to scalar) nonzero K-equivariant
morphism

(3.5) φτ,χ,2 : ProjΓ̃ τ → IndKI Wχ,2.

For our purposes, χ will be fixed while τ may vary among subquotients of

IndKI χ, so we omit χ in the notation and write simply φτ,2
def
= φτ,χ,2. It is

clear that [Coker(φτ,2) : τ ] = 0.

Proposition 3.9. Assume τ is a Jordan–Hölder factor of IndKI χ. Then
Ext1K/Z1

(τ ′, τ) = 0 for any τ ′ ∈ JH(IndKI soc(Wχ,2)) ∩ JH(Coker(φτ,2)).

Proof. There exists a unique χ′ ∈ socI(Wχ,2) such that τ ′ ∈ JH(IndKI χ′).
Thus, by composing φτ,2 with the natural projection IndKI Wχ,2 � IndKI
Eχ′,χ, we are reduced to the case of ProjΓ̃ τ → IndKI Eχ′,χ and we conclude
by Lemmas 3.7 and 3.8.

3.2.1. Generalization. In this subsection, we prove a generalization of
Proposition 3.9. Let χ be a 2-generic character of I.

Proposition 3.10. Let τ be a Jordan–Hölder factor of IndKI Wχ,3.
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(i) There exists a morphism φτ : ProjΓ̃ τ → IndKI Wχ,3 such that [Coker
(φτ ) : τ ] = 0.

(ii) For morphisms φτ in (i), Im(φτ ) does not depend on the choice of φτ .

Proof. (i) Since IndKI Wχ,2 and IndKI Wχ,3 have the same Jordan–Hölder
factors up to multiplicity, τ also occurs in IndKI Wχ,2. By projectivity of
ProjΓ̃ τ , we may lift φτ,2 to a morphism φτ , making the following diagram
commutative

ProjΓ̃ τ
φτ

φτ,2

IndKI Wχ,3

IndKI Wχ,2.

We need to prove that [Coker(φτ ) : τ ] = 0. The case τ ∈ JH(IndKI χ′) for
χ′ ∈ E (χ) is obvious, so we assume τ ∈ JH(IndKI χ) for the rest.

First treat the case τ = σS , the cosocle of Ind
K
I χ. This case is essentially

proved in [12, Prop. 6.4.1]. Assume [Coker(φσS ) : σS ] ≥ 1 for a contradiction.
We may find a quotient of Coker(φσS ), say Q, such that [Q : σS ] = 1.
Consider the induced I-equivariant morphism f : Wχ,3 → Q|I . Since [Q :
σS ] = 1, we have dimFHomI(χ,Q) ≤ 1. Thus, f must factor through a
quotient of Wχ,3, say W , which satisfies the assumptions of [12, Prop. 6.4.1]
and Q is a quotient of IndKI W . By loc. cit., Q is a quotient of IndKI Wχ,2,
hence of Coker(φσS ,2), but this is impossible as [Coker(φσS ,2) : σS ] = 0. Note
that the genericity condition on χ of loc. cit. is slightly stronger than ours,
but it is caused by the use of [12, Prop. 6.3.5] which can be replaced by our
Proposition 3.9.

Now we treat the general case τ ∈ JH(IndKI χ). The case for σS treated
above implies [Coker(φσS ) : τ ] = 0 as well, as σS is the cosocle of IndKI χ.
Thus Im(φτ ) is contained in Im(φσS ), and by the projectivity of ProjΓ̃ τ
there exists a morphism h : ProjΓ̃ τ → ProjΓ̃ σS such that φτ = φσS ◦ h. By
the construction, one checks that the composition

ProjΓ̃ τ
h→ ProjΓ̃ σS � I(τ, σS)

is nonzero, where I(τ, σS) is as in Theorem 2.30. We deduce that [Coker(h) :
τ ] = 0, because any quotient of ProjΓ̃ σS in which τ occurs must admit
I(τ, σS) as a quotient by Theorem 2.30. By the snake lemma, we have an
exact sequence

Coker(h) → Coker(φτ ) → Coker(φσS ) → 0,
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from which the result follows.

(ii) Fix a morphism φτ as in (i). It suffices to show that if ϕ : ProjΓ̃ τ →
IndKI Wχ,3 is any K-equivariant morphism, then Im(ϕ) ⊂ Im(φτ ). But,

if it were not the case, the composite morphism Im(ϕ) ↪→ IndKI Wχ,3 �
Coker(φτ ) would be nonzero. Since Im(ϕ) has cosocle τ , we get [Coker(φτ ) :

τ ] �= 0, a contradiction to (i).

Corollary 3.11. Let τ1, τ2 be Jordan–Hölder factors of IndKI Wχ,3. Let φτi :

ProjK/Z1
τi → IndKI Wχ,3 be a morphism such that [Coker(φτi) : τi] = 0.

Then Im(φτ1) ⊆ Im(φτ2) if one of the following cases happens:

(a) both τ1 and τ2 are subquotients of IndKI χ and J(τ1) ⊆ J(τ2);

(b) both τ1 and τ2 are subquotients of IndKI χ′ for some χ′ ∈ E (χ), and

J(τ1) ⊆ J(τ2);

(c) τ1 (resp. τ2) is a subquotient of IndKI χ′ with χ′ ∈ E (χ) (resp. of

IndKI χ), and Ext1
Γ̃
(τ1, τ2) �= 0.

Proof. For i ∈ {1, 2}, consider the morphism (3.5)

φτi,2 : ProjΓ̃ τi → IndKI Wχ,2.

We first prove

(3.6) Im(φτ1,2) ⊂ Im(φτ2,2)

in the three cases listed in the corollary. Since IndKI Wχ,2 is multiplicity free

and Im(φτ1,2) has cosocle isomorphic to τ1, it suffices to prove [Coker(φτ2,2) :

τ1] = 0. This is clear in Case (a) by further projecting to IndKI χ, and also

in Case (b) because Im(φτi,2) is contained in IndKI χ′. In Case (c), it follows

from Proposition 3.9.

Next, by projectivity of ProjΓ̃ τ and (3.6), we may lift φτ1,2 to ψ :

ProjΓ̃ τ1 → ProjΓ̃ τ2, making the following diagram commutative

ProjΓ̃ τ1

ψ
φτ1,2

ProjΓ̃ τ2
φτ2

IndKI Wχ,3 IndKI Wχ,2.

By Proposition 3.10(ii), we have Im(φτ2 ◦ ψ) = Im(φτ1), hence Im(φτ1) ⊂
Im(φτ2) as desired.
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3.3. The representation Θτ

We construct a certain Γ̃-representation which has an analogous submodule
structure as Wχ,3. Let χ be a 2-generic character of I.

Proposition 3.12. For any Jordan–Hölder factor τ of IndKI χ, IndKI Wχ,3

admits a subquotient, denoted by Θτ , satisfying the following properties:

(i) cosocΓ̃(Θτ ) is isomorphic to τ and socΓ̃(Θτ ) isomorphic to τ⊕2f ;
(ii) radΓ̃(Θτ )/ socΓ̃(Θτ ) is semisimple and isomorphic to

⊕
τ ′∈E (τ) τ

′.

Proof. First note that τ is 1-generic as χ is 2-generic. Hence, all the μ±
i (τ)

are well-defined and so |E (τ)| = 2f .
Let φτ : ProjΓ̃ τ → IndKI Wχ,3 be a morphism as in Proposition 3.10.

We will construct Θτ as a certain quotient of Im(φτ ); actually we just take
Θτ to be the quotient of Im(φτ ) by the largest subrepresentation in which τ
does not occur. But, to verify condition (i) we divide this process into two
steps.

First, by Proposition 3.10 we have

(3.7) [Im(φτ ) : τ ] = [IndKI Wχ,3 : τ ] = 2f + 1.

Let σ∅ denote the socle of IndKI χ. Since χ⊕2f ↪→ socI(Wχ,3), we obtain an
embedding

I(σ∅, τ)
⊕2f ↪→ IndKI χ⊕2f ↪→ IndKI Wχ,3

whose image is contained in Im(φτ ) by Proposition 3.10. In particular, mod-
ulo rad(I(σ∅, τ))

⊕2f , we obtain a quotient of Im(φτ ), say Q, such that τ⊕2f

embeds in Q. Moreover, by (3.7), it is easy to see that dimFHomΓ̃(τ,Q) =
2f . Next, we define Θτ to be the quotient of Q by the largest subrepresen-
tation of Q in which τ does not occur. It is then clear that Condition (i) is
satisfied, and (ii) follows from Corollary 2.32 (as |E (τ)| = 2f).

Note that Θτ can be defined for any 2-generic Serre weight τ , taking
χ = χτ in Proposition 3.12.

Corollary 3.13. Let τ be a 2-generic Serre weight. Then Ext1
Γ̃
(Θτ , τ) = 0.

Proof. From the exact sequence 0 → soc(Θτ ) → Θτ → Θτ/ soc(Θτ ) → 0,
we obtain

0 → HomΓ̃(soc(Θτ ), τ) → Ext1
Γ̃
(Θτ/ soc(Θτ ), τ)

→ Ext1
Γ̃
(Θτ , τ) → Ext1

Γ̃
(soc(Θτ ), τ) = 0
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where the vanishing of the last term follows from Proposition 3.12(i) and

the fact Ext1
Γ̃
(τ, τ) = 0 by Lemma 2.10(i) (note that τ is 1-generic as χ is 2-

generic). By Proposition 3.12(i), it suffices to show dimF Ext
1
Γ̃
(Θτ/ soc(Θτ ),

τ) ≤ 2f . Using again the fact Ext1
Γ̃
(τ, τ) = 0, the exact sequence 0 →

⊕τ ′∈E (τ)τ
′ → Θτ/ soc(Θτ ) → τ → 0 induces an injection

Ext1
Γ̃
(Θτ/ soc(Θτ ), τ) ↪→

⊕
τ ′∈E (τ)

Ext1
Γ̃
(τ ′, τ),

and the result follows because dimExt1
Γ̃
(τ ′, τ) = 1 for any τ ′ ∈ E (τ).

Corollary 3.14. Keep the notation of Proposition 3.12. Let Q be a quotient

of ProjΓ̃ τ . Assume that there exists an injection τ⊕m ↪→ Q for some m ≥ 0,

such that Q/τ⊕m has Loewy length 2 and fits in a short exact sequence

0 → S → Q/τ⊕m → τ → 0

where S is a subrepresentation of
⊕

τ ′∈E (τ) τ
′. Then Q is a quotient of Θτ

(in particular m ≤ 2f).

Proof. By Proposition 3.12, there is a short exact sequence 0→
⊕

τ ′∈E (τ) τ
′→

Θτ/τ
⊕2f → τ → 0. As a consequence, the assumption on Q implies a surjec-

tion Θτ/τ
⊕2f � Q/τ⊕m, thus a surjection ι : Θτ � Q/τ⊕m. Corollary 3.13

implies that the natural morphism HomΓ̃(Θτ , Q) � HomΓ̃(Θτ , Q/τ⊕m) is

surjective. Therefore, ι can be lifted to a morphism Θτ → Q, which is sur-

jective (being surjective on cosocles), as required.

Corollary 3.15. The representation Θτ constructed in Proposition 3.12

does not depend on the choice of χ.

Proof. It is a direct consequence of Corollary 3.14.

By a similar proof of Lemma 3.2, we have the following result showing

that Θτ has an analogous structure as Wχ,3.

Corollary 3.16. For any τ ′ ∈ E (τ), there exist both an embedding Eτ,τ ′ ↪→
Θτ and a quotient Θτ � Eτ ′,τ . Moreover, Θτ fits in a short exact sequence

(3.8) 0 →
⊕

τ ′∈E (τ)

Eτ,τ ′ → Θτ → τ → 0.
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3.4. The representation Θord
τ

Keep the notation of the last subsection. In this subsection, we define a

certain quotient of Θτ which is related to ordinary parts of representations

of GL2(L) studied in §5.
Fix a Serre weight τ which is a Jordan–Hölder factor of IndKI χ for some

2-generic character χ. For example, τ can be any 2-generic Serre weight.

Lemma 3.17. There exists a unique quotient of Θτ , denoted by Θord
τ , which

has Loewy length 3 and satisfying the following properties:

(i) soc(Θord
τ ) is isomorphic to τ⊕f ;

(ii) rad(Θord
τ )/ soc(Θord

τ ) is semisimple and isomorphic to
⊕

i∈S μ−
i (τ).

Proof. With the notation of Corollary 3.16, it suffices to take Θord
τ to be the

quotient of Θτ by ⊕τ ′Eτ,τ ′ , where τ ′ runs over the Serre weights {μ+
i (τ), i ∈

S}.

The proof of Lemma 3.17 shows that Θord
τ fits in a short exact sequence

(3.9) 0 →
⊕
i∈S

Eτ,μ−
i (τ) → Θord

τ → τ → 0.

For a smooth representation V of K, denote by VK1
the space of K1-

coinvariants of V ; it is equal to the largest quotient of V on which K1 acts

trivially.

Lemma 3.18. We have (Θord
τ )K1

= Θord
τ / soc(Θord

τ ). Moreover, it is a quo-

tient of IndKI χτ .

Proof. Using Lemma 2.10, it is easy to check that a Γ̃-representation V

satisfying 0 →
⊕

i∈S μ−
i (τ) → V → τ → 0 and cosocΓ̃(V ) = τ is unique (up

to isomorphism) and is actually a Γ-representation. Lemma 3.17(ii) implies

that Θord
τ / soc(Θord

τ ) is such a representation. On the other hand, it follows

from [15, Thm. 2.4] that IndKI χτ also admits such a representation as a

quotient. This proves the second assertion and that Θord
τ / soc(Θord

τ ) is a

quotient of (Θord
τ )K1

.

Recall that soc(Θord
τ ) ∼= τ⊕f by Lemma 3.17(i). To prove the first asser-

tion, it suffices to prove

Ext1Γ
(
Θord

τ / soc(Θord
τ ), τ

)
= 0.
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To simplify the notation, write A for Θord
τ / soc(Θord

τ ), and B for the corre-
sponding kernel fitting in the exact sequence

0 → B → IndKI χτ → A → 0.

We may identify IndKI χτ with IndΓP (Fq)
χτ . Using the fact that IndΓP (Fq)

χτ

is multiplicity free, we get HomΓ(B, τ) = 0. Hence, it suffices to prove
Ext1Γ(Ind

Γ
P (Fq)

χτ , τ) = 0, equivalently Ext1P (Fq)
(χτ , τ) = 0 by Shapiro’s

lemma. But this follows from (a variant of) [44, Prop. 2.5]. Note that, if
f = 1 then we need dimF τ �= p−2 to ensure the vanishing of Ext1P (Fp)

(χτ , τ),
whereas no genericity condition is needed if f ≥ 2.

Lemma 3.19. There exists an exact sequence

0 → τ⊕f → Θτ → (Θτ )K1
→ 0.

Proof. In fact, we can determine (Θτ )K1
explicitly. First observe that there

exists a unique quotient Q of ProjΓ τ , which has Loewy length 3 and such
that

• soc(Q) = τ⊕f ;
• rad(Q)/ soc(Q) ∼=

⊕
τ ′∈E (τ) τ .

Indeed, it suffices to take Q to be the dual of A′
σ defined in [47, Def. 2.5] with

σ = τ∨. Corollary 3.14 shows that Q is a quotient of Θτ , hence of (Θτ )K1
.

In particular, [(Θτ )K1
: τ ] ≥ f + 1.

By construction, there is a short exact sequence

0 →
⊕
i∈S

Eτ,μ+
i (τ) → Θτ → Θord

τ → 0

which induces

(3.10)
⊕
i∈S

Eτ,μ+
i (τ)

ι→ (Θτ )K1
→ (Θord

τ )K1
→ 0.

By Lemma 3.18, [(Θord
τ )K1

: τ ] = 1. Comparing the multiplicity of τ , we see
that ι has to be injective because it is injective on socle. This implies that
[(Θτ )K1

: τ ] = f +1 and a comparison of Jordan–Hölder factors using (3.10)
shows Q = (Θτ )K1

.

The next result will be used in §8.
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Proposition 3.20. There exists a short exact sequence

(3.11) 0 −→ Θτ −→ Θord
τ ⊕ (Θτ )K1

(q1,q2)−→ (Θord
τ )K1

−→ 0

where q1, q2 are natural projections.

Proof. Let V be the kernel of the map (q1, q2); we need to prove V ∼= Θτ .
Taking K1-coinvariants of 0 → V → Θord

τ ⊕ (Θτ )K1
→ (Θord

τ )K1
→ 0 induces

a sequence

0 → VK1
→ (Θord

τ )K1
⊕ (Θτ )K1

→ (Θord
τ )K1

→ 0,

which is exact because the morphism[
H1(K1, (Θτ )K1

) → H1(K1, (Θ
ord
τ )K1

)
]
= H1(K1,F)⊗

[
(Θτ )K1

→ (Θord
τ )K1

]
is (automatically) surjective. This implies

(1) an isomorphism VK1
∼= (Θτ )K1

and
(2) a short exact sequence using Lemmas 3.17 and 3.18

0 → τ⊕f → V → VK1
→ 0.

From (1) we deduce that cosoc(V ) ∼= τ and so V is a quotient of ProjΓ̃ τ .
Using Corollary 3.14 and Lemma 3.19, it is easy to check that V = Θτ .

4. Combinatorics à la Breuil-Paškūnas

In this section, we recall and generalize a construction of Breuil and Paškūnas
([15, §13]). Keep the notation in previous sections. In particular, K =
GL2(OL), Γ = F[GL2(Fq)] and Γ̃ = F[[K/Z1]]/m

2
K1

.
Fix a continuous representation ρ : GL → GL2(F), which is generic in

the sense of [15, §11], that is, ρ|I(Qp/L)
is isomorphic to one of the following

two forms (always possible up to twist)

1.

(
ω
∑f−1

i=0 pi(ri+1)
f ∗

0 1

)
with 0 ≤ ri ≤ p−3 for each i, and not all ri equal

to 0 or equal to p− 3;

2.

(
ω
∑f−1

i=0 pi(ri+1)
2f 0

0 ω
pf

∑f−1
i=0 pi(ri+1)

2f

)
with 1 ≤ r0 ≤ p − 2, and 0 ≤ ri ≤

p− 3 for i > 0.
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where ωf ′ is Serre’s fundamental character of I(Qp/L) of level f ′ for f ′ ∈
{f, 2f}.

To ρ is associated a set of Serre weights, denoted by D(ρ) (see [15,
§11]). The genericity of ρ implies that the cardinality of D(ρ) is 2f if ρ is
semisimple, and is 2d for some 0 ≤ d ≤ f − 1 if ρ is reducible nonsplit. If
ρ is reducible and if ρss denotes the semisimplification of ρ, then we always
have D(ρ) ⊆ D(ρss). In fact, by [8, §4], the set D(ρss) is parametrized
by a certain set RD(x0, · · · , xf−1) of f -tuples λ = (λj(xj))j∈S satisfying
λj(xj) ∈ {xj , xj +1, p− 3−xj , p− 2−xj} and some other conditions, in the
sense that

(4.1) D(ρss) =
{
(λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1) :

λ ∈ RD(x0, · · · , xf−1)
}
.

Then D(ρ) corresponds exactly to the subset of RD(x0, · · · , xf−1) consisting
of λ such that λj(xj) ∈ {p − 3 − xj , xj + 1} implies j ∈ Jρ, where Jρ is a
certain subset of S uniquely determined by the Fontaine-Laffaille module of
ρ (see [8, §4]).

It is constructed in [15, §13] a finite dimensional representation D0(ρ) of
Γ such that

(i) socΓD0(ρ) = ⊕σ∈D(ρ)σ;
(ii) any Serre weight of D(ρ) occurs at most once as a subquotient in

D0(ρ);
(iii) D0(ρ) is maximal with respect to properties (i), (ii).

By [15, Prop. 13.1], we have a decomposition of Γ-representations

D0(ρ) =
⊕

σ∈D(ρ)

D0,σ(ρ)

with each D0,σ(ρ) satisfying socΓD0,σ(ρ) = σ. Moreover, D0(ρ) is multiplic-
ity free by [15, Cor. 13.5].

The aim of this section is to generalize the above construction to Γ̃-
representations and relate it to a certain class of admissible smooth GL2(L)-
representations over F.

4.1. The representation D̃0(ρ)

Proposition 4.1. Let D be a finite set of distinct Serre weights. Then there
exists a unique (up to isomorphism) finite dimensional representation D̃0 of
Γ̃ (over F) such that
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(i) socΓ̃ D̃0 =
⊕

σ∈D σ;

(ii) any Serre weight of D occurs at most once as a subquotient in D̃0;

(iii) D̃0 is maximal with respect to properties (i), (ii).

Moreover, there is an isomorphism of Γ̃-representations D̃0 =
⊕

σ∈D D̃0,σ

with socΓ̃ D̃0,σ = σ.

Proof. The proof is the same as [15, Prop. 13.1].5

Corollary 4.2. With the notation of Proposition 4.1, for σ ∈ D , D̃0,σ is the

largest subrepresentation of InjΓ̃ σ such that [D̃0,σ : σ] = 1 and [D̃0,σ : τ ] = 0

for any τ ∈ D with τ �= σ.

Proof. If D̃′
0,σ ⊆ InjΓ̃ σ is another subrepresentation satisfying the conditions

in the corollary, then the sum D̃0,σ + D̃′
0,σ also satisfies these conditions by

the proof of [15, Prop. 13.1]. But, the direct sum (D̃0,σ+D̃′
0,σ)⊕(⊕τ �=σD̃0,τ )

also satisfies the conditions of Proposition 4.1, so we must have D̃0,σ+D̃′
0,σ =

D̃0,σ, i.e. D̃
′
0,σ ⊆ D̃0,σ.

Definition 4.3. Define D̃0(ρ) to be the representation attached to D = D(ρ)

by Proposition 4.1.

By Proposition 4.1, there is a direct sum decomposition

(4.2) D̃0(ρ) =
⊕

σ∈D(ρ)

D̃0,σ(ρ)

with socΓ̃ D̃0,σ(ρ) = σ.

Definition 4.4. We say ρ is strongly generic if, in Case (1), 2 ≤ ri ≤ p−5

for each i, or in Case (2), 3 ≤ r0 ≤ p− 4 and 2 ≤ ri ≤ p− 5 for i > 0.

Lemma 4.5. Assume ρ is strongly generic. Then any σ ∈ D(ρ) is 2-generic.

Proof. It is a direct check using the explicit description of D(ρ) in [15,

§11].

The main result of this subsection is the following.

5At the end of the proof of [15, Prop. 13.1], the idempotent eσ ∈ EndΓ(InjΓ τ)
need not be unique; but we can certainly choose eσ ∈ EndΓ(Inj τ) for each σ such
that

∑
σ eσ = 1, and the rest of the proof goes through.



310 Yongquan Hu and Haoran Wang

Theorem 4.6. Assume ρ is strongly generic. The representation D̃0(ρ) is
multiplicity free. Moreover, for any σ ∈ D(ρ), we have D0,σ(ρ) ⊂ D̃0,σ(ρ)

and D̃0,σ(ρ)
K1 ∼= D0,σ(ρ).

Proof. Using Lemma 4.8 below, the first assertion is proved by the same
argument as in [15, Cor. 13.5]. The second assertion is clear from the con-
struction.

Remark 4.7. A similar result is proved in [12, §6.3] when ρ is semisimple;
moreover, the set of Jordan–Hölder factors and the submodule structure of
D̃0(ρ) are determined.

For a Serre weight τ , define

�(ρ, τ)
def
= min{�(σ, τ), σ ∈ D(ρ)} ∈ Z>0 ∪ {+∞},

where �(σ, τ)
def
= +∞ if τ does not occur in InjΓ̃ σ, and is the Loewy length

of I(σ, τ) otherwise. Here, I(σ, τ) is the representation of Γ̃ constructed in
Theorem 2.23, well-defined thanks to Lemma 4.5. The following result is an
analog of [15, Lem. 12.8] in our setting.

Lemma 4.8. Assume ρ is strongly generic. Let τ be any Serre weight such
that �(ρ, τ) < +∞.

(i) There exists a unique σ ∈ D(ρ) such that �(σ, τ) = �(ρ, τ).
(ii) Let σ′ ∈ D(ρ) such that I(σ′, τ) �= 0. If σ′ �= σ with σ as in (i), then

I(σ′, τ) contains σ as a subquotient.

Proof. Let σ ∈ D(ρ) be a Serre weight such that

(4.3) �(σ, τ) = �(ρ, τ).

Also let σ′ ∈ D(ρ) be a Serre weight distinct with σ such that I(σ′, τ) �= 0.
We will prove that I(σ′, τ) contains σ as a subquotient, which will prove (i)
and (ii) simultaneously. In the exceptional case f = 1, σ = Sym2F2 ⊗ deta

and τ = Symp−1F2⊗deta+1, one checks that σ is the unique Serre weight in
D(ρ) such that �(σ, τ) < +∞, so the result is obvious and we exclude this
case in the rest.

Since I(σ, τ) �= 0 and I(σ′, τ) �= 0, we have the following possibilities:

(a) τ is an old Serre weight in both InjΓ̃ σ and InjΓ̃ σ
′, i.e. τ ∈ JH(InjΓ σ)∩

JH(InjΓ σ
′);

(b) τ is a new Serre weights in both InjΓ̃ σ and InjΓ̃ σ
′, i.e. τ /∈ JH(InjΓ σ)∪

JH(InjΓ σ
′);
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(c) τ is an old Serre weight in InjΓ̃ σ, but new in InjΓ̃ σ
′, i.e. τ ∈ JH(InjΓ σ)\

JH(InjΓ σ
′);

(c’) τ is a new Serre weight in InjΓ̃ σ, but old in InjΓ̃ σ
′, i.e. τ ∈ JH(InjΓ σ

′)\
JH(InjΓ σ).

In Case (a), we may view both σ and σ′ as subquotients of InjΓ τ . If
λ, λ′ ∈ I(x0, · · · , xf−1) correspond to σ, σ′ respectively, then [15, Lem. 12.6]
implies that the intersection λ ∩ λ′ ∈ I(x0, · · · , xf−1) (see [15, §12] for the
definition of λ ∩ λ′) corresponds again to a Serre weight in D(ρ), say σ′′. It
is clear that �(σ′′, τ) ≤ �(σ, τ), with equality if and only if σ′′ = σ. By (4.3)
we indeed have σ′′ = σ and σ occurs in I(τ, σ′) by [15, Lem. 12.5], hence
also in I(σ′, τ).

In Case (b), there exist uniquely determined (i, ∗) and (i′, ∗′) in S ×
{+,−} such that

τ ∈ JH(InjΓ δ
∗
i (σ)) ∩ JH(InjΓ δ

∗′

i′ (σ
′)).

Since σ′ occurs in InjΓ σ by [47, Prop. 2.24], we may write σ′ = μ(σ) for
μ ∈ I(x0, · · · , xf−1). Let λ (resp. λ′) be the element of I(x0, · · · , xf−1) such
that τ = λ(δ∗i (σ)) (resp. τ = λ′(δ∗

′

i′ (σ
′))). Using Lemma 2.1 together with

(a variant of) Lemma 2.7, we have

(4.4) λ′ ◦ δ∗′

i′ ◦ μ = λ ◦ δ∗i .

We have two possibilities: i = i′ or i �= i′.

(b1) Assume i = i′. Then by the proof of Lemma 2.15, precisely by (2.14)
and (2.15), we must have ∗ = ∗′. Moreover, using (2.14) (or (2.15),
depending on ∗), the equality λ′ ◦ δ∗i ◦ μ = λ ◦ δ∗i forces μi(xi) ∈
{xi, xi±1} and so δ∗i ◦μ = μ◦δ∗i . Hence, (4.4) becomes λ′◦μ◦δ∗i = λ◦δ∗i ,
equivalently, λ′ ◦ μ = λ. If we define τ ′

def
= λ(σ) = λ′(σ′), then τ ′ is

a common subquotient of InjΓ σ and InjΓ σ
′. Consequently, we may

view σ and σ′ as subquotients of InjΓ τ
′. As in Case (a), applying

[15, Lem. 12.6], we obtain a Serre weight σ′′ ∈ D(ρ) which occurs in
JH(I(σ, τ ′)) ∩ JH(I(σ′, τ ′)). On the other hand, by Corollary 2.35, τ ′

is a common subquotient of I(σ, τ) and I(σ′, τ), hence so is σ′′. By
(4.3), this forces σ′′ = σ, and so σ occurs in I(σ′, τ).

(b2) Assume i �= i′ (so f ≥ 2). Using (4.4) at i, we deduce from Lemma 2.17
(condition (a) in loc. cit. holds by Lemma 2.14) the following facts

• i /∈ S(λ), i ∈ S(μ);
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• μi(xi) ∈ {xi, xi ∗ 1, p− 2− xi, p− 2− xi − (∗1)}.
Let λ′′ ∈ I(x0, · · · , xf−1) be the unique element with S(λ′′) = {i}
and satisfying (2.13), i.e. (λ′′, ∅) ∈ I(i,∗) (see Definition 2.34) and let
σ′′ = λ′′(σ). On the one hand, we have σ′′ ∈ JH(I(σ, τ)) by Corollary
2.35. On the other hand, we have λ′′ ≤ μ, hence σ′′ ∈ JH(I(σ, σ′)) by
Proposition 2.4. By [47, Prop. 2.24], this implies σ′′ ∈ D(ρ). However,
it is clear that �(σ′′, τ) < �(σ, τ), which contradicts the choice of σ, see
(4.3).

In Case (c), we may view both τ and σ′ as subquotients of InjΓ σ (use
[47, Prop. 2.24] for σ′); let λ, λ′ ∈ I(x0, · · · , xf−1) be the corresponding
element, respectively. By Lemma 2.8, we have S(λ) ∩ S(λ′) �= ∅, otherwise
σ′ would occur in InjΓ τ , contradicting the assumption. We claim that

|S(λ) ∩ S(λ′)| = 1.

Let i ∈ S(λ)∩S(λ′). Then Lemma 2.5 implies that λ and λ′ are not compat-
ible at i; otherwise I(σ, σ′) and I(σ, τ) would contain a common irreducible
subquotient distinct with σ, say σ′′, and by [47, Prop. 2.24] σ′′ must lie in

D(ρ), contradicting (4.3). Set ν
def
= λ ◦ λ′−1 so that

τ = λ(σ) = ν(σ′).

Using the table in the proof of Lemma 2.6, a case-by-case check shows that

νi(xi) ∈ {p− xi, p− 4− xi, xi + 2, xi − 2}.

For example, if λ′
i(xi) = p− 1− xi, then λ′−1

i (xi) = p− 1− xi and λi(xi) ∈
{p− 3− xi, xi + 1} (as λ and λ′ are not compatible at i), so finally νi(xi) ∈
{xi − 2, p − xi}. Hence, when viewing τ as a subquotient of InjΓ̃ σ

′, τ is a
new Serre weight and must occur in InjΓ δ

∗
i (σ

′) for

(4.5) ∗ =

{
+ if νi(xi) ∈ {p− 4− xi, xi + 2}
− if νi(xi) ∈ {p− xi, xi − 2}.

By Lemma 2.15, this property determines uniquely i and the claim follows.
In summary, τ occurs in InjΓ δ

∗
i (σ

′), where i is the unique index in
S(λ) ∩ S(λ′) and ∗ is as in (4.5). Write τ = ν(σ′) = μ(δ∗i (σ

′)) with μ ∈
I(x0, · · · , xf−1). Using (4.5), one checks that μi(xi) ∈ {p − 2 − xi, xi}, i.e.
i /∈ S(μ). To prove that σ occurs in I(σ′, τ), by Corollary 2.35 it suffices to
check (λ′−1, ∅) ≤ (μ, (i, ∗)) or, equivalently, the following two conditions
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(c1) λ′−1 is compatible with μ!;
(c2) S(λ′−1) ⊆ S(μ) ∪ {i}, equivalently S(λ′−1)\{i} ⊂ S(μ)\{i}.

For (c1), the compatibility at j �= i follows from Lemma 2.6 because μj =
νj = λj ◦ λ′−1

j for j �= i; on the other hand, using Lemma 2.17 the relation

μi(xi ∗ 2) = λi(λ
′−1
i (xi)) and the fact μi(xi) ∈ {p − 2 − xi, xi} imply that

λ′−1
i (xi) satisfies (2.13), hence λ′−1

i is compatible with μ! at i (cf. Definition
2.19). For (c2), we note that

S(λ′−1)\{i} ⊆ S(ν)\{i} = S(μ)\{i}

where the inclusion follows from S(λ)∩S(λ′−1) = {i} using Lemma 2.6, and
the equality from the fact μj = νj for j �= i.

Finally, we prove that Case (c’) can not happen, which will finish the
proof of the lemma. Indeed, the same argument in Case (c) shows that σ′

(the old Serre weight) occurs in I(σ, τ) (where σ is the new Serre weight),
hence �(σ′, τ) < �(σ, τ), contradicting (4.3).

For the rest of this subsection, we assume ρ is strongly generic.

Corollary 4.9. Given τ ∈ D(ρ), the inclusion D0(ρ) ↪→ D̃0(ρ) induces an
isomorphism

(4.6) Ext1
Γ̃
(τ,D0(ρ))

∼−→ Ext1
Γ̃
(τ, D̃0(ρ)).

Proof. We first note that, by the proof of [15, Lem. 12.8], ⊕τ∈D(ρ) InjΓ τ and
D0(ρ) have the same set of Jordan–Hölder factors, ignoring multiplicities.
Since D̃0(ρ) is multiplicity free by Theorem 4.6, the quotient D̃0(ρ)/D0(ρ)
does not have common Jordan–Hölder factors with ⊕τ∈D(ρ) InjΓ τ . Using
Lemma 2.10 we get for τ ∈ D(ρ)

HomΓ̃(τ, D̃0(ρ)/D0(ρ)) = Ext1
Γ̃
(τ, D̃0(ρ)/D0(ρ)) = 0,

and the result follows.

In fact, we have the following finer property.

Lemma 4.10. Let σ, τ ∈ D(ρ) and assume σ �= τ . Then for any nonzero
subrepresentation Vσ of D̃0,σ(ρ) (hence σ ↪→ Vσ), the natural morphisms

Ext1
Γ̃
(τ, σ) → Ext1

Γ̃
(τ, Vσ) → Ext1

Γ̃
(τ, D̃0,σ(ρ))

are isomorphisms.



314 Yongquan Hu and Haoran Wang

Proof. First, the morphisms in the lemma are all injective, because [D̃0,σ(ρ) :
τ ] = 0 by Corollary 4.2. Hence, it suffices to prove that their composition is
an isomorphism. Using Corollary 4.9, it suffices to prove the natural mor-
phism

Ext1
Γ̃
(τ, σ) → Ext1

Γ̃
(τ,D0,σ(ρ))

is an isomorphism. It is proved in [47, Lem. 2.25] that the last morphism is
an isomorphism if we replace Ext1

Γ̃
by Ext1Γ (in loc. cit. ρ is only required

to be generic in the sense of [15, Def. 11.7]). Hence, it suffices to show
Ext1Γ(τ, σ)

∼= Ext1
Γ̃
(τ, σ) and similarly for D0,σ(ρ) in place of σ. Using the

Hochschild-Serre spectral sequence and the assumption σ �= τ , this follows
from the fact

HomΓ

(
τ, σ ⊗H1(K1/Z1,F)

)
= HomΓ

(
τ,D0,σ(ρ)⊗H1(K1/Z1,F)

)
= 0,

see Proposition 2.12 (applicable thanks to Lemma 4.5).

4.2. A combinatorial lemma

In this subsection, we assume ρ is generic in the sense of [15, Def. 11.7].

Let D1(ρ)
def
= D0(ρ)

I1 and D1,τ (ρ)
def
= D0,τ (ρ)

I1 for τ ∈ D(ρ). Given
χ ∈ JH(D1(ρ)), there exists a unique τ ∈ D(ρ) such that χ occurs inD1,τ (ρ).

Lemma 4.11. Keep the above notation. If σ ∈ D(ρ) is another Serre weight
which is also a Jordan–Hölder factor of IndKI χ, then J(σ) ⊆ J(τ), viewing
both σ, τ as subquotients of IndKI χ (cf. §3.2).
Proof. The cosocle (resp. socle) of IndKI χ is isomorphic to σχ (resp. σχs). By
assumption, σχ is a subquotient of D0,τ (ρ), i.e. �(ρ, σχ) = �(τ, σχ). Lemma
4.8(ii) implies that τ occurs in I(σ, σχ) as a subquotient. Equivalently, σ
occurs in I(σχs , τ) as a subquotient, and so J(σ) ⊆ J(τ) by [15, Cor. 4.11].

Lemma 4.12. Let χ, χ′ be two characters such that Ext1I/Z1
(χ, χ′) �= 0 and

assume χ, χ′ ∈ JH(D1(ρ)). Let τ ∈ D(ρ) (resp. τ ′ ∈ D(ρ)) be the Serre
weight such that χ ∈ JH(D1,τ (ρ)) (resp. χ′ ∈ JH(D1,τ ′(ρ))). Let J(τ) ⊂ S
(resp. J(τ ′)) be the subset parametrizing the position of τ (resp. τ ′) inside
IndKI χ (resp. in IndKI χ′).

(i) If χ′ = χα−1
j for some j ∈ S, then j − 1 /∈ J(τ) and J(τ ′) = J(τ) ∪

{j − 1}.
(ii) If χ′ = χαj for some j ∈ S, then j − 1 /∈ J(τ ′) and J(τ) = J(τ ′) ∪

{j − 1}.
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Moreover, we have Ext1K/Z1
(τ, τ ′) ∼= Ext1Γ(τ, τ

′) �= 0.

Proof. First assume ρ is reducible. Following [8, §4], we define PD(x0, · · · ,
xf−1) to be the set of f -tuples λ = (λi(xi))i∈S such that

• λi(xi) ∈ {xi, xi + 1, xi + 2, p− 3− xi, p− 2− xi, p− 1− xi},
• if λi(xi) ∈ {xi, xi + 1, xi + 2}, then λi+1(xi + 1) ∈ {xi+1, xi+1 + 2, p−
2− xi+1},

• if λi(xi) ∈ {p − 1 − xi, p − 2 − xi, p − 3 − xi}, then λi+1(xi+1) ∈
{p− 1− xi+1, p− 3− xi+1, xi+1 + 1},

• λi(xi) ∈ {p− 3− xi, xi + 2} implies i ∈ Jρ.

