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On the mod p cohomology for GL,: the
non-semisimple case

YONGQUAN HUu AND HAORAN WANG

Let F be a totally real field unramified at all places above p and D
be a quaternion algebra which splits at either none, or exactly one,
of the infinite places. Let 7 : Gal(F/F) — GL2(F,) be a contin-
uous irreducible representation which, when restricted to a fixed
place v|p, is non-semisimple and sufficiently generic. Under some
mild assumptions, we prove that the admissible smooth representa-
tions of GLo(F,) occurring in the corresponding Hecke eigenspaces
of the mod p cohomology of Shimura varieties associated to D
have Gelfand-Kirillov dimension [F, : Q,]. We also prove that any
such representation can be generated as a GLa(F,)-representation
by its subspace of invariants under the first principal congruence
subgroup. If moreover [F, : Q,] = 2, we prove that such repre-
sentations have length 3, confirming a speculation of Breuil and
Paskunas.
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1. Introduction

Let p be a prime number. The mod p (and also p-adic) Langlands program
has been emerged starting from the fundamental work of Breuil [6]. Up
to present, the (mod p) correspondence in the case of GL2(Q,) has been
well-understood in various aspects, by the works of [6], [22], [29], and [62].
However, the situation is much more complicated if GL2(Q),) is replaced by a
higher dimensional group, and a large part of the theory remains mysterious.
One of the main obstacles is that we don’t have a satisfactory understanding
of supersingular representations of p-adic reductive groups.

The aim of this paper is to study the mod p Langlands correspondence
for GLs of a finite unramified extension of @, in the context of local-global
compatibility following [16]. By the work of Emerton [29], the mod p corre-
spondence for GL2(Q)) can be realized in the mod p cohomology of modular
curves. It is thus natural to search for this hypothetical correspondence for
GL> in the cohomology of Shimura curves. To explain this we fix the global
setup.

Let F' be a totally real extension of Q in which p is unramified. Let D
be a quaternion algebra with center F. We assume that D splits at exactly
one infinite place in the introduction. For U a compact open subgroup of
(D®rAp )™ let Xy be the associated smooth projective Shimura curve over

F, (in the case (F, D) = (Q,GL2), Xy is the compactified modular curve).

We fix a place v above p and let f def [Fy : Qp]. Let F be a sufficiently large

finite extension of F, (served as the coefficient field). Let 7 : Gal(F/F) —
GL2(F) be an absolutely irreducible continuous Galois representation. Fixing
UY a compact open subgroup of (D ®p Agj})x and letting U, run over
compact open subgroups of (D ®p F,)* = GLy(F,), we consider the F-
vector space

(1.1) lig Homg, 7/ y (7, Hey(Xvv, x5 F,F))
U,

which is an admissible smooth representation of GLa(F},) over F.

By carefully choosing the “away from v data” as in [9] and [32], we land
in the so-called minimal case, and denote the resulting representation by
7P (F) (see [9, Eq. (28)]). As suggested by [16, Conj. 4.7] and [9, Cor. 3.7.4],

(%
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7D (7) is expected to realize a mod p Langlands correspondence. A priori,

7P (7) might depend on the various global choices but, conjecturally, 72 (7)

depends only on p def FV‘Gal(fu/Fv)’ the restriction of ¥V to Gal(F,/F,). For
this reason, in the following we write

(p) € =P(7).

There have been a lot of works studying the representation-theoretic
properties of 7(p), see [16], [36], [37], [8], [9], [32], [44], [47], [53], [52], [25],
etc. These works often have the common aim to determine certain invariants
attached to the restriction of 7(p) to K def GL2(OF,), like the socle, the

subspace of invariants under the first principal subgroup K1 def 1+pMs(OF,)
or the pro-p Iwahori subgroup I, and also some local-global compatibility
related to these subspaces. For example, it is known that (under various
mild assumptions)

(i) sock T(p) = Dyey(p) 0, where Z(p) is an explicit set of Serre weights
(i.e. irreducible F-representations of K') associated to p in [15, §9], see
[37], [32];

(ii) m(p)%* = Dy(p), where Dy(p) is a representation of GLa(F,s) con-
structed in [15, §13], see [47], [53], [52].

Nonetheless, when F;, # Q,, a complete description of 7(p) still seems to be
out of reach.

From now on, we make the following assumptions on 7:

(a) 7| Gal(F/F (V1)) is absolutely irreducible, and modular (i.e. 7(p) is
nonzero);

(b) for w t p such that either D or 7 ramifies, the framed deformation ring
of 7| Gal(F,, /F,) Over the ring of Witt vectors W (F) is formally smooth;

(c) for w|p, w # v, 7|z, is generic in the sense of [15, Def. 11.7], where
Ir  is the inertia subgroup at w;

(d) p is reducible nonsplit and, when restricted to I, is of the following

form up to twist:
wzif:_ol p(ri+1) *
f
0 1

where wy denotes Serre’s fundamental character of I, of level f. We
assume p is strongly generic in the sense that 2 < r; < p — 5 for each
1. In particular, this implies p > 7.
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The following is our first main result.

Theorem 1.1 (Theorem 8.15). Keep the above assumptions on F, D and
7. We have

dimgr, (r,)(7(p)) = f-

Here, dimgy,,(r,)(7(p)) denotes the Gelfand-Kirillov dimension of 7 (p)
which, roughly speaking, measures the “size” of m(p), see §A.1. The impor-
tance of controlling the Gelfand-Kirillov dimension of 7(p) was first pointed
out in [38]. Namely, Theorem 1.1 implies that the patched modules con-
structed in [18], commonly denoted by M, are flat over the corresponding
patched deformation rings R, which are power series rings over W (F) by
(b). Consequently, as explained in [18, §1.1], this allows to define a candi-
date for the p-adic Langlands correspondence, see Theorem 1.5 below for a
precise statement.

The patched modules also play an important role in the proof of The-
orem 1.1. Using them, it is proved in [38, Appendix A] that we always
have dimg,(r,)(7(p)) > f. Hence, it is enough to prove the upper bound
dimgr,(r,)(7(p)) < f, whose proof relies on the following key criterion
proved in [12]. To state it we introduce some more notation. Let I be the (up-
per triangular) Iwahori subgroup of K and Z; the center of K. Let F[ K7 /Z]

(resp. F[I1/Z1]) denote the Iwasawa algebra of K1/Z; (resp. I1/Z;) with

maximal ideal mg, /7, (resp. my /7 ). Also let r & IE"’[[K/Zl]]/n"t%(I/Z1 and
ef
I FIGLy(E,)) = F[K/Z1] /mpc, /2,

Theorem 1.2. ([12, Cor. 5.3.5]) Let m be an admissible smooth represen-
tation of GLa(F),) over F with a central character. Assume that we have an
equality of multiplicities

[W[mi/zl] : X] = [W[mll/zl] : X}

for each character x such that [W[mjl/zl] : x| #0. Then dimgr,,(r,)(7) < f.

Using the above criterion, proving Theorem 1.1 is reduced to proving the
following multiplicity one property of m(p) (recall that we are considering
the minimal case).

Theorem 1.3 (Corollary 8.12). (i) For any o € 2(p), we have [ (p) [m%(I/Zl]:
0] =1.

(i) For any x : I — F* such that [w(ﬁ)[mh/zl] : x| # 0, we have
[w()imd )] = L.



On the mod p cohomology for GLs: the non-semisimple case 267

It is clear that, to apply Theorem 1.2, we only need to study the subspace
7(p) [m?1 2,)- However, the information we could gain from p using p-adic
Hodge theory, like the structure of certain Galois deformation rings of p,
is about the restriction of w(p) to K. In §4, we study the relation between
7(p) [m%(1 /Zl] and (p) [m?1 /Zl]’ and prove a key result, Theorem 4.21, which
reduces the proof of Theorem 1.3 to proving (i) for one single Serre weight
09. Namely, Theorem 1.3 will follow if we can prove

(1.2) 3 o9 € Z(p) such that [W(ﬁ)[mil/zl] top] = 1.

There is a distinguished element in 2(p), namely the Serre weight o def

(ro,--- ,7f—1) (see §2 for the notation), which we call the ordinary one. We
are thus left to verify (1.2) for this o, equivalently

dimg Homg (Projg 0o, 7(p)) = 1,

where Projz o denotes a projective envelope of o¢ in the category of I-
modules.

The common strategy to prove such a statement is provided by the
Taylor-Wiles patching method, initially due to Emerton, Gee and Savitt
([32]) and later on generalized in [47], [53], [52]. A patched module My,
(in [18] or [25]) carries simultaneously a continuous action of GLg(F;) com-
muting with the action of R, and is projective when viewed as a pseudo-
compact F[K/Z;]-module. By setting Moo (—) = Hom$2" (M, —¥)¥ where
(=) denotes Pontryagin dual, we obtain an exact covariant functor from
the category of continuous representations of K on finitely generated W (F)-
modules to the category of finitely generated R..-modules. By construction,
we have an isomorphism of F[GLg(F,)]-modules My, /mp_ = 7(p)", which
implies an isomorphism

Moo (Projg 00) /mpg., = Homg (Projg oo, w(p))".

Therefore, proving (1.2) is equivalent to proving that My (Projz o) is cyclic
over R . Finally, we prove this cyclicity by combining the result of [52] on
the cyclicity of Mo (Projr 0g) and the semisimplicity of the ordinary part of
7(p) (a result of [44] in the indefinite case and of [10] in the definite case).
A general construction in [15, §13] shows that there exists a largest
subrepresentation Do (p) of @, (s Injg o such that [Dy(p) : o] =1 for any
o € 2(p). Here Injz o denotes an injective envelope of o in the category
of T-modules. In Theorem 4.6, we prove that 150@) is multiplicity free.
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Combining this result with Theorem 1.3, we obtain the following description
of 7(7)[m2 ]

12

Theorem 1.4 (Corollary 8.13). There is an isomorphism 7(p) [m%(I/ZI]

Do(p). In particular, 7(p) [m%(1 /Zl] is multiplicity free.

We state the following application of Theorem 1.1 mentioned above,
which might be thought of as a candidate for the p-adic Langlands cor-
respondence in this setting (cf. [18, §1.1]). Let E be a finite extension of
W (F)[1/p] with ring of integers O" and residue field F’.

Theorem 1.5 (Corollary 8.17). Let x : Roo — O’ be a local morphism of
W (F)-algebras. Set

II(2)° © Hom&™ (Mo ®p. 0 O, O')

and 11(x) aef (z)° @0 E'. Then I(x) is a nonzero admissible unitary Ba-
nach representation of G over E' with G-invariant unit ball TI(z)° which
lifts m(p) @r F'.

In a companion paper [12], an analog of Theorem 1.1, and consequently
analogs of Theorem 1.4 and Theorem 1.5, are proved in the case p is semisim-
ple and sufficiently generic (but with slightly stronger genericity assumptions
than ours). The proofs in both the semisimple and non-semisimple cases fol-
low the same strategy, by first proving Theorem 1.3 and then applying the
criterion of Theorem 1.2. However, the corresponding proofs of Theorem 1.3
are very different. In [12], (the analog of) Theorem 1.3 is proved by compli-
cated computations of potentially crystalline deformation rings, along the
line in previous works of [32] and [52]. Our proof of Theorem 1.3 relies more
on combinatorial properties of representations of r together with a little
computation based on [52]. Namely, we use Theorem 4.21 to reduce the
computation to a minimal level. Another bonus of this treatment is that we
require weaker genericity assumptions on p. However, we should point out
that our method only applies to the non-semisimple case, while the method
of [12] should apply in all cases once the corresponding Galois deformation
rings are worked out.

Next, we turn to the subtler question of determining the structure of
7(p) as a representation of GLa(F). The conjectural shape of 7(p) was for-
mulated in the fundamental work of Breuil-Paskunas [15] (by local means),
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as follows.! Under the genericity condition in the sense of [15, Def. 11.7],
which is weaker than our genericity in (d), 7(p) should have length f + 1,
with a unique Jordan—Hélder filtration of the form:

Mo —— M —— W —— T,

where 79 and 7y are (irreducible) principal series explicitly determined by
p, and m; are supersingular representations for 1 <1¢ < f — 1.

As an application of Theorem 1.3 and the flatness of M, over R, we
first prove the following.

Theorem 1.6 (Theorem 10.26). 7(p) is generated by Do(p) as a GLa(Fy)-
representation.

Let us sketch the proof of Theorem 1.6 which is somewhat lengthy. Recall
that Roo is formally smooth over W (IF) by our assumption (b) and M is
flat over R, satisfying Mo, /mgr_ = 7(p)Y. By choosing a regular system of
parameters of R, we obtain a Koszul type resolution of m(p)¥ by projective
F[K/Z;]-modules. However, this resolution is not minimal and M, is not
even finitely generated over F[K/Z;]. For this reason we further do a base
change from R, to a suitable quotient, denoted by R, in the context. The
resulting Koszul type resolution of m(p)Y, denoted by P, is minimal when
viewed as a complex of F[K/Z;]-modules, and partially minimal if further
restricted to F[I/Z;] (but we ignore this issue in the introduction).

A consequence of the above resolution is that 7(p)V is essentially self-
dual (see Definition A.7 for this notion). This implies the crucial fact that
the GLy(F})-cosocle of 7(p) is isomorphic to m¢, because the socle of m(p) is
isomorphic to g (this follows from the description of sock 7(p) and a certain
mod p local-global compatibility). It follows that an I-subrepresentation
W of 7(p) generates w(p) as a GLo(F,)-representation if and only if the
composite morphism W < 7(p) — m¢ is nonzero, for which it suffices to
find some character y of I and some ¢ > 0 such that the composite morphism

Bxty 7, (x, W) = Exty 7, (x, 7(p)) = Ext} 7, (x. 7s)

is nonzero. Using the resolution P, we can determine the derived ordinary
parts of 7(p) and show that the quotient 7(p) — 7 induces an isomorphism

2 — ~ 2
Ext}), (x5, 7(p) = Exty], (x5, 7),

1Strictly speaking, the authors of [15] did not state it as a conjecture, and the
family of admissible smooth representations of GLo(F,) constructed there is much
richer than the one considered in this paper. However, the philosophy is clearly due
to them, see the discussion on page 107 of loc. cit..
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where x§ denotes the character of I acting on the space of coinvariants
(00)1,- Hence, m(p) can be generated by any I-subrepresentation W such
that the natural morphism

Ext), (x5, W) = Ext}], (x5, 7(p))
is surjective (or even nonzero).

However, it is in general hard to calculate EXt? /7 for higher degrees; for
example, we don’t know how to write down an injective resolution of W if we
take W = Dy(p)|r. To solve this issue, we define a certain finite dimensional
I-subrepresentation of 7w(p) denoted by 7(p), in an artificial way, of which a
minimal injective resolution can be easily written down. By definition 7(p)
is a tensor product of suitable I-representations 7(p), along all embeddings
k : Fpr < F. The construction of 7(p), is motivated by the case f = 1, see
Example 10.24. For example, if f = 1 and p is reducible nonsplit, then 7(p)
is the largest subrepresentation of (Injz,z, X;‘j’)[m?1 /Zl] in which x§ occurs
with multiplicity one. The advantage to define 7(p) in such a way is that we
may explicitly construct a minimal projective resolution of gry, (t(p)¥),
say G, as a tensor product of resolutions along each embedding; this uses
the fact that the graded algebra of F[I;/Z1] with respect to the m;, /5 -adic
filtration is isomorphic to the tensor product of the corresponding graded
algebra in the case of GL2(Q,). While it is direct to lift G, to a filt-projective
resolution Q, of 7(p)Y, Qe need not be minimal in general. Fortunately, in
our case any lift )y is automatically minimal. This allows us to calculate
Extl, (7(7)". (xi)") for any .

Now, the projectivity of P, allows to lift the quotient morphism 7 (p)¥ —
7(p)" to a morphism of complexes Py — QQo. Here comes another complica-
tion: although numerically we have

dimg Ext} . (x(p)". (x§)") = dimg Ext}, . (1(2)", (63)"),

it is not at all obvious that the natural morphism

Bi - Exty, (7(9)”, (x3)") = Bxtl g (7()”, (x5)")

is surjective, or even nonzero! To solve this, we use crucially the fact that
P, is a Koszul complex, motivated by an old theorem of Serre [67]. Roughly
speaking, since P, is a Koszul complex, to prove §; is surjective, it suffices
to prove [31 is surjective which itself is a consequence of Theorem 1.3(ii) and
the construction of 7(p). In all we obtain that 7(p) is generated by 7(p) as
a GLa(Fy)-representation and Theorem 1.6 follows easily.
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Combining Theorem 1.6 with the explicit structure of Dy(p) ([52]), and
also the main result of [44], we finally arrive at the following result, confirm-
ing the aforementioned speculation in [15] in the case f = 2, and provides
strong evidence for the general case.

Theorem 1.7 (Theorem 10.37). Assume f = 2. Then 7(p) is uniserial of
length 3, with a unique Jordan—Hdélder filtration of the form

O — T —— T2

where my, Ty are principal series and w is a supersingular representation.

Although limited to the case of GL2(Qp2), Theorem 1.7 provides the first
nontrivial result, beyond the case of GL2(Q,) and some related groups like
SL2(Qp), showing that admissible smooth representations corresponding to
Hecke eigenspaces of the mod p cohomology of Shimura varieties can have
finite length.?

We now give a brief overview of the contents of each section. From §2
to §4, we study modular representation theory of I'; of I and also of I. The
main result is Theorem 4.21. In §5, we recall Emerton’s functor of ordinary
parts and prove Proposition 5.16 which reinterprets the semisimplicity of
the ordinary part of 7(p) in terms of the restriction of 7(p) to K. In §6, we
study two classes of quotients of the universal deformation ring of p: one is
the reducible deformation ring and the other is the multi-type potentially
Barsotti-Tate deformation rings studied in [52]. In §7, we recall P-ordinary
automorphic forms and its relation to reducible deformation rings. In §8,
we combine all the previous results to prove our (first) main result Theorem
8.15. §9 and §10 are devoted to the proof of our second main results, Theorem
10.26 and Theorem 10.37: §9 contains some preliminary results and the
proofs of the theorems are presented in §10. In Appendix §A, we collect some
useful definitions and results in the theory of non-commutative Iwasawa
algebra.

1.1. Notation

If F is a field, let Gp def Gal(F/F) denote its absolute Galois group. Let e
denote the p-adic cyclotomic character of Gr, and w the mod p cyclotomic

character.

2Recently, similar finiteness results are proved for semisimple p in [13].
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If F' is a number field and v is a place of F', let F}, denote the completion
of F' at v. If v is a finite place of F, let Op, denote the ring of integers
of F, with uniformiser w, and residue field kr,. The cardinality of kg, is
denoted by ¢,. We fix an embedding F < F, so that G, identifies with
the decomposition group of F' at v, and write Ir, for the inertia subgroup
of Gp,. Let Frob, € G, denote a (lift of the) geometric Frobenius element,
and let Artp, denote the local Artin reciprocity map, normalized so that it
sends w, to Frob,. The global Artin map is compatible with the local Artin
maps and is denoted by Artpg.

We fix a prime number p. Let £/Q, be a finite extension in @p, with ring

of integers O and residue field F o /(w) where w is a fixed uniformizer.

We will often assume without further comment that E and F are sufficiently
large; they will serve as coefficient fields. Let Art(O) denote the category of
local artinian O-algebras with residue field F.

If F'is a number field and v is a place of F' above p, an inertial type for
F, is a two-dimensional F-representation 7, of the inertia group Ip, with
open kernel, which can be extended to GF,. Under Henniart’s inertial local
Langlands correspondence [14, Appendice A|, a non-scalar tame inertial
type T corresponds to an irreducible E-representation o(7) of GL2(OF,)
that arises by inflation from an irreducible E-representation of GLa(kp,)
which is either a principal series or a cuspidal representation. Such o(7) is
called a tame type.

If F is a p-adic field, V' is a de Rham representation of Gp over F,
and k : F < E, then we will write HTx(V') for the multiset of Hodge-Tate
weights of V' with respect to x. By definition, HT, (V') consists of —i with
multiplicity dimpg(V ®, ¢ F(i))97, e.g. HT4(¢) = {1} at all embedding &.

Throughout this paper we fix L a finite unramified extension of Q,

of degree f def [L : Qp]. Denote by Op, the ring of integers in L and Fy

the residual field of O where ¢ def pl. For \ € Fq, [A] € Or, denotes its
Teichmiiller lift.

If G is a p-adic analytic group, we denote by Repp(G) (resp. Repid™(G),
resp. Repa®™(@)) the category of smooth (resp. locally admissible, resp.
admissible) representations of G on F-vector spaces. If ( : Z(G) — F* is a
continuous character of the center of G then we add a subscript ¢ to indicate
that we consider only those representations on which the center Z(G) acts
via (. For example, Repy ((G) is the full subcategory of Repp(G) consisting
of smooth representations on which Z(G) acts by the character (.

If M is a linear-topological @O-module (i.e. it has a topology for which
both addition and the action of O are continuous), then M has a fundamen-
tal system of open neighborhoods of zero which are O-submodules. We write
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MY for its Pontryagin dual Hom{" (M, E/Q), where E/O is equipped with
the discrete topology, and we give MY the compact open topology. The Pon-
tryagin duality functor M — M" induces an anti-equivalence of categories
between the category of discrete O-modules and the category of pseudo-
compact O-modules.

If M is a torsion free linear-topological O-module, M? denotes its
Schikhof dual Hom$™ (M, ©). The Schikhof duality functor M + M% in-
duces an anti-equivalence of categories between the category of pseudo-
compact torsion free O-modules and the category of w-adically complete
and separated torsion free O-modules.

If R is a ring (e.g. R = F[G] for a group G) and M is a left R-module,
we denote by socg(M) (resp. cosocr(M)) the socle (resp. cosocle) of M (see
Definition A.3). Inductively we define the socle (resp. cosocle) filtration of
M. If M is of finite length, we denote by JH(M ) the multi-set of composition
factors (also called Jordan—Hélder factors) of M. If o is a simple R-module,
we let [M : o] denote the multiplicity of o in JH(M).

Throughout the paper, we assume p > 2.
2. Finite representation theory I

In this section, we study smooth representation theory of GL2(Op).
First introduce some notation. Recall that L is a (fixed) finite unramified
extension of Q, of degree f. Let
K ¥ GL,(0y)
and K; be the first principal congruence subgroup, i.e. the kernel of the
mod p reduction morphism K — GLa(FF;). Let Z be the center of G and

Zy = Z N Ky. Let mg, = mg, /7 denote the maximal ideal of the Iwasawa
algebra F[K/Z1], which carries a conjugate action of K. Denote

I € F[GLy(F,)] = FK/Z1] /mk,, T € FK/Z]/mk,.

Note that I is a finite dimensional F-algebra but not a group algebra. Let
I C K denote the (upper) Iwahori subgroup, I1 C I the pro-p-Iwahori

subgroup and
def [)‘] 0 X
H_{<O M),)\,uqu}

We have I = H x I.



274 Yongquan Hu and Haoran Wang

We call a Serre weight an isomorphism class of irreducible representa-
tions of I' over F,. We take F large enough and fix an embedding F, < F,
so that any Serre weight is defined over F. Then a Serre weight is (up to
isomorphism) of the form ([5, Prop. 1])

Sym"™F? @g (Sym”" F2)F* @p - @g (Sym" ' F2H)™ " ©p 1 o det

where 0 < r; < p — 1, 17 is a character of F and Fr : (‘;Z)H (‘lef ZZ)
is the Frobenius on I'. Following [15], we denote this representation by

(7107 o 771f71) 0y .
For n > 0, we say a Serre weight (rg,--- ,7_1) ® 1 is n-generic, if

n<r,<p—2-n, V0O<i<f—-1

Note that the existence of an n-generic Serre weight implies implicitly p >
2n + 2.
If o is a Serre weight, let Projro (resp. Projzo) be a projective en-

velope of o in the category of I'-representations (resp. f—representations),
and Injp o (resp. Injz o) be an injective envelope of o in the category of

I-representations (resp. f—representations). Note that Projr o is isomorphic
to Injp o, but Projr o is not isomorphic to Injro. However, we have the
following fact: if ¢ denotes the central character of o then

(2.1) (Injz 0)" 2 Projz 0¥ = (Projz o) ® ("' o det
where the second isomorphism holds as oV ® (1 o det.

If X = (\i(®i))o<icy—1 is an f-tuple Wlth Xi(zi) € Z £ x;, we define
(following [15, §2])

e(N) 1 %(p -1+ Zp -\ (mz))) otherwise.

One checks that e(\) € Z @ (EB sz) see [15, Lem. 2.1]. If o = (rg,- -,
rr_1) @1 is a Serre weight, we deﬁne

(2.2) A(0) = No(r0), -+ Ag-1(rp-1)) @ det"orrey
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provided that 0 < A;(r;) < p — 1 for all 4, in which case we call A\(o) the
evaluation of A at o; otherwise we leave A\(o) undefined.
The following lemma is an exercise left in the proof of [15, Lem. 12.8].

Lemma 2.1. Let 0 = (rg,--- ,rj_1) @ n. Let \, X be two f-tuples with
Ni(xi), Ni(x;) € Z £+ x; and such that

0< )\Z<Tz),)\;(n) <p—1, V0<i< f — 1.
Assume that X\, X' satisfy the following condition:
(23) )\Z(xz) = A;(:L‘Z) — )\7;_1(337;_1) — )\;71(1‘1’_1) €z, Vo<i<f-—1.

Then A(o) = N(o) as Serre weights if and only if X = X as f-tuples.

Proof. The sufficiency is trivial. To prove the necessity, assume A(o) = X (o).
This is equivalent to

(2.4) Ai(ri) = Nj(ri), YO<i< f—1
and
(2.5) e(\)(ro, -+ ,rp—1) = e(N)(ro,--+ ,75-1) (mod p/ —1).

If Ap_1(zp—1) = Np_y(zp-1) € Z, equivalently, either both Ap_i(xf_1)
and N (zp-1) lie in Z + 241 or both in Z — x¢_y, then (2.4) implies the
equality As_1(zy—1) = X;_;(x¢—1). Hence, the assumption (2.3) allows one
to show inductively that A;(z;) = A,(z;) for all 0 <4 < f — 1.

If Ap—1(xp1) = Np_y(z-1) ¢ Z, equivalently, one of As_i(zs—1) and
N_y(zy—1) lies in Z+z ;1 and the other lies in Z—z 41, then by definition
of e(\) and (2.4) we have

e (0, 71) = eN) (1o, g 1) = £ (0T = 1),

a contradiction to (2.5). This finishes the proof. O

Given a Serre weight o, it is well-known that o' is one-dimensional over
I, and we denote by X, the character of H, also of I, acting on ¢’*. Given

a character x : H — F*, denote by x* the character x*(h) def X(shs) for
s = ([1) (1)) and h € H. If x # x®, then there exists a unique Serre weight
denoted by o, such that H acts on cr{(l via x.

For convenience, we often write S for the set Z/fZ, identified with

0,--,f —1}.
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2.1. The structure of Injr o

Let o be a Serre weight. The structure of Injp o is studied in detail in [15,
§3-84] and generalized in [32, §5]. We first recall the following useful result.

Proposition 2.2. Let 7 be a Jordan—Hélder factor of Injr 0. Among those
subrepresentations of Injr o whose cosocle is isomorphic to T, there is a
unique one, denoted by I(o,T), such that o occurs with multiplicity 1. More-
over, I(o,T) is multiplicity free.

Proof. This is [15, Cor. 3.12] if ¢ is 0-generic, and is [32, Lem. 5.1.9] in
general. O

Corollary 2.3. Let V be a subrepresentation of (Injp o)¥* for some s > 1.
Then for any Serre weight T, we have [V : o] > [V : 7]. If, moreover,
cosocr (V) is isomorphic to 79" for some r > 1, then [V : o] = [V : 7].

Proof. Using that socr (V) has the form ¢®% for some s’ < s, we can con-
struct a finite filtration of V such that each graded piece has socle isomorphic
to o and o occurs only once there. Hence we are reduced to the situation in
which socp(V) = o and [V : ] = 1, and the result follows from Proposition
2.2. The second assertion is clear by duality using (2.1). O

Following [15, §3], the Jordan-Hoélder factors of Injp o can be described
as follows. Let xo,...,25_1 be variables, and define the set Z(xq,--- ,z7_1)
of f-tuples A aof (Mo(zo), -+ s Ap—1(zf—1)), where Xo(x0) € {x0,p—2—x0E1}
if f=1,and if f > 1 then

(i) Ni(x;) e {xjyzi £, p—2—2a5,p—2—a;, £ 1} fori e S

(ii) if )\1(131) S {l‘i, T; = 1}, then )\i+1(13i+1) S {xi+1,p —2— l’i+1}

(i) if Ni(z;) e {p—2—xs,p—2—a; £1}, then \iy1(zit1) € {wim1 £ 1,p—

2 — Ti+1 + 1}
with the convention zf 2o and Af(zy) & Xo(zo). By [15, Lem. 3.2],
each Jordan-Holder factor of Injp o is isomorphic to A(o) (see (2.2)) for a
uniquely determined A € Z(xo,--- ,xy_1). If o is 1-generic, then A(0) is a
genuine Serre weight for any A € Z(xo, -+ ,xy_1).
For A € Z(zg, -+ ,xf_1), set

SN Y lies: M) e{wit1l,p—2—2+1}}).

By abuse of notation, we also write S(7) = S(A) if 7 = A(0).
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Recall from [15, Def. 4.10] that, given \,\" € Z(xg,--- ,z¢_1), we say
that A and X are compatible if, whenever X\;(x;), N;(z;) € {z; £1,p —2 —
x; — £1}, the signs of the £1 are the same in \;(z;) and X;(x;). Note that, if
S(A)NS(N) =0, then A and X are always compatible. The following result
determines the structure of (o, 7), see [15, Cor. 4.11] and [32, §5].

Proposition 2.4. Let 7,7 € JH(Injp o) which correspond to \, N € I(xo,
-, x5_1), respectively. Then 7' occurs in I(o,T) as a subquotient if and
only if N < X\, meaning that S(\') C S(A\) and X\, X' are compatible.

The notion of compatibility can be defined for more general f-tuples v =
(vi(x;)); with v;(2;) € Z4x; in an obvious way: given v,/ and i € S, we say v
and v/ are compatible at i if, whenever v;(z;), vi(x;) € {x;£1,p—2—x; —£1},
the signs of the +1 are the same. We say v and v/ are compatible if they are
compatible at all i € S. Also set

def

Sw)={ieS:vi(x;) e{wi+1,p—2—z +1}}.

We say v < v/ if S(v) C S(') and v, are compatible. Note that if vy, vp <
V' for some common ¢/, then vy and v are automatically compatible.

We establish some combinatorial lemmas on Z(xg, -+ ,xs_1) which will
be used in §4.

Lemma 2.5. Let \, N € Z(zg, - ,x5_1). Let 8" be a subset of S(\)NS(N)
such that X and N are compatible at any i € S”. Then there exists a unique
N'e I(xg, -+ ,xp—1) with S(N") = 8" and such that X" is compatible with
both \ and N .

Proof. This is a direct check; a similar check can be found in [47, Lem. 2.19].
Note that, in the special case S” = S(A\)NS(N'), i.e. A and N are compatible,
A" is given by the intersection AN X, see [15, Lem. 12.5] and the construction
before it. O

Lemma 2.6. Let \, N be f-tuples with
(), Ni(z3) € {:zi,a:i +1l,p—2—a;,p—2—a; & 1}, Vi e S.

(i) Xo X is compatible with X' and S(A o X') = S(A\)AS(N).
(ii) If i ¢ S(\) NS(N), then

NoXN)i(z;) e {wjymi £ 1, p—2—2;,p— 2 —; £ 1}.

Proof. This is a direct check using the following table. O
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Ai(Ap(x)) [ Nowy) =i | ay—1 xv+1 |p—2—z|p—1—a;|p—3—u

i) = Z; x; — 1 zi+1l |p—2—z|p—1—2;|p—3—x;
T —1 z;—1 T —2 T p—=3—zi|p—2—xi|p—4—x;
z;+1 zi+1 x; z;,+2 |p—1—-z;| p—x; |p—2—m;
p—2—z; | p—2—-x; |[p—1—z;|p—3—uxz T; x; — 1 x; + 1
p—1—a;|p—1—2;| p—z |p—2—2;| x;+1 T T+ 2
p—3—z; | p—3—xi |p—2—z|p—4—z;| x—1 Ti—2 x;

Lemma 2.7. Giwen A\, X € Z(xo,--- ,xf_1), the condition (2.3) of Lemma
2.1 is satisfied for X and N'. Moreover, giwven X\, X, p, ' € I(xo, -+ ,x5-1),
(2.3) is satisfied for Aoy and X o u'.

Proof. The first assertion is immediate by definition of Z(xg,--- ,xzs_1). The
second one is a direct check using the table in the proof of Lemma 2.6. [

Lemma 2.8. Let 7,7 € JH(Injp o) and assume S(7)NS(7') = 0. Then 7/
is a subquotient of Injp 7 and I(7,7') contains o as a subquotient.

Proof. Let A, € Z(xg,--- ,x¢_1) be the elements corresponding to 7, 7’ re-
spectively. Let v = NoA™!, where A~! is the unique element in Z(zg, - - - JLfo1)
defined by demanding the formal identities A\;*(\;(2;)) = z; for all i € S.
Then v is an f-tuple with v;(z;) € Z £ x; and such that X' = vo A. Tt is
clear that S(A\™1) = S()), so S(N)NS(A™1) = () by assumption and Lemma
2.6(i1) implies that

vi(z;) € {zj,zi £ L,p—2—x5,p—2—z; £ 1}

for all i € S. Moreover, using the fact S(\')NS(A~!) = 0, one checks as in the
proof of [47, Lem. 2.20(iii)] that v is actually an element of Z(xzg, - ,x5_1)
and by construction 7/ = v(7). To see that o occurs in I(7,7"), by Proposi-
tion 2.4 it is equivalent to check that A< v, but this follows from Lemma,

2.6(i) as SN)NSAH) =SN)NS(\) = 0. O
2.2. The structure of Injs o

Let o be a Serre weight. In this subsection, we study the structure of Injg o
under some genericity condition on o.
We have a short exact sequence (e.g. [1, Prop. 18.4])

(2.6) 0 — Injp o — Injg 0 — Injp o @ H'(K1/Z1,F) — 0
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with H'(K1/Z;,F) being equipped with the conjugate action of K. This
action of K on H'(K;/Z1,F) factors through I'. By [15, Prop. 5.1] we have
a decomposition

H'(K1/Z1,F) = @5 Va,

€S

where Va; denotes the T-representation (Sym?F? @ det™!)™" for i € S. Re-
mark that Va; is self-dual in the sense that (V5,;)Y = Va ;.

Definition 2.9. For x € {+,—} and i € S, we define two f-tuples 5} and
p; as follows.

o (67)i(xs) =z %2 and (0))j(z;) = x5 if j # 1.
o If f =1, ,uar(aco) =p—3—a9 (md,uo(xo) =p—1—x02 If f > 2,
(uf)i(ws) = zix 1, (u7)im1(wio1) = p = 2 = @1, and (7);(z;) = @ of
j & {i,i —1}. It is direct to check that i€ I(xo, -+ ,xp_1).
We make the convention that —x = — if x = +, and —% = + if x = —.
By definition, we have
o Jomg oy f=1
(2.7) 51.{%0% $>3

% (e} * =
(2.8) (w0, w7-1) = { pon

Due to these facts, we sometimes need to discuss separately these two cases.

By [15, Cor. 5.6], u} (o) are exactly the set of Serre weights which have
non-trivial T-extensions with o. More precisely, dimp Ext{.(,0) = 1 if and
only if 7 = pf (o) for some pair (7, *). Denote

E(0) Y {pi(0) i e 8% e {+,—}},

forgetting the undefined ones. It is clear that 7 € &(0) if and only if o €
& (7). The following result will be frequently used later on.

Lemma 2.10. (i) Let o be a Serre weight. Assume o is 0-generic if f >
2, and o = Sym"F? (up to twist) for 0 < r < p—3 if f = 1. Then
EXt}{/Zl (0,0) =0.

3We caution that the definition in the case f = 1 is different from the one of [47,
Def. 2.8].
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(ii) Let 0,0’ be 0-generic Serre weights and assume o # o'. We have
isomorphisms

Ext}(/z1 (0,0") = Ext%(a, o) = Exti(o,0),

which are nonzero (hence have dimension 1 over F) if and only if o' € & (o).

Proof. (i) For f > 2, it is proved in [43, Prop. 2.21]. Below we give a simpli-
fied proof (based on loc. cit.) which treats both cases. If f = 1, remark that
Ext}(/zl(SympﬂFQ,Symp72IF2) % 0 and Ex‘c}(/zl(Synlpfllﬁﬁ,Symp*?’IF2 ®
det) # 0.

For a contradiction, let 0 - 0 — V — ¢ — 0 be a nonsplit K-extension
on which Z; acts trivially. Let w € V be an H-eigenvector of character
Yo such that its image in the quotient o is nonzero and lies in ot. We
will prove that w is fixed by I, thus by Frobenius reciprocity we obtain a
K-equivariant surjection Indf{ Xo — V which is impossible. Firstly, as in
the proof of [43, Prop. 2.21], w is fixed by ((1) OlL) because none of the H-
characters {xa;,i € S} can occur in Vg by the genericity of o (this needs
the assumption r < p — 3 when f = 1). Secondly, let Nj = (pk%% (1)) for
k > 0 and consider the following operators (recall that we have fixed an
embedding F, — IF)

Xii= A ([i] ‘f) cF[N,], icS.

A€F,

It is easy to see that X;w has H-eigencharacter Xal-_l. If we write ¢ =

(ro,...,7¢—1) ®n, then none of {on;(nﬂ),i € S} can occur in o|g by the

genericity of o, see [15, Lem. 2.7]. We deduce that XZ""'Hw = 0, and so
XPw =0foralli € S. Since {X?,i € S} topologically generate the maximal
ideal of F[N1], w is fixed by Ni. Since I;/Z; is generated by ((1) OIK) and
N1, w is fixed by I; as claimed.

(ii) It is a consequence of [15, Cor. 5.6]. O

On the other hand, denote
Alo) = {5i(0) i€ Sox € {+, -1},

again forgetting the undefined ones.

Lemma 2.11. Let 01,09 € JH(Injp o) be compatible. If o1 # o3, then

({0'1} U A(Ul)) N ({(72} U A(Ug)) = 0.
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Proof. We only give the proof of the assertion A(oq1) N A(cy) = 0); the other
cases can be treated similarly. It is equivalent to showing that the equation
(6; o M1)(0) = (6;? 0 A2)(a), where A1, A\g € I(wo,--- ,z5-1) are compatible,
has no solution other than (i1,*1) = (i2,*2) and Ay = A9. By definition
of Z(xg, -+ ,x5_1), it is clear that the condition (2.3) holds for the pair
(6;) © A1,0;2 0 A2), so Lemma 2.1 applies and implies §;" o Ay = J;? o \g
as f-tuples. If ¢ ¢ {i1,i2}, then it is obvious that (A1);(z;) = (Aa)i(z;). If
i € {i1,i2}, then we must have (A\1);(x;) — (A2)i(z;) € {0,£2,£4}, and the
definition of Z(zo,--- ,z¢_1) and the compatibility between A; and Ay force
that (A)i(zi) — (A2)i(zi) = 0. Hence A1 = A9, and consequently (i1,%1) =
(ig, *2). ]

By [15, Prop. 5.1, Prop. 5.4], if ¢ = (rg,--- ,7rf—1) up to twist with
0 <r; <p-—3 for all i, then

(2.9) o @ H'(K1/21,F) 2 0% & (@seao) 9)-
In general, for any Serre weight o, we have by [15, Cor. 5.5]
(2.10) socr (0 @r H'(K1/Z1,F)) 2 0% @ (@sen(0) 9)-

Proposition 2.12. (i) Assume o is 2-generic and, if f =1, 0 % Sym*F? ®
det®. Then there is an isomorphism of I'-representations

(Injp o) @r H'(K1/Z1,F) 2 (Injr o)™ @ ( Bsen(o) Injr 0).
(i) If f =1 and o = Sym*F? ® det?, then
(Injr 0)®@eH' (K1/Z1,F) = (Injp 0) (B¢ (o) Injr ) S(Sym? ™ F@det* ™).

Proof. (i) It is a general fact that (Injp o) ¢ H'(K1/Z1,F) is again an injec-
tive [-representation, see [1, Lem. 7.4] (combined with [1, Thm. 6.4]). Hence
the natural embedding o @ H'(K1/Z1,F) — (Injp o) @p H'(K1/Z1,F) ex-
tends to an embedding

(2.11) Injp (o ®@r H'(K1/Z1,F)) < (Injp o) @r H' (K1/Z1,F).

By the genericity assumption on o, the isomorphism (2.9) holds. Moreover,
if 6 € A(o) and if § = (s, -+ ,s7-1) up to twist, then 0 < s; < p — 2 for
alli e Sif f > 2 (resp. 1 <59 <p—2if f =1) and not all of s; are equal
to 0 so that dimpd > 2. This implies dimg Injp 6 = (2p)f, see e.g. [15, §3].
Hence, (2.11) is an isomorphism for the reason of dimensions.