By [8, Prop. 4.2], the set JH(D1(ρ)) consists of the characters of I act-
ing on σI1 , where σ runs over the set of Serre weights associated to λ ∈
PD(x0, · · · , xf−1) as in (4.1).

Given λ ∈ PD(x0, · · · , xf−1), we define

Jmax
λ = δ

(
{i ∈ S : λi(xi) /∈ {p−3−xi, xi} and (i ∈ Jρ if λj(xi) = p−2−xi)}

)
where δ is the shift on J : i−1 ∈ δ(J) if and only if i ∈ J . By [8, Prop. 4.4], if
ψs ∈ D1,τ (ρ) for τ ∈ D(ρ) then, when viewed as a subquotient of IndKI (ψs),
τ is parametrized by Jmax

λ . Since our setting differs from that of [8] by a

conjugation, we make a change of variables, by setting ψ
def
= χs and ψ′ def

=
χ′s. Let λ, λ′ ∈ PD(x0, · · · , xf−1) be the elements corresponding to ψ, ψ′

respectively.
(i) The assumption χ′ = χα−1

j translates to ψ′ = ψαj . We have λi(xi) =
λ′
i(xi) if i �= j, and two possibilities if i = j:{

λj(xj) = xj
λ′
j(xj) = xj + 2

or

{
λj(xj) = p− 3− xj
λ′
j(xj) = p− 1− xj .

One checks that j − 1 /∈ Jmax
λ and Jmax

λ′ = Jmax
λ ∪ {j − 1}, as desired.

(ii) The assumption χ′ = χαj translates to ψ′ = ψα−1
j . We have λi(xi) =

λ′
i(xi) if i �= j, and two possibilities if i = j:{

λj(xj) = xj + 2
λ′
j(xj) = xj

or

{
λj(xj) = p− 1− xj
λ′
j(xj) = p− 3− xj .

One checks that j − 1 /∈ Jmax
λ′ and Jmax

λ = Jmax
λ′ ∪ {j − 1}, as desired.

The case ρ is irreducible can be treated in a similar way, using the
set PI D(x0, · · · , xf−1) in place of PD(x0, · · · , xf−1). Finally, the last
assertion follows from Lemmas 3.7 and 3.8, together with Lemma 2.10.
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Remark 4.13. It follows from the conclusion of Lemma 4.12 that if χ ∈
JH(D1(ρ)), then at most one of {χα±1

j : j ∈ S} can also occur in D1(ρ). Of
course, this can also be deduced from the property of PD(x0, · · · , xf−1).

Corollary 4.14. Let χ ∈ JH(D1(ρ)) and τ ∈ D(ρ) be the Serre weight such
that χ occurs in D1,τ (ρ). Let

φτ : ProjΓ̃ τ → IndKI Wχ,3,

be as in Proposition 3.10. Then JH(Coker(φτ )) ∩ D(ρ) = ∅.

Proof. Let σ ∈ D(ρ). We need to show that [Coker(φτ ) : σ] = 0. Clearly
we may assume σ ∈ JH(IndKI Wχ,3). Letting φσ : ProjΓ̃ σ → IndKI Wχ,3

be a morphism as in Proposition 3.10(i), it is equivalent to show Im(φσ) ⊂
Im(φτ ). We have two possibilities: σ is a subquotient of IndKI χ, or of IndKI χ′

for some χ′ ∈ E (χ).
If σ ∈ JH(IndKI χ), Lemma 4.11 implies that J(σ) ⊂ J(τ) if we view

both σ, τ as subquotients of IndKI χ, and we conclude by Corollary 3.11(a).
If σ ∈ JH(IndKI χ′) for some χ′ ∈ E (χ), then χ′ ∈ JH(D1(ρ)); let τ ′ ∈

D(ρ) be the unique Serre weight such that χ′ occurs in D1,τ ′(ρ). As above,
Lemma 4.11 implies that J(σ) ⊂ J(τ ′) if we view σ, τ ′ as subquotients of
IndKI χ′, hence Im(φσ) ⊂ Im(φτ ′) by Corollary 3.11(b). On the other hand,
we have Ext1K/Z1

(τ ′, τ) �= 0 by Lemma 4.12, hence Im(φτ ′) ⊂ Im(φτ ) by

Corollary 3.11(c). This finishes the proof.

4.3. Multiplicity one

Keep the notation of last subsections and assume ρ is strongly generic. Let π
be an admissible smooth G-representation over F (with a central character)
satisfying the following condition:

(a) πK1 ∼= D0(ρ), in particular socK π ∼= ⊕σ∈D(ρ)σ.

The aim of this subsection is to prove a criterion for π[m2
K1

] to be mul-
tiplicity free, see Theorem 4.21 below. By Theorem 4.6, this amounts to
proving that for any σ ∈ D(ρ),

(4.7) dimF HomΓ̃(ProjΓ̃ σ, π) = 1.

The main point of this criterion is that, when ρ is indecomposable, we only
need to check (4.7) for some σ ∈ D(ρ). Correspondingly, for our application
in §8 where ρ will be reducible nonsplit, the computation of various defor-
mation rings exactly allows us to check this condition for one special Serre
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weight in D(ρ), namely the “ordinary” Serre weight denoted by σ∅ there.
Another crucial point of the criterion is that we deduce at the same time

dimFHomI(Wχ,3, π) = 1, ∀χ ∈ JH(πI1),

which allows us to apply a result proved in [12, §5], to control the Gelfand-
Kirillov dimension of π, see Theorem 8.15 below.

Recall from §3 for the representations Wχ,n for n ≥ 1.

Proposition 4.15. For any χ ∈ JH(πI1), the natural morphism

HomI(χ, π) → HomI(Wχ,2, π)

is an isomorphism.

Proof. Let h : Wχ,2 → π|I be a nonzero morphism and

h̃ : IndKI Wχ,2 → π|K

be the induced morphism by Frobenius reciprocity. Assume that h is nonzero
when restricted to socI(Wχ,2), say h|χ′ �= 0 for some χ′ ↪→ Wχ,2. Remark
4.13 implies that h must factor through

Wχ,2 � Eχ′,χ ↪→ π.

The image of IndKI χ′ under h̃ has the form I(τ ′, σχ′), where τ ′ is the unique
Serre weight in D(ρ) such that χ′ occurs in D1,τ ′(ρ) and σχ′ denotes the

cosocle of IndKI χ′. In particular, τ ′ embeds in Im(h̃). On the other hand,
if τ ∈ D(ρ) denotes the Serre weight such that χ occurs in D1,τ (ρ), then
Lemma 4.12 implies that Ext1Γ(τ

′, τ) �= 0, and so the extension Eτ ′,τ is a

subquotient of Im(h̃) by Lemma 3.7 and Lemma 3.8.

Since Wχ,2 is annihilated by m2
K1

, so are IndKI Wχ,2 and Im(h̃). Hence,

there exists a nonzero morphism ProjΓ̃ τ → Im(h̃) whose image we denote
by Q. By the above discussion Eτ ′,τ occurs in Q (actually as a quotient).
We know that Q is annihilated by mK1

by Corollary 2.31 (condition (b) is
satisfied by [47, Prop. 2.24]), hence is contained in πK1 = D0(ρ) by (a). This
gives a contradiction because τ only occurs in the socle of D0(ρ).

Corollary 4.16. Let χ, χ′ ∈ JH(πI1) and assume Ext1I/Z1
(χ, χ′) �= 0. Then

there exists no I-equivariant embedding Eχ,χ′ ↪→ π|I .

Proof. This is a direct consequence of Proposition 4.15.
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Corollary 4.17. Let χ ∈ JH(πI1). Any I-equivariant morphism Wχ,3 → π|I
factors through Wχ,3.

Proof. The proof is as in Step 1 of [12, Prop. 6.4.6], using Proposition 4.15
as a replacement of [12, Lem. 6.4.4]. We briefly recall the argument. Let
f : Wχ,3 → π be an I-equivariant morphism. By definition, Wχ,3 is the
quotient of Wχ,3 by the direct sum of χ′′ in socI(Wχ,3) which are distinct
with χ, and each of these characters occurs once in socI(Wχ,3). Let χ

′′ �= χ
be such a character in socI(Wχ,3) such that f |χ′′ is nonzero. Then by the
connectedness of D1(ρ), see [12, Def. 6.4.2, Lem. 6.4.3],6 we may find χ′ ∈
E (χ)∩E (χ′′) with χ′ ∈ JH(πI1). By [12, Lem. 6.1.2], there exists an injection
Wχ′,2 ↪→ Wχ,3, hence f restricts to a morphism Wχ′,2 → π|I which does not
factor through the cosocle χ′, because it is nonzero on χ′′ which embeds in
Wχ′,2. This contradicts Proposition 4.15.

Recall from Proposition 3.12 the representation Θτ of Γ̃.

Proposition 4.18. Let τ ∈ D(ρ). Then the following two conditions are
equivalent:

(i) dimFHomK(ProjΓ̃ τ, π) = 1;
(ii) dimFHomK(Θτ , π) = 1.

Proof. Since Θτ is a quotient of ProjΓ̃ τ and τ ↪→ π, we have trivially
(i)⇒(ii).

(ii)⇒(i). Assume (i) does not hold. Then there exists a nonzero mor-
phism h : ProjΓ̃ τ → π which is not a scalar of the composition h0 :
ProjΓ̃ τ � τ ↪→ π. We choose h in such a way that the multiplicity [Im(h) : τ ]
is minimal. Let Q ⊆ π denote the image of h. We will prove that Q is a quo-
tient of Θτ , so that there exists a morphism Θτ → π which does not factor
through the cosocle Θτ � τ , contradicting (ii).

First assume that τ does not occur in soc(Q). Then the projectivity of
ProjΓ̃ τ and the choice of h implies [Q : τ ] = 1 (with τ in the cosocle of Q);
otherwise, we could always construct a nonzero morphism h′ : ProjΓ̃ τ → π,
with Im(h′) � Q and [Im(h′) : τ ] < [Q : τ ], which contradicts the choice
of h. Here, the assumption that τ /∈ JH(soc(Q)) ensures that h′ is still not
a scalar of h0. By Corollary 2.31 (condition (b) in loc. cit. is satisfied by
[47, Prop. 2.24]), we deduce that Q is a multiplicity free Γ-representation,
hence is contained in D0(ρ) ∼= πK1 by Condition (a) imposed on π. Recall

6In [12, Lem. 6.4.3], the genericity assumption on ρ is stronger than ours, but
using the set PD(x0, · · · , xf−1) we may check that D1(ρ) is still connected when
ρ is generic in the sense of [15, Def. 11.7].
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that D0(ρ) is multiplicity free and τ occurs in the socle of D0(ρ). Hence, if
τ occurs in Q, it must occur in soc(Q), giving a contradiction.

Assume that τ occurs in soc(Q) for the rest of the proof. A similar
argument as in the above case shows that [Q : τ ] = 2; more precisely, we
have τ ↪→ soc(Q) and cosoc(Q) ∼= τ . We claim the following:

(1) rad(Q) is multiplicity free;
(2) rad(Q) is a subrepresentation of D0(ρ).

For (1), since cosoc(Q) ∼= τ , it is equivalent to show thatQ/τ is multiplic-
ity free. Note thatQ/τ is a quotient of ProjΓ̃ τ and [Q/τ : τ ] = [Q : τ ]−1 = 1,
so the assertion follows from (the dual version of) Corollary 2.26.

For (2), note that soc(Q) ⊂ soc(D0(ρ)) is multiplicity free. For each
σ ∈ JH(soc(Q)), let Qσ be the unique quotient of Q with socle σ and such
that σ ↪→ Q � Qσ is nonzero, so that Q embeds in

⊕
σ∈JH(soc(Q))Qσ, and

consequently

(4.8) rad(Q) ↪→
⊕

σ∈JH(soc(Q))

rad(Qσ).

It suffices to prove that rad(Qσ) is a Γ-representation for each σ ∈ JH(soc(Q)).
If σ �= τ , then Qσ itself is a Γ-representation by the same argument as in the
above case. Assume σ = τ . Since Qτ has cosocle τ , the cosocle of rad(Qτ )
can be embedded in ⊕τ ′∈E (τ)τ

′. On the other hand, by construction rad(Qτ )
is multiplicity free with socle τ , so rad(Qτ ) is also a Γ-representation by (the
dual version of) Corollary 2.31. This proves (2). As a consequence, the em-
bedding (4.8) is an isomorphism because, on the one hand, each projection
rad(Q) → rad(Qσ) is surjective, on the other hand, since rad(Qσ) ⊂ D0,σ(ρ)
by (2) and D0(ρ) is multiplicity free, rad(Qσ1

) and rad(Qσ2
) don’t have any

common Jordan–Hölder factors for σ1 �= σ2. We also deduce that rad(Qσ)
is a subrepresentation of D0,σ(ρ) for any σ ∈ JH(soc(Q)).

We now prove that Q is a quotient of Θτ . Note that τ is 2-generic by
Lemma 4.5. Let σ ∈ JH(soc(Q)) and assume σ �= τ . Since Qσ has cosocle
isomorphic to τ , Qσ gives rise to a nonzero class in Ext1

Γ̃
(τ, rad(Qσ)) which

implies σ ∈ E (τ) by Lemma 4.10. In other words, JH(soc(Q)) is contained
in {τ} ∪ E (τ), and for any σ ∈ JH(soc(Q)) we have dimFHomΓ̃(σ,Q) = 1.
Let C denote the quotient Q/τ , so that we have a short exact sequence

(4.9) 0 → τ → Q → C → 0.

We claim that C has Loewy length 2 and fits in a short exact sequence

0 → S → C → τ → 0
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for some subrepresentation S of
⊕

τ ′∈E (τ) τ
′, and the result will follow by

Corollary 3.14. Using (4.9) we see that if HomΓ̃(τ
′, C) �= 0 for some Serre

weight τ ′, then either HomΓ̃(τ
′, Q) �= 0 or Ext1

Γ̃
(τ ′, τ) �= 0, hence τ ′ ∈ {τ} ∪

E (τ) by the above discussion. Moreover, since dimFHomΓ̃(τ,Q) = 1 and

Ext1
Γ̃
(τ, τ) = 0 by Lemma 2.10(i), we have HomΓ̃(τ, C) = 0 and consequently

JH(soc(C)) ⊂ E (τ). As in the proof of Corollary 2.31, we then have

C ↪→
⊕

τ ′∈JH(soc(C))

I(τ ′, τ) ∼=
⊕

τ ′∈JH(soc(C))

Eτ ′,τ ,

where the isomorphism holds as τ ′ ∈ E (τ). This proves the claim and finishes

the proof of the proposition.

Now we make an extra assumption on π:

(b) if Ext1K/Z1
(σ, π) �= 0 for some Serre weight σ, then σ ∈ D(ρ).

Remark 4.19. We will see examples of G-representations satisfying (a)

and (b) in §8.

Proposition 4.20. Let χ ∈ JH(πI1) and let τ ∈ D(ρ) be the unique Serre

weight such that χ occurs in D1,τ (ρ). Then the following statements are

equivalent:

(i) dimFHomK(ProjΓ̃ τ, π) = 1;

(ii) dimFHomK(Θτ , π) = 1;

(iii) dimFHomI(Wχ,3, π) = 1.

Proof. Using Proposition 4.18 it suffices to prove the following inequalities:

(4.10)

dimFHomK(Θτ , π) ≤ dimFHomI(Wχ,3, π) ≤ dimF HomK(ProjΓ̃ τ, π).

By Corollary 4.17 and Frobenius reciprocity, we may replace the middle

term by

dimFHomK(IndKI Wχ,3, π).

Let φτ : ProjΓ̃ τ → IndKI Wχ,3 be a morphism as in Proposition 3.10. On

the one hand, by Corollary 4.14 and Conditions (a),(b) satisfied by π, the

inclusion Im(φτ ) ↪→ IndKI Wχ,3 induces an isomorphism

HomK(IndKI Wχ,3, π)
∼−→ HomK(Im(φτ ), π).
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On the other hand, there are surjections ProjΓ̃ τ � Im(φτ ) � Θτ , which
induce

HomK(Θτ , π) ↪→ HomK(Im(φτ ), π) ↪→ HomK(ProjΓ̃ τ, π).

Putting them together, we deduce (4.10).

Summarizing what has been proved, we obtain the following “multiplic-
ity one” criterion, the main result of this section.

Theorem 4.21. Assume ρ is indecomposable and strongly generic. Assume
π is an admissible smooth G-representation over F (with a central character)
satisfying the following conditions:

(a) πK1 ∼= D0(ρ) (in particular socK π ∼=
⊕

σ∈D(ρ) σ);

(b) if Ext1K/Z1
(σ, π) �= 0 for some Serre weight σ, then σ ∈ D(ρ);

(c) there exists one σ0 ∈ D(ρ) such that dimFHomK(Θσ0
, π) = 1.

Then the following statements hold:

(i) dimFHomK(ProjΓ̃ σ, π)=1 for any σ∈D(ρ), or equivalently, π[m2
K1

]⊂
D̃0(ρ);

(ii) dimFHomI(Wχ,3, π) = 1 for any χ ∈ JH(πI1).

Proof. By (a), the basic 0-diagram (πK1 , πI1 , can) attached to π in [15, §9],
where can : πI1 ↪→ πK1 is the canonical inclusion, is just (D0(ρ), D1(ρ), can).

We define two sets as follows:

Σ0
def
= {σ ∈ D(ρ) : dimFHomK(ProjΓ̃ σ, π) = 1}

Σ1
def
= {χ ∈ JH(D1(ρ)) : dimFHomI(Wχ,3, π) = 1}.

It is clear that Σ1 is stable under the action of
(
0 1
p 0

)
(the one induced from

D1(ρ)). By Proposition 4.20, if χ ∈ JH(D1,σ(ρ)), then χ ∈ Σ1 if and only if
σ ∈ Σ0. Using (c), this implies that( ⊕

σ∈Σ0

D0,σ(ρ),
⊕
χ∈Σ1

χ, can
)

is a nonzero subdiagram of (D0(ρ), D1(ρ), can), and in fact a direct summand
as diagrams. However, the diagram (D0(ρ), D1(ρ), can) is indecomposable
by [15, Thm. 15.4(i)], thus they must be equal, and so Σ0 = D(ρ) and
Σ1 = JH(D1(ρ)).
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Remark 4.22. If ρ is reducible split, then Theorem 4.21 fails because the
diagram (D0(ρ), D1(ρ), can) is not indecomposable anymore. In fact, we have
to impose a stronger hypothesis in (c) for the theorem to be true.

5. Ordinary parts

In this section we recall and prove some general results about smooth F-
representations of GL2(L), where L = Qpf as before. Let G = GL2(L),
K = GL2(OL), and define the following subgroups of G:

P
def
=

(
∗ ∗
0 ∗

)
, P

def
=

(
∗ 0
∗ ∗

)
, T

def
=

(
∗ 0
0 ∗

)
, N

def
=

(
1 ∗
0 1

)
.

Let T0
def
= T ∩K and N0

def
= N ∩K. Recall that Z denotes the center of G

and Z1
def
= Z ∩K1.

In this section, we only consider representations defined on F-vector
spaces and with a central character. The latter assumption is not always
necessary, but we make it for convenience.

5.1. Ordinary parts

Emerton has defined a left exact covariant functor in [27], called ordinary
parts and denoted by OrdP , from the category of smooth F-representations
of G to the category of smooth F-representations of T , which preserves
admissibility, and more generally local admissibility. He also defined in [28,
Def. 3.3.1] a δ-functor {H iOrdP : i ≥ 0} such that H0OrdP = OrdP .

On the other hand, let RiOrdP be the right derived functors of OrdP
for i ≥ 0. The main result of [33] says that there is a natural equivalence
RiOrdP

∼−→ H iOrdP . Using [28, Prop. 3.6.1], we deduce that RiOrdP van-
ishes for i ≥ f + 1.

Recall that ω : GL → F×
p is the mod p cyclotomic character, viewed

as a character of L× via the local Artin map normalized in the way that
uniformizers of L are sent to geometric Frobenii. Denote by αP the character
ω ⊗ ω−1 : T → F×

p ↪→ F×.
The following proposition summarizes some properties of RiOrdP .

Proposition 5.1. Let U be a locally admissible smooth representation of T
and V be a smooth representation of G. The following statements hold.

(i) There is an adjunction isomorphism

(5.1) HomG(Ind
G
P
U, V ) ∼= HomT (U,OrdPV ).
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(ii) There is a canonical isomorphism RfOrdPV ∼= VN ⊗ α−1
P , where VN

is the space of coinvariants (i.e. the usual Jacquet module of V with
respect to P ).

(iii) There are canonical isomorphisms

OrdP (Ind
G
P
U) ∼= U, RfOrdP (Ind

G
P
U) ∼= U sα−1

P .

Here U s denotes the representation of T obtained by conjugating U by
s =

(
0 1
1 0

)
.

(iv) There is a natural isomorphism

HomT (R
fOrdPV, U) ∼= HomG

(
V, IndGP (UαP )

)
.

Moreover, the isomorphism sends epimorphisms to epimorphisms.
(v) If L = Qp, then R1OrdP (Ind

G
P
U) ∼= U sα−1

P ; otherwise R1OrdP (Ind
G
P

U) = 0.

Proof. (i) is [27, Thm. 4.4.6] together with [28, Rem. 3.7.3], and (ii) is [28,
Prop. 3.6.2] using the main result of [33].

(iii) The first isomorphism follows from [27, Prop. 4.3.4] and the second
from (ii) noting that (IndG

P
U)N ∼= (IndGP U s)N ∼= U s.

(iv) Using (ii) and the usual adjunction formula

HomG(V, Ind
G
P −) ∼= HomT (VN ,−),

we obtain

HomT (R
fOrdPV, U) ∼= HomT (VN , UαP ) ∼= HomG(V, Ind

G
P (UαP )).

The last assertion is obvious.
(v) The case L = Qp is contained in (iii) and the case L �= Qp is a special

case of [39, Cor. 4.2.4].

There is a useful spectral sequence proved in [27]:

(5.2) Ei,j
2 = ExtiT,ζ(U,R

jOrdPV ) ⇒ Exti+j
G,ζ(Ind

G
P
U, V ).

Here, ζ denotes the central character of V and ExtiG,ζ (resp. Ext
i
T,ζ) indicates

that we compute extensions in the category RepF,ζ(G) (resp. RepF,ζ(T )). In
particular, we have a long exact sequence

0 → Ext1T,ζ(U,OrdPV ) → Ext1G,ζ(Ind
G
P
U, V )

→ HomT (U,R
1OrdPV ) → Ext2T,ζ(U,OrdPV ).
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Corollary 5.2. We have a natural isomorphism

Ext2f+1
G,ζ (IndG

P
U, V ) ∼= Extf+1

T,ζ (U,RfOrdPV ).

For i > 2f + 1, we have ExtiG,ζ(Ind
G
P
U, V ) = 0.

Proof. This follows from the fact that RiOrdP vanishes for i ≥ f + 1 and
that T/Z has cohomological dimension f + 1.

Lemma 5.3. Let π be an irreducible smooth representation of G.

(i) Assume π ∼= Sp⊗χ◦det, where Sp denotes the Steinberg representation
of G. Then OrdPπ ∼= χ⊗ χ and R1OrdPπ = 0.

(ii) Assume π ∼= χ ◦ det is one-dimensional. Then OrdPπ = 0. If L = Qp,
then R1OrdPπ = χω−1 ⊗ χω; otherwise R1OrdPπ = 0.

(iii) Assume π is supersingular.7 Then OrdPπ = 0.

Proof. (i) It follows from [28, Thm. 4.2.12(2)]; the proof in loc. cit. works
for general L.

(ii) The first assertion follows from Proposition 5.1(i) and [5, Prop. 29].
For the second, the case of GL2(Qp) is proved in [28, Thm. 4.2.12(3)].
The case L �= Qp is a consequence of Proposition 5.1(v). Indeed, we have
R1OrdP (Ind

G
P χ ⊗ χ) = 0 and we deduce the result using (i) together with

the short exact sequence 0 → χ ◦ det → IndGP χ⊗ χ → Sp⊗ χ ◦ det → 0.
(iii) It is a consequence of Proposition 5.1(i).

Lemma 5.4. Let U be a locally admissible smooth representation of T (with
a central character) and V be a subquotient of IndG

P
U . If OrdPV = 0, then

V is a direct sum of one-dimensional representations of G.

Proof. If ψ,ψ′ : T → F× are distinct characters, then Ext1T (ψ,ψ
′) = 0 by

[28, Lem. 4.3.10]. Hence, any locally admissible T -representation U can be
decomposed as a direct sum U ∼= ⊕ψUψ, where Uψ is the largest subrepre-
sentation of U whose Jordan–Hölder factors are all isomorphic to ψ. This
implies IndG

P
U ∼= ⊕ψ IndG

P
Uψ. By [5, Thm. 30(1)] combined with Proposi-

tion 5.1(iii), for ψ �= ψ′ we have

JH(IndG
P
ψ) ∩ JH(IndG

P
ψ′) = ∅.

As a consequence, any subrepresentation V of IndG
P
U has a decomposition

V ∼= ⊕ψVψ, where Vψ is the largest subrepresentation of V whose Jordan–
Hölder factors all lie in JH(IndG

P
ψ); explicitly Vψ = V ∩ IndG

P
Uψ. It is clear

7See [5, p.290] for the definition of “supersingular” representations.
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that this decomposition remains true for any subquotient of IndG
P
U . Hence,

to prove the lemma, we may assume U = Uψ for some ψ, and so V = Vψ.
Assume OrdPV = 0. Let π be an irreducible subrepresentation of V .

Then π is non-supersingular and OrdPπ = 0. By Proposition 5.1(iii) and
Lemma 5.3, π has to be one-dimensional, say π ∼= χ ◦det for some character
χ : L× → F×, and the assumption U = Uψ implies ψ = χ ⊗ χ. We claim
that OrdP (V/π) = 0. Assuming the claim, we may continue the argument
to deduce that all Jordan–Hölder factors of V are one-dimensional. Since
p > 2, V has to be semisimple by [28, Lem. 4.3.20, Prop. 4.3.21] and the
result follows.

Now we prove the claim. If L �= Qp, then the claim is obvious using
Lemma 5.3(ii). If L = Qp, then by Lemma 5.3(ii) the sequence 0 → π →
V → V/π → 0 induces an injection

∂ : OrdP (V/π) ↪→ R1OrdPπ ∼= χω−1 ⊗ χω.

However, since V = Vψ, OrdP (V/π) admits only ψ = χ⊗χ as subquotients,
so ∂ must be zero (as p > 2) and the claim follows.

5.2. Ordinary parts of injectives

We first recall the following result.

Proposition 5.5. Let Ω be an admissible smooth representation of G such
that Ω|K is an injective object in the category RepF(K/Z1). Then

(i) OrdPΩ is an injective object in the category RepF(T0/Z1) and
(ii) RiOrdPΩ = 0 for i ≥ 1.

Proof. (i) It is a special case of [10, Cor. 4.5].
(ii) It follows directly from the definition that H iOrdPΩ = 0 if Ω is

injective. The result then follows from the main result of [33] recalled at the
beginning of §5.1.

Lemma 5.6. Let U be a finite dimensional representation of T . Assume
that U becomes semisimple when restricted to T0. Then IndG

P
U is generated

by its K-socle as a G-representation.

Proof. Note that the K-socle of IndG
P
U depends only on the restriction of

U to T0. The assumption on U implies that

socK(IndG
P
U) ∼=

⊕
ψ∈JH(U)

socK(IndG
P
ψ).



326 Yongquan Hu and Haoran Wang

By [5, Thm. 30], IndG
P
ψ is generated by its K-socle, namely the assertion

holds if U = ψ is one-dimensional. The general case follows from the above
equality of socles.

Proposition 5.7. Let Ω be an admissible smooth representation of G such
that Ω|K is injective in the category RepF(K/Z1). Let ι : V ↪→ Ω be a
subrepresentation with socK(V ) = socK(Ω). Then the induced inclusion
OrdP (ι) : OrdPV ↪→ OrdPΩ is essential when restricted to T0.

Proof. Assume that OrdP (ι) is not essential when restricted to T0. Then
there exists a smooth character ψ0 : T0 → F× together with a T0-equivariant
embedding

(5.3) ψ0 ⊕OrdPV ↪→ OrdPΩ.

Choose a basis v for the underlying space of ψ0, and let U := 〈T.v〉 ⊂ OrdPΩ
be the T -representation generated by v. Since OrdPΩ is admissible and T
is abelian, U is finite dimensional over F (because if v is fixed by some open
compact subgroup of T0 then so is tv for any t ∈ T ). Moreover, again using
the fact T is abelian, one checks that U |T0

is semisimple and ψ0-isotypic, i.e.
U |T0

∼= ψ⊕r
0 where r = dimF U . Lemma 5.6 implies that IndG

P
U is generated

by its K-socle. Hence, the image of the morphism (provided by Proposition
5.1(i))

β : IndG
P
U → Ω

is also generated by its K-socle. In particular, Im(β) ⊂ 〈G. socK(Ω)〉. How-
ever, by assumption socK(V ) = socK(Ω), so we get Im(β) ⊂ V and conse-
quently U ⊂ OrdPV , contradicting (5.3).

Corollary 5.8. Keep the notation of Proposition 5.7. Assume moreover that
OrdPV ∼= χ is irreducible. Then there is a ring isomorphism

EndT0
((OrdPΩ)

∨|T0
) ∼= F[[S1, . . . , Sf ]].

Proof. Combining Proposition 5.5 and Proposition 5.7, (OrdPΩ)|T0
is iso-

morphic to an injective envelope of χ in RepF(T0/Z1), and so (OrdPΩ)
∨|T0

is isomorphic to ProjT0/Z1
χ∨. Let T1 denote the pro-p Sylow subgroup

of T0. Endowed with the trivial action of H, F[[T1/Z1]] is isomorphic to
ProjT0/Z1

1. The assertion follows from [62, Lem. 3.32] which says that
ProjT0/Z1

χ∨ ∼= χ∨ ⊗ F[[T1/Z1]] represents the universal deformation prob-
lem (with -torsion coefficients) of χ with the universal deformation ring
isomorphic to F[[S1, . . . , Sf ]] ∼= F[[T1/Z1]].
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Lemma 5.9. Let τ be a 1-generic Serre weight and ψ be a character of T .
Let U be an admissible T -representation whose Jordan–Hölder factors are all
isomorphic to ψ. Assume that U |T0

is injective in the category RepF(T0/Z1).
If HomK(τ, IndG

P
U) �= 0, then Ext1K/Z1

(τ, IndG
P
U) = 0.

Proof. First note that the assumptions imply that HomK(τ, IndG
P
ψ) �= 0.

Since τ is 1-generic, in particular 1 < dimF τ < q, it follows from [5, §7]
that IndG

P
ψ is irreducible with K-socle isomorphic to τ . We deduce that

HomK(τ ′, IndG
P
U) = 0 for any Serre weight τ ′ such that τ ′ �= τ .

By Shapiro’s lemma, it is equivalent to show Ext1
(P∩K)/Z1

(τ, U) = 0.

Note that (P ∩K)/Z1
∼= (T0/Z1)�N0. Since N0 acts trivially on U and U

is injective as a T0/Z1-representation by assumption, the Hochschild-Serre
spectral sequence implies

Ext1
(P∩K)/Z1

(τ, U)∼=H1
(
(P∩K)/Z1, τ

∨⊗FU
)∼=H0

(
T0/Z1, H

1(N0, τ
∨)⊗FU

)
.

A similar computation as in [44, Prop. 2.5] shows that, if we write τ =
(s0, · · · , sf−1)⊗ η, then

H1(N0, τ
∨) ∼= ⊕j∈Sχ

−1
τ α

sj+1
j

as T0-representations. Using the 1-genericity of τ , i.e. 1 ≤ sj ≤ p − 3 for

all j, one checks that (χ−1
τ α

sj+1
j )−1 = χτα

−(sj+1)
j = χμ−

j+1(τ)
if f ≥ 2 (resp.

χμ+
0 (τ) if f = 1). Hence, to prove the result it is equivalent to prove

HomT0

(
⊕j∈S χμ−

j (τ), U |T0

)
= 0

if f ≥ 2 (resp. HomT0

(
χμ+

0 (τ), U |T0

)
= 0 if f = 1). Assume this is not the

case and assume f ≥ 2. Then there exists an embedding χμ−
i (τ) ↪→ U |T0

for
some i ∈ S, hence embeddings

μ−
i (τ) ↪→ IndK

P∩K χμ−
i (τ) ↪→ (IndG

P
U)|K

where the first one is obtained by Frobenius reciprocity and [5, Lem. 2(2)].
This gives a contradiction to the conclusion in the last paragraph. The case
f = 1 can be treated similarly with μ−

i (τ) replaced by μ+
0 (τ).

5.3. Θord
τ and ordinary parts

We discuss the relation of the representation Θord
τ studied in §3.4 and the

ordinary parts of a smooth representation of G.
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Let V be a locally admissible smooth representation of G. Proposition
5.1(i) implies a natural map

j : IndG
P
OrdPV → V

whose image we denote by V ord.8 By construction, we have OrdPV
ord =

OrdPV .

Lemma 5.10. Let φ : V → V be a G-equivariant endomorphism. Let
OrdP (φ) be the induced endomorphism of OrdPV and φ′ be the induced
one of IndG

P
OrdPV . Then the following diagram is commutative:

IndG
P
OrdPV

j

φ′

V

φ

IndG
P
OrdPV

j
V.

Proof. Denote by ι the isomorphism (5.1) of Proposition 5.1(i). The asser-
tion is equivalent to ι(φ ◦ j) = ι(j ◦ φ′). It is clear that ι(j) = Id, and by
Proposition 5.1(iii) ι(φ′) = OrdP (φ). Thus, taking OrdP (−) of the diagram
in the statement gives

OrdPV
Id

OrdP (φ)

OrdPV

OrdP (φ)

OrdPV
Id

OrdPV

from which the result follows.

Lemma 5.11. (i) Ker(j) is a direct sum of one-dimensional representations
of G.

(ii) If V1 ⊆ V is a subrepresentation of V , then V ord
1 ⊆ V1∩V ord and the

corresponding quotient is a direct sum of one-dimensional representations of
G.

Proof. (i) By construction, we know that OrdP (Ker(j)) = 0, so we conclude
by Lemma 5.4.

(ii) The inclusion V ord
1 ⊆ V1∩V ord is obvious; let C denote the quotient.

It is easy to see that C is a subquotient of IndG
P
U for some T -representation

8Note that this is different from the notation used in [11], at least when L = Qp.
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U (e.g. we may take U = OrdPV/OrdPV1). If L �= Qp, then taking OrdP
of 0 → V ord

1 → V1 ∩ V ord → C → 0 gives again a short exact sequence by
Lemma 5.3(ii), from which we deduce OrdP (C) = 0 and we conclude by
Lemma 5.4.

Assume L = Qp for the rest of the proof. As in the proof of Lemma 5.4,
we may decompose V ord as ⊕ψ(V

ord)ψ, and consequently V1∩V ord = ⊕ψV1∩
(V ord)ψ. It suffices to show that the cokernel of (V ord

1 )ψ ⊆ V1 ∩ (V ord)ψ,
denoted by Cψ, satisfies OrdP (Cψ) = 0. There are two cases:

• ψ ∼= χ ⊗ χ for some χ. Then OrdP (Cψ) = 0 by the same proof as in
Lemma 5.4.

• ψ � χ⊗ χ for any χ. Then the morphisms IndG
P
(OrdPV )ψ → (V ord)ψ

and IndG
P
(OrdPV1)ψ → (V ord

1 )ψ are isomorphisms using Lemma 5.4.
Proposition 5.1(v) implies that

R1OrdP (Ind
G
P
(OrdPV1)ψ) → R1OrdP (Ind

G
P
(OrdPV1)ψ)

is equal to the natural morphism (OrdPV1)
s
ψ → (OrdPV )sψ twisted

by α−1
P , hence is injective. This means that the morphism R1OrdP

(V ord
1 )ψ → R1OrdP (V

ord)ψ is injective, hence so is

R1OrdP (V
ord
1 )ψ → R1OrdP

(
V1 ∩ (V ord)ψ

)
.

This implies OrdP (Cψ) = 0 as desired.

Remark 5.12. For our application in §8, V |K will not admit one-dimen-
sional Serre weights as subrepresentations, in which case Lemma 5.11 is easy
to show. However, we keep the generality because the result might be useful
elsewhere.

Corollary 5.13. Let V be a locally admissible smooth representation of G.
Let λ be a finite dimensional K-representation which does not admit any
Jordan–Hölder factor of dimension 1 or q. Then j induces an isomorphism

HomK(λ, IndG
P
OrdPV )

∼−→ HomK(λ, V ord).

Proof. As in the proof of Lemma 5.4, we may assume OrdPV = (OrdPV )ψ
for some ψ, so that all of Jordan–Hölder factors of V ord or IndG

P
OrdPV lie

in JH(IndG
P
ψ).

Write ψ = χ1 ⊗ χ2 for characters χ1, χ2 : L× → F×. If χ1 �= χ2, then
IndG

P
ψ does not admit one-dimensional representations ofG as subquotients,
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thus j induces an isomorphism IndG
P
OrdPV

∼−→ V ord by Lemma 5.11(i) and

the result is obvious. If χ1 = χ2, then any Serre weight occurring in socK(π),

for π ∈ JH(IndG
P
ψ) has dimension 1 or q, thus the assumption on λ implies

that HomK(λ, V ord) = HomK(λ, IndG
P
OrdPV ) = 0.

Lemma 5.14. Let V be a locally admissible smooth representation of G. Let

τ be a Serre weight such that 1 < dimF τ < q. Assume that HomK(τ ′, V ) = 0

for any τ ′ ∈ JH(IndKI χτ ) such that τ ′ �= τ . Then j induces isomorphisms

(5.4) HomK(τ, IndG
P
OrdPV )

∼−→ HomK(τ, V ord)
∼−→ HomK(τ, V ).

The same statement holds if we replace τ by any subrepresentation of IndKI χs
τ .

Proof. Since τ (resp. IndKI χs
τ ) is finite dimensional and since V is equal to

the direct limit of its admissible subrepresentations, we may assume V is

admissible.

First prove the isomorphisms (5.4) for τ . By Corollary 5.13, we are left

to prove the second isomorphism. The proof is by a standard weight cycling

argument. Let R0
def
= KZ and I(τ)

def
= c-IndGR0

τ , where Z acts on τ via

the central character of π. Since V is admissible, HomR0
(τ, V ) is a finite

dimensional F-vector space. It is well-known that HomR0
(τ, V ), which is

isomorphic to HomG(I(τ), V ) via Frobenius reciprocity, carries an action of

the Hecke algebra EndG(I(τ)) ∼= F[T ] (see [5]). Up to enlarge F, we may

assume all the eigenvalues of T are contained in F.
We claim that λ �= 0 for any eigenvalue λ of T . Otherwise, choose a

nonzero eigenvector in HomK(τ, V ) on which T acts by 0, we then obtain

a G-equivariant morphism I(τ)/T → V . By considering the action of
(
0 1
p 0

)
on τ I1 , we obtain a nonzero K-equivariant morphism IndKI χs

τ → V , which

factors through (IndKI χs
τ )/τ (this uses the explicit description of T , see [5]).

Since IndKI χs
τ is multiplicity free, we have HomK((IndKI χs

τ )/τ, V ) = 0 by

assumption, a contradiction.

The claim implies that any morphism I(τ)→V factors through I(τ)/f(T ),

for some polynomial f(T ) =
∏

i(T − λi)
ai , with λi �= 0. By [5, §6], if either

dimF τ �= 1 or λi �= ±1, then I(τ)/(T − λi) is irreducible and we have

Vi
∼= IndG

P
OrdPVi for any quotient Vi of I(τ)/(T −λi)

ai . Since τ has dimen-

sion ≥ 2 by assumption, we deduce an isomorphism HomG(I(τ), V
ord)

∼−→
HomG(I(τ), V ), and the result follows.

We now prove (5.4) with τ replaced by a subrepresentationW of IndKI χs
τ .

We may assume W is nonzero and so τ ↪→ W ↪→ IndKI χs
τ (as τ is the socle
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of IndKI χs
τ ). First note that for any admissible representation V ′ of G, we

have the following injections and isomorphisms
(5.5)
HomK(τ, V ′) ↪→ HomI(χτ , V

′)
∼−→ HomI(χ

s
τ , V

′)
∼−→ HomK(IndKI χs

τ , V
′)

where the first map is the restriction map induced by τ I1 ↪→ τ which is injec-
tive as τ is irreducible, the second map is obtained by taking conjugation by(
0 1
p 0

)
(as V ′ is a representation of G), and the third is induced by Frobenius

reciprocity. If moreover HomK(τ ′, V ′) = 0 for any τ ′ ∈ JH(IndKI χs
τ ) with

τ ′ �= τ , then we further have injections

HomK(IndKI χs
τ , V

′) ↪→ HomK(W,V ′) ↪→ HomK(τ, V ′)

which must be isomorphisms by comparing their dimensions and using (5.5).
The result then follows from this together with (5.4) for τ and Corollary
5.13.

Recall that Θord
τ is defined in Lemma 3.17 for any 2-generic Serre weight.

Proposition 5.15. Let V be a locally admissible smooth representation of
G and τ be a 2-generic Serre weight. Assume that HomK(τ ′, V ) = 0 for any
τ ′ ∈ JH(IndKI χτ ) such that τ ′ �= τ . Then j induces isomorphisms
(5.6)

HomK(Θord
τ , IndG

P
OrdPV )

∼−→ HomK(Θord
τ , V ord)

∼−→ HomK(Θord
τ , V ).

Proof. It is clear that we may assume V is admissible. By [15, Cor. 9.11],
there exists a G-equivariant embedding V ↪→ Ω, where Ω is a smooth G-
representation such that Ω|K ∼= InjK/Z1

socK(V ). Note that although it is
required that p acts trivially on V in loc. cit., up to twist the result applies
to any admissible representation with a central character. Assuming we have
proven an isomorphism

(5.7) HomK(Θord
τ ,Ωord)

∼−→ HomK(Θord
τ ,Ω),

the desired isomorphism (5.6) will follow using Lemma 5.11(ii). Indeed, let
f ∈ HomK(Θord

τ , V ); we need to prove Im(f) ⊂ V ord. By (5.7), Im(f) ⊂
V ∩Ωord. Since τ is 2-generic by assumption, no Jordan–Hölder factor of Θord

τ

is one-dimensional, so we actually have Im(f) ⊆ V ord by Lemma 5.11(ii).
So we may assume that V = Ω is injective when restricted to K/Z1.

Recall that Θord
τ fits in a short exact sequence by (3.9)

0 →
⊕
j∈S

Eτ,μ−
j (τ) → Θord

τ → τ → 0.
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It induces a commutative diagram

0 HomK(τ,Ω′)

ι

HomK(Θord
τ ,Ω′)

⊕
j∈S HomK(Ej ,Ω

′)

⊕jιj

∂
Ext1K/Z1

(τ,Ω′)

0 HomK(τ,Ω) HomK(Θord
τ ,Ω)

⊕
j∈S HomK(Ej ,Ω) 0,

where we have written Ω′ = IndG
P
OrdPΩ and Ej = Eτ,μ−

j (τ) to shorten the

formulas. The bottom row is exact by the injectivity of Ω. Using Lemma

5.14, the assumption on socK(V ) implies that ι and all ιj are isomorphisms

(as Ej is a subrepresentation of IndKI χs
τ ). We claim that ∂ is the zero map,

which will finish the proof by the snake lemma.

Prove the claim. Since socK(V ) = socK(Ω), the assumption implies that

HomK(μ−
j (τ),Ω) = 0 for all j ∈ S. As noted above, dimF μ

−
j (τ) > 1, hence

by Lemma 5.11(i)

HomK(μ−
j (τ), Ind

G
P
OrdPΩ) = 0.

Consequently, we may assume HomK(τ, IndG
P
OrdPΩ) �= 0, otherwise the

claim is trivial. Decomposing OrdPΩ = ⊕ψ(OrdPΩ)ψ as in the proof of

Lemma 5.4, it suffices to prove the claim with OrdPΩ replaced by (OrdPΩ)ψ,

for those ψ such that HomK(τ, IndG
P
(OrdPΩ)ψ) �= 0. But, Lemma 5.9 implies

that Ext1K/Z1
(τ, IndG

P
(OrdPΩ)ψ) = 0, from which the claim follows.

The next result gives an interpretation of the semisimplicity of (OrdP
V )|T0

in terms of V |K .

Proposition 5.16. Let V be a locally admissible smooth representation of

G and τ be a 2-generic Serre weight. Assume that HomK(τ ′, V ) = 0 for any

τ ′ ∈ JH(IndKI χτ ) such that τ ′ �= τ . If OrdPV is semisimple when restricted

to T0, then the quotient Θord
τ � τ induces an isomorphism

HomK(τ, V )
∼−→ HomK(Θord

τ , V ).

Proof. Again we may assume V is admissible. Moreover, by Proposition 5.15

and its proof, we may assume V = IndG
P
OrdPV . Since the assertion depends

only on V |K , hence only on (OrdPV )|T0
which by assumption is semisimple,

we may assume OrdPV = ψ is one-dimensional and so V ∼= IndG
P
ψ. As in the

proof of Proposition 5.15, we may assume HomK(τ, V ) �= 0 and consequently

τ ∼= socK(V ).
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Let h : Θord
τ → V |K be a nonzero morphism. We need to prove that h

factors through Θord
τ � τ . It suffices to prove that h is zero when restricted

to soc(Θord
τ ). Assume this is not the case. Then [Im(h) : τ ] ≥ 2 and Lemma

3.18 implies that Im(h) is not annihilated by mK1
(as Im(h)K1

is a quo-
tient of (Θord

τ )K1
which is multiplicity free). Moreover, it is easy to see that

Im(h) ∩ V K1 = rad(Im(h)), which induces an embedding cosoc(Im(h)) ∼=
τ ↪→ V/V K1 . This again gives a contradiction by Lemma 5.17 below.

The following lemma is well-known; we include a proof for lack of a
suitable reference.

Lemma 5.17. Assume p > 2. Let π = IndGP ψ be a principal series of G. Let
σ be a Serre weight such that HomK(σ, π|K) �= 0. Then HomK(σ, π/πK1) =
0.

Proof. First observe that, since π|K ∼= IndKP∩K(ψ|T0
), the assumption implies

HomP∩K(σ, ψ|T0
) �= 0 by Frobenius reciprocity, hence ψ|T0

= χs
σ by [5,

Lem. 2].
The exact sequence 0 → πK1 → π → π/πK1 → 0 induces an exact

sequence

0 → HomK(σ, π/πK1) → Ext1K/Z1
(σ, πK1)

β→ Ext1K/Z1
(σ, π),

so it is enough to show β is injective. By Shapiro’s lemma and using the fact
that πK1 ∼= IndKI (ψ|T0

), this is equivalent to show the injectivity of

Ext1I/Z1
(σ, χs

σ) → Ext1(P∩K)/Z1
(σ, χs

σ),

or equivalently the injectivity of

Ext1I/Z1
(1, χs

σ ⊗ σ∨) → Ext1(P∩K)/Z1
(1, χs

σ ⊗ σ∨)

where the 1’s denote the trivial representations.
Consider an I/Z1-extension 0 → χs

σ ⊗ σ∨ → E → Fv → 0, where I acts
trivially on v, and assume that it splits when restricted to (P ∩K)/Z1. Then
we may choose a lifting of v, say w ∈ E , on which P ∩K acts trivially. It is

enough to prove that N1
def
=
(

1 0
pOL 1

)
also acts trivially on w, because then

I will act trivially on w and E splits. It is clear that
(

1 0
p2OL 1

)
acts trivially

on E . The matrix identity (for b, c ∈ OL)(
1 b
0 1

)(
1 0
pc 1

)
=

(
1 0

pc(1 + pbc)−1 1

)(
1 + pbc b

0 (1 + pbc)−1

)
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implies that
(

1 0
pc 1

)
w is again fixed by N0. By [5, Lem. 2], (χs

σ⊗σ∨)N0 is one-
dimensional and it is easy to see that H acts on it via the trivial character 1.
Hence, if w were not fixed by N1, then we would obtain a nonsplit extension
class in Ext1

HN1
(1,1). However, the same proof of [61, Lem. 5.6] shows that

Ext1
HN1

(1,1) = 0 (this uses p > 2), a contradiction.

6. Galois deformation rings

The aim of this section is to recall the results of [52] on multi-type poten-
tially Barsotti-Tate deformation rings of two dimensional representations of
GL over F (in the reducible nonsplit case), and prove Proposition 6.9 and
Corollary 6.11 which will be used in §8.4. We first recall the notion of the
universal (reducible) deformation rings.

6.1. Universal deformation rings

Let ρ =
( χ1 ∗

0 χ2

)
be a reducible nonsplit two-dimensional representation of

GL over F satisfying

(6.1) χ1χ
−1
2 /∈ {1, ω, ω−1}.

Let ad(ρ) denote EndF(ρ) with the adjoint action of GL. The assumption
(6.1) on ρ implies that
(6.2)
H0(GL, ad(ρ)) = EndGL

(ρ) = F, H0(GL, ad(ρ)(1)) = HomGL
(ρ, ρ(1)) = 0

where V (1) denotes the Tate twist of V for any GL-module V .

Lemma 6.1. Ext2GL
(χ1, χ2) = Ext2GL

(χ2, χ1) = 0.

Proof. This follows from the assumption (6.1) and Tate local duality.

Lemma 6.2. H2(GL, ad(ρ)) = 0 and dimFH
1(GL, ad(ρ)) = 4f + 1.

Proof. This first equality follows from (6.2) and Tate local duality. The
second equality follows from the local Euler-Poincaré characteristic formula.

Let Art(O) denote the category of local artinian O-algebras with residue
field F. A deformation of ρ to A ∈ Art(O) is a representation ρA : GL → GL2

(A) of GL such that the composition of ρA with the natural map GL2(A) →
GL2(F) is ρ. Two deformations ρA, ρ′A of ρ to A are strictly equivalent if
there is M ∈ Ker(GL2(A) → GL2(F)) such that ρA = M−1ρ′AM . Let Defρ :
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Art(O) → Sets be the functor sending A to the set of strictly equivalent
classes of deformations of ρ to A. Since EndGL

(ρ) = F, Mazur’s theory [57]
on the deformation of Galois representations shows that the deformation
functor Defρ is pro-representable by a complete noetherian local O-algebra
Rρ.

Corollary 6.3. Rρ is formally smooth over O of relative dimension 4f +1.

Proof. Since dimFH
2(GL, ad(ρ)) = 0,Rρ is formally smooth by [57, Prop. 2].

The relative dimension of Rρ over O follows from the corresponding dimen-
sion of H1(GL, ad(ρ)) which is given in Lemma 6.2.

Fix ψ : GL → O× a continuous character which lifts det ρ. Let Defψρ :
Art(O) → Sets be the functor sending A to the set of strictly equivalent
classes of deformations ρA of ρ over A such that det ρA = ψA, where ψA

is the composite GL
ψ−→ O× → A×. The deformation functor Defψρ is pro-

representable by a complete noetherian local O-algebra Rψ
ρ . Let ad0(ρ) be

the subspace of ad(ρ) consisting of matrices of trace zero. It is stable under
the action of GL. Similarly as in the proof of Lemma 6.2, one can show
dimH2(GL, ad

0(ρ)) = 0 and dimH1(GL, ad
0(ρ)) = 3f . We then deduce

that Rψ
ρ is formally smooth over O of relative dimension 3f .

6.2. Reducible deformation rings

Let ρ be as in the last subsection. A deformation ρA of ρ to A ∈ Art(O) is
said to be reducible (or equivalently P -ordinary in [10, §5.1] where P denotes
the upper-triangular Borel subgroup of GL2) if ρA has a free rank one direct
summand over A which is stable under GL. We define the functor Defredρ :
Art(O) → Sets by sending A to the set of strictly equivalent classes of
reducible deformations of ρ. By [58, Prop. 3] (or by [10, Lem. 5.3, Prop. 5.4]
which is more adapted to our situation), Defredρ is a subfunctor of Defρ and

is pro-representable by a complete noetherian local O-algebra Rred
ρ with

residue field F.
Denote by ad(ρ)red ⊂ ad(ρ) the subspace given by the following short

exact sequence

0 → ad(ρ)red → ad(ρ) → HomF(χ1, χ2) → 0,

where the homomorphism ad(ρ) → HomF(χ1, χ2) is given by

φ �−→ (χ1 ↪→ ρ
φ−→ ρ � χ2).
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One checks that ad(ρ)red is stable under the adjoint action of GL.

Lemma 6.4. (i) H0(GL, ad(ρ)red) = F.
(ii) H2(GL, ad(ρ)red) = 0.

(iii) dimH1(GL, ad(ρ)red) = 3f + 1.

Proof. (i) Since H0(GL,HomF(χ1, χ2)) = HomGL
(χ1, χ2) = 0 by the as-

sumption (6.1), we get H0(GL, ad(ρ)red) = H0(GL, ad(ρ)) = F.
For (ii), since H2(GL, ad(ρ)) = 0, it suffices to show that the natural

morphism

(6.3)

Ext1GL
(ρ, ρ) ∼= H1(GL, ad(ρ)) → H1(GL,HomF(χ1, χ2)) ∼= Ext1GL

(χ1, χ2)

is surjective. First, applying HomGL
(−, χ1) to the short exact sequence

(6.4) 0 → χ1 → ρ → χ2 → 0

we obtain an exact sequence

Ext2GL
(χ2, χ1) → Ext2GL

(ρ, χ1) → Ext2GL
(χ1, χ1).

By Lemma 6.1 and the fact that Ext2GL
(χ1, χ1) = 0, we have Ext2GL

(ρ, χ1) =

0. As a consequence, applying HomGL
(ρ,−) to (6.4) gives a surjection

(6.5) Ext1GL
(ρ, ρ) → Ext1GL

(ρ, χ2) → 0.

Similarly, since Ext2GL
(χ2, χ2) = 0, we have a surjection

(6.6) Ext1GL
(ρ, χ2) → Ext1GL

(χ1, χ2) → 0.

The surjectivity of (6.3) then follows from (6.5) and (6.6).

(iii) follows from (i), (ii) and the local Euler-Poincaré characteristic for-

mula.

Proposition 6.5. Rred
ρ is formally smooth over O of relative dimension

3f + 1.

Proof. This is a variant of [58, §30]. One checks that a deformation ρ′ of ρ
to F[ε]/ε2 (the ring of dual numbers) is reducible if and only if it takes its

values in ad(ρ)red when viewed as an element in H1(GL, ad(ρ)). Then the

assertion follows from Lemma 6.4.
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Set

Rψ,red
ρ

def
= Rψ

ρ ⊗Rρ
Rred

ρ .

We have the following variant of Proposition 6.5.

Proposition 6.6. Rψ,red
ρ is formally smooth over O of relative dimension

2f .

6.3. Serre weights

We recall some terminology used in [52]. Let G be the algebraic group
ResFpf /Fp

GL2. Let T be the diagonal torus in G. We identify the charac-

ter group X∗(T ) = X∗(T ×Fp
F) with (Z2)f . We say that μ ∈ X∗(T ) is

p-restricted if 0 ≤ 〈μ, α〉 < p for all positive coroots α. Let η(i) ∈ X∗(T )
(resp. α(i) ∈ X∗(T )) be the dominant fundamental character (resp. the posi-
tive coroot) represented by (1, 0) (resp. (1,−1)) in the i-th coordinate and 0

elsewhere, and η
def
=
∑

i∈Z/fZ η
(i). Let Gder def

= ResFpf /Fp
SL2 and T der ⊂ Gder

be the standard torus. Let ω(i) be the restriction of η(i) to T der.
For a dominant character μ ∈ X∗(T ), let V (μ) be the Weyl module

defined in [48, II.2.13(1)]. It has a unique simple G-quotient L(μ). If μ =∑
i μ

(i)
i is p-restricted then L(μ) = ⊗iL(μi)

(i) by Steinberg’s tensor product
theorem. Let F (μ) be the Γ-representation L(μ)|Γ, where Γ = G(Fp) ∼=
GL2(Fpf ). Then F (μ) is irreducible by [41, A.1.3].

Let μ ∈ X∗(T ) be such that 1 ≤ 〈μ − η, α(i)〉 < p − 2 for all i ∈ Z/fZ.

Let S
def
= {±ω(i)}i∈Z/fZ. For any subset J of S, let σJ

def
= F (tμ(ωJ)) be the

Serre weight defined in [53, Def. 3.5], we refer the reader to §2 of loc. cit. for
the notation used here.

Recall that L denotes the fixed unramified extension of Qp of degree f .
Write P (v) = v + p for the minimal polynomial of πL = −p over Qp. Let
L∞ = L((−p)1/p

∞
) by choosing a compatible system of pn-th roots of −p in

Qp. Let ρ : GL → GL2(F) be a continuous reducible nonsplit representation,
i.e. ρ ∼=

( χ1 ∗
0 χ2

)
. We may write

χ1 = nrαω
∑f−1

i=0 μ1,ipi

f , χ2 = nrα′ω
∑f−1

i=0 μ2,ipi

f

for some dominant p-restricted character μρ
def
= (μ1,i, μ2,i)i∈Z/f . Up to twist,

we may assume (μ1,i, μ2,i) = (ci, 1). We further assume 4 ≤ ci ≤ p−3 for all
i ∈ Z/fZ, equivalently, ρ is strongly generic in the sense of Definition 4.4.
Note that this is the same genericity condition imposed in [52]. In particular
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this implies p ≥ 7. Moreover, ρ lies in the category of Galois representations

defined by Fontaine-Laffaille ([35]), hence it can be written as

ρ = HomFil·,ϕ·(M,Acris ⊗Zp
Fp)

where M is a filtered ϕ-module of Fontaine-Laffaille uniquely (up to iso-

morphism) determined by ρ, Acris is Fontaine’s ring of periods for integral

crystalline representations, and HomFil·,ϕ· means that we consider the mor-

phisms preserving the filtrations and commuting with ϕ. Explicitly, M can

be described as follows

M = M0 × · · · ×Mf−1, with M j = Fej ⊕ Ff j

together with the filtration given by⎧⎨⎩
FiliM j = M j if i ≤ 1

FiliM j = Ff j if 2 ≤ i ≤ cf−j

FiliM j = 0 if i ≥ cf−j + 1

and {
ϕ(ej) = ej+1

ϕcf−j
(f j) = f j+1 + aj−1e

j+1

for j �= 1 and {
ϕ(e1) = αe2

ϕcf−1
(f1) = α′(f2 + a0e

2)

where aj ∈ F and α, α′ ∈ F×. Set

(6.7) Sρ
def
= {ω(i) | af−1−i = 0} ⊂ S

which depends only on ρ. One checks directly

(6.8) Sρ = {ω(i) | i ∈ Jρ},

where Jρ is the (proper) subset of S = Z/fZ as in §4 (cf. [8, Eq. (17)]).

Recall that D(ρ) denotes the set of Serre weights associated to ρ (see §4).
Then D(ρ) = {σJ def

= F (tμρ
(ωJ)) | J ⊆ Sρ} by [52, Prop. 3.2] (where the set

D(ρ) is denoted by W (ρ)).
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6.4. Potentially Barsotti-Tate deformation rings

Let ρ : GL → GL2(F) be a strongly generic reducible nonsplit representation

as above. Let M =
∏

i F((v))e
i⊕F((v))fi denote the étale ϕ-module given by

i �= 0 :

{
ϕM(ei−1) = vcf−i(ei + ai−1f

i)
ϕM(fi−1) = vfi

i = 0 :

{
ϕM(ef−1) = αvc0(e0 + af−1f

0)
ϕM(ff−1) = α′vf0.

[52, Prop. 3.6] shows that V∗(M) ∼= ρ|GL∞
, where V∗ : M �→ (M ⊗

(OEun,L)
ϕ=1)∨ is the anti-equivalent functor (defined by Fontaine) from the

category of étale ϕ-modules over F((v)) to the category of representations of

GL∞ over F. Let N denote the rank one étale ϕ-submodule
∏f−1

j=0 F((v))f
j

of M. Let ēi be the image of ei in M/N . Then {ēi}i∈Z/fZ forms a basis of

M/N over F((v)). We have V∗(N ) ∼= χ2|GL∞
and V∗(M/N ) ∼= χ1|GL∞

.

Let Def�ρ : Art(O) → Sets be the framed deformation functor (à la

Kisin [49]) which sends A to the set of representations ρA : GL → GL2(A)

lifting ρ. Then Def�ρ is pro-representable by a complete noetherian local

O-algebra R�
ρ . If ψ : GL → O× is a continuous character lifting det ρ,

let R�,ψ
ρ be the reduced -torsion free quotient ring of R�

ρ parametrizing

framed deformations of ρ with determinant ψ. If τ is a tame inertial type

and λ = (aκ, bκ)κ∈Hom(L,E), where aκ > bκ are integers, let R�,τ,λ
ρ (resp.

R�,ψ,τ,λ
ρ ) be the quotient ring of R�

ρ (resp. R�,ψ
ρ ) which parametrizes framed

potentially crystalline deformations of ρ of inertial type τ and Hodge-Tate

weights (aκ, bκ) for the embedding κ. If τ = 1 is trivial, we will write R�,cris,λ
ρ

(resp. R�,ψ,cris,λ
ρ ) for R�,1,λ

ρ (resp. R�,ψ,1,λ
ρ ), and call it framed crystalline

deformation ring (with fixed determinant ψ) of Hodge-Tate weights λ. If λ =

(aκ, bκ)κ∈Hom(L,E) with (aκ, bκ) = (1, 0) for all κ ∈ Hom(L,E), we will abbre-

viate R�,τ
ρ (resp. R�,ψ,τ

ρ ) for R
�,τ,(1,0)κ∈Hom(L,E)

ρ (resp. R
�,ψ,τ,(1,0)κ∈Hom(L,E)

ρ ),

and call it framed potentially Barsotti-Tate deformation ring (with fixed

determinant ψ). If T is a set of inertial types for L, then we let R�,T
ρ (resp.

R�,ψ,T
ρ ) be the quotient of R�

ρ such that SpecR�,T
ρ (resp. SpecR�,ψ,T

ρ ) is

the Zariski closure of ∪τ∈T SpecR�,τ
ρ [1/p] (resp. ∪τ∈T SpecR�,ψ,τ

ρ [1/p]) in

SpecR�
ρ .

Let J be a subset of Sρ and let I be a subset of S such that I ∩ {±ω(i)}
has size at most one for all i ∈ Z/fZ. [52] defines a set TJ,I which consists of
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inertial types τ such that σ(τ), the irreducible finite dimensional GL2(OL)-

representation over E associated to τ under the inertial local Langlands

[40], is of the form Rs(μρ − s′η) (see [41, Lem. 4.2] for the notation Rs(μ),

(s, μ) ∈ (S2)
f ×X∗(T )) subject to the condition that s, s′ ∈ (S2)

f are given

by the following table:

si, s
′
i ω(i) /∈ J ω(i) ∈ J

{±ω(i)} ∩ I = ∅ si = s′i s′i �= id

ω(i) ∈ I si = s′i = id si = s′i �= id

−ω(i) ∈ I si = s′i �= id si = id, s′i �= id

[52, Lem. 3.5] shows under the inertial local Langlands [40], TJ,I corre-

sponds to the set of Deligne-Lusztig representations TσJ ,wJ(I) defined in loc.

cit.. In particular, if I is the empty set, then

(6.9) ProjO[Γ](σJ)⊗O E ∼= ⊕τ∈TJ,∅σ(τ),

where ProjO[Γ](σJ) denotes a projective envelope of σJ in the category of

O[Γ]-modules. Recall Theorem 3.6 of [52] (in the special case for reducible

nonsplit strongly generic ρ).

Theorem 6.7 ([52]). There is an isomorphism from R
�,TJ,I

ρ to a formal

power series ring of relative dimension 4 over O[[(Xi, Yi)i∈Z/fZ]]/(gi(J,
I))i∈Z/fZ, where gi(J, I) is given by the following table:

gi(J, I) ω(f−1−i) /∈ Sρ ω(f−1−i) ∈ Sρ\J ω(f−1−i) ∈ J

{±ω(f−1−i)} ∩ I = ∅ Yi(Yi − p) Yi(XiYi − p) Xi(XiYi − p)

ω(f−1−i) ∈ I Yi Yi XiYi − p

−ω(f−1−i) ∈ I Yi − p XiYi − p Xi

If I ⊆ I ′, then gi(J, I
′)|gi(J, I) for all i and R

�,TJ,I′

ρ is the quotient of

R
�,TJ,I

ρ by the ideal (gi(J, I
′))i. Analogous results hold for R

�,ψ,TJ,I

ρ provided

ψ is chosen so that R
�,ψ,TJ,I

ρ is nonzero for some I.

We record the following result of independent interest. It will not be

used for the rest of the paper.

Corollary 6.8. We have a natural isomorphism

HomO−alg(R
�,TJ,∅
ρ ,F[ε]/ε2) ∼= HomO−alg(R

�,T∅,∅
ρ ,F[ε]/ε2), ∀J ⊆ Sρ.
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Proof. By Theorem 6.7, R
�,TJ,∅
ρ is a formal power series ring over

O[[Xi, Yi]]i∈Z/fZ/(gi(J, ∅))i∈Z/fZ,

and R
�,TJ,J

ρ is isomorphic to the quotient R
�,TJ,∅
ρ /(gi(J, J))i∈Z/fZ. From the

description of the ideals (gi(J, ∅))i and (gi(J, J))i, one checks directly that

dimF HomO−alg(R
�,TJ,∅
ρ ,F[ε]/ε2)

= dimFHomO−alg(R
�,TJ,J

ρ ,F[ε]/ε2) = 3 + (2f + 1).

Hence the injection

HomO-alg(R
�,TJ,J

ρ ,F[ε]/ε2) → HomO−alg(R
�,TJ,∅
ρ ,F[ε]/ε2)

induced by the projection R
�,TJ,∅
ρ � R

�,TJ,J

ρ is an isomorphism.

Let −J denote the set {−ω(i) | ω(i) ∈ J}. Then similarly the projection

R
�,T∅,∅
ρ → R

�,T∅,−J

ρ induces an isomorphism

HomO−alg(R
�,T∅,−J

ρ ,F[ε]/ε2) ∼= HomO−alg(R
�,T∅,∅
ρ ,F[ε]/ε2).

Finally, one checks directly T∅,−J = TJ,J = T∅,∅ ∩ TJ,∅ by noticing J ⊆
{ω(i) | i ∈ Z/fZ}.

Proposition 6.9. Let t ∈ HomO−alg(R
�,T∅,∅
ρ ,F[ε]/ε2). Then t factors through

R�,red
ρ if and only if t(Yi) = 0 for all i ∈ Z/fZ. In particular, we have

dimF

(
HomO−alg(R

�,T∅,∅
ρ ,F[ε]/ε2) ∩HomO−alg(R

�,red
ρ ,F[ε]/ε2)

)
= 4 + f,

where the intersection is taken inside HomO−alg(R
�
ρ ,F[ε]/ε

2). An analogous

equality holds for fixed determinant deformation rings, i.e.

dimF

(
HomO−alg(R

�,ψ,T∅,∅
ρ ,F[ε]/ε2) ∩HomO−alg(R

�,ψ,red
ρ ,F[ε]/ε2)

)
= 3 + f.

Proof. The fixed determinant case follows from the unfixed determinant case

by [31, Lem. 4.3.1]. For the unfixed determinant case, we first recall the con-

struction of R
�,T∅,∅
ρ in [52]. Let R = O[[(Xi, Yi)0≤i≤f−1, Xα, Xα′ ]]/(gi(∅, ∅))i.

The universal étale ϕ-module MR over R admits the following description,
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see [52, Thm. 3.6],

ω(f−i) /∈ Sρ :

{
ϕ(ei−1) = vcf−i−1(v + p− Yi−1)e

i + (Xi−1+[ai−1])v
cf−ifi

ϕ(fi−1) = −Yi−1(Xi−1 + [ai−1])
−1ei + vfi

ω(f−i) ∈ Sρ :

{
ϕ(ei−1) = vcf−i−1(v + p−Xi−1Yi−1)e

i +Xi−1v
cf−ifi

ϕ(fi−1) = −Yi−1e
i + vfi

for i �= 0, and for i = 0 one needs to modify by the multiplication by the
matrix

D(α, α′) =

(
Xα + [α] 0

0 Xα′ + [α′]

)
.

Let R� be the ring which represents the functor sending a complete noethe-
rian local O-algebra A to the set of isomorphism classes of {f : R → A, bA}
where bA is a basis for the free rank two A-module V∗(f∗(MR)) whose re-
duction modulo mA gives ρ. Then R� is formally smooth over R of relative

dimension 4. The universal lifting ring R
�,T∅,∅
ρ is then a quotient of R� by

a Ĝ2
m action, and is a power series ring over R of relative dimension 2, see

[52, Thm. 3.6].
We have the following commutative diagram

HomO−alg(R
�,T∅,∅
ρ ,F[ε]/ε2) A

C

Ext1GK
(ρ, ρ)

B
Ext1GK∞

(ρ, ρ)

D ∼=

HomO−alg(R
�,F[ε]/ε2) Ext1(MR� ,MR�) Ext1(M,M)

HomO−alg(R,F[ε]/ε2) Ext1(MR,MR) Ext1(M,M)

where the extension of MR� (resp. M) by MR� (resp. M) is taken in the
corresponding category of étale ϕ-modules.

The map A is given by the deformation theory, and it is injective. The
map C is injective by [17, Lem. 2.2.7]. The restriction map B is injective
by [17, Lem. 2.2.9] if ρ is not isomorphic to ρ(1) (which holds when ρ is
strongly generic). Since the category of étale ϕ-modules over F((v)) is anti-
equivalent to the category of continuous representations of GL∞ over F, D
is an isomorphism.

For any t ∈ HomO−alg(R
�,T∅,∅
ρ ,F[ε]/ε2), we let Mt denote the image of t

in Ext1(M,M) under the composition D ◦B ◦A. Then Mt over R admits
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the following description

ω(f−i) /∈Sρ :

{
ϕ(ei−1) =vcf−iei−t(Yi−1)v

cf−i−1ei+(t(Xi−1) + ai−1)v
cf−ifi

ϕ(fi−1) =−a−1
i−1t(Yi−1)e

i + vfi

ω(f−i)∈Sρ :

{
ϕ(ei−1) =vcf−iei + t(Xi−1)v

cf−ifi

ϕ(fi−1) =−t(Yi−1)e
i + vfi

for i �= 0, and with the usual modification by α, α′ when i = 0.

Let Nt =
∏

i∈Z/fZ(F[ε]/ε
2)((v))f′i be a rank one étale ϕ-submodule of

Mt. Since ρ is reducible nonsplit, N ⊂ M is the unique étale ϕ-submodule

of M. Then Nt (mod ε) = N . Up to an element in F×, we may assume

f′i = fi + ε(xie
i + yif

i) with xi, yi ∈ F for all i. If ω(f−i) ∈ Sρ, then

ϕ(f′i−1) = ϕ(fi−1) + ε(ϕ(xi−1)ϕ(e
i−1) + ϕ(yi−1)ϕ(f

i−1))

= −t(Yi−1)e
i + vfi

+ ε
(
ϕ(xi−1)(v

cf−iei + t(Xi−1)v
cf−ifi) + ϕ(yi−1)(−t(Yi−1)e

i + vfi)
)

= af′i = a(fi + ε(xie
i + yif

i)),

for some a ∈ (F[ε]/ε2)((v)) and a ≡ v (mod ε). Since t(Yi−1) ∈ Fε, by com-

paring the εei terms and noticing cf−i ≥ 4, we see t(Yi−1) = 0. The case

ω(f−i) /∈ Sρ can be done in the same way.

6.5. Crystalline deformation rings

From now on we only consider fixed determinant deformation rings. Analo-

gous results hold for deformation rings without the determinant condition.

Let σ be a Serre weight given by

σ ∼=
⊗

κ∈Hom(Fq,F)

(SymrκF2
q ⊗ det tκ)⊗Fq,κ F,

where 0 ≤ rκ, tκ ≤ p − 1 and not all tκ are equal to p − 1. We identify

Hom(L,E) with Hom(Fq,F) by the natural reduction map. Let R�,ψ,cris,σ
ρ

denote R�,ψ,cris,λ
ρ for λ = (rκ + tκ +1, tκ)κ∈Hom(L,E). If σ ∈ D(ρ), R�,ψ,cris,σ

ρ

is a regular local ring of relative dimension f + 3 over O.

Proposition 6.10. The universal deformation of ρ over R�,ψ,cris,σ∅
ρ ⊗O F

is reducible. In particular, R�,ψ,cris,σ∅
ρ ⊗O F is a quotient of R�,ψ,red

ρ ⊗O F.
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Proof. By [32, Thm. 7.2.1] and Theorem 6.7 (which is [52, Thm. 3.6]),

R�,ψ,cris,σ∅
ρ ⊗O F is a quotient of R

�,T∅,∅
ρ ⊗O F by the ideal (Yi)i∈Z/fZ. Hence

by the form of the universal étale ϕ-module recalled in the proof of Proposi-
tion 6.9, the universal étale ϕ-module over R�,ψ,cris,σ∅

ρ ⊗OF has the following
form

ω(f−i) /∈ Sρ :

{
ϕ(ei−1) = vcf−iei + (Xi−1 + ai−1)v

cf−ifi

ϕ(fi−1) = vfi

ω(f−i) ∈ Sρ :

{
ϕ(ei−1) = vcf−iei +Xi−1v

cf−ifi

ϕ(fi−1) = vfi

for i �= 0, and with the usual modification for i = 0. The (fi)i∈Z/fZ clearly
gives a rank one étale ϕ-submodule.

Corollary 6.11. We have

HomO−alg(R
�,ψ,T∅,∅
ρ ,F[ε]/ε2) ∩HomO−alg(R

�,ψ,red
ρ ,F[ε]/ε2)

= HomO−alg(R
�,ψ,cris,σ∅
ρ ,F[ε]/ε2),

where the intersection is taken inside HomO−alg(R
�,ψ
ρ ,F[ε]/ε2).

Proof. It follows from [32, Thm. 7.2.1] and Theorem 6.7 (which is [52,

Thm. 3.6]) that R�,ψ,cris,σ∅
ρ ⊗O F is a quotient of R

�,ψ,T∅,∅
ρ ⊗O F by the ideal

(Yi)i∈Z/fZ. Then the equality follows from Proposition 6.9 and Proposition
6.10.

If A is a regular local ring, recall that a regular system of parameters of
A is defined as any system of parameters of A which generates the maximal
ideal of A, see [56, §14].

Lemma 6.12. Let R = F[[(Xj , Yj)j∈J ]]/(XjYj)j∈J for some finite set J .
Then R is Cohen-Macaulay of dimension |J | and there exists a regular se-
quence {Uj , j ∈ J } in R such that for any minimal prime ideal p of R,
{Uj mod p, j ∈ J } forms a regular system of parameters of R/p.

Proof. It suffices to take Uj = Xj + Yj for all j ∈ J . Note that for any
minimal prime p of R, R/p is a regular local ring.