(ii) It is a direct check using [15, Prop. 5.4]. O
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For the rest of this subsection, we assume that o is 2-generic. We deduce
from (2.6) and Proposition 2.12 that, ignoring multiplicities,

(2.12) JH(Injz o) = JH(Injp 0) U ( Usea (o) JH(Injr 6))

where, if f =1 and ¢ = Sym?F? ® det?, there is an extra Jordan-Holder
factor Sym?~!F? @ det®*!. As a consequence, any Jordan-Hélder factor of
Injz o has the form A(o) or (Ao )(o) for some X\ € Z(xg, -+ ,271) and
(i,%) € § x {+, —}. Conversely, any Serre weight of one of the two forms is
actually a Jordan-Holder factor of Injx 0. Indeed, this follows from [15, Lem
3.2(i)], noting that the 2-genericity of o implies that dimg o, dimp 6 (o) ¢
{1,¢}if f>2orif f =1 and dimpo # 3; if f =1 and o = Sym?F? @ det®
(so dimg &; (o) = 1), although the extra Serre weight Sym?™'F? ® det**™!
is not a Jordan-Holder factor of Injpd; (o) (see [15, Lem. 3.2(ii)]), it is a
Jordan-Holder factor of Injg 0.

Convention. To give a uniform treatment, in the case f = 1 and ¢ =
Sym?F2®det® it is convenient to express Sym?~'F2@det" ™ as (ug 0dy ) (o).

Definition 2.13. Let 7 € JH(Injz o). We say that 7 is a new (resp. old)
Serre weight, if T does not occur in Injpo (resp. occurs in Injro) as a
subquotient.

For example, Serre weights in A(o) are all new.

Lemma 2.14. Let § = 67 (o) for some pair (i,*) € S x {+,—} and X €
I(wo, -+ ,xy—1). Then \(§) is new (in Injz o) if and only if

(2.13) Ni(zi) € {mi,wix L,p—2 —xj,p— 2 —z; — (x1)}.

As a consequence, if A(J) is new, then so is any Jordan—Hélder factor of

1(5,\(5)).

Proof. We assume * = +, the case * = — being similar. Write v = Ao (5i+.
Assuming (2.13) holds, we have \;(z;) € {zs,z; + 1,p —2 —x;,p — 3 — 25}
and
vi(w;) € {zi + 2,2 +3,p—4—xi,p— 5 — i},

so v(o) is not a subquotient of Inj;- o by Lemma 2.1 (cf. the proof of Lemma
2.11), namely v(o) is new. For the converse, assume (2.13) does not hold,
ie. A\i(x;) = x;—1or p—1—ux;, then v;(x;) = z;+1 or p—3—x;, respectively.
On the other hand, vj(x;) = Aj(z;) for j # 4. It is then direct to check that
v defines an element in Z(xo, -+ ,xs_1), i.e. A() is old. This proves the first

assertion and the second one follows from this combined with Proposition
2.4. O
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Lemma 2.15. Let T be a Jordan—Holder factor of Inji o which is new. Then
there exists a unique § € A(co) such that T occurs in Injp d.

Proof. A Jordan-Hélder factor of Injp (o) has the form v(o) with v =
Ao, for X € I(wo, -+ ,x51). If x =+, then

(2.14) vi(x) e{p—-3—wyp—4—25,p—5— 2,7 + 1,2, + 2, 2; + 3},
while if x = —, then
(2.15) vile)) e{p+1—zyp—xiyp—1—ax;,2; — 3,2, — 2,2, — 1}.

Therefore, for any i € S, Injp 6;7 (o) and Injp 6; (o) can not have common
Jordan—-Hélder factors by Lemma 2.1 (cf. the proof of Lemma 2.11).

Next, we show that if ¢ # ¢ and if 7 is a common subquotient of
Injp- 0% (o) and Injp 8% (o), then T is an old Serre weight, i.e. 7 € JH(Injp o).
We only check this for (,+") = (4+,4), and the other cases can be treated
similarly. Let A € Z(zo,--- ,xzf_1) (resp. ') be the element corresponding
to 7 when viewed as a subquotient of Injj- 0, (o) (resp. Injp 7 (), so that
7=v(0) =1/(0) where v = Ao §; and v/ = X 0§} . Then v =/ in view of
Lemma 2.1. Since i # i/, we have
(2.16) vi(z;) = vi(z;) € {wj, ;£ 1,p—2 —xj,p— 2 —x; £ 1}
for any j € S; indeed, this relation holds for v;(z;) if j # i and for v}(z;)
if j #4', and we recall i # ’. One then checks that v defines an element of
Z(xo, - ,x¢—1), so that the corresponding Serre weight 7 is old. O

Remark 2.16. (i) Here is an example of an old Serre weight which occurs
in Injp & for distinct 6 € A(o). Take f =2 and o = (r9,71), then (p — 3 —
10, p — 3 — 1) @ det™ TP s old and occurs in both Injp 01 and Injp b,
where 61 = (ro +2,71) ® det™! and §, = (ro,m1 +2) ® det™P.

(ii) The proof of Lemma 2.15 shows that if T is a common subquotient of
Injp 6% (o) and Injp 03 (o) with i # ', theni,i' € S(v) and so |S(v)| > 2. For
example, in the case (x,%") = (+,4), this follows from (2.14) and (2.16).
As a consequence, if T is a Serre weight such that Ext{:(r,0) # 0 so that
|S(7)| = 1, then there is at most one § € A(o) such that T occurs in Injp 6.
Actually, § does exist: if T = p} (o), then § = §; (o).

The next auxiliary lemma will be used in §4.

Lemma 2.17. Let i € S and x € {+,—}. Let \j, X}, ji; be functions of the
form Z + x;. Assume
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(a) Ni(x;) €{zi,x;x1L,p—2—x5,p—2—x; — (x1)};
(b) Ni(zi), pi(wi) € {mg, v £L,p—2 -z, p— 2 —x; £ 1};
(c) the relation \;(z; x 2) = Xi(wi(x;)) holds.

Then i ¢ S(A) and i € S(N') NS(u). Moreover, u;(x;) € {x;,x;*1,p—2 —
z,p—2—xi — (+1)}.

Proof. Without loss of generality, we may assume x = 4, and therefore
Ai(wi +2) €{wi + 2,2 +3,p—4—zi,p—5—x}.

By (b), the table in the proof of Lemma 2.6 lists all the possible values of
N;(pi(z;)). Together with (c), we deduce that either

x;+ 1
p—1—ux

x;+ 1

Ai@i +2) = 2 + 2, )\Q(%‘)—{ p—3—

o |

in which case A;(x;) = x;, or

. PN B e N ) p=3—m
Ai(zi+2) =p—4—x;, N(z)= { b3 TP wi(x;) = { ot 1
in which case \;j(z;) = p — 2 — ;. The result follows from this. O

2.3. An extension lemma

If 0,0’ are two distinct O-generic Serre weights such that Ext%(a’ ,o) # 0,
then this space has dimension 1 by Lemma 2.10(ii). We denote by E, , the
unique up to isomorphism nonsplit I'-extension (actually I'-extension)

0—=0— Eyp — 0 —0.

The aim of this subsection is to prove the following (easy) fact about the
structure of the tensor product EO,, k(o) OF Vo, for i € S, where V5 ; denotes

the T-representation (Sym?F? @ det™')™". It will be used in the proof of
Theorem 2.23.

Lemma 2.18. Assume o is 2-generic. Let p = pf(o) for some i € S and
* € {+,—}. Then E, ,®@rVa,; admits a quotient isomorphic to E(Sf*(o)7uf*(

o)*
Proof. The genericity condition on o implies that p is 1-generic. By (2.9)
and Lemma 2.11, E,,, ®r Va; has Loewy length 2 and is multiplicity free,
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with Jordan-Hélder factors {o, 67 (0), 1, 6 (1) }. We claim that
Homg(Ey,, ®F Vo, 9; "(0)) = 0.

By [1, Lem. 7.3], this is equivalent to showing Homg(Ey, 4, 0; “(0) @ Va,) =
(as Vo is self-dual). It suffices to show that y is not a Jordan—-Holder factor
of §;"(0) @ Va,;. Write 0; *(0) = (s0,---,8f-1) up to twist. Since o is 2-
generic, we have 0 < s; <p—2and2 <s; <p—4forj#:.If0<s; <p-3,
then [15, Lem. 3.5, Prop. 5.4(i)] implies that

6; (o) ®r Vo =0, (0) @0 & 6; " (6; (o)),

forgetting the undefined ones. Noting that the condition (2.3) holds for the
pair (i, 0; *) and also for (p,0; * 0, "), Lemma 2.1 implies that ; does not
occur in the above decomposition, proving the claim. If s; = p — 2 and if

f > 2, then using [15, Prop. 5.4(ii)] we have
JH((S ( Qr VQz {U, ,L_ ’ Mil(dz_*(o—))}

and the claim follows as above. Finally, the case f = 1 and sg = p — 2 can
be checked directly and we leave it to the reader.

There exists a unique quotient of E, , ®@r Va; with socle ¢; *(0), say Q.
Since E,, ®r Va2, has Loewy length 2 and since ¢; *(o) does not occur in
its cosocle by the claim, @) also has Loewy length 2 and only Serre weights
in &(0; *(0)) can occur in cosoc(Q)). Comparing Jordan-Holder factors, we
find cosoc(Q) C d; *(p) if f > 2 or cosoc(Q) C 67 (u) if f = 1, which has
to be an equality because cosoc(Q)) is nonzero. In both cases, one checks
cosoc(Q) = p; “(o), which finishes the proof. O

Remark that, under a slightly stronger genericity condition on o, the
precise structure of E,, =+ ) ®r V2, is determined in [12, §6.3].
2.4. The representation I (o, T)

The aim of this subsection is to generalize Proposition 2.2 to f—represent—
ations.
Definition 2.19. Fiz (i,*) € S x {+,—}. If A € I(xo,--- ,x5_1) satisfies
(2.13), i.e

Ai(zi) € {wi,aix L,p—2—ai,p— 2 —m; — (x1)},

we define A\ € L(xo,--- ,xf_1) to be the unique element satisfying (2.13),
compatible with A, and such that S(A) = S(A\) U {i}.
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The uniqueness of A in Definition 2.19 is clear, because for each j €
S(A1) = S(A) U {i} we have chosen a sign £1 for (A1);(z;). The existence
of A\ is also easily verified. Remark that the definition of A depends on the
fixed pair (i, %), although this is not indicated in the notation. Note that
A < A and A is compatible with any A € Z(zo,- - ,x5_1) satisfying X' < Ay,
by the discussion after Proposition 2.4.

Remark 2.20. Fiz (i,+) € Sx{+,—} and let A € I(xo, - ,xy_1) satisfying
(2.13). It is direct to check that: if i € S(A) then \y = \; if i ¢ S(\), then

A = /L;‘ oA\ if )\Z(xl) = Ty

' :ui_*o/\ if )\i(xi):p—Q—xi.

Lemma 2.21. Let o be a Serre weight and 6 = 0} (0) be well-defined for
some (i,%) € & x {+,—}. Let X € I(xo, - ,xp_1) satisfying (2.13) and
assume (X o 8F)(o) is well-defined.

(i) If i € S()\), then Exth(\(d),0") = 0 for any o' € JH(Injp o).
(i) If i ¢ S(N), then A\ (o) is the unique Jordan—Holder factor of Injpo
which has nontrivial I'-extensions with \(6).

Proof. (i) This is a direct check. We assume * = + without loss of generality.
By (2.13), the condition i € S(\) is equivalent to \;j(z;) € {x;+1,p—3—z;}.
As a consequence, we have

(Ao df)i(ws) € {xi +3,p— 5 — x4},

so A(9) can not lie in &(0”) for any o’ € JH(Injp o) by Lemma 2.1 together
with (a variant of) Lemma 2.7. This proves (i).

(i) We have Ao ¢ = 0f oA if A € Z 4+ x; and Ao o] = 6, " o X if
Ai(zi) € Z — x;. Hence, when i ¢ S()), using (2.7) and Remark 2.20, we
have if f > 2

v [ (@ oN(@) = (o N)(@) if Aws) =

If f =1, we need to replace p by p; " (only the case \;j(z;) = x; can
happen). This implies Ext.(A(6), Ai(c)) # 0. The rest can be checked as in
(i). O

The main result of this subsection is Theorem 2.23 below. Before stating
it, we first prove the following general fact without any genericity assumption
on g.
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Lemma 2.22. For any Serre weight o and any 7 € JH(Inji o), there exists
a subrepresentation V' of Injz o such that cosocs(V) = 7 and [V : o] = 1
(hence o occurs in 'V as subobject).

Proof. The assumption 7 € JH(Injz o) implies that there exists a nonzero
morphism Projz7 — Injzo. Using (2.1) we obtain a nonzero morphism
Projz o — Injg 7. If we take such a nonzero morphism f : Projzo — Injr 7
with [Im(f) : o] minimal, then @ = Im(f) is a quotient of Projx o with socle
7 and such that [@ : 0] = 1 (otherwise, 1 < [rad(Q) : 0] < [Q : 0], and we
could construct a nonzero morphism f’ : Projz o — rad(Q) — Injz 7 which
contradicts the choice of f). Taking dual and twisting suitably, we obtain a
subrepresentation V' of Injy o as required.
As a byproduct, we see that 7 € JH(Injg o) if and only if ¢ € JH(Injx 7).
O

Theorem 2.23. Let o be a 2-generic Serre weight and 7 € JH(Injz o). Let
V' be a subrepresentation of Injx o such that cosocs(V) =7 and [V : 0] =1,
as in Lemma 2.22.

(i) If T is a new Serre weight (cf. Definition 2.13), and if T = \(J) for
(uniquely determined) § = 0;(0) € A(o) and X € Z(xg,--- ,Tf_1)
satisfying (2.13) (cf. Lemmas 2.14, 2.15), then V&1 = I(o,7) and
there exists a short exact sequence

(2.17) 0—I(o,n) >V —=I(§,7)—0,

where T, def Ai(o) and I(o,m), I(0,T) are I'-representations constructed
in Proposition 2.2. In the case f =1, dimpo = 3 and 7 = (1, 09, )(0),
the sequence should be replaced by

0—1I(o,n) >V —=1—0.

Moreover, such a representation V' is unique (up to isomorphism); we
denote it by I(o,T).

(i) If T is an old Serre weight, then V is actually a I'-representation and
coincides with the representation I(o,T) constructed in Proposition
2.2; in particular, such a representation V is unique (up to isomor-
phism).

Remark 2.24. The genericity condition in Theorem 2.23 may not be op-
timal. But, the following example shows that the result is false without any
genericity condition: when f = 1, there exists a uniserial I'-representation
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of length 3, with (the graded pieces of ) the socle filtration given by Sym'F?,
SymP~2F? ® det, SymP2?F? ® det.

Before giving the proof of Theorem 2.23, we first establish some conse-
quences.

Corollary 2.25. Keep the notation in Theorem 2.23. The representation
I(o,7) is multiplicity free.

Proof. If T is a subquotient of Injp o, then it follows from Proposition 2.2.
Otherwise, we use the exact sequence (2.17): on the one hand, both I(o, 7)
and [(d,7) are multiplicity free, on the other hand, since 7 is a new Serre
weight any Jordan—Holder factor of (4, 7) is also new by Lemma 2.14. [

Corollary 2.26. If V is a subrepresentation of (Injg a)®s for some s > 1,
then [V : o] > [V : 7] for any Serre weight 7. If, moreover, cosoc(V) is
isomorphic to T®" for some 2-generic Serre weight T and some r > 1, then

V.o =[V:7].
Proof. The proof is the same as that of Corollary 2.3. O

We divide the proof of Theorem 2.23 into two lemmas: Lemma 2.27 for
Case (i) and Lemma 2.29 for Case (ii).

Lemma 2.27. Theorem 2.23(i) is true.

Proof. The exceptional case f =1, dimpo =3 and 7 = (y, ©d, )(c) can be
checked directly, so we omit this case for the rest of the proof.

Let V be a subrepresentation of Inj o as in the statement, i.e. cosoc(V') =
7 and [V : o] = 1. We identify Injr o with the subspace of Kj-invariants of
Injg 0. Since V& = VNInjp o, there is an embedding by Proposition 2.12(i)

(218) C Y€ V/VE < Injeo/Injp o = (Injp o) & ( Bsen(o) Injr 8').

Using the fact [C' : o] = 0, (2.18) factors through an embedding C' —
®g Injp ¢ and finally
C — Injp (57

where § = §; (o) is as in the statement of the theorem. In particular, C has
socle § and cosocle 7.

Step 1. Prove that C' = I(, 7). By Proposition 2.2 it suffices to prove
[C : §] = 1. Taking K;-invariants of the short exact sequence 0 — V51 —
V — C — 0 gives an injection

(2.19) C— HYK/Z,,VE) 2 VE @p HY (K, /Z),TF).



On the mod p cohomology for GLs: the non-semisimple case 289

Knowing that [C : 6] > 1, it suffices to prove
VE @ HYK,/Z,,F) : 6] = 1.

However, any o’ € JH(V51) is 1-generic, hence by (2.9) [0'®@rH'(K1/Z1,F) :
0] = 1ifand only if 6 € A(¢”), if and only if 0’ = o by Lemma 2.11 (note that
o is always compatible with o). Since [V5! : 6] = 1 and [c@p H' (K1/Z1,F) :
0] = 1, the result follows. As a consequence, C' is multiplicity free. On the
other hand, since [VX : ¢] = 1, V1 is multiplicity free by Corollary 2.3,
hence V is also multiplicity free as in the proof of Corollary 2.25.

Step 2. Prove that V&1 = [(g, 7). First, if 7/ € JH(I(6,7)) with 7/ =
N(0) for X € Z(xo,--- ,x_1), then 7/ is also a new Serre weight by Lemma
2.14. By definition it is easy to see that S(A]) € S(A1) and A is compatible

with A;, hence 7/ def Ai(0) occurs in I (o, 71) by Proposition 2.2. Using Lemma
2.21 we deduce by dévissage that if o’ € JH(Injp o) which does not occur in
I(o,m), then

Ext11~, (1(5,7'),0/) =0,

and consequently Homf(VKl,a’ ) = Homg(V,0') by Step 1. However, since
V' has irreducible cosocle 7 which is new, Homu(V,0’) = 0 for any o’ as
above and so Hom=(V %1, ¢') = 0. Using the fact that V5 is multiplicity
free, we deduce V** C I(o,m).

It remains to show the inclusion I(co,7) € Vi for which it suffices to
show that 7 occurs in V& as a subquotient. First assume i € S()), so that
Al = A by Remark 2.20. Using the embedding (2.19), we know that

VE @ HY K,/ Z,,F) : 7] > 1.

However, since 7 = A\(0) € A(n) (as Ay = ), by Lemma 2.11 ¢/ = 7 is the
unique subquotient of I(o, 7) with the property [o'®@rH'(K1/Z1,F) : 7] # 0.
We deduce that 7 occurs in V1 as a subquotient. Assume now i ¢ S(\).
Then 7 = pf(A(o)) if Ai(z;) = x;, or 7 = p; "(A(0)) if Ni(xi) =p —2 — a3,
see Remark 2.20. We prove the assertion in two steps.

(a) The special case S(A\) =0, i.e. 7 = 6. Then n = p (o), and I(o,n) is
just the nonsplit extension of 71 by o. Since we already know V1 C
I(o,m), it suffices to prove VK1 # o which is obvious as Ext% (6,0) =0
by Lemma 2.10(ii) (both o and § are 0-generic). As a consequence, any
f—representation with socle ¢ and cosocle § contains 71 as a subquo-
tient.
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(b) The general case i ¢ S(A). In this case, the same argument as in the
case i € S(\) shows that the Serre weight () occurs in V1. Hence,
V admits a quotient, say V, whose socle is () and cosocle is 7. On the
other hand, the proof of Lemma 2.21 shows 7 = 6 (\(0)) if \i(z;) = z;
or 7 = 6; *(A(0)) if Ni(w;) = p — 2 — z;. Hence, applying (a) to V we
obtain [V : ] # 0, and therefore [V : 7] = [VE1 : 1] # 0 (as 7y is an
old Serre weight of Injx o).

Step 3. Prove the uniqueness of V. By Step 1 and Step 2, it suffices to
prove
dimg Ext(1(6,7), (0, 7)) <1,
and the equality would then follow by the existence of V. The Hochschild-
Serre spectral sequence gives an exact sequence

0 — Ext:(I1(6,7),I(0,m)) — EXt%(I((S,T), I(o,7))
— Hompr (I(8,7),1(0,n) @ H'(K1/Z1,F)).

On the one hand, since the Jordan-Holder factors of I(d,7) are all new
by Lemma 2.14, a standard dévissage argument shows that Exti(I(,7),
I(o,m)) = 0. On the other hand, Lemma 2.11 implies

JH(I(6,7)) N ({o} UA(0)) = {6}

because any Jordan-Holder factor of I(d,7) has the form &;°(o’) for some
o’ € JH(Injp o). Since the socle of I(o,7) @ H'(K1/Z1,F) is equal to o ®p
HY(K,/Z,,F) = ¢% @ (©yea()?d’), we deduce that

dimg Homr (1(5,7),I(o,m) @ H'(K1/Z1,F))
< dimp Homyr (6, I(0, ) @ H'(K1/Z1,F)) = 1.

This proves the uniqueness of V' and finishes the proof. O

We have the following direct consequence of Lemma 2.27, which will be
used in the proof of Theorem 2.23(ii) (i.e. Lemma 2.29) below.

Corollary 2.28. Keep the notation of Theorem 2.23. Assume T = 67(0)
for some (i,%) € S x {+,—}. Then I(o,T) is uniserial of length 3, and (the
graded pieces of ) the socle filtration is given by o, 7, T, with n = pf (o). For
any subrepresentation V of Injg o with [V : 7] > 1, there exists an embedding
I(o,7) < V. Moreover, we have [V : o] > [V : 7].
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Lemma 2.29. Theorem 2.23(ii) is true.

Proof. Let V be a subrepresentation of Injzo as in the statement, i.e.
cosoc(V) = 7 and [V : o] = 1. It is enough to prove V = VEi because
then V' is actually a I'-representation, and Proposition 2.2 applies. Again,
as in the proof of Lemma 2.27, there is an embedding

(2.20) cEv/vE o« P jpo.
deA(o)

We need to prove C' = 0. Assume this is not the case for a contradiction.

Case 1. Assume Ext}(7,0) # 0, i.e. 7 = pi(o) for some i € S and

x € {+,—}. In this case, Remark 2.16(ii) implies that C' < Injp§ where

5 0f (o). Moreover, we have C' = I(§,7): indeed, this is equivalent to

[C : 6] = 1 by Proposition 2.2; but if we had [C' : ] > 2, then [V : §] > 2 and
Corollary 2.28 would imply [V : ¢] > 2, a contradiction. Since Extl (7, 8) # 0,
C = I(6,7) is exactly the nonsplit extension 0 — 6 — Es, — 7 — 0.
Consider V' as a nonzero extension class in Ext%(E(;,T, VE1). As in the proof
of Lemma 2.27, it induces an embedding Es, — V' @y H(K,/Z1,F), and
further an embedding

Es, — VK @p Vo,

because 7 is not a subquotient of VK1 @p Vo j for any j # ¢ by Lemma 2.15.
By [1, Lem. 7.3] and the self-duality of V5;, we finally obtain a nonzero
morphism

0 : Es5, ®p Vo, — VI

On the other hand, letting u def p; (o), Lemma 2.18 implies a surjection
Es, ®r Vo — Esr. By [1, Lem. 7.3] and the self-duality of V5, it induces
a morphism

L Ea,u — E5,T QF ‘/Q,i

which is injective by examining the socles. For the same reason the com-
position 0 o ¢ is also injective. Hence, E, , embeds in V and V/o admits a
quotient @ with socle p (and cosocle 7). But, one checks that 7 = §(u) if
f>2,resp. 7 =9; "(u) if f =1, so Corollary 2.28 applies and implies that
o occurs in V/o as a subquotient. Remark that p need not be 2-generic in
which case Corollary 2.28 does not apply, but if this happens, then 7 has to
be 2-generic and we may apply Corollary 2.28 to the dual of ). Therefore,
we obtain [V : o] > 2, a contradiction. In conclusion, we deduce that C' =0
and V = VK,
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Case 2. Now treat the general case. As observed in Remark 2.16(i), 7
may occur in Injpd for distinct § € A(o). We choose one § in such a way
that (2.20) induces a nonzero morphism C' — Injré when composed with
the natural projection to Injp J; let Cs denote the image. As in Case 1, we
have Cs = I(6,7). Write § = ¢/ (o) for some (i,%) € S x {+,—} and set

i pi(o) = p; *(6). Then 7' has nontrivial extensions with both o and

§. We claim that 7' is a subquotient of I(d,7). Indeed, writing 7 = A(0)
for X € Z(xg,--- ,x¢-1), then Lemma 2.14 implies \;(z;) € {z; — (x1),p —
2 — x; + (x1)} because 7 is old by assumption; in particular i € S(\). On
the other hand, viewing 7’ as a subquotient of Injp d, it corresponds to u; *
which is compatible with A at {i} = S(u; *). The claim follows from this
using Proposition 2.4. By the claim, we may construct a subrepresentation
of V with cosocle 7/ which is not fixed by Kj, but this contradicts Case
1. U

Note that (o, 7) can be viewed as a quotient of Projx 7. Using Corollary
2.25, we have the following dual version of Theorem 2.23.

Theorem 2.30. Let 7 be a 2-generic Serre weight. Among the quotients
of Proji 7 whose socle is isomorphic to o (not necessarily 2-generic), there
exists a unique one, denoted by I(o,T), in which T occurs with multiplicity
1. If moreover o is 2-generic, then this representation coincides with the one
constructed in Theorem 2.235.

Combining Theorems 2.23 and 2.30, we see that I(o,7) is well-defined
provided that either o or 7 is 2-generic.

Corollary 2.31. Let 7 be a 2-generic Serre weight. Let Q be a quotient of
Projg 7 satisfying the following conditions:

(a) [Q:7]=1;

(b) for any Serre weight o in soci(Q), o is a subquotient of Projp 7.

Then Q s multiplicity free and a quotient of Projp 7, i.e. Q is annihilated
by mg, .

Proof. First note that ) is multiplicity free by (the dual version) of Corollary
2.26. In particular, soci(Q) is multiplicity free. If o is a Serre weight occur-
ring in soc(Q), then @ admits I(o, 7) as a quotient by Theorem 2.30. The
morphism @ — @, (0, 7), where o runs over all Serre weights in socy(Q),
is injective as it is injective on socx(Q). By (b), each I(o,7) is annihilated
by mg,, hence so is @, i.e. @ is a quotient of Proj 7. O
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Corollary 2.32. Let 7 be a 2-generic Serre weight. Let Q) be a quotient of
Projg 7 satisfying the following conditions:

(a) socs(Q) = 79" for some r > 1;
(b) rads(Q)/socx(Q) is nonzero and does not admit T as a subquotient.

Then radp(Q)/ soci(Q) is semisimple and there is an embedding

rads(Q)/ socp(Q) — @ 0.
)

ceé (T

Moreover, the length of radg(Q)/ soc(Q) is greater than or equal to r.

Proof. Consider the quotient @/ soci(Q), which is a quotient of Projz 7 and
in which 7 occurs once by condition (b). Then Q/soci(Q) is multiplicity
free by (the dual version) of Corollary 2.26. We denote by soc; (@) the socle
of Q/socx(Q). If ¢ < soci(Q), then Ext%(a, soci(Q)) # 0, and therefore
o € &(7) by (a). As in the proof of Corollary 2.31, we obtain an embedding
Q/soci(Q) — @oI(0,7) where o runs over the Serre weights in soc;(Q).
Note that I(o, 7) is just the nonsplit extension of 7 by o, so Q/socg(Q) fits
in a short exact sequence

0 — soc1(Q) — Q/ soci(Q) — 7 — 0.

Thus, we may identify soci(Q) with rad(Q)/soci(Q), proving the first
assertion.

It remains to show soci (@) has length > r. In fact, this follows from (a),
which implies

dimp Ext%(socl(Q), T) >,
while dimp Ext%(a, 7) =1 for any o € &(7) by Lemma 2.10(ii). O

Remark 2.33. It will be proved in Proposition 3.12 that there exists
(unique) representation Q as in Corollary 2.32 such that rad(Q)/ socs(Q)

@UG&(T) g.

R e

2.5. The structure of I(o, )

Let o be a 2-generic Serre weight. It will be useful to have an explicit de-
scription of the lattice structure of subrepresentations of I(o,7) for 7 €
JH(Injz o). The case when 7 € JH(Inj o) is treated in [15, Cor. 4.11].
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Definition 2.34. Fiz (i,%) € S x {4, —}. Set

def

(2.21) I(Z 5 = (AT) € Z(zo, - xp1) X {0, (4,%)} :

Ni(w;) satisfies (2.13) if T = (i, %) }.
We define a partial order f@*) as follows. Given two elements A= N T),
N =N, T, we say X < X if and only if one of the following holds:

o 7' =T and N < X\, meaning that X', X\ are compatible and S(N') C
S(A);

o T'=0,T = (i,%), and N < Ay, where \y € Z(xg, -+ ,xf_1) is as in
Definition 2.19.

We define a length function on f(i,*) by setting

(2.22) () = (ATWd{E&ﬂ+2§;zaw)

To A = (\T) € I (i,x), We associate a Jordan-Holder factor of Injzo, as

follows:

(2.23) Ao) = { A8 (o)) if T = (i, *).

It is a direct consequence of Proposition 2.12 and Lemma 2.14 that any
Jordan-Hélder factor of Inj o is isomorphic to A(o) for some pair (7, *) and

some X S f(17*)

Corollary 2.35. Fiz (i,%) € Sx{+,—} and let X € f@*). Then the Jordan—
Holder factors of I(O’,X(O’)) are given by

{(N(o): N €Zya, N <A}
and the graded pieces of its socle filtration* are given by:

e o= P No).

N, L(V)=k

4f V is a D-module, (Vk)k>0 denotes the graded pieces of its socle filtration with
convention Vj = soc(V).
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In the exceptional case f =1, dimgo = 3 and X = (1o 5 (0, =)), we forget the
Serre weight & (o) which corresponds to X' = (zq, (0, —)) in JH (I(a,\(0))),
and set K(X) = 2 in the formula of the socle filtration.

Proof. 1t is a reformulation of Theorem 2.23 using Proposition 2.4. O
3. Finite representation theory 11

In this section, we study the smooth representation theory of the Iwa-
hori subgroup I (over IF) and its relation to representation theory of K =
GL2(Op) studied in §2.

3.1. I-extensions

Let o : H — F* be the character sending ([g] [2]) to ad—!, where a,d € Fy.
Let a; := o fori € S (vecall S = {0,..., f —1}).
Lemma 3.1. If x, Y : I — F* are smooth characters such that Ext}/z1 (X,

X)) 175 0, then x' € {Xa;tl, i € S8}. Moreover, in this case we have dimy
EXtI/Zl(X7X/) =1.

Proof. See [43, Lem. 2.4(i)], which is based on [61, Prop. 5.2]. O
We denote by & (x) the set of characters x’ such that Ext} 12,06 X') # 0.
For x' € &(x), we denote by E,/ , the unique nonsplit /-extension

0=x = Eyy—x—0.

Remark that K acts trivially on E,., if and only if ¥’ = yxo; for some
i €S8, see [43, Lem. 2.4(ii)].

For a character x : I — F*, Proj; /7, X denotes a projective envelope of
X in the category of pseudo-compact F[I/Z;]-modules. For n > 1, define

def .
Wx,n é PI'OJI/Zl X/mn,

where m = my, /,, denotes the maximal ideal of F[I1/Z;]. Clearly, the Loewy
length of W, , is equal to n. We will mainly be concerned with the cases
n = 2,3. For example, W, » fits in a short exact sequence

0—)@X(1§E1 — Wy2 — x — 0.
icS
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For W, 3, we have 0 — soc;(Wy 3) = Wy 3 — W, 2 — 0, with soc;(W, 3)
isomorphic to

x®2f S @ X0 D @ Xai_lozj_l S @ Xociozj_l,

0<i<j<f-1 0<i<j<f-1 0<i#j<f—1

see [12, §5.3]. Let X” denote the direct sum of characters in soc;(W, 3)
which are not isomorphic to x and set

def

(3.1) Wys = Wy3/X".

This representation will play a prominent role in the whole paper. By defi-
nition, W, 3 fits in the following exact sequence

(3.2) 0— X% =W, 53— W2 —0.

Lemma 3.2. We have soc;(W,3) = x®% and there erists a short evact
sequence

(3.3) 0— @ Eyy — Wy3— x — 0.
X' €€(X)

Proof. We know that y®2/ embeds in nyg. Let W;{,E} be the largest quotient
of W%g whose socle is isomorphic to x®2/. We claim that WX’:), = Wx 3 from
which the first assertion follows. By a similar argument as in the proof of
Corollary 2.32, we have

dimp rad(W;ﬁ)/ SOC(W;73) > 2f.

Since rad(W;73)/soc(W;73) = DyespyX and |&(x)| = 2f, the above in-
equality is an equality and the embedding is an isomorphism. Comparing
Jordan—Hoélder factors, we get WX73 = W/X73.

Prove (3.3). Let x’ € &(x) which is a Jordan-Holder factor of W, 3.
Then as seen above X’ occurs in rad(W, 3)/soc(W,,3). Consequently, the
extension FE, ,, embeds in vag. Taking sum, we obtain an embedding
> ovest) Bxx <= W3- To conclude it suffices to check that

Z Eyx = @ Eyx

X'€E(x) X'€E(x)
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It is equivalent to show [Zx’ E, v : x] = 2f, equivalently [Q : x] = 1, where
@ denotes the quotient of Wy 3 by >_ ., Ey . Since [W, 3 : x'] = 1 for any
X' € &(x), we have [@ : X'] =0, and @ admits only x as subquotients. Since
the cosocle of @ is x and Ext}/z1 (x,Xx) = 0, we must have @) = x. This
finishes the proof. O

Corollary 3.3. The I-representation Wx,g 1s annihilated by m%l.

Proof. Let W' be the subrepresentation of W, 3 defined by

0 — soc(Wy3) = W' — @Xaj_l — 0
JES

and W” the corresponding quotient. It is easy to see that W' is isomorphic
to x& @ (@jESEx,xa;1)7 thus W' is annihilated by mg,, as each Ex,xoc;l
is. On the other hand, by (3.3), W" embeds in @jcsEyq, v, hence is also

annihilated by mg,. The result follows. O
3.2. Induced representations

In this subsection, we study the structure of Ind* W, .

Let r be the unique integer in {0, ..., ¢—2} such that x ( 2) = a"n(ad)
for some character n : F* — F*. Write r =}, cop'r; with 0 <i < p— 1.
For n > 0, we say x is n-generic, if n <r; <p—2 —n for all 7.

Following [15, §2], we let 2 (o, - -, xy—1) be the subset of Z(zg, -+ ,x5_1)
consisting of A such that Ag(xg) € {zo,p — 1 — a0} if f =1, and if f > 2,

Ni(x;) €{ziyz; —L,p—2—a5,p—1—2;}, VieS.
For A € Z(xo, - ,x5-1), set

JN Y lies, N@)elp-2—zi,p—1—2,11 CS.

In this way, one checks that Z?(xg,---,zy_1) is in bijection to the set of
subsets of S. By [15, Lem. 2.2], Ind¥ y is multiplicity free with Jordan—
Holder factors

(Mo(r0), -+ s Ap—1(rp-1)) ® detéMN(ro,- ,rf_l)77

for A € P(xg,--- ,x;_1). For notational convenience, if 7 € JH(Ind¥ x) and
corresponds to A, we also write J(7) for J(\).
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Since we prefer to use Indf X rather than Indf x®, to be compatible
with the notation in [15, §2], we introduce the following notation. Let oy =
(p—1—=ro,---,p—1—rpq)®det'n. For J C S, let \j € P(xg,--- ,T¢-1)
be the unique element with J(A;) = J and set (as in (2.2))

o1 % As(op).

Note that in the case r # 0, the socle (resp. cosocle) of Indf x is irreducible
and isomorphic to oy (resp. os). With the notation introduced at the begin-
ning of §2, we have oy = 0, and os = 0,. Moreover, x is n-generic if and
only if o is n-generic.

Lemma 3.4. Let x be a 2-generic character. Then Indf{ W, 2 is multiplicity
free.

Proof. This is a direct check using the 2-genericity of y. O

Definition 3.5. Let 7 (resp. 7') be a Jordan—Hélder factor of IndX x (resp.
Ind¥ x’) such that Ext}{/z1 (1,7") # 0. We say that the extension E. ; occurs

in Ind} E,/, if Indf* By, admits a subquotient isomorphic to E.: .

Lemma 3.6. Let \,\' € P (zq,--- ,x5_1). Assume that for some j € S,

J=1gJN), JX)=JNU{j-1}
If f =1, then Xo(xo) = o, Ny(®o) =p—1—x0, and N = py o X. If f > 2,
then

X:{ py oA if Aj(zg) =z (& Nj(z)) = x5 — 1)
,ujo)\ if \j(zj) =p—2—z; (& N(x;) =p—1-1)).

Conversely, given \ such that j—1 ¢ J(X\) and define N by the above formula,

then J(XN') = JA)U{j —1}.

Proof. This is a direct check by definition of & (xo, - ,2z¢_1). O
From now on, let x be a 2-generic character of I and X' € &(x).

Lemma 3.7. Assume x' = Xaj_l for some j € S. Let T (resp. ') be a

Jordan—Hélder factor of Indf X (resp. Indf X'), with parametrizing subset
J(1) (resp. J(1")). Then the following statements are equivalent:

(i) Bxtp(r',7) #0;
(i) j—1¢ J(r) and J(r') = J(r) U {j — 1}.
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If these conditions hold, then E.: ; occurs in Indf Ey .

Proof. We only treat the case f > 2 (the case f = 1 can be treated similarly).
Let oy (resp. o) be the socle of IndX x (resp. Ind¥ y/), and X (resp. X) be
the element of & (z¢,---,z71) such that 7 = A(og) (resp. 7" = N (ay)).
One checks that oy = 6, (0y).

Assume (ii) holds. Using Lemma 3.6, we have (since f > 2)

™= Aog) = (Ao 8;)(op) = (15 0 X 0 87 ) (op)

where * = + (resp. * = —) if \j(x;) = x; (resp. if N\j(z;) = p — 2 — ;).
As noted in the proof of Lemma 2.21(ii), we have correspondingly \ o 5]7 =
67 o N (resp. N od; = (5]‘.*' o \'). Hence, we finally obtain 7 = (M;F o X)(op)
and proves (ii) = (i). To prove (i) = (ii), running back the above argument
and using Lemma 2.1, we need to show that the equation A o 6]7 = pfo N
for (i,%) € S x {4+, —} admits a unique solution, and we may conclude by
Lemma 3.6. We leave the details to the reader.

The last statement is a consequence of [15, Lem. 18.4], which says that
either £/ ; or K occurs in Indf{ E, , but it is clear that F. . can not
occur. ]

Lemma 3.8. Assume X' = xaj for some j € S. Let T (resp. 7') be a
Jordan—Hélder factor of Indf(x (resp. Indf( X'), with parametrizing subset
J(1) (resp. J(7")). Then the following statements are equivalent:

(i) Exti(r',7) #0;
(i) j—1¢ J(7') and J(7) = J(7')U{j — 1}.

If these conditions hold, then E.. ; occurs in Indf E .

Proof. The equivalence (i) < (ii) is checked as in Lemma 3.7. In particular,
if we let g, o, A, \' be as in the proof of loc. cit., then 7 = (1} o \')(0y).
Note, however, that the assumption x’ = xa; implies oy = 5;(06).

Since Indf E,. , is multiplicity free by Lemma 3.4, there exists a unique
subrepresentation, say V; C Indf( E, y, with cosocle 7, and E; ; occurs in
Indf( Ey  if and only if V; admits E,; as a quotient. It is clear that V;
fits in a short exact sequence

(3.4) 0— V;NInd® ' = V. = I(og,7) — 0.

Here, note that since Indf E,s y is a I'-representation as E,., is by [43,
Lem. 2.4(ii)], the representation I(cy,7) is well-defined by §2.1. We claim
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that V; N Indf X" # 0. Otherwise, we would obtain a K-equivariant em-
bedding I(og,7) — Ind¥ E, , hence a nonzero I-equivariant morphism
I(og,7) = Ey by Frobenius reciprocity. However, using the explicit basis
given in [15, Lem. 2.7(ii)] and the assumption j — 1 € J(7), one checks that
I(og, 7)|r does not admit E,., as a quotient (this holds true even when
f =1 in which case I(op,7) is equal to Ind¥ y).