Proposition 6.13. There is a sequence (T1, . . . , Tf+3) in R�,ψ
ρ , which is

part of a regular system of parameters and such that for any σ ∈ D(ρ), the
sequence {, pσ(Tj), 1 ≤ j ≤ f +3} forms a regular system of parameters of

R�,ψ,cris,σ
ρ . Here, pσ denotes the natural quotient map R�,ψ

ρ → R�,ψ,cris,σ
ρ .
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Proof. We choose a tame inertial type τ so that D(ρ) ⊆ JH(σ(τ)), this

is possible by [23] (see [32, Prop. 3.5.2]) and the genericity of ρ. By [8,

§4] and [32, Thm. 7.2.1(1)] there are subsets Jmin ⊆ Jmax ⊆ S such that

D(ρ) = {σ(τ)J | Jmin ⊆ J ⊆ Jmax} where σ(τ)J is as in [32, §3.2, 3.3]). By
[32, Thm. 7.2.1(2)], R�,ψ,τ

ρ ⊗O F has dimension f +3 and is a formal power

series ring over

F[[(Xj , Yj)j∈J ]]/(XjYj)j∈J

where J = Jmax\Jmin. Moreover, for σ = σ(τ)J ∈ D(ρ), R�,ψ,cris,σ
ρ ⊗OF can

be obtained as the quotient of R�,ψ,τ
ρ ⊗O F by some minimal prime ideal. By

Lemma 6.12 and taking into account of the formal variables, we may find

{Uj , 1 ≤ j ≤ f +3} in R�,ψ,τ
ρ ⊗O F such that their images in R�,ψ,cris,σ

ρ ⊗O F
form a regular system of parameters for any σ ∈ D(ρ). Choosing a lift

Tj ∈ R�,ψ
ρ of Uj for each j, it is easy to see that {Tj , 1 ≤ j ≤ f +3} satisfies

the required properties.

7. P -ordinary automorphic representations, Local-global
compatibility

We recall some results of P -ordinary automorphic representations and the

relevant local-global compatibility proved in [10, §6.3 and §7.1].
Let F be a totally real extension of Q in which p is unramified, and OF

be its ring of integers. Let Sp denote the set of places of F dividing p and

S∞ the set of infinite places of F . For any place w of F , let Fw denote the

completion of F at w with ring of integers OFw
, uniformiser w and residue

field kFw
. The cardinality of kFw

is denoted by qw. Let AF,f denote the ring

of finite adèles of F . If S is a finite set of finite places of F , let AS
F,f denote

the finite adèles outside S.

Let D be a quaternion algebra with center F . Let SD be the set of

ramified places of D. Assume SD is disjoint from Sp. Let (OD)w denote

OD ⊗OF
OFw

. For w /∈ SD ∪ S∞, we identify (D ⊗F Fw)
× with GL2(Fw) so

that (OD)
×
w is identified with GL2(OFw

). In the following, we assume D is

either definite, i.e. S∞ ⊆ SD, or indefinite, i.e. |S∞\SD| = 1. In the definite

case, we furthermore assume (F,D) �= (Q,GL2) (our main result is already

known in the case (F,D) = (Q,GL2) by [29]).

We fix a place v|p and denote by L
def
= Fv which is unramified of degree

f
def
= [L : Qp] over Qp.
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7.1. p-adic completed cohomology

Let D be either definite or indefinite. Let U be an open compact subgroup
of (D⊗F AF,f )

×. If D is definite, we denote by Y D
U the finite set D×\(D⊗F

AF,f )
×/U ; If D is indefinite, let Y D

U denote the quotient of XD
U by the

action of the finite group A×
F,f/(F

×(A×
F,f ∩U)), where XD

U is the associated
projective Shimura curve as in [16], see [12, Rem. 8.1.2(iii)]. Note that we
will follow the convention in [16] which is different from the convention used
in [10] and [9] (see [9, §3.1]).

Fix Up =
∏

w�p Uw an open compact subgroup of (D ⊗F Ap
F,f )

×. For an

open compact subgroup Up ⊂ (D ⊗Q Qp)
× and i, s ∈ N, let

H i(UpUp,O/s)
def
= H i

ét(Y
D
UpUp,F

,O/s).

If D is definite, H i(UpUp,O/s) = 0 if i ≥ 1, and H0(UpUp,O/s) can be
identified with the set of functions f : D×\(D⊗F AF,f )

×/UpUp → O/s. If
D is indefinite, H i(UpUp,O/s) = 0 if i ≥ 3. Set

H̃ i(Up,O)
def
= lim←−

s

lim−→
Up

H i(UpUp,O/s).

Let ψ : F×\A×
F,f → O× be a locally constant character. For each

place w ∈ Sp\{v}, let Ww be an irreducible algebraic representation of
ResFw/Qp

GL2 over E with central character ψ−1|F×
w
. LetW =

∏
w∈Sp\{v}Ww.

Then W is an irreducible algebraic representation of (D ⊗Q Qp)
× via

(D ⊗Q Qp)
× �

∏
w∈Sp\{v}

GL2(Fw) =
∏

w∈Sp\{v}
(ResFw/Qp

GL2)(Qp).

Let W be an O-lattice of W stable under Uv
p =

∏
w|p,w �=v Uw. We denote

by Uv = UpUv
p ⊂ (D ⊗F A{v}

F,f )
×. Then W admits an action of Uv via the

projection Uv � Uv
p . We extend this action to Uv(A×

F,f ) by letting A×
F,f

act by ψ−1. Assume Uv is an open compact subgroup of GL2(OL) such
that ψ|Uv∩O×

Fv
= 1. Then W admits an action of U(A×

F,f ) by letting Uv act

trivially. For s ∈ N, let VW/�s be the local system over Y D
UvUv

associated to
the algebraic representation W/s, see [26]. We define

H i(UvUv,W/s)
def
= H i(UvUv,VW/�s)



On the mod p cohomology for GL2: the non-semisimple case 347

H i(Uv,W)
def
= lim−→

Uv

lim←−
s

H i(UvUv,W/s)

H̃ i(Uv,W)
def
= lim←−

s

lim−→
Uv

H i(UvUv,W/s).

All these spaces carry compatible actions of the group (D ⊗F Fv)
× =

GL2(L). If D is definite, H̃0(Uv,W) is identified with the space of con-
tinuous functions f : D×\(D ⊗F AF,f )

× → W such that f(gu) = u−1f(g),
∀g ∈ (D ⊗F AF,f )

× and ∀u ∈ U(A×
F,f ), and it is the -adic completion

of H0(Uv,W). H̃0(Uv,W) ⊗O E is an admissible unitary Banach repre-
sentation of GL2(L) with the norm defined by the (complete) O-lattice
H̃0(Uv,W). If D is indefinite and i = 0, 1, 2, H̃ i(Uv,W) is the -adic com-
pletion of H i(Uv,W), and is the gauge lattice for the admissible unitary
Banach GL2(L)-representation H̃ i(Uv,W)⊗O E, see [26].

7.2. p-adic automorphic forms

We consider the space of algebraic automorphic forms over D with the fixed
central character ψ. Let Uv, Uv,W be as above. For A ∈ {W,W/s} where
s ∈ N, let

(7.1) SD
ψ (UvUv, A)

def
= H0(UvUv, A)

if D is definite; let

(7.2) SD
ψ (UvUv, A)

def
= H1(UvUv, A)

if D is indefinite. Set

S̃D
ψ (Uv,W)

def
= lim←−

s

lim−→
Uv

SD
ψ (UvUv,W/s).

Then S̃D
ψ (Uv,W) is the -adic completion of SD

ψ (Uv,W).
Let S be a set of places of F containing all places in S∞ ∪ SD ∪ Sp, all

places where ψ is ramified, and all places w such that Uw is not (OD)
×
w .

Let TS def
= O[Tw, S

±1
w | w /∈ S] be the commutative O-algebra generated

by the formal variables Tw, Sw and S−1
w for all w /∈ S. Then TS acts on

SD
ψ (UvUv, A) for A ∈ {W,W/s} by letting Tw act by the double coset

operator corresponding to

GL2(OFw
)

(
w 0
0 1

)
GL2(OFw

)
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and Sw act by the double coset operator corresponding to

GL2(OFw
)

(
w 0
0 w

)
GL2(OFw

).

This induces an action of TS on SD
ψ (Uv, A) and on S̃D

ψ (Uv, A). The action

of TS commutes with the action of GL2(L), and we have GL2(L) × TS-
equivariant isomorphisms

S̃D
ψ (Uv,W)/s ∼= SD

ψ (Uv,W/s) ∼= SD
ψ (Uv,W)/s.

Let TS(UvUv, A) denote the image of the homomorphism

TS → EndA(S
D
ψ (UvUv, A)), A ∈ {W,W/s}.

Then

TS(UvUv,W) ∼= lim←−
s

TS(UvUv,W/s).

If U ′
v ⊆ Uv is an inclusion of open compact subgroups of GL2(OL), we have

a natural surjection TS(UvU ′
v,W) � TS(UvUv,W). We then define

T̃S(Uv)
def
= lim←−

Uv

TS(UvUv,W).

The O-algebra T̃S(Uv) is reduced, and S̃D
ψ (Uv,W) is a faithful T̃S(Uv)-

module (the definite case follows from [10, Lem. 6.3]; the indefinite case is
similar).

Let r : GF → GL2(F) be a two dimensional continuous totally odd
Galois representation. Assume r is unramified outside S. We associate to
r a maximal ideal m = mr of TS of residue field F, generated by Tw −
Sw tr(r(Frobw)) and qw − Sw det(r(Frobw)) for w /∈ S. We say m is non-
Eisenstein if r is absolutely irreducible.

Assume r is absolutely irreducible. We say that r (and m) is (Uv,W)-
automorphic (with respect to D) if SD

ψ (UvUv,W)m is nonzero for some Uv

(equivalently SD
ψ (UvUv,W)m[m] �= 0). In this case, ψ ◦Art−1

F is necessarily a

lift of ω−1(det r)−1. By abuse of notation we also write ψ for ψ ◦Art−1
F . We

say r (and m) is automorphic if it is (Uv,W)-automorphic for some (Uv,W).

If this is the case then m gives rise to a maximal ideal of T̃S(Uv) (via the

projection T̃S(Uv) � TS(UvUv,W)) which is also denoted by m.
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Lemma 7.1. Let m be non-Eisenstein and (Uv,W)-automorphic. Then

(i) the O-algebra T̃S(Uv)m is reduced.

(ii) S̃D
ψ (Uv,W)m is a faithful T̃S(Uv)m-module.

Proof. The definite case follows from [10, Lem. 6.6]. The indefinite case is
proved similarly.

7.3. P -ordinary automorphic forms

Let T (resp. P ) be the subgroup of diagonal torus (resp. upper trian-
gular matrices) of the algebraic group GL2. Let OrdP denote the ordi-
nary parts functor [27, Def. 3.1.9] from the category of smooth represen-
tations of GL2(L) on O-torsion modules to the category of smooth rep-
resentations of T (L) on O-torsion modules. For V a -adically continu-
ous representation of GL2(L) over O (in the sense of [27, Def. 2.4.1]), de-

fine OrdP (V )
def
= lim←−n

OrdP (V/
nV ) following [27, Def. 3.4.1]. For V 0 a

GL2(L)-stable O-lattice in a smooth representation V of GL2(L) over E,

define OrdP (V
0) as in [10, (4.15)]. We define the quotient T̃S(Uv)P−ord

m of

T̃S(Uv)m in the same way as in [10, §6.3]. We record some results of loc. cit.
(and obvious generalizations to the indefinite case).

Lemma 7.2. (i) The O-algebra T̃S(Uv)P−ord
m is reduced. The T̃S(Uv)P−ord

m -
module OrdP (S

D
ψ (Uv,W)m) is faithful.

(ii) Assume Up is sufficiently small in the sense of [21, §3.3]. Then
OrdP (S

D
ψ (Uv,W)m) is dense in OrdP (S̃

D
ψ (Uv,W)m) for the -adic topology.

As a consequence, OrdP (S̃
D
ψ (Uv,W)m) has a natural T̃S(Uv)P−ord

m -module

structure, and is faithful over T̃S(Uv)P−ord
m .

(iii) Let C(T (OL),O) denote the set of continuous functions from T (OL)
to O. It is a T (OL)-module via right translation. Let Cψ(T (OL),O) de-
note the submodule of C(T (OL),O) which consists of functions such that
O×

L (↪→ T (OL)) acts by ψ|O×
L
. Assume Up is sufficiently small. Then there

is an integer r ≥ 1 such that the T (OL)-module OrdP (S̃
D
ψ (Uv,W)m)|T (OL)

is isomorphic to a direct summand of Cψ(T (OL),O)⊕r.

(iv) Assume Up is sufficiently small. Then OrdP (S̃
D
ψ (Uv,W)m) is a -

adically admissible representation of T (L) over T̃S(Uv)P−ord
m .

Proof. IfD is definite, the proof is an obvious fixed determinant modification
of the proof given in [10]. (i) is [10, Lem. 6.7]. (ii) and (iii) are proved in
[10, Lem. 6.8]. (iv) is Lemma 6.11 of loc. cit.. If D is indefinite, (i) is proved
similarly. (ii)-(iv) are proved along the same way, but one needs to replace
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the lemma 6.1 of [10] by standard generalization of [29, Cor. 5.3.19] to the

cohomology of Shimura curves.

Since we assume r is absolutely irreducible, let Rψ−1

r,S denote the univer-

sal deformation ring of deformations of r which are unramified outside S

with determinant ψ−1ε−1. Assume rv
def
= r|GL

is strongly generic reducible

nonsplit. Then rv is strictly P -ordinary in the sense of [10, Def. 5.8]. Re-

call the complete noetherian local O-algebra Rψ−1

rv
(resp. Rψ−1,red

rv
) defined

in §6, which parametrizes deformations (resp. reducible deformations) of

rv with determinant ψ|−1
GFv

ε−1.9 We have a homomorphism of O-algebras

Rψ−1

rv
→ Rψ−1

r,S . By works of several mathematicians (see [70]) there is a

surjection of complete O-algebras

Rψ−1

r,S � T̃S(Uv)m.

Proposition 7.3. The homomorphism Rψ−1

rv
→ End

(
OrdP (S̃

D
ψ (Uv,W)m)

)
given by the composition

Rψ−1

rv
→ Rψ−1

r,S � T̃S(Uv)m � T̃S(Uv)P−ord
m → End

(
OrdP (S̃

D
ψ (Uv,W)m)

)
factors through Rψ−1,red

rv
. Moreover, for any s ≥ 1 the action of Rψ−1

rv
on

OrdP (S̃
D
ψ (Uv,W/s)m) factors through Rψ−1,red

rv
.

Proof. The same proof of Theorem 6.12 of [10] works here. In the proof,

one needs to replace the local-global compatibility for automorphic forms

on unitary groups by the local-global compatibility for automorphic forms

on (D ⊗F AF,f )
× at the place v|p, which is established in [64]. The density

of OrdP (S
D
ψ (Uv,W)m) inside OrdP (S̃

D
ψ (Uv,W)m) (in the indefinite case) is

given by (ii) of Lemma 7.2. The last statment follows from the isomorphisms

(see the proof of [10, Lem. 6.8(1)])

OrdP (S̃
D
ψ (Uv,W)m)/

s ∼= OrdP (S̃
D
ψ (Uv,W)m/

s)

∼= OrdP (S̃
D
ψ (Uv,W/s)m).

9For the fixed determinant deformation ring of rv, the notation used here is
slightly different from the notation used in §6.
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Proposition 7.4. Write r∨v =
( χ1 ∗

0 χ2

)
. Then OrdP

(
SD
ψ (Uv,W/)m[m]

)
is

semisimple and isomorphic to (χ1ω
−1⊗χ2)

⊕s for some s ≥ 1. Here we view
χi as a character of L× via the fixed local Artin map.

Proof. If D is indefinite, OrdP
(
SD
ψ (Uv,W/)m[m]

)
is semisimple by [44,

Thm. 4.2]. It suffices to show that if χ occurs in OrdP
(
SD
ψ (Uv,W/)m[m]

)
then χ ∼= χ1ω

−1 ⊗ χ2. We will use the results of [44] (or [29]); note that
the convention of Shimura curves in loc. cit. is different from ours, e.g. the
Galois representation associated to a cuspidal automorphic representation
π (in characteristic zero) has determinant ψπε

−1 in loc. cit., where ψπ is
the central character of π; while in our case the Galois representation has
determinant ψ−1

π ε−1. Hence in order to obtain results for our r, we should
apply the results of [44] (or [29]) to r∨(−1).

In this proof we write ρ = r∨v (−1) =
( η1 ∗

0 η2

)
with η1 = χ1ω

−1 and
η2 = χ2ω

−1. Let S be the subtorus of T consisting of matrices
(
a 0
0 1

)
for

a ∈ L× and define an anti-diagonal embedding

(7.3) S ↪→ Gab
L × S, s �→ (ArtL(s), s

−1)

where Gab
L denotes the maximal abelian quotient of GL and ArtL the local

Artin map. By [44, Thm. 4.1, Lem. 2.10], the action of GL on (ρ⊗χ)ab,S ↪→
ρ⊗χ factors throughGab

L , see [44, §2.4, Def. 1] for the definition of (ρ⊗χ)ab,S .
Since ρ is nonsplit and η1 �= η2, this implies that (ρ⊗ χ)ab,S is nonzero and
is equal to η1⊗χ as a GL×S-representation. By a computation using (7.3),
we obtain that χ = η1⊗η′2 for some character η′2 of GL, and a consideration
of central character shows that

η1η
′
2 = (det ρ) · ω = η1η2ω,

namely η′2 = η2ω = χ2.
If D is definite, then the result is a special case of [10, Cor. 7.40]. We

note that it is assumed in [10] that L = Qp in order to treat the case that
the Levi subgroup of P ⊂ GLn is a product of GL1’s and GL2’s. Since we
assume here n = 2 and T = GL1 ×GL1, we don’t need this assumption. As
we follow the convention of [16] instead of [10], we apply [10, Cor. 7.40] to
r∨v (−1) with s1 = 0, s2 = 1 in loc. cit., and the result follows.

8. Global applications

We maintain the notation used in the last section. In particular, F is the
totally real field in which p is unramified, v is the fixed place over p such
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that Fv is isomorphic to L the fixed unramified extension of Qp of degree
f . Let D be a definite or indefinite quaternion algebra over F . Let SD be
the set of ramified places of D, Sp be the set of places above p. The aim
of this section is to prove Theorem 8.8, Corollary 8.12, Theorem 8.15 and
Corollary 8.17.

8.1. The “big” patching functors

In this subsection we recall the global patching setup. Assume p > 5 is an
odd prime; r : GF → GL2(F) is automorphic, and r|GF ( p√1)

is absolutely
irreducible; r|IFw

is generic for all places w|p in the sense of [15, Def. 11.7].

Denote by rw
def
= r|GFw

for all finite places w of F .

Let ψ
def
= ω−1(det r)−1. Let ψ : GF → O× be the Teichmüller lift of ψ. By

abuse of notation, we denote by ψ the character ψ ◦ArtF : F×\A×
F,f → O×.

Let S be the set of finite places of F which consists of SD, Sp\{v}, and the
places where r ramifies. We assume for w ∈ S\Sp the framed deformation
ring of rw is formally smooth over O (cf. [12, Rk. 8.1.1]). We choose a finite
place w1 /∈ S with the following properties:

• qw1
�≡ 1 (mod p),

• the ratio of the eigenvalues of r(Frobw1
) is not equal to q±1

w1
,

• the residue characteristic of w1 is sufficiently large that for any non-
trivial root of unity ζ in a quadratic extension of F , w1 does not divide
ζ + ζ−1 − 2.

Let U =
∏

w Uw ⊂ (D⊗FAF,f )
× be an open compact subgroup satisfying

Uw = (OD)
×
w = GL2(OFw

) for w /∈ S∪{w1}, Uw1
is contained is the subgroup

of (OD)
×
w1

= GL2(OFw1
) consisting of matrices that are upper-triangular and

unipotent modulo w1
, and Uw = 1+wM2(OFw

) for w ∈ Sp. By the choice
of Uw1

, U is sufficiently small in the sense of [21, §3.3].
We assume E is a sufficiently large finite unramified extension of Qp.

For each w ∈ Sp\{v}, we fix a tame inertial type τw over E such that

JH(σ(τ∗w)) contains exactly one Serre weight in D(r∨w) ([32, Prop. 3.5.1]),
where τ∗w is the E-linear dual of τw. Let σw denote the unique Serre weight
in JH(σ(τ∗w))∩D(r∨w). We fix a GL2(OFw

)-invariant lattice σ◦(τ∗w) in σ(τ∗w).
Since σw has central character ψ|O×

Fw
and τw is tame, σ◦(τ∗w) has central

character ψ|IFw
. Let

(8.1) W
def
=

⊗
w∈Sp\{v}

σ◦(τ∗w)
d.

By [9, Cor. 3.2.3], r : GF → GL2(F) is (Uv,W)-automorphic.
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Let Q be a finite set of finite places which consists of w /∈ S ∪ {w1}
such that the ratio of the eigenvalues of r(Frobw) is not in {1, qw, q−1

w }. Let
U1(Q)v be an open compact subgroup of Uv satisfying (U1(Q)v)w is the
subgroup of (OD)

×
w = GL2(OFw

) of matrices of the form
(
a b
0 a

)
modulo w

for w ∈ Q and (U1(Q)v)w = Uw for w /∈ Q. In particular U1(∅)v = Uv.
The abstract Hecke algebra TS∪Q∪{w1} acts on S̃D

ψ (U1(Q)v,W) such that

the action factors through a faithful action of T̃S∪Q∪{w1}(U1(Q)v). Let mQ

denote the maximal ideal of T̃S∪Q∪{w1}(U1(Q)v) associated to r. Let runivmQ
:

GF → GL2(R
ψ−1

r,S∪Q) be the universal deformation of r over Rψ−1

r,S∪Q. Let rmQ

denote the composition GF

runiv
mQ−→ GL2(R

ψ−1

r,S∪Q) → GL2(T̃S∪Q∪{w1}(U1(Q)v)).

When Q = ∅ we write mr for the maximal ideal of T̃S∪{w1}(Uv) associated
to r.

In the definite case we write

MQ
def
=
(
S̃D
ψ (U1(Q)v,W)mQ

)d
,

and in the indefinite case we write

MQ
def
= HomGF

(
runivmQ

, S̃D
ψ (U1(Q)v,W)mQ

)d
.

For w a finite place of F , let R�
w denote the framed deformation ring for

rw over O (see §6.4). Let R�,ψ−1

w denote the quotient of R�
w corresponding

to liftings with determinant ψ|−1
GFw

ε−1. Let Rloc = ⊗̂w∈S∪{v}R
�,ψ−1

w . Note

that Rloc is formally smooth over O by assumption. For Q a finite set of

finite places of F disjoint from S, let R�,ψ−1

r,S∪Q be the complete O-algebra
which prorepresents the functor assigning to a local artinian O-algebra A
with residue field F the set of equivalence classes of tuples (r, {αw}w∈S)
where r is an A-lifting of r with determinant ψ−1ε−1 (we view ψ−1ε−1 as
a character of GF with values in A×) and is unramified outside S ∪ Q,
αw ∈ Ker(GL2(A) → GL2(F)) for each w ∈ S.

Let j = 4|S| − 1. The Taylor-Wiles-Kisin patching construction in [18]
and [66] gives us the following data (see [25, Thm. 6.1] for an analogous
situation):

(1) positive integers g, q such that q = g + [F : Q]− |S|+ 1;
(2) O∞ = O[[z1, . . . , zq]], a formal power series ring with a homomorphism

O∞ → Rψ−1

r,S
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which extends to a homomorphism from S∞
def
= O[[z1, . . . , zq, y1, . . . , yj ]]

to R�,ψ−1

r,S ;

(3) R∞
def
= Rloc[[x1, . . . , xg]], a power series ring in g-variables over Rloc,

with a surjective homomorphism R∞ → Rψ−1

r,S ;
(4) an O-algebra homomorphism S∞ → R∞ whose composition with the

homomorphism R∞ → Rψ−1

r,S in (3) is compatible with the homomor-

phism O∞ → Rψ−1

r,S in (2);
(5) a finite Cohen-Macaulay R∞[[GL2(OL)]]-module M∞, which is finite

projective over S∞[[GL2(OL)]], together with an isomorphism

M∞/a∞ ∼= M∅.

where a∞ denotes the ideal (z1, . . . , zq, y1, . . . , yj) of S∞.

We note that R∞ is formally smooth over O (as Rloc is). Let m∞ de-
note the maximal ideal of R∞. Consider the following admissible smooth
representation of GL2(L) over F

(8.2) π
def
= M∨

∞[m∞] = M∨
∅ [mr].

Then π is identified with

S̃D
ψ (Uv,W)[mr] = HomUv

p

(
⊗w∈Sp\{v}σw, S̃

D
ψ (Uv,F)[mr]

)
if D is definite, and is identified with

HomGF

(
r, S̃D

ψ (Uv,W)[mr]
)

= HomUv
p

(
⊗w∈Sp\{v}σw,HomGF

(
r, S̃D

ψ (Uv,F)[mr]
))

if D is indefinite.

Let CZ,ψ denote the category of finite O-modules with a continuous ac-
tion of GL2(OL) such that the GL2(OL)-action has central character ψ. For
σ ∈ CZ,ψ, let

(8.3) M∞(σ)
def
= Homcont

O[[GL2(OL)]]
(M∞, σ∨)∨.

Since M∞ is projective over O[[GL2(OL)]] and is finitely generated over
R∞[[GL2(OL)]], M∞(−) is an exact covariant functor from CZ,ψ to the cate-
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gory of finitely generated R∞-modules. For σ ∈ CZ,ψ, we have

(8.4)
(
M∞(σ)/m∞M∞(σ)

)∨ ∼= HomGL2(OL)(σ, π).

Recall that dimG(π) denotes the Gelfand-Kirillov dimension of π, see
(A.3) in Appendix. Gee and Newton made the following important observa-
tion ([38, Appendix A]):

Theorem 8.1. M∞ is a flat R∞-module if and only if dimG(π) ≤ f . If the
equivalent conditions hold, we have dimG(π) = f .

Under this flatness assumption, we prove an essential self-duality for
π∨ = M∅/mr.

Theorem 8.2. Assume dimG(π) ≤ f . We have an isomorphism of Λ(G)-
modules (see (A.2) for the definition of Λ(G))

π∨ ⊗ ψ|F×
v
◦ det ∼= E2f (π∨),

where Ei is defined in §A.1 of the Appendix.

Proof. First assume D is definite. Let H̃0
ψ

def
= H̃0

(
Up, (O/)ψ

)
, where

(O/)ψ denotes the constant coefficient sheaf O/ on which A×
F,f acts

by ψ and Up acts trivially. Let H̃
0,ψ

−1 denote the dual of H̃0
ψ
. By the

Poincaré duality spectral sequence [30, §2.1.5, §2.1.7], we obtain a Uv
p ×

Λ(G)× T̃S∪{w1}(Up)-equivariant isomorphism

E0(H̃0,ψ)
∼−→ H̃

0,ψ
−1 ,

where T̃S∪{w1}(Up) denotes the image of TS∪{w1} in End
(
H̃0(Up,O)

)
. We

consider the Uv
p -action, take HomUv

p
(W/,−) on both sides, and obtain a

Λ(G)× T̃S∪{w1}(Up)-equivariant isomorphism (using e.g. [38, Lem. B.3])

E0
(
H̃0(Uv,Wd/)∨

)
∼−→ H̃0(Uv,W/)∨.

Since T̃S∪{w1}(Up) is a complete semilocal ring by [38, Lem. 2.1.14], we have

a decomposition T̃S∪{w1}(Up) =
∏

m
T̃S∪{w1}(Up)m, where the product is

taken over the finitely many maximal ideals of T̃S∪{w1}(Up). We then have
an isomorphism∏

m

E0
(
H̃0(Uv,Wd/)∨m

)
∼−→
∏
m

H̃0(Uv,W/)∨m.
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Looking at the mr-component on both sides and using the relations on Hecke
operators (see for example [8, §3, §9]), which reflect the isomorphism r∨ ∼=
r ⊗ (det r)−1, we have

(8.5) E0
(
H̃0(Uv,Wd/)∨mr⊗ψ

)
∼−→ H̃0(Uv,W/)∨mr

.

Recall that W =
⊗

w∈Sp\{v} σ
◦(τ∗w)

d with JH(σ(τ∗w)) containing exactly one

Serre weight σw in D(r∨w). By [16, Prop. 3.15(1)], σ∨
w
∼= σw⊗ψ|−1

O×
Fw

◦det is the
unique Jordan–Hölder factor of σ(τ∗w)

∗ which is a Serre weight of (r ⊗ ψ)∨w.
We then have isomorphisms of Λ(G)× T̃S∪{w1}(Uv)mr

-modules

(8.6)

H̃0(Uv,Wd/)∨mr⊗ψ

∼= HomUv
p

( ⊗
w∈Sp\{v}

σw ⊗ ψ|−1
O×

Fw

◦ det,

H̃0(Up,F)mr⊗ψ

)∨
∼= H̃0(Uv,W/)∨mr

⊗ ψ|F×
v
◦ det .

Since M∅/ = H̃0(Uv,W/)∨mr
in this case, (8.5) becomes the following

isomorphism of Λ(G)× T̃S∪{w1}(Uv)mr
-modules

E0
(
M∅/ ⊗ ψ|F×

v
◦ det

) ∼−→ M∅/

or equivalently

E0(M∅/)
∼−→ (M∅/)⊗ ψ|F×

v
◦ det .

On the other hand, by [38, Thm. B], the assumption on dimG(π) implies that

M∅ is a faithfully flat module over T̃S∪{w1}(Uv)mr
which is a local complete

intersection (hence Gorenstein) ring. Note also that as M∅ is finite Cohen-
Macaulay over O[[GL2(OL)]] (see for example [38, Thm. A(1)]), M∅/ is
Cohen-Macaulay over Λ(G). We then conclude by applying Proposition A.8

to M = M∅ and A = T̃S∪{w1}(Uv)mr
(noting that M∅/mr

∼= π∨).

Assume D is indefinite. Let H̃ i
ψ

denote H̃ i
(
Up, (O/)ψ

)
and H̃

i,ψ
−1

denote the dual of H̃ i
ψ
. The étale version of the Poincaré duality spectral

sequence [30, §2.1.5,§2.1.7] (see also [42, Thm. 3.5] and its second remark)

gives a Uv
p × Λ(G)×GF × T̃S∪{w1}(Up)-equivariant exact sequence

0 → E1(H̃0,ψ) → H̃
1,ψ

−1(−1) → E0(H̃1,ψ) → E2(H̃0,ψ).
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As in the definite case, we decompose along the (finitely many) maximal

ideals of T̃S∪{w1}(Up), and get an exact sequence

0 →
∏
m

E1
(
(H̃0,ψ)m

)
→
∏
m

H̃
1,ψ

−1(−1)m

→
∏
m

E0
(
(H̃1,ψ)m

)
→
∏
m

E2
(
(H̃0,ψ)m

)
.

Since r is absolutely irreducible, we can just consider the localization at non-
Eisenstein maximal ideals. Note that (H̃0,ψ)m is zero at any non-Eisenstein

maximal ideal m. We have a Uv
p × Λ(G) × GF × T̃S∪{w1}(Up)-equivariant

isomorphism∏
m non-Eisenstein

H̃
1,ψ

−1(−1)m
∼−→

∏
m non-Eisenstein

E0
(
(H̃1,ψ)m

)
.

We consider the Uv
p -action, take HomUv

p
(W/,−) on both sides and look at

the mr-components, by taking the limit over the compact open subgroups
Kv ⊆ GL2(OL) of the isomorphism in [24, Lem. 9.9], we have an isomorphism

(8.7) H̃1(Uv,W/)∨mr

∼−→ E0
(
H̃1(Uv,Wd/)∨mr⊗ψ

)
,

where we have used the relation r∨(−1) ∼= r⊗ψ. Applying HomGF
(r,−) to

the isomorphism (8.7) and using similar arguments as (8.6) in the indefinite

case, we obtain a Λ(G)× T̃S∪{w1}(Uv)mr
-equivariant isomorphism

(M∅/)⊗ ψ|F×
v
◦ det ∼−→ E0(M∅/).

The rest of the proof is identical to the definite case.

8.2. Local-global compatibility

We extend Proposition 7.3 to the “big” patched module M∞. Assume in

this subsection rv is reducible nonsplit and strongly generic. Let R�,ψ−1,red
v

denote the O-torsion free quotient of R�,ψ−1

v which parametrizes reducible

liftings of rv. Then by Proposition 6.6, R�,ψ−1,red
v is a power series ring

in (3 + 2f)-variables over O. Denote Rred
∞ = R�,ψ−1,red

v ⊗
R�,ψ−1

v
R∞. Let

σJ ∈ D(r∨v ) be the corresponding Serre weight of r∨v associated to J ⊂ Sr∨v
(see (6.7)). If J = ∅, we write σ0 for σ∅.
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Proposition 8.3. Let Θord
σ0

be the finite dimensional representation of

GL2(OL) over F defined in §3.4. Then the morphism

R∞ → EndO(M∞(Θord
σ0

))

factors through Rred
∞ .

Proof. We first briefly recall the construction ofM∞ in [25]. For every integer

N ≥ 1, let QN be a set of Taylor-Wiles primes as in [25, §6.2.3]. In particular,

QN has size q and is disjoint from S. For each w ∈ QN , we have qw ≡ 1

(mod pN ). Let k×w (p) denote the Sylow p-subgroup of k×w for w ∈ QN and

ON denote O[
∏

w∈QN
k×w (p)]. For each N ≥ 1 we choose a surjection O∞ =

O[[z1, . . . , zq]] � ON whose kernel is contained in the ideal generated by

((1 + zi)
pN − 1)qi=1.

We write K for GL2(OL). For Uv ⊂ K a compact open subgroup, let

M(Uv, N) = SD
ψ (U1(QN )vUv,W)dmQN

⊗
Rψ−1

r,S∪QN

R�,ψ−1

r,S∪QN

when D is definite; and let

M(Uv, N) = HomGF

(
rmQN

, SD
ψ (U1(QN )vUv,W)mQN

)d ⊗
Rψ−1

r,S∪QN

R�,ψ−1

r,S∪QN

when D is indefinite.

Let J ⊂ O∞ be an open ideal. Let IJ denote the cofinite subset of N
which consists of integers N such that J contains Ker(O∞ � ON ). For

N ∈ IJ , let

M(Uv, J,N) = M(Uv, N)⊗O∞ O∞/J.

Let (O∞/J)IJ be the product
∏

i∈IJ O∞/J . Fix a non-principal ultrafilter

F on N. Then F gives a point x ∈ Spec(O∞/J)IJ , see [38, Lem. 2.2.2]. Let

M(Uv, J,∞) =

( ∏
N∈IJ

M(Uv, J,N)

)
⊗(O∞/J)IJ

(O∞/J)IJ ,x.

For open ideals J ′ ⊂ J , open compact subgroups U ′
v ⊂ Uv, there is a

natural map M(U ′
v, J

′,∞) → M(Uv, J,∞) (see [38, Lem. 3.4.11]). Then M∞
is defined as

M∞
def
= lim←−

J,Uv

M(Uv, J,∞).
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Now we prove the proposition. We assume D is definite; the indefinite

case can be treated in a similar way. By (8.3) we have

M∞(Θord
σ0

) = HomK(Θord
σ0

, lim−→
J,Uv

M(Uv, J,∞)∨)∨

= lim−→
J,Uv

∏
N∈IJ

HomK(Θord
σ0

,M(Uv, J,N)∨)∨ ⊗(O∞/J)IJ
(O∞/J)IJ ,x

= lim−→
J,Uv

( ∏
N∈IJ

HomK(Θord
σ0

,M(Uv, N)∨)∨ ⊗O∞ O∞/J

)
⊗(O∞/J)IJ

(O∞/J)IJ ,x.

It suffices to show that the action of Rψ−1

v on HomK(Θord
σ0

,M(Uv, N)∨)

factors through Rψ−1,red
v for Uv sufficiently small. Since

M(Uv, N) = SD
ψ (U1(QN )vUv,W)dmQN

⊗
Rψ−1

r,S∪QN

R�,ψ−1

r,S∪QN
,

it suffices to show the same statement for

HomK

(
Θord

σ0
,
(
SD
ψ (U1(QN )vUv,W)dmQN

)∨)
= HomK

(
Θord

σ0
, SD

ψ (U1(QN )vUv,W/)mQN

)
where the equality holds as Θord

σ0
is -torsion.

For the rest of the proof, we simplify the notation by setting

SD
ψ (O/)m = lim−→

Uv

SD
ψ (U1(QN )vUv,W/)mQN

.

For Uv ⊆ K sufficiently small, Uv acts trivially on Θord
σ0

, we then have

HomK(Θord
σ0

, SD
ψ (U1(QN )vUv,W/)mQN

) = HomK(Θord
σ0

, SD
ψ (O/)Uv

m )

= HomK(Θord
σ0

, SD
ψ (O/)m).

We are reduced to show that the action of Rψ−1

v on HomK(Θord
σ0

, SD
ψ (O/)m)

factors through Rψ−1,red
v . By Proposition 5.15 and Lemma 5.10, we have a

natural isomorphism

HomK(Θord
σ0

, IndG
P
OrdPS

D
ψ (O/)m)

∼−→ HomK(Θord
σ0

, SD
ψ (O/)m)
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which is compatible with the action of Rψ−1

v if IndG
P
OrdPS

D
ψ (O/)m is

equipped with the induced action of Rψ−1

v through OrdPS
D
ψ (O/)m. By

Proposition 7.3, the action of Rψ−1

v on OrdPS
D
ψ (O/)m factors through

Rψ−1,red
v . This finishes the proof.

8.3. The “big” minimal patching functors

The minimal patching functor that we will use is introduced in [25] following

[9] [32]. For w ∈ S, let Rmin
w denote the quotient of R�,ψ−1

w introduced in [9,
§3] [32, §6.5]. By [9, Lem. 3.4.1], we have

• Rmin
w is a formal power series ring in 3-variables over O if w � p;

• Rmin
w is a formal power series ring in (3 + [Fw : Qp])-variables over O

if w|p, w �= v.

Let Rmin denote R�,ψ−1

v ⊗̂(⊗̂w∈SRmin
w ). Since R�,ψ−1

v is a formal power series
ring in (3+3f)-variables over O, Rmin is a formal power series ring in (3(|S|+
1)+ [F : Q]+2f)-variables over O. Define R�,min

r,S∪Q := R�,ψ−1

r,S∪Q⊗Rloc Rmin. Let

Rmin
r,S∪Q denote the image of Rψ−1

r,S∪Q in R�,min
r,S∪Q. Let R

min
∞

def
= Rmin[[x1, . . . , xg]],

a power series ring in g-variables over Rmin, with a surjective homomorphism

Rmin
∞ → Rmin

r,S .

Let mmin
∞ be the maximal ideal of Rmin

∞ . We have an O-algebra homomor-
phism S∞ → Rmin

∞ such that Rmin
∞ /a∞ ∼= Rmin

r,S .

The big patched module in the minimal case (constructed in [25, §6]) is
a finite Cohen-Macaulay R∞[[GL2(OL)]]-module Mmin

∞ , which is finite pro-
jective over S∞[[GL2(OL)]], such that the smooth admissible representation
of GL2(L) over F given by10

(8.8) πD
v (r)

def
= (Mmin

∞ )∨[mmin
∞ ]

has multiplicity free GL2(OL)-socle, namely socK(πD
v (r)) =

⊕
σ∈D(r∨v )

σ, see
Proposition 8.9 below.

For σ ∈ CZ,ψ, let

(8.9) Mmin
∞ (σ)

def
= Homcont

GL2(OL)
(Mmin

∞ , σ∨)∨.

10πD
v (r) is denoted by πglob(ρ) in [25, §6] for ρ = r∨v .
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Then Mmin
∞ is an exact covariant functor from CZ,ψ to the category of finitely

generated Rmin
∞ -modules. As in (8.4), we have

(8.10) (Mmin
∞ (σ)/mmin

∞ Mmin
∞ (σ))∨ ∼= HomGL2(OL)(σ, π

D
v (r)).

It is expected that πD
v (r) should realize the hypothetical mod p local

Langlands correspondence for ρ = r∨v . Thus it is important to understand
the precise structure of πD

v (r). The following conjecture is taken from [15].

Conjecture 8.4 ([15]). Assume ρ is generic in the sense of [15, Def. 11.7].
Then πD

v (r) has finite length. More precisely,

(i) if ρ is irreducible, then πD
v (r) is irreducible;

(ii) if ρ is reducible, then πD
v (r) has length f , admitting a unique Jordan–

Hölder filtration as follows:

π0 — π1 — · · · — πf−1 — πf

where π0 and πf are principal series explicitly determined by ρ, and πi
is supersingular for 1 ≤ i ≤ f − 1. Moreover, πD

v (rss) = πD
v (r)ss.

One of our main results is to prove Conjecture 8.4(ii) in the case f = 2
and ρ is nonsplit and strongly generic, see Theorem 10.37.

In this minimal case, πD
v (r) also satisfies a self-duality under the as-

sumption of its Gelfand-Kirillov dimension.

Theorem 8.5. Assume dimG(π
D
v (r)) ≤ f . We have an isomorphism of

Λ(G)-modules

πD
v (r)∨ ⊗ ψ|F×

v
◦ det ∼= E2f (πD

v (r)∨).

Proof. The proof of this result is similar to the proof of Theorem 8.2. Instead
of copying the argument, we just point out how to modify the proof of
Theorem 8.2 in the minimal case.

To define πD
v (r), [25] uses some finite freeO-module Vw (which is denoted

by Lw in [32, §6.5] and whose reduction modulo  is denoted by Mw in [9,
§3.3]) with a smooth Uw-action at each w ∈ S\Sp. Moreover, Vw is of O-rank
one unless r|GFw

is irreducible. As in the proof of Theorem 8.2, for example
to get an analogous isomorphism as (8.6), the point is to check that Vw (or
even Vw) is essentially self-dual, i.e. (Vw)

d ∼= Vw ⊗χ for some character χ.11

This is clear if Vw is a free rank one O-module.

11In the case r|GFw
is irreducible and D ramifies at w, we actually need a variant

of this statement.
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Assume for the rest of the proof that r|GFw
is irreducible. Then Vw is

defined as an (OD)
×
w-stable lattice of a K-type for the isomorphic class of

(rw|IFw
, 0) (in the sense of [9, §3.2]), where rw : GFw

→ GL2(E) is any lift
of r|GFw

. The reduction Vw is always irreducible in this case, see [9, §3.3
Cas IV]. We note that rw is always essentially self-dual, i.e. HomE(rw, E) ∼=
rw ⊗ (det rw)

−1. If D splits at w, by the uniqueness of K-type in this case
(see [40]), the K-type Vw[1/p] is essentially self-dual. We deduce that Vw is
also essentially self-dual by the irreducibility of Vw.

If D ramifies at w, we let LL(WD(rw)) denote the smooth admissible
representation of GL2(Fw) over E which is associated to the Weil-Deligne
representation of rw by the local Langlands correspondence. Let ΠDw

be the
smooth admissible representation of D×

w over E associated to LL(WD(rw))
by the Jacquet-Langlands correspondence. We have either (ΠDw

)|F×
w (OD)×w is

irreducible, or (ΠDw
)|F×

w (OD)×w = V1 ⊕ V2 is a direct sum of two irreducible

F×
w (OD)

×
w-representations such that V2 is conjugate to V1 by a uniformizer

of (Dw)
×, see for example [37, §5.1.2]. A K-type Vw[1/p] for (rw|IFw

, 0)
in this case is a choice of an irreducible constituent of (ΠDw

)|F×
w (OD)×w . As

recalled above, the reduction modulo  of any (OD)
×
w-stable lattice of a

K-type is irreducible. So the (OD)
×
w-stable lattice of a K-type is unique up

to homothety and up to conjugacy by a uniformizer of (Dw)
×. It follows

that the GL2(L)-representation πD
v (r) does not depend on the choice of Vw.

Since the Jacquet-Langlands correspondence is compatible with taking the
contragredient, (Vw[1/p])

∗ is a twist by χ ◦ det of a K-type for (rw|IFw
, 0),

where χ : F×
w → E× is some character and det denotes the reduced norm

of (Dw)
×, and (Vw)

d is a twist by χ◦ ◦ det of an (OD)
×
w-stable lattice of a

K-type for (rw|IFw
, 0) for some χ◦ : F×

w → O×.
From the above discussion, it is easy to deduce an analogous isomorphism

as (8.6). We then take the eigenspace on which the Hecke operator Tw acts
by αw ∈ F for w ∈ S′, where S′, Tw and αw are all introduced in [9, §3.3].
The rest of the proof of Theorem 8.2 goes through.

8.4. Main results in the minimal case

From now on we only consider minimal patching functors, so we drop the
superscript min and write (M∞, R∞,m∞) for (Mmin

∞ , Rmin
∞ ,mmin

∞ ) for the rest
of this section.

Let G = GL2(L), K = GL2(OL) ⊃ K1 = 1 + pM2(OL), and Z1

be the center of K1. Let I (resp. I1) denote the upper-triangular Iwa-
hori (resp. upper-triangular pro-p-Iwahori) subgroup of G. Also let Γ =
F[[K/Z1]]/mK1/Z1

and Γ̃ = F[[K/Z1]]/m
2
K1/Z1

.
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Let ρ
def
= r∨v . We assume rv (or equivalently ρ) is reducible nonsplit and

strongly generic in the sense of Definition 4.4. Let R�,ψ
ρ denote the framed

deformation ring of ρ with fixed determinant ψε. By taking the dual, we have

isomorphisms R�,ψ
ρ

∼= R�,ψ−1

v . We now switch to the notation for various

deformation rings of ρ in §6.4. Let J be a subset of Sρ. We write Rtame,σJ∞ =

R
�,ψ,TJ,∅
ρ ⊗

R�,ψ
ρ

R∞, where σJ ∈ D(ρ) is the Serre weight associated to J

and TJ,∅ is defined in (6.9). Denote by Rcris,σJ∞ = R�,ψ,cris,σJ

ρ ⊗
R�,ψ

ρ

R∞. Let

ĪσJ (resp. Ītame,σJ , resp. Īred) denote the defining ideal of Rcris,σJ∞ / (resp.
Rtame,σJ∞ /, resp. Rred

∞ /) inside R∞/.

Proposition 8.6. Let σ0 denote σ∅. We have Ītame,σ0 + Īred = Īσ0 .

Proof. By Proposition 6.10, Īred ⊂ Īσ0 . By [32, Thm. 7.2.1(4)], Ītame,σ0 ⊂
Īσ0 . Then applying Corollary 6.11, the conclusion follows from Lemma 8.7
below by taking R = R∞/, I0 = Īσ0 , I1 = Ītame,σ0 and I2 = Īred.

Lemma 8.7. Let (R,m) be a noetherian local F-algebra. Let I0 ⊂ m be an
ideal of R such that R/I0 is regular. Let I1, I2 ⊆ I0 be ideals of R. Then(

m/I1
(m/I1)2

)∨⋂( m/I2
(m/I2)2

)∨
=

(
m/I0

(m/I0)2
)∨

if and only if I1 + I2 = I0.
Proof. The surjective homomorphism R → R/Ii induces an injection of
F-vector spaces (

m/Ii
(m/Ii)2

)∨
↪→
(
m/m2

)∨
with intersection(

m/I1
(m/I1)2

)∨⋂( m/I2
(m/I2)2

)∨
=

(
m/(I1 + I2)
(m/(I1 + I2)2

)∨
.

So if I1 + I2 = I0, this intersection is identical to
(

m/I0

(m/I0)2

)∨
.

Conversely, we see that R/I0 is a quotient ring of R/(I1 + I2) with the
same embedding dimension, say d. By (the proof of) [56, Thm. 29.4(ii)],
R/(I1+I2) is a quotient of a regular local ring of Krull dimension d over F,
say A. In particular, A is a domain. Since R/I0 itself has Krull dimension
d, the (surjective) composite map

A � R/(I1 + I2) � R/I0
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has to be an isomorphism. In particular, we deduce R/(I1+I2) ∼= R/I0 and
I1 + I2 = I0.

The main result of this section is the following.

Theorem 8.8. Assume ρ is strongly generic. Then for any σ ∈ D(ρ) the
R∞-module M∞(ProjΓ̃ σ) is a (nonzero) cyclic R∞-module.

To prove the theorem we first recall some known results.

Proposition 8.9. (i) If σ /∈ D(ρ) then M∞(σ) = 0. If σ ∈ D(ρ), the ho-
momorphism R∞ → EndO(M∞(σ)) factors through Rcris,σ

∞ /, and M∞(σ)
is free of rank one over Rcris,σ

∞ /.
(ii) For any σ ∈ D(ρ), the homomorphism R∞ → EndO(M∞(ProjΓ σ))

factors through Rtame,σ
∞ /, and M∞(ProjΓ σ) is a cyclic R∞-module.

Proof. (i) The first statement is the main result of [36] (see also [37, Cor.
5.4.5]). The cyclicity of M∞(σ) for σ ∈ D(ρ) follows from [32, Thm. 10.2.1].
Note that M∞(σ) has Krull dimension q+j, which is equal to the dimension
of Rcris,σ

∞ /. Since Rcris,σ
∞ / is a domain, M∞(σ) is a faithful Rcris,σ

∞ /-
module, giving the result.

(ii) is [52, Thm. 5.1].

Proposition 8.10. Let σ0 denote σ∅. Then M∞(Θord
σ0

) is a cyclic R∞-
module.

Proof. By Nakayama’s lemma, it suffices to show the dual ofM∞(Θord
σ0

)/m∞,

(M∞(Θord
σ0

)/m∞)∨ = HomK(Θord
σ0

, πD
v (r))

is of dimension one over F.
By Proposition 7.4, OrdPπ

D
v (r) is a semisimple T -representation. On the

other hand, the description of D(ρ) (see [15, §11]) implies that JH(IndKI χσ0
)∩

D(ρ) = {σ0}. The result then follows from Proposition 5.16 combined with
Proposition 8.9(i).

Proof of Theorem 8.8. By Nakayama’s lemma, it is equivalent to show that
dimFHomK(ProjΓ̃ σ, π

D
v (r)) = 1 for any σ ∈ D(ρ). We will check the con-

ditions (a), (b), (c) of Theorem 4.21 for π = πD
v (r), from which the result

follows.
The condition (a) is a consequence of Proposition 8.9(ii), together with

general property of D0(ρ). For the condition (b), we use the exact sequence

0 → πD
v (r) → M∨

∞
×(xi)i∈I−→

⊕
i∈I

M∨
∞
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where (xi)i∈I is any finite set of generators of m∞. Since M∨
∞ is injective in

the category of smooth representations of K/Z1 on O-torsion modules, we
deduce that Ext1K/Z1

(σ, πD
v (r)) �= 0 only if HomK(σ,M∨

∞) �= 0. Hence the

condition (b) follows by Proposition 8.9(i).

It remains to check the condition (c) for σ = σ0. By Proposition 3.20
(with the notation therein) and the exactness of M∞(−), we have a short
exact sequence
(8.11)

0 → M∞(Θσ0
) → M∞(Θord

σ0
)⊕M∞((Θσ0

)K1
) → M∞((Θord

σ0
)K1

) → 0.

Since (Θord
σ0

)K1
is a quotient of IndKI χσ0

(by Lemma 3.18) and JH(IndKI χσ0
)∩

D(ρ) = {σ0}, we obtain isomorphisms

M∞
(
(Θord

σ0
)K1

) ∼←− M∞(IndKI χσ0
)

∼−→ M∞(σ0).

Note that (Θσ0
)K1

is a quotient of ProjΓ(σ0). So by Proposition 8.9(ii),

M∞((Θσ0
)K1

) is cyclic over R∞ and the ideal Ī def
= AnnR∞/�(M∞((Θσ0

)K1
))

satisfies

Ītame,σ0 ⊆ Ī ⊆ Īσ0 .

By Proposition 8.10, M∞(Θord
σ0

) is cyclic over R∞. Let Īord,σ0 denote the
ideal AnnR∞/�

(
M∞(Θord

σ0
)
)
. Then it follows from Proposition 8.3 (in the

minimal case) and the structure of Θord
σ0

that

Īred ⊆ Īord,σ0 ⊆ Īσ0 .

By Proposition 8.6, we get

Ī + Īord,σ0 = Īσ0 ,

so M∞(Θσ0
) is cyclic over R∞ by applying Lemma 8.11 below to (8.11).

Lemma 8.11. Let (R,m) be a commutative noetherian local ring with k =
R/m. Let I0, I1, I2 be ideals of R such that I1, I2 ⊂ I0 ⊂ m. Consider the
natural surjective homomorphism R/I1 ⊕R/I2 � R/I0. Then Ker(R/I1 ⊕
R/I2 � R/I0) is a cyclic R-module if and only if I1 + I2 = I0.

Proof. Let M denote the R-module Ker(R/I1 ⊕ R/I2 � R/I0). The short
exact sequence

0 → M → R/I1 ⊕R/I2 → R/I0 → 0
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gives a long exact sequence

TorR1 (R/I1, k)⊕ TorR1 (R/I2, k) α−→ TorR1 (R/I0, k) → M ⊗ k

→ (R/I1 ⊗ k)⊕ (R/I2 ⊗ k) → R/I0 ⊗ k → 0.

Hence dimk M ⊗ k = 1 if and only if α is surjective. The assumption Ii ⊂ m

implies that there is a natural isomorphism TorR1 (R/Ii, k) ∼= Ii ⊗R k, for
i ∈ {0, 1, 2}. Thus, α is surjective if and only if the natural morphism

(I1 ⊕ I2)⊗R k → I0 ⊗R k

is surjective. By Nakayama’s lemma, this is equivalent to I1 + I2 = I0.

Recall the F[[I/Z1]]-module Wχ,3 = ProjI/Z1
χ/m3

I1/Z1
introduced at the

beginning of §3. We have the following consequence of Theorem 8.8.

Corollary 8.12. (i) For any σ ∈ D(ρ), dimFHomK(ProjΓ̃ σ, π
D
v (r)) = 1.

(ii) For any χ ∈ JH(πD
v (r)I1), dimFHomI(Wχ,3, π

D
v (r)) = 1.

Proof. (i) is an equivalent statement of Theorem 8.8 and (ii) follows from
(i) by using Proposition 4.20.

Corollary 8.13. We have πD
v (r)[m2

K1/Z1
] = D̃0(ρ).

Proof. By Proposition 4.1, we have

D(ρ) ∩ JH
(
D̃0(ρ)/ socK D̃0(ρ)

)
= ∅.

By the proof of [8, Lem. 9.2], the inclusion socK D̃0(ρ) = ⊕σ∈D(ρ)σ ⊆
πD
v (r) extends to an inclusion D̃0(ρ) ⊆ πD

v (r), hence an inclusion D̃0(ρ) ⊆
πD
v (r)[m2

K1/Z1
]. Alternatively, we may argue as in the proof of Lemma 10.21

below, using Proposition 10.10(ii). On the other hand, by Proposition 4.1
and Corollary 8.12(i), the latter inclusion must be an equality.

Recall from [12, Cor. 5.3.5] the following important control theorem of
Gelfand-Kirillov dimension.

Theorem 8.14. Let π be a smooth admissible representation of I/Z1 over
F. If for each character χ such that HomI(χ, π) �= 0, the natural morphism

HomI(χ, π) → HomI(Wχ,3, π)

is an isomorphism. Then the Gelfand-Kirillov dimension of π is at most f .
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Combining Theorem 8.14 with Corollary 8.12, Theorem 8.1 and Theorem
8.5, we deduce the following result.

Theorem 8.15. We make the following assumptions on r:

(a) r|GF ( p√1)
is absolutely irreducible;

(b) for w ∈ S\Sp, the framed deformation ring R�,ψ−1

w is formally smooth;
(c) for w ∈ Sp\{v}, r|IFw

is generic in the sense of [15, Def. 11.7];
(d) rv is reducible nonsplit and strongly generic in the sense of Definition

4.4.

Then the following statements hold:

(i) dimG(π
D
v (r)) = f and M∞ is a flat R∞-module;

(ii) There is an isomorphism of Λ(G)-modules (πD
v (r))∨ ⊗ ψ|F×

v
◦ det ∼=

E2f
(
(πD

v (r))∨
)
.

Remark 8.16. We expect that the analog of Theorem 8.15 remains true in
the non-minimal case, i.e. dimG(π) = f for the representation π defined in
(8.2). This is the case when ρ is semisimple and sufficiently generic, see [12,
§8].

We record the following (well-known) consequence of Theorem 8.15. Let
x : R∞ → O′ be a local morphism of O-algebras, where O′ is the ring of
integers of a finite extension E′ over E. Set

Π(x)0
def
= Homcont

O′ (M∞ ⊗R∞,x O′,O′)

and Π(x)
def
= Π(x)0 ⊗O′ E′.

Corollary 8.17. Π(x) is a nonzero admissible unitary Banach representa-
tion of G over E′ with G-invariant unit ball Π(x)0 which lifts πD

v (r)⊗F F′,
where F′ denotes the residue field of O′.

Proof. Since M∞ is flat over R∞ by Theorem 8.15(i), M∞⊗R∞,xO′ is O′-flat
by base change. So Homcont

O′ (M∞⊗R∞,xO′,O′) is nonzero andO′-torsion free,
hence Π(x) is nonzero by [65, Thm. 1.2]. The last assertion follows easily
from [63, Prop. 2.9].

9. Homological algebra

In this and the next section, we prove our second main result, namely with
the notation in §8, the GL2(L)-representation πD

v (r) (in the minimal case)
is finitely generated by its K1-invariants and, if f = 2, has length 3 as in
Conjecture 8.4(ii). This section contains some preliminary results.
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9.1. An enveloping algebra

Let g be the graded Lie algebra (labelled by Z≥0) defined as follows:

g = Fe⊕ Ff ⊕ Fh

with e, f in degree 1, h in degree 2 and relations

(9.1) [e, f ] = h, [h, e] = [h, f ] = 0.

Let U(g) = UFp
(g) denote the universal enveloping algebra of g. It is a graded

algebra, with the induced degree function from above. As a consequence of
the Poincaré-Birkhoff-Witt theorem, U(g) is a domain.

The following lemma is obvious.

Lemma 9.1. h lies in the center of U(g) and U(g)/(h) is isomorphic to
F[e, f ], the commutative polynomial ring with variables e, f .

Lemma 9.2. U(g) is a regular algebra of global dimension 3 in the sense of
[3, Eq. (0.1)]. In particular, U(g) is an Auslander regular algebra.

Proof. For the first assertion, see [3, Eq. (0.3)]. The second assertion is a
consequence of the first, see e.g. [54, Cor. 6.2]; alternatively, it is a special
case of [55, Thm. III.3.4.6(6)].

As a consequence of Lemma 9.2, the concepts introduced in Appendix
§A are applicable.

If M = ⊕n≥0Mn is a finitely generated graded U(g)-module, the Hilbert
series of M is by definition the series

hM (t) :=
∑
n≥0

(dimFMn)t
n.

This is an additive function on the Grothendieck group of finitely generated
graded U(g)-modules. We denote byM(a) the shifted graded module defined
by M(a)n = Mn+a, with the convention Mn = 0 if n < 0. It is clear that
hM(a)(t) = t−ahM (t). In [4, p. 342], the order of pole of hM (t) at t = 1 is
called the gk-dimension of M . It follows from [4, Thm. 4.1] that this notion
coincides with our notion of Gelfand-Kirillov dimension in Appendix §A.1.

Lemma 9.3. We have hU(g)(t) =
1

(1−t)2(1−t2) .

Proof. It is a special case of [4, (2.8)].
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Lemma 9.4. Let G• be a chain complex of free U(g)-modules of length n,

G• : 0 → Gn → · · · → G1 → G0 → 0,

where n ∈ {2, 3}. Assume the following conditions hold:

(a) Hi(G•) = 0 for i �= 0, 1;
(b) the Gelfand-Kirillov dimension of H0(G•) is equal to 3− n;
(c) the order of pole of

∑n
i=0(−1)ihGi

at t = 1 is equal to 3− n.

Then H1(G•) = 0 and G• is a resolution of H0(G•).

Proof. Assume H1(G•) �= 0. Then H1(G•) has projective dimension ≤ n−1,
and so H1(G•) has grade ≤ n− 1; see (A.1) for the notion of grade. Hence,
H1(G•) has Gelfand-Kirillov dimension ≥ 3− (n− 1) = 4−n. On the other
hand, we have an equality∑

i

(−1)ihGi
=
∑
i

(−1)ihHi(G•).

By (a), (b) and the discussion before Lemma 9.3, the order of pole of RHS
at t = 1 is equal to 4 − n, while the one of LHS is equal to 3 − n by
(c), a contradiction. This implies H1(G•) = 0 and so G• is a resolution of
H0(G•).

The following lemma is an easy computation.

Lemma 9.5. The following relations hold in U(g):

(ef)(fe) = (fe)(ef)(9.2)

e3f − fe3 = 3e2h(9.3)

ef3 − f3e = 3f2h.(9.4)

Proof. Since eh = he and fh = hf , we have (ef)h = h(ef), and the equality
(9.2) follows.

Prove (9.3). We have e2f = e(fe+h) = efe+eh, so that (using eh = he)

e3f = e2fe+e2h = (efe+eh)e+e2h = (ef+2h)e2 = (fe+3h)e2 = fe3+3e2h

giving the result. The equality (9.4) is checked in a similar way.

Convention: In the statements below, our convention is that the dif-
ferential map di sends an element of Gi, say v = (v1, ..., vr) (with r =
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rankU(g)(Gi)) to v multiplied by the matrix of di from the right. In this way,
di is a morphism of left U(g)-modules. As a consequence, the composition
of differentials, say di ◦ di+1, sends v to (vAi+1)Ai, where Ai is the matrix
form of di.

Lemma 9.6. There exist chain complexes of graded U(g)-modules

0 → U(g)(−3)
(−h,e)−→ U(g)(−1)⊕ U(g)(−2)

(e

h)−→ U(g) → 0(9.5)

0 → U(g)(−3)
(−h,f)−→ U(g)(−1)⊕ U(g)(−2)

(fh)−→ U(g) → 0(9.6)

0 → U(g)(−4)
(−fe,ef)−→ U(g)(−2)⊕ U(g)(−2)

(effe)−→ U(g) → 0.(9.7)

Moreover, in each case the complex defines a minimal free resolution of H0

of the complex. Here, a minimal resolution means that the differential maps
are zero mod U(g)≥1.

Proof. It is clear from (9.1) and (9.2) that the complexes in the lemma are
well-defined and minimal. We need to show that they are exact at degrees
1, 2 (with the term U(g) in degree 0). To do this it is enough to check the
assumptions of Lemma 9.4 with n = 2. We do it for the complex (9.5), the
other cases being analogous. Let G• denote the complex (9.5). It is clear
that H2(G•) = 0, because U(g) is a domain. Using Lemma 9.1, we see that
H0(G•) = U(g)/(e, h) is commutative and isomorphic to F[f ] (polynomial
ring in one variable f), hence it has Gelfand-Kirillov dimension 1. Finally,
it is easy to compute using Lemma 9.3

2∑
i=0

(−1)ihGi
(t) =

1− t− t2 + t3

(1− t)2(1− t2)
=

1

1− t
,

whose order of pole at t = 1 is equal to 1. We then conclude by Lemma
9.4.

Remark 9.7. Note that the complexes in Lemma 9.6 are all of Koszul type,
see §9.4.

Next, we construct free resolutions of some U(g)-modules of finite length.

Lemma 9.8. Let a be the left ideal of U(g) generated by e, h, f3. Then
U(g)/a is a U(g)-module of length 3, spanned over F by 1, f, f2. It admits a
minimal free resolution G• → U(g)/a → 0, where

(9.8) G• : 0 −→ G3
d3−→ G2

d2−→ G1
d1−→ G0 −→ 0
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with

G0 = U(g), G3 = U(g)(−6),

G1 = U(g)(−1)⊕ U(g)(−2)⊕ U(g)(−3),

G2 = U(g)(−3)⊕ U(g)(−4)⊕ U(g)(−5),

and the differentials di are described as follows

d3 =
(
−f3 h e

)
, d2 =

⎛⎝ −h e 0
−f3 −3f2 e
0 f3 −h

⎞⎠ , d1 =

⎛⎝ e
h
f3

⎞⎠ .

Moreover, the complex (9.5) is a subcomplex of G• and each term is a
direct summand of Gi.

Proof. Using (9.1) and Lemma 9.5, it is direct to check that d1◦d2 = d2◦d3 =
0, i.e. (G•) is a complex. Write G′

• for the complex (9.5). It is clear that G′
•

is a subcomplex of G• and that G′
i is a direct summand of Gi for 0 ≤ i ≤ 3

(here we set G′
3 := 0). To see that G• is acyclic (except at degree 0), we

apply Lemma 9.4 to the quotient complex G′′
• := G•/G′

•, with degrees being
induced from G•, i.e.

0 → G′′
3 → G′′

2 → G′′
1 → G′′

0 = 0 → 0.

We may check as in the proof of Lemma 9.6 that H3(G
′′
•) = H2(G

′′
•) =

0. Combined with Lemma 9.6, the long exact sequence associated to 0 →
G′

• → G• → G′′
• → 0 then implies that H3(G•) = H2(G•) = 0. Since

H0(G•) = U(g)/a has Gelfand-Kirillov dimension 0 and the order of pole of∑3
i=0(−1)ihGi

(t) at t = 1 is also equal to 0 (by a direct computation), we
conclude by Lemma 9.4 (with n = 3).

In a completely similar way, we have the following lemma.

Lemma 9.9. Let a be the left ideal of U(g) generated by f, h, e3. Then
U(g)/a is a U(g)-module of length 3, spanned over F by 1, e, e2. It admits a
minimal free resolution G• → U(g)/a → 0, where

(9.9) G• : 0 −→ G3
d3−→ G2

d2−→ G1
d1−→ G0 −→ 0

with

G0 = U(g), G3 = U(g)(−6)
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G1 = U(g)(−1)⊕ U(g)(−2)⊕ U(g)(−3)

G2 = U(g)(−3)⊕ U(g)(−4)⊕ U(g)(−5)

and the differentials di are described as follows

d3 =
(
−e3 h f

)
, d2 =

⎛⎝ −h f 0
−e3 3e2 f
0 e3 −h

⎞⎠ , d1 =

⎛⎝ f
h
e3

⎞⎠ .

Moreover, the complex (9.6) is a subcomplex of G• and each term is a
direct summand of Gi.

Next, we consider another quotient of U(g) of finite length.

Lemma 9.10. Let a be the left ideal of U(g) generated by e3, ef, fe, f3. Then
U(g)/a is a U(g)-module of length 5, spanned by 1, e, e2, f, f2. It admits a
minimal free resolution G• → U(g)/a → 0, where

(9.10) G• : 0 −→ G3
d3−→ G2

d2−→ G1
d1−→ G0 −→ 0

with

G0 = U(g), G3 = U(g)(−6)⊕ U(g)(−6)

G1 = U(g)(−3)⊕ U(g)(−2)⊕ U(g)(−2)⊕ U(g)(−3)

G2 = U(g)(−5)⊕ U(g)(−4)⊕ U(g)(−4)⊕ U(g)(−4)⊕ U(g)(−5),

and the differentials di are described as follows

d3 =

(
f −h −e2 0 0
0 0 −f2 −h e

)
, d2 =

⎛⎜⎜⎝
h −e3 e3 0
f 2e2 −3e2 0
0 −fe ef 0
0 −3f2 2f2 e
0 −f3 f3 h

⎞⎟⎟⎠, d1 =

⎛⎜⎝ e3

ef
fe
f3

⎞⎟⎠.

Moreover, the complex (9.7) is a subcomplex of G• and each term is a
direct summand of Gi.

Proof. The proof is similar to that of Lemma 9.8.

Remark 9.11. It is easy to see that there is a short exact sequence of left
U(g)-modules

0 → U(g)/(e3, ef, fe, f3) → U(g)/(e, h, f3)⊕ U(g)/(f, h, e3) → F → 0.
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9.1.1. H-actions. Recall that

H =

{(
a 0
0 d

)
, a, d ∈ F×

pf

}
,

and for i ∈ S def
= {0, · · · , f − 1}, αi : H → F× denotes the character sending(

a 0
0 d

)
to (ad−1)p

i

. Assume that U(g) is equipped with an action of H such
that for g ∈ H:

ge = αi(g)e, gf = α−1
i (g)f, gh = h.

Then the differential maps in the complexes (9.5), (9.6), (9.7), (9.8), (9.9)
and (9.10) are actually H-equivariant.

For example, if we write U(g)χ for U(g) twisted by a character χ of H,
then the complexes (9.5), (9.6), (9.7) become

0 → U(g)αi
(−3) → U(g)αi

(−1)⊕ U(g)1(−2) → U(g)1 → 0

0 → U(g)α−1
i
(−3) → U(g)α−1

i
(−1)⊕ U(g)1(−2) → U(g)1 → 0

0 → U(g)1(−4) → U(g)1(−2)⊕ U(g)1(−2) → U(g)1 → 0

while the terms of the complex (9.8) become

G0 = U(g)1, G3 = U(g)α−2
i
(−6),

G1 = U(g)αi
(−1)⊕ U(g)1(−2)⊕ U(g)α−3

i
(−3),

G2 = U(g)αi
(−3)⊕ U(g)α−2

i
(−4)⊕ U(g)α−3

i
(−5).

(We leave to the reader for the complexes (9.9) and (9.10)). It is clear that
the embedding from (9.5) to (9.8) is also H-equivariant (see Lemma 9.8).

From now on, assume p > 5. From the above explicit description, we
observe the following facts.

Corollary 9.12. Let G• be one of the complexes (9.5), (9.6), (9.7), (9.8),
(9.9), (9.10). Then Gl has the form

Gl =
⊕
χ

(
U(g)χ(−al,χ)

)rl,χ
where χ runs over the characters of H, with the convention rl,χ = 0 if
U(g)χ does not appear in the decomposition of Gl. Moreover, for any fixed
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χ, if rl,χ �= 0 and rl′,χ �= 0, then12

al′,χ = al,χ + 2(l′ − l).

Corollary 9.13. Let G• be one of the complexes (9.8), (9.9), (9.10), and
G′

• be one of (9.5), (9.6), (9.7) which embeds in G•. Let G′′
• be the quotient

complex G•/G′
•. If χ

′ (resp. χ′′) is a character of H such that U(g)χ′(−a′)
for some a′ ∈ Z (resp. U(g)χ′′(−a′′) for a′′ ∈ Z) appears in G′

• (resp. G′′
•),

then χ′′χ′−1 /∈ {1, α±1
j , j ∈ S} (this uses the assumption p > 5).

Corollary 9.14. The direct sum of (9.5) with (9.6) twisted by αi is iso-
morphic to

(9.11) 0 → G(−3)
(−φ2,φ1)−→ G(−1)⊕G(−2)

(φ1
φ2
)

−→ G → 0

where G = U(g)1 ⊕ U(g)αi
, and φi ∈ EndU(g)(G) are defined by

φ1 =

(
0 f
e 0

)
, φ2 =

(
h 0
0 h

)
.

9.2. The representation τJ

Recall some notation from §3: I is the Iwahori subgroup of K = GL2(OL),

I1 is the pro-p Iwahori subgroup, and Z1 = Z ∩ I1. Let m
def
= mI1/Z1

be the
maximal ideal of the Iwasawa algebra F[[I1/Z1]]. Recall that the residue field
of L is identified with Fq, where q = pf . We assume p > 5.

We recall some results about the structure of grm(F[[I1/Z1]]) from [12,
§5], which is based on [51] and [20]. By fixing a saturated p-valuation on
I1/Z1 (cf. [12, §5.2]), the associated graded Lie algebra gr(I1/Z1) has a
unique structure of a graded Fp[ε]-Lie algebra, where Fp[ε] is the graded
polynomial algebra in ε with ε in degree 1. More concretely, gr(I1/Z1) is
isomorphic to Fq ⊗Fp

g, where

g
def
= Fp[ε]e⊕ Fp[ε]f ⊕ Fp[ε]h

with e and f in degree 1, h in degree 2 and relations

[e, f ] = h, [h, e] = 2εe, [h, f ] = −2εf.

12 Both the characters α3
0 and α−3

0 occur in the complex (9.10). They are equal
if f = 1 and p = 7, but one checks that the conclusion is still true in this case.
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Consequently, the graded Fp-Lie algebra gr(I1/Z1)
def
= gr(I1/Z1)⊗Fp[ε] Fp is

isomorphic to Fq ⊗Fp
g where

g
def
= g⊗Fp[ε] Fp = Fpe⊕ Fpf ⊕ Fph

with e and f in degree 1, h in degree 2 and relations [e, f ] = h, [h, e] =
[h, f ] = 0.

Recall that F is a finite extension of Fp containing Fq. By fixing an
embedding κ0 : Fq ↪→ F and letting κi = κ0 ◦ Fri, the set of embeddings

Fq ↪→ F is identified with S = {0, . . . , f − 1}. For i ∈ S, we define gi
def
=

F⊗κi,Fq
gr(I1/Z1). Then we have a decomposition

F⊗Fp
gr(I1/Z1) ∼=

⊕
i∈S

gi

and a canonical isomorphism gi
∼= F⊗Fp

g.

On the other hand, we have an isomorphism, see [12, (37)],

grm(Fp[[I1/Z1]]) ∼= UFp
(Fq ⊗Fp

g)

so that

grm(F[[I1/Z1]]) ∼= F⊗Fp
grm(Fp[[I1/Z1]]) ∼=

⊗
i∈S

UFp
(gi).

This isomorphism allows us to apply the results proved in last subsection.

For i ∈ S, let ei, fi, hi be the images of 1 ⊗ e, 1 ⊗ f , 1 ⊗ h under
the isomorphism F ⊗Fp

g ∼= gi. Since H normalizes I1 and I1/Z1, it acts
on F[[I1/Z1]], g, and the elements ei, fi, hi. It is easy to check that for
g =

(
a 0
0 d

)
∈ H,

gei = αi(g)ei, gfi = α−1
i (g)fi, ghi = hi,

where αi is the character of H as in §9.1.1.

Proposition 9.15. Given J ⊂ S and ε ∈ {±1}J , there exists an I-
representation τJ ,ε such that

grm(τ
∨
J ,ε)

∼=
f−1⊗
i=0

U(gi)1/ai
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where

(9.12) ai =

⎧⎨⎩
(e3i , eifi, fiei, f

3
i ) i /∈ J

(ei, hi, f
3
i ) i ∈ J and εi = +1

(fi, hi, e
3
i ) i ∈ J and εi = −1.

Here, if J = ∅, we make the convention that {±1}∅ = ∅.

Proof. We give a constructive proof.

By [43, Lem. 2.15(i)], there exists a unique I-representation, denoted by
E−

i (2), which is uniserial of length 3 and whose socle filtration has graded
pieces 1, α−1

i , α−2
i . By taking a conjugate action of the matrix

(
0 1
p 0

)
, we

obtain a unique I-representation E+
i (2), which is uniserial of length 3 and

whose socle filtration has graded pieces 1, αi, α
2
i . To make the notation more

transparent, we write

(9.13) E1,αi,α2
i
= E+

i (2), E1,α−1
i ,α−2

i
= E−

i (2).

It is direct to check that

grm((E1,αi,α2
i
)∨) ∼= U(gi)1/(ei, hi, f

3
i ),

grm((E1,α−1
i ,α−2

i
)∨) ∼= U(gi)1/(fi, hi, e

3
i )

as graded grm(F [[I /Z1]] )-modules. Moreover, taking an amalgam sum
E1,αi,α2

i
⊕1 E1,α−1

i ,α−2
i
, defined by:

0 → 1 → E1,αi,α2
i
⊕ E1,α−1

i ,α−2
i

→ E1,αi,α2
i
⊕1 E1,α−1

i ,α−2
i

→ 0,

its dual has graded module isomorphic to U(gi)1/(e
3
i , eifi, fiei, f

3
i ).

Now we let τJ ,ε be the tensor product
⊗

i∈S τJ ,ε,i, where

τJ ,ε,i =

⎧⎨⎩
E1,αi,α2

i
⊕1 E1,α−1

i ,α−2
i

i /∈ J
E1,αi,α2

i
i ∈ J and εi = +1

E1,α−1
i ,α−2

i
i ∈ J and εi = −1.