The claim implies that oy < V7, hence V; admits I(oy, 7) as a quotient.
It suffices to prove that E ; occurs in I(oy,T) (as a quotient), or equiva-
lently 7 is a subquotient of I (o, 7). Note that I(oy, 7) is a I'-representation,
because Indf{ E\/ \ is. Viewing both 7 and 7’ as subquotients of Injy- 06 and
using Proposition 2.4, it suffices to check that 7 and 7’ are compatible and
S(7') € S(7). We have seen that 7 = (u; o \')(0y) at the beginning of the
proof. By Lemma 2.6(ii), we have uf o X and X are always compatible and

S(pui o N) = {JIAS(N) = S(\) U {j};

here the last equality holds as j ¢ S()\) (equivalent to j — 1 ¢ J()\'), see
[15, §2]). This completes the proof. O

Let 7 be a Jordan-Holder factor of Indf W, 5. Since Ind* W, 5 is mul-
tiplicity free, there exists a unique (up to scalar) nonzero K-equivariant
morphism

(3.5) Gr .2 : Proje 7 — Indf Wy s.

For our purposes, x will be fixed while 7 may vary among subquotients of

Ind¥ x, so we omit x in the notation and write simply Or2 def Ory2- 1t is
clear that [Coker(¢,2) : 7] = 0.

Proposition 3.9. Assume 7 is a Jordan—Hoélder factor of Indf{ x- Then
Ext}{/Z1 (7',7) = 0 for any 7' € JH(Ind¥ soc(W, 2)) N JH(Coker(¢,2)).

Proof. There exists a unique x’ € socy(W,2) such that 7/ € JH(Ind¥ \/).
Thus, by composing ¢,2 with the natural projection Indf( Wy — Indf
Ey y, we are reduced to the case of Projz1 — Indf E, and we conclude
by Lemmas 3.7 and 3.8. U

3.2.1. Generalization. In this subsection, we prove a generalization of
Proposition 3.9. Let x be a 2-generic character of I.

Proposition 3.10. Let 7 be a Jordan—Hélder factor of Indf W3-
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(i) There exists a morphism ¢, : Projz 7 — Ind® W, 5 such that [Coker
(¢7) : 7] = 0.
(i) For morphisms ¢, in (i), Im(¢;) does not depend on the choice of ¢ .

Proof. (i) Since Ind¥ W, 5 and Indf W, 3 have the same Jordan-Hélder
factors up to multiplicity, 7 also occurs in Indf( Wy 2. By projectivity of
Proji 7, we may lift ¢r2 to a morphism ¢;, making the following diagram
commutative

Proje7 - 2= Ind® W, 5

¢'r,2 i

Ind¥ Wy .

We need to prove that [Coker(¢,) : 7] = 0. The case 7 € JH(Ind¥ x') for
X' € &(x) is obvious, so we assume 7 € JH(Ind¥ x) for the rest.

First treat the case 7 = og, the cosocle of Indf( x- This case is essentially
proved in [12, Prop. 6.4.1]. Assume [Coker(¢yg) : 05] > 1 for a contradiction.
We may find a quotient of Coker(¢,,), say @, such that [Q : os] = 1.
Consider the induced I-equivariant morphism f : W, 3 — Q|;. Since [Q :
os] = 1, we have dimy Hom;(x, Q) < 1. Thus, f must factor through a
quotient of Wx’g, say W, which satisfies the assumptions of [12, Prop. 6.4.1]
and @ is a quotient of Indf W. By loc. cit., @ is a quotient of Indf WX’Q,
hence of Coker(¢q,2), but this is impossible as [Coker(¢ys 2) : 0s] = 0. Note
that the genericity condition on x of loc. cit. is slightly stronger than ours,
but it is caused by the use of [12, Prop. 6.3.5] which can be replaced by our
Proposition 3.9.

Now we treat the general case 7 € JH(Indf( X)- The case for og treated
above implies [Coker(¢ys) : 7] = 0 as well, as os is the cosocle of Ind¥ y.
Thus Im(¢,) is contained in Im(¢ss), and by the projectivity of Projz T
there exists a morphism h : Projz 7 — Projy os such that ¢, = ¢s5 o h. By
the construction, one checks that the composition

Projz 7 LA Projzos — I(1,05)

is nonzero, where I(7, 0s) is as in Theorem 2.30. We deduce that [Coker(h) :
7] = 0, because any quotient of Projzos in which 7 occurs must admit
I(7,0s) as a quotient by Theorem 2.30. By the snake lemma, we have an
exact sequence

Coker(h) — Coker(¢,) — Coker(¢gg) — 0,
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from which the result follows.

(ii) Fix a morphism ¢, as in (i). It suffices to show that if ¢ : Projz 7 —
Ind¥ W, 5 is any K-equivariant morphism, then Im(¢) C Im(¢,). But,
if it were not the case, the composite morphism Im(yp) — Ind? Wys —
Coker(¢,) would be nonzero. Since Im() has cosocle 7, we get [Coker(¢;) :
7] # 0, a contradiction to (i). O

Corollary 3.11. Let 71, be Jordan—Holder factors ofIndf Wx,g. Let ¢, :
Projz, i — IndX W, 3 be a morphism such that [Coker(¢,,) : 7;] = 0.
Then Im(¢+, ) € Im(¢ps,) if one of the following cases happens:

(a) both 11 and T are subquotients of Ind¥X x and J(11) C J(m);

(b) both 71 and 15 are subquotients of IndX \' for some X' € &(x), and
J(Tl) g J(Tg),’

(c) 1 (resp. ™) is a subquotient of IndX x' with x' € &(x) (resp. of
nd¥ ), and Ext%(Tl,Tg) # 0.

Proof. For i € {1,2}, consider the morphism (3.5)
Or, 2" Projf T; — Indf( Wy 2.
We first prove

(3.6) Im(¢7, 2) C Im(¢ps, 2)

in the three cases listed in the corollary. Since Indf Wy 2 is multiplicity free
and Im(¢, 2) has cosocle isomorphic to 71, it suffices to prove [Coker(¢,, 2) :
71] = 0. This is clear in Case (a) by further projecting to Indf X, and also
in Case (b) because Im(¢, 2) is contained in Ind¥X y/. In Case (c), it follows
from Proposition 3.9.

Next, by projectivity of Projz7 and (3.6), we may lift ¢, o to 1 :
Projg 71 — Projg 72, making the following diagram commutative

Projz

‘ ¢7’1,2
K

\ o -
Projz 7o — = Indf* W, 3 —— Indf* Wyo.

By Proposition 3.10(ii), we have Im(¢,, o ¥) = Im(¢,,), hence Im(¢,,) C
Im(¢,,) as desired. O
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3.3. The representation ©.;

We construct a certain f—representation which has an analogous submodule
structure as W, 3. Let x be a 2-generic character of I.

Proposition 3.12. For any Jordan—Hoélder factor T of Indf{ X Indf WX;)
admits a subquotient, denoted by O, satisfying the following properties:

(i) cosocs(©;) is isomorphic to T and socs(©-) isomorphic to T3/ ;

(it) radp(©7)/ socq(©r) is semisimple and isomorphic to @, co(r) T

Proof. First note that 7 is 1-generic as x is 2-generic. Hence, all the M?:(T)
are well-defined and so |&(7)| = 2f.

Let ¢r : Projp7 — Indf( Wx,ii be a morphism as in Proposition 3.10.
We will construct O, as a certain quotient of Im(¢.); actually we just take
©; to be the quotient of Im(¢,) by the largest subrepresentation in which 7
does not occur. But, to verify condition (i) we divide this process into two
steps.

First, by Proposition 3.10 we have

(3.7) () : 7] = [Indf Wy 5: 7] = 2f + 1.

Let oy denote the socle of Ind} y. Since x®2/ < soc; (W, 3), we obtain an
embedding

I(og, 7)) — Ind¥ x®2/ — Ind¥ Wy
whose image is contained in Im(¢;) by Proposition 3.10. In particular, mod-
ulo rad(I(oy, 7))/, we obtain a quotient of Im(¢, ), say @, such that 72/
embeds in Q. Moreover, by (3.7), it is easy to see that dimp Homg(7, Q) =
2f. Next, we define O, to be the quotient of () by the largest subrepresen-

tation of @ in which 7 does not occur. It is then clear that Condition (i) is
satisfied, and (ii) follows from Corollary 2.32 (as |&(7)| = 2f). O

Note that ©, can be defined for any 2-generic Serre weight 7, taking
X = X in Proposition 3.12.

Corollary 3.13. Let 7 be a 2-generic Serre weight. Then EXtiI;(@T,T) =0.
Proof. From the exact sequence 0 — soc(©,;) — O, — O,/soc(0;) — 0,
we obtain
0 — Homg(soc(©,),7) — Ext%(@.r/ soc(0;), 1)
— EXt%(@T,T) — Ext—ll;(soc(@T),T) =0
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where the vanishing of the last term follows from Proposition 3.12(i) and
the fact Ext%(r, 7) = 0 by Lemma 2.10(i) (note that 7 is 1-generic as x is 2-

generic). By Proposition 3.12(i), it suffices to show dimp EX‘C%(@T/ soc(©;),
7) < 2f. Using again the fact Ext»lf(T, 7) = 0, the exact sequence 0 —
©reor)T — O7/s0¢(0,) — 7 — 0 induces an injection

Extl(0,/s0c(0,),7) = P Exti(r,7),
T'eL(T)

and the result follows because dim Extll:(r’ ,7) =1 for any 7 € &(7). O

Corollary 3.14. Keep the notation of Proposition 3.12. Let Q) be a quotient
of Projs 7. Assume that there exists an injection 7O s Q for some m > 0,
such that Q/7%™ has Loewy length 2 and fits in a short exact sequence

0SS —=Q/%" 70

where S is a subrepresentation of @T,eg(ﬂ 7. Then Q is a quotient of O,
(in particular m < 2f).

Proof. By Proposition 3.12, there is a short exact sequence 0 — EBT,E@@(T) ' —

0,/792f — 7 — 0. As a consequence, the assumption on Q implies a surjec-
tion ©, /7% — Q/7r®™, thus a surjection ¢ : ©, — Q/7%™. Corollary 3.13
implies that the natural morphism Homg(©,, Q) — Homgz(©,,Q/79™) is
surjective. Therefore, ¢ can be lifted to a morphism ©, — @, which is sur-
jective (being surjective on cosocles), as required. O

Corollary 3.15. The representation O, constructed in Proposition 3.12
does not depend on the choice of x.

Proof. 1t is a direct consequence of Corollary 3.14. O

By a similar proof of Lemma 3.2, we have the following result showing
that ©, has an analogous structure as W, 3.

Corollary 3.16. For any 7' € &(7), there exist both an embedding E- - —
O, and a quotient O, — E.. .. Moreover, O fits in a short exact sequence

(3.8) 0— @ E.r—0,—=1—0.
T'EL(T)
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3.4. The representation @7o_rd

Keep the notation of the last subsection. In this subsection, we define a
certain quotient of ©, which is related to ordinary parts of representations
of GLa(L) studied in §5.

Fix a Serre weight 7 which is a Jordan—Holder factor of Indf{ x for some
2-generic character x. For example, 7 can be any 2-generic Serre weight.

Lemma 3.17. There exists a unique quotient of ©,, denoted by ©°4, which
has Loewy length 3 and satisfying the following properties:

(i) soc(0%Y) is isomorphic to T7;
(ii) rad(©2)/soc(©%Y) is semisimple and isomorphic to @, g 1y (7).

Proof. With the notation of Corollary 3.16, it suffices to take ©2'4 to be the
quotient of ©, by @,/ E, ., where 7/ runs over the Serre weights {u; (7),i €
S}. O

The proof of Lemma 3.17 shows that @ﬁrd fits in a short exact sequence

(3.9) 0— @ET,M(T) — 0% 7 0.
i€S

For a smooth representation V of K, denote by Vi, the space of K-
coinvariants of V; it is equal to the largest quotient of V' on which K; acts
trivially.

Lemma 3.18. We have (029) g, = 094 /s0c(0%4). Moreover, it is a quo-
tient of Indf Xr-

Proof. Using Lemma 2.10, it is easy to check that a f-representation Vv
satisfying 0 — @,cg it; (1) =V — 7 — 0 and cosocy (V') = 7 is unique (up
to isomorphism) and is actually a I-representation. Lemma 3.17(ii) implies
that ©2"4/soc(©2') is such a representation. On the other hand, it follows
from [15, Thm. 2.4] that Ind¥X y, also admits such a representation as a
quotient. This proves the second assertion and that ©%4/soc(©29) is a
quotient of (O%4) k.

Recall that soc(©2'9) = 79/ by Lemma 3.17(i). To prove the first asser-
tion, it suffices to prove

Ext}h (@‘;rd/ soc(©94), 7) =0.
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To simplify the notation, write A for ©24/soc(02), and B for the corre-
sponding kernel fitting in the exact sequence

0— B—Tndfy, - A0

We may identify Ind¥ y, with IndE(Fq) X+ Using the fact that Indg(ﬂ,q) Xr
is multiplicity free, we get Homp(B,7) = 0. Hence, it suffices to prove
Ext%(Indl;(Fq) Xr,7) = 0, equivalently Ext};(Fq)(XT,T) = 0 by Shapiro’s
lemma. But this follows from (a variant of) [44, Prop. 2.5]. Note that, if
f = 1 then we need dimy 7 # p—2 to ensure the vanishing of ExtllD(Fp) (Xr,T)s
whereas no genericity condition is needed if f > 2. O

Lemma 3.19. There exists an exact sequence
0= 7% 50, - (0,)k —0.

Proof. In fact, we can determine (©;)g, explicitly. First observe that there
exists a unique quotient ) of Projp 7, which has Loewy length 3 and such
that

e soc(Q) = To/f;
e rad(Q)/soc(Q) = @T'eé”(f) T

Indeed, it suffices to take @ to be the dual of A, defined in [47, Def. 2.5] with
o = 7V. Corollary 3.14 shows that @ is a quotient of O, hence of (0;),.
In particular, [(©7)k, : 7] > f+ 1.

By construction, there is a short exact sequence

0=+ EPE, (> 0r— 60 =0
ies

which induces

(3.10) PE. i = Ok, = (69K, — 0.
€S

By Lemma 3.18, [(©%) g, : 7] = 1. Comparing the multiplicity of 7, we see
that ¢ has to be injective because it is injective on socle. This implies that
[(©7)K, : 7| = f+1 and a comparison of Jordan-Hélder factors using (3.10)
shows Q = (0,)k, . O

The next result will be used in §8.
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Proposition 3.20. There exists a short exact sequence

(3.11) 0— 0, — 07a (0,)x, % (029, — 0

where q1,qa are natural projections.

Proof. Let V be the kernel of the map (¢1,g2); we need to prove V = 0.
Taking K1-coinvariants of 0 — V — 0243 (0,) g, — (09 g, — 0 induces
a sequence

0 - VKI - (6?'rd)K1 EB (®T)K1 - ((H)?'rd)Kl - 0’
which is exact because the morphism
[Hi(K1, (©:)k,) = Hi(K1, (09 k,)] = Hi(K1,F) @ [(0:)k, — (09K, ]

is (automatically) surjective. This implies

(1) an isomorphism Vi, = (0,)g, and
(2) a short exact sequence using Lemmas 3.17 and 3.18

0= 7% 5V = Vg, —0.

From (1) we deduce that cosoc(V) = 7 and so V' is a quotient of Projg 7.
Using Corollary 3.14 and Lemma 3.19, it is easy to check that V =0,. O

4. Combinatorics a la Breuil-Pasktinas

In this section, we recall and generalize a construction of Breuil and Pasktinas
([15, §13]). Keep the notation in previous sections. In particular, K =
GL2(0Op), I' = F[GLy(F,)] and I' = IE‘[[K/Zl]]/m%{I.

Fix a continuous representation p : Gy — GLgo(F), which is generic in
the sense of [15, §11], that is, p| 1@, /L) 1 isomorphic to one of the following

two forms (always possible up to twist)

WZ{;J pi(ri+1)

L. ! 0 T with 0 < r; < p—3 for each 7, and not all r; equal
to 0 or equal to p — 3;
wZ{;ol pi(r;i+1) 0
2. 2f P! S L pi (1 1) with 1 <rg< p— 2, and 0 <r <
0 w2f i=0

p— 3 fori>0.
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where wy: is Serre’s fundamental character of 1(Q,/L) of level f’ for f' €
{1.2f}.

To p is associated a set of Serre weights, denoted by Z(p) (see [15,
§11]). The genericity of 7 implies that the cardinality of 2(p) is 2/ if 5 is
semisimple, and is 2% for some 0 < d < f — 1 if 7 is reducible nonsplit. If
p is reducible and if p*™ denotes the semisimplification of p, then we always
have 2(p) C 2(p*). In fact, by [8, §4], the set Z(p*) is parametrized
by a certain set Z%(xg,--- ,x5-1) of f-tuples X = (\;(z;))jes satisfying
Nj(z;) € {zj,zj+1,p—3 —xj,p—2—x;} and some other conditions, in the
sense that

(41) 27 = {Golro), -+ Apoa(ry_1)) @ dete 772
NERD (xo,- - ,J:f,l)}.

Then 2(p) corresponds exactly to the subset of Z%(x, - - ,x¢_1) consisting
of A such that \;(z;) € {p —3 — x;,x; + 1} implies j € J5, where J; is a
certain subset of S uniquely determined by the Fontaine-Laffaille module of
7 (see [8, §4]).

It is constructed in [15, §13] a finite dimensional representation Dy(p) of
I" such that

(i) socr Do(p) = Brea(5)0;
(ii) any Serre weight of Z(p) occurs at most once as a subquotient in
Do(p);
(iii) Do(p) is maximal with respect to properties (i), (ii).

By [15, Prop. 13.1], we have a decomposition of I'-representations

Do(p) = € Doo(p)

o€9(p)

with each Dy ,(p) satisfying socr Do (p) = 0. Moreover, Dy(p) is multiplic-
ity free by [15, Cor. 13.5]. B

The aim of this section is to generalize the above construction to I'-
representations and relate it to a certain class of admissible smooth GLa(L)-
representations over [F.

4.1. The representation Dg(p)
Proposition 4.1. Let 9 be a finite set of distinct Serre weights. Then there

exists a unique (up to isomorphism) finite dimensional representation Do of
I’ (over F) such that
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(i) socs Do = By )
(i1) any Serre weight of 9 occurs at most once as a subquotient in Do;
(iii) Dy is maximal with respect to properties (i), (ii).

Moreover, there is an isomorphism of I'-representations Dy = @,y Do,o

with socg ]_N)Q(7 =o0.
Proof. The proof is the same as [15, Prop. 13.1].% O

Corollary 4.2. With the notation of Proposition 4.1, foro € 9, 5070 is the
largest subrepresentation of Injx o such that [Doy : 0] =1 and [Doy : 7] =0
forany T € P with T # o.

Proof. If 56,0 C Injg 0 is another subrepresentation satisfying the conditions
in the corollary, then the sum 15070 + 15670 also satisfies these conditions by
the proof of [15, Prop. 13.1]. But, the direct sum (D o —1—15670) ) (697750150,7)
also satisfies the conditions of Proposition 4.1, so we must have 50,0—#136’ o=
ﬁoyg, i.e. 5670 - 5070. ]

Definition 4.3. Define Dy(p) to be the representation attached to 2 = 2(p)
by Proposition 4.1.

By Proposition 4.1, there is a direct sum decomposition

(4.2) Do(p)= €D Doo(p)
)

ce2(p

with socg Do, (p) = 0.

Definition 4.4. We say p is strongly generic if, in Case (1),2<r; <p—5
for each i, or in Case (2),3<ro<p—4and2<r; <p—>5 fori>0.

Lemma 4.5. Assume p is strongly generic. Then any o € 2(p) is 2-generic.

Proof. 1t is a direct check using the explicit description of Z(p) in [15,
§11). 0

The main result of this subsection is the following.

At the end of the proof of [15, Prop. 13.1], the idempotent e, € Endr(Injp )
need not be unique; but we can certainly choose e, € Endr(Inj ) for each o such
that >~ e, =1, and the rest of the proof goes through.
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Theorem 4.6. Assume p is strongly generic. The representation ﬁg(ﬁ) 18
multiplicity free. Moreover, for any o € 2(p), we have Dy (p) C Do »(p)
and Do+ (p)** = Do(p).

Proof. Using Lemma 4.8 below, the first assertion is proved by the same
argument as in [15, Cor. 13.5]. The second assertion is clear from the con-
struction. O

Remark 4.7. A similar result is proved in [12, §6.3] when p is semisimple;
moreover, the set of Jordan—Holder factors and the submodule structure of
Dy(p) are determined.

For a Serre weight 7, define
03, 7) Y min{t(o,7), 0 € D(P)} € Zoo U {+o0},

where ¢(o, T) aof +o0 if 7 does not occur in Injg o, and is the Loewy length

of I(o,7) otherwise. Here, I(o,7) is the representation of I constructed in
Theorem 2.23, well-defined thanks to Lemma 4.5. The following result is an
analog of [15, Lem. 12.8] in our setting.

Lemma 4.8. Assume p is strongly generic. Let T be any Serre weight such
that £(p,T) < +00.

(i) There ezists a unique o € P(p) such that {(o,7) = L(p,T).

(ii) Let o' € 2(p) such that I(o',7) # 0. If 0’ # o with o as in (i), then
I(c',7) contains o as a subquotient.

Proof. Let 0 € 2(p) be a Serre weight such that
(4.3) Lo,T)=L(p,T).

Also let o/ € 2(p) be a Serre weight distinct with o such that I(o”,7) # 0.
We will prove that I(¢’, ) contains o as a subquotient, which will prove (i)
and (ii) simultaneously. In the exceptional case f = 1, ¢ = Sym*F? ® det®
and 7 = SymP!'F2? @ det®*!, one checks that o is the unique Serre weight in
2(p) such that ¢(o,7) < 400, so the result is obvious and we exclude this
case in the rest.

Since I(o,7) # 0 and I(0o’,7) # 0, we have the following possibilities:

(a) 7is an old Serre weight in both Injx o and Injx o’, i.e. 7 € JH(Injp o) N
JH(Injp o');

(b) 7is a new Serre weights in both Injz o and Injg o', i.e. 7 ¢ JH(Injp o) U
JH(Injp o');
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(c) 7isan old Serre weight in Inji o, but new in Injx o’, i.e. 7 € JH(Injp o)\
JH(Injp o);

(¢’) 7is anew Serre weight in Injx o, but old in Injz o, i.e. 7 € JH(Injp o”)\
JH(Injp o).

In Case (a), we may view both o and ¢’ as subquotients of Injp 7. If
M\ N € Z(xg,- - ,xf_1) correspond to o, o’ respectively, then [15, Lem. 12.6]
implies that the intersection AN X € Z(xg, - ,x¢_1) (see [15, §12] for the
definition of A N \') corresponds again to a Serre weight in 2(p), say o”. It
is clear that ¢(¢”,7) < ¢(0,7), with equality if and only if ¢’ = 0. By (4.3)
we indeed have 0” = ¢ and o occurs in I(7,0’) by [15, Lem. 12.5], hence
also in I(o’, 7).

In Case (b), there exist uniquely determined (i,) and (¢/,%") in S X
{+, —} such that

7 € JH(Injp 67 () N JH(Injp 67 (o).

Since o’ occurs in Injpo by [47, Prop. 2.24], we may write o/ = (o) for
€ I(xg, -+ ,x¢-1). Let A (resp. X) be the element of Z(zq,--- ,xz_1) such
that 7 = A(6}(0)) (resp. 7 = N(83 (0”))). Using Lemma 2.1 together with
(a variant of) Lemma 2.7, we have

(4.4) Nody op=Nod;.

We have two possibilities: i =i’ or i # 7'

(bl) Assume ¢ = 4'. Then by the proof of Lemma 2.15, precisely by (2.14)
and (2.15), we must have x = «’. Moreover, using (2.14) (or (2.15),
depending on x), the equality A o 67 o u = X o ¢} forces p;(z;) €
{z;,2;£1} and so 6 op = pod}. Hence, (4.4) becomes N opod} = Aod?,
equivalently, N o p = \. If we define 7/ def A(o) = N(o'), then 7/ is
a common subquotient of Injr o and Injpo’. Consequently, we may
view o and o’ as subquotients of Injr 7. As in Case (a), applying
[15, Lem. 12.6], we obtain a Serre weight ¢” € 2(p) which occurs in
JH(I(o,7")) N JH(I(0,7")). On the other hand, by Corollary 2.35, 7/
is a common subquotient of I(o,7) and I(o’,7), hence so is ¢”. By
(4.3), this forces 0" = o, and so o occurs in I(o/, 7).

(b2) Assume i # i’ (so f > 2). Using (4.4) at i, we deduce from Lemma 2.17
(condition (a) in loc. cit. holds by Lemma 2.14) the following facts

o i ¢ S(N), i€ S(p);
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o ui(z;) €{xj,xixl,p—2—ax;,p—2—x; — (x1)}.

Let A" € Z(xo, -+ ,xf_1) be the unique element with S(\") = {i}
and satisfying (2.13), i.e. (\",0) € Z; ,) (see Definition 2.34) and let
o” = N'(0). On the one hand, we have ¢’ € JH(I(o, 7)) by Corollary
2.35. On the other hand, we have \” < p, hence ¢’ € JH(I(c,0")) by
Proposition 2.4. By [47, Prop. 2.24], this implies ¢’ € 2(p). However,
it is clear that ¢(o”,7) < {(o, 7), which contradicts the choice of o, see
(4.3).

In Case (c), we may view both 7 and ¢’ as subquotients of Injp o (use
[47, Prop. 2.24] for o’); let \, X € Z(xo,--- ,z¢_1) be the corresponding
element, respectively. By Lemma 2.8, we have S(\) N S(\') # 0, otherwise
o’ would occur in Injp 7, contradicting the assumption. We claim that

IS NS = 1.

Let i € S(\)NS(N). Then Lemma 2.5 implies that A and X" are not compat-
ible at i; otherwise I(o,0’) and I(o, ) would contain a common irreducible

subquotient distinct with o, say ¢”, and by [47, Prop. 2.24] ¢” must lie in

2(p), contradicting (4.3). Set v % N o X1 50 that

Using the table in the proof of Lemma 2.6, a case-by-case check shows that
vi(z;) € {p—xij,p —4 — x;, z; + 2,2, — 2}.

For example, if \(z;) = p — 1 — z;, then \; ' (2;) =p— 1 — z; and \;(z;) €
{p—3—zj,x;+ 1} (as X and X are not compatible at i), so finally v;(z;) €
{x; — 2,p — 2;}. Hence, when viewing 7 as a subquotient of Injz o', 7 is a
new Serre weight and must occur in Inj 67 (o’) for

 + Hy(z)e{p—4—xi2+2}
(4.5) = { — if vi(w;) € {p — xi, zi — 2}.

By Lemma 2.15, this property determines uniquely ¢ and the claim follows.
In summary, 7 occurs in Injpd7(o’), where ¢ is the unique index in
S(A) NS(N) and * is as in (4.5). Write 7 = v(0o’) = p(6(o’)) with p €
I(xo, - ,x¢—1). Using (4.5), one checks that p;(z;) € {p — 2 — 4, x;}, i.e.
i ¢ S(u). To prove that o occurs in I(o’,7), by Corollary 2.35 it suffices to
check (N 71,0) < (u, (i, *)) or, equivalently, the following two conditions
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(c1) N~!is compatible with u;
(c2) S(N71) C S(u) U {i}, equivalently S(N"1)\{i} C S(u)\{i}.

For (c1), the compatibility at j # i follows from Lemma 2.6 because p; =
vi = \jo )\;-_1 for j # i; on the other hand, using Lemma 2.17 the relation
pi(x; * 2) = )\i()\;_l(:):i)) and the fact p;(z;) € {p — 2 — x4, x;} imply that
N1 (z;) satisfies (2.13), hence X;™! is compatible with p at i (cf. Definition
2.19). For (c2), we note that

SWTH\{i} € SW\{i} = S(w)\{i}

where the inclusion follows from S(A)NS(N 1) = {i} using Lemma 2.6, and
the equality from the fact pu; = v; for j # i.

Finally, we prove that Case (c¢’) can not happen, which will finish the
proof of the lemma. Indeed, the same argument in Case (c) shows that o’
(the old Serre weight) occurs in (o, 7) (where o is the new Serre weight),
hence £(o’,7) < {(0,T), contradicting (4.3). O

For the rest of this subsection, we assume p is strongly generic.

Corollary 4.9. Given 7 € 2(p), the inclusion Dy(p) — Do(p) induces an
isomorphism

(4.6) ExtL (7, Do(p)) = Exth(r, Do(p))-

Proof. We first note that, by the proof of [15, Lem. 12.8], ®cg ) Injp 7 and
Dy(p) have the same set of Jordan-Hélder factors, ignoring multiplicities.
Since Dy(p) is multiplicity free by Theorem 4.6, the quotient Do (p)/Do(p)
does not have common Jordan-Holder factors with @ ¢cg(5) Injp 7. Using
Lemma 2.10 we get for 7 € 2(p)

Homg (7, Do(p)/Do(p)) = ExtL(r, Do(p)/Do(p)) = 0,

and the result follows. O
In fact, we have the following finer property.

Lemma 4.10. Let 0,7 € Z(p) and assume o # 7. Then for any nonzero
subrepresentation Vy of Do »(p) (hence o — V), the natural morphisms

Extl(r,0) = Extl(r,V,) = Extk(r, Do+(p))

are isomorphisms.
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Proof. First, the morphisms in the lemma are all injective, because [l~)0,(7 (p) :
7] = 0 by Corollary 4.2. Hence, it suffices to prove that their composition is
an isomorphism. Using Corollary 4.9, it suffices to prove the natural mor-
phism
1 1 —
Extr (1,0) = Ext (1, Do,s(p))

is an isomorphism. It is proved in [47, Lem. 2.25] that the last morphism is
an isomorphism if we replace ExtL by Ext% (in loc. cit. p is only required
to be generic in the sense of [15, Def. 11.7]). Hence, it suffices to show
Ext{(7,0) = Ethlf(T, o) and similarly for Dy ,(p) in place of o. Using the
Hochschild-Serre spectral sequence and the assumption o # 7, this follows
from the fact

Homr (7,0 ® H'(K1/Z1,F)) = Homr (7, Dy »(p) ® H'(K1/Z1,F)) = 0,
see Proposition 2.12 (applicable thanks to Lemma 4.5). O
4.2. A combinatorial lemma

In this subsection, we assume p is generic in the sense of [15, Def. 11.7].

Let D1(p) < Do(p)"* and D1,(p) & Do, (p) for 7 € 2(p). Given

x € JH(D1(p)), there exists a unique 7 € Z(p) such that x occurs in Dy ,(p).

Lemma 4.11. Keep the above notation. If o € 2(p) is another Serre weight
which is also a Jordan—Hélder factor of Ind¥X y, then J(o) C J(1), viewing
both o, 7 as subquotients of Indf( X (cf. §3.2).

Proof. The cosocle (resp. socle) of Ind x is isomorphic to o (resp. oy:). By
assumption, o, is a subquotient of Dy ,(p), i.e. £(p,oy) = £(7,0y). Lemma
4.8(ii) implies that 7 occurs in I(c,0,) as a subquotient. Equivalently, o
occurs in I(oys,T) as a subquotient, and so J(o) C J(7) by [15, Cor. 4.11].

O

Lemma 4.12. Let x, X' be two characters such that Ext}/Zl(X,x’) #0 and
assume x,x € JH(D1(p)). Let T € 2(p) (resp. 7" € Z(p)) be the Serre
weight such that x € JH(D1 ,(p)) (resp. X' € JH(D1,.(p))). Let J(t) C S
(resp. J(7')) be the subset parametrizing the position of T (resp. T') inside
Ind¥ x (resp. in Ind¥ /).

(i) If X' = Xaj_l for some j € S, then j—1 ¢ J(r) and J(7') = J(7) U

{7 —1}.
(it) If X' = xa; for some j € S, then j —1 ¢ J(7') and J(1) = J(7/) U

{7 -1}
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Moreover, we have Ext}(/z1 (r,7') = Exti(r,7') # 0.

Proof. First assume p is reducible. Following [8, §4], we define Z%(xy, - - -,
xf_1) to be the set of f-tuples A = (\;j(2;))ics such that

° )\Z(xl) S {’riaxi + 1,.%‘1‘ + 2>p -3 - Tiy P — 2 — Ty, P — 1-— xi}a
o if )\z(xz) € {xi,mi +1,z; + 2}, then /\Z’_:,_l(ilj'i + 1) € {xi+1,xi+1 +2,p—
2 -z},
o if \j(x;) € {p—1—a;,p—2—x4,p— 3 — z;}, then Njyi1(xiy1) €
{p—1—-2i11,p— 3 = Tiy1, 41 + 1},
o \i(z;) € {p —3 — x4, x; + 2} implies i € J5.
By [8, Prop. 4.2], the set JH(D;(p)) consists of the characters of I act-
ing on ¢!, where ¢ runs over the set of Serre weights associated to A €
PP (xg,- - ,x5-1) as in (4.1).
Given A € ZP(xg,- - ,x¢-1), we define

IV =6({ieS: \i(w) ¢ {p—3—a;, i} and (i € J5if \j(z;) = p—2—x;)})

where ¢ is the shift on J: i—1 € §(J) if and only if ¢ € J. By [8, Prop. 4.4], if
Y* € Dy ,(p) for T € 2(p) then, when viewed as a subquotient of Ind ¥ (¢%),
7 is parametrized by Jy"**. Since our setting differs from that of [8] by a
conjugation, we make a change of variables, by setting v def x® and v’ def
X Let A\, N € P (xg,--- ,x¢-1) be the elements corresponding to ¥, ¢’
respectively.

(i) The assumption y’ = onj_l translates to ¢’ = 1a;. We have \;j(z;) =
Ni(x;) if i # j, and two possibilities if i = j:

{ Aj(5) = xj or { Ajlj) =p =3 =
Ni(zj) = x5+ 2 Ni(zj) =p—1—u;.

One checks that j — 1 ¢ J"* and J}*™ = JP** U {j — 1}, as desired.
(ii) The assumption x’ = x«; translates to ¢ = 1,!)0(;1. We have \;(z;) =
Ni(x;) if 7 # j, and two possibilities if ¢ = j:

{ /\j(xj):xj—i—? or { /\j(l‘j):p—l—$j
Nj(x5) = Ni(xj) =p — 3 — ;.

One checks that j — 1 ¢ J*™ and J" = J** U {j — 1}, as desired.

The case p is irreducible can be treated in a similar way, using the
set I P (xog, - ,x5-1) in place of PP (o, -+ ,xy_1). Finally, the last
assertion follows from Lemmas 3.7 and 3.8, together with Lemma 2.10. O
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Remark 4.13. It follows from the conclusion of Lemma 4.12 that if x €
JH(D:(p)), then at most one of {Xa;-tl :j € 8} can also occur in Dy(p). Of
course, this can also be deduced from the property of %P (xg,--- ,x5_1).

Corollary 4.14. Let x € JH(D1(p)) and 7 € 2(p) be the Serre weight such
that x occurs in Dy +(p). Let

¢r : Projp 1 — Indf{ Wx,g,

be as in Proposition 3.10. Then JH(Coker(¢,)) N Z(p) = 0.

Proof. Let ¢ € 2(p). We need to show that [Coker(¢;) : o] = 0. Clearly
we may assume o € JH(Ind¥ W,.3). Letting ¢, : Projpo — Ind¥ Wy
be a morphism as in Proposition 3.10(i), it is equivalent to show Im(¢,) C
Im(¢,). We have two possibilities: o is a subquotient of Indf{ X, or of Indf X
for some x' € &(x).

If o € JH(Ind¥ ), Lemma 4.11 implies that J(o) C J(7) if we view
both o, 7 as subquotients of Indf( X, and we conclude by Corollary 3.11(a).

If 0 € JH(Ind¥ x') for some X' € &(x), then x' € JH(D;(p)); let 7/ €
2(p) be the unique Serre weight such that x’ occurs in D; -/ (p). As above,
Lemma 4.11 implies that J(o) C J(7') if we view o, 7/ as subquotients of
IndX x’, hence Im(¢y) C Im(é,) by Corollary 3.11(b). On the other hand,
we have Ext}{/z1 (7,7) # 0 by Lemma 4.12, hence Im(¢,) C Im(¢;) by
Corollary 3.11(c). This finishes the proof. O

4.3. Multiplicity one

Keep the notation of last subsections and assume p is strongly generic. Let 7
be an admissible smooth G-representation over IF (with a central character)
satisfying the following condition:

(a) 781 = Dy(p), in particular socy m =2 Boeca(p)0-

The aim of this subsection is to prove a criterion for w[m%. ] to be mul-
tiplicity free, see Theorem 4.21 below. By Theorem 4.6, this amounts to
proving that for any o € 2(p),

(4.7) dimp Homg(Projg o, 7) = 1.

The main point of this criterion is that, when p is indecomposable, we only
need to check (4.7) for some o € 2(p). Correspondingly, for our application
in §8 where p will be reducible nonsplit, the computation of various defor-
mation rings ezactly allows us to check this condition for one special Serre
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weight in Z(p), namely the “ordinary” Serre weight denoted by oy there.
Another crucial point of the criterion is that we deduce at the same time

dimp Homy (W, 3,7) = 1, Vx € JH(x"),

which allows us to apply a result proved in [12, §5], to control the Gelfand-
Kirillov dimension of 7, see Theorem 8.15 below.

Recall from §3 for the representations W, ,, for n > 1.

Proposition 4.15. For any x € JH(x't), the natural morphism
Homy(x, m) — Homy(W, 2, 7)

s an isomorphism.

Proof. Let h : W, 9 — 7|1 be a nonzero morphism and
h: Ind¥ Wyo = 7|k

be the induced morphism by Frobenius reciprocity. Assume that h is nonzero
when restricted to socr(Wy2), say hly» # 0 for some x' < W, 2. Remark
4.13 implies that h must factor through

Wy — By — .

The image of Ind¥ ¥’ under h has the form I(7/, 0,), where 7/ is the unique
Serre weight in Z(p) such that x’ occurs in D; (p) and o,, denotes the
cosocle of Ind¥X /. In particular, 7/ embeds in Im(ﬁ) On the other hand,
if 7 € 2(p) denotes the Serre weight such that x occurs in Dj -(p), then

Lemma 4.12 implies that Ext.(7/,7) # 0, and so the extension E. . is a
subquotient of Im(h) by Lemma 3.7 and Lemma 3.8.

Since Wy 2 is annihilated by m% , so are Ind¥ W, 5 and Im(h). Hence,
there exists a nonzero morphism Projz7 — Im(ﬁ) whose image we denote
by @. By the above discussion E;. . occurs in ) (actually as a quotient).
We know that @ is annihilated by mg, by Corollary 2.31 (condition (b) is
satisfied by [47, Prop. 2.24]), hence is contained in 7%t = Dg(p) by (a). This
gives a contradiction because 7 only occurs in the socle of Dy(p). O

Corollary 4.16. Let x, X' € JH(r"t) and assume Ext}/zl(x,x’) # 0. Then
there exists no I-equivariant embedding Ey \» — 7|1.

Proof. This is a direct consequence of Proposition 4.15. O
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Corollary 4.17. Let x € JH(7!). Any I-equivariant morphism Wy, 5 — 7|r
factors through W, 3.

Proof. The proof is as in Step 1 of [12, Prop. 6.4.6], using Proposition 4.15
as a replacement of [12, Lem. 6.4.4]. We briefly recall the argument. Let
f: Wy3 — m be an I-equivariant morphism. By definition, Wx,g is the
quotient of W, 3 by the direct sum of x” in soc;(Wy,3) which are distinct
with x, and each of these characters occurs once in soc; (W, 3). Let x” # x
be such a character in soc;(W, 3) such that f|,~ is nonzero. Then by the
connectedness of D1(p), see [12, Def. 6.4.2, Lem. 6.4.3],° we may find ' €
&(x)NE(X") with x' € JH(r!r). By [12, Lem. 6.1.2], there exists an injection
W, 9 — W, 3, hence f restricts to a morphism W, o — 7|y which does not
factor through the cosocle x’, because it is nonzero on x” which embeds in
W, 2. This contradicts Proposition 4.15. O

Recall from Proposition 3.12 the representation ©. of L.

Proposition 4.18. Let 7 € Z(p). Then the following two conditions are
equivalent:

(i) dimp Homg (Projs 7, 7) = 1;
(#i) dimp Homg (0,,7) = 1.

Proof. Since ©; is a quotient of Projz7 and 7 < m, we have trivially
(i)=(ii).

(ii)=(i). Assume (i) does not hold. Then there exists a nonzero mor-
phism & : Projz7 — 7 which is not a scalar of the composition hg :
Projz 7 — 7 < m. We choose h in such a way that the multiplicity [Im(h) : 7]
is minimal. Let () C 7 denote the image of h. We will prove that @ is a quo-
tient of ©,, so that there exists a morphism ©., — 7 which does not factor
through the cosocle ©,; — 7, contradicting (ii).