To conclude, it suffices to prove that

grm(τ
∨
J ,ε)

∼=
⊗
i∈S

grm(τ
∨
J ,ε,i)

which is a special case of [2, Lem. 1.1(i)].
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Definition 9.16. Define an I-representation τJ as

τJ :=
⊕

ε∈{±1}J

(
τJ ,ε ⊗

( ∏
εi=−1

α−1
i

))
,

with the convention that τ∅ := τ∅,∅.

Remark 9.17. The motivation to define τJ in this way comes from Proposi-

tion 10.20 and Theorem 10.23 in next section, which say that πD
v (r) contains

a suitable twist of τJ with J = Jρ, and is generated by it as a GL2(L)-

representation.

Lemma 9.18. grm(τ
∨
J ) has a tensor product decomposition(⊗

i/∈J
U(gi)1/(e

3
i , eifi, fiei, f

3
i )
)

⊗(⊗
i∈J

(
U(gi)1/(ei, hi, f

3
i )⊕ U(gi)αi

/(fi, hi, e
3
i )
))

.

Proof. This is an easy check using Definition 9.16 and the proof of Proposi-

tion 9.15. Note that α∨
i = α−1

i and vice versa.

Lemma 9.19. The I-socle of τJ is equal to⊕
J⊂J

(∏
i∈J

α−1
i

)
∼=
⊗
i∈J

(
1⊕ α−1

i

)
.

The Jordan–Hölder factors of τJ are the characters
∏

i∈S α
bJ,i
i , where J ⊂ J

and (bJ,i) ∈ ZS runs over⎧⎨⎩
−2 ≤ bJ,i ≤ 2 if i /∈ J
0 ≤ bJ,i ≤ 2 if i ∈ J \J

−3 ≤ bJ,i ≤ −1 if i ∈ J

and τJ is multiplicity free.

Proof. By construction and the claim in the proof of Proposition 9.15, each

τJ ,ε is indecomposable with irreducible socle 1 (the trivial character). The

first assertion then follows from the definition of τJ , up to a reformulation

by setting J = {i ∈ J , εi = −1}.
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For a fixed ε, the Jordan–Hölder factors of τJ ,ε are the characters∏
i∈S αai

i where ai are integers such that⎧⎨⎩
−2 ≤ ai ≤ 2 if i /∈ J
0 ≤ ai ≤ 2 if i ∈ J , εi = +1
−2 ≤ ai ≤ 0 if i ∈ J , εi = −1.

Twisting by αε, we deduce that the Jordan–Hölder factors of τJ ,ε ⊗
(
∏

εi=−1 α
−1
i ) are the characters

∏
i∈S αbi

i where bi = ai except when i ∈ J
and εi = −1 in which case bi = ai − 1. Explicitly, we have

(9.14)

⎧⎨⎩
−2 ≤ bi ≤ 2 if i /∈ J
0 ≤ bi ≤ 2 if i ∈ J , εi = +1

−3 ≤ bi ≤ −1 if i ∈ J , εi = −1.

This gives the Jordan–Hölder factors of τJ in the statement (setting J =
{j ∈ J , εi = −1}). Finally, the multiplicity freeness of τJ can be checked
directly using (9.14).

Remark 9.20. With the notation of Lemma 9.19, one checks that the char-
acter

∏
i∈S α

bJ,i
i lies in τJ [m2] (where J ⊂ J ) if and only if{

|bJ,i| ≤ 1 if i /∈ J
−2 ≤ bJ,i ≤ −1 if i ∈ J

and there exists at most one i such that |bJ,i| = 1 if i /∈ J , or bJ,i = −2 if
i ∈ J .

Proposition 9.21. τ∨J admits a length 3f minimal resolution by projective
F[[I/Z1]]-modules,

PJ ,• → τ∨J → 0

satisfying the following property: for each 0 ≤ l ≤ 3f , PJ ,l has a direct sum
decomposition

PJ ,l = P ′
J ,l ⊕ P ′′

J ,l

such that

(a) P ′
J ,l

∼=
(⊕

χ Pχ

)(2fl ), where χ runs over the characters of cosocI(τ
∨
J );

(b) HomI(P
′′
J ,l, Pχ/m

2) = 0 for any χ ∈ cosocI(τ
∨
J ).

Remark 9.22. We don’t require that the P ′
J ,l form a subcomplex of PJ ,•.
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Proof. First, taking tensor product of the complexes (9.8), (9.9) (twisted by

αi in this case), (9.10), according to i as in (9.12), we obtain a minimal pro-

jective resolution of grm(τ
∨
J ,ε ⊗

∏
εi=−1 αi) of length 3f , denoted by GJ ,ε,•.

Using Corollary 9.12, one checks that GJ ,ε,• satisfies the following property,

denoted by (Min): for each 0 ≤ k ≤ 3f , GJ ,ε,l has a decomposition

GJ ,ε,l =
⊕
χ

(
grm(F[[I1/Z1]])χ(−al,χ)

)rl,χ
and whenever rl,χ �= 0 and rl′,χ �= 0, we have

al′,χ = al,χ + 2(l′ − l).

Indeed, this property (Min) is preserved when taking tensor product. Here,

we use the property that the characters χ with rl,χ �= 0 are of the form

χ =
∏

i∈S αbi
i , with bi lying in a suitable range such that χ = χ′ implies

bi = b′i.
13

Now, applying Lemma A.10, this graded resolution GJ ,ε,• can be “lifted”

to a filt-projective resolution PJ ,ε,• of τ∨J ,ε ⊗
∏

εi=−1 αi, which must be

minimal by Lemma A.11. Define PJ ,• to be the direct sum of PJ ,ε,• over

ε ∈ {±1}J , which is a minimal filt-projective resolution of τ∨J .
To check that PJ ,l satisfies the required property, we note that the con-

ditions (a), (b) depend only on cosocI(PJ ,l) (not on the filtration of PJ ,l),

so it suffices to prove the corresponding property for GJ ,l, the underlying

grm(F[[I/Z1]])-module of GJ ,l (i.e. forgetting the graded structure). By tak-

ing the tensor product of the complexes (9.5), (9.6), (9.7), according to i as

in (9.12), we obtain a subcomplex G′
J ,ε,• of GJ ,ε,•, of length 2f , such that

G′
J ,ε,l is a direct summand of GJ ,ε,l for all 0 ≤ l ≤ 3f , with the convention

G′
J ,ε,l := 0 if l > 2f . Taking direct sum over all ε ∈ {±1}J , we obtain a

subcomplex G′
J ,• of GJ ,• such that G′

J ,l is a direct summand of GJ ,l. The

conditions (a), (b) can be checked directly using Lemma 9.19, Corollary 9.13

and Corollary 9.14.

9.3. The representation λχ

Keep the notation of the last subsection.

13If p = 7, it can happen that χ =
∏

i∈S α3
i =

∏
i∈S α−3

i = χ′, but one checks
that (Min) still holds.
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Proposition 9.23. The center of F[[I/Z1]]/m
3 contains a subring isomor-

phic to

(9.15) F
[
(xi, yi)0≤i≤f−1

]
/(xi, yi)

2
0≤i≤f−1.

Proof. Since eifi, fiei ∈ m2F[[I/Z1]]/m
3, we may view them as elements in

F[[I/Z1]]/m
3. Set

xi = eifi, yi = fiei.

It is clear that xi, yi lie in the center of F[[I/Z1]]/m
3, and (xi, yi)

2 = 0.

We denote by R the ring (9.15). Since it is contained in the center of
F[[I/Z1]]/m

3, R acts on any object in the category of F[[I/Z1]]/m
3-modules,

and any morphism in this category is R-linear.

Recall that for a character χ of I, Pχ
def
= ProjI/Z1

χ denotes a projec-
tive envelope of χ in the category of pseudo-compact F[[I/Z1]]-modules, and

Wχ,n
def
= Pχ/m

n for n ≥ 1. The structure of Wχ,3 has been determined in
§3. In particular, [gr2mWχ,3 : χ] = 2f . Also recall that we have denoted by
Wχ,3 the quotient of Wχ,3 by the direct sum of characters in gr2mWχ,3 which
are not isomorphic to χ. Since this representation will be tentatively used
in this and next section, we make the following definition.

Definition 9.24. Define λχ = Wχ∨,3.

Note that the cosocle of λχ is χ∨ by definition. Moreover, χ′ ∈ JH(λχ)
if and only if χ′ = χ∨ or χ′ ∈ E (χ∨), and

[λχ : χ′] =

{
2f + 1 if χ′ = χ∨

1 if χ′ ∈ E (χ∨).

Here, recall that E (χ∨) denotes the set of characters which have nontrivial
extensions with χ∨ (§3).

Lemma 9.25. The action of R on λχ (resp. λ∨
χ) induces a ring isomorphism

R ∼= EndI(λχ) (resp. R ∼= EndI(λ
∨
χ)).

Proof. Since dimFHomI(λχ, χ
′) = 1 if and only if χ′ = χ∨, by dévissage we

have

dimF EndI(λχ) ≤ [λχ : χ∨] = 2f + 1.

Since dimFR = 2f + 1, it suffices to prove that R ↪→ EndI(λχ), i.e. R acts
faithfully on λχ. But this is clear by definition of R and λχ, because eifi
and fiei (for i ∈ S) induce nonzero endomorphisms of λχ which are linearly
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independent over F. The claim about EndI(λ
∨
χ) follows from this and the

general fact that EndI(λ
∨
χ)

∼= Rop = R, where Rop denotes the opposite ring
of R.

Lemma 9.26. We have Ext1I/Z1
(λχ, χ

∨) = 0.

Proof. The proof is similar to that of Corollary 3.13, using the structure of
λχ in Lemma 3.2.

Given P a finitely generated F[[I/Z1]]-module and λ a finite length
F[[I/Z1]]-module, we may consider

HomI(P, λ
∨)∨,

where ∨ denotes Pontryagin dual. Note that as a functor HomI(−,−∨)∨ is
covariant and right exact in both variables. We will mostly be interested
in the case when P is projective and λ is annihilated by m3. Typical ex-
amples are λ = χ or λχ for some character χ, in which case the mod-
ule HomI(P, λ

∨)∨ carries naturally an action of R through λ. Moreover,
if P → P ′ and λ → λ′ are morphisms of F[[I/Z1]]-modules, then all the
morphisms are R-linear in the following commutative diagram

HomI(P, λ
∨)∨ HomI(P

′, λ∨)∨

HomI(P, λ
′∨)∨ HomI(P

′, λ′∨)∨.

Proposition 9.27. Let χ′ be a character of I. Then as an R-module

HomI(Pχ′ , λ∨
χ)

∨ ∼=

⎧⎨⎩
R if χ′ = χ
F if χ′ ∈ E (χ)
0 otherwise.

Proof. We observed that [λ∨
χ : χ′]=1 if χ′ ∈ E (χ), so dimFHomI(Pχ′ , λ∨

χ)
∨=

1 by projectivity of Pχ′ . This treats the second case. The third case is trivial.
It remains to treat the case χ′ = χ. The projectivity of Pχ implies that

dimFHomI(Pχ, λ
∨
χ)

∨ = 2f + 1 = dimFR.

Therefore, it suffices to prove that HomI(Pχ, λ
∨
χ)

∨ is a cyclic R-module. By
Lemma 9.28 below, applied to

S = F[[I/Z1]], R = R, P = Pχ, λ = λχ
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it suffices to prove that

dimFHomI

(
Pχ, (λχ ⊗R R/mR)

∨)∨ = 1

or equivalently, [λχ⊗RR/mR : χ∨] = 1. But this is clear because λχ⊗RR/mR

is isomorphic to Pχ∨/m2 which is multiplicity free.

Lemma 9.28. Let S,R be F-algebras and assume that R is a commutative
noetherian local ring with maximal ideal mR. Let P be a left S-module and
λ be an (S,R)-bimodule. Assume that P is finite projective and λ is finite
dimensional over F. Then there is an isomorphism

HomS(P, λ
∨)∨ ⊗R R/mR

∼−→ HomS(P, (λ⊗R R/mR)
∨)∨.

Proof. One checks that the natural map HomS(P, λ
∨)∨ → HomS(P, (λ ⊗R

R/mR)
∨)∨ factors through

HomS(P, λ
∨)∨ ⊗R R/mR → HomS(P, (λ⊗R R/mR)

∨)∨,

which is clearly an isomorphism if P is a finite free S-module, hence is also
an isomorphism if P is finite projective. Note that the assumption λ is finite
dimensional ensures (λ∨)∨ ∼= λ.

Proposition 9.29. Let χ1, χ2 be characters of I. Consider a morphism
β : Pχ1

→ Pχ2
and let

(9.16) β�
χ : HomI(Pχ1

, λ∨
χ)

∨ → HomI(Pχ2
, λ∨

χ)
∨

be the induced morphism of R-modules. Then β�
χ has the form

β�
χ χ2 = χ χ2 ∈ E (χ) otherwise

χ1 = χ R → R R → F R → 0

χ1 ∈ E (χ) F → R F → F F → 0

otherwise 0 → R 0 → F 0 → 0

If moreover χ1, χ2 ∈ {χ} ∪ E (χ), then the following statements hold:

(i) if χ2 �= χ, then β�
χ is nonzero if and only if Pχ1

β→ Pχ2
� Pχ2

/m2 is
nonzero;

(ii) if χ2 = χ, then β�
χ is nonzero if and only if Pχ1

β→ Pχ � Pχ/m
3 is

nonzero;
(iii) if χ1, χ2 ∈ E (χ) and χ1 �= χ2, then β�

χ is always zero.
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Proof. The form of β�
χ follows immediately from Proposition 9.27.

(i) By assumption χ2 ∈ E (χ). We first claim that the natural quotient
map Pχ2

� Pχ2
/m2 induces an isomorphism

HomI(Pχ2
, λ∨

χ)
∨ ∼−→ HomI(Pχ2

/m2, λ∨
χ)

∨.

It is surjective by right exactness of HomI(−, λ∨
χ)

∨. Since HomI(Pχ2
, λ∨

χ)
∨ ∼=

F by Proposition 9.27, it is enough to show that HomI(Pχ2
/m2, λ∨

χ) is nonzero.

By assumption we have χ2 ∈ E (χ), i.e. Ext1I/Z1
(χ2, χ) �= 0. Hence, Pχ2

/m2

admits a two-dimensional quotient isomorphic to Eχ,χ2
which embeds in λ∨

χ;
here we recall that Eχ,χ2

denotes the unique nonsplit extension of χ2 by χ.
This proves the claim.

The “only if” part follows directly from the claim. To prove the “if” part,
assume the composite morphism Pχ1

→ Pχ2
→ Pχ2

/m2 is nonzero. Then χ1

occurs in Pχ2
/m2 as a subquotient, i.e. either χ1 = χ2 or χ1 ∈ E (χ2). In

the first case, β induces a surjection Pχ1
→ Pχ1

→ Pχ1
/m, hence β has

to be surjective by Nakayama’s lemma and consequently an isomorphism.
In particular, β�

χ is nonzero. In the second case, we must have χ1 = χ (for,
otherwise, χ ∈ E (χ1) and so χ ∈ E (χ1)∩E (χ2), but this intersection is empty
whenever χ1 ∈ E (χ2)), and the image of Pχ → Pχ2

→ Pχ2
/m2 is isomorphic

to χ. By the proof of the claim, we see that the inclusion χ ↪→ Pχ2
/m2

induces an isomorphism HomI(χ, λ
∨
χ)

∨ ∼−→ HomI(Pχ2
/m2, λ∨

χ)
∨, hence β�

χ is
nonzero.

(ii) Since λ∨
χ is annihilated by m3, the natural morphism

HomI(Pχ, λ
∨
χ)

∨ → HomI(Pχ/m
3, λ∨

χ)
∨

is an isomorphism, which implies the “only if” part. Moreover, since

dimF HomI(Pχ/m
3, λ∨

χ)
∨ = 2f + 1 = [Pχ/m

3 : χ],

an argument by dévissage shows that for any submodule W of Pχ/m
3,

dimFHomI(W,λ∨
χ)

∨ = [W : χ]

and the induced sequence

0 → HomI(W,λ∨
χ)

∨ → HomI(Pχ/m
3, λ∨

χ)
∨ → HomI

(
(Pχ/m

3)/W, λ∨
χ

)∨ → 0

is exact.
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Assume that β : Pχ1
→ Pχ → Pχ/m

3 is nonzero. By the above discussion,

to show that β�
χ is nonzero it suffices to show [Im(β) : χ] �= 0. By assumption,

either χ1 = χ or χ1 ∈ E (χ). The result is trivial if χ1 = χ. If χ1 ∈ E (χ), then
one checks that the unique submodule of Pχ/m

3 with cosocle χ1 contains
χ as a submodule. Indeed, the restriction of Pχ/m

3 to I1 is isomorphic to
F[[I1/Z1]]/m

3, in which ei (or fi) generates fiei (resp. eifi).
(iii) Since χ2 �= χ, by (i) it suffices to prove that Pχ1

→ Pχ2
→ Pχ2

/m2

is zero. This is clear, because the assumption on χi implies that χ1 does not
occur in Pχ2

/m2 as a subquotient.

9.3.1. Tangent space. Let χ′ ∈ E (χ) and β : Pχ′ → Pχ be a morphism of
F[[I/Z1]]-modules. The proof of Proposition 9.29(ii) shows that if β : Pχ′ →
Pχ → Pχ/m

3 is nonzero, then Im(β) is nonzero and does not depend on the

choice of β, and therefore neither does Im(β�
χ), where β�

χ is the morphism
(9.16).

Definition 9.30. Let tχ′ denote the the image of F → R via the map

β�
χ : F ∼= HomI(Pχ′ , λ∨

χ)
∨ → HomI(Pχ, λ

∨
χ)

∨ ∼= R,

where β : Pχ′ → Pχ is any morphism which is nonzero when composed with
Pχ � Pχ/m

3.

Lemma 9.31. {tχ′ : χ′ ∈ E (χ)} generate the maximal ideal mR. As a
consequence, {tχ′ : χ′ ∈ E (χ)} form an F-basis of mR.

Proof. There exists an exact sequence

⊕χ′∈E (χ)Pχ′ → Pχ → χ → 0.

Since HomI(−, λ∨
χ)

∨ is right exact, the induced sequence

⊕χ′∈E (χ)HomI(Pχ′ , λ∨
χ)

∨ → HomI(Pχ, λ
∨
χ)

∨ → HomI(χ, λ
∨
χ)

∨ → 0

is also exact. By Proposition 9.29 and Definition 9.30, the last sequence is
isomorphic to

⊕χ′Ftχ′ → R → F → 0,

proving the first claim. Since dimFmR = 2f = |E (χ)|, the last claim follows
(as m2

R = 0).

Lemma 9.32. Let P be a finitely generated projective F[[I/Z1]]-module. Let
χ′ ∈ E (χ) and β : Pχ′ → P be a morphism such that Im(β) ⊂ mP . Then the

image of β�
χ is contained in tχ′ HomI(P, λ

∨
χ)

∨.
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Proof. We may assume P is indecomposable, i.e. P = Pχ′′ for some character
χ′′. If χ′′ = χ′, then the assumption on Im(β) implies that Im(β) ⊂ m2Pχ′

because χ′ does not occur in gr1mPχ′ . By Proposition 9.29(i) this implies

β�
χ = 0 and the result trivially holds. In the rest, we assume χ′′ �= χ′.

First assume χ′′ = χ, then the result follows from Proposition 9.29(ii)
and Definition 9.30. Finally, if χ′′ /∈ {χ, χ′}, then the map is always zero by
Proposition 9.29(iii), so the result is also trivial.

9.3.2. Socle. Recall the socle of an R-module M from Definition A.3.
Since R is local, we have the following equivalent description

socR(M) := {v ∈ M : rv = 0, ∀v ∈ mR}.

For example, since m2
R = 0, we have socR(R) = mR. However, note that

socR(M) �= mRM in general (e.g. take M = R⊕ Fm for some m ≥ 1).

Lemma 9.33. The morphism HomI(Pχ, λ
∨
χ)

∨ → HomI(Pχ, χ)
∨, induced

from the natural quotient morphism λχ � χ∨, is R-linear and identified
with R � F.

Proof. Noting that HomI(Pχ, χ)
∨ ∼= F, the result is clear by Proposition

9.27.

Corollary 9.34. Let P be a finitely generated projective F[[I/Z1]]-module.
The natural morphism

HomI(P, λ
∨
χ)

∨ → HomI(P, χ)
∨

is R-linear whose kernel is identified with the R-socle of HomI(P, λ
∨
χ)

∨.

Proof. It is clear that we may assume P is indecomposable, i.e. P = Pχ′

for some character χ′. If χ′ = χ, then the result follows from Lemma 9.33.
If χ′ �= χ, then HomI(Pχ′ , χ) = 0 and hence the map HomI(Pχ′ , λ∨

χ)
∨ →

HomI(Pχ′ , χ)∨ is always zero; since HomI(Pχ′ , λ∨
χ)

∨ is itself either 0 or a
simple R-module, the result holds trivially.

If P is a finitely generated F[[I/Z1]]-module, we denote by radχ(P ) the
largest subobject such that the quotient P/ radχ(P ) is semisimple and χ-
isotypic. To be explicit, if P can be decomposed as P1 ⊕ P2 with cosoc(P1)
is χ-isotypic and HomI(P2, χ) = 0, then

radχ(P ) = rad(P1)⊕ P2 = mP1 ⊕ P2.

Corollary 9.34 can be restated as follows.
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Corollary 9.35. Let P be a finitely generated projective F[[I/Z1]]-module.
There is an exact sequence

0 → HomI(radχ(P ), λ∨
χ)

∨ → HomI(P, λ
∨
χ)

∨ → HomI(P/ radχ(P ), λ∨
χ)

∨ → 0,

which is canonically identified with

0 → socR(M) → M → M/ socR(M) → 0

where we have written M = HomI(P, λ
∨
χ)

∨.

Proof. Since P/ radχ(P ) is semisimple and χ-isotypic, the exactness follows
from Lemma 9.26. The second claim is a reformulation of Corollary 9.34,
noting that there are natural isomorphisms

HomI(P, χ)
∨ ∼−→ HomI(P/ radχ(P ), χ)∨

∼←− HomI(P/ radχ(P ), λ∨
χ)

∨.

Proposition 9.36. Let β : P1 → P2 be a morphism between finitely gen-
erated projective F[[I/Z1]]-modules such that Im(β) ⊂ mP2. Write Mi =

HomI(Pi, λ
∨
χ)

∨ for i = 1, 2, and let β�
χ : M1 → M2 be the morphism (9.16).

Then the following statements hold.

(i) Im(β�
χ) is contained in socR(M2).

(ii) Let b ⊂ R be the ideal generated by tχ′, where χ′ runs over the set

E (χ) ∩ JH(cosoc(P1)). Then β�
χ induces an R-linear morphism socR

(M1) → bM2.

Proof. (i) We may assume both Pi (i = 1, 2) are indecomposable, i.e. Pi =
Pχi

for characters χi ∈ {χ}∪ E (χ). In view of the table in Proposition 9.29,
the only nontrivial case is when χ1 = χ2 = χ. But, in this case the claim
follows directly from Corollary 9.35.

(ii) We may again assume Pi = Pχi
are indecomposable for χi ∈ {χ} ∪

E (χ). If χ1 ∈ E (χ), the claim is just Lemma 9.32.
If χ1 = χ, then socR(M1) = mR is identified with HomI(mP1, λ

∨
χ)

∨ by
Corollary 9.35. There are two subcases. If χ2 ∈ E (χ), then M2

∼= F and
bM2 = 0, so the result follows from Proposition 9.29. Assume χ2 = χ (and
also χ1 = χ). Since χ does not occur in gr1mPχ, the assumption β(P1) ⊂ mP2

implies that β(P1) is actually contained in m2P2, and therefore β(mP1) is

contained in m3P2. By Proposition 9.29(ii), we deduce that β�
χ is identically

zero when restricted to HomI(mP1, λ
∨
χ)

∨. This finishes the proof.
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9.4. Generalized Koszul complexes

Let R be a commutative ring, M be an R-module and φ = (φ1, . . . , φn) be

a family of pairwise commuting R-linear endomorphisms of M . The Koszul

complex

K•(φ,M) : 0 → Kn
dn−→ Kn−1 −→ · · · d1−→ K0 −→ 0

associated to the data (M,φ1, . . . , φn) is defined as follows:

• Kl = M ⊗Z ∧l(Zn) for 0 ≤ l ≤ n;

• the differential map dl : Kl → Kl−1 (for 1 ≤ l ≤ n) is defined as

(9.17)

dl
(
v⊗ (ei1 ∧ · · · ∧ eil)

)
=

l∑
r=1

(−1)r−1φir(v)⊗ (ei1 ∧ · · · ∧ êir ∧ · · · ∧ eil),

where v ∈ M , (e1, . . . , en) is the canonical basis in Zn and by êir we

indicate that eir is to be omitted from the exterior product.

For the rest of this subsection, we assume that R is a noetherian local

ring and M is finitely generated over R. Let R′ def= EndR(M), which acts on

M from the right, sending (t, φ) to tφ
def
= φ(t), where φ ∈ R′ and t ∈ M .

In this way, M becomes an (R,R′)-bimodule. Note that the composition

ϕ ◦ φ : M
φ→ M

ϕ→ M corresponds to the product φϕ in R′. This choice of

convention is compatible with the one made in §9.1.

Remark 9.37. Replacing M by R′ in the definition of K•(φ,M), we obtain

the Koszul complex K•(φ,R′), where we view R′ as an (R′, R′)-bimodule and

φi as an endomorphism of R′ sending f to fφi. Then we have a canonical

isomorphism

M ⊗R′ K•(φ,R
′) ∼= K•(φ,M).

Since R is commutative, R′ is naturally an R-module. For any left ideal

J of R′, MJ is an R-submodule of M . The following result is an analog of

[67, §5, Lem. 2] (cf. also [68, §IV, Appendix I]).

Lemma 9.38. Let J denote the left ideal of R′ generated by φ1, . . . , φn.

Assume that J is a two-sided ideal and the morphism

d1 = (φ1, . . . , φn) : K1/K1J → K0J/K0J
2
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is injective. Then for any 1 ≤ l ≤ n, the morphism

dl : Kl/KlJ → Kl−1J/Kl−1J
2

is injective.

Proof. By definition, K0 = M and K1 = Mn. The injectivity of K1/K1J →
K0J/K0J

2 can be restated as follows: if vi ∈ M (where 1 ≤ i ≤ n) satisfy∑n
i=1 φi(vi) ∈ MJ2, then vi ∈ MJ for all i.

To simplify the notation, we denote

Il = {i = (i1, . . . , il)|1 ≤ i1 < · · · < il ≤ n}.

For i = (i1, . . . , il) ∈ Il, set ei = ei1 ∧ · · · ∧ eil and Si = {i1, . . . , il} ⊂
{1, . . . , n} =: S.

Let v =
∑

i∈Il vi ⊗ ei ∈ Kl with vi ∈ M , then by (9.17)

dl(v) =
∑

i′∈Il−1

fi′ ⊗ ei′ ∈ Kl−1

with fi′ having the form

fi′ =
∑

j∈S\Si′

±φj(vi′∪{j}).

Here, i′ ∪ {j} denotes the unique element in Il whose underlying set is

Si′ ∪ {j}. Now, if dl(v) ∈ Kl−1J
2 ∼= MJ2 ⊗Z ∧l−1(Zn), then fi′ ∈ MJ2 for

all i′ ∈ Il−1. By assumption, we deduce that vi′∪{j} ∈ MJ , and the result

follows.

9.5. A typical example

In this subsection, we study one typical example of generalized Koszul com-

plexes introduced in last subsection.

Let R be a noetherian local F-algebra, with maximal ideal mR and

residue field F. Let M be a finitely generated R-module and R′ = EndR(M).

Assume thatM can be decomposed asM = ⊕m
i=0Mi. Then we may represent

R′ in matrix form

R′ =
(
HomR(Mi,Mj)

)
0≤i,j≤m
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so that the (right) action of R′ on M = ⊕m
i=0Mi is given by the matrix

multiplication

Mi ×HomR(Mi,Mj) → Mj , (vi, fij) �→ fij(vi).

The multiplication in R′ is determined by: if fij ∈ HomR(Mi,Mj) and gji ∈
HomR(Mj ,Mi), then

fij × gji �−→ (Mi
fij→ Mj

gji→ Mi).

From now on, we make the following assumptions on R and M :

• mR �= 0 and m2
R = 0;

• M = R⊕ Fm for some 0 ≤ m ≤ n, where n
def
= dimFmR.

Lemma 9.39. Keep the above notation.
(i) We have

R′ =

⎛⎜⎜⎜⎝
R F · · · F
mR F · · · F
...

...
...

...
mR F · · · F

⎞⎟⎟⎟⎠
(m+1)×(m+1)

.

(ii) M is a cyclic R′-module generated by v0
def
=
(
1 0 · · · 0

)
.

Proof. (i) With the notation introduced above, we enumerate R as M0 and
Fm as ⊕m

i=1Mi. The result easily follows from what we have recalled, using
the isomorphism HomR(F, R) ∼= mR (as m2

R = 0).
(ii) For φ ∈ R′, v0φ corresponds to the first row of the matrix of φ. The

assertion easily follows.

Note that, when doing matrix multiplication in R′, the map F×mR →
mR is the usual multiplication map in R, whereas mR × F → F is the zero
map (because any morphism F → R → F is zero as mR �= 0).

Let b be a subspace of mR (we allow the case b = 0). Since m2
R = 0, b

can be viewed as an ideal of R. Consider the subspace Jb of R′ defined as

Jb :=

⎛⎜⎜⎜⎝
mR F · · · F
b 0 0 0
...

...
...

...
b 0 0 0

⎞⎟⎟⎟⎠
(m+1)×(m+1)

.
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For example, we have

(9.18) JmR
:=

⎛⎜⎜⎜⎝
mR F · · · F
mR 0 0 0
...

...
...

...
mR 0 0 0

⎞⎟⎟⎟⎠ , J(0) =

⎛⎜⎜⎜⎝
mR F · · · F
0 0 0 0
...

...
...

...
0 0 0 0

⎞⎟⎟⎟⎠ .

It is direct to check that Jb is a two-sided ideal of R′. Recall from §9.3.2 the
definition of socR(M).

Lemma 9.40. (i) We have

MJb = mR ⊕ Fm = socR(M), MJ2
b = b⊕ (0)m = bM.

(ii) M/MJb has dimension 1 over F and is spanned by the residue class
of v0.

(iii) dimFMJb/MJ2
b = n+m− dimF b.

Proof. (i) Since M = v0R
′ by Lemma 9.39(ii), we have MJb = 〈v0 · Jb〉 =

{v0φ : φ ∈ Jb} and MJ2
b = 〈v0 ·J2

b〉. The result is then a direct computation
(using m2

R = 0 for the description of MJ2
b). Finally, (ii) and (iii) clearly

follow from (i).

Given φ ∈ Jb, we have a natural F-linear map

φ : M/MJb → MJb/MJ2
b .

Since M/MJb is spanned by the residue class of v0, say v0, φ is determined
by the residue class of φ(v0) in MJb/MJ2

b .

Proposition 9.41. Assume that Jb can be generated by n elements as a left
ideal of R′, i.e. there exist φ1, . . . , φn ∈ Jb such that Jb =

∑n
i=1R

′φi. Then
φ1, . . . , φn induce a surjection

(φ1, . . . , φn) : (M/MJb)
n → MJb/MJ2

b .

As a consequence, dimF b ≥ m and the equality holds if and only if (φ1, . . . ,
φn) is an isomorphism.

Proof. The morphism is well-defined as explained above and is surjective
by assumption. The second assertion is clear for the reason of dimensions,
using Lemma 9.40(iii).

The following are criteria for a left ideal of R′ to be of the form Jb.
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Lemma 9.42. If J is a left ideal of R′ such that J(0) ⊂ J ⊂ JmR
, then

J = Jb for some (proper) ideal b of R.

Proof. We associate to J a subspace bJ of mR as follows:

bJ :=
{
bi0(φ) : φ ∈ J, 1 ≤ i ≤ m

}
where φ ∈ J is written in the matrix form (bij(φ))0≤i,j≤m. Since J is a left
ideal of R′, one easily checks that J contains⎛⎜⎜⎜⎝

0 0 · · · 0
bJ 0 0 0
...

...
...

...
bJ 0 0 0

⎞⎟⎟⎟⎠ ,

hence also contains Jb because J(0) ⊂ J by assumption. On the other hand,
since J ⊆ JmR

, we have J ⊂ JbJ
by definition of bJ .

Lemma 9.43. Let J ⊂ R′ be a left ideal contained in JmR
. Assume that

dimFM/MJ = 1 and that J can be generated by n elements. Then J = Jb
for some (proper) ideal b of R and dimF b ≥ m.

Proof. We know that dimF M/MJmR
= 1 by Lemma 9.40(i). Hence the

assumptions J ⊂ JmR
and dimF M/MJ = 1 imply that MJ = MJmR

=
mR ⊕ Fm. Since J is a left ideal and M = v0R

′, we have MJ = 〈v0 · J〉.
Since v0φ corresponds to the first row of the matrix of φ, we deduce that
J(0) ⊂ J , see (9.18). By Lemma 9.42, there exists an ideal b of R such that
J = Jb and it follows from Proposition 9.41 that dimF b ≥ m.

We close this subsection with a basic but typical example.

Example 9.44. We use the notation of §9.1. Let λ = U(g)/((e, f)3, e2, f2)
and R = F[x, y]/(x, y)2 ∼= EndU(g)(λ), by (the graded versions of) Lemma
9.25. Let H act on U(g) as in §9.1.1. Applying HomU(g)(−, λ∨)∨ to the
complex (9.11) gives a generalized Koszul complex of R-modules

0 −→ M
(−φ2,φ1)−→ M ⊕M

(φ1
φ2
)

−→ M −→ 0

where M = R⊕ F,

φ1 =

(
0 f �

x 0

)
, φ2 =

(
x− y 0
0 0

)
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where f � ∈ F× is the element induced by f : U(g)1 → U(g)αi
. The left ideal

of R′ = EndR(M) generated by φ1, φ2 is equal to J(x) and

MJ(x)/MJ2
(x) = (mR ⊕ F)/((x)⊕ (0)) ∼= (mR/(x))⊕ F.

It is direct to verify that the morphism

(φ1, φ2) : M/MJ(x) ⊕M/MJ(x) → MJ(x)/MJ2
(x)

is an isomorphism.

10. Finite generation

Let F and r : GF → GL2(F) be as in §8 and πD
v (r) be the GL2(Fv)-

representation constructed in (8.8). In this section we study the representa-

tion theoretic property of πD
v (r). Write L

def
= Fv, ρ

def
= r∨|GL

as in §8.4; recall
that ρ is reducible nonsplit and strongly generic. For convenience, write

π(ρ)
def
= πD

v (r),

keeping in mind that, a priori, π(ρ) may depend on the global setting.

Let G = GL2(L), K = GL2(OL), and keep the notation in §4 and §5.

10.1. A minimal projective resolution

Recall that M∞ is a flat R∞-module by Theorem 8.15. Since R∞ is a regular
local ring, by choosing a minimal set of generators of m∞ := mR∞ we obtain
a Koszul type resolution of M∞/m∞ = π(ρ)∨. Although M∞ is projective
as a pseudo-compact F[[K/Z1]]-module, it is not finitely generated and the
resolution is not minimal.

The first step to study π(ρ), equivalently π(ρ)∨, is to construct aminimal
projective resolution of π(ρ)∨|K , as follows. In the proof of next proposition
we will use the notation of §8.

Proposition 10.1. There exists a quotient ring of R∞, denoted by Rv, such
that

(i) Rv is a regular local ring over F of Krull dimension 2f ;
(ii) M∞ ⊗R∞ Rv is isomorphic to

⊕
σ∈D(ρ) ProjK/Z1

σ∨ as an F[[K/Z1]]-
module.
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Proof. By construction R∞ is a power series ring in (q+ j− f −3)-variables

over R�,ψ
ρ . Recall that we have constructed elements T1, . . . , Tf+3 in R�,ψ

ρ

such that the images of {,T1, . . . , Tf+3} in R�,ψ,cris,σ
ρ form a regular system

of parameters for any σ ∈ D(ρ), see Proposition 6.13. Together with the
q + j − f − 3 formal variables just mentioned (and the uniformizer ), we
obtain a part of a regular system of parameters of R∞, say {,T1, . . . , Tq+j},
such that their images in Rcris,σ

∞ form a regular system of parameters for any
σ ∈ D(ρ). We claim that

Rv
def
= R∞/(,T1, . . . , Tq+j)

satisfies the required conditions. Condition (i) is clear by construction.
Prove (ii). Recall that if σ is a Serre weight, thenM∞(σ) is nonzero if and

only if σ ∈ D(ρ), in which caseM∞(σ) is free of rank one over Rcris,σ
∞ ⊗OF. In

particular, if σ ∈ D(ρ), then {T1, . . . , Tq+j} is a regular sequence for M∞(σ)
and

(10.1) M∞(σ)/(T1, . . . , Tq+j) ∼= F.

On the other hand, we know thatM∞/ is a projective F[[K/Z1]]-module. In-
ductively using [45, Prop. 3.10], we see that M∞⊗R∞ Rv = M∞/(,T1, . . . ,
Tq+j) is also projective. To finish the proof it suffices to show that

cosocK(M∞ ⊗R∞ Rv) ∼= cosocK(π(ρ)∨) ∼= ⊕σ∈D(ρ)σ
∨,

which is a direct consequence of (10.1).

In the following, we fix a quotient ring Rv of R∞ as in Proposition 10.1
and also an isomorphism

Rv
∼= F[[X1, . . . , X2f ]].

Let

Mv
def
= M∞ ⊗R∞ Rv.

Then the Koszul complex K•(X,Mv) where X = (X1, . . . , X2f ),

(10.2) 0 → Mv → M⊕2f
v → · · · → M⊕2f

v → Mv → 0

is a resolution of π(ρ)∨ ∼= Mv ⊗Rv
F, whose terms are finite projective when

viewed as F[[K/Z1]]-modules. Dually, letting

Ωv
def
= (Mv)

∨,
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we obtain a resolution of π(ρ)

(10.3) 0 → π(ρ) → Ωv → Ω⊕2f
v → · · · → Ωv → 0.

We still denote byXi : Ωv → Ωv the endomorphism induced fromXi : Mv →
Mv. Since Ωv is an injective object in the category RepF(K/Z1), (10.3) is a
resolution of π(ρ) by injective F[[K/Z1]]-modules. It will play a crucial role
later on.

Proposition 10.2. The resolution (10.2) is minimal in the sense that the
differential map sends Kl(X,Mv) to radK(Kl−1(X,Mv)).

Proof. If σ is a Serre weight, write Pσ
def
= ProjK/Z1

σ with themK1
-adic topol-

ogy. We first prove the following general fact: if P =
⊕n

i=1 Pσi
with σ1 �= σi

for any i ≥ 2, and if φ : P → P is a topologically nilpotent continuous
K-equivariant endomorphism, i.e. ∩k≥1 Im(φk) = 0, then φ(Pσ1

) ⊂ rad(P ).
Indeed, let φij denote the composite map

Pσi
↪→ P

φ→ P � Pσj

where the first map is the natural inclusion and the last one is the projection.
Then φ is determined by the matrix (φij)1≤i,j≤n, see §9.5. Note that φ(Pσ1

) ⊂
rad(P ) if and only if φ : cosoc(Pσ1

) → cosoc(P ) is the zero map, if and only if
φ1j = 0 for all 1 ≤ j ≤ n. If j �= 1 then σ1 �= σj and we always have φ1j = 0.

In other words, the matrix (φij) is a (1, n−1)-block lower triangular matrix.

If φ11 �= 0, then φ
k
11 �= 0, and also φ

k �= 0 for any k ≥ 1. This contradicts
the assumption that φ is topologically nilpotent.

Now we prove the lemma. By the construction of Koszul complexes,
K•(X,Mv) is minimal if and only if each endomorphism Xi : Mv → Mv has
image contained in radK(Mv). However, Xi is topologically nilpotent, and
since cosocK(Mv) = cosocK(π(ρ)∨) is multiplicity free, we conclude by the
above fact.

Remark 10.3. A topologically nilpotent endomorphism of P need not have
image contained in rad(P ). Example: P = Pσ ⊕ Pσ with φ : P → P given

by

(
0 Id
0 0

)
.

Despite Proposition 10.2, the complex (10.2) is not minimal when viewed
as a complex of F[[I/Z1]]-modules. The next step is to remedy this problem.

Recall that by [15, Lem. 14.1] the set of Jordan–Hölder factors ofD1(ρ) =

π(ρ)I1 is, ignoring multiplicities, the same as that of
(⊕

σ∈D(ρ) InjΓ σ
)I1 . On
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the other hand, by [8, Prop. 4.3] the set JH(D1(ρ)) is parametrized by the
set PD(x0, · · · , xf−1), whose definition is recalled in the proof of Lemma
4.12. Define a subset of PD(x0, · · · , xf−1) as follows:

(10.4) PD†(x0, · · · , xf−1)
def
=
{
λ ∈ PD(x0, · · · , xf−1),

λi(xi) ∈ {xi, xi + 2, p− 1− xi, p− 3− xi}
}
,

and let PD‡(x0, · · · , xf−1) be its complement.
The following result gives a refinement of [15, Lem. 14.1].

Lemma 10.4. For any character χ of I, let nχ ∈ Z≥0 such that( ⊕
σ∈D(ρ)

InjΓ σ
)I1 ∼=⊕

χ

χnχ .

Then nχ �= 0 if and only if χ ∈ JH(D1(ρ)). If χ corresponds to λ ∈
PD†(x0, · · · , xf−1), then nχ = 1.

Proof. The first assertion is just [15, Lem. 14.1]. The second one is a conse-
quence of [44, Prop. 2.1], noting that nχ = 1 if and only if both χ and χs

occur in D0,σ(ρ)
I1 for the same σ ∈ D(ρ).

Lemma 10.5. For any 0 ≤ l ≤ 2f , Mv|I has a direct sum decomposition

M †
v ⊕M ‡

v satisfying the following properties:

(a) M †
v

∼=
⊕

χ Pχ∨ , where χ runs over the characters corresponding to

λ ∈ PD†(x0, · · · , xf−1);

(b) HomI(M
‡
v , Pχ∨/m2) = 0 for any χ as in (a) (recall m = mI1/Z1

).

Proof. Dually we work with Ωv. Since Ωv|K is isomorphic to
⊕

σ∈D(ρ)
InjK/Z1

σ, with the notation of Lemma 10.4, we get

Ωv|I ∼=
⊕

χ∈JH(D1(ρ))

(
InjI/Z1

χ
)nχ

=
( ⊕

χ∈PD†

InjI/Z1
χ
)⊕( ⊕

χ∈PD‡

(InjI/Z1
χ)nχ

)

where we simply write χ ∈ PD† (resp. χ ∈ PD‡) to mean that χ corre-
sponds to an element in PD†(x0, · · · , xf−1) (resp. PD‡(x0, · · · , xf−1)). We

define Ω†
v to be the first summand and Ω‡

v to be the second; let M †
v = (Ω†

v)∨

and M ‡
v = (Ω‡

v)∨, so that Mv = M †
v ⊕M ‡

v .
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Condition (a) is immediate from the definition. To check (b), it suffices
to check that if χ ∈ PD† and χ′ ∈ PD‡, then Ext1I/Z1

(χ, χ′) = 0. But this
is a direct check using Lemma 3.1.

The same argument of Proposition 10.2 proves the following variant,
which is a remedy for the failure of minimality of (10.2) as a complex of
F[[I/Z1]]-modules.

Proposition 10.6. As a complex of F[[I/Z1]]-modules, the resolution (10.2)
is partially minimal relative to PD† in the sense that for any χ ∈ PD†,
the morphism

HomI

(
Kl−1(X,Mv), χ

∨)→ HomI

(
Kl(X,Mv), χ

∨)
is zero.

10.2. Cohomological invariants of π(ρ)

Write ρ =
( χ1 ∗

0 χ2

)
and define

(10.5) π0
def
= IndG

P
χ0

∼= IndGP χs
0, πf

def
= IndG

P
χf = IndGP χs

f

where

(10.6) χ0
def
= χ1ω

−1 ⊗ χ2, χf
def
= χ2ω

−1 ⊗ χ1.

Write ρ|I(Qp/L)
in the form (1) as at the beginning of §4 and assume ρ is

strongly generic in the sense of Definition 4.4, so that the results of §8.4 are
applicable.

We refer to Appendix §A for the functor Ei(−) with respect to Λ =
F[[K/Z1]] and relevant properties. Recall from §5.1 that αP denotes the char-
acter ω ⊗ ω−1 : T → F×; we view it as a character of P by inflation. Let ζ
denote the central character of π0 (and of πf ); explicitly ζ = χ1χ2ω

−1.

Lemma 10.7. Let χ : P → F× be a smooth character. Then (IndGP χ)∨ is
Cohen-Macaulay of grade 2f and

E2f
(
(IndGP χ)∨

) ∼= ( IndGP (χ−1αP )
)∨

.

In particular, E2f (π∨
0 )

∼= π∨
f ⊗ ζ ◦ det and the double duality map π∨

0 →
E2fE2f (π∨

0 ) is an isomorphism. A similar statement holds exchanging π0
and πf .
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Proof. It is a special case of [50, Prop. 5.4].

Proposition 10.8. The G-socle (resp. G-cosocle) of π(ρ) is isomorphic to
π0 (resp. πf ).

Proof. First determine the G-socle of π(ρ). It is proved in [44, Lem. 3.1]
that socG π(ρ) is an irreducible principal series, say socG(π(ρ)) ∼= IndG

P
ψ.

We need to show ψ = χ0. By Proposition 5.1(iii) it is equivalent to show
OrdP (socG π(ρ)) ∼= χ0, which follows from Proposition 7.4.

Taking Pontryagin dual, the G-cosocle of π(ρ)∨ is isomorphic to π∨
0 , see

§A.2. By Theorem 8.15(ii) the double duality map π(ρ)∨ → E2fE2f (π(ρ)∨)
is an isomorphism and similarly for π∨

0 by Lemma 10.7. Hence, Proposition
A.6 implies that the induced inclusion E2f (π∨

0 ) ↪→ E2f (π(ρ)∨) is essential.
By Theorem 8.15(ii) and Lemma 10.7 again and twisting suitably, this gives
an essential inclusion π∨

f ↪→ π(ρ)∨. Moreover, since π∨
f is irreducible, it is

exactly the G-socle of π(ρ)∨. Dualizing back we obtain the result.

Remark 10.9. We can deduce from Proposition 10.8 that π(ρ) is finitely
generated as a G-representation. More precisely, one can prove the following
result: if π is an admissible smooth representation of G over F whose cosocle
is nonzero and of finite presentation, then π is finitely generated. We don’t
pursue this because we will prove a stronger result below, see Theorem 10.26.

The genericity condition on ρ implies that both π0 and πf have an irre-
ducible K-socle, and one easily checks that

socK(π0) = σ0

where σ0
def
= (r0, · · · , rf−1) is the “ordinary” Serre weight in D(ρ). The

K-socle of πf , denoted by σf , is equal to

(10.7) (p− 3− r0, · · · , p− 3− rf−1)⊗ det
∑f−1

i=0 pi(ri+1).

Denote also by χ0 : I → F× the character obtained by first restricting χ0

to H and then inflating to I. It is direct to check that χ0 is exactly the
character of I acting on σI1

0 , which explains our choice of convention (10.6).
Similarly, we have the character χf of I which gives the acton of I on σI1

f .

Proposition 10.10. For any i ≥ 0, the following statements hold:

(i) ExtiI/Z1
(χ, π(ρ)) = 0, for any χ /∈ JH(D1(ρ));

(ii) ExtiK/Z1
(σ, π(ρ)) = 0, for any σ /∈ D(ρ);

(iii) dimF Ext
i
K/Z1

(σ, π(ρ)) =
(
2f
i

)
, for any σ ∈ D(ρ);
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(iv) dimF Ext
i
G,ζ(π0, π(ρ)) =

(
2f+1

i

)
.

Proof. (i) The restriction of (10.3) to I/Z1 remains an injective resolution,
each term being a sum of copies of Ωv. Since Ωv

∼=
⊕

σ∈D(ρ) InjK/Z1
σ, the

assertion follows from Lemma 10.4.
(ii) (iii) follow directly from the resolution (10.3), using Proposition 10.2.
(iv) First, by [5], there is a short exact sequence (for a suitable λ0 ∈ F×)

(10.8) 0 → c-IndGR0
σ0

T−λ0→ c-IndGR0
σ0 → π0 → 0,

where R0 = KZ and we let Z act on σ0 via ζ. Since Ωv is injective as a
K/Z1-representation and has G-socle isomorphic to π0 (a consequence of
Proposition 10.8), the same proof as in [63, Prop. 5.1] shows that
(10.9)
dimFHomG(π0,Ωv) = dimExt1G,ζ(π0,Ωv) = 1, ExtiG,ζ(π0,Ωv) = 0, ∀i ≥ 2.

In fact, we have isomorphisms induced by (10.8)
(10.10)

HomG(π0,Ωv)
∼−→ HomK(σ0,Ωv), HomK(σ0,Ωv)

∼−→ Ext1G,ζ(π0,Ωv).

On the other hand, applying HomG(π0,−) to (10.3) induces a convergent
spectral sequence

(10.11) Ei,j
1 = ExtjG,ζ(π0, I

i) ⇒ Exti+j
G,ζ(π0, π(ρ)),

where Ii := Ω
⊕(2fi )
v denotes the degree i term of the complex (10.3). By

(10.9), Ei,j
1 = 0 for j ≥ 2. We claim that the morphisms Ei,j

1 → Ei+1,j
1

are zero for j ∈ {0, 1} and all i. Indeed, this is an easy consequence of the
minimality in Proposition 10.2 using (10.10).

By the claim, the spectral sequence (10.11) degenerates at E1 and we
obtain an exact sequence for any i ≥ 1:

0 → HomG(π0, I
i) → ExtiG,ζ(π0, π(ρ)) → Ext1G,ζ(π0, I

i−1) → 0.

The dimension formula then follows from (10.9) and an elementary binomial
identity.

Corollary 10.11. Let χ be a character of I and assume

(10.12) | JH(IndKI χ) ∩ D(ρ)| = 1.

Then dimF Ext
i
I/Z1

(χ, π(ρ)) =
(
2f
i

)
for i ≥ 0.
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Proof. This is a direct consequence of Proposition 10.10. In fact, if σ de-
notes the unique Serre weight in JH(IndKI χ)∩D(ρ), then using Proposition
10.10(ii) and by dévissage there is an isomorphism

ExtiK/Z1
(IndKI χ, π(ρ)) ∼= ExtiK/Z1

(σ, π(ρ)).

The result follows from Proposition 10.10(iii) via Shapiro’s lemma.

Corollary 10.12. Let χ ∈ JH(π(ρ)I1) and assume it corresponds to an ele-
ment in PD†(x0, · · · , xf−1) defined in (10.4). Then dimF Ext

i
I/Z1

(χ, π(ρ)) =(
2f
i

)
for any i ≥ 0.

Proof. This is a direct consequence of Corollary 10.11 and Lemma 10.4,
noting that the condition (10.12) is equivalent to nχ = 1 in the notation of
Lemma 10.4.

Next, we determine the derived ordinary parts of π(ρ). Recall from §5.1
the functors RiOrdP .

Proposition 10.13. We have RiOrdPπ(ρ) ∼= χ⊕ni

0 , where ni =
(
f
i

)
.

Proof. First note that OrdPπ(ρ) ∼= χ0 by Proposition 7.4.
The action of Rv on Ωv induces morphisms of local rings

(10.13) Rv → EndT ((OrdPΩv)
∨)

res→ EndT0
((OrdPΩv)

∨|T0
)

where T0
def
= T ∩ K and the second map is the restriction map. We claim

that the composition is surjective. Indeed, it suffices to show

EndT0
((OrdPΩv)

∨|T0
)/(mv) ∼= F,

where mv denotes the maximal ideal of Rv and (mv) the extended ideal in
EndT0

((OrdPΩv)
∨|T0

). Since the actions of Rv and G commute with each
other, we have

(OrdPΩv)
∨/(mv) ∼=

(
OrdP (Ωv[mv])

)∨
=
(
OrdPπ(ρ)

)∨
which is one-dimensional over F (isomorphic to χ∨

0 ), as seen above. This
proves the claim. As a byproduct, since the restriction map in (10.13) is
clearly injective, it is actually an isomorphism.

By Corollary 5.8 and the claim, we have EndT ((OrdPΩv)
∨) ∼= F[[S1, . . . ,

Sf ]]. Since (10.13) is surjective, we may choose lifts of Si (for 1 ≤ i ≤ f) in
Rv, say Yi. Then Yi are linearly independent in mv/m

2
v, and can be extended
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to a minimal set of generators of mv, say by (Z1, . . . , Zf ); here we recall that
dimFmv/m

2
v = 2f . Set

Y = (Y1, . . . , Yf ), Z = (Z1, . . . , Zf ), S = (S1, . . . , Sf ).

Since Rv is a regular local ring, (Y , Z) necessarily form a regular sequence
in Rv, which is also Mv-regular because Mv is Rv-flat. In particular, Y is an
Mv-regular sequence and it defines a Koszul complex K•(Y ,Mv), which is a
projective resolution ofMv/(Y ) in the category of pseudo-compact F[[K/Z1]]-

modules. Dually, we obtain an injective resolution of π̃(ρ)
def
= (Mv/(Y ))∨:

0 → π̃(ρ) → K•(Y ,Ωv).

By Proposition 5.5(ii), Ωv is OrdP -acyclic and so

(10.14) RiOrdP π̃(ρ) ∼= H i
(
OrdP (K•(Y ,Ωv))

)
.

Since Y acts on OrdPΩv via S, we have

OrdP (K•(Y ,Ωv)) ∼= K•(S, (OrdPΩv)).

Since S is a regular sequence for (OrdPΩv)
∨, K•(S, (OrdPΩv)) is an acyclic

complex with H0 isomorphic to χ0. Combining with (10.14) we deduce that

(10.15) OrdP π̃(ρ) ∼= χ0, RiOrdP π̃(ρ) = 0, ∀i ≥ 1.

In particular, π̃(ρ) is also OrdP -acyclic.
Next, we consider the action of Z = (Z1, · · · , Zf ) on Mv/(Y ). By con-

struction, Z is a regular sequence for Mv/(Y ), hence gives rise to a Koszul
complex K•(Z,Mv/(Y )) which is a resolution of π(ρ)∨ = Mv/(Y , Z). Dually
we obtain a resolution of π(ρ) of Koszul type

0 → π(ρ) → K•(Z, π̃(ρ)).

Moreover, since π̃(ρ) is OrdP -acyclic, we can calculate RiOrdPπ(ρ) by taking
the cohomology of the complex OrdP

(
K•(Z, π̃(ρ))

)
= K•(Z,OrdP π̃(ρ)).

In particular, we deduce from (10.15) that RiOrdPπ(ρ) is semisimple and
isomorphic to χ⊕ni

0 with ni ≤
(
f
i

)
.

It remains to prove the equality ni =
(
f
i

)
. The spectral sequence (5.2)

shows that

dimF Ext
n
G,ζ(π0, π(ρ)) ≤

∑
i+j=n

dimF Ext
j
T,ζ

(
χ0, R

iOrdPπ(ρ)
)
.
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Since dimF Ext
j
T,ζ(χ0, χ0) =

(
f+1
j

)
, this inequality translates to (by Propo-

sition 10.10(iv)) (
2f + 1

n

)
≤
∑

i+j=n

(
f + 1

j

)
· ni.

Recalling ni ≤
(
f
i

)
, Vandermonde’s identity

(
2f+1
n

)
=
∑

i+j=n

(
f+1
j

)(
f
i

)
then

forces ni =
(
f
i

)
.

10.3. A criterion

In this subsection, we devise a criterion for which type of subspaces of π(ρ)
can generate it as a G-representation.

Lemma 10.14. We have dimF Ext
2f
I/Z1

(χs
0, πf ) = 1.

Proof. Recall that πf = IndGP χs
f . Restricting to I, we obtain a decomposi-

tion (by Mackey’s theorem)

πf |I ∼= IndII∩P χs
f ⊕ IndI

I∩P χf .

By Shapiro’s lemma, we have

Ext2fI/Z1
(χs

0, πf )
∼= H2f

(
(I ∩P )/Z1, (χ

s
0)

−1χs
f

)
⊕H2f

(
(I ∩P )/Z1, (χ

s
0)

−1χf

)
.

We need to prove that only one summand of the last term is nonzero and it
has dimension 1.

Since (I ∩ P )/Z1 is a Poincaré duality group at p of dimension 2f (see
[69, Chap. I, Appendix 1] or [60, (3.4.6)]), the Poincaré duality implies that

dimFH
2f ((I ∩ P )/Z1, χ) = dimFH

0((I ∩ P )/Z1, χ
∗)

for any character χ of (I ∩ P )/Z1, where χ∗ def
= Hom(χ,F) is the dualizing

module of χ with F being endowed with an action of (I ∩ P )/Z1 via the
usual modulus character by [69, Example, p. 42]. Explicitly, this modulus
character is equal to (restriction of) αP = ω⊗ω−1, hence χ∗ ∼= χ−1(ω⊗ω−1)
as characters of I ∩ P . Using (10.6), it is direct to check that

((χs
0)

−1χs
f )

∗ = (χ−1
1 χ2ω)⊗ (χ1χ

−1
2 ω−1).

The genericity condition on ρ implies that this is a nontrivial character of
I ∩ P , and so

H0
(
(I ∩ P )/Z1, ((χ

s
0)

−1χs
f )

∗) = 0.
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In a similar way, one checks that H2f
(
(I ∩P )/Z1, (χ

s
0)

−1χf

)
has dimension

1 (notice that the modulus character associated to (I ∩ P )/Z1 is ω−1 ⊗ ω).
This finishes the proof.

Lemma 10.15. The natural morphism π(ρ) � πf induces the following
isomorphisms

(i) Ext2f+1
G,ζ (π0, π(ρ))

∼−→ Ext2f+1
G,ζ (π0, πf );

(ii) Ext2fK/Z1
(σ0, π(ρ))

∼−→ Ext2fK/Z1
(σ0, πf );

(iii) Ext2fI/Z1
(χs

0, π(ρ))
∼−→ Ext2fI/Z1

(χs
0, πf ).

Moreover, all these spaces have dimension 1 over F.

Proof. Since Rf+1OrdP = 0, the morphism RfOrdPπ(ρ) → RfOrdPπf
is surjective, hence is an isomorphism for the reason of dimensions using
Proposition 5.1(iii) and Proposition 10.13. Using Corollary 5.2 we deduce
an isomorphism

Ext2f+1
G,ζ (π0, π(ρ))

∼−→ Ext2f+1
G,ζ (π0, πf ),

and both the spaces have dimension 1 because Extf+1
T,ζ (χ0, χ0) has dimension

1. This proves (i).
Recall the presentation of π0 in (10.8)

0 −→ c-IndGR0
σ0

T−λ0−→ c-IndGR0
σ0 −→ π0 −→ 0.

Using Frobenius reciprocity, it induces a morphism

∂ : Ext2fK/Z1
(σ0, π(ρ)) → Ext2f+1

G,ζ (π0, π(ρ))

which is surjective as Ext2f+1
K/Z1

(σ0, π(ρ)) = 0, hence is an isomorphism for the

reason of dimensions, see Proposition 10.10. Similarly we have a morphism

∂′ : Ext2fK/Z1
(σ0, πf ) → Ext2f+1

G,ζ (π0, πf )

which is also surjective using Lemma 10.7.
We have the following commutative diagram

Ext2f
I/Z1

(χs
0, π(ρ))

∼=

β

Ext2f
K/Z1

(
IndK

I χs
0, π(ρ)

) ι

β′

Ext2f
K/Z1

(σ0, π(ρ))

γ

∂

∼=
Ext2f+1

G,ζ (π0, π(ρ))

δ

Ext2f
I/Z1

(χs
0,πf )

∼=
Ext2f

K/Z1

(
IndK

I χs
0, πf

) ι′
Ext2f

K/Z1
(σ0, πf )

∂′
Ext2f+1

G,ζ (π0, πf),
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where the two horizontal isomorphisms in the leftmost square are given by
Shapiro’s lemma, and ι (resp. ι′) is induced by the inclusion σ0 ↪→ IndKI χs

0.
Moreover, we have

• δ is an isomorphism by (i);
• ι (resp. ι′) is surjective because π(ρ)|K (resp. πf |K) has injective di-
mension 2f .

In particular, all horizontal morphisms are surjective. All the spaces in the
top row have dimension 1 over F by Proposition 10.10 and Corollary 10.12,
and dimF Ext

2f
I/Z1

(χs
0, πf ) = 1 by Lemma 10.14. It is then easy to deduce

that all the spaces in the bottom row have dimension 1 as well and that β,
γ are both isomorphisms. This proves (ii) and (iii).

Now we are ready to prove the criterion.

Proposition 10.16. If W is an I-subrepresentation of π(ρ) such that the
natural morphism

(10.16) Ext2fI/Z1
(χs

0,W ) → Ext2fI/Z1
(χs

0, π(ρ))

is surjective, then π(ρ) is generated by W as a G-representation.

Proof. Let 〈G.W 〉 ⊂ π(ρ) be the G-subrepresentation generated by W . If

〈G.W 〉 � π(ρ), then 〈G.W 〉 is contained in V
def
= Ker(π(ρ) � πf ), because

πf is the cosocle of π(ρ) by Proposition 10.8. Hence the morphism (10.16)

factors through Ext2fI/Z1
(χs

0, V ) as illustrated in the following diagram:

Ext2fI/Z1
(χs

0,W )

(10.16)

Ext2fI/Z1
(χs

0, V ) Ext2fI/Z1
(χs

0, π(ρ)) ∼=
β

Ext2fI/Z1
(χs

0, πf )

where β is an isomorphism by Lemma 10.15(iii). But the composition of the
two maps in the bottom row is zero, we get a contradiction if (10.16) is
surjective.

10.4. The representation τ (ρ)

We define a suitable I-representation τ(ρ) which can be embedded in π(ρ)|I .
In next subsection, we will show that π(ρ) is generated by τ(ρ) as a G-
representation, using the criterion Proposition 10.16.
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Recall from §4 the subset Jρ ⊂ S attached to ρ.

Lemma 10.17. Let J ⊂ S. The character χs
0

(∏
j∈J α

−1
j

)
occurs in π(ρ)I1

if and only if J ⊂ Jρ.

Proof. We have seen in the proof of Lemma 4.12 that the set of char-
acters occurring in π(ρ)I1 is in bijection with a certain set of f -tuples
PD(x0, · · · , xf−1). Recall that, if λ ∈ PD(x0, · · · , xf−1) then, among other
conditions,

(10.17) λi(xi) ∈ {xi, xi + 1, xi + 2, p− 3− xi, p− 2− xi, p− 1− xi}

and λi(xi) ∈ {p − 3 − xi, xi + 2} implies i ∈ Jρ. Via this bijection, the
character χs

0 corresponds to (p−1−x0, · · · , p−1−xf−1), and χs
0(
∏

j∈J α
−1
j )

corresponds to λJ where

(λJ)i(xi)
def
=

{
p− 1− xi i /∈ J
p− 3− xi i ∈ J.

The result follows from this.

Definition 10.18. We define

τ(ρ) := χs
0 ⊗ τJρ

,

where τJρ
is the I-representation defined in Definition 9.16 with J = Jρ.

As a direct consequence of Proposition 9.21, we have the following.

Proposition 10.19. The projective dimension of τ(ρ)∨ is 3f . Moreover,
τ(ρ)∨ admits a length 3f minimal resolution by projective F[[I/Z1]]-modules,

P• → τ(ρ)∨ → 0

satisfying the following property: for each 0 ≤ l ≤ 3f , Pl has a direct sum
decomposition

Pl = P ′
l ⊕ P ′′

l

such that

(a) P ′
l
∼=
(⊕

χ Pχ

)(2fl ), where χ runs over the characters of cosocI(τ(ρ)
∨);

(b) HomI(P
′′
l , Pχ/m

2) = 0 for any χ ∈ cosocI(τ(ρ)
∨).

As a consequence, dimF Ext
l
I/Z1

(τ(ρ)∨, χ) =
(
2f
l

)
for any χ occurring in

cosocI(τ(ρ)
∨).
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Next, we study the relation between τ(ρ) and π(ρ).

Proposition 10.20. There exists an embedding τ(ρ) ↪→ π(ρ)|I .

We start with a lemma, which is motivated by [8, Lem. 9.2].

Lemma 10.21. If τ1 ⊂ τ are I-representations such that τ1 ↪→ π(ρ)|I and

(10.18) JH(τ/τ1) ∩ JH(π(ρ)I1) = ∅,

then the natural restriction map

res : HomI(τ, π(ρ)) → HomI(τ1, π(ρ))

is an isomorphism.

Proof. Using Proposition 10.10(i), the assumption implies that

HomI(τ/τ1, π(ρ)) = Ext1I/Z1
(τ/τ1, π(ρ)) = 0,

from which the result follows.

Proof of Proposition 10.20. Lemma 9.19 implies that τ(ρ)I1 is isomorphic to
the direct sum of χs

0(
∏

j∈J α
−1
j ) for all J ⊂ Jρ. Hence it follows from Lemma

10.17 that τ(ρ)I1 embeds in π(ρ)I1 , hence in π(ρ)|I . By Lemma 10.21, it
suffices to check the condition (10.18) with τ = τ(ρ) and τ1 = τ(ρ)I1 .

By Lemma 9.19 again, τ(ρ) is multiplicity free and JH(τ(ρ)) consists of

the characters of the form ψ = χs
0(
∏

i∈S α
bJ,i
i ), where J ⊂ Jρ and (bJ,i) ∈ ZJρ

satisfy

(10.19)

⎧⎨⎩
−2 ≤ bJ,i ≤ 2 if i /∈ Jρ
0 ≤ bJ,i ≤ 2 if i ∈ Jρ\J

−3 ≤ bJ,i ≤ −1 if i ∈ J.

If such a character ψ also occurs in π(ρ)I1 , it corresponds to an element of
PD(x0, · · · , xf−1). Using (10.17) and the strong genericity of ρ, one checks
that the only possibility is

bJ,i =

{
0 if i /∈ J
−1 if i ∈ J.

In other words, ψ occurs in τ(ρ)I1 by Lemma 9.19. Since τ(ρ) is multiplicity
free, this implies that ψ can not occur in τ(ρ)/τ(ρ)I1 , thus (10.18) holds.
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From now on, we fix an embedding τ(ρ) ↪→ π(ρ)|I .

Proposition 10.22. For any ψ ∈ JH(τ(ρ)I1), the natural morphism

Ext1I/Z1
(ψ, τ(ρ)) → Ext1I/Z1

(ψ, π(ρ)|I)

is an isomorphism.

Proof. We have a commutative diagram

Ext1I/Z1
(ψ, τ(ρ)[m2])

β′

ι

Ext1I/Z1
(ψ, π(ρ)[m2])

ι′

Ext1I/Z1
(ψ, τ(ρ))

β
Ext1I/Z1

(ψ, π(ρ)|I)

for which the following statements hold:

• ι′ is an injection. Indeed, by Corollary 8.12, for any character occur-
ring in π(ρ)I1 , in particular for ψ, we have [π(ρ)[m3] : ψ] = 1. As a
consequence,

HomI

(
ψ, π(ρ)/π(ρ)[m2]

)
= HomI

(
ψ, π(ρ)[m3]/π(ρ)[m2]

)
= 0,

and the injectivity of ι′ follows.
• β′ is an injection, by a similar argument as for ι′.
• ι is an isomorphism. The injectivity can be seen as above because τ(ρ)
is multiplicity free. For the surjectivity it suffices to show Ext1I/Z1

(ψ,

ψ′) = 0 for any ψ′ ∈ JH(τ(ρ)/τ(ρ)[m2]). Since τ(ρ) is multiplicity free,
it suffices to show that if ψ ∈ JH(τ(ρ)I1) such that Ext1I/Z1

(ψ,ψ′) �= 0

then ψ′ ∈ τ(ρ)[m2]. By Lemma 9.19, we may write ψ = χs
0(
∏

j∈J α
−1
j )

for some J ⊂ Jρ. Then by Lemma 3.1 there exists i ∈ S such that

ψ′ ∼= ψα±1
i = χs

0

(∏
j∈J

α−1
j

)
α±1
i .

Using Remark 9.20, it is direct to check that ψ′ ∈ τ(ρ)[m2].

Putting these statements together, we deduce that β is an injection. But,
we have

dimF Ext
1
I/Z1

(ψ, π(ρ)) = 2f = dimF Ext
1
I/Z1

(ψ, τ(ρ))



On the mod p cohomology for GL2: the non-semisimple case 407

by Corollary 10.12 and Proposition 10.19, so β is actually an isomorphism.

10.5. Main results

The main result of the section is as follows.

Theorem 10.23. As a G-representation, π(ρ) is generated by τ(ρ).

Example 10.24. Assume f = 1, i.e. L = Qp. Assume ρ is reducible, generic
(in the sense of [15, Def. 11.7]) and we allow ρ to be split. By the local-global
compatibility proved by Emerton ([29]), the representation π(ρ) of GL2(Qp)
is exactly the one attached to ρ by the mod p local Langlands correspondence
([6] or [7, Def. 2.2]). Precisely, if ρ is split then π(ρ) ∼= π0⊕π1 for πi defined
in (10.5); if ρ is nonsplit then π(ρ) is the unique nonsplit extension of π1 by
π0.

In the case ρ is split, we have inclusions (see (9.13) for the notation)

χs
0 ⊗ E1,α,α2 ↪→ π0|I , χs

0 ⊗ Eα−1,α−2,α−3 ↪→ π1|I

and π0 (resp. π1) is generated by this subspace as a GL2(Qp)-representation
(as πi is irreducible!). In the case ρ is nonsplit, then χs

0 ⊗ (E1,α,α2 ⊕1

E1,α−1,α−2) embeds in π(ρ) and generates it as a GL2(Qp)-representation.

Remark 10.25. (i) In view of Example 10.24, τ(ρ) should be thought of
as the tensor product of certain well-chosen local factors for each embedding
κ : L ↪→ E, which depend only on the splitting behavior of ρ at κ (cf. §6.3).

(ii) In Example 10.24, if we replace E1,α,α2 (resp. Eα−1,α−2,α−3) by its
(two-dimensional) subrepresentation E1,α (resp. Eα−1,α−2), then the state-
ments remain true; cf. the proof of Theorem 10.26 below. However, for tech-
nical reasons it is more convenient to look at τ(ρ): e.g. the minimal projective
resolution of τ(ρ)∨ enjoys the properties of Proposition 10.19.

Before giving the proof of Theorem 10.23, we deduce some consequences.
Recall that π(ρ)K1 ∼= D0(ρ) by the main result of [52], where D0(ρ) is as in
§4.

Theorem 10.26. π(ρ) is generated by D0(ρ) as a G-representation.

Proof. Recall that the G-cosocle of π(ρ) is isomorphic to πf by Proposition
10.8, thus a subspace W of π(ρ) generates π(ρ) if and only if the composite
map ιW : W ↪→ π(ρ) � πf is nonzero, if and only if Im(ιW )∩πI1

f is nonzero.

Since πf is a principal series, it is well-known that πI1
f is two-dimensional,
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see [5, Lem. 28]. Explicitly, we have πI1
f

∼= χf ⊕ χs
f , where χf = σI1

f with

σf = (p− 3− r0, · · · , p− 3− rf−1)⊗ det
∑f−1

i=0 (ri+1)pi

, see (10.7). One checks
that χf = χs

0(
∏

j∈S α−1
j ) and χs

f = χ0(
∏

j∈S αj). Moreover, using (10.19)
and the strong genericity of ρ, one checks that χf is a Jordan–Hölder factor
of τ(ρ) but χs

f is not. Indeed, χf occurs as a subquotient in the following
direct summand of τ(ρ):

τJρ,−1 ⊗
( ∏
j∈Jρ

α−1
j

)
,

where −1 denotes the unique element of {±1}Jρ taking values −1 at all
j ∈ Jρ (with the convention −1 = ∅ if Jρ = ∅).

By Theorem 10.23, π(ρ) is generated by τ(ρ). Since τ(ρ) is multiplicity
free, the discussion in the last paragraph shows that a subrepresentation
W of τ(ρ) generates π(ρ) if and only if [W : χf ] �= 0. In particular, π(ρ)
is generated by the unique subrepresentation W of τJρ,−1 ⊗

(∏
j∈Jρ

α−1
j

)
with cosocle isomorphic to χf . To finish the proof it suffices to prove that
W is contained in D0(ρ)|I , equivalently, K1 acts trivially on W because
D0(ρ) = π(ρ)[mK1

]. This is a consequence of the structure of τJρ,−1, see
Proposition 9.15.

Corollary 10.27. We have EndG(π(ρ)) ∼= F.

Proof. Let D(ρ) = (D0(ρ), D1(ρ), can) denote the basic 0-diagram attached
to π(ρ) in [15, §13], where can : D1(ρ) ↪→ D0(ρ) is the canonical inclusion.
AnyG-equivariant endomorphism of π(ρ) induces an endomorphism ofD(ρ),
i.e. there is a natural morphism of rings

EndG(π(ρ)) → EndDIAG(D(ρ)),

where DIAG denotes the abelian category of diagrams (cf. [15, §9]). This
morphism is injective because π(ρ) is generated by D0(ρ) as a G-representa-
tion by Theorem 10.26. Therefore, it suffices to show that EndDIAG(D(ρ)) ∼=
F. Using that D0(ρ) is multiplicity free, this follows from [15, Thm. 15.4(i)]
which says that the diagram D(ρ) is indecomposable.

Remark 10.28. (i) Corollary 10.27 provides an obviously expected property
of π(ρ) corresponding to the assumption EndGL

(ρ) ∼= F. However, as is clear
to the reader, the proof is far from obvious.

(ii) The continuous action of R∞ on M∞ induces a morphism of rings
R∞ → EndcontG (M∞). A natural question raised in [19, 6.24] is whether this
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is an isomorphism. The injectivity is known to be true by [34, Thm. 1.8].

Also note that a local version of this isomorphism in the case of GL2(Qp) is

proved in [46, Prop. 3.12] (under mild genericity conditions on ρ), based on

the theory of Colmez’s functor ([22], [62]).

From now on, we turn to the proof of Theorem 10.23.

Recall that we have a partially minimal resolution of π(ρ)∨ by projective

F[[I/Z1]]-modules which is of Koszul type, i.e. K•(X,Mv) → π(ρ)∨ → 0. In

the rest, we write for simplicity

Q•
def
= K•(X,Mv).

On the other hand, let P• be a minimal projective resolution of τ(ρ)∨, see
Proposition 10.19. The (fixed) inclusion τ(ρ) ↪→ π(ρ)|I induces a quotient

map π(ρ)∨|I � τ(ρ)∨, which extends to a morphism of complexes

Q•

β•

π(ρ)∨|I 0

P• τ(ρ)∨ 0.

Let χ ∈ cosocI(τ(ρ)
∨) and recall λχ

def
= Wχ∨,3, see Definition 9.24. Applying

HomI(−, λ∨
χ)

∨, we obtain a morphism of complexes of R-modules

(10.20) β�
χ,• : HomI(Q•, λ

∨
χ)

∨ → HomI(P•, λ
∨
χ)

∨.

where R is defined in (9.15), a subring of the center of F[[I/Z1]]/m
3.

To simplify the notation, we write

Kχ,•
def
= HomI(Q•, λ

∨
χ)

∨, Cχ,•
def
= HomI(P•, λ

∨
χ)

∨.