First assume that 7 does not occur in soc(Q). Then the projectivity of
Proji 7 and the choice of h implies [@Q : 7] = 1 (with 7 in the cosocle of Q);
otherwise, we could always construct a nonzero morphism A’ : Projpm — m,
with Im(h’) € @ and [Im(h') : 7] < [Q : 7], which contradicts the choice
of h. Here, the assumption that 7 ¢ JH(soc(Q)) ensures that h’ is still not
a scalar of hg. By Corollary 2.31 (condition (b) in loc. cit. is satisfied by
[47, Prop. 2.24]), we deduce that @ is a multiplicity free I'-representation,
hence is contained in Dg(p) = 7%t by Condition (a) imposed on 7. Recall

6In [12, Lem. 6.4.3], the genericity assumption on p is stronger than ours, but
using the set X% (xo,--- ,x5_1) we may check that D(p) is still connected when
p is generic in the sense of [15, Def. 11.7].
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that Do(p) is multiplicity free and 7 occurs in the socle of Dy(p). Hence, if
T occurs in @, it must occur in soc(Q), giving a contradiction.

Assume that 7 occurs in soc(Q)) for the rest of the proof. A similar
argument as in the above case shows that [@ : 7] = 2; more precisely, we
have 7 < soc(Q) and cosoc(Q)) = 7. We claim the following:

(1) rad(Q) is multiplicity free;
(2) rad(Q) is a subrepresentation of Dy(p).

For (1), since cosoc(Q) = 7, it is equivalent to show that @ /7 is multiplic-
ity free. Note that /7 is a quotient of Projz 7 and [Q/7 : 7] = [Q : 7]-1 = 1,
so the assertion follows from (the dual version of) Corollary 2.26.

For (2), note that soc(Q)) C soc(Dy(p)) is multiplicity free. For each
o € JH(soc(Q)), let Q, be the unique quotient of @ with socle o and such
that ¢ — @ — @, is nonzero, so that () embeds in EBUGJH(SOC(Q)) Qs, and
consequently

(4.8) rad(Q) = P rad(Qo).

o€JH(soc(Q))

It suffices to prove that rad(Q,) is a I-representation for each o € JH(soc(Q)).
If o # 7, then @, itself is a I'-representation by the same argument as in the
above case. Assume o = 7. Since @), has cosocle 7, the cosocle of rad(Q)
can be embedded in @Tleg(T)T/ . On the other hand, by construction rad(Q)
is multiplicity free with socle 7, so rad(Q;) is also a I'-representation by (the
dual version of) Corollary 2.31. This proves (2). As a consequence, the em-
bedding (4.8) is an isomorphism because, on the one hand, each projection
rad(Q) — rad(Qo) is surjective, on the other hand, since rad(Q,) C Do »(p)
by (2) and Dy(p) is multiplicity free, rad(Q,) and rad(Q,,) don’t have any
common Jordan—Hélder factors for o7 # 09. We also deduce that rad(Q,)
is a subrepresentation of Dy ,(p) for any o € JH(soc(Q)).

We now prove that @ is a quotient of ©.,. Note that 7 is 2-generic by
Lemma 4.5. Let 0 € JH(soc(Q)) and assume o # 7. Since (), has cosocle
isomorphic to 7, Q), gives rise to a nonzero class in Ext%(T, rad(Qy)) which
implies 0 € &(7) by Lemma 4.10. In other words, JH(soc(Q)) is contained
in {7} U&(7), and for any o € JH(soc(Q)) we have dimp Homg(o, Q) = 1.
Let C denote the quotient @)/7, so that we have a short exact sequence

(4.9) 0—>7—-Q—C—0.
We claim that C has Loewy length 2 and fits in a short exact sequence

0-S—-C—-7—-0
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for some subrepresentation S of €, &(r) 7/, and the result will follow by
Corollary 3.14. Using (4.9) we see that if Homg(7/,C') # 0 for some Serre
weight 7/, then either Homg (7', Q) # 0 or EXt%(T/, 7) # 0, hence 7’ € {7} U
&(7) by the above discussion. Moreover, since dimp Homg(7,Q) = 1 and
EXt%(T, 7) = 0 by Lemma 2.10(i), we have Homg(7, C')) = 0 and consequently
JH(soc(C)) C &(7). As in the proof of Corollary 2.31, we then have

C— @ I<T/77—) = @ ET/,’T)

T'€JH(soc(C)) 7'€JH(soc(C))

where the isomorphism holds as 7" € & (7). This proves the claim and finishes
the proof of the proposition. O

Now we make an extra assumption on 7:
(b) if Ex‘c}(/z1 (o,m) # 0 for some Serre weight o, then o € Z(p).

Remark 4.19. We will see examples of G-representations satisfying (a)
and (b) in §8.

Proposition 4.20. Let x € JH(w!) and let 7 € 2(p) be the unique Serre
weight such that x occurs in Dy -(p). Then the following statements are
equivalent:

(i) dimp Homg (Projs7,7) = 1;
(i) dimp Homg (©,,7) = 1;
(#11) dimp Homp(W, 3,7) = 1.
Proof. Using Proposition 4.18 it suffices to prove the following inequalities:

(4.10)
dimp Homg (O, 7) < dimp Hom (W, 3, 7) < dimp Hom g (Projg 7, 7).

By Corollary 4.17 and Frobenius reciprocity, we may replace the middle
term by

dimp Homg (Ind¥ W 3, 7).

Let ¢r : Projpm — Indf Wxﬁ be a morphism as in Proposition 3.10. On
the one hand, by Corollary 4.14 and Conditions (a),(b) satisfied by 7, the
inclusion Tm(¢,) < Ind¥ W, 3 induces an isomorphism

Homp (Indf* W 3, 7) = Homg (Im(7), 7).
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On the other hand, there are surjections Projz 7 — Im(¢;) — ©;, which
induce

Homg (©,,7) — Homg (Im(¢;), m) — Homg (Projg 7, m).

Putting them together, we deduce (4.10). O

Summarizing what has been proved, we obtain the following “multiplic-
ity one” criterion, the main result of this section.

Theorem 4.21. Assume p is indecomposable and strongly generic. Assume
7 is an admissible smooth G-representation over F (with a central character)
satisfying the following conditions:

(a) 75 = Do(p) (in particular socg m = Docop) o)
(b) if EXt}(/Zl(U,ﬂ) # 0 for some Serre weight o, then o € 2(p);
(c) there ezists one oo € Z(p) such that dimp Homg (04, 7) = 1.

Then the following statements hold:

(i) d;imF Homp (Projg o, m)=1 for any o € 2(p), or equivalently, w[m% ] C

Do (p);
(ii) dimg Hom (W, 3,7) =1 for any x € JH(x").

Proof. By (a), the basic 0-diagram (7%, 71 can) attached to 7 in [15, §9],
where can : 7/t < 751 is the canonical inclusion, is just (Do(p), D1(p), can).
We define two sets as follows:

PN def {0’ € 2(p): dimp HOmK(PI“Ojf ag, 77) = 1}

def —_ .
> = {X € JH(Dl(p)) . dimp HOHI](WX’?,,?T) = 1}
It is clear that 3; is stable under the action of (2 (1)) (the one induced from
D1 (p)). By Proposition 4.20, if x € JH(D; »(p)), then x € ¥ if and only if
o € ¥y. Using (c), this implies that

( @ Dy (p), @ X,can)

o€ XEX

is a nonzero subdiagram of (Dy(p), D1(p), can), and in fact a direct summand
as diagrams. However, the diagram (Dg(p), D1(p),can) is indecomposable
by [15, Thm. 15.4(i)], thus they must be equal, and so ¥y = Z(p) and
X1 = JH(D1(p)). o
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Remark 4.22. If p is reducible split, then Theorem 4.21 fails because the
diagram (Do (p), D1(p), can) is not indecomposable anymore. In fact, we have
to impose a stronger hypothesis in (c) for the theorem to be true.

5. Ordinary parts

In this section we recall and prove some general results about smooth F-
representations of GLa(L), where L = Qs as before. Let G = GLa(L),
K = GL2(0Oy), and define the following subgroups of G:

def [(* —def (¥ O def (% 0 def (1
P () PEQD) ) v ()

Let Ty A K and Ny 4f NN K. Recall that Z denotes the center of G

and 7, < 7 0 K.

In this section, we only consider representations defined on F-vector
spaces and with a central character. The latter assumption is not always
necessary, but we make it for convenience.

5.1. Ordinary parts

Emerton has defined a left exact covariant functor in [27], called ordinary
parts and denoted by Ordp, from the category of smooth F-representations
of G to the category of smooth F-representations of T, which preserves
admissibility, and more generally local admissibility. He also defined in [28,
Def. 3.3.1] a §-functor {H'Ordp : i > 0} such that H°Ordp = Ordp.

On the other hand, let R*Ordp be the right derived functors of Ordp
for i > 0. The main result of [33] says that there is a natural equivalence
R'Ordp = H'Ordp. Using [28, Prop. 3.6.1], we deduce that R'‘Ordp van-
ishes for ¢ > f + 1.

Recall that w : G, — IF'? is the mod p cyclotomic character, viewed
as a character of L™ via the local Artin map normalized in the way that
uniformizers of L are sent to geometric Frobenii. Denote by ap the character
ww ! T = Fy < F~.

The following proposition summarizes some properties of R*Ordp.

Proposition 5.1. Let U be a locally admissible smooth representation of T
and V' be a smooth representation of G. The following statements hold.

(i) There is an adjunction isomorphism

(5.1) Home(Ind% U, V) 2 Homy (U, OrdpV).
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(i) There is a canonical isomorphism RIOrdpV =2 Vy ® a;l, where Vi
is the space of coinvariants (i.e. the usual Jacquet module of V' with
respect to P).

(iii) There are canonical isomorphisms

Ordp(Ind%U) = U, R/Ordp(IndSU) = Usap'.

Here U?® denotes the representation of T obtained by conjugating U by
s=(15)-

(iv) There is a natural isomorphism
Homr(R'OrdpV,U) = Homg (V,IndE(Uap)).

Moreover, the isomorphism sends epimorphisms to epimorphisms.
v) If L = Q,, then R'Ordp(IndSU) = Usant; otherwise R'Ordp(Ind&
P P P P
U)=0.

Proof. (i) is [27, Thm. 4.4.6] together with [28, Rem. 3.7.3], and (ii) is [28,
Prop. 3.6.2] using the main result of [33].

(iii) The first isomorphism follows from [27, Prop. 4.3.4] and the second
from (ii) noting that (Ind% U)y = (IndG Uy = US.

(iv) Using (ii) and the usual adjunction formula

Homg(V, Ind$% —) = Homy(Viy, —),
we obtain
Homyz(R/OrdpV,U) = Homy(Vy, Uap) = Homg (V, Ind% (Uap)).

The last assertion is obvious.
(v) The case L = Qy, is contained in (iii) and the case L # Q, is a special
case of [39, Cor. 4.2.4]. O

There is a useful spectral sequence proved in [27]:
(5.2) Ey? = Exth (U, RI0rdpV) = Extd(IndG U, V).

Here, ¢ denotes the central character of V' and ExtiG’C (resp. Extépvc) indicates
that we compute extensions in the category Repy (G) (resp. Repg (7). In
particular, we have a long exact sequence

0 — Ext}, (U, OrdpV) — Exty (Ind% U, V)
— Homy(U, R'OrdpV) — Extf (U, OrdpV).
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Corollary 5.2. We have a natural isomorphism
2f+1 - 1
Ext? ! (ndS U, V) = Ext)t (U, R OrdpV).

Fori¢>2f +1, we have Extiqc(lnd% U V)=0.

Proof. This follows from the fact that R‘Ordp vanishes for i > f + 1 and
that T7'/Z has cohomological dimension f + 1. O

Lemma 5.3. Let w be an irreducible smooth representation of G.

(i) Assume m = Sp®yxodet, where Sp denotes the Steinberg representation
of G. Then Ordpr = x ® x and R'Ordpr = 0.
(ii) Assume m = x odet is one-dimensional. Then Ordpm = 0. If L = Q,,
then R'Ordpm = yw™ ' ® yw; otherwise R'Ordpr = 0.
(iii) Assume 7 is supersingular.” Then Ordpm = 0.

Proof. (i) It follows from [28, Thm. 4.2.12(2)]; the proof in loc. cit. works
for general L.

(ii) The first assertion follows from Proposition 5.1(i) and [5, Prop. 29].
For the second, the case of GL2(Q)) is proved in [28, Thm. 4.2.12(3)].
The case L # Q, is a consequence of Proposition 5.1(v). Indeed, we have
R'Ordp(Ind% x ® x) = 0 and we deduce the result using (i) together with
the short exact sequence 0 — y o det — IndIG; X ®x — Sp® xodet — 0.

(iii) It is a consequence of Proposition 5.1(i). O

Lemma 5.4. Let U be a locally admissible smooth representation of T (with
a central character) and V' be a subquotient of Ind% U. If OrdpV =0, then
V' is a direct sum of one-dimensional representations of G.

Proof. If 9,4’ : T — F* are distinct characters, then Exti(1,1') = 0 by
[28, Lem. 4.3.10]. Hence, any locally admissible T-representation U can be
decomposed as a direct sum U = @,,Uy, where Uy, is the largest subrepre-
sentation of U whose Jordan—Holder factors are all isomorphic to . This
implies Ind%U = Dy Ind% Uyp. By [5, Thm. 30(1)] combined with Proposi-
tion 5.1(iii), for ¢ # ¢’ we have

JH(Ind% ) N JH(Ind% ¢') = 0.

As a consequence, any subrepresentation V' of Ind%U has a decomposition
V = @y Vy, where Vy, is the largest subrepresentation of V' whose Jordan—
Hélder factors all lie in JH(Ind% 1)); explicitly Vi, = V N Ind% Uy. It is clear

"See [5, p.290] for the definition of “supersingular” representations.
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that this decomposition remains true for any subquotient of Ind% U. Hence,
to prove the lemma, we may assume U = Uy, for some 1, and so V = V.

Assume OrdpV = 0. Let m be an irreducible subrepresentation of V.
Then 7 is non-supersingular and Ordpm = 0. By Proposition 5.1(iii) and
Lemma 5.3, m has to be one-dimensional, say m & y odet for some character
x : L* — F*, and the assumption U = U, implies ¢ = x ® x. We claim
that Ordp(V/m) = 0. Assuming the claim, we may continue the argument
to deduce that all Jordan-Holder factors of V' are one-dimensional. Since
p > 2, V has to be semisimple by [28, Lem. 4.3.20, Prop. 4.3.21] and the
result follows.

Now we prove the claim. If L # Q,, then the claim is obvious using
Lemma 5.3(ii). If L = @Q,, then by Lemma 5.3(ii) the sequence 0 — m —
V — V/m — 0 induces an injection

9 :Ordp(V/7) = R'Ordpr = yw ™' @ yw.

However, since V' =V}, Ordp(V/m) admits only ¢) = x ® x as subquotients,
so 0 must be zero (as p > 2) and the claim follows. O

5.2. Ordinary parts of injectives

We first recall the following result.

Proposition 5.5. Let 2 be an admissible smooth representation of G such
that Q| is an injective object in the category Repg(K/Z1). Then

(i) OrdpQ is an injective object in the category Repyp(To/Z1) and
(ii) R'OrdpQ =0 fori > 1.

Proof. (i) It is a special case of [10, Cor. 4.5].

(ii) Tt follows directly from the definition that H'Ordpf) = 0 if Q is
injective. The result then follows from the main result of [33] recalled at the
beginning of §5.1. O

Lemma 5.6. Let U be a finite dimensional representation of T. Assume
that U becomes semisimple when restricted to Ty. Then Ind%U s generated
by its K-socle as a G-representation.

Proof. Note that the K-socle of Ind%U depends only on the restriction of
U to Ty. The assumption on U implies that

socK(Ind%U)% @ SOCK(Ind% )
YeJH(U)
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By [5, Thm. 30], Ind%w is generated by its K-socle, namely the assertion
holds if U = 1 is one-dimensional. The general case follows from the above
equality of socles. O

Proposition 5.7. Let ) be an admissible smooth representation of G such
that Q|x is injective in the category Repp(K/Z1). Let v : V. < Q be a
subrepresentation with sock (V) = sock (). Then the induced inclusion
Ordp(t) : OrdpV < OrdpQQ is essential when restricted to Tp.

Proof. Assume that Ordp(t) is not essential when restricted to Tp. Then
there exists a smooth character g : To — F* together with a Tp-equivariant
embedding

(5.3) g @ OrdpV — Ordpfd.

Choose a basis v for the underlying space of ¥, and let U := (T.v) C Ordpf2
be the T-representation generated by v. Since Ordpf) is admissible and T°
is abelian, U is finite dimensional over IF' (because if v is fixed by some open
compact subgroup of Ty then so is tv for any t € T'). Moreover, again using
the fact T is abelian, one checks that U]z, is semisimple and vy-isotypic, i.e.
Ulr, = 5" where r = dimp U. Lemma 5.6 implies that Ind%U is generated
by its K-socle. Hence, the image of the morphism (provided by Proposition
5.1(1))
B:IndSU — Q

is also generated by its K-socle. In particular, Im(5) C (G.sock (2)). How-
ever, by assumption sock (V) = sock(£2), so we get Im(3) C V and conse-
quently U C OrdpV, contradicting (5.3). O

Corollary 5.8. Keep the notation of Proposition 5.7. Assume moreover that
OrdpV = x is irreducible. Then there is a ring isomorphism

EndTO((OrdpQ)v\To) = F[[Sl, cee ,Sf]]

Proof. Combining Proposition 5.5 and Proposition 5.7, (OrdpQ)|z, is iso-
morphic to an injective envelope of y in Repyp(Tp/Z1), and so (OrdpQ)Y|r,
is isomorphic to Projr, 7, x". Let T denote the pro-p Sylow subgroup
of Ty. Endowed with the trivial action of H, F[T1/Z] is isomorphic to
Projr, /7, 1. The assertion follows from [62, Lem. 3.32] which says that
Projr, 17, X" = x" ® F[T1/Z1] represents the universal deformation prob-
lem (with w-torsion coefficients) of x with the universal deformation ring
isomorphic to F[S1,...,S¢] = F[T1/Z]. O
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Lemma 5.9. Let 7 be a 1-generic Serre weight and 1 be a character of T'.
Let U be an admissible T'-representation whose Jordan—Holder factors are all
isomorphic to 1. Assume that Uz, is injective in the category Repp(To/Z1).
If Homg (7,Ind$ U) # 0, then Extj, 12,(T, Ind$ U) = 0.

Proof. First note that the assumptions imply that Homg (7, Ind% ) # 0.
Since 7 is l-generic, in particular 1 < dimp7 < ¢, it follows from [5, §7]
that Ind%zp is irreducible with K-socle isomorphic to 7. We deduce that

Hom g (7, IndG U) = 0 for any Serre weight 7' such that 7/ # .

By Shap1ro s lemma, it is equivalent to show EXt(PﬂK)/Z (r,U) = 0.

Note that (PN K)/Zy = (Ty/Z1) x Ny. Since Ny acts trivially on U and U
is injective as a Tj/Z;-representation by assumption, the Hochschild-Serre
spectral sequence implies
Ex t%PmK)/Z (r,U)=H'((PNK)/Z1, 7" &sU) 2 H(Ty/Z1, H (No, 7")®8U).
A similar computation as in [44, Prop. 2.5] shows that, if we write 7 =
(807 R Sf—l) ® 1, then

H'(No,7") = @jesxs o] i

as Tp-representations. Using the 1-genericity of 7, i.e. 1 < 55 < p — 3 for

-1 J+1)—1

all j, one checks that (x; = XTa;(SjH) = X (r) if f > 2 (resp.

Xud () if f =1). Hence, to prove the result it is equivalent to prove
HOIIIT0 ( Djes XN U|T0)

if f > 2 (resp. Homy, (Xu U|T0) =0 if f = 1). Assume this is not the
case and assume f > 2. Then there exists an embedding X (r) = Ulr, for
some i € S, hence embeddings

p7 (1) = Ind® () = (dE V) |k

Pk Xuy

where the first one is obtained by Frobenius reciprocity and [5, Lem. 2(2)].
This gives a contradiction to the conclusion in the last paragraph. The case
f =1 can be treated similarly with p; (1) replaced by ug (7). O

5.3. G)_,O_rd and ordinary parts

We discuss the relation of the representation ©2'¢ studied in §3.4 and the
ordinary parts of a smooth representation of G.
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Let V' be a locally admissible smooth representation of GG. Proposition
5.1(i) implies a natural map

7:Ind%OrdpV — V

whose image we denote by V4.8 By construction, we have OrdpVod =
OrdpV.

Lemma 5.10. Let ¢ : V — V be a G-equivariant endomorphism. Let
Ordp(¢) be the induced endomorphism of OrdpV and ¢’ be the induced
one of Ind% OrdpV'. Then the following diagram is commutative:

Ind% OrdpV =V

‘| l(b

Ind% OrdpV ——=V.

Proof. Denote by ¢ the isomorphism (5.1) of Proposition 5.1(i). The asser-
tion is equivalent to t(¢ o0 7) = 1(y0 ¢'). It is clear that +(y) = Id, and by
Proposition 5.1(iii) ¢(¢’) = Ordp(¢). Thus, taking Ordp(—) of the diagram
in the statement gives

OrdpV s OrdpV
ordp(¢)l lordp(dﬂ
OrdpV s OrdpV

from which the result follows. O

Lemma 5.11. (i) Ker(y) is a direct sum of one-dimensional representations
of G.

(ii) If Vi C V is a subrepresentation of V', then Vlord C VinVvod and the
corresponding quotient is a direct sum of one-dimensional representations of

G.

Proof. (i) By construction, we know that Ordp(Ker(y)) = 0, so we conclude
by Lemma 5.4.

(ii) The inclusion V"4 C V3 NV is obvious; let C' denote the quotient.
It is easy to see that C' is a subquotient of Ind% U for some T-representation

8Note that this is different from the notation used in [11], at least when L = Q.



On the mod p cohomology for GLs: the non-semisimple case 329

U (e.g. we may take U = OrdpV/OrdpVy). If L # Q,, then taking Ordp
of 0 — Vf’rd — VinVed 5 ¢ — 0 gives again a short exact sequence by
Lemma 5.3(ii), from which we deduce Ordp(C) = 0 and we conclude by
Lemma 5.4.

Assume L = Q,, for the rest of the proof. As in the proof of Lemma 5.4,
we may decompose V' as EBw(Vord)¢, and consequently V;NVod = Dy V1N
(veord),. Tt suffices to show that the cokernel of (Vrd), C Vi N (Vord),,
denoted by Cy, satisfies Ordp(Cy) = 0. There are two cases:

e 1) = x ® x for some x. Then Ordp(Cy) = 0 by the same proof as in
Lemma 5.4.
e ) 2 x ® x for any x. Then the morphisms Ind%(Orde)w — (Vord),

and Ind%(Orde1)¢ — (VPrd),, are isomorphisms using Lemma 5.4.
Proposition 5.1(v) implies that

R'Ordp(Ind%(OrdpVi)y) — R'Ordp(Ind%(OrdpVi)y)

is equal to the natural morphism (OrdpVi)j — (OrdpV);, twisted

by 04]_31, hence is injective. This means that the morphism R!'Ordp
(V) — R*Ordp(Vord), is injective, hence so is

R'Ordp (Vi) — R'Ordp (Vi N (Vo).

This implies Ordp(Cy) = 0 as desired.
0

Remark 5.12. For our application in §8, V|x will not admit one-dimen-
sional Serre weights as subrepresentations, in which case Lemma 5.11 is easy
to show. However, we keep the generality because the result might be useful
elsewhere.

Corollary 5.13. Let V be a locally admissible smooth representation of G.
Let \ be a finite dimensional K -representation which does mot admit any
Jordan—Hélder factor of dimension 1 or q. Then j induces an isomorphism

HOIHK()\, Ind% OrdPV) = HOInK()\7 Vord)‘

Proof. As in the proof of Lemma 5.4, we may assume OrdpV = (OrdpV)y
for some 1, so that all of Jordan-Hélder factors of V¢ or Ind% OrdpV lie
in JH(Ind$ ).

Write ¢ = x1 ® x2 for characters x1,x2 : L — F*. If x1 # x2, then
Ind% 1) does not admit one-dimensional representations of G as subquotients,
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thus 7 induces an isomorphism Ind% OrdpV = Vo4 by Lemma 5.11(i) and
the result is obvious. If x1 = x2, then any Serre weight occurring in socg (),
for T € JH(Ind% 1) has dimension 1 or ¢, thus the assumption on \ implies
that Hom (X, Vord) = Homg (A, Ind% OrdpV) = 0. O

Lemma 5.14. Let V be a locally admissible smooth representation of G. Let
7 be a Serre weight such that 1 < dimp 7 < q. Assume that Homg (7', V) =0
for any 7’ € JH(Indf( Xr) such that 7" # 7. Then j induces isomorphisms

(5.4) Homy (7, Ind% OrdpV') = Homg (7, V') = Homg (7, V).

The same statement holds if we replace T by any subrepresentation ofIndI X5

Proof. Since 7 (resp. Ind¥ x2) is finite dimensional and since V is equal to
the direct limit of its admissible subrepresentations, we may assume V is
admissible.

First prove the isomorphisms (5.4) for 7. By Corollary 5.13, we are left

to prove the second isomorphism. The proof is by a standard weight cycling

argument. Let Ry = © KZ and I(T) L o Ind$; ,7, where Z acts on 7 via

the central character of 7. Since V' is audmlss1ble7 Homg, (7,V) is a finite
dimensional F-vector space. It is well-known that Homg, (7, V'), which is
isomorphic to Homg (I (7), V') via Frobenius reciprocity, carries an action of
the Hecke algebra Endg(I(7)) = F[T] (see [5]). Up to enlarge F, we may
assume all the eigenvalues of T' are contained in F.

We claim that A # 0 for any eigenvalue A of T. Otherwise, choose a
nonzero eigenvector in Homg (7, V) on which T" acts by 0, we then obtain
a G-equivariant morphism I(7)/T — V. By considering the action of (2 (1))
on 7!, we obtain a nonzero K-equivariant morphism Ind¥ % — V', which
factors through (Ind¥ x2)/7 (this uses the explicit description of T see [5]).
Since Ind% y2 is multiplicity free, we have Homy ((Ind¥ x2)/7,V) = 0 by
assumption, a contradiction.

The claim implies that any morphism I(7) — V factors through I(7)/ (T),
for some polynomial f(7T") = [[,(T — X;)*, with \; # 0. By [5, §6], if either
dimp7 # 1 or \; # =£1, then I(7)/(T — X;) is irreducible and we have
V; = Ind% OrdpV; for any quotient V; of I(7)/(T — X\;)%. Since 7 has dimen-
sion > 2 by assumption, we deduce an isomorphism Homg(I(7), Vord) =
Homg (I(7),V), and the result follows.

We now prove (5.4) with 7 replaced by a subrepresentation W of Indf 2.
We may assume W is nonzero and so 7 < W < Ind¥ y2 (as 7 is the socle
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of Ind¥ x2). First note that for any admissible representation V' of G, we
have the following injections and isomorphisms
(5.5)

Hompg (7, V') < Homj(xr, V') = Hom;(x%, V') = Homg (Ind¥ x5, V')

where the first map is the restriction map induced by 7* < 7 which is injec-
tive as 7 is irreducible, the second map is obtained by taking conjugation by
(2 é) (as V' is a representation of ), and the third is induced by Frobenius
reciprocity. If moreover Homg (7/, V') = 0 for any 7/ € JH(Ind¥ x2) with

7/ # 7, then we further have injections
Homy (Ind® x¢, V') < Homg (W, V') < Homg (1, V')

which must be isomorphisms by comparing their dimensions and using (5.5).
The result then follows from this together with (5.4) for 7 and Corollary
5.13. 0

Recall that ©2 is defined in Lemma 3.17 for any 2-generic Serre weight.

Proposition 5.15. Let V be a locally admissible smooth representation of
G and T be a 2-generic Serre weight. Assume that Homg (7', V) = 0 for any
T e JH(Indf Xr) such that 7' # 7. Then j induces isomorphisms
(5.6)

Hom g (0979, Ind% OrdpV) = Hompg (024, Vord) = Homy (0979, V).

Proof. Tt is clear that we may assume V' is admissible. By [15, Cor. 9.11],
there exists a G-equivariant embedding V' — (), where €0 is a smooth G-
representation such that Q|x = Injg,z sock (V). Note that although it is
required that p acts trivially on V in loc. cit., up to twist the result applies
to any admissible representation with a central character. Assuming we have
proven an isomorphism

(5.7) Homy (024, 0°) =5 Hom g (0979, Q),

the desired isomorphism (5.6) will follow using Lemma 5.11(ii). Indeed, let
f € Homg (024, V); we need to prove Im(f) ¢ V°ord. By (5.7), Im(f) C
VNQerd, Since 7 is 2-generic by assumption, no Jordan-Hblder factor of @24
is one-dimensional, so we actually have Im(f) C V°¢ by Lemma 5.11(ii).

So we may assume that V = Q is injective when restricted to K/Z;.
Recall that ©¢ fits in a short exact sequence by (3.9)

0— @EW;(T) — 0% 1 0.
jes
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It induces a commutative diagram

0 —— Homg (1, Q) —— HomK(G)‘T’rd7 Q) —— @jes Homg (Ej, Q) 0 Ext}(/z1 (1,9Q)

0 — Homg (7, Q) — Homg (024, Q) —— ®D,es Homg (E;, Q)

0,

where we have written Q) = Ind% OrdpQ) and E; = E to shorten the

T, i T
formulas. The bottom row is exact by the injectivity gf (Q) Using Lemma
5.14, the assumption on socg (V') implies that ¢ and all ¢; are isomorphisms
(as Ej is a subrepresentation of Indf( x2). We claim that 9 is the zero map,
which will finish the proof by the snake lemma.

Prove the claim. Since sock (V') = sock (€2), the assumption implies that
Homy (p; (7),§2) = 0 for all j € S. As noted above, dimp p1; (7) > 1, hence
by Lemma 5.11(i)

Hom (5 (1), Ind% Ordp2) = 0.

Consequently, we may assume Homg (7, Ind% OrdpQ)) # 0, otherwise the
claim is trivial. Decomposing Ordp§) = @, (0rdpQ), as in the proof of
Lemma 5.4, it suffices to prove the claim with Ord pQ replaced by (Ordp§2),
for those 1 such that Homg (7, Ind%(OrdpQ)¢) # 0. But, Lemma 5.9 implies
that Ex‘c}{/z1 (T, Ind%(OrdpQ)w) = 0, from which the claim follows. O

The next result gives an interpretation of the semisimplicity of (Ordp
V)|z, in terms of V|k.

Proposition 5.16. Let V be a locally admissible smooth representation of
G and T be a 2-generic Serre weight. Assume that Homg (7', V) = 0 for any
7' € JH(Ind¥ x,) such that 7' # 7. If OrdpV is semisimple when restricted
to Ty, then the quotient ©%Y — 7 induces an isomorphism

Hompg (7, V) = Homg (04, V).

Proof. Again we may assume V' is admissible. Moreover, by Proposition 5.15
and its proof, we may assume V = Ind% OrdpV. Since the assertion depends
only on V|, hence only on (OrdpV)|z, which by assumption is semisimple,
we may assume OrdpV = 9 is one-dimensional and so V' = Indgw. Asin the
proof of Proposition 5.15, we may assume Homg (7, V') # 0 and consequently
T = sock (V).
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Let h : ©29 — V|g be a nonzero morphism. We need to prove that h
factors through @24 — 7. It suffices to prove that h is zero when restricted
to soc(©'d). Assume this is not the case. Then [Im(h) : 7] > 2 and Lemma
3.18 implies that Im(h) is not annihilated by mg, (as Im(h)g, is a quo-
tient of (©2'4) k. which is multiplicity free). Moreover, it is easy to see that
Im(h) N VEr = rad(Im(h)), which induces an embedding cosoc(Im(h)) =
7 < V/VE1 This again gives a contradiction by Lemma 5.17 below. O

The following lemma is well-known; we include a proof for lack of a
suitable reference.

Lemma 5.17. Assumep > 2. Letm = Indg ¥ be a principal series of G. Let
o be a Serre weight such that Homg (o, 7| ) # 0. Then Homp (o, m/m51) =
0.

Proof. First observe that, since 7| ¢ = IndX_ (4|1, ), the assumption implies
Hompng(o,%|7,) # 0 by Frobenius reciprocity, hence ¢|r, = x5 by [5,
Lem. 2].

The exact sequence 0 — 751 — 7 — 7/7%1 — 0 induces an exact
sequence

0 — Homg (o, 7/751) — Ext}(/zl(a, ) LA Ex‘c}(/z1 (o,m),

so it is enough to show f is injective. By Shapiro’s lemma and using the fact
that %1 22 Ind¥ (4|1, ), this is equivalent to show the injectivity of

Exty 7, (0,X5) = Ext(prg)z, (0, X5);
or equivalently the injectivity of
Exty/y (1,5 © ") = Ext{pngy 7, (1 x5 ®0”)

where the 1’s denote the trivial representations.
Consider an I/Z;-extension 0 — x5 ® 0¥ — & = Fv — 0, where I acts
trivially on v, and assume that it splits when restricted to (PN K)/Z;. Then

we may choose a lifting of v, say w € £, on which PN K acts trivially. It is

enough to prove that N def (péL (1)) also acts trivially on w, because then

I will act trivially on w and & splits. It is clear that (pz%QL (1]) acts trivially
on &. The matrix identity (for b,c € Or)

((1) ?) (plc (1)> - <pc(1 +1pbc)1 [1)> (1 +opbc (1 +1[9)bc)1>
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implies that (. {)w is again fixed by Ny. By [5, Lem. 2], (x5 ®0" )0 is one-
dimensional and it is easy to see that H acts on it via the trivial character 1.
Hence, if w were not fixed by N1, then we would obtain a nonsplit extension
class in Extllqﬁ1 (1,1). However, the same proof of [61, Lem. 5.6] shows that

Ext}qﬁl(l, 1) = 0 (this uses p > 2), a contradiction. O
6. Galois deformation rings

The aim of this section is to recall the results of [52] on multi-type poten-
tially Barsotti-Tate deformation rings of two dimensional representations of
G, over F (in the reducible nonsplit case), and prove Proposition 6.9 and
Corollary 6.11 which will be used in §8.4. We first recall the notion of the
universal (reducible) deformation rings.

6.1. Universal deformation rings

Let p = (%1 ;2) be a reducible nonsplit two-dimensional representation of

G over I satisfying

(6.1) X1X2_1 ¢ {vaw_l}'

Let ad(p) denote Endp(p) with the adjoint action of Gr. The assumption
(6.1) on p implies that

(6.2)

H°(Gr,ad(p)) = Endg, (p) =F, H’(Gr,ad(p)(1)) = Homg, (7,p(1)) = 0

where V(1) denotes the Tate twist of V' for any Gz-module V.

Lemma 6.1. ExtZ (x1,x2) = Extg, (x2,x1) = 0.

Proof. This follows from the assumption (6.1) and Tate local duality. O
Lemma 6.2. H*(G,ad(p)) =0 and dimp H'(Gp,ad(p)) = 4f + 1.

Proof. This first equality follows from (6.2) and Tate local duality. The
second equality follows from the local Euler-Poincaré characteristic formula.
O

Let Art(O) denote the category of local artinian O-algebras with residue
field F. A deformation of p to A € Art(0O) is a representation p4 : G — GLg
(A) of G, such that the composition of p4 with the natural map GLa(A) —
GLy(F) is p. Two deformations pa, p/y of p to A are strictly equivalent if
there is M € Ker(GL2(A) — GL2(F)) such that pa = M~1p/y M. Let Def; :
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Art(O) — Sets be the functor sending A to the set of strictly equivalent
classes of deformations of p to A. Since Endg, (p) = F, Mazur’s theory [57]
on the deformation of Galois representations shows that the deformation
functor Def; is pro-representable by a complete noetherian local O-algebra
R5.

Corollary 6.3. R; is formally smooth over O of relative dimension 4f + 1.

Proof. Since dimp H?(Gr,ad(p)) = 0, Ry is formally smooth by [57, Prop. 2].
The relative dimension of R; over O follows from the corresponding dimen-
sion of H(G,ad(p)) which is given in Lemma 6.2. O

Fix ¢ : G — O* a continuous character which lifts det p. Let Def% :
Art(O) — Sets be the functor sending A to the set of strictly equivalent
classes of deformations pa of p over A such that det ps = 14, where ¥4
is the composite G, —— O@* — A*. The deformation functor Def%/’ is pro-

representable by a complete noetherian local O-algebra R% . Let ad®(p) be
the subspace of ad(p) consisting of matrices of trace zero. It is stable under
the action of G. Similarly as in the proof of Lemma 6.2, one can show
dim H?(Gr,ad’(p)) = 0 and dim H'(G,ad’(p)) = 3f. We then deduce
that R% is formally smooth over O of relative dimension 3f.

6.2. Reducible deformation rings

Let p be as in the last subsection. A deformation p4 of p to A € Art(O) is
said to be reducible (or equivalently P-ordinaryin [10, §5.1] where P denotes
the upper-triangular Borel subgroup of GLg) if p4 has a free rank one direct
summand over A which is stable under G. We define the functor Defrﬁed :
Art(O) — Sets by sending A to the set of strictly equivalent classes of
reducible deformations of p. By [58, Prop. 3] (or by [10, Lem. 5.3, Prop. 5.4]
which is more adapted to our situation), Def%ed is a subfunctor of Def; and
is pro-representable by a complete noetherian local O-algebra R%ed with
residue field F.

Denote by ad(p)req C ad(p) the subspace given by the following short
exact sequence

0 — ad(p)rea — ad(p) — Homp(x1, x2) — 0,

where the homomorphism ad(p) — Homp(x1, x2) is given by

¢ (X1 P~ B — X2)-
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One checks that ad(p)req is stable under the adjoint action of Gp..

Lemma 6.4. (i) H*(G,ad(p)req) = F.
(ii) H2(GL,ad(ﬁ)red) =0.
(iii) dim HY(G,ad(p)req) = 3f + 1.
Proof. (i) Since H°(Gp,Homr(x1,%2)) = Homg, (x1,Xx2) = 0 by the as-
sumption (6.1), we get H°(Gr,ad(p)req) = H°(GL,ad(p)) = F.
For (ii), since H%(Gp,ad(p)) = 0, it suffices to show that the natural
morphism
(6.3)
EXtéL (ﬁv 16) = Hl(GL7 ad(ﬁ)) — Hl(GL7 Hom]F(Xla XQ)) = EthGL (X17 XQ)

is surjective. First, applying Homg, (—, x1) to the short exact sequence
(6.4) 0—=x1—2>p—=>x2—0
we obtain an exact sequence

Extg, (x2,x1) = Extg, (5, x1) = Ext, (x1, x1)-

By Lemma 6.1 and the fact that Ext%;L (x1,x1) = 0, we have Ext%‘;L (P, x1) =
0. As a consequence, applying Homg, (p, —) to (6.4) gives a surjection

(6.5) Exté, (p,7) — Extg, (7, x2) = 0.

Similarly, since Ext%;L(Xg, x2) = 0, we have a surjection

(6.6) Exté, (7, x2) — Extg, (x1,x2) — 0.

The surjectivity of (6.3) then follows from (6.5) and (6.6).
(iii) follows from (i), (ii) and the local Euler-Poincaré characteristic for-
mula. U

Proposition 6.5. R%ed 1s formally smooth over O of relative dimension
3f+1.

Proof. This is a variant of [58, §30]. One checks that a deformation 7’ of p
to Fle]/e? (the ring of dual numbers) is reducible if and only if it takes its
values in ad(p)eq When viewed as an element in H'(Gp,ad(p)). Then the
assertion follows from Lemma 6.4. O
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Set
red def

P, lel p1p d
Rﬁ = Rﬁ QR, R%e .
We have the following variant of Proposition 6.5.

Proposition 6.6. R%”red

2.

is formally smooth over O of relative dimension

6.3. Serre weights

We recall some terminology used in [52]. Let G be the algebraic group
Rest ; /7, GLa. Let T' be the diagonal torus in G. We identify the charac-
ter group X*(T) = X*(T xp, F) with (Z%)/. We say that p € X*(T) is
p-restricted if 0 < (u,a) < p for all positive coroots . Let nd € X*(T)
(resp. a® € X,(T)) be the dominant fundamental character (resp. the posi-
tive coroot) represented by (1,0) (resp. (1,—1)) in the i-th coordinate and 0

elsewhere, and 7 def > iez)fz n®. Let Gder def Resy , /r,SL2 and Tder c Gder
be the standard torus. Let w® be the restriction of () to T9er,

For a dominant character p € X*(T), let V(i) be the Weyl module
defined in [48, 11.2.13(1)]. It has a unique simple G-quotient L(u). If u =
> ul@ is p-restricted then L(u) = @;L(11;)® by Steinberg’s tensor product
theorem. Let F'(u) be the I'-representation L(u)|r, where I' = G(IF,) =
GL2(F,s). Then F(u) is irreducible by [41, A.1.3].

Let 4 € X*(T) be such that 1 < (u—1n,a®) < p—2 for all i € Z/fZ.

Let § & {:i:w(i)}iez/fz. For any subset J of S, let o def F(t,(wys)) be the

Serre weight defined in [53, Def. 3.5], we refer the reader to §2 of loc. cit. for
the notation used here.

Recall that L denotes the fixed unramified extension of Q, of degree f.
Write P(v) = v + p for the minimal polynomial of 7, = —p over Q. Let
Loo = L((—p)YP™) by choosing a compatible system of p™-th roots of —p in
@p. Let p : G — GLa(F) be a continuous reducible nonsplit representation,

Le.p= (% ,)- We may write

f—1 i f—1 i
Xl — nrawa»L:o H1,iP , X2 — nra/w%lzg /1/2,Lp

for some dominant p-restricted character p; aof (11,6, p2,i)icz/ - Up to twist,
we may assume (f1 4, pt2,i) = (¢i, 1). We further assume 4 < ¢; < p—3 for all
i € Z]fZ, equivalently, p is strongly generic in the sense of Definition 4.4.
Note that this is the same genericity condition imposed in [52]. In particular
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this implies p > 7. Moreover, p lies in the category of Galois representations
defined by Fontaine-Laffaille ([35]), hence it can be written as

p= HomFil',ga. (M, Acris ®Zp Fp)
where M is a filtered ¢-module of Fontaine-Laffaille uniquely (up to iso-
morphism) determined by p, Acs is Fontaine’s ring of periods for integral
crystalline representations, and Homgj , means that we consider the mor-

phisms preserving the filtrations and commuting with . Explicitly, M can
be described as follows

M=M"x . x Mf7'  with M7 =Fel o Ff/

together with the filtration given by

Fil'M? = M/ if i<1
Fil'M7 = Ffl if 2<i<cp
Fil'MJ = 0 if i>cpj+1
and
(Pcf—j (fj) = f]Jrl + a’j—1€J+1
for j # 1 and

{tp(el) = ae?
we, o (f1) = o (f? +aoe?)

where a; € F and a, o € F*. Set

def

(6.7) S; = {w Japy;=0}CS

which depends only on p. One checks directly
(6.8) Sy ={w | ie gy},

where J5 is the (proper) subset of S = Z/fZ as in §4 (cf. [8, Eq. (17)]).
Recall that 2(p) denotes the set of Serre weights associated to p (see §4).

Then 2(p) = {0 e F(t, (wy)) | J € Sz} by [52, Prop. 3.2] (where the set

9(p) is denoted by W (p)).
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6.4. Potentially Barsotti-Tate deformation rings

Let p : G — GLa(F) be a strongly generic reducible nonsplit representation
as above. Let M =[], F((v))¢’ @ F((v))f* denote the étale p-module given by

e pm(e™h) = vori(el +aiaf)

#0: {cpM(f”) — of

im0 { M) o)
' em(F 1 =avf

[52, Prop. 3.6] shows that V*(M) = p|g, , where V¥ : M = (M ®
(Oguws ,)?=1)V is the anti-equivalent functor (defined by Fontaine) from the
category of étale g-modules over F((v)) to the category of representations of
Gy over F. Let N denote the rank one étale p-submodule H;;é F((v)f’
of M. Let ¢ be the image of ¢’ in M/N. Then {¢'};c7, 47 forms a basis of
M/N over F((v)). We have V*(N) = xs|g,  and V*(M/N) = x1|a,_.

Let DefﬁD : Art(O) — Sets be the framed deformation functor (¢ la
Kisin [49]) which sends A to the set of representations p4 : G, — GLa(A)
lifting p. Then DefﬁD is pro-representable by a complete noetherian local
O-algebra RﬁD. If v : G — O* is a continuous character lifting det p,

let RpD ¥ be the reduced w-torsion free quotient ring of RﬁD parametrizing
framed deformations of p with determinant . If 7 is a tame inertial type
and A = (ax,bx)xeHom(L,E), Where a, > by are integers, let RﬁD’T”\ (resp.
be the quotient ring of RﬁD (resp. RﬁD ’w) which parametrizes framed
potentially crystalline deformations of p of inertial type 7 and Hodge-Tate
weights (ax, b) for the embedding k. If 7 = 1 is trivial, we will write RﬁD’CriS’/\
O,4,cris, A 0,1,\ O,,1,A . .

(resp. R; ) for R; (resp. I; ), and call it framed crystalline
deformation ring (with fixed determinant ) of Hodge-Tate weights A. If A =

(ks bk) ketom(L, B) With (ax, bs) = (1,0) for all K € Hom(L, E), we will abbre-
Viate RﬁD’T (resp. RpDﬂZJ,T) for RﬁDvTa(lyo)rzEHom(L,E) (resp. R?7¢7T7(170)HEHom(L,E))’
and call it framed potentially Barsotti-Tate deformation ring (with fixed

D7w9T7A
ROV

determinant v). If T" is a set of inertial types for L, then we let RﬁD T (resp.

RﬁD’d”T) be the quotient of RﬁD such that Spec RﬁD’T (resp. Spec Rﬁm’w’T) is
the Zariski closure of U,er Spec RﬁD’T[l/p] (resp. Urer Spec Rﬁm’w’T[l/p]) in
Spec RﬁD.

Let J be a subset of S5 and let T be a subset of S such that I N {+w®}
has size at most one for all i € Z/ fZ. [52] defines a set T’y which consists of
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inertial types 7 such that o(7), the irreducible finite dimensional GL2(Op,)-
representation over E associated to 7 under the inertial local Langlands
[40], is of the form Rg(upz — s'n) (see [41, Lem. 4.2] for the notation Ry(u),
(5, 1) € (S2)T x X*(T)) subject to the condition that s, s € (S)/ are given
by the following table:

Siy Sh w® ¢ J w® e J
{£wW}NT =10 s; = s} st #1d
w® e s; = s; =1d s =s; #id
—w@er si=s;#1id | s; =1d, s, #1id

[52, Lem. 3.5] shows under the inertial local Langlands [40], T';; corre-
sponds to the set of Deligne-Lusztig representations T, ,, (1) defined in loc.
cit.. In particular, if I is the empty set, then
(69) PrOjo[F] (O'J) ®O E = @TETJwa(T),
where Projory(c) denotes a projective envelope of o in the category of

O[I'l-modules. Recall Theorem 3.6 of [52] (in the special case for reducible
nonsplit strongly generic p).

Theorem 6.7 ([52]). There is an isomorphism from RﬁD’T"" to a formal
power series ring of relative dimension 4 over O[(Xi,Y:)icz/szl/(9i(J,
I))icz) 2, where gi(J, 1) is given by the following table:

9i(J, 1) w10 ¢ & [ W10 € S\ J | w170 € J
{FWU "R nI=0] Yi(Yi-p) Yi(X,Yi—p) | Xi(X,Y;—p)
WwT—T=0) ¢ T Y, Y, XV 5
—oT=0 7 Y; —p XY, —p X,

If 1 C U, then g;(J,I")|g;(J,I) for all i and RﬁD’T‘”' is the quotient of

RﬁD’T‘” by the ideal (g;(J,I"));. Analogous results hold for Jrmal

(7
1 is chosen so that RpD’¢’T1J

provided

is nonzero for some I.

We record the following result of independent interest. It will not be
used for the rest of the paper.

Corollary 6.8. We have a natural isomorphism

Homo_aig(R5"* Fle]/¢?) 2 Homo_aig (R Fle]/¢?), ¥J C Sp.
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0,750

Proof. By Theorem 6.7, R is a formal power series ring over

O[Xi,Yilicz 52/ (9i(J,0))icz) 2,

and RﬁD’TJ"’ is isomorphic to the quotient RFD’T"’“/(gi(J7 J))iez) sz From the
description of the ideals (¢;(J,0)); and (g;(J, J)):, one checks directly that

dimp Homo_alg(R;"*  Fle]/¢)
= dimp Homo_alg(RﬁD’T""’,F[e]/eg) =34+ (2f+1).

Hence the injection

Homo.aig(Ry"" Fle] /¢?) — Homo_ag (RS Fe] /¢?)
induced by the projection RﬁD Lo, RpD 177 4g an isomorphism.

Let —J denote the set {—w® | w(® € J}. Then similarly the projection
U.To.0 0,7,y

- induces an isomorphism

Homo i (R Fle] /€?) = Homo_ag (Ry " Fle]/¢?).

Finally, one checks directly Ty _; = T;; = Ty N Tjp by noticing J C
(w9 | i e Z/f7}. O

Proposition 6.9. Lett € Hom@_alg(RﬁD’T‘”’w,F[e]/(—:Q). Then t factors through
RﬁD’red if and only if t(Y;) =0 for alli € Z/fZ. In particular, we have

dimgp (Homofalg(RﬁDva,mjF[E]/62) N HOmofalg(RﬁD’red,F[E]/€2)> =4+ f,

where the intersection is taken inside Hom@,alg(RﬁD, Fle]/€?). An analogous
equality holds for fized determinant deformation rings, i.e.

dimg (Homo ag (RS Fle] /€%) N Homo g (RS, Fe] /62)) =3+ f

Proof. The fixed determinant case follows from the unfixed determinant case
by [31, Lem. 4.3.1]. For the unfixed determinant case, we first recall the con-
struction of B in [52). Let R = O[(X;, Y;)o<i<f—1, Xa» Xar]/(:(0,0)):s.
The universal étale o-module M p over R admits the following description,
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see [52, Thm. 3.6],

(-0 g 5. [P =T odp—Yie + (X taia])of
r e(fY) = =Yio1(Xic1 + [ai—a]) el + of
i—1 cy—i—1 i Cr i ei
(f=i) = q_. (") =v9 T (v +p— XiYio)e + Xj v f
w € Sp : { (’D(fz—l) =Y q¢f + Ufl

for ¢ # 0, and for ¢ = 0 one needs to modify by the multiplication by the

matrix Dlaa) — < Xa 3— (] . :)_ ” ) '

Let R be the ring which represents the functor sending a complete noethe-
rian local O-algebra A to the set of isomorphism classes of {f : R — A,ba}
where by is a basis for the free rank two A-module V*(f*(Mpg)) whose re-
duction modulo m4 gives 5. Then RU is formally smooth over R of relative
Q) 0

dimension 4. The universal lifting ring R— is then a quotient of R by

a G?n action, and is a power series ring over R of relative dimension 2, see
[52, Thm. 3.6].
We have the following commutative diagram

(] — — _
Homo_aig (15 oo IF[e]/eQ)(A—> Extg (P, p)—2L2 Extngoo (P,p)
c DLN

Homo_ ¢ (R™, Fle]/€?) —— Ext! (M po, M po) — Ext! (M, M)

|

Homo_a1¢(R, Fle]/e?) ——— Ext! (Mg, Mp) — Ext} (M, M)

where the extension of Mpo (resp. M) by Mpo (resp. M) is taken in the
corresponding category of étale ¢-modules.

The map A is given by the deformation theory, and it is injective. The
map C' is injective by [17, Lem. 2.2.7]. The restriction map B is injective
by [17, Lem. 2.2.9] if p is not isomorphic to p(1) (which holds when p is
strongly generic). Since the category of étale p-modules over F((v)) is anti-
equivalent to the category of continuous representations of Gy__ over F, D
is an isomorphism.

For any ¢ € Homo_alg(RﬁD’T“”“’,F[e]/ez), we let M, denote the image of ¢
in Ext'(M, M) under the composition D o B o A. Then M; over R admits
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the following description

g, T = Y (X g
[ So(fl 1) ;llt(yvz 1)8 —I—Ufl

—i el =vtrie (X )

wlf )eSﬁ. { (1) =—t(Yi1)el + of

i—1

for 4 # 0, and with the usual modification by a, a’ when i = 0.

Let N} = HiEZ/fZ(F[e]/eQ)((v))f’i be a rank one étale ¢-submodule of
M. Since p is reducible nonsplit, N C M is the unique étale p-submodule
of M. Then N; (mod €) = N. Up to an element in F*, we may assume
' = + e(xie’ + yif') with 2y, y; € F for all i. If w9 ¢ S5, then

(1) = (1) + e(p(zim1)p(e™) + p(yi-1)e(F )
= —t(Y;_1)e' + of
+ (i) (Ve + (X 1)vF) + @(yi1) (—t(Yiea)e' + of'))
= af" = a(f’ + e(zie’ + yif")),

for some a € (Fe]/€?)((v)) and a = v (mod ¢). Since t(Y;_1) € Fe, by com-
paring the e’ terms and noticing cs_; > 4, we see ¢(Y;—1) = 0. The case
w—1) ¢ S5 can be done in the same way. O

6.5. Crystalline deformation rings

From now on we only consider fixed determinant deformation rings. Analo-
gous results hold for deformation rings without the determinant condition.
Let o be a Serre weight given by

o= ® (SymT“F?I ® det t“) ®F, .~ I,
k€Hom(F,,F)

where 0 < 7., < p— 1 and not all ¢, are equal to p — 1. We identify
Hom(L, E) w1th Hom(F,,F) by the natural reduction map. Let RD Wicris,o

denote RV for A = (r +te + 1, tw)xettom(z.5)- 1 0 € 2(P), ngcﬂs»a
is a regular local ring of relative dimension f + 3 over O.

Proposition 6.10. The universal deformation of p over ngcris 7 Q0 F

D ,,red

1s reducible. In particular, R— Lp,cris,oo ®e F is a quotient ofR R F.
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Proof. By [32, Thm. 7.2.1] and Theorem 6.7 (which is [52, Thm. 3.6]),

Rpm’w’cris’g‘a ®o F is a quotient of RﬁD’T@’Q ®o [ by the ideal (Y;);cz, 2. Hence

by the form of the universal étale p-module recalled in the proof of Proposi-

tion 6.9, the universal étale ¢-module over RﬁD Wie1is0o ¢ ) F has the following
form
i—1 Cf_ipl Cr_i i
i) g o . [ p@h) =viet + (X + a1 v
w ¢SP { 90( 2—1) :an
i—1 Cr_inh Cr_i5l
i) e o . [ o) =viel + Xy juif
w € Sp : { S0( z—l) — ’Ufl

for 7 # 0, and with the usual modification for i = 0. The (f*);cz/z clearly
gives a rank one étale p-submodule. O

Corollary 6.11. We have

O T
Homoag (R """ Fle] /%) N Homo_ag (RS Y™ Fl]/¢?)

O ri
= Homofalg(Rﬁ e S’J®7F[€]/€2)7

where the intersection is taken inside Homo,adg(RﬁD Y Fle)/e?).

Proof. 1t follows from [32, Thm. 7.2.1] and Theorem 6.7 (which is [52,

Thm. 3.6]) that Rpu’w’cris’a‘” ®e F is a quotient of RﬁD’w’T@‘” ®e F by the ideal
(Yi)iez)sz- Then the equality follows from Proposition 6.9 and Proposition
6.10. 0

If A is a regular local ring, recall that a reqular system of parameters of
A is defined as any system of parameters of A which generates the maximal
ideal of A, see [56, §14].

Lemma 6.12. Let R = F[(X;,Y))cs]/(X;Y})jcg for some finite set J.
Then R is Cohen-Macaulay of dimension |J| and there exists a reqular se-
quence {U;, j € J} in R such that for any minimal prime ideal p of R,
{U; mod p, j € J} forms a reqular system of parameters of R/p.

Proof. 1t suffices to take U; = X; +Y; for all j € J. Note that for any
minimal prime p of R, R/p is a regular local ring. U

Proposition 6.13. There is a sequence (T1,...,Tf43) in Rﬁm’w, which is
part of a regular system of parameters and such that for any o € 2(p), the
sequence {w, ps(Tj),1 < j < f+43} forms a regular system of parameters of

O, cris,o

- . Here, p, denotes the natural quotient map Rpm’w — RﬁD’w’ms’U.
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Proof. We choose a tame inertial type 7 so that Z(p) C JH(o(7)), this
is possible by [23] (see [32, Prop. 3.5.2]) and the genericity of p. By [8,
64] and [32, Thm. 7.2.1(1)] there are subsets J™" C J™a% C & such that
D(p) = {o(r); | J™» C J C JmaxX} where 7(7); is as in [32, §3.2, 3.3]). By
[32, Thm. 7.2.1(2)], 27 @0 F has dimension f + 3 and is a formal power

P
series ring over

F[(X;,Y))jeq]/(X5Y))jeq
where J = Jmax\ Jmin Moreover, for o = (1) € 2(p), E’w’cris’a ®oF can
be obtained as the quotient of RﬁD T ®oF by some minimal prime ideal. By
Lemma 6.12 and taking into account of the formal variables, we may find
{U;,1<j<f+3}in Rﬁu’w’T ®o F such that their images in RﬁD’w’ms’a ®oF
form a regular system of parameters for any o € Z(p). Choosing a lift
T; € R/E’w of Uj for each j, it is easy to see that {T},1 < j < f+ 3} satisfies
the required properties. ]

7. P-ordinary automorphic representations, Local-global
compatibility

We recall some results of P-ordinary automorphic representations and the
relevant local-global compatibility proved in [10, §6.3 and §7.1].

Let F be a totally real extension of Q in which p is unramified, and Op
be its ring of integers. Let S, denote the set of places of F' dividing p and
Sso the set of infinite places of F'. For any place w of F, let F}, denote the
completion of F' at w with ring of integers O, , uniformiser w,, and residue
field kg, . The cardinality of kf, is denoted by g,,. Let A ; denote the ring
of finite adeles of F'. If S is a finite set of finite places of F', let Afpy f denote
the finite adeles outside S.

Let D be a quaternion algebra with center F. Let Sp be the set of
ramified places of D. Assume Sp is disjoint from S,. Let (Op),, denote
Op ®p,. OF,. For w ¢ Sp U Sy, we identify (D ®p F,,)* with GLa(Fy,) so
that (Op),s is identified with GL2(OF, ). In the following, we assume D is
either definite, i.e. Soo C Sp, or indefinite, i.e. |Seo\Sp| = 1. In the definite
case, we furthermore assume (F, D) # (Q, GL2) (our main result is already
known in the case (F, D) = (Q, GL2) by [29]).

We fix a place v|p and denote by L def F, which is unramified of degree
def

f = [L:Qp] over Q,.



346 Yongquan Hu and Haoran Wang

7.1. p-adic completed cohomology

Let D be either definite or indefinite. Let U be an open compact subgroup
of (D®p Ap s)*. If D is definite, we denote by Y7? the finite set D*\(D ®p
Apf)*/U; If D is indefinite, let Y;P denote the quotient of X7 by the
action of the finite group Ay Ef J(F* (A; ;NU)), where X, £ is the associated
projective Shimura curve as in [16], see [12, Rem. 8.1.2(iii)]. Note that we
will follow the convention in [16] which is different from the convention used
in [10] and [9] (see [9, §3.1]).

Fix UP = wap U, an open compact subgroup of (D ®p A%f)x. For an
open compact subgroup U, C (D ®q Q,)* and i,s € N, let

i def ;.4 s
H (UpUp,O/w ) Het(Yéz)U F,O/w )
If D is definite, H (UPU,, O/w®) = 0 if i > 1, and H*(UPU,, O/w®) can be

identified with the set of functions f : D*\(D @ Apy)* /UPU, — O/w®. If
D is indefinite, H*(UPU,, O/w®) = 0 if i > 3. Set

S

H(U?,0) < limlin H (UPU,, 0 /@),
Up

Let ¢ : F X\AX — O* be a locally constant character. For each
place w € Sp\{v}, let Wy be an irreducible algebraic representation of
Resp, /g, GLa over E with central character ¢y 1| px. Let W = [Twes,\ o1 Wo-
Then W is an irreducible algebraic representation of (D ®qg Qp)* via

(Do Q)" - ][] CLa(Fu)= ][] (Resp,/q, GL2)(@p).

weS,\ (v} weS,\{v}

Let W be an O-lattice of W stable under Uy = mew#v Uy,. We denote
by UY = UPU, C (D ®F A?})X. Then W admits an action of UY via the
projection U” — Uy. We extend this action to U”(A;f) by letting A}X,f

act by 1~!. Assume U, is an open compact subgroup of GL3(Op) such
that w|Uvﬁ(9§v = 1. Then W admits an action of U(AE 7) by letting U, act

trivially. For s € N, let Vyy /. be the local system over Y2 v, associated to
the algebraic representation W/w?, see [26]. We define

) def

H'(U Uy, W/w*) S H (U Uy, Vi 5+ )



On the mod p cohomology for GLs: the non-semisimple case 347
HUY,w) limy Jim H'(UU,,, W /")
U, s
mwe,w) lim liy H (U U, W/*).
s U,

All these spaces carry compatible actions of the group (D ®p F,)* =
GLo(L). If D is definite, HY(U", W) is identified with the space of con-
tinuous functions f : D*\(D ®p Aps)* — W such that f(gu) = u='f(g),
Vg € (D ®p Aps)* and Yu € U(Af,’f), and it is the w-adic completion
of HO(UY, W). I;TO(U”,W) ®@ F is an admissible unitary Banach repre-
sentation of GLy(L) with the norm defined by the (complete) O-lattice
H(UY,W). If D is indefinite and i = 0,1,2, H*(U", W) is the w-adic com-
pletion of HY(UY, W), and is the gauge lattice for the admissible unitary
Banach GLa(L)-representation H:(UY, W) ®¢ E, see [26].

7.2. p-adic automorphic forms

We consider the space of algebraic automorphic forms over D with the fixed
central character ¢. Let U",U,, W be as above. For A € {W, W /w*} where
s €N, let

(7.1) SP(UvU,, A) € HO(UYU,, A)
if D is definite; let
(7.2) SP(UYU,, A) € H\(U'U,, A)

if D is indefinite. Set

s v def ;. . v s
Sy(UY, W) = Lthgsg(U Uy, W/w*).

Then §£(U”,W) is the w-adic completion of SS(U”,W).
Let S be a set of places of F' containing all places in Soc U Sp U S, all
places where v is ramified, and all places w such that U, is not (Op)y.

Let TS O[Ty, SE | w ¢ S] be the commutative O-algebra generated
by the formal variables T, S, and S;' for all w ¢ S. Then T acts on
Sf(U”Uv,A) for A € {W,W/w"} by letting T;, act by the double coset

operator corresponding to

Ww

GLQ((’)Fw)< " ?)Gu(opw)
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and S, act by the double coset operator corresponding to

Wy 0
0 oy

GL2(Op,) < ) GL2(OF,).

This induces an action of T on Sf(U”,A) and on §5(U”, A). The action

of T commutes with the action of GLy(L), and we have GLo(L) x T*-
equivariant isomorphisms

SDWUY, W) /w® = SD(UY, W/w®) = SD(UY, W) /=",
Let T(UYU,, A) denote the image of the homomorphism
T — Enda(S) (UUy, A)), A€ {W,W/z*}.

Then
T(U Uy, W) = 1im T5 (U Uy, W/*).

If U] C U, is an inclusion of open compact subgroups of GLy(Op), we have
a natural surjection T(U U}, W) — T%(U"U,, W). We then define

TS (Uv) & lim T (U U, W).
U,

The O-algebra TS(U?) is reduced, and §£(U”,W) is a faithful TS(U"Y)-
module (the definite case follows from [10, Lem. 6.3]; the indefinite case is
similar).

Let 7 : Gp — GL2(F) be a two dimensional continuous totally odd
Galois representation. Assume 7 is unramified outside S. We associate to
7 a maximal ideal m = my of T of residue field F, generated by T, —
Sw tr(7(Froby,)) and ¢, — Sy, det(7(Froby,)) for w ¢ S. We say m is non-
Eisenstein if 7 is absolutely irreducible.

Assume T is absolutely irreducible. We say that 7 (and m) is (UY, W)-
automorphic (with respect to D) if Sg(U”Uv,W)m is nonzero for some U,
(equivalently Sg (U Uy, W)m[m] # 0). In this case, 1o Art " is necessarily a
lift of w™!(det 7). By abuse of notation we also write ¢ for 1) o Art,'. We
say T (and m) is automorphic if it is (UY, W)-automorphic for some (U”, W).
If this is the case then m gives rise to a maximal ideal of TS(U?) (via the
projection TS (UV) —» T9(U U,, W)) which is also denoted by m.
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Lemma 7.1. Let m be non-Eisenstein and (UY, W)-automorphic. Then
(i) the O-algebra T(U?)m is reduced.
(ii) Sf;(U”,VV)m is a faithful TS (U?)y-module.

Proof. The definite case follows from [10, Lem. 6.6]. The indefinite case is
proved similarly. O

7.3. P-ordinary automorphic forms

Let T (resp. P) be the subgroup of diagonal torus (resp. upper trian-
gular matrices) of the algebraic group GLg. Let Ordp denote the ordi-
nary parts functor [27, Def. 3.1.9] from the category of smooth represen-
tations of GLg(L) on O-torsion modules to the category of smooth rep-
resentations of T'(L) on O-torsion modules. For V a w-adically continu-

ous representation of GLa(L) over O (in the sense of [27, Def. 2.4.1]), de-

fine Ordp(V) def Hm Ordp(V/w"V) following [27, Def. 3.4.1]. For V9 a

GLa(L)-stable O-lattice in a smooth representation V' of GLa(L) over E,
define Ordp(V?) as in [10, (4.15)]. We define the quotient 'ﬁ‘S(U”)ﬁ_Ord of
TS(U")y in the same way as in [10, §6.3]. We record some results of loc. cit.
(and obvious generalizations to the indefinite case).

Lemma 7.2. (i) The O-algebra ﬁ‘S(UU)ﬁ_Ord is reduced. The ’E'S(U”)ﬁ_ord-
module Ordp(Sg(U”,W)m) is faithful.

(i) Assume UP is sufficiently small in the sense of [21, §3.3]. Then
Ordp(Sf(U“, W)m) is dense in Ordp(Sg(U”, W)wm) for the w-adic topology.
As a consequence, Ordp(gf(U”,W)m) has a natural ﬁf‘S(U“)ﬁ_ord-module

structure, and is faithful over ’E'S(U“)ﬁford.

(i1i) Let C(T(Op), O) denote the set of continuous functions from T'(Of,)
to O. It is a T(Or)-module via right translation. Let Cy(T(Opr),O) de-
note the submodule of C(T(OL), Q) which consists of functions such that
O (= T(Opr)) acts by Vlox. Assume UP is sufficiently small. Then there

is an integer r > 1 such that the T(Or)-module Ordp(gf(U”,W)m)\T(@L)
is isomorphic to a direct summand of Cy(T(Or), O)®".
(iv) Assume UP is sufficiently small. Then Ordp(Sg(U”,W)m) is a w-

adically admissible representation of T'(L) over ﬁS(U”)ﬁ_Ord.

Proof. If D is definite, the proof is an obvious fixed determinant modification
of the proof given in [10]. (i) is [10, Lem. 6.7]. (ii) and (iii) are proved in
[10, Lem. 6.8]. (iv) is Lemma 6.11 of loc. cit.. If D is indefinite, (i) is proved
similarly. (ii)-(iv) are proved along the same way, but one needs to replace
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the lemma 6.1 of [10] by standard generalization of [29, Cor. 5.3.19] to the
cohomology of Shimura curves. O

Since we assume 7T is absolutely irreducible, let R;p ; denote the univer-
sal deformation ring of deformations of ¥ which are unramified outside S

with determinant ¢ ~'e~!. Assume 7, def Tlg, is strongly generic reducible
nonsplit. Then 7, is strictly P-ordinary in the sense of [10, Def. 5.8]. Re-
call the complete noetherian local O-algebra R;{’U_l (resp. R;/)U_l’red) defined
in §6, which parametrizes deformations (resp. reducible deformations) of
7, with determinant 1/}\5[1%5_1.9 We have a homomorphism of O-algebras

RV R:_f’ ;. By works of several mathematicians (see [70]) there is a

Tv
surjection of complete O-algebras

RYg — TS (U")m.
Proposition 7.3. The homomorphism R;{:l — End (Ordp(gg(Uv’ W)m)>

given by the composition
RV 5 RYY TS (UY) — TS (UY)E = End (ordp(§5(U“,W)m))

factors through R;{;l’red. Moreover, for any s > 1 the action of R;pgl on
Ordp(gg(U”,W/ws)m) factors through Rgl’red.

Proof. The same proof of Theorem 6.12 of [10] works here. In the proof,
one needs to replace the local-global compatibility for automorphic forms
on unitary groups by the local-global compatibility for automorphic forms
on (D ®p Apf)* at the place v|p, which is established in [64]. The density
of Ordp(Sg(U”,W)m) inside Ordp(gf(Uv,W)m) (in the indefinite case) is
given by (ii) of Lemma 7.2. The last statment follows from the isomorphisms
(see the proof of [10, Lem. 6.8(1)])

Ordp(S2(UY, W)w)/w* = Ordp (S5 (U, W) /w*)
= Ordp(SH(UY, W/ )m).

O

9For the fixed determinant deformation ring of 7,, the notation used here is
slightly different from the notation used in §6.
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Proposition 7.4. Write 7, = (% y,). Then Ordp (S} (U”, W /w)nu[m]) is
semisimple and isomorphic to (x1w ™! ® x2)%* for some s > 1. Here we view

Xi as a character of L™ via the fized local Artin map.

Proof. If D is indefinite, Ordp (85 (U”, W/w@)m[m]) is semisimple by [44,
Thm. 4.2]. Tt suffices to show that if y occurs in Ordp (Sg(U”,W/w)m[m])
then ¥ = y1w™! ® x2. We will use the results of [44] (or [29]); note that
the convention of Shimura curves in loc. cit. is different from ours, e.g. the
Galois representation associated to a cuspidal automorphic representation
7 (in characteristic zero) has determinant ,~! in loc. cit., where v is
the central character of m; while in our case the Galois representation has
determinant 1~ 1e~!. Hence in order to obtain results for our 7, we should
apply the results of [44] (or [29]) to 7V (—1).

In this proof we write p = 7y (—1) = (' ;2) with 71 = xjw™ " and
Ny = xaw . Let S be the subtorus of T consisting of matrices (8 (1)) for
a € L* and define an anti-diagonal embedding

1

(7.3) S GP xS, s (Arty(s),s ™))

where G%b denotes the maximal abelian quotient of G, and Arty, the local
Artin map. By [44, Thm. 4.1, Lem. 2.10], the action of G, on (p® x)*" —
p®Rx factors through G3°, see [44, §2.4, Def. 1] for the definition of (5&x)2PS.
Since 5 is nonsplit and 7y # 79, this implies that (p ® x)*** is nonzero and
is equal to 71 ® x as a G, X S-representation. By a computation using (7.3),
we obtain that x = m ® 9}, for some character n}, of G, and a consideration
of central character shows that

mny = (detp) - w = mnow,

namely 75 = 72w = X2.

If D is definite, then the result is a special case of [10, Cor. 7.40]. We
note that it is assumed in [10] that L = Q) in order to treat the case that
the Levi subgroup of P C GL, is a product of GL;’s and GLs’s. Since we
assume here n = 2 and T' = GL; x GL1, we don’t need this assumption. As
we follow the convention of [16] instead of [10], we apply [10, Cor. 7.40] to
7./ (—1) with s1 = 0, sy = 1 in loc. cit., and the result follows. O

v

8. Global applications

We maintain the notation used in the last section. In particular, F' is the
totally real field in which p is unramified, v is the fixed place over p such
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that F), is isomorphic to L the fixed unramified extension of Q, of degree
f. Let D be a definite or indefinite quaternion algebra over F. Let Sp be
the set of ramified places of D, S, be the set of places above p. The aim
of this section is to prove Theorem 8.8, Corollary 8.12, Theorem 8.15 and
Corollary 8.17.

8.1. The “big” patching functors

In this subsection we recall the global patching setup. Assume p > 5 is an
odd prime; 7 : Gp — GLy(F) is automorphic, and F]GF(%) is absolutely
irreducible; 7|7, is generic for all places w|p in the sense of [15, Def. 11.7].

Denote by 7y, = |G, for all finite places w of F'.

Let ¥ & w=1(det 7). Let ¢ : Gp — O* be the Teichmiiller lift of ¥. By
abuse of notation, we denote by v the character 1) o Artp : F' X\A;’ ;o 0.
Let S be the set of finite places of F' which consists of Sp, S,\{v}, and the
places where 7 ramifies. We assume for w € S\, the framed deformation
ring of 7, is formally smooth over O (cf. [12, Rk. 8.1.1]). We choose a finite
place w; ¢ S with the following properties:

® gy, # 1 (mod p),

e the ratio of the eigenvalues of 7(Frob,, ) is not equal to qf,fll,

e the residue characteristic of wy is sufficiently large that for any non-
trivial root of unity ¢ in a quadratic extension of F', w; does not divide
C+¢ -2

Let U =[], Uw C (D®FAp ) be an open compact subgroup satisfying
Uw = (0Op))s = GLo(Op,) for w ¢ SU{w; }, Uy, is contained is the subgroup
of (Op)ay, = GL2(OF,, ) consisting of matrices that are upper-triangular and
unipotent modulo w,,, , and Uy, = 14w, M2(OF,) for w € S,,. By the choice
of Uy,, U is sufficiently small in the sense of [21, §3.3].

We assume E is a sufficiently large finite unramified extension of Q,.
For each w € Sp\{v}, we fix a tame inertial type 7,, over E such that
JH(o (7)) contains exactly one Serre weight in 2(7,,) ([32, Prop. 3.5.1]),
where 7, is the E-linear dual of 7,,. Let 0,, denote the unique Serre weight
in JH(o (7)) N 2(7Y). We fix a GLy(OF, )-invariant lattice o°(7.5) in o(7.)).
Since oy, has central character @|O; and 7, is tame, o°(7,) has central

character v|r, . Let

(8.1) wWE & o)

weS,\{v}

By [9, Cor. 3.2.3|, 7 : Gr — GLo(F) is (U, W)-automorphic.



On the mod p cohomology for GLs: the non-semisimple case 353

Let @ be a finite set of finite places which consists of w ¢ S U {w;}
such that the ratio of the eigenvalues of 7(Frob,,) is not in {1, ¢y, ¢;,;'}. Let
U1(Q)" be an open compact subgroup of UV satisfying (U;(Q)V) is the
subgroup of (Op);S = GLa(Op,) of matrices of the form (&%) modulo @,
for w € Q and (U1(Q)")w = Uy for w ¢ Q. In particular Uy (())* = U".

The abstract Hecke algebra TSYQU{w1} acts on 55 (U1(Q)Y, W) such that
the action factors through a faithful action of TSYQU{w:}(U;(Q)?). Let mg

denote the maximal ideal of TSY@U{wi} (7 (Q)?) associated to 7. Let rl‘;fg" :

Gr — GLy (R;{);LQ) be the universal deformation of 7 over RZ_f’:glUQ Let 7m,

denote the composition Gp e, GLQ(R;f’;UQ) — GLy(TSURU (U (Q)Y)).
When @Q = () we write my for the maximal ideal of TS} (U?) associated
to 7.

In the definite case we write

d

(SP @) W)mg )

My«

and in the indefinite case we write
def univ gD v d
Mo % Homg, (ra, SP(UH(Q)", W)ng )

For w a finite place of F', let RE denote the framed deformation ring for
Tw over O (see §6.4). Let RE’Wl denote the quotient of RY corresponding
to liftings with determinant 1/1]511%5*1. Let Rl°¢ = @weSU{U}RE’WI. Note
that R!° is formally smooth over @ by assumption. For @ a finite set of
finite places of F' disjoint from S, let R?D’ ’S%;; be the complete O-algebra
which prorepresents the functor assigning to a local artinian O-algebra A
with residue field F the set of equivalence classes of tuples (7, {aw twes)
where 7 is an A-lifting of 7 with determinant 1 ~'e~! (we view ¢~ 'e! as
a character of Gp with values in A*) and is unramified outside S U @,
ayy € Ker(GL2(A) — GLy(F)) for each w € S.

Let j = 4|S| — 1. The Taylor-Wiles-Kisin patching construction in [18]
and [66] gives us the following data (see [25, Thm. 6.1] for an analogous
situation):

(1) positive integers g, q such that ¢ =g+ [F : Q] — |S| + 1;
(2) O = OJz1,..., 7], a formal power series ring with a homomorphism

Os =+ RYg
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which e%tlends to a homomorphism from Sy, dof Olz1,.- 2,91, - - -, Y5
to RE g/) ;
£ D .
(3) R def’ Rloc [21,...,24], a power series ring in g-variables over R°C,

with a surjective homomorphism R,, — R;Z’ ;;

(4) an O-algebra homomorphism S — R whose composition with the
homomorphism R, — le ; in (3) is compatible with the homomor-
phism Oy — Rg; in (2);

(5) a finite Cohen-Macaulay Rao[GL2(Op)]-module My, which is finite
projective over So[GL2(Op)], together with an isomorphism

Moo/aoo = M@.

where a., denotes the ideal (21,...,24,91,...,Y;) of Sx.

We note that R, is formally smooth over O (as R°° is). Let my, de-
note the maximal ideal of R.,. Consider the following admissible smooth
representation of GLa(L) over F

(8.2) 7 MY o] = My [my].

Then 7 is identified with
SPU*, W) [ms] = Homuy (@ues, (o) 0w, S5 (U7, F)ms]

if D is definite, and is identified with

Homg . (F, gf(UU, W) [m;])
= Homy, <®wesy\{v}0w7 Homg,. (F, gg(U’“’ F) [m?]))

if D is indefinite.

Let Cz ., denote the category of finite O-modules with a continuous ac-
tion of GLa(Opr) such that the GLo(Op)-action has central character 1. For
cecC Zaps let

def con
(8.3) Meo(0) = Hom@G, (0, ) (Mso, 0¥)".

Since My, is projective over O[GL2(Opr)] and is finitely generated over
R [GL2(OL)], Moo(—) is an exact covariant functor from Cz to the cate-
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gory of finitely generated R..-modules. For o € Cz,, we have

(8.4) (Moo (0)/mos Moo (7)) = Homgy,, 0, ) (0, 7).

Recall that dimg(7) denotes the Gelfand-Kirillov dimension of , see
(A.3) in Appendix. Gee and Newton made the following important observa-
tion ([38, Appendix A]):

Theorem 8.1. M, is a flat Roo-module if and only if dimg(7) < f. If the
equivalent conditions hold, we have dimg(mw) = f.

Under this flatness assumption, we prove an essential self-duality for
7Tv = M@/m;
Theorem 8.2. Assume dimg(w) < f. We have an isomorphism of A(G)-
modules (see (A.2) for the definition of A(G))
T @ P|px o det = EX (nV),
where E* is defined in §A.1 of the Appendiz.

Proof. First assume D is definite. Let ﬁ% Lt o (Up,((’)/ww), where
(O/w);; denotes the constant coefficient sheaf O/w on which A;} ; acts
by 1 and UP acts trivially. Let f’jO’Efl denote the dual of ﬁ% By the
Poincaré duality spectral sequence [30, §2.1.5, §2.1.7], we obtain a U, %
A(G) x TSUw1}(UP)-equivariant isomorphism

0 ~
E (Hﬂ,a) — HO,E_l’

where TS{w1}(UP) denotes the image of TSY{*1} in End (I;TO(UP, (’))) We
consider the Up-action, take Homy.(W/w, —) on both sides, and obtain a
A(G) x TS} (UP)-equivariant isomorphism (using e.g. [38, Lem. B.3))

EO (ﬁO(U”,Wd/w)V> ~ HOUY, W /w)Y.
Since TSV (U1 P) is a complete semilocal ring by [38, Lem. 2.1.14], we have
a decomposition TVUiwik(Ur) = [ TS (UP),,, where the product is

taken over the finitely many maximal ideals of TS9{#1}(UP). We then have
an isomorphism

TTE° (ﬁO(U”,Wd/w)X) S T[E Y W)y



356 Yongquan Hu and Haoran Wang

Looking at the mz-component on both sides and using the relations on Hecke
operators (see for example [8, §3, §9]), which reflect the isomorphism 7V =
7T ® (det7)~!, we have

(8.5) E° (HO(U“ W)Y, u_) = HOUY, W)Y,

Recall that W = @,,cq 03 77 (7, Y4 with JH(o (7, )) containing exactly one
Serre weight o, in Z(7),). By [16, Prop. 3.15(1)], o 0w®w\ox odet is the

unique Jordan-Holder factor of o(7;;)* which is a Serre weight of (7 Y.
We then have isomorphisms of A(G) x TS} (Uv),, -modules

(UU Wd/w)m_éw = HOHIU;; ( ® Ow ®r¢]| 1 o det,
weS,\{v} O,

V
HO(UP F)mm)
(U”,W/w)m? ® | px o det.

(8.6)

12

Since My/w = HO(U", W/w)y. in this case, (8.5) becomes the following
isomorphism of A(G) x TS9{wi}(U?),._-modules

E®(My/w @ | px o det) = My/w
or equivalently
E°(My/w) = (My/w) @ ¥| px o det.

On the other hand, by [38, Thm. B], the assumption on dime(7) implies that
My is a faithfully flat module over TSY{®i} (V). which is a local complete
intersection (hence Gorenstein) ring. Note also that as My is finite Cohen-
Macaulay over O[GL2(OL)] (see for example [38, Thm. A(1)]), My/w is
Cohen-Macaulay over A(G). We then conclude by applying Proposition A.8
to M = My and A = TS} (U?),, (noting that My/my = V).

Assume D is indefinite. Let fli denote H' (Up, ((’)/w)@> and ]?Il T
denote the dual of Hi. The étale version of the Poincaré duality spectral

sequence [30, §2.1.5,§2.1.7] (see also [42, Thm. 3.5] and its second remark)
gives a Uy x A(G) x GF x TSVU{wi} (UP)-equivariant exact sequence

0— BY(H, 7¢)—>H (1) > E%(H w)—>E2( 05)-
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As in the definite case, we decompose along the (finitely many) maximal
ideals of TSU{w1}(UP), and get an exact sequence

0— J[E" ((ﬁw)m) = TIH, 5 (-Dm
- [TE° ((ﬁw)m> - [[E? ((ﬁw)m) .