Remark that, as a consequence of Proposition 10.19, Cχ,l
∼= HomI(P

′
l , λ

∨
χ)

∨

is nonzero only when 0 ≤ l ≤ 2f , i.e. Cχ,• has the same length as Kχ,•. We

will prove inductively on l that β�
χ,l is an isomorphism for any 0 ≤ l ≤ 2f .

By Corollary 9.34, this will imply that

β
�
χ,l : HomI(Ql, χ)

∨ → HomI(Pl, χ)
∨
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is also an isomorphism. Since bothQ• and P• are minimal resolutions relative
to χ, we deduce an isomorphism

Ext2fI/Z1
(π(ρ)∨, χ)∨

∼−→ Ext2fI/Z1
(τ(ρ)∨, χ)∨.

Letting χ = (χs
0)

∨ and taking dual, we conclude the proof by the criterion
Proposition 10.16.

10.5.1. The complex Kχ,•.

Lemma 10.29. For any 0 ≤ l ≤ 2f , Ql has a direct sum decomposition
Q′

l ⊕Q′′
l with the following properties:

(a) Q′
l
∼=
(⊕

χ Pχ

)(2fl ), where χ runs over characters in cosocI(τ(ρ)
∨);

(b) HomI(Q
′′
l , Pχ/m

2) = 0 for any χ in cosocI(τ(ρ)
∨).

Moreover, Q• is partially minimal relative to cosocI(τ(ρ)
∨) in the sense that

for any χ in cosocI(τ(ρ)
∨), the morphism

HomI(Ql−1, χ) → HomI(Ql, χ)

is zero.

Proof. Since Q• is a Koszul complex, it suffices to prove such a decomposi-
tion for l = 0, i.e. decompose Mv = M ′

v ⊕ M ′′
v in such a way that (a) and

(b) are satisfied with l = 0. Dually we may work with Ωv.
The construction is similar to Lemma 10.5. Recall that PD†(x0, · · · ,

xf−1) defined in (10.4) is a certain subset of PD(x0, · · · , xf−1) whose cor-
responding characters all occur with multiplicity one in ΩI1

v . By the proof of
Lemma 10.17, JH(τ(ρ)I1) corresponds to the subset of PD(x0, · · · , xf−1)
consisting of λ with λi(xi) ∈ {p− 1− xi, p− 3− xi} for all i ∈ S, which is a
subset of PD†(x0, · · · , xf−1). We let

Ω′
v =

⊕
χ∈τ(ρ)I1

InjI/Z1
χ

and Ω′′
v be a complement of Ω′

v in Ωv. Condition (b) can be checked directly,
as in the proof of Lemma 10.5. The last assertion follows from Proposition
10.6.

Fix a character χ occurring in cosocI(τ(ρ)
∨). Set

(10.21) mχ
def
= | JH

(
cosocI(τ(ρ)

∨)
)
∩ E (χ)|.
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By Lemma 10.29, mχ is also equal to | JH
(
cosocI(π(ρ)

∨)
)
∩E (χ)|. It is clear

that 0 ≤ mχ ≤ 2f . The next lemma shows that we are in the setting of §9.5.
Lemma 10.30. We have HomI(Mv, λ

∨
χ)

∨ ∼= R⊕ Fmχ .

Proof. This is a direct consequence of Proposition 9.27.

Since Xi acts on Mv, it also acts on HomI(Mv, λ
∨
χ)

∨ and this action
commutes with the action of R (via λ∨

χ). In other words, Xi induces an
R-linear endomorphism of HomI(Mv, λ

∨
χ)

∨. Let

R′
χ

def
= EndR

(
HomI(Mv, λ

∨
χ)

∨)
and φχ,i ∈ R′

χ be the element induced by Xi. Also let Jχ be the left ideal of
R′

χ generated by φχ,i for 1 ≤ i ≤ 2f .
On the other hand, let bχ denote the ideal of R spanned by tχ′ for all

χ′ ∈ JH
(
cosocI(τ(ρ)

∨)
)
∩ E (χ), where tχ′ is as in Definition 9.30. Then

dimF bχ = mχ by Lemma 9.31. Recall that we can associate to bχ a two-
sided ideal Jbχ

of R′
χ, see (9.18).

Lemma 10.31. With the above notation, we have Jχ = Jbχ
. In particular,

Jχ is a two-sided ideal of R′
χ.

Proof. Recall that HomI(−, λ∨
χ)

∨ is covariant and right exact. From the

(right) exact sequence
⊕2f

i=1Mv
⊕iXi−→ Mv −→ π(ρ)∨ −→ 0, we obtain

2f⊕
i=1

HomI(Mv, λ
∨
χ)

∨ ⊕iφχ,i−→ HomI(Mv, λ
∨
χ)

∨ −→ F −→ 0,

where we have used the fact HomI(λχ, π(ρ)) ∼= F (a consequence of Corollary
8.12). Equivalently, HomI(Mv, λ

∨
χ)

∨/HomI(Mv, λ
∨
χ)

∨Jχ is one-dimensional
over F.

It follows from Lemma 9.32 that Jχ is contained in Jbχ
; indeed, recalling

HomI(Mv, λ
∨
χ)

∨ ∼= R⊕Fmχ , Jχ sends Fmχ to bχ⊕ (0)mχ by Lemma 9.32 and
sends R to mR ⊕ Fmχ . Here we need the partial minimality of K•(X,Mv)
in Lemma 10.29 to apply Lemma 9.32. We claim that Jχ = Jbχ

. Indeed, by
Lemma 9.43, Jχ = Jb for some ideal b of R with dimF b ≥ mχ. The inclusion
Jb ⊂ Jbχ

and the fact dimF bχ = mχ then force b = bχ.

Corollary 10.32. The natural morphism

(10.22) Kχ,l/Kχ,lJχ → Kχ,l−1Jχ/Kχ,l−1J
2
χ

is injective for any 1 ≤ l ≤ 2f .
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Proof. It follows from Proposition 9.41 and Lemma 10.31 that (10.22) is
injective (actually an isomorphism) for l = 1. We conclude by Lemma 9.38.

Using Lemma 9.40 and Lemma 10.31, the above corollary can be restated
as follows.

Corollary 10.33. The differential map of Kχ,• induces an injection

Kχ,l/ socR(Kχ,l) → socR(Kχ,l−1)/bχKχ,l−1.

Remark 10.34. The reason to restate Corollary 10.32 in the form of Corol-
lary 10.33 is that the morphism β�

χ,• : Kχ,• → Cχ,• is only R-linear but not
R′-linear (in fact R′ does not act on Cχ,•). See the diagram (10.23) below.

10.5.2. The complex Cχ,•.

Lemma 10.35. The differential maps of Cχ,• induce morphisms

Cχ,l → socR(Cχ,l−1), socR(Cχ,l) → bχCχ,l−1.

Proof. By construction, P• is a minimal resolution, i.e. d(Pl) ⊂ mPl−1. The
result is a consequence of Proposition 9.36, using that the ideal b in (ii) of
loc. cit. is exactly bχ by Proposition 10.19.

10.5.3. A lemma.

Lemma 10.36. Fix 0 ≤ l ≤ 2f . The following conditions are equivalent:

(i) for any χ ∈ cosocI(τ(ρ)
∨), β�

χ,l : Kχ,l → Cχ,l is an isomorphism;

(ii) for any χ ∈ cosocI(τ(ρ)
∨), β

�
χ,l : Kχ,l/ socR(Kχ,l) → Cχ,l/ socR(Cχ,l)

is an isomorphism;

(iii) for any χ ∈ cosocI(τ(ρ)
∨), β

�
χ,l : Kχ,l/ socR(Kχ,l) → Cχ,l/ socR(Cχ,l)

is an injection.

Proof. It is clear that (i)⇒(ii).
(ii)⇒(i). Recall the decompositions

Ql = Q′
l ⊕Q′′

l , Pl = P ′
l ⊕ P ′′

l

from Lemma 10.29 and Proposition 10.19, respectively. By loc. cit., we know
that

Kχ,l
∼= HomI(Q

′
l, λ

∨
χ)

∨, Cχ,l
∼= HomI(P

′
l , λ

∨
χ)

∨,
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and both Q′
l and P ′

l are isomorphic to
(⊕

χ Pχ

)(2fl ), where χ runs over
characters in cosocI(τ(ρ)

∨). As a consequence, Kχ,l
∼= Cχ,l as R-modules.

Consider the composite morphism

γl : Q
′
l ↪→ Ql

βl→ Pl � P ′
l .

Using Corollary 9.34, Condition (ii) implies that the induced morphism
HomI(Q

′
l, χ)

∨ → HomI(P
′
l , χ)

∨ is an isomorphism for any χ ∈ cosocI(τ(ρ)
∨),

meaning that γl induces an isomorphism on the cosocles. Hence, γl is itself
a surjection by Nakayama’s lemma. Moreover, since P ′

l and Q′
l are isomor-

phic and finitely generated as F[[I/Z1]]-modules, γl must be an isomorphism
which implies (i).

(ii)⇔(iii) We saw that dimFKχ,l/ socR(Kχ,l) = dimFCχ,l/ socR(Cχ,l), so
the equivalence is obvious for the reason of dimensions.

Remark that, in general, socR(M) is not contained in mRM (see §9.3.2),
so we can not directly apply Nakayama’s lemma in Lemma 10.36 when
deriving (i) from (ii) if we work with a single χ.

10.5.4. End of the proof. Now we can complete the proof of Theorem
10.23.

Proof of Theorem 10.23. Recall that we want to prove β�
χ,l is an isomor-

phism for all χ in cosocI(τ(ρ)
∨) and all 0 ≤ l ≤ 2f . First, the statement

is obvious if l = 0. Also, Proposition 10.22 combined with Lemma 10.36
implies the statement for l = 1.

Since β�
χ,l is R-linear, it induces morphisms

socR(Kχ,l) → socR(Cχ,l), bχKχ,l → bχCχ,l

which are isomorphisms whenever β�
χ,l is. By Corollary 10.33 and Lemma

10.35, we obtain a commutative diagram

(10.23) Kχ,l/ socR(Kχ,l)

β
�

χ,l

socR(Kχ,l−1)/bχKχ,l−1

Cχ,l/ socR(Cχ,l) socR(Cχ,l−1)/bχCχ,l−1.

By inductive hypothesis, β�
χ,l−1 : Kχ,l−1

∼−→ Cχ,l−1 is an isomorphism, hence
the vertical map on the right in (10.23) is also an isomorphism as explained
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above. Since the upper horizontal map is injective by Corollary 10.33, β
�
χ,l is

also injective. Finally, this being true for any χ in cosocI(τ(ρ)
∨), we deduce

that β�
χ,l is an isomorphism by Lemma 10.36, thus finishing the proof by

induction.

10.6. The case f = 2

In this subsection, we will specialize to the situation when f = 2, i.e. L =
Qp2 . The main result is the following.

Theorem 10.37. π(ρ) has length 3, with a unique Jordan–Hölder filtration
of the form

π(ρ) = (π0 — π1 — π2),

where π0, π2 are defined in (10.5) and π1 is a supersingular representation.

Proof. We first fix some notation. Let ρss denote the semisimplification of
ρ. Since f = 2, D(ρss) consists of 4 Serre weights, which we enumerate

as follows (cf. [15, §16, Case (ii)]): D(ρss) = {σ0, σ1, σ[s]
1 , σ2}, where (see

Definition 2.9 for the notation μ∗
i )

σ0 = socK(π0), σ2 = socK(π2),

σ1 = μ+
0 (σ0), σ

[s]
1 = μ+

1 (σ0).

On the other hand, since ρ is assumed to be nonsplit, D(ρ) is a proper subset
of D(ρss) of cardinality 2|Jρ|.

We already know socG(π(ρ)) ∼= π0, see Proposition 10.8. By [44, Prop.
3.2], π(ρ)/π0 admits a unique irreducible subrepresentation π1 which is su-
persingular and satisfies

(10.24) socK(π1) = σ1 ⊕ σ
[s]
1 .

Let κ ⊂ π(ρ) denote the pullback of π1. We need to show π(ρ)/κ is irre-
ducible, hence it is automatically isomorphic to π2 (as its cosocle is isomor-
phic to π2).

By Theorem 10.26, π(ρ) is generated by D0(ρ) as a G-representation;
in fact, the proof in loc. cit. shows that π(ρ) can be generated by any K-
subrepersentation of D0(ρ) which admits σ2 as a subquotient. As a conse-
quence, since κ is a proper subrepresentation of π(ρ), σ2 does not occur in
κ ∩D0(ρ). We claim that there exists an embedding

σ2 ↪→ D0(ρ)/(κ ∩D0(ρ)).
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First, it is clear that π0 ∩D0(ρ) = πK1

0 , so we have an embedding

socK(π1) = σ1 ⊕ σ
[s]
1 ↪→ D0(ρ)/(π0 ∩D0(ρ)).

Denote by Dκ the pullback of σ1 ⊕ σ
[s]
1 in D0(ρ). Then Dκ is contained in

κ ∩D0(ρ). Now the structure of D0(ρ), see [15, §16], implies that σ2 occurs
in the socle of D0(ρ)/Dκ. This gives the claimed morphism

σ2 ↪→ D0(ρ)/Dκ � D0(ρ)/(κ ∩D0(ρ));

it is injective by the discussion at the beginning of the paragraph.

By the claim, we obtain an embedding σ2 ↪→ (π(ρ)/κ)|R0
(here we en-

dow σ2 with a compatible action of Z), which further induces by Frobenius
reciprocity a G-equivariant morphism

h : c-IndGR0
σ2 → π(ρ)/κ.

Moreover, since the composition

c-IndGR0
σ2 → π(ρ)/κ � π2

is surjective, h is surjective as well, because π2 is the cosocle of π(ρ). By
Lemma 10.38 below, π(ρ)/κ is isomorphic to c-IndGR0

σ2/(T − λ2)
n for some

n ≥ 1 and suitable λ2 ∈ F× (determined by π2), thus dimFR
2OrdP (π(ρ)/κ)=

n by [5, Thm. 30(3)] and Proposition 5.1(iii). However, there is a surjection
R2OrdPπ(ρ) � R2OrdP (π(ρ)/κ), and we know that R2OrdPπ(ρ) is isomor-
phic to χ0 by Proposition 10.13, so we must have n = 1.

Lemma 10.38. Let σ be a Serre weight and V be an admissible quotient

of I(σ)
def
= c-IndGR0

σ. Assume that the G-cosocle of V is irreducible and
isomorphic to I(σ)/(T − λ) for some λ ∈ F×. Then V is isomorphic to
I(σ)/(T − λ)n for some n ≥ 1. In particular, V has finite length.

Remark 10.39. If L = Qp, then Lemma 10.38 follows from the work of
[5, 6]. However, when L �= Qp, the quotient I(σ)/T has infinite length, and it
is not clear whether an arbitrary admissible quotient of I(σ) is automatically
of finite length.

Proof. Write π = I(σ)/(T − λ) which is irreducible by assumption, and let
V1 be the kernel of the natural projection V � π. Clearly, we may assume
V1 �= 0. We claim that HomG(π, V1) �= 0. Indeed, applying HomG(−, V1) to
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the exact sequence 0 → I(σ)
T−λ→ I(σ) → π → 0 we obtain (by Frobenius

reciprocity)

0 → HomG(π, V1) → HomR0
(σ, V1)

T−λ→ HomR0
(σ, V1)

∂→ Ext1G(π, V1)
φ→ Ext1R0

(σ, V1).

If HomG(π, V1) were zero, then T − λ would be injective, hence an isomor-
phism because HomR0

(σ, V1) is finite dimensional over F by the admissibility
of V . This would imply that φ is injective. On the other hand, since π is the
G-cosocle of V , the extension

0 → V1 → V → π → 0

is nonsplit, which we denote by c ∈ Ext1G(π, V1). Since V is a quotient
of I(σ), the composite morphism (where the first one is induced from the
identity map I(σ) → I(σ) via Frobenius reciprocity)

σ ↪→ I(σ)|R0
� V |R0

� π|R0

is nonzero with image contained in socR0
(π). This means φ(c) = 0, which

contradicts the injectivity of φ.
Let V2 be the maximal subrepresentation of V1 whose irreducible sub-

quotients are all isomorphic to π, so that HomG(π, V1/V2) = 0. If V1/V2 �= 0,
then the same argument as in last paragraph (applied to V/V2), shows that
HomG(π, V1/V2) �= 0, a contradiction to the choice of V2. Therefore, V1/V2 =
0 and all Jordan–Hölder factors of V are isomorphic to π = I(σ)/(T − λ).
On the other hand, by [5, Thm. 19] the quotient map I(σ) � V factors
through the quotient I(σ)/f(T ) for some nonzero polynomial f(T ) ∈ F[T ] ∼=
EndG(I(σ)). We claim that f(T ) can be chosen to be (T−λ)n for some n ≥ 1;
this implies the lemma by choosing n minimal. Indeed, [5, Cor. 36] implies
that for any λ′ ∈ F with λ′ �= λ,

HomG

(
I(σ)/(T − λ′), π

)
= 0

and consequently HomG

(
I(σ)/(T−λ′), V

)
= 0 from which the claim follows.

We have the following immediate consequence of Theorem 10.37.

Corollary 10.40. Assume f = 2. With the notation of Corollary 8.17, the
unitary admissible Banach representation Π(x) of G has length ≤ 3.
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Appendix A. Non-commutative Iwasawa theory

A.1. Preliminaries

We recall results of [51], [71] and [50]. Let R be a left and right noetherian
ring (not necessarily commutative) and M be a (left) R-module. If M �= 0,
the grade jR(M) of M over R is defined by

(A.1) jR(M) = inf{i ∈ N | ExtiR(M,R) �= 0}.

By convention, jR(0) = ∞. For simplicity, we write Ei(M) := ExtiR(M,R).
The ring R is called Auslander-Gorenstein if it has finite injective dimen-

sion and the following Auslander condition holds: for any R-module M , any
integer m ≥ 0 and any R-submodule N of Em(M), we have jR(N) ≥ m. An
Auslander-Gorenstein ring is called Auslander regular if it has finite global
dimension.

Let G0 be a compact p-adic analytic group. Define the Iwasawa algebra
of G0 over F as

Λ(G0)
def
= F[[G0]] = lim←−

N�G0

F[G0/N ].

The ring-theoretic properties of Λ(G0) are established by the fundamental
works of Lazard [51] and Venjakob [71]. In particular, if G0 has no element of
order p, then Λ(G0) is an Auslander regular ring of dimension dimG0, where
dimG0 is the dimension of G0 as a Qp-analytic variety. If M is nonzero, we
have

0 ≤ jΛ(G0)(M) ≤ dimG0.

Define the dimension of M over Λ(G0) by

dimΛ(G0)(M)
def
= dimG0 − jΛ(G0)(M).

Let G be a p-adic analytic group with a fixed open compact subgroup
G0 ⊆ G. Set

(A.2) Λ(G)
def
= F[G]⊗F[G0] Λ(G0).

As explained in [50, §1] Λ(G) does not depend on the choice of G0.
Let ModpcΛ(G) be the category of pseudo-compact F-vector spaces M car-

rying an F-linear action of G such that the map G×M → M is jointly con-
tinuous. Let CG be the full subcategory of coadmissible objects, i.e. finitely
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generated as a Λ(G0)-module for the fixed, equivalently any, open compact
subgroup G0 of G.

It is explained in [50, §3] that if M ∈ ModpcΛ(G), then Ei(M) carries

naturally a structure of Λ(G)-module so that Ei(M) ∈ ModpcΛ(G). Moreover,

Ei preserves the coadmissibility, i.e. it restricts to a functor Ei : CG → CG
(see [50, Cor. 3.3]). By abuse of notation, for M ∈ CG we often write

jG(M) = jΛ(G0)(M), dimG(M) = dimΛ(G0)(M).

For any M ∈ CG, there is a double duality spectral sequence, see [71,
§3.1], which implies that if M is nonzero of grade c then there is a natural
nonzero double duality map φM : M → EcEc(M). By functoriality φM is a
morphism in CG.

Lemma A.1. Let M be an object of grade c. The double duality map φM :
M → EcEc(M) is nonzero, and we have a long exact sequence

0 → Ker(φM ) → M
φM→ EcEc(M) → Coker(φM ) → 0.

Moreover, Ker(φM ) (resp. Coker(φM )) has grade ≥ c+ 1 (resp. ≥ c+ 2).

Proof. See [71, Prop. 3.5(i)].

Let RepF(G) (resp. RepadmF (G)) denote the category of smooth (resp.
smooth admissible) representations of G on F-vector spaces.

Proposition A.2. The Pontryagin dual V �→ V ∨ establishes an anti-equiv-
alence of categories between RepF(G) (resp. RepadmF (G)) and ModpcΛ(G) (resp.

CG).

Proof. See [50, Thm. 1.5, Cor. 1.8].

Let π ∈ RepadmF (G). By Proposition A.2, π∨ ∈ CG. The Gelfand-Kirillov
dimension of π is defined by (see [12, Rem. 5.1.1])

(A.3) dimG(π)
def
= dimG(π

∨) = dim(G0)− jG(π
∨).

[34, Prop. 2.18] provides the following description of dimG(π). Let G
pn

0 be the
subgroup of pn-th powers of elements of G0. Then there exist real numbers
a ≥ b ≥ 1

(dimG(π))! such that

bpn dimG(π)+O(pn(dimG(π)−1)) ≤ dimF(π
Gpn

0 ) ≤ apn dimG(π)+O(pn(dimG(π)−1)).
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A.2. Socle and cosocle

Let R be a ring with unit and M be a left R-module.

Definition A.3. (i) A submodule N ⊆ M is called essential if every nonzero

submodule of M intersects N nontrivially.

(ii) A submodule N ⊆ M is called small if for any submodule H of M ,

N +H = M implies H = M .

(iii) The socle of M , denoted by soc(M), is the sum of all simple sub-

modules of M ; we set soc(M) = 0 if there are no simple submodules of

M .

(iv) The radical of M , denoted by rad(M), is the intersection of all the

maximal submodules of M ; we set rad(M) = M if there are no maximal

submodules of M . The cosocle of M , denoted by cosoc(M), is defined to be

M/rad(M).

If M �= 0 is noetherian, then cosoc(M) �= 0 and rad(M) � M is a

small submodule. If M is artinian, then soc(M) �= 0 and soc(M) � M is an

essential submodule.

Lemma A.4. Let h : M → M ′ be a nonzero morphism of R-modules. Let

N ⊂ M be a small submodule, then h(N) is a small submodule of M ′.

Proof. Let H ′ ⊂ M ′ be a submodule such that h(N) + H ′ = M ′. Then a

standard argument shows that N + h−1(H ′) = M , hence h−1(H ′) = M as

N is small. This implies H ′ ⊃ h(M), and so H ′ = M ′.

From now on, we let R = Λ(G).

Example A.5. Since Λ(G0) is noetherian, CG is a noetherian category.

Hence RepadmF (G) is artinian by Proposition A.2. In particular, if π ∈
RepadmF (G) is nonzero, then socG(π) is a nonzero essential subrepresentation

of π. Moreover, cosocG(π
∨) ∼= socG(π)

∨.

Proposition A.6. Let M be an object in CG of grade c and let C be its

cosocle. Assume that the double duality map φM is an isomorphism and

that C has finite length, with all of its Jordan–Hölder factors having grade

c. Then the inclusion Ec(C) ↪→ Ec(M) is essential.

Proof. Let N = rad(M) so that C = M/N . If N = 0, then M ∼= C and the

result is trivial. So we may assume N is nonzero for the rest of the proof.
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By functoriality, we have a commutative diagram

(A.4) N

φN

M

∼=φM

C

φC

EcEc(N) EcEc(M) EcEc(C).

By Lemma A.1, the assumption on C implies that φC is injective.
Let S be a nonzero subobject of Ec(M); we need to show S∩Ec(C) �= 0.

Note that jG(S) = c by [55, Prop. III.4.2.8, Prop. III.4.2.9]. If S∩Ec(C) = 0,
then we get an embedding ι : Ec(C)⊕S ↪→ Ec(M), which induces by taking
Ec(−)

(A.5) f : M
φM
∼−→ EcEcM

ι∗→ EcEc(C)⊕ Ec(S).

By (A.4), f(N) is contained in Ec(S) (as its projection to EcEc(C) is zero).
Consider the induced morphism

f : C ∼= M/N → EcEc(C)⊕ Ec(S)/f(N).

Note that Coker(f) ∼= Coker(f) by the snake lemma, and Coker(f) =
Coker(ι∗) by (A.5).

The projection of f to EcEc(C) is equal to the double duality map φC ,
hence is injective as remarked above. As a consequence, f is also injective
and there is an embedding

(A.6) Ec(S)/f(N) ↪→ Coker(f).

As a part of the long exact sequence associated to ι we have

EcEc(M)
ι∗→ EcEc(C)⊕ Ec(S) → Ec+1(Coker(ι)),

thus Coker(ι∗) embeds in Ec+1(Coker(ι)). Together with (A.6) and the iso-
morphism Coker(f) ∼= Coker(ι∗), we obtain an embedding Ec(S)/f(N) ↪→
Ec+1(Coker(ι)). By the Auslander condition, we deduce

(A.7) jG(E
c(S)/f(N)) ≥ c+ 1.

On the other hand, by assumption any nonzero quotient of C has grade c, so
(A.7) implies HomCG

(C,Ec(S)/f(N)) = 0, and consequently the projection
of f to Ec(S)/f(N) is zero.
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To conclude, consider the composite morphism

h : M
∼−→ EcEc(M)

ι∗→ EcEc(C)⊕ Ec(S) → Ec(S).

It is nonzero, because taking Ec again and composing with φS : S →
EcEc(S), this gives back the inclusion S ↪→ Ec(M) by functoriality. All
the above shows that h(N) = h(M), which contradicts Lemma A.4, applied
to M ′ = h(M).

A.3. Self-duality

Let M ∈ CG. We say M is Cohen-Macaulay if Ei(M) is nonzero for exactly
one degree i. Actually, we must have i = jG(M). By [71, Cor. 6.3], this is
equivalent to requiring

jG(M) = pd(M)

where pd(M) denotes the projective dimension of M as a Λ(G0)-module.

Definition A.7. Let M ∈ CG be a Cohen-Macaulay module of grade c. We
say M is self-dual if there is an isomorphism Ec(M) ∼= M in CG. We say
M is essentially self-dual if there exists a character η : G → F× such that
Ec(M) ∼= M ⊗ η in CG.

Let A be a (commutative) noetherian local F-algebra with residue field
F.

Proposition A.8. Let M be an A ⊗F Λ(G)-module. Assume the following
conditions hold:

(a) A is Gorenstein and M is flat as an A-module;
(b) as a Λ(G)-module, M ∈ CG and is Cohen-Macaulay of grade c;
(c) M is A-equivariantly self-dual (resp. essentially self-dual), i.e. there

is an A ⊗F Λ(G)-equivariant isomorphism ε : Ec(M)
∼−→ M (resp.

ε : Ec(M)
∼−→ M ⊗ η for some η : G → F×).

Then F⊗A M is also self-dual (resp. essentially self-dual).

Proof. We give the proof for the self-dual case, the other case is proved in
the same way.

Let r denote the Krull dimension of A. Since A is Gorenstein, hence
Cohen-Macaulay, we may choose a regular sequence (x1, . . . , xr) in A which
is also M -regular by the flatness assumption (a). By (the proof of) [38,
Lem. A.15], we see that M/(x1, . . . , xr) is an A/(x1, . . . , xr)⊗FΛ(G)-module
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which, as a Λ(G)-module, is Cohen-Macaulay of grade c + r and self-dual.

Indeed, by induction on r we may assume r = 1 and write x = x1. Then the

proof in loc. cit. shows that jG(M/xM) = jG(M) + 1 = c+ 1 and we have

an exact sequence

0 −→ Ec(M)
×x−−→ Ec(M) −→ Ec+1(M/xM) −→ 0.

Since the duality isomorphism ε : Ec(M) → M is assumed to be A⊗FΛ(G)-

equivariant, we deduce an isomorphism Ec+1(M/xM)
∼−→ M/xM which is

A/xA ⊗F Λ(G)-equivariant. Therefore, we may assume A is artinian (and

Gorenstein).

Since A is artinian and M is flat over A, M has a finite filtration with

graded pieces isomorphic to F ⊗A M . As a consequence, jG(F ⊗A M) =

jG(M) = c, see [71, Prop. 3.6]. Similarly, we also have pd(M) = pd(F⊗AM),

hence F ⊗A M is Cohen-Macaulay. We deduce that Ec(− ⊗A M) is exact

on any exact sequence of finitely generated A-modules (recall that A is

artinian). Choose a finite presentation of F:

(A.8) An f→ A → F → 0,

which induces an exact sequence

0 → Ec(F⊗A M) → Ec(A⊗A M)
f∗

→ Ec(An ⊗A M).

It is easy to see that the map f∗ is equal to

(A
fT

→ An)⊗ Ec(M)

where fT denotes the transpose of f .

On the other hand, applying HomA(−, A) to (A.8) gives an exact se-

quence

0 → HomA(F, A) → A
fT

→ An.

Noticing that HomA(F, A) ∼= soc(A) ∼= F (by the assumption that A is

Gorenstein) and that M is A-flat, we obtain an exact sequence

0 → F⊗A M → M
fT

→ Mn.
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The explicit description of maps shows that the diagram

Ec(M)
f∗

∼= ε

Ec(Mn)

ε∼=

M
fT

Mn

is commutative, which induces an isomorphism Ec(F⊗A M) ∼= F⊗A M .

A.4. Minimal projective resolutions

We recall some terminology on filtered rings and filtered modules. A ring
R is said to be a filtered ring if there is a descending chain (indexed by N)
of additive subgroups of R denoted by FR = {FnR | n ∈ N} satisfying
F 0R = R, Fn+1R ⊆ FnR and (FnR)(FmR) ⊆ Fn+mR for all m,n ∈ N. For

convenience, we set FnR
def
= R for n < 0. A (left) R-module M is said to be

a filtered module if there exists a descending chain (indexed by Z) of additive
subgroups of M denoted by FM = {FnM | n ∈ Z} satisfying Fn+1M ⊆
FnM and (FnR)(FmM) ⊆ Fn+mM for all m,n ∈ Z. An R-morphism
f : M → N of two filtered R-modules is called a filtered morphism of degree
d if f(FnM) ⊆ Fn+dN for all n ∈ Z. Let R-filt denote the category where
the objects are filtered R-modules and the morphisms are filtered morphisms
of degree zero. For any M ∈ R-filt and a ∈ Z, denote by M(a) ∈ R-filt the
R-module M filtered by the filtration FnM(a) = Fn+aM . For instance, a
free R-module of rank 1 which is generated by an element of degree a is
isomorphic to R(−a).

Let M ∈ R-filt. If M = ∪n∈ZFnM then FM is called exhaustive. If
∩n∈ZFnM = 0 then FM is called separated. The filtration topology of M is
the topology of M such that the sets of the form x+FnM form a basis. We
say M is complete (with respect to its filtration topology) if FM is separated
and every Cauchy sequence converges.

We say M ∈ R-filt is filt-free if it is free as an R-module and has a basis
(ej)j∈J consisting of elements with the property that there exists a family
of integers (kj)j∈J such that ej /∈ F kj+1M , j ∈ J and

FnM =
∑
j∈J

(Fn−kjR)ej =
⊕
j∈J

(Fn−kjR)ej , ∀n ∈ Z.

We say M ∈ R-filt is filt-projective if it is a direct summand of a filt-free
R-module in R-filt.
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Let R be a filtered ring with filtration FR. Let grR
def
= ⊕n∈NFnR/Fn+1R

denote the associated graded ring. Let M = ⊕n∈ZMn and N = ⊕n∈ZNn be

graded grR-modules. A graded morphism f : M → N is called of degree

d if f(Mn) ⊆ Nn+d, ∀n ∈ Z. Any M ∈ R-filt gives a grR-module grM
def
=

⊕n∈ZFnM/Fn+1M which is called the associated graded module. It is clear

that if f : M → N is a filtered morphism of degree d then f gives a graded

morphism of degree d, gr(f) : grM → grN .

We recall the following result of [59, Thm. VII.5].

Lemma A.9. Let R be an exhaustive complete filtered ring. Let Pg be a

finitely generated projective graded grR-module, then there is a (unique up

to isomorphism) filt-projective module P such that grP = Pg. If M ∈ R-filt

then for any graded morphism h : Pg → grM of degree d, there is a filtered

morphism f : P → M of degree d such that h = gr(f).

Lemma A.10. Let M ∈ R-filt. Let

G• : 0 → Gn → · · · → G1 → G0 → gr(M) → 0

be a (degree zero graded morphism) resolution of gr(M) by graded projective

grR-modules Gi. Then there exists a filt-projective resolution of M

P• : 0 → Pn → · · · → P1 → P0 → M → 0

such that gr(P•) ∼= G•.

Proof. The proof is similar to [55, Cor. I.7.2.9], using Lemma A.9 as a re-

placement of [55, Lem. I.6.2].

In general, P• need not be minimal in the sense that the differential

maps send Pi to rad(Pi−1). Next we give a practical condition so that P• is

(partially) minimal in the special case R = F[[I/Z1]]. Let m
def
= mI1/Z1

and

equip F[[I/Z1]] with the m-adic filtration, namely FnF[[I/Z1]] = mnF[[I/Z1]]

for n ≥ 0. Any F[[I/Z1]]-module M equipped with the m-adic filtration,

FnM = M for n < 0 and FnM = mnM for n ∈ N, is then an object in

F[[I/Z1]]-filt.

For a character χ : I → F×, let Pχ = ProjI/Z1
χ equipped with the

m-adic filtration. Consider

P = ⊕r
i=1Pχi

(−ai), Q = ⊕s
j=1Pχj

(−bj)
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where ai, bj ∈ Z and let d : P → Q be a filtered morphism of degree zero. In
general, the filtration on P (or Q) does not coincide with its m-adic filtration.
Denote by dij : Pχi

→ Pχj
the induced morphism of F[[I/Z1]]-modules

Pχi
↪→ P

d→ Q � Pχj
.

Lemma A.11. If ai > bj for any pair (i, j) with χi = χj, then d(P ) ⊆ mQ.

Proof. Fix i and let x∈Pχi
. Since d has degree 0 and x ∈ Pχi

=F ai(Pχi
(−ai)),

we have

d(x) ∈ F aiQ = ⊕s
j=1F

ai−bjPχj
.

We claim that dij(x) ∈ mPχj
for all 1 ≤ j ≤ s. If χj �= χi, then any

morphism Pχi
→ Pχj

must have image contained in mPχj
. If χj = χi, we

use the assumption ai > bj to deduce that dij(x) ∈ mai−bjPχj
⊂ mPχj

. This
finishes the proof.
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S. W. Shin, Patching and the p-adic local Langlands correspondence,
Camb. J. Math. 4 (2016), no. 2, 197–287.

[19] A. Caraiani, M. Emerton, T. Gee, D. Geraghty, V. Paškūnas, and
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Sci. Éc. Norm. Supér. (4) 51 (2018), no. 4, 811–863, With an appendix
by Michael Rapoport.

[67] J.-P. Serre, Sur la dimension homologique des anneaux et des modules
noethériens, Proceedings of the international symposium on algebraic
number theory, Tokyo & Nikko, 1955, Science Council of Japan, Tokyo,
1956, pp. 175–189.

[68] J.-P. Serre, Local algebra, Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 2000, Translated from the French by Chee-
Whye Chin and revised by the author.



On the mod p cohomology for GL2: the non-semisimple case 431

[69] J.-P. Serre, Galois cohomology, english ed., Springer Monographs in
Mathematics, Springer-Verlag, Berlin, 2002, Translated from the French
by Patrick Ion and revised by the author.

[70] R. Taylor, On Galois representations associated to Hilbert modular
forms, Invent. Math. 98 (1989), no. 2, 265–280.

[71] O. Venjakob, On the structure theory of the Iwasawa algebra of a p-adic
Lie group, J. Eur. Math. Soc. 4 (2002), no. 3, 271–311.

Yongquan Hu

Morningside Center of Mathematics

Academy of Mathematics and Systems Science

Chinese Academy of Sciences

Beijing 100190

China

University of the Chinese

Academy of Sciences

Beijing 100049

China

E-mail address: yhu@amss.ac.cn

Haoran Wang

Yau Mathematical Sciences Center

Tsinghua University, Beijing 100084

China

E-mail address: haoranwang@mail.tsinghua.edu.cn

Received July 9, 2021

mailto:yhu@amss.ac.cn
mailto:haoranwang@mail.tsinghua.edu.cn

	Introduction
	Notation

	Finite representation theory I
	The structure of `39`42`"613A``45`47`"603AInj
	The structure of `39`42`"613A``45`47`"603AInj"0365
	An extension lemma
	The representation I(,)
	The structure of I(,)

	Finite representation theory II
	I-extensions
	Induced representations
	Generalization

	The representation 
	The representation ord

	Combinatorics à la Breuil-Paškunas
	The representation D"055DD0()
	A combinatorial lemma
	Multiplicity one

	Ordinary parts
	Ordinary parts
	Ordinary parts of injectives
	ord and ordinary parts

	Galois deformation rings
	Universal deformation rings
	Reducible deformation rings
	Serre weights
	Potentially Barsotti-Tate deformation rings
	Crystalline deformation rings

	P-ordinary automorphic representations, Local-global compatibility
	p-adic completed cohomology
	p-adic automorphic forms
	P-ordinary automorphic forms

	Global applications
	The ``big'' patching functors
	Local-global compatibility
	The ``big'' minimal patching functors
	Main results in the minimal case

	Homological algebra
	An enveloping algebra
	H-actions

	The representation J
	The representation 
	Tangent space
	Socle

	Generalized Koszul complexes
	A typical example

	Finite generation
	A minimal projective resolution
	Cohomological invariants of ()
	A criterion
	The representation ()
	Main results
	The complex K,
	The complex C,
	A lemma
	End of the proof

	The case f=2

	Non-commutative Iwasawa theory
	Preliminaries
	Socle and cosocle
	Self-duality
	Minimal projective resolutions

	Acknowledgements
	References