Since T is absolutely irreducible, we can just consider the localization at non-
FEisenstein maximal ideals. Note that (H,, E)m is zero at any non-Eisenstein
maximal ideal m. We have a Uy x A(G) x G x TSUtwn} (UP)-equivariant
isomorphism

I HCva> ]I E0<(ﬁ1@)m>.

m non-Eisenstein m non-Eisenstein

We consider the Uy-action, take Homy. (W/w, —) on both sides and look at
the mzcomponents, by taking the limit over the compact open subgroups
K, C GL2(Or,) of the isomorphism in [24, Lem. 9.9], we have an isomorphism
(8.7) H\(U", W/, S B (HU, W=y, ),

where we have used the relation 7V (—1) = 7 ® ¥. Applying Homg, (7, —) to
the isomorphism (8.7) and using similar arguments as (8.6) in the indefinite
case, we obtain a A(G) x TS} (Uv),, -equivariant isomorphism

(Mp/w) @ ¥|px o det = EY(My/w).
The rest of the proof is identical to the definite case. O
8.2. Local-global compatibility

We extend Proposition 7.3 to the “big” patched module M,,. Assume in

this subsection 7, is reducible nonsplit and strongly generic. Let RE W~ red

denote the O-torsion free quotient of RvD ™" Wwhich parametrizes reducible
liftings of 7,. Then by Proposition 6.6, RE wrhred g g power series ring
in (3 + 2f)-variables over O. Denote Red = RTW¥red ® pow-1 Roo. Let
oy € 2(7)) be the corresponding Serre weight of 7/ associated to J C Sry
(see (6.7)). If J = (), we write o for oy.



358 Yongquan Hu and Haoran Wang

Proposition 8.3. Let @3f)d be the finite dimensional representation of
GL2(Op) over F defined in §3.4. Then the morphism

Roo — Endo(Moo(02))

factors through R4,

Proof. We first briefly recall the construction of M, in [25]. For every integer
N > 1,1et Qn be a set of Taylor-Wiles primes as in [25, §6.2.3]. In particular,
@Qn has size ¢ and is disjoint from S. For each w € @y, we have ¢, = 1
(mod p"). Let kX (p) denote the Sylow p-subgroup of kX for w € Qn and

On denote O[[[,cq, ku(p)]. For each N > 1 we choose a surjection O =
O[#1,...,24] - On whose kernel is contained in the ideal generated by

(142" = DL,
We write K for GL2(Op). For U, C K a compact open subgroup, let

v Ot
M(Uy, N) = 8§ (U1(QN) U, Wi, ® g o B30,

when D is definite; and let

d -1
M(Uva N) = HOHlGF (TmQN ’ S?E(Ul(QN)UUU’W)mQN) ®Ri0;1uQ RE’g@Q’V
when D is indefinite.
Let J C O be an open ideal. Let I; denote the cofinite subset of N
which consists of integers N such that J contains Ker(On — Op). For

N eIy, let
MUy, J,N) = MU,,N) @0 Ocx/J.

Let (Oxo/J)r1, be the product [[;c;, Ox/J. Fix a non-principal ultrafilter
& on N. Then § gives a point x € Spec(Os/J)1,, see [38, Lem. 2.2.2]. Let

M(Uv,J,OO) = ( H M(Uv7J7N)> ®(OOC/J)1J (OOO/J)IJ,JC'
Nel;

For open ideals J' C J, open compact subgroups U, C U,, there is a
natural map M (U], J',00) = M (U,, J,00) (see [38, Lem. 3.4.11]). Then M

is defined as

Moo = 1im M(Uy, J,00).

JUs
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Now we prove the proposition. We assume D is definite; the indefinite
case can be treated in a similar way. By (8.3) we have

Moo (051") = Homp (0517, limg M (U, J,00)")"
JU

= lim [T Homw (05", M (U, J,N))Y @010y, (Ooe/ )1,
JU, Nel;

= hgﬂ ( H HomK(@gEd, MUy, N)¥)Y @0, OOO/J> QO /)1, (Ooo/ )1, -
JvUv NGIJ

It suffices to show that the action of RY  on Homg (034, M (U,,N)V)
factors through RY ¢ for U, sufficiently small. Since

D?’Lp_l
RS, Trsun

7, SUQ N

MUy, N) = S (U1(Qn) Uy, W), ©
it suffices to show the same statement for
oy (037, (5201 ()0 W, ) )
— Homy (eggd, SP(U1(Qn)" U, W/w)mQN>

where the equality holds as ©2¢ is w-torsion.
For the rest of the proof, we simplify the notation by setting

55 (0/@)m =1 SZ (U{(QN) Uy, W/@)mq,, -
U,

For U, C K sufficiently small, U, acts trivially on @32(1, we then have

Hom (094, 57 (U1(Qn) " Un, W/@)mg,, ) = Homg (051, S7(O /) y)
= Homg (09, S5 (O/w)m).

We are reduced to show that the action of RY  on Homg (094, Sg(O/w)m)

factors through Rf_l’red
natural isomorphism

. By Proposition 5.15 and Lemma 5.10, we have a

Homg (099, Ind% Ord p S (O/@)m) = Homg (039, 57 (O/@)m)
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which is compatible with the action of RY  if Ind% OrdpSi) (O)@w)m is
equipped with the induced action of Rg}_l through Ordpsg((’)/w)m. By
Proposition 7.3, the action of RY " on OrdpSg((’)/w)m factors through
Rg) “hred This finishes the proof. O

8.3. The “big” minimal patching functors

The minimal patching functor that we will use is introduced in [25] following
[9] [32]. For w € S, let R™™ denote the quotient of RYY" introduced in 9,
§3] [32, §6.5]. By [9, Lem. 3.4.1], we have

e R™MM js a formal power series ring in 3-variables over O if w 1 p;
e RIMM i a formal power series ring in (3 + [F, : Qp])-variables over O
if wlp, w # v.

Let R™" denote Ry’ g™ ®(®w SRH““) Since R, D4 s a formal power series
ring in (343 f)-variables over O, R™" is a formal power series ring in (3(].S|+

1)+ [F : Q]+ 2f)-variables over O. Define R_D ;&15 .= R, Squ ® gloe RM1, Let

T
R™n [y, .., z,],

i def
min ,min min
.sug denote the image of R?,SUQ in BL SUQ- Let R
a power series ring in g-variables over R™", with a surjective homomorphism

len — len

Let m2 be the maximal ideal of RZ™. We have an O-algebra homomor-
phism Sy, — RIM such that RM" /a., = f“SH

The big patched module in the minimal case (constructed in [25, §6]) is
a finite Cohen-Macaulay Roo[GL2(Op)]-module M2 which is finite pro-
jective over Soo[GL2(Op)], such that the smooth admissible representation
of GLa(L) over F given by'®

— def min min
(838) m) (7)) = (M) [mee”]
has multiplicity free GLa(Op)-socle, namely socg (72 (7)) = @UG@( v) 0, see

Proposition 8.9 below.
For o € CZJJ“ let

min def n min
(8.9) M () < Homt o | (M2, 6)".

107D (7) is denoted by mgon(p) in [25, §6] for p = 7.
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Then MM is an exact covariant functor from C 7, to the category of finitely
generated R™™-modules. As in (8.4), we have

(8.10) (M2 (g) /min pmin(g))V = Homgr,,(0,)(0, 2 (7).

It is expected that 2 (7) should realize the hypothetical mod p local
Langlands correspondence for p = 7,/. Thus it is important to understand
the precise structure of 72 (7). The following conjecture is taken from [15].

Conjecture 8.4 ([15]). Assume p is generic in the sense of [15, Def. 11.7].
Then 72 (F) has finite length. More precisely,

(i) if p is irreducible, then w2 (F) is irreducible;
(i1) if p is reducible, then w2 (F) has length f, admitting a unique Jordan—
Hélder filtration as follows:

T — ML —— cc —— Wp_1 — Tf

where my and wy are principal series explicitly determined by p, and m;

is supersingular for 1 <i < f — 1. Moreover, 7P (7)) = nP (7).

One of our main results is to prove Conjecture 8.4(ii) in the case f = 2
and p is nonsplit and strongly generic, see Theorem 10.37.
In this minimal case, 72 (7) also satisfies a self-duality under the as-
sumption of its Gelfand-Kirillov dimension.

Theorem 8.5. Assume dimg(72 (7)) < f. We have an isomorphism of
A(G)-modules

ﬂ?(?)v ® E’FUX odet =2 Ezf(ﬂf)(F)V).

Proof. The proof of this result is similar to the proof of Theorem 8.2. Instead
of copying the argument, we just point out how to modify the proof of
Theorem 8.2 in the minimal case.

To define 7 (7), [25] uses some finite free O-module V,, (which is denoted
by L, in [32, §6.5] and whose reduction modulo w is denoted by M,, in [9,
§3.3]) with a smooth U,,-action at each w € S\S,. Moreover, V,, is of O-rank
one unless 7|g,, is irreducible. As in the proof of Theorem 8.2, for example
to get an analogous isomorphism as (8.6), the point is to check that V,, (or
even V,,) is essentially self-dual, i.e. (V,,)? = V,, ® x for some character y.'!
This is clear if V,, is a free rank one O-module.

"In the case T|q,, is irreducible and D ramifies at w, we actually need a variant
of this statement.
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Assume for the rest of the proof that 7|g, is irreducible. Then V,, is
defined as an (Op)s-stable lattice of a K-type for the isomorphic class of

w
(rw|1s,,0) (in the sense of [9, §3.2]), where 7y, : G, — GLa(E) is any lift
of 7|g,, . The reduction Vi is always irreducible in this case, see [9, §3.3
Cas IV]. We note that r,, is always essentially self-dual, i.e. Hompg(ry, F) =
T @ (detry,) "L If D splits at w, by the uniqueness of K-type in this case
(see [40]), the K-type Vi,[1/p] is essentially self-dual. We deduce that V, is
also essentially self-dual by the irreducibility of V.

If D ramifies at w, we let LL(WD(r,,)) denote the smooth admissible
representation of GLg(Fy,) over E which is associated to the Weil-Deligne
representation of r,, by the local Langlands correspondence. Let IIp  be the
smooth admissible representation of D, over E associated to LL(WD(ry,))
by the Jacquet-Langlands correspondence. We have either (Ilp,, )| zx (Op)s 18
irreducible, or (Ilp,, )| px(op)x = V1 @ Va2 is a direct sum of two irreducible
E(Op);s-representations such that V5 is conjugate to Vi by a uniformizer
of (Dy)*, see for example [37, §5.1.2]. A K-type V,,[1/p] for (4|1, ,0)
in this case is a choice of an irreducible constituent of (Ilp,,)|gx(o,)x- As
recalled above, the reduction modulo @w of any (Op),;-stable lattice of a
K-type is irreducible. So the (Op). -stable lattice of a K-type is unique up
to homothety and up to conjugacy by a uniformizer of (D,,)*. It follows
that the GLa(L)-representation 72 (F) does not depend on the choice of V.
Since the Jacquet-Langlands correspondence is compatible with taking the
contragredient, (V,[1/p])* is a twist by x o det of a K-type for (rw|z,, ,0),
where x : F,; — E* is some character and det denotes the reduced norm
of (Dy)*, and (Vi) is a twist by x° o det of an (Op)-stable lattice of a
K-type for (14|15, ,0) for some x°: Fj — O*.

From the above discussion, it is easy to deduce an analogous isomorphism
as (8.6). We then take the eigenspace on which the Hecke operator T, acts
by ay, € F for w € S', where S’, T, and «, are all introduced in [9, §3.3].
The rest of the proof of Theorem 8.2 goes through. O

8.4. Main results in the minimal case

From now on we only consider minimal patching functors, so we drop the
superscript min and write (Moo, Roo, Moo ) for (MW RIIN mmin) for the rest
of this section.

Let G = GLo(L), K = GLy(Or) D K; = 1+ pM2(0Or), and Z;
be the center of Kj. Let I (resp. I;) denote the upper-triangular Iwa-
hori (resp. upper-triangular pro-p-Iwahori) subgroup of G. Also let I' =
F[K/Z1]/mk, )z, and T = F[K/Zi] /w3 ,, .
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Let p = def 7. We assume T, (or equivalently ) is reducible nonsplit and

strongly generic in the sense of Definition 4.4. Let R— ¥ denote the framed
deformation rmg of p with ﬁxed determinant ye. By takmg the dual, we have
09 ~ REW

isomorphisms R— We now switch to the notation for various

tame,o; _

deformation rings of p in §6.4. Let J be a subset of S;. We write R
D:szﬂV)
o

and Ty is defined in (6.9). Denote by R3™77 = ﬁD’w’mS"” ® p0.w Reo. Let

797 (vesp. Zt¥me97  resp. 774) denote the defining ideal of RES®77 /w (resp.

RE™% /o5 resp. R /w) inside Roo/w.

Proposition 8.6. Let og denote ay. We have Ttme00 4 7red = oo,

Proof. By Proposition 6.10, Z*! € Z°°. By [32, Thm. 7.2.1(4)], Z*m% C
Z°°. Then applying Corollary 6.11, the conclusion follows from Lemma 8.7
below by taking R = Re/w, Ty = 1°°, ) = I'**M®% and T, = 7. O

® po.w Roo, where o € 2(p) is the Serre weight associated to J

Lemma 8.7. Let (R, m) be a noetherian local F-algebra. Let Iy C m be an
ideal of R such that R/Zy is reqular. Let Z;,Zo C Iy be ideals of R. Then

(wizr) N(wize) - ()
if and only if T, + T, = Tp.

Proof. The surjective homomorphism R — R/Z; induces an injection of
F-vector spaces
m/Z; )V 2\V
— (m/m
(i) = wim)
with intersection

() Nr) - (i)

v
So if 77 + Zo = 7y, this intersection is identical to ((;1//210) > .

Conversely, we see that R/Zy is a quotient ring of R/(Z; + Z2) with the
same embedding dimension, say d. By (the proof of) [56, Thm. 29.4(ii)],
R/(Z1 +I») is a quotient of a regular local ring of Krull dimension d over F,
say A. In particular, A is a domain. Since R/Zj itself has Krull dimension

d, the (surjective) composite map

A— R/(Ti + Tr) - R/To
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has to be an isomorphism. In particular, we deduce R/(Z; +Z2) = R/Zy and
T+ 1y = 1. O

The main result of this section is the following.

Theorem 8.8. Assume p is strongly generic. Then for any o € P(p) the
Roo-module Mo (Projg o) is a (nonzero) cyclic Roo-module.

To prove the theorem we first recall some known results.

Proposition 8.9. (i) If o ¢ 2(p) then My (o) = 0. If 0 € 2(p), the ho-
momorphism Re — Endo(Moo(0)) factors through Reo™ /@, and M (o)
is free of rank one over Rs™7 /w.

(i) For any o € P(p), the homomorphism Ro, — Endp(My (Projp o))

factors through RE™° /@, and My (Projp o) is a cyclic Roo-module.

Proof. (i) The first statement is the main result of [36] (see also [37, Cor.
5.4.5]). The cyclicity of My (o) for o € Z(p) follows from [32, Thm. 10.2.1].
Note that M. (c) has Krull dimension g+ j, which is equal to the dimension
of R%™7 /w. Since RS.™7 /w is a domain, My, (o) is a faithful RS> /-
module, giving the result.

(ii) is [52, Thm. 5.1]. O

Proposition 8.10. Let oy denote og. Then Moo (0%39) is a cyclic Roo-
module.

Proof. By Nakayama’s lemma, it suffices to show the dual of Mu(09) /m,

(Mo (05;1) /mec)” = Homp (O3, ) (7))
is of dimension one over F.

By Proposition 7.4, Ordp72 (7) is a semisimple T-representation. On the
other hand, the description of 2(p) (see [15, §11]) implies that JH(IndX y,, )N
2(p) = {o0}. The result then follows from Proposition 5.16 combined with
Proposition 8.9(i). O

Proof of Theorem 8.8. By Nakayama’s lemma, it is equivalent to show that
dimp Hom g (Projz o, 72 (7)) = 1 for any ¢ € 9(p). We will check the con-
ditions (a), (b), (c) of Theorem 4.21 for 7 = 72 (¥), from which the result
follows.

The condition (a) is a consequence of Proposition 8.9(ii), together with
general property of Dy(p). For the condition (b), we use the exact sequence

_ X (xq);
0— Wf(r) — M idier @Mg/o
el
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where (7;);cs is any finite set of generators of ms,. Since MY is injective in
the category of smooth representations of K/Z; on O-torsion modules, we
deduce that Ext}(/z1 (0,72 (7)) # 0 only if Homg (o, MY) # 0. Hence the
condition (b) follows by Proposition 8.9(i).

It remains to check the condition (c) for o = 0¢. By Proposition 3.20
(with the notation therein) and the exactness of M, (—), we have a short
exact sequence
(8.11)

0 = M(0s,) = Moo (02N & Moo ((O0) ;) = Moo (02N ,) — 0.

Since (©9'9) g, is a quotient of Ind% x,, (by Lemma 3.18) and JH(Ind%X y,, )N
2(p) = {00}, we obtain isomorphisms

Moo (02 k,) < Moo(Indf Xo,) —> Moo (00).

Note that (O, )k,

My ((04,) K, ) is cyclic over Ro, and the ideal Z © Anng_ /(Moo ((O0,) K, ))
satisfies

is a quotient of Projp(op). So by Proposition 8.9(ii),

:Z_:tame,oo g j g j'o'o.

By Proposition 8.10, My (024) is cyclic over Roo. Let Z949° denote the
ideal Anng_ /o (Mo (624)). Then it follows from Proposition 8.3 (in the
minimal case) and the structure of @ggd that

j—red C j‘OI‘d,G’Q C i‘O’g
By Proposition 8.6, we get
T + _fz-ord,ao — 79

50 M (0y,) is cyclic over R, by applying Lemma 8.11 below to (8.11). O

Lemma 8.11. Let (R, m) be a commutative noetherian local ring with k =
R/m. Let Ty, 71,2y be ideals of R such that I1,Zo C Zy C m. Consider the
natural surjective homomorphism R/Zy & R/Zy — R/Zy. Then Ker(R/I, &
R/Ty — R/TIy) is a cyclic R-module if and only if Z1 + Io = Zp.

Proof. Let M denote the R-module Ker(R/Z; & R/Zy — R/Iy). The short

exact sequence

0—+M—R/Ti® R/Ty — R/Zyp — 0
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gives a long exact sequence

Torf(R/Z:1, k) @ Torf(R/Tz, k) — Torf(R/Zo,k) — M @k
— (R/Il ® k) S5, (R/IQ & k‘) — R/I(] ®k — 0.
Hence dimy M ® k = 1 if and only if « is surjective. The assumption Z; C m

implies that there is a natural isomorphism Torf(R/Z; k) = Z; ®g k, for
i € {0,1,2}. Thus, « is surjective if and only if the natural morphism

(i ®I) ®pk = Iy ®r k

is surjective. By Nakayama’s lemma, this is equivalent to Z; + Zo = Zo. [

Recall the F[I/Z]-module Wy 3 = Proj;,z, X/m?1 z, introduced at the
beginning of §3. We have the following consequence of/ Theorem 8.8.

Corollary 8.12. (i) For any o € 2(p), dimg Homg (Projz o, 72 (7)) = 1.
(ii) For any x € JH(xP (7)), dimp Hom;(W, 3,72 (7)) = 1.

Proof. (i) is an equivalent statement of Theorem 8.8 and (ii) follows from
(i) by using Proposition 4.20. O

Corollary 8.13. We have w2 () [m%1 /Zl] = Dy(p).

Proof. By Proposition 4.1, we have
2(p) N JH (Do (7)/ sock Do(p)) = 0.

By the proof of [8, Lem. 9.2], the inclusion socg Do(p) = O S

D
v
D
v

() extends to an inclusion Dy(p) C 72 (F), hence an inclusion Dg(p) C
(7) [m%(1 /Zl]‘ Alternatively, we may argue as in the proof of Lemma 10.21

s
0

below, using Proposition 10.10(ii). On the other hand, by Proposition 4.1
and Corollary 8.12(i), the latter inclusion must be an equality. O

Recall from [12, Cor. 5.3.5] the following important control theorem of
Gelfand-Kirillov dimension.

Theorem 8.14. Let m be a smooth admissible representation of I1/Z; over
F. If for each character x such that Homy(x,m) # 0, the natural morphism

Hom;(x,7) — Hom;(W, 3, )

is an isomorphism. Then the Gelfand-Kirillov dimension of w is at most f.
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Combining Theorem 8.14 with Corollary 8.12, Theorem 8.1 and Theorem
8.5, we deduce the following result.

Theorem 8.15. We make the following assumptions on T:

(a) TG, yr, is absolutely irreducible;

(b) forw € S\Sy, the framed deformation ring RS’Wl is formally smooth;
(c) for w e Sp\{v}, 7|1, is generic in the sense of [15, Def. 11.7];
(d) Ty is reducible nonsplit and strongly generic in the sense of Definition
4-4-
Then the following statements hold:

(i) dimg(7P (7)) = f and My is a flat Reo-module;
(ii) There is an isomorphism of A(G)-modules (7P (F))V & 1|px o det =
B2 (2 (7))Y).

Remark 8.16. We expect that the analog of Theorem 8.15 remains true in
the non-minimal case, i.e. dimg(mw) = f for the representation w defined in
(8.2). This is the case when p is semisimple and sufficiently generic, see [12,

§8].

We record the following (well-known) consequence of Theorem 8.15. Let
z : Ry — O be a local morphism of O-algebras, where ' is the ring of
integers of a finite extension E’ over E. Set

II(2)° € Hom&™ (Mu ®p_ o O',0')

and II(x) def (z)" ®o B

Corollary 8.17. II(x) is a nonzero admissible unitary Banach representa-
tion of G over E' with G-invariant unit ball 11(x)° which lifts T2 (F) @p F',
where T denotes the residue field of O'.

Proof. Since My is flat over R by Theorem 8.15(1), Mo ®p, O is O'-flat
by base change. So Hom®$™ (Mo ®g__ »O’, O') is nonzero and O'-torsion free,
hence II(x) is nonzero by [65, Thm. 1.2]. The last assertion follows easily

from [63, Prop. 2.9]. O
9. Homological algebra

In this and the next section, we prove our second main result, namely with
the notation in §8, the GLy(L)-representation 7 (7) (in the minimal case)
is finitely generated by its Kj-invariants and, if f = 2, has length 3 as in
Conjecture 8.4(ii). This section contains some preliminary results.
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9.1. An enveloping algebra

Let g be the graded Lie algebra (labelled by Z>¢) defined as follows:
g=FeaFfaFh

with e, f in degree 1, h in degree 2 and relations

(9.1) e, f1=h, [h,e] = [h, f] = 0.

Let U(g) = Ur, (g) denote the universal enveloping algebra of g. It is a graded
algebra, with the induced degree function from above. As a consequence of
the Poincaré-Birkhoff-Witt theorem, U(g) is a domain.

The following lemma is obvious.

Lemma 9.1. h lies in the center of U(g) and U(g)/(h) is isomorphic to
Fle, f], the commutative polynomial ring with variables e, f.

Lemma 9.2. U(g) is a reqular algebra of global dimension 3 in the sense of
[3, Eq. (0.1)]. In particular, U(g) is an Auslander regular algebra.

Proof. For the first assertion, see [3, Eq. (0.3)]. The second assertion is a
consequence of the first, see e.g. [54, Cor. 6.2]; alternatively, it is a special
case of [55, Thm. I11.3.4.6(6)]. O

As a consequence of Lemma 9.2, the concepts introduced in Appendix
§A are applicable.

If M = @®,>0M, is a finitely generated graded U (g)-module, the Hilbert
series of M is by definition the series

har(t) == Z(dim]}‘ M,)t".
n>0

This is an additive function on the Grothendieck group of finitely generated
graded U (g)-modules. We denote by M (a) the shifted graded module defined
by M(a), = My+q, with the convention M,, = 0 if n < 0. It is clear that
Par)(t) = t7%has(t). In [4, p. 342], the order of pole of hys(t) at t = 1 is
called the gk-dimension of M. It follows from [4, Thm. 4.1] that this notion
coincides with our notion of Gelfand-Kirillov dimension in Appendix §A.1.

Lemma 9.3. We have hy ) (t) = m

Proof. Tt is a special case of [4, (2.8)]. O
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Lemma 9.4. Let Go be a chain complex of free U(g)-modules of length n,
Ge: 0=Gp— -+ — Gy — Go— 0,

where n € {2,3}. Assume the following conditions hold:

(a) Hi(Gs) =0 fori#0,1;
(b) the Gelfand-Kirillov dimension of Hy(Ge) is equal to 3 — n;
(c) the order of pole of > 1 ((—1)'hq, at t =1 is equal to 3 — n.

Then H1(Ge) = 0 and G4 is a resolution of Ho(Gl).

Proof. Assume H1(Go) # 0. Then H;(G,) has projective dimension < n—1,
and so H1(G,) has grade < n — 1; see (A.1) for the notion of grade. Hence,
H,(G,) has Gelfand-Kirillov dimension > 3 — (n — 1) = 4 — n. On the other
hand, we have an equality

Z(—l)ihGi = Z(_l)ihH,-(G.)'

By (a), (b) and the discussion before Lemma 9.3, the order of pole of RHS
at t = 1 is equal to 4 — n, while the one of LHS is equal to 3 — n by
(c), a contradiction. This implies H;(G.) = 0 and so G, is a resolution of

H()(G.). O
The following lemma is an easy computation.
Lemma 9.5. The following relations hold in U(g):
(9-2) (ef)(fe) = (fe)(ef)
e3f — fed =3e?h
ef? — f3e = 3f2h.
Proof. Since eh = he and fh = hf, we have (ef)h = h(ef), and the equality

(9.2) follows.
Prove (9.3). We have e?f = e(fe+h) = efe+eh, so that (using eh = he)

Af =e?fete’h = (efeteh)ete’h = (ef+2h)e? = (fe+3h)e* = fe3+3e*h

giving the result. The equality (9.4) is checked in a similar way. O

Convention: In the statements below, our convention is that the dif-
ferential map d; sends an element of G;, say v = (v1,...,v,) (with r =
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ranky;g)(Gi)) to v multiplied by the matrix of d; from the right. In this way,
d; is a morphism of left U(g)-modules. As a consequence, the composition
of differentials, say d; o d;+1, sends U to (vA;y+1)A;, where A; is the matrix
form of d;.

Lemma 9.6. There exist chain complexes of graded U (g)-modules

hie)

95 0= U@=3) 2 U@)(-1) @ U@)(-2) > U — 0
U

96)  0-U@)3) U@ eu@E-2) >

- (~feeh) 7= _ () =
(9.7) 0=U@(-4) — U@(-2)aU@(-2) — U@ —0.
Moreover, in each case the complex defines a minimal free resolution of Hy
of the complex. Here, a minimal resolution means that the differential maps
are zero mod U(g)>1.

Proof. Tt is clear from (9.1) and (9.2) that the complexes in the lemma are
well-defined and minimal. We need to show that they are exact at degrees
1,2 (with the term U(g) in degree 0). To do this it is enough to check the
assumptions of Lemma 9.4 with n = 2. We do it for the complex (9.5), the
other cases being analogous. Let G4 denote the complex (9.5). It is clear
that Ha(Ge) = 0, because U(g) is a domain. Using Lemma 9.1, we see that
Hy(G.) = U(g)/(e, h) is commutative and isomorphic to F[f] (polynomial
ring in one variable f), hence it has Gelfand-Kirillov dimension 1. Finally,
it is easy to compute using Lemma 9.3

SN 1—t—2 4¢3 1
2 (V'he ) = Ty = T

=0

whose order of pole at t = 1 is equal to 1. We then conclude by Lemma
9.4. O

Remark 9.7. Note that the complezes in Lemma 9.6 are all of Koszul type,
see §9.4.

Next, we construct free resolutions of some U (g)-modules of finite length.

Lemma 9.8. Let a be the left ideal of U(g) generated by e, h, f3. Then
U(g)/a is a U(g)-module of length 3, spanned over F by 1, f, 2. It admits a
minimal free resolution Go — U(g)/a — 0, where

(9.8) Ge: 0— G326y 2612 Gy —0
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with
Go=U(9), G3=U(9)(-6),
Gi=U@(-1)eU@(-2)aU@(-3),

Gy =U(g)(=3) @ U(g)(-4) @ U@@)(-5),

and the differentials d; are described as follows

—h e 0 e
d3 = ( —fs h e ), d2 = —f3 —3f2 € s d1 = h
I 73

Moreover, the complex (9.5) is a subcomplex of Ge and each term is a
direct summand of G;.

Proof. Using (9.1) and Lemma 9.5, it is direct to check that djods = dyods =
0, i.e. (G,) is a complex. Write G, for the complex (9.5). It is clear that G,
is a subcomplex of G4 and that Gg is a direct summand of G; for 0 <¢ < 3
(here we set G% := 0). To see that G, is acyclic (except at degree 0), we
apply Lemma 9.4 to the quotient complex G := Go/G.,, with degrees being
induced from G,, i.e.

0—-G; -Gy =G —Gyg=0—0.

We may check as in the proof of Lemma 9.6 that H3(GY) = Ha(GY) =
0. Combined with Lemma 9.6, the long exact sequence associated to 0 —
G, — Go — G7 — 0 then implies that H3(G.) = Ha(Gs) = 0. Since
Hy(G.) = U(g)/a has Gelfand-Kirillov dimension 0 and the order of pole of
Z?ZO(—l)ihGi (t) at t =1 is also equal to 0 (by a direct computation), we
conclude by Lemma 9.4 (with n = 3). O

In a completely similar way, we have the following lemma.

Lemma 9.9. Let a be the left ideal of U(g) generated by f,h,e3. Then
U(g)/a is a U(g)-module of length 3, spanned over F by 1,e,e?. It admits a
minimal free resolution Ge — U(g)/a — 0, where

(9.9) Ge: 0— G55 Gy 261 25 Gy — 0

with
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G1=U(@@)(-1)eU@(-2)aU@)(-3)
Gy =U(g)(=3) @ U(g)(—4) @ U[@)(-5)

and the differentials d; are described as follows

—h f 0 f
d3:(—63 h f), d2: —63 362 f s d1: h
0 e —h e3

Moreover, the complex (9.6) is a subcomplex of Ge and each term is a
direct summand of G;.

Next, we consider another quotient of U(g) of finite length.

Lemma 9.10. Let a be the left ideal of U(g) generated by €, ef, fe, f3. Then
U(g)/a is a U(g)-module of length 5, spanned by 1,e,€2, f, f2. It admits a
minimal free resolution Go — U(g)/a — 0, where

(9.10) Ge: 0—Gs-2 Gy 2612 Gy—0
with
Go=U(g), Gs3=1U(9)(—6)@U(g)(-6)
Gi=U@)(-3)aU®@)(-2) @ U@@)(-2) & U@@)(-3)

Gy =U@) (-5 @U@(-4) @ U@)(-4) o U@)(-4) © U@)(-5),

and the differentials d; are described as follows

h € e3 0 o3
s f 2% =3¢ 0
dg:<{)r Oh _;2 _Oh 2>,d2: 0 —fe ef 0 |,dy= ;J;
0 —3f%2 2f* e 3
0 7f3 f3 h f

Moreover, the complex (9.7) is a subcomplex of Go and each term is a
direct summand of G;.

Proof. The proof is similar to that of Lemma 9.8. O

Remark 9.11. It is easy to see that there is a short exact sequence of left
U (g)-modules

0= U@/ ef, fe, f*) = U®@)/(e.h, f*) @ UG)/(f, h,e’) = F — 0.
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9.1.1. H-actions. Recall that

_J (a0 x
H_{<O d), a,deIpr},
def

and fori € § = {O -, f—1}, oy - H — F* denotes the character sending
(8 3) (ad—1)P". Assume that U(g) is equipped with an action of H such
that for g € H:

ge =ai(g)e, gf =a;'(9)f, gh=h.

Then the differential maps in the complexes (9.5), (9.6), (9.7), (9.8), (9.9)
and (9.10) are actually H-equivariant.

For example, if we write U(g), for U(g) twisted by a character x of H,
then the complexes (9.5), (9.6), (9.7) become

0= U@)a(=3) 2 U@a(-1) @U(@1(=2) = U(@1 =0
0=U(@)a(=3) 2 U@ (=) @U(@)1(=2) = U@ = 0
0—=U@1(-4) = U@)1(-2) @ U(@)1(-2) = U@ —~0

while the terms of the complex (9.8) become

Go=U(@)1, G3=U(g),—2(-6),

G1=U(@)a(-1) @ U[@)1(-2) ®U (@) 2(—3),

Go = U(8)a,(=3) ©U(8)a2(—4) D U(@)4,+(=5).

(We leave to the reader for the complexes (9.9) and (9.10)). It is clear that
the embedding from (9.5) to (9.8) is also H-equivariant (see Lemma 9.8).

From now on, assume p > 5. From the above explicit description, we
observe the following facts.

Corollary 9.12. Let G be one of the complexes (9.5), (9.6), (9.7), (9.8),
(9.9), (9.10). Then Gy has the form

G = @ (U@ (—a1)) ™

where x runs over the characters of H, with the convention r;, = 0 if
U(g)y does not appear in the decomposition of Gy. Moreover, for any fized
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Xs if iy # 0 and rp # 0, then'?
ay x = apy + 2(l/ — l)

Corollary 9.13. Let Go be one of the complexes (9.8), (9.9), (9.10), and
G, be one of (9.5), (9.6), (9.7) which embeds in Go. Let G be the quotient
complex Go/G,y. If X' (resp. X") is a character of H such that U(g)y (—a’)
for some o' € Z (resp. U(§)y(—a") for a” € Z) appears in G\, (resp. G7),
then X"x'~! ¢ {l,ajd,j € S} (this uses the assumption p > 5).

Corollary 9.14. The direct sum of (9.5) with (9.6) twisted by o is iso-
morphic to

(9.11) 0— G(=3) "2 q(-1) @ G(~2) G oo

where G = U(g)1 ® U(@)a,, and ¢; € Endyg)(G) are defined by

(0 f _(h 0O
e (00 e (B0,
9.2. The representation 77

Recall some notation from §3: I is the Iwahori subgroup of K = GLy(Op),

Iy is the pro-p Iwahori subgroup, and Z; = ZNI;. Let m def my, /z, be the
maximal ideal of the Iwasawa algebra F[I;/Z;]. Recall that the residue field
of L is identified with I, where ¢ = p!. We assume p > 5.

We recall some results about the structure of gr., (F[/;/Z1]) from [12,
§5], which is based on [51] and [20]. By fixing a saturated p-valuation on
I/Zy (cf. [12, §5.2]), the associated graded Lie algebra gr(l;/Z;) has a
unique structure of a graded F[e]-Lie algebra, where F[e] is the graded
polynomial algebra in ¢ with € in degree 1. More concretely, gr(l1/Z1) is
isomorphic to F; ®r, g, where

0 € Folele o F,le]f @ Fple)h

with e and f in degree 1, h in degree 2 and relations

[evf] = h7 [h>e] = 2567 [h7f] = _2€f'

12 Both the characters o and ag 3 occur in the complex (9.10). They are equal
if f =1 and p =7, but one checks that the conclusion is still true in this case.
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Consequently, the graded IF,-Lie algebra gr(/1/Z1) &t gr(11/Z1) ®p, g Fp is
isomorphic to F, ®p, g where

7% g o P =Fpe@F,f ®@F,h

with e and f in degree 1, h in degree 2 and relations [e, f] = h, [h,e] =
[h, f]1 = 0.

Recall that F is a finite extension of F, containing F,. By fixing an
embedding ko : F; — F and letting x; = ko o Fr’, the set of embeddings

F, < F is identified with S = {0,...,f — 1}. For i € S, we define §; =
F ®y, F, gr(I1/Z1). Then we have a decomposition

F @r, gr(l1/Z1) @gz
€S

and a canonical isomorphism g, = F ®p, g.
On the other hand, we have an isomorphism, see [12, (37)],

I (Fp[11/21]) = Ur, (Fy ®r, 9)

so that

ro(FI1/Z1]) 2 F @5, o (Fpl11/21]) = Q) Us, (3).
€S

This isomorphism allows us to apply the results proved in last subsection.

For i € S, let e;, f;, h; be the images of 1 ® ¢, 1 ® f, 1 ® h under
the isomorphism F ®pr, g = §;. Since H normalizes Iy and I/Z;, it acts
on F[I1/Z], g, and the elements e;, f;, h;. It is easy to check that for

9= (§g)eH,
gei = ai(9)ei, gfi =a; (9)fis ghi = hi,

where «; is the character of H as in §9.1.1.

Proposition 9.15. Given J C S and ¢ € {£1}7, there exists an I-
representation Tz . such that

grm(T},E) = U(ﬁz)l/az
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where

(67,37eifiafieiafi3) i g_ﬁ \7
(9.12) a; = (ei,h,;, f?) 1€ J and g; = +1
(fi,hi,e?) 1€ J and g; = —1.

Here, if J =0, we make the convention that {1} = 0.

Proof. We give a constructive proof.

By [43, Lem. 2.15(i)], there exists a unique I-representation, denoted by
E; (2), which is uniserial of length 3 and whose socle filtration has graded
pieces 1,04;1,04;2. By taking a conjugate action of the matrix (g 6), we
obtain a unique I-representation E;r (2), which is uniserial of length 3 and
whose socle filtration has graded pieces 1, «;, oziz. To make the notation more
transparent, we write

(9.13) Braner = B (2), Bya142=E; (2).
It is direct to check that

grm((El,ai,af)v) = U(gi)l/(eiv hi, fz?))’
& (By ot 02)") 2 U@)1/(fis his €)

[t B

as graded gr, (F[I/Z])-modules. Moreover, taking an amalgam sum
E1 002 ©1 Eq -1 42, defined by:

0—-1— E]-,Oéz:,a% D El,a,:l,a;2 — E17ai7a§ @1 El,a;1 ;2 — 07

,Q

its dual has graded module isomorphic to U(g;)1/ (€}, eifi, fiei, f7).
Now we let 77 . be the tensor product &), g 7.7c,i, where

Elvaﬁa? @1 El,afl,afz 7: ¢ \7
T7ei =\ 1oz 1€ J and g; = +1
By ot 1€ J and g; = —1.

QO

To conclude, it suffices to prove that

grn(7y) = Q) gl )
i€S

which is a special case of [2, Lem. 1.1(i)]. O
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Definition 9.16. Define an I-representation 77 as

7= P (TJ@@( II a;1)>»

ee{£1}7 e,i=—1

with the convention that Ty := 7y ¢.

Remark 9.17. The motivation to define 77 in this way comes from Proposi-
tion 10.20 and Theorem 10.23 in next section, which say that =2 (F) contains
a suitable twist of 77 with J = Jgz, and is generated by it as a GLo(L)-
representation.

Lemma 9.18. grm(T}/) has a tensor product decomposition

(U@ /(€ eiti fiei 1)
igJ
(0% <® (U@)1/(ess his 17) © U@/ (fis his 6?)))-

eJ

Proof. This is an easy check using Definition 9.16 and the proof of Proposi-
tion 9.15. Note that o = a;l and vice versa. O

Lemma 9.19. The I-socle of 17 is equal to

@ <Ha;1> %®(1@a;1).

JCIJ ied eJ

The Jordan-Hélder factors of Tz are the characters [ [, a?"’i, where J C J
and (by;) € Z8 runs over

—2<b <2 ifi¢J
0<bs; <2 ifieJ\J
—3<by<-1 ifield

and T is multiplicity free.

Proof. By construction and the claim in the proof of Proposition 9.15, each
77 is indecomposable with irreducible socle 1 (the trivial character). The
first assertion then follows from the definition of 77, up to a reformulation
by setting J = {i € J,e; = —1}.
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For a fixed g, the Jordan-Holder factors of 77 . are the characters
[Lics @ where a; are integers such that

—2<a; <2 ifi¢J
0<a; <2 ifiej,é‘i:—l—l
—2<aq; <0 ifiEj,Ei:—l.

Twisting by a., we deduce that the Jordan-Hoélder factors of 77, ®
4 ] — a; ') are the characters [[;.g ol where b; = a; except when i € J
and ¢; = —1 in which case b; = a; — 1. Explicitly, we have

—2<bh;<2 ifi¢J
(9.14) 0<bh; <2 ifi€j,6i2+1
-3<p < -1 ifiEJ,z’fZ‘:—l.

This gives the Jordan—-Holder factors of 77 in the statement (setting J =
{j € J,ei = —1}). Finally, the multiplicity freeness of 77 can be checked
directly using (9.14). O

Remark 9.20. With the notation of Lemma 9.19, one checks that the char-
acter [];cs a?“ lies in T7[m?] (where J C J) if and only if

bl <1 ifi¢J
—2<b;<—1 ifielJ

and there exists at most one i such that |by;| =1 ifi ¢ J, or by; = =2 if
1€ J.

Proposition 9.21. T} admits a length 3 f minimal resolution by projective
F[1/Z1]-modules,

Pjy.-)T}-)O

satisfying the following property: for each 0 <1 < 3f, P7; has a direct sum
decomposition

Pyi=P;,®P7,
such that

2f
(a) P;/7,l o (@X PX)( ! ), where x runs over the characters of cosocI(T});
(b) HOHlI(P}7l7 Py/m?) =0 for any x € cosocI(T}).

Remark 9.22. We don’t require that the Pf7,l form a subcomplex of Py .
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Proof. First, taking tensor product of the complexes (9.8), (9.9) (twisted by
a; in this case), (9.10), according to i as in (9.12), we obtain a minimal pro-
jective resolution of gry, (7 @[], __; o) of length 3f, denoted by G5 .
Using Corollary 9.12, one checks that G 7 . o satisfies the following property,
denoted by (Min): for each 0 < k < 3f, G7.,; has a decomposition

Grer=EP (grm(F[[Il/Zl]])x(—al,x))TLX
X

and whenever 7, # 0 and 7, # 0, we have
ap .y = iy + Q(ZI — l)

Indeed, this property (Min) is preserved when taking tensor product. Here,
we use the property that the characters x with r;, # 0 are of the form
X = IlLies afi, with b; lying in a suitable range such that y = x/ implies
b =13

Now, applying Lemma A.10, this graded resolution G 7 . o can be “lifted”
to a filt-projective resolution Py .o of T}é Q Hgl:fl «;, which must be
minimal by Lemma A.11. Define Py, to be the direct sum of Py ., over
e € {£1}7, which is a minimal filt-projective resolution of 7.

To check that Py ; satisfies the required property, we note that the con-
ditions (a), (b) depend only on cosoc;(P7;) (not on the filtration of Py ),
so it suffices to prove the corresponding property for Gz, the underlying
gro(F[I/Z1])-module of G 7, (i.e. forgetting the graded structure). By tak-
ing the tensor product of the complexes (9.5), (9.6), (9.7), according to i as
in (9.12), we obtain a subcomplex G’jé,. of G 7., of length 2f, such that
Gi7,§,l is a direct summand of G 7. for all 0 <1 < 3f, with the convention
G';., = 0if I > 2f. Taking direct sum over all € € {£1}7, we obtain a
subcomplex G'; , of G 74 such that G’/ is a direct summand of G7;. The
conditions (a), (b) can be checked directly using Lemma 9.19, Corollary 9.13
and Corollary 9.14. O

9.3. The representation A,

Keep the notation of the last subsection.

81f p = 7, it can happen that x = [[,cs 0} = [Ties @ > = X, but one checks
that (Min) still holds.
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Proposition 9.23. The center of F[I1/Z1]/m? contains a subring isomor-
phic to

(9.15) F[(xivyi)oﬁiﬁffl]/(xiayi)(%gigffl'

Proof. Since e;f;, fie; € m?F[I/Z,]/m3, we may view them as elements in
F[I/Z1]/m3. Set

ri = eifi, yi = fiei
It is clear that x;,y; lie in the center of F[I/Z1]/m3, and (z;,3;)?> =0. O

We denote by R the ring (9.15). Since it is contained in the center of
F[I/Z1]/m3, R acts on any object in the category of F[I/Z;]/m3-modules,
and any morphism in this category is R-linear.

Recall that for a character x of I, P, def Proj;,z, x denotes a projec-

tive envelope of y in the category of pseudo-compact F[I/Z;]-modules, and

Wy def /m" for n > 1. The structure of Wy 3 has been determined in

§3. In particular, [graWX,;), : x] = 2f. Also recall that we have denoted by
W3 the quotient of W, 3 by the direct sum of characters in grZ W, 5 which
are not isomorphic to . Since this representation will be tentatively used
in this and next section, we make the following definition.

Definition 9.24. Define A\, = va’g.

Note that the cosocle of Ay is x¥ by definition. Moreover, x" € JH()\,)
if and only if X' = x" or ¥’ € &(x"), and

o [ 21 X =X
[)‘X'X] _{ 1 if X’EO@(XV)

Here, recall that &(x") denotes the set of characters which have nontrivial
extensions with xV (§3).

Lemma 9.25. The action of R on A, (resp. )\;é) induces a ring isomorphism
R =End;(\y) (resp. R = Endr(\))).

Proof. Since dimg Homj(Ay, x") = 1 if and only if x' = x¥, by dévissage we
have

dimp End; (A ) < Dy i xY]=2f +1.
Since dimp R = 2f + 1, it suffices to prove that R < End;(\y), i.e. R acts

faithfully on A,. But this is clear by definition of R and \,, because e; f;
and f;e; (for ¢ € S) induce nonzero endomorphisms of A, which are linearly
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independent over F. The claim about End;()Y) follows from this and the
general fact that End 1()\;(/) = R°? = R, where R°P denotes the opposite ring
of R. O

Lemma 9.26. We have Ext}/zl()\x,xv) = 0.

Proof. The proof is similar to that of Corollary 3.13, using the structure of
Ay in Lemma 3.2. O

Given P a finitely generated F[I/Z;]-module and A a finite length
F[I/Z;]-module, we may consider

Hom;y(P,\Y)Y,

where V denotes Pontryagin dual. Note that as a functor Hom;(—, —")" is
covariant and right exact in both variables. We will mostly be interested
in the case when P is projective and X is annihilated by m?. Typical ex-
amples are A = x or A, for some character x, in which case the mod-
ule Hom;(P,\")Y carries naturally an action of R through \. Moreover,
if P — P and A — )\ are morphisms of F[//Z;]-modules, then all the
morphisms are R-linear in the following commutative diagram

Hom;(P,\)Y —— Hom;(P', \V)V

l |

Hom; (P, \"V)Y —— Hom;(P', \'V)V.
Proposition 9.27. Let x' be a character of I. Then as an R-module

R if X' =x
Hom(Py, \))" = ¢ F if X' € &(x)
0 otherwise.
Proof. We observed that [\ : x']=1if x" € &(x), so dimp Hom (P, \)" =
1 by projectivity of P,,. This treats the second case. The third case is trivial.
It remains to treat the case x’ = x. The projectivity of P, implies that
dimp Homy(Py, A)" = 2f + 1 = dimg R.
Therefore, it suffices to prove that Homj(P,, A;)V is a cyclic R-module. By
Lemma 9.28 below, applied to

S=F[I/Z], R=R, P=P, A=)\,
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it suffices to prove that

dimp Hom; (PX, (A ®r R/mR)V)V =1
or equivalently, [\, ®rR/mp : x"] = 1. But this is clear because A\, ® g R/mp
is isomorphic to P,v /m? which is multiplicity free. O

Lemma 9.28. Let S, R be F-algebras and assume that R is a commutative
noetherian local ring with mazximal ideal mg. Let P be a left S-module and
A be an (S, R)-bimodule. Assume that P is finite projective and X is finite
dimensional over F. Then there is an isomorphism

Homg(P,\")Y @r R/mp = Homg(P, (A ®r R/mg)")".

Proof. One checks that the natural map Homg(P, \")Y — Homg(P, (A ®g
R/mp)Y)V factors through

Homg(P, )\\/)\/ KRR R/mR — HomS(P, ()\ QR R/mR)V)v,

which is clearly an isomorphism if P is a finite free S-module, hence is also
an isomorphism if P is finite projective. Note that the assumption A is finite
dimensional ensures (A\Y)Y = \. 0

Proposition 9.29. Let x1,x2 be characters of I. Consider a morphism
B: Py, — Py, and let

(9.16) B2 - Homy(Py,, AY)" — Homy(Py,, AY)"

X197t X270 ')

be the induced morphism of R-modules. Then Bi has the form

ﬁi X2 =X | X2 € &(x) | otherwise
x1=x |R—R| R—=F R—0
x1€&x)| F—~R F—>F F—o0
otherwise | 0 = R 0—=F 0—0

If moreover x1,x2 € {x} U&(x), then the following statements hold:

(i) if x2 # X, then ,6’?( is nonzero if and only if Py, LA Py, & Py,/m? is
nonzero;
(ii) if x2 = x, then ch is nonzero if and only if Py, LA Py — Py/m3 is
nonzero;
(ii3) if x1,x2 € &(x) and x1 # X2, then ﬁi is always zero.
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Proof. The form of Bi follows immediately from Proposition 9.27.
(i) By assumption xo € &(x). We first claim that the natural quotient
map P, —» P,,/m? induces an isomorphism

HomI(PXQ,)\;C/)V = HomI(PXZ/mQ,)\x)V.

It is surjective by right exactness of Homy(—, \))". Since Homy(Py,, A)" =
F by Proposition 9.27, it is enough to show that Homj(P,, /m?, AY) is nonzero.
By assumption we have y2 € &(x), i.e. Ex‘c}/z1 (x2,X) # 0. Hence, P,,/m?
admits a two-dimensional quotient isomorphic to F, ,, which embeds in )\;(/;
here we recall that F ,, denotes the unique nonsplit extension of x2 by x.
This proves the claim.

The “only if” part follows directly from the claim. To prove the “if” part,
assume the composite morphism P, — Py, — P,/m? is nonzero. Then x1
occurs in P,,/m? as a subquotient, i.e. either Y1 = x2 or x1 € &(x2). In
the first case, § induces a surjection Py, — P, — P, /m, hence  has
to be surjective by Nakayama’s lemma and consequently an isomorphism.
In particular, Bi is nonzero. In the second case, we must have y; = x (for,
otherwise, x € &(x1) and so x € &(x1)N& (x2), but this intersection is empty
whenever y1 € &(x2)), and the image of P, — P, — P, /m? is isomorphic
to x. By the proof of the claim, we see that the inclusion x — P, /m?
induces an isomorphism Homy(x, AY)" = Hom;(Py,/m?, XY)", hence Bi is
nonzero.

(i) Since A is annihilated by m?, the natural morphism

Hom;(Py, AY)" — Hom; (P /m® /)"
is an isomorphism, which implies the “only if” part. Moreover, since
dimp Hom/(Py/m? X))Y = 2f + 1 = [Py/m® : x],
an argument by dévissage shows that for any submodule W of P,/ m3,
dimg Hom (W, \))" = [W : ]
and the induced sequence
0 — Homy (W, \Y)" — Hom(Py/m3,\Y)" — Hom; ((P/m?)/W,AY)" — 0

is exact.
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Assume that 8 : P, — P, — P, /m? is nonzero. By the above discussion,

to show that Bi is nonzero it suffices to show [Im(3) : x| # 0. By assumption,
either y1 = x or x1 € &(x). The result is trivial if x; = x. If x1 € &(x), then
one checks that the unique submodule of P, /m? with cosocle x; contains
X as a submodule. Indeed, the restriction of Py /m? to I is isomorphic to
F[I1/Z1]/m3, in which e; (or f;) generates fie; (resp. e;f;).

(iii) Since x2 # X, by (i) it suffices to prove that P, — P\, — P,,/m?
is zero. This is clear, because the assumption on y; implies that y; does not
occur in P,,/m? as a subquotient. 0

9.3.1. Tangent space. Letx' € &(x)and 3 : Pyy — Py be a morphism of
F[1/Z1]-modules. The proof of Proposition 9.29(ii) shows that if 5 : Py, —
P, — P, /m? is nonzero, then Im(3) is nonzero and does not depend on the

choice of 3, and therefore neither does Im(ﬂi), where ﬁfc is the morphism
(9.16).

Definition 9.30. Let t,. denote the the image of F — R via the map

Bi : F = Hom(Py, )" — Hom;(Py,\))" = R,

where B : Py — Py is any morphism which is nonzero when composed with
Py — P\ /m?.

Lemma 9.31. {t,, : X' € &(x)} generate the mazimal ideal mp. As a
SV -
consequence, {ty : X' € &(x)} form an F-basis of mp.

Proof. There exists an exact sequence
Gyec) Py = Px = x— 0.
Since Homy(—, AY)" is right exact, the induced sequence
Byres(y) Homp(Py, X)) — Homy(Py, AY)" — Homy(x, A))" — 0

is also exact. By Proposition 9.29 and Definition 9.30, the last sequence is
isomorphic to

Oy Ftyy = R—TF — 0,
proving the first claim. Since dimpmp = 2f = |&(x)|, the last claim follows
(as m% = 0). O
Lemma 9.32. Let P be a finitely generated projective F[I/Z]-module. Let
X' € &(x) and B : Py — P be a morphism such that Im(3) C mP. Then the
image of Bi is contained in t, Homp(P,\))".
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Proof. We may assume P is indecomposable, i.e. P = P, for some character
x”. If X" = X/, then the assumption on Im(3) implies that Im(8) C m?P,
because x' does not occur in gry, P,s. By Proposition 9.29(i) this implies
ﬁg( = 0 and the result trivially holds. In the rest, we assume x” # /.

First assume x” = y, then the result follows from Proposition 9.29(ii)
and Definition 9.30. Finally, if x” ¢ {x, X'}, then the map is always zero by
Proposition 9.29(iii), so the result is also trivial. O

9.3.2. Socle. Recall the socle of an R-module M from Definition A.3.
Since R is local, we have the following equivalent description

socr(M) :={ve M:rv=0, Yv € mp}.

For example, since m% = 0, we have socg(R) = mp. However, note that
socr(M) # mrM in general (e.g. take M = R @ F™ for some m > 1).

Lemma 9.33. The morphism Hom(Py,\))" — Hom;(Py,x)", induced
from the natural quotient morphism A\, — X", is R-linear and identified
with R — F.

Proof. Noting that Hom;(P,,x)" = F, the result is clear by Proposition
9.27. ]

Corollary 9.34. Let P be a finitely generated projective F[I/Z;1]-module.
The natural morphism

Homy; (P, )\;)V — Homy(P, x)"

is R-linear whose kernel is identified with the R-socle of Homp(P, AY)Y.

Proof. 1t is clear that we may assume P is indecomposable, i.e. P = P,
for some character x'. If ' = x, then the result follows from Lemma 9.33.
If X' # x, then Homr(Py,x) = 0 and hence the map Hom (P, \))" —
Homy(Py/, x)" is always zero; since Homj(Py/, AY)" is itself either 0 or a
simple R-module, the result holds trivially. ]

If P is a finitely generated F[//Z;]-module, we denote by rad, (P) the
largest subobject such that the quotient P/rad, (P) is semisimple and x-
isotypic. To be explicit, if P can be decomposed as P; & P, with cosoc(P;)
is x-isotypic and Homjy (P, x) = 0, then

rady (P) =rad(Py) @ P, = mP; @ P».

Corollary 9.34 can be restated as follows.
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Corollary 9.35. Let P be a finitely generated projective F[I/Z]-module.
There is an exact sequence

0 — Hom;y(rady (P), )\;)v — Homy (P, )\;)v — Homy(P/rady(P), )\x)v — 0,
which is canonically identified with
0 — socg(M) — M — M/socr(M) — 0

where we have written M = Homy(P, \))".

Proof. Since P/rad,(P) is semisimple and x-isotypic, the exactness follows
from Lemma 9.26. The second claim is a reformulation of Corollary 9.34,
noting that there are natural isomorphisms

Hom; (P, x)" = Hom;(P/rady(P), x)" <= Hom;(P/rad(P),\))".

O

Proposition 9.36. Let g : Pi — P> be a morphism between finitely gen-
erated projective F[I/Z1]-modules such that Im(5) C mPy. Write M; =
Homy(P;, \))Y fori=1,2, and let Bi : My — My be the morphism (9.16).
Then the following statements hold.
(i) Im(ﬂfc) is contained in socr(Ma).
(i) Let b C R be the ideal generated by t,., where x' runs over the set
&(x) N JH(cosoc(P1)). Then ﬁi induces an R-linear morphism socr
(Ml) — bMQ

Proof. (i) We may assume both P; (i = 1,2) are indecomposable, i.e. P; =
P, for characters x; € {x}U& (x). In view of the table in Proposition 9.29,
the only nontrivial case is when y; = x2 = x. But, in this case the claim
follows directly from Corollary 9.35.

(ii) We may again assume P; = P,, are indecomposable for x; € {x} U
E(x). If x1 € &(x), the claim is just Lemma 9.32.

If x1 = X, then socg(M;) = mp is identified with Hom(mP, /\;(/)V by
Corollary 9.35. There are two subcases. If x2 € &(x), then My = F and
bMs = 0, so the result follows from Proposition 9.29. Assume x2 = x (and
also x1 = X). Since x does not occur in gri, P, the assumption 8(P;) C mP,
implies that B3(Py) is actually contained in m2P,, and therefore B(mP;) is
contained in m3P,. By Proposition 9.29(ii), we deduce that ﬁi is identically
zero when restricted to Hom;(mP, )\;(/)V. This finishes the proof. O
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9.4. Generalized Koszul complexes

Let R be a commutative ring, M be an R-module and ¢ = (¢1,...,$,) be
a family of pairwise commuting R-linear endomorphisms of M. The Koszul
complex

Ko(p,M): 0= Ky 25 K,y — - 25 Ky — 0

associated to the data (M, ¢1,...,¢,) is defined as follows:

° Kl:M®Z/\Z(Z”) for 0 <1< m;
e the differential map d; : K; — K;—1 (for 1 <1 <mn) is defined as

(9.17)
!
di(v@ (e, Ao Aei)) =3 (1) i (V) @ (e, A NG Ao Ney,),
r=1
where v € M, (eq,...,e,) is the canonical basis in Z" and by €;_ we

indicate that e;, is to be omitted from the exterior product.

For the rest of this subsection, we assume that R is a noetherian local

ring and M is finitely generated over R. Let R’ ©f Bnd r(M), which acts on

M from the right, sending (¢, ¢) to t¢ def ¢(t), where ¢ € R and t € M.
In this way, M becomes an (R, R')-bimodule. Note that the composition
poop: M M A M corresponds to the product ¢y in R'. This choice of

convention is compatible with the one made in §9.1.

Remark 9.37. Replacing M by R’ in the definition of Ke(¢, M), we obtain
the Koszul complex Ko(¢, R'), where we view R as an (R', R')-bimodule and
&; as an endomorphism of R sending f to f¢;. Then we have a canonical
isomorphism

M ®r K9, R~ Ko(o, M).

Since R is commutative, R’ is naturally an R-module. For any left ideal
J of R', MJ is an R-submodule of M. The following result is an analog of
[67, §5, Lem. 2] (cf. also [68, §IV, Appendix I]).

Lemma 9.38. Let J denote the left ideal of R generated by ¢1,...,¢n.
Assume that J is a two-sided ideal and the morphism

31 = (ala' . '7571) : KI/KIJ — KOJ/K0J2
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is injective. Then for any 1 <1 <n, the morphism
El : KZ/KIJ — Klflj/Kl,p]Q
18 injective.

Proof. By definition, Ky = M and K1 = M"™. The injectivity of K1 /K;J —
KoJ/KoJ? can be restated as follows: if v; € M (where 1 < i < n) satisfy
S ¢i(v) € MJ?, then v; € MJ for all i.

To simplify the notation, we denote

Il:{l:(llauu)|1§21<<Zl§n}

For i = (i1,...,4;) € I, set ei = €, N---Ne, and §; = {il,...,il} C
{1,...,n}=:S.
Let v =73, vi ®e¢; € K with v; € M, then by (9.17)

di(v)= > fr®er € K4

el

with f; having the form

fo=Y £6;(vpug)-

JES\S,

Here, i’ U {j} denotes the unique element in I; whose underlying set is
SZ' U {j} Now, if dl(U) S Kl,1J2 ~ MJ? Rz /\lil(Zn), then fi/ e MJ? for
all i/ € I;_1. By assumption, we deduce that virug;y € MJ, and the result
follows. O

9.5. A typical example

In this subsection, we study one typical example of generalized Koszul com-
plexes introduced in last subsection.

Let R be a noetherian local F-algebra, with maximal ideal mp and
residue field F. Let M be a finitely generated R-module and R’ = Endg(M).
Assume that M can be decomposed as M = @], M;. Then we may represent
R’ in matrix form

R/ = (HOIIIR(MZ‘, M]))

0<i,j<m
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so that the (right) action of R' on M = @ M; is given by the matrix
multiplication

M; x Hompg(M;, Mj) — Mj, (vi, fij) = fij(vi).

The multiplication in R’ is determined by: if f;; € Hompg(M;, M;) and gj; €
HomR(Mj, MZ), then

fig ji
fig X gii — (M 258 M; 25 M),

From now on, we make the following assumptions on R and M:

° mR#Oandm%:();
e M =R®F™ for some 0 < m < n, Wherendélc dimyp mpg.

Lemma 9.39. Keep the above notation.

(i) We have
R F F
R mpg F F
mp I (m+1)x (m+1)
(1) M is a cyclic R'-module generated by vy def ( 10 --- 0 )

Proof. (i) With the notation introduced above, we enumerate R as My and
F™ as @ M;. The result easily follows from what we have recalled, using
the isomorphism Hompg(F, R) & mp (as m% = 0).

(ii) For ¢ € R, vg¢ corresponds to the first row of the matrix of ¢. The
assertion easily follows. O

Note that, when doing matrix multiplication in R/, the map F x mg —
mpg is the usual multiplication map in R, whereas mp X F — T is the zero
map (because any morphism F — R — F is zero as mp # 0).

Let b be a subspace of mp (we allow the case b = 0). Since m% = 0, b
can be viewed as an ideal of R. Consider the subspace J, of R’ defined as

mp F ... F

b 0 0 O
Jp =

b 0 0 O

(m+1)x(m+1)
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For example, we have

mpg F F mpg F ... F

mrp 0 0 O 0 0 0 O
(918)  Jmy = ... o=

mp 0 0 O 0 0 0 O

It is direct to check that Jy is a two-sided ideal of R'. Recall from §9.3.2 the
definition of socg(M).

Lemma 9.40. (i) We have
MJy =mpr ®F™ = socg(M), MJ;=b&® (0)" =bM.

(ii) M /M Jy has dimension 1 over F and is spanned by the residue class
of vg.

(i4i) dimp M Jy /M JE = n + m — dimp b.
Proof. (i) Since M = voR’' by Lemma 9.39(ii), we have M J, = (v - Jp) =
{vogp: ¢ € Jp} and MJZ = (v - J2). The result is then a direct computation
(using m% = 0 for the description of MJZ). Finally, (i) and (iii) clearly
follow from (i). O

Given ¢ € Jy, we have a natural F-linear map
¢ M/MJ, — M.J,/MJZ.
Since M /M Jy, is spanned by the residue class of vg, say T, ¢ is determined
by the residue class of ¢(vg) in MJy/MJZ.

Proposition 9.41. Assume that Jy can be generated by n elements as a left
ideal of R', i.e. there exist ¢1,...,¢n € Jy such that Jo =Y | R'¢;. Then
@1, ..., Pn tnduce a surjection

(517 cee 7571) : (M/M']b)n — MJ[;/MJ[?
As a consequence, dimg b > m and the equality holds if and only if (¢4, ...,
@,,) is an isomorphism.

Proof. The morphism is well-defined as explained above and is surjective
by assumption. The second assertion is clear for the reason of dimensions,
using Lemma 9.40(iii). O

The following are criteria for a left ideal of R’ to be of the form Jj.
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Lemma 9.42. If J is a left ideal of R' such that Jioy C J C Jung, then
J = Jy for some (proper) ideal b of R.

Proof. We associate to J a subspace by of mp as follows:
by = {bio(¢): ¢p€J, 1 <i<m}

where ¢ € J is written in the matrix form (b;;(¢))o<i j<m. Since J is a left
ideal of R/, one easily checks that J contains

0 0 --- 0
by 0 0 O
by 0 0 O

hence also contains J, because J() C J by assumption. On the other hand,
since J C Jy,,, we have J C Jp, by definition of b . O

Lemma 9.43. Let J C R’ be a left ideal contained in Jy,. Assume that
dimp M/MJ =1 and that J can be generated by n elements. Then J = Jy
for some (proper) ideal b of R and dimp b > m.

Proof. We know that dimgp M/MJy,, = 1 by Lemma 9.40(i). Hence the
assumptions J C Jy, and dimgp M/MJ = 1 imply that MJ = MJy, =
mp @ F™. Since J is a left ideal and M = vgR’, we have MJ = (vy - J).
Since vp¢ corresponds to the first row of the matrix of ¢, we deduce that
Jioy C J, see (9.18). By Lemma 9.42, there exists an ideal b of R such that
J = Jp and it follows from Proposition 9.41 that dimg b > m. O

We close this subsection with a basic but typical example.

Example 9.44. We use the notation of §9.1. Let A\ = U(g)/((e, f)3, €2, f?)
and R = Flz,y]/(z,y)* = Endyg)(A), by (the graded versions of) Lemma
9.25. Let H act on U(g) as in §9.1.1. Applying Homy g (—, AY)" to the
complex (9.11) gives a generalized Koszul complex of R-modules

(%)
— M —0

_ (0 _f(r-y O
¢1_<x 0)7 ¢2—< 0 O)

0— M "2 e

where M = RO F,
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where f € F* is the element induced by f : U(§)1 — U(§)a,. The left ideal
of R = Endgr(M) generated by ¢1,d2 is equal to J(z) and

MJ () /MJEy = (mp @ F)/((z) @ (0)) = (mp/(z)) © F.
It is direct to verify that the morphism
(1, 02) : M/MJizy @& M/MJ gy = MJg)/MJZ,
is an isomorphism.

10. Finite generation

Let F and 7 : Gp — GLo(F) be as in §8 and 72 () be the GLy(F,)-

representation constructed in (8.8). In this section we study the representa-

tion theoretic property of 72 (7). Write L Lt F,,p of v |g, as in §8.4; recall

that p is reducible nonsplit and strongly generic. For convenience, write
v def p,_
m(p) = m,/ (7),

keeping in mind that, a priori, 7(p) may depend on the global setting.
Let G = GLo(L), K = GL3(Op), and keep the notation in §4 and §5.

10.1. A minimal projective resolution

Recall that M, is a flat Ro.-module by Theorem 8.15. Since R, is a regular
local ring, by choosing a minimal set of generators of my, := mp_ we obtain
a Koszul type resolution of My, /ms = 7(p)Y. Although M, is projective
as a pseudo-compact F[K/Z;]-module, it is not finitely generated and the
resolution is not minimal.

The first step to study 7(p), equivalently m(p)", is to construct a minimal
projective resolution of m(p)" |k, as follows. In the proof of next proposition
we will use the notation of §8.

Proposition 10.1. There exists a quotient ring of R, denoted by R, such
that

(i) Ry is a regular local ring over F of Krull dimension 2f;
(it) Moo @R, Ry is isomorphic to @,cq ) Proik/z, oV as an F[K/Zi]-
module.
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Proof. By construction R« is a power series ring in (¢ + j — f — 3)-variables

over R? ¥ Recall that we have constructed elements Ty,...,Tf43 in RﬁD 34
such that the images of {ew, T1, ..., Tf43} in RﬁD’w’criS’U form a regular system

of parameters for any o € Z(p), see Proposition 6.13. Together with the
q+ j — f — 3 formal variables just mentioned (and the uniformizer w), we
obtain a part of a regular system of parameters of Ry, say {w, T1,...,Tg+j},
such that their images in RES% form a regular system of parameters for any
o € 9(p). We claim that

ef
Ry € Ro/(@ Th, ..., Tys))

satisfies the required conditions. Condition (i) is clear by construction.

Prove (ii). Recall that if o is a Serre weight, then M (o) is nonzero if and
only if ¢ € 2(p), in which case My (0) is free of rank one over Reo ™’ @ F. In
particular, if o € Z(p), then {T1,...,Ty4;} is a regular sequence for M (o)
and

12

(10.1) Myo(0)/(Th, ..., Tyrj) = F.

On the other hand, we know that M, /w is a projective F[K/Z;]-module. In-
ductively using [45, Prop. 3.10], we see that Mo ®p. R, = M /(w, T1,. . .,
Ty+;5) is also projective. To finish the proof it suffices to show that

cosock (Moo ® .. Ry) = cosock (m(p)") = @peq )0,

which is a direct consequence of (10.1). O
In the following, we fix a quotient ring R, of R, as in Proposition 10.1
and also an isomorphism

R, 2 F[X1,..., Xof].

Let
Mv déf Moo ®Roo Rv-

Then the Koszul complex Ko(X, M,) where X = (X1,..., Xoy),
(10.2) 0— M, = M - ... 5 MP* — M, -0

is a resolution of 7(p)" = M, ®r, F, whose terms are finite projective when
viewed as F[K/Z;]-modules. Dually, letting

def

Qv = (Mv)v7
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we obtain a resolution of m(p)
(10.3) 0—=7(@) = Q= Q%% 5 ... 5 Q, 0.

We still denote by X; : 0, — Q, the endomorphism induced from X; : M, —
M,,. Since €, is an injective object in the category Repyp(K/Z7), (10.3) is a
resolution of 7(p) by injective F[K/Z;]-modules. It will play a crucial role
later on.

Proposition 10.2. The resolution (10.2) is minimal in the sense that the
differential map sends Ki(X, M,) to radg (K;_1(X, My)).

Proof. If o is a Serre weight, write P, &t Projg 7, o with the mg, -adic topol-
ogy. We first prove the following general fact: if P = @] P,, with o1 # o;
for any 7 > 2, and if ¢ : P — P is a topologically nilpotent continuous
K-equivariant endomorphism, i.e. Nj>; Im(¢¥) = 0, then ¢(P,,) C rad(P).
Indeed, let ¢;; denote the composite map

P, P4P>P,

where the first map is the natural inclusion and the last one is the projection.
Then ¢ is determined by the matrix (¢;;)1<s,j<n, see §9.5. Note that ¢(Py,) C
rad(P) if and only if ¢ : cosoc(P,,) — cosoc(P) is the zero map, if and only if
51]' =0forall1 <j <n.If j#1then o1 # o; and we always have Elj =0.

In other words, the matrix (¢;;) is a (1,n— 1)-block lower triangular matrix.

If ¢;; # 0, then alfl # 0, and also ak # 0 for any k£ > 1. This contradicts
the assumption that ¢ is topologically nilpotent.

Now we prove the lemma. By the construction of Koszul complexes,
Ko (X, M,) is minimal if and only if each endomorphism X; : M, — M, has
image contained in radg(M,). However, X; is topologically nilpotent, and
since cosocg (M,) = cosock (m(p)Y) is multiplicity free, we conclude by the
above fact. O

Remark 10.3. A topologically nilpotent endomorphism of P need not have
image contained in rad(P). Example: P = P, ® P, with ¢ : P — P given

0 Id
by (O 0).

Despite Proposition 10.2, the complex (10.2) is not minimal when viewed
as a complex of F[I/Z;]-modules. The next step is to remedy this problem.
Recall that by [15, Lem. 14.1] the set of Jordan—Holder factors of D (p) =

7(p)lt is, ignoring multiplicities, the same as that of (@o—e@(ﬁ) Injp a) b On



On the mod p cohomology for GLy: the non-semisimple case 395

the other hand, by [8, Prop. 4.3] the set JH(D;(p)) is parametrized by the
set PP (xo, - ,x¢-1), whose definition is recalled in the proof of Lemma
4.12. Define a subset of ZP(xq,--- ,x¢_1) as follows:

(104) 2P (20, 25 1) € {r e PD(wo, - ,x51),

Ai(zi) € {xi, wi+2,p— 1 —x,p— 3 — xi}},

and let ZP*(xq,--- x5 1) be its complement.
The following result gives a refinement of [15, Lem. 14.1].

Lemma 10.4. For any character x of I, let n, € Z>q such that

< @ I]ﬂjro)l1 = @X”X.
X

o€ (p)

Then ny # 0 if and only if x € JH(Di(p)). If x corresponds to X\ €
WQT(xO, oo xf_q), then ny, = 1.

Proof. The first assertion is just [15, Lem. 14.1]. The second one is a conse-
quence of [44, Prop. 2.1], noting that n, = 1 if and only if both x and x*
occur in Dy, (p)" for the same o € 2(p). O

Lemma 10.5. For any 0 <1 < 2f, M,|; has a direct sum decomposition
M & M} satisfying the following properties:
(a) M @X P,v, where x runs over the characters corresponding to
A€ QZ@T(IL’(), cee ,l’f_l),'
(b) HomI(Mg,PXv/mQ) =0 for any x as in (a) (recallm =wmy /7 ).

Proof. Dually we work with €,. Since €,|x is isomorphic to @ae@(p)
Injg/z, 0, with the notation of Lemma 10.4, we get

Bire @ (i)™
x€JH(D1(p))
:< @ Inj; /7, X>@( @ (Injz/z, X)n">
xeE2 Pt XEPD*

where we simply write y € 22" (resp. x € PP*%) to mean that y corre-
sponds to an element in 227 (xo, - - - ,Ty_1) (resp. 9”.@1(:60, e xpo1)). We

define QZ to be the first summand and Qf; to be the second; let MJ = (QL)v
and M{ = (Q})Y, so that M, = M, & M;.
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Condition (a) is immediate from the definition. To check (b), it suffices
to check that if y € 222" and ¥’ € Z2*, then Ex‘c}/z1 (x,x") = 0. But this
is a direct check using Lemma 3.1. U

The same argument of Proposition 10.2 proves the following variant,
which is a remedy for the failure of minimality of (10.2) as a complex of
F[1/Z;]-modules.

Proposition 10.6. As a complex of F[1/Z:]-modules, the resolution (10.2)
is partially minimal relative to 22" in the sense that for any x € P DT,
the morphism

Homy (K;—1(X, M,),x") — Hom; (K;(X, M,),x")
1S Zero.
10.2. Cohomological invariants of 7 (p)

Write p = (% ,,) and define

X
(10.5) 70 ¥ Ind% yo = Ind§ x¢ C10dS y ;= d$ S
. 0 = X0 =Indpxg, 7 = Indj xy = Indp x}
where
def _ def _
(10.6) Xo = xiw T ®x2, Xf = xew @1

Write ﬁ\l(@p/L) in the form (1) as at the beginning of §4 and assume p is
strongly generic in the sense of Definition 4.4, so that the results of §8.4 are
applicable.

We refer to Appendix §A for the functor E‘(—) with respect to A =
F[K/Z:] and relevant properties. Recall from §5.1 that ap denotes the char-
acter w @ w™' : T — F*; we view it as a character of P by inflation. Let ¢

denote the central character of my (and of 7¢); explicitly ¢ = X1Xow L.

Lemma 10.7. Let x : P — F* be a smooth character. Then (Ind$ x)V is
Cohen-Macaulay of grade 2f and
EQf((IndIGD X)) = (Indg(x_lap))v.

In particular, B> (n) = 7r}/ ® ¢ o det and the double duality map w) —
EYE% () is an isomorphism. A similar statement holds exchanging o
and my.
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Proof. 1t is a special case of [50, Prop. 5.4]. O

Proposition 10.8. The G-socle (resp. G-cosocle) of w(p) is isomorphic to
o (resp. my).

Proof. First determine the G-socle of 7(p). It is proved in [44, Lem. 3.1]
that socg 7(p) is an irreducible principal series, say socg(mw(p)) = Ind% .
We need to show 1) = x¢. By Proposition 5.1(iii) it is equivalent to show
Ordp(socg 7(p)) = X0, which follows from Proposition 7.4.

Taking Pontryagin dual, the G-cosocle of 7(p)" is isomorphic to 7, see
§A.2. By Theorem 8.15(ii) the double duality map 7(p)Y — E>E*/ (7(p)Y)
is an isomorphism and similarly for 7 by Lemma 10.7. Hence, Proposition
A.6 implies that the induced inclusion E/(my) — E2/(n(p)V) is essential.
By Theorem 8.15(ii) and Lemma 10.7 again and twisting suitably, this gives
an essential inclusion 7} < 7(p)". Moreover, since 7y is irreducible, it is
exactly the G-socle of 7(p)¥. Dualizing back we obtain the result. O

Remark 10.9. We can deduce from Proposition 10.8 that w(p) is finitely
generated as a G-representation. More precisely, one can prove the following
result: if m is an admissible smooth representation of G- over F whose cosocle
is monzero and of finite presentation, then m is finitely generated. We don’t
pursue this because we will prove a stronger result below, see Theorem 10.26.

The genericity condition on p implies that both 7y and 7 have an irre-
ducible K-socle, and one easily checks that

sock (mo) = oo

where oy def (ro,--+,7y—1) is the “ordinary” Serre weight in Z(p). The
K-socle of 7y, denoted by oy, is equal to

(10.7) (p—3—70,++,p—3—rp 1) ®detXizo Pt

Denote also by x¢ : I — F* the character obtained by first restricting xq
to H and then inflating to I. It is direct to check that x( is exactly the

character of I acting on aél, which explains our choice of convention (10.6).

Similarly, we have the character x s of I which gives the acton of I on 0]{1.

Proposition 10.10. For any ¢ > 0, the following statements hold:
(i) Bxtl, (x.7(2)) = 0, for any x ¢ JH(D1(7));
(ii) Exty . (0, 7(p)) = 0, for any & ¢ (p);

(111) dimg EXtiI(/Zl(J’ 7(p)) = (2Z.f), for any o € 2(p);
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(iv) dimg Extl; (mo,7(p)) = (*/;).

Proof. (i) The restriction of (10.3) to I/Z; remains an injective resolution,
each term being a sum of copies of €2,. Since 2, = @069(5) Injg,z, o, the
assertion follows from Lemma 10.4.
(ii) (iii) follow directly from the resolution (10.3), using Proposition 10.2.
(iv) First, by [5], there is a short exact sequence (for a suitable \g € F*)

(10.8) 0 — c-Ind$, 09 ' =° ¢-Ind$, o9 — m — 0,

where Rg = KZ and we let Z act on oy via (. Since (), is injective as a
K /Zj-representation and has G-socle isomorphic to my (a consequence of
Proposition 10.8), the same proof as in [63, Prop. 5.1] shows that

(10.9)

dimg Homg (o, ) = dim Extg (w0, Q) = 1, Extiy ¢ (mo, Q) =0, Vi > 2.

In fact, we have isomorphisms induced by (10.8)
(10.10)
Homg (7o, ) = Homg (00, Q,), Homp (09, Q) — Exté’c(ﬂo,Qv).

On the other hand, applying Homg (7, —) to (10.3) induces a convergent
spectral sequence

(10.11) By = Extl, (m, I') = Extg(mo, 7(p)),

where I’ := Q?( ) denotes the degree i term of the complex (10.3). By
(10.9), EIY = 0 for j > 2. We claim that the morphisms E}/ — E/'7
are zero for j € {0,1} and all 7. Indeed, this is an easy consequence of the
minimality in Proposition 10.2 using (10.10).

By the claim, the spectral sequence (10.11) degenerates at FE; and we
obtain an exact sequence for any ¢ > 1:

0 — Homg (7o, I') — Exty (w0, w(p)) — Extéy ¢(mo, I'™) — 0.

The dimension formula then follows from (10.9) and an elementary binomial
identity. O

Corollary 10.11. Let x be a character of I and assume
(10.12) | JH(Ind¥ x) N 2(p)| = 1.

Then dimg Ext , (x,7(p)) = (%) fori>0.
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Proof. This is a direct consequence of Proposition 10.10. In fact, if o de-
notes the unique Serre weight in JH(Ind¥ x) N 2(p), then using Proposition
10.10(ii) and by dévissage there is an isomorphism

Extl /7, (Indf x, 7(p)) = Exti, 5 (0, 7(p)).
The result follows from Proposition 10.10(iii) via Shapiro’s lemma. O
Corollary 10.12. Let x € JH(7(p)"') and assume it corresponds to an ele-
ment in PP (xg, - ,x5_1) defined in (10.4). Then dimp Ext}/Z1 (x,7(p)) =
(Qif) for any i > 0.
Proof. This is a direct consequence of Corollary 10.11 and Lemma 10.4,

noting that the condition (10.12) is equivalent to n, = 1 in the notation of
Lemma 10.4. O

Next, we determine the derived ordinary parts of w(5). Recall from §5.1
the functors R*Ordp.

Proposition 10.13. We have R'Ordpr(p) = x5™, where n; = ({)

Proof. First note that Ordpm(p) = xo by Proposition 7.4.
The action of R, on €2, induces morphisms of local rings

(10.13) R, — Endp((0Ordp$2,)Y) =2 Endr, ((OrdpQ,)"|7,)
where Ty ' 7N K and the second map is the restriction map. We claim
that the composition is surjective. Indeed, it suffices to show

Endg, ((Ordp®2,)"|1,)/(m,) = F,

where m,, denotes the maximal ideal of R, and (m,) the extended ideal in
Endr, ((OrdpQ,)Y|r,). Since the actions of R, and G commute with each
other, we have

(OrdpQ,)"/(m,) = (Ordp(Q,[m,]))" = (Ordpr(p))”

which is one-dimensional over F (isomorphic to x), as seen above. This
proves the claim. As a byproduct, since the restriction map in (10.13) is
clearly injective, it is actually an isomorphism.

By Corollary 5.8 and the claim, we have Endr((Ordp2,)Y) = F[Sy,. ..,
S¢]. Since (10.13) is surjective, we may choose lifts of S; (for 1 < i < f) in
Ry, say Y;. Then Y; are linearly independent in m,,/m2, and can be extended
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to a minimal set of generators of m,, say by (Z1, ..., Zf); here we recall that
dimp m,/m2 = 2f. Set

Y =(Yi,....Y}), Z=1(Z,....Zs), S=(Si,....5)).

Since R, is a regular local ring, (Y, Z) necessarily form a regular sequence
in R,, which is also M,-regular because M, is R,-flat. In particular, Y is an
M,-regular sequence and it defines a Koszul complex Ko(Y, M, ), which is a
projective resolution of M, /(Y) in the category of pseudo-compact F[K/Z;]-

modules. Dually, we obtain an injective resolution of 7(p) def (M,/(Y))V:
0—7(p) = Ke(Y, Q).
By Proposition 5.5(ii), €2, is Ordp-acyclic and so
(10.14) R'Ordp7(p) 2 H' (Ordp(Ke (Y, 2))).
Since Y acts on Ordp§2, via S, we have
Ordp(Ka(Y, ) = Ka(S, (OrdpQ,)).

Since S is a regular sequence for (OrdpQ,)Y, Ke(S, (Ordp§2,)) is an acyclic
complex with H? isomorphic to yg. Combining with (10.14) we deduce that

(10.15) Ordp7(p) = xo, R'Ordpn(p) =0, Vi>1.

In particular, 7(p) is also Ordp-acyclic.

Next, we consider the action of Z = (Z1,---,Zy) on M,/(Y). By con-
struction, Z is a regular sequence for M, /(Y), hence gives rise to a Koszul
complex Ko(Z, M,/(Y)) which is a resolution of 7(p)" = M, /(Y , Z). Dually
we obtain a resolution of 7(p) of Koszul type

0 — 7(p) = Ke(Z,7(p)).

Moreover, since 7(p) is Ord p-acyclic, we can calculate R‘Ord prr(p) by taking
the cohomology of the complex Ordp(K.(Z,7(p))) = Ko(Z,O0rdp7(p)).
In particular, we deduce from ;10.15) that R'Ordpm(p) is semisimple and
isomorphic to xg"™ with n; < (1)

It remains to prove the equality n; = ({) The spectral sequence (5.2)
shows that

dimg Extg; (o, 7(p)) < Y, dimp Ext}, . (xo, R*Ordpr(p)).
i+j=n
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Since dimp Extgp C(XO’ X0) = (f ;rl), this inequality translates to (by Propo-

sition 10.10(iv))
2f + 1 Ft1
()= 2 (7))

i+j=n
Recalling n; < ({), Vandermonde’s identity (anﬂ) = Ziﬂ-:n (f;.rl) (J:) then

forces n; = ({) O
10.3. A criterion
In this subsection, we devise a criterion for which type of subspaces of 7(p)
can generate it as a G-representation.
Lemma 10.14. We have dimp Ext?le(xg, mp) = 1.
Proof. Recall that my = Indg X? Restricting to I, we obtain a decomposi-
tion (by Mackey’s theorem)
|1 = Indjqp x5 ® Ind] -

Trlr = Indpnp Xp © Ind; 5 X -

By Shapiro’s lemma, we have

Extl, (xg,mp) = HY (INP)/2Z1, (x§)~'x}) @ HY (INP)/ 21, (x§) ' xy)-

We need to prove that only one summand of the last term is nonzero and it
has dimension 1.

Since (I N P)/Z; is a Poincaré duality group at p of dimension 2f (see
[69, Chap. I, Appendix 1] or [60, (3.4.6)]), the Poincaré duality implies that

dimp H* (INP)/Z1,x) = dimg H((I N P)/Z1, x*)

for any character x of (I N P)/Z;, where x* e Hom(x, F) is the dualizing
module of x with F being endowed with an action of (I N P)/Z; via the
usual modulus character by [69, Example, p. 42]. Explicitly, this modulus
character is equal to (restriction of) ap = w®w ™!, hence x* = x Hwew™)
as characters of I N P. Using (10.6), it is direct to check that

() ™3 = O xaw) @ (xaxz 'w™h).

The genericity condition on p implies that this is a nontrivial character of
IN P, and so

HO((IN P)/Z1,((x8)™'x})7) = 0.
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In a similar way, one checks that H*/ ((INP)/Z1,(x§) ' xs) has dimension
1 (notice that the modulus character associated to (I N P)/Z; is w™! @ w).
This finishes the proof. O

Lemma 10.15. The natural morphism 7(p) — m¢ induces the following
tsomorphisms
(i) Bxt f+1(7ro, () —>ExtGC Ym0, 77);
(ii) ExtK/Z (00, m(p)) = ExtK/Z (00,7f);
(iii) Ext?, (x5, 7(7) = Ext2, (xi, ).
Moreover, all these spaces have dimension 1 over F.

Proof. Since R/*'Ordp = 0, the morphism RfOrdpm(p) — RfOrdef
is surjective, hence is an isomorphism for the reason of dimensions using
Proposition 5.1(iii) and Proposition 10.13. Using Corollary 5.2 we deduce
an isomorphism

EthGf,Zfl(wo, 7(p)) = EX‘GQG]:.r1 (70, 7¢),

and both the spaces have dimension 1 because ExtT % (XO, X0) has dimension
1. This proves (i).
Recall the presentation of 7y in (10.8)

0 — c-Ind§, oo = c-Ind§, o9 — mo — 0.
Using Frobenius reciprocity, it induces a morphism
2f+1 _
0 : Exty , (00, m(p)) = Exty (0, 7(p))
2f+1

which is surjective as Exti 7 (00, 7(p)) = 0, hence is an isomorphism for the
reason of dimensions, see Proposition 10.10. Similarly we have a morphism

d : Ext (00, 7f) = Extg f+ (7o, m¢)

K/Z,

which is also surjective using Lemma 10.7.
We have the following commutative diagram

K_s (= v 2f o 2f+1
Ext]/zl (X0, ™(P)) - ExtK/Z (Indf* x5, 7(p)) — Bxty!, , (00, 7(B) —— > Extg [ (mo, 7(5)

Ext?f_ ( ) ——— BExt?! (Ind¥ )%Et ( )$>Et2f+1( )
X1z, X5 Xz, (DA X057 5, Xty 7,00 Tf X T, ),
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where the two horizontal isomorphisms in the leftmost square are given by
Shapiro’s lemma, and ¢ (resp. /) is induced by the inclusion ¢ < Ind¥ X6 -
Moreover, we have

e 0 is an isomorphism by (i);
e . (resp. /) is surjective because m(p)|k (resp. m¢|k) has injective di-
mension 2f.

In particular, all horizontal morphisms are surjective. All the spaces in the
top row have dimension 1 over F by Proposition 10.10 and Corollary 10.12,
and dimp EX‘G?J;Z1 (x5, 7f) = 1 by Lemma 10.14. It is then easy to deduce

that all the spaces in the bottom row have dimension 1 as well and that j3,
~ are both isomorphisms. This proves (ii) and (iii). O
Now we are ready to prove the criterion.

Proposition 10.16. If W is an I-subrepresentation of w(p) such that the
natural morphism

(10.16) Ext2, (x5, W) = Ext2,, (x5, 7(7))

is surjective, then w(p) is generated by W as a G-representation.

Proof. Let (G.W) C 7(p) be the G-subrepresentation generated by W. If

(GW) C 7(p), then (G.W) is contained in V/ af Ker(m(p) — m¢), because
my is the cosocle of 7r( ) by Proposition 10.8. Hence the morphism (10.16)

factors through Ext?/ 17, (x§, V) as illustrated in the following diagram:

2 s
EXt[fZ (XO ) W)

—
—

- i(lo.lﬁ)

—~
£

2 — B
EXt];Z (XSv V) —— EXt[/Z (X(S)vﬂ(p)) = EXt[J/CZ (X(S)»ﬂf)

where £ is an isomorphism by Lemma 10.15(iii). But the composition of the
two maps in the bottom row is zero, we get a contradiction if (10.16) is
surjective. ]

10.4. The representation 7(p)
We define a suitable I-representation 7(p) which can be embedded in 7(p)|;.

In next subsection, we will show that 7(p) is generated by 7(p) as a G-
representation, using the criterion Proposition 10.16.
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Recall from §4 the subset J; C & attached to p.
Lemma 10.17. Let J C S. The character X(S)(Hjej ozj_l) occurs in m(p)"
if and only if J C J5.

Proof. We have seen in the proof of Lemma 4.12 that the set of char-
acters occurring in m(p)’* is in bijection with a certain set of f-tuples
PP (xo,--- ,x5-1). Recall that, if \ € PP (xo,--- ,xs_1) then, among other
conditions,

(10.17)  Ni(=s) e{wi, 2z + L2+ 2,p—3 —x3,p — 2 — x5, p — 1 — 3}

and Ai(z;) € {p —3 — xj,x; + 2} implies i € J5. Via this bijection, the
character x§ corresponds to (p—1—xg,--- ,p—1—xs_1), and XS(H]EJ aj_l)
corresponds to Ay where

ondef [ p—1—uxy i¢J
()\‘])Z(xz)_{p—?)—xi i€

The result follows from this. O
Definition 10.18. We define

7(P) == X{ ® T,
where Ty is the I-representation defined in Definition 9.16 with J = J5.

As a direct consequence of Proposition 9.21, we have the following.

Proposition 10.19. The projective dimension of T(p)" is 3f. Moreover,
7(p)Y admits a length 3f minimal resolution by projective F[I/Z1]-modules,

Py — 1(p)Y =0

satisfying the following property: for each 0 < 1 < 3f, P, has a direct sum
decomposition
Pl — Pl/ @ Pl”
such that
2f
(a) P] = (@X Px)( ! ), where x Tuns over the characters of cosocr(t(p)Y);
(b) Hom;(P/', Py/m?) =0 for any x € cosocy(7(p)").

As a consequence, dimp ExtlI/Z1 (t(p)V,x) = (zlf) for any x occurring in

cosocr(t(p)Y).
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Next, we study the relation between 7(p) and (p).
Proposition 10.20. There exists an embedding 7(p) — m(p)|1.
We start with a lemma, which is motivated by [8, Lem. 9.2].

Lemma 10.21. If 1y C 7 are I-representations such that 71 — 7w(p)|r and
(10.18) JH(7/7) N JH(x(p)") = 0,
then the natural restriction map

res : Hom; (7, 7(p)) — Homy (11, 7(p))

s an isomorphism.

Proof. Using Proposition 10.10(i), the assumption implies that

Homy (r/71,7(p)) = Exty g, (7/71,7(p)) = 0,

from which the result follows. O

Proof of Proposition 10.20. Lemma 9.19 implies that 7(5)" is isomorphic to
the direct sum of x§([ . jes Qg ) for all J C J5. Hence it follows from Lemma
10.17 that 7(p)"* embeds in 7(p)"*, hence in 7(p)|;. By Lemma 10.21, it
suffices to check the condition (10.18) with 7 = 7(p) and 71 = 7(p)"*.

By Lemma 9.19 again, 7(p) is multiplicity free and JH(7(p)) consists of
the characters of the form ¢ = x§(I [;cs oc? "), where J C J5 and (by;) € Z’7
satisfy

—2<by; <2 ifigJ;
(10.19) 0<by;<2 ifieJ\J
_3§bj7z‘§—1 if 1 € J.

If such a character 1 also occurs in 7(p)", it corresponds to an element of
PP (xo,- -+ ,xp—1). Using (10.17) and the strong genericity of p, one checks
that the only possibility is

yo_f 0 if i¢J
AT 21 ified

In other words, v occurs in 7(5)* by Lemma 9.19. Since 7(p) is multiplicity
free, this implies that ) can not occur in 7(p)/7(p)’*, thus (10.18) holds. [
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From now on, we fix an embedding 7(p) — 7(p)|s.

Proposition 10.22. For any ¢ € JH(7(p)"*), the natural morphism

Extr )z (¥, 7(p)) = Exty g (¢, 7(p)|1)

is an isomorphism.

Proof. We have a commutative diagram

Ext} 5, (4, 7(p)[m?]) — Ext} (1, 7(p)[m?)

lb :

Ext},, (4,7(p)) —— Ext} 1, (4, 7(p)|1)

for which the following statements hold:

e / is an injection. Indeed, by Corollary 8.12, for any character occur-
ring in 7(p)’t, in particular for ¢, we have [7(p)[m3] : /] = 1. As a
consequence,

Homy (¢, 7(p)/m(p)[m?]) = Homy (4, 7 (p)[m®]/x(p)[m?]) =0,

and the injectivity of ¢/ follows.

e 3 is an injection, by a similar argument as for ¢’.

e (. is an isomorphism. The injectivity can be seen as above because 7(p)
is multiplicity free. For the surjectivity it suffices to show Ext} /7 (¢,
Y') = 0 for any ¢’ € JH(7(p)/7(p)[m?]). Since 7(p) is multiplicity free,
it suffices to show that if ¢» € JH(7(p)"*) such that EX‘L}/Z1 (v, 9") #£0
then ¢’ € 7(p)[m?]. By Lemma 9.19, we may write ¢ = x§([ 1, aj_l)
for some J C J5. Then by Lemma 3.1 there exists 7 € S such that

o =vaf =i (L a7 )ai

jeJ

Using Remark 9.20, it is direct to check that ¢’ € 7(p)[m?].

Putting these statements together, we deduce that 8 is an injection. But,
we have

dimp Ext} , (v, 7(p)) = 2f = dimz Bxt} , (1, 7(7))
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by Corollary 10.12 and Proposition 10.19, so  is actually an isomorphism.
O

10.5. Main results

The main result of the section is as follows.
Theorem 10.23. As a G-representation, w(p) is generated by 7(p).

Example 10.24. Assume f =1, i.e. L = Q,. Assume p is reducible, generic
(in the sense of [15, Def. 11.7]) and we allow p to be split. By the local-global
compatibility proved by Emerton ([29]), the representation 7(p) of GL2(Qp)
1s exactly the one attached to p by the mod p local Langlands correspondence
([6] or [7, Def. 2.2]). Precisely, if p is split then 7(p) = mo®m for m; defined
in (10.5); if p is nonsplit then 7(p) is the unique nonsplit extension of m by
0.
In the case p is split, we have inclusions (see (9.13) for the notation)

XS (29 El,a,az — ’/T()’[7 XS [ Ea—l’afz?afs — 7T1‘]

and my (resp. m1) is generated by this subspace as a GLo(Q)p)-representation
(as m; is irreducible!). In the case p is nonsplit, then x§ ® (E1,a,02 ®1
E10-1,4-2) embeds in w(p) and generates it as a GLa(Qp)-representation.

Remark 10.25. (i) In view of Example 10.24, 7(p) should be thought of
as the tensor product of certain well-chosen local factors for each embedding
k: L < E, which depend only on the splitting behavior of p at k (cf. §6.3).

(it) In Ezample 10.24, if we replace Fi o> (resp. Eg-14-24-3) by its
(two-dimensional) subrepresentation Fy o (resp. Eq-14-2), then the state-
ments remain true; cf. the proof of Theorem 10.26 below. However, for tech-
nical reasons it is more convenient to look at T(p): e.g. the minimal projective
resolution of T(p)Y enjoys the properties of Proposition 10.19.

Before giving the proof of Theorem 10.23, we deduce some consequences.
Recall that 7(p)%* 22 Dy(p) by the main result of [52], where Dy(p) is as in
84.

Theorem 10.26. 7(p) is generated by Do(p) as a G-representation.

Proof. Recall that the G-cosocle of 7(p) is isomorphic to 7 by Proposition
10.8, thus a subspace W of 7(p) generates 7(p) if and only if the composite
map vy : W — 7w(p) — 7 is nonzero, if and only if Im(ey) ﬁ?TJ{l is nonzero.

Since 7 is a principal series, it is well-known that 7T]Ic1 is two-dimensional,
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see [5, Lem. 28]. Explicitly, we have 7rJIc1 = Xr D x}, where xy = a? with
of=(P—-3—710," -, p—=3—15_1)® detZi=o (it DP' g0 (10.7). One checks
that x5 = xg([]es aj_l) and x} = xo([[;cs @;). Moreover, using (10.19)
and the strong genericity of p, one checks that x s is a Jordan-Hoélder factor
of 7(p) but X; is not. Indeed, x s occurs as a subquotient in the following
direct summand of 7(p):

TJFv__1® ( H aj_l)’

Jj€J5

where —1 denotes the unique element of {#1}/7 taking values —1 at all
J € J5 (with the convention —1 = () if J; = ().

By Theorem 10.23, 7(p) is generated by 7(p). Since 7(p) is multiplicity
free, the discussion in the last paragraph shows that a subrepresentation
W of 7(p) generates 7(p) if and only if [W : xf] # 0. In particular, 7(p)
is generated by the unique subrepresentation W of 7, 1 ® (Hje I aj_l)
with cosocle isomorphic to ) ¢. To finish the proof it suffices to prove that
W is contained in Dy(p)|s, equivalently, K; acts trivially on W because
Dy(p) = 7(p)[mg,]. This is a consequence of the structure of 77 _i, see
Proposition 9.15. O

Corollary 10.27. We have Endg(7(p)) = F.

Proof. Let D(p) = (Do(p), D1(p), can) denote the basic 0-diagram attached
to w(p) in [15, §13], where can : D1(p) < Do(p) is the canonical inclusion.
Any G-equivariant endomorphism of 7(p) induces an endomorphism of D(p),
i.e. there is a natural morphism of rings

Endg(n(p)) — Endpzag(D(p)),

where DZ.AG denotes the abelian category of diagrams (cf. [15, §9]). This
morphism is injective because m(p) is generated by Dy (p) as a G-representa-
tion by Theorem 10.26. Therefore, it suffices to show that Endprag(D(p)) =
F. Using that Dy(p) is multiplicity free, this follows from [15, Thm. 15.4(i)]
which says that the diagram D(p) is indecomposable. O

Remark 10.28. (i) Corollary 10.27 provides an obviously expected property
of m(p) corresponding to the assumption Endg, (p) = F. However, as is clear
to the reader, the proof is far from obvious.

(i) The continuous action of Roo on My induces a morphism of rings
Roo — End®™(My). A natural question raised in [19, 6.24] is whether this
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is an isomorphism. The injectivity is known to be true by [34, Thm. 1.8].
Also note that a local version of this isomorphism in the case of GLo(Q)) is
proved in [46, Prop. 3.12] (under mild genericity conditions on p), based on
the theory of Colmez’s functor ([22], [62]).

From now on, we turn to the proof of Theorem 10.25.

Recall that we have a partially minimal resolution of 7(p)" by projective
F[I/Z;]-modules which is of Koszul type, i.e. Ko(X, M,) — 7(p)¥ — 0. In
the rest, we write for simplicity

° déf KO(K? MU)

On the other hand, let P, be a minimal projective resolution of 7(p)", see
Proposition 10.19. The (fixed) inclusion 7(p) < 7(p)|; induces a quotient

map 7(p)V|r — 7(p)V, which extends to a morphism of complexes

Qe ——=7(p)V|1 —=0

o

Let x € cosocr(7(p)") and recall Ay aef W~ 3, see Definition 9.24. Applying
Homy(—, AY)", we obtain a morphism of complexes of R-modules

(10.20) Bf(. : HOH][(Q.,)\;(/)\/ — Homy(P,, )\;)V.

where R is defined in (9.15), a subring of the center of F[I/Z;]/m?3.
To simplify the notation, we write

KX7. déf Hom[(Q., )\)\é)\/7 CX,. déf HOmI(P.7 )\X)V

Remark that, as a consequence of Proposition 10.19, C,; = Hom; (P}, )\X)V
is nonzero only when 0 <[ < 2f, i.e. U o has the same length as K, .. We
will prove inductively on [ that Bi,l is an isomorphism for any 0 <1 < 2f.

By Corollary 9.34, this will imply that

Bi,z : Hom;(Qy, x)" — Homy (P}, x)"
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is also an isomorphism. Since both Q4 and P, are minimal resolutions relative
to x, we deduce an isomorphism

Ext}l, (x(p)",x)" = Exti], (7(p)",x)".

Vv

Letting x = (x{)" and taking dual, we conclude the proof by the criterion

Proposition 10.16.

10.5.1. The complex K, ,.

Lemma 10.29. For any 0 < | < 2f, Q; has a direct sum decomposition
Q) @ Q] with the following properties:

2f
(a) Q) = (@X PX)( ! ), where x rTuns over characters in cosocr(7(p));
(b) Hom;(Qf, Py/m?) =0 for any x in cosocr(7(p)Y).

Moreover, Qs is partially minimal relative to cosocr(T(p)Y) in the sense that
for any x in cosocr(7(p)Y), the morphism

HomI(Ql_l, X) — HomI(Q17 X)

1S zero.

Proof. Since Q, is a Koszul complex, it suffices to prove such a decomposi-
tion for [ = 0, i.e. decompose M, = M, & M) in such a way that (a) and
(b) are satisfied with [ = 0. Dually we may work with €2,.

The construction is similar to Lemma 10.5. Recall that ﬁz?ﬂ(xo, R
xy_1) defined in (10.4) is a certain subset of Z%(xo,--- ,xs_1) whose cor-
responding characters all occur with multiplicity one in Q/:. By the proof of
Lemma 10.17, JH(7(p)") corresponds to the subset of 2% (zq, -+ ,x5-1)
consisting of A with \;(z;) € {p —1—24,p—3 —x;} for all i € S, which is a
subset of 2P (g, -+ ,x_1). We let

@ Inj;/7, x

XGT

and Q! be a complement of 2/ in €,,.. Condition (b) can be checked directly,
as in the proof of Lemma 10.5. The last assertion follows from Proposition
10.6. O

Fix a character x occurring in cosocy(7(p)"). Set

(10.21) Xdif]JH (cosocr(7(p)")) N & (x)|-
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By Lemma 10.29, m,, is also equal to | JH (cosoc;(m(p)")) N & (x)|. It is clear
that 0 < m, < 2f. The next lemma shows that we are in the setting of §9.5.

Lemma 10.30. We have Hom;(M,, \))" = R @ F™x.

Proof. This is a direct consequence of Proposition 9.27. O

Since X; acts on M,, it also acts on HomI(MfU,)\;)V and this action
commutes with the action of R (via )\;(/) In other words, X; induces an
R-linear endomorphism of Hom;j(M,, \)". Let

R, Endg (Homy(M,,AY)")
and ¢, ; € R;( be the element induced by X;. Also let J, be the left ideal of
R, generated by ¢, ; for 1 <i < 2f.
On the other hand, let b, denote the ideal of R spanned by t,. for all
X' € JH (cosocr(7(p)")) N &(x), where ty is as in Definition 9.30. Then
dimp b, = m, by Lemma 9.31. Recall that we can associate to b, a two-
sided ideal Jp of R}, see (9.18).

Lemma 10.31. With the above notation, we have Jy = Jy . In particular,
Jy is a two-sided ideal of R, .

Proof. Recall that Homy(—,\))Y is covariant and right exact. From the

(right) exact sequence @Zl M, &5 M, — 7(p)Y — 0, we obtain

2f

@D Hom; (M, XY)" “2' Hom;(M,,\})Y — F — 0,

i=1
where we have used the fact Hom;(\,, 7(p)) = F (a consequence of Corollary
8.12). Equivalently, Hom;(M,, A)"/ Homp(M,, A)"J, is one-dimensional
over F.

It follows from Lemma 9.32 that .J, is contained in Jp_ ; indeed, recalling
Homy(M,, \))¥ = ROF™, J, sends F™x to b, @ (0)"x by Lemma 9.32 and
sends R to mp @ F™x. Here we need the partial minimality of K¢(X, M,)
in Lemma 10.29 to apply Lemma 9.32. We claim that J, = Jp . Indeed, by
Lemma 9.43, J, = Jp for some ideal b of R with dimp b > m,.. The inclusion
Jp C Jp, and the fact dimp by, = m, then force b = b,. O

Corollary 10.32. The natural morphism
(10.22) K/ Ky J = Kx,lfljx/Kx,lflji

1s ingective for any 1 <1 < 2f.
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Proof. 1t follows from Proposition 9.41 and Lemma 10.31 that (10.22) is
injective (actually an isomorphism) for [ = 1. We conclude by Lemma 9.38.
O

Using Lemma 9.40 and Lemma 10.31, the above corollary can be restated
as follows.

Corollary 10.33. The differential map of K, o induces an injection
K1/ socr(Ky 1) = socr(Ky1-1) /by Ky -1

Remark 10.34. The reason to restate Corollary 10.32 in the form of Corol-
lary 10.33 is that the morphism 6&7. : Ky o — Cy e is only R-linear but not
R'-linear (in fact R does not act on Cy. o). See the diagram (10.23) below.

10.5.2. The complex C, ,.

Lemma 10.35. The differential maps of Cy o induce morphisms
Ox,l — SOCR(CXJ_l), SOCR(CX’Z) — bxox,l—l'

Proof. By construction, P, is a minimal resolution, i.e. d(F;) C mP,_1. The
result is a consequence of Proposition 9.36, using that the ideal b in (ii) of
loc. cit. is exactly b, by Proposition 10.19. O

10.5.3. A lemma.
Lemma 10.36. Fiz 0 <[ < 2f. The following conditions are equivalent:

(i) for any x € cosocy(7(p)Y), ﬁf(’l : Ky — Oy is an isomorphism;

.. _ f#
(i) for any x € cosocr((p)"), By, + Ky1/s0cr(Ky 1) = Cyi/ socr(Cy,1)
s an isomorphism;

(iii) for any x € cosocr(7(p)Y), ﬁi,l : Ky 1/ socr(Ky ) = Cy 1/ socr(Cy )
18 an injection.

Proof. Tt is clear that (i)=-(ii).
(ii)=(i). Recall the decompositions

Q=QeQl. A=FaP

from Lemma 10.29 and Proposition 10.19, respectively. By loc. cit., we know
that

Ky, =Hom(Q},\))", Cy;=Hom(F,\)",
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2f
and both Q) and P] are isomorphic to (@X PX)( ' ), where Y runs over
characters in cosocy(7(p)"). As a consequence, K, ; = C,; as R-modules.
Consider the composite morphism

B
Q)= Q= P~ P

Using Corollary 9.34, Condition (ii) implies that the induced morphism
Hom/(Q), x)¥ — Hom;(P/, x)" is an isomorphism for any x € cosocr(7(p)Y),
meaning that ~; induces an isomorphism on the cosocles. Hence, ~; is itself
a surjection by Nakayama’s lemma. Moreover, since P/ and @] are isomor-
phic and finitely generated as F[I/Z;]-modules, +; must be an isomorphism
which implies (i).

(ii) e (iil) We saw that dimp K, ;/socg(K, ;) = dimp Cy ;/socr(Cy,1), s0
the equivalence is obvious for the reason of dimensions. O

Remark that, in general, socr (M) is not contained in mpM (see §9.3.2),
so we can not directly apply Nakayama’s lemma in Lemma 10.36 when
deriving (i) from (ii) if we work with a single x.

10.5.4. End of the proof. Now we can complete the proof of Theorem
10.23.

Proof of Theorem 10.23. Recall that we want to prove Bfal is an isomor-
phism for all x in cosocy(7(p)Y) and all 0 < [ < 2f. First, the statement
is obvious if [ = 0. Also, Proposition 10.22 combined with Lemma 10.36
implies the statement for [ = 1.

Since de is R-linear, it induces morphisms

socr(Ky,1) = socr(Cy ), byKy 1 — b Cyy

which are isomorphisms whenever Bf{ ; is. By Corollary 10.33 and Lemma
10.35, we obtain a commutative diagram

(10.23) K, 1/ socr(Ky ) —socr(Kyi—1)/by Ky -1

B |

CXJ/ SOCR(CX’Z) —_— SOCR(Cx,l—l)/bxcx,l—l‘

By inductive hypothesis, Bf( -1 Kyt = Cy,1—1 is an isomorphism, hence
the vertical map on the right in (10.23) is also an isomorphism as explained
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above. Since the upper horizontal map is injective by Corollary 10.33, Bil is
also injective. Finally, this being true for any x in cosocs(7(p)Y), we deduce
that 5301 is an isomorphism by Lemma 10.36, thus finishing the proof by
induction. O

10.6. The case f =2

In this subsection, we will specialize to the situation when f = 2, i.e. L =
Qp2. The main result is the following.

Theorem 10.37. w(p) has length 3, with a unique Jordan—Hdélder filtration
of the form

m(p) = (mo — m — 2),
where Ty, my are defined in (10.5) and w1 is a supersingular representation.

Proof. We first fix some notation. Let p** denote the semisimplification of
p. Since f = 2, 2(p*) consists of 4 Serre weights, which we enumerate
as follows (cf. [15, §16, Case (ii)]): 2(p*) = {Uo,Ul,O'gs],O'Q}, where (see
Definition 2.9 for the notation p)

o9 = sock (mg), o9 = sock(me),

o1 = pg(00), o) = pif (00).
On the other hand, since 7 is assumed to be nonsplit, Z(p) is a proper subset
of 2(p*) of cardinality 21771,
We already know socg(m(p)) = mp, see Proposition 10.8. By [44, Prop.
3.2], 7(p)/mo admits a unique irreducible subrepresentation 7; which is su-
persingular and satisfies

(10.24) sock(m) = o1 @ UES].

Let k C 7(p) denote the pullback of m. We need to show m(p)/k is irre-
ducible, hence it is automatically isomorphic to o (as its cosocle is isomor-
phic to 72).

By Theorem 10.26, 7(p) is generated by Dy(p) as a G-representation;
in fact, the proof in loc. cit. shows that 7(p) can be generated by any K-
subrepersentation of Dy(p) which admits o2 as a subquotient. As a conse-
quence, since k is a proper subrepresentation of 7(p), o2 does not occur in
kN Do(p). We claim that there exists an embedding

a2 = Do(p)/(k N Do(p))-
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First, it is clear that mo N Dy(p) = 775(1, so we have an embedding
sock(m) = o1 ® ol < Dy(5)/(m0 N Do(p)).

Denote by D, the pullback of o1 ® 0[18} in Dy(p). Then D, is contained in
kN Dy(p). Now the structure of Dy(p), see [15, §16], implies that oy occurs
in the socle of Dy(p)/D,. This gives the claimed morphism

a2 = Do(p)/Dw — Do(p)/ (k0 Do(P));

it is injective by the discussion at the beginning of the paragraph.

By the claim, we obtain an embedding o2 — (7(p)/k)|m, (here we en-
dow o9 with a compatible action of Z), which further induces by Frobenius
reciprocity a G-equivariant morphism

h: C—InngUQ — 7(p)/k.
Moreover, since the composition
c—Indgoag — 7w(p)/k —

is surjective, h is surjective as well, because my is the cosocle of m(p). By
Lemma 10.38 below, 7(p)/k is isomorphic to C—Indg;0 o2 /(T — Aa)™ for some
n > 1 and suitable Ay € F* (determined by 72), thus dimp R?Ordp(7(p)/k) =
n by [5, Thm. 30(3)] and Proposition 5.1(iii). However, there is a surjection
R%*0Ordpn(p) - R*Ordp(m(p)/k), and we know that R2Ordpm(p) is isomor-
phic to xo by Proposition 10.13, so we must have n = 1. ]

Lemma 10.38. Let o be a Serre weight and V' be an admissible quotient

of I(o) ey C—Indgoa. Assume that the G-cosocle of V is irreducible and

isomorphic to I(o)/(T — A) for some A € F*. Then V is isomorphic to
I(o)/(T — \)™ for some n > 1. In particular, V has finite length.

Remark 10.39. If L = Q,, then Lemma 10.38 follows from the work of
[5, 6]. However, when L # Q,, the quotient I(c)/T has infinite length, and it
is not clear whether an arbitrary admissible quotient of I(c) is automatically
of finite length.

Proof. Write m = I(0)/(T — A\) which is irreducible by assumption, and let
V1 be the kernel of the natural projection V' — m. Clearly, we may assume
Vi # 0. We claim that Homg(7, V1) # 0. Indeed, applying Homg(—, V1) to
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the exact sequence 0 — I(o) = (6) = m — 0 we obtain (by Frobenius
reciprocity)

0 — Homg(m, V1) — Homgp, (0, V1) = Hom, (0, V1)

LA Extg (m, Vi) 4 Extgl)% (o,V1).

If Homg (7, V1) were zero, then T'— A would be injective, hence an isomor-
phism because Homg, (o, V1) is finite dimensional over [F by the admissibility
of V. This would imply that ¢ is injective. On the other hand, since 7 is the
G-cosocle of V', the extension

0O—-Vi—=>V-o>1m—0

is nonsplit, which we denote by ¢ € Extl(m, V). Since V is a quotient
of I(o), the composite morphism (where the first one is induced from the
identity map I(c) — I(o) via Frobenius reciprocity)

o= I(o)|n, = Vir, = Tln,

is nonzero with image contained in socg, (7). This means ¢(c) = 0, which
contradicts the injectivity of ¢.

Let V5 be the maximal subrepresentation of Vi whose irreducible sub-
quotients are all isomorphic to m, so that Homg(m, V1 /Va) = 0. If V4 /Va # 0,
then the same argument as in last paragraph (applied to V/V4), shows that
Homg (7, V1 /Va) # 0, a contradiction to the choice of V5. Therefore, V1 /V, =
0 and all Jordan-Hoélder factors of V' are isomorphic to @ = I(o)/(T — A).
On the other hand, by [5, Thm. 19] the quotient map I(o0) — V factors
through the quotient I(o)/f(T) for some nonzero polynomial f(T') € F[T] =
Endg(I(0)). We claim that f(T') can be chosen to be (T'—\)™ for some n > 1;
this implies the lemma by choosing n minimal. Indeed, [5, Cor. 36] implies
that for any X' € F with X # A,

Homg (I(0)/(T = X),7) =0

and consequently Homg (I(0)/(T—X'), V) = 0 from which the claim follows.
O

We have the following immediate consequence of Theorem 10.37.

Corollary 10.40. Assume f = 2. With the notation of Corollary 8.17, the
unitary admissible Banach representation I1(z) of G has length < 3.
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Appendix A. Non-commutative Iwasawa theory
A.1. Preliminaries

We recall results of [51], [71] and [50]. Let R be a left and right noetherian
ring (not necessarily commutative) and M be a (left) R-module. If M # 0,
the grade jr(M) of M over R is defined by

(A1) jr(M) =inf{i € N | Exti»(M, R) # 0}.

By convention, jz(0) = co. For simplicity, we write E/(M) := Ext(M, R).

The ring R is called Auslander-Gorenstein if it has finite injective dimen-
sion and the following Auslander condition holds: for any R-module M, any
integer m > 0 and any R-submodule N of E™(M), we have jr(N) > m. An
Auslander-Gorenstein ring is called Auslander reqular if it has finite global
dimension.

Let Gy be a compact p-adic analytic group. Define the Iwasawa algebra
of Gy over F as

A(Go) = F[Go] = lim F[Go/N].

N<G
The ring-theoretic properties of A(Gp) are established by the fundamental
works of Lazard [51] and Venjakob [71]. In particular, if Gy has no element of
order p, then A(Gy) is an Auslander regular ring of dimension dim Gy, where
dim Gy is the dimension of G as a Qp-analytic variety. If M is nonzero, we
have
0 § jA(Gg)(M) S dimGo.

Define the dimension of M over A(Gy) by

. def ;. .
dlmA(Go)(M) :e dlm GO _]A(Go)(M)'

Let G be a p-adic analytic group with a fixed open compact subgroup
Gy C G. Set

def
(A2) A(G) ' FIG) @rcy) AGO).
As explained in [50, §1] A(G) does not depend on the choice of Gy.
Let ModRC(G) be the category of pseudo-compact F-vector spaces M car-
rying an F-linear action of G such that the map G x M — M is jointly con-
tinuous. Let Cg be the full subcategory of coadmissible objects, i.e. finitely
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generated as a A(Gp)-module for the fixed, equivalently any, open compact
subgroup Gy of G.

It is explained in [50, §3] that if M € ModR‘EG), then E!(M) carries
naturally a structure of A(G)-module so that E!(M) € ModRC(G). Moreover,

E? preserves the coadmissibility, i.e. it restricts to a functor E' : Cq — Cg
(see [50, Cor. 3.3]). By abuse of notation, for M € Cg we often write

ja(M) = jaay) (M), dimg(M) = dimyg,)(M).

For any M € Cg, there is a double duality spectral sequence, see [71,
§3.1], which implies that if M is nonzero of grade ¢ then there is a natural
nonzero double duality map ¢ : M — E°E¢(M). By functoriality ¢ is a
morphism in Cg.

Lemma A.1. Let M be an object of grade c. The double duality map ¢ :
M — ECE€(M) is nonzero, and we have a long exact sequence

0 — Ker(¢nr) — M 2% EES(M) — Coker(éar) — 0.

Moreover, Ker(¢nr) (resp. Coker(¢ar)) has grade > ¢+ 1 (resp. > ¢+ 2).
Proof. See [71, Prop. 3.5(i)]. O

Let Repp(G) (resp. Rep2d™(G)) denote the category of smooth (resp.
smooth admissible) representations of G on F-vector spaces.

Proposition A.2. The Pontryagin dual V — V'V establishes an anti-equiv-
alence of categories between Repyp(G) (resp. Repi®™ (@) ) and ModR(ZG) (resp.

Ca).

Proof. See [50, Thm. 1.5, Cor. 1.8]. O
Let 7 € Rep2d™(G). By Proposition A.2, 7V € Cg. The Gelfand-Kirillov

dimension of 7 is defined by (see [12, Rem. 5.1.1])

(A.3) dimg(7) & dimg(rY) = dim(Go) — je (7).

[34, Prop. 2.18] provides the following description of dimg (7). Let ng be the
subgroup of p”-th powers of elements of Gy. Then there exist real numbers

a>b> m such that

bpndimc(w)+O(pn(dimg(w)—1)) < dimF(ﬂGg") < apndim(;(ﬂ‘)_i_O(pTL(dimG(ﬂ')—l))'
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A.2. Socle and cosocle

Let R be a ring with unit and M be a left R-module.

Definition A.3. (i) A submodule N C M is called essential if every nonzero
submodule of M intersects N nontrivially.

(ii) A submodule N C M s called small if for any submodule H of M,
N + H = M implies H = M.

(iii) The socle of M, denoted by soc(M), is the sum of all simple sub-
modules of M; we set soc(M) = 0 if there are no simple submodules of
M.

(iv) The radical of M, denoted by rad(M), is the intersection of all the
mazximal submodules of M; we set rad(M) = M if there are no mazimal
submodules of M. The cosocle of M, denoted by cosoc(M), is defined to be
M/rad(M).

If M # 0 is noetherian, then cosoc(M) # 0 and rad(M) C M is a
small submodule. If M is artinian, then soc(M) # 0 and soc(M) C M is an
essential submodule.

Lemma A.4. Let h : M — M’ be a nonzero morphism of R-modules. Let
N C M be a small submodule, then h(N) is a small submodule of M’.

Proof. Let H € M’ be a submodule such that h(N) + H' = M’. Then a
standard argument shows that N + h~'(H’) = M, hence h™'(H') = M as
N is small. This implies H D h(M), and so H' = M'. O

From now on, we let R = A(G).

Example A.5. Since A(Gy) is noetherian, Co is a noetherian category.
adm

Hence Repg™(G) is artinian by Proposition A.2. In particular, if m €

Repd™(G) is nonzero, then socg () is a nonzero essential subrepresentation

of w. Moreover, cosocg(m") = socg(m)Y.

Proposition A.6. Let M be an object in Cq of grade ¢ and let C be its
cosocle. Assume that the double duality map ¢pr is an isomorphism and
that C has finite length, with all of its Jordan—Hélder factors having grade
c. Then the inclusion E¢(C) — E¢(M) is essential.

Proof. Let N =rad(M) so that C = M/N.If N =0, then M = C and the
result is trivial. So we may assume N is nonzero for the rest of the proof.
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By functoriality, we have a commutative diagram

(A.4) N¢ M C

e

E°E¢(N) — E°E¢(M) — E°E°(C).

By Lemma A.1, the assumption on C' implies that ¢¢ is injective.

Let S be a nonzero subobject of E¢(M); we need to show SNES(C) # 0.
Note that jz(S) = ¢ by [55, Prop. I11.4.2.8, Prop. 111.4.2.9]. If SNE(C) = 0,
then we get an embedding ¢ : E¢(C) ® S < E(M), which induces by taking
E(-)

b )
(A.5) f:M = EE°M 5 E°ES(C) @ ES(S).

By (A.4), f(N) is contained in E¢(S) (as its projection to EE¢(C) is zero).
Consider the induced morphism

f:C=M/N — EEY(C) @ E(S)/f(N).
Note that Coker(f) =2 Coker(f) by the snake lemma, and Coker(f) =
Coker(c*) by (A.5).
The projection of f to ECE¢(C) is equal to the double duality map ¢¢,
hence is injective as remarked above. As a consequence, f is also injective
and there is an embedding

(A.6) E°(S)/f(N) < Coker(f).
As a part of the long exact sequence associated to ¢ we have
E°ES(M) 5 E°ES(C) @ E°(S) — E“t!(Coker(1)),

thus Coker(.*) embeds in E¢t!(Coker(1)). Together with (A.6) and the iso-

morphism Coker(f) = Coker(:*), we obtain an embedding E¢(S)/f(N) <
E¢t1(Coker(1)). By the Auslander condition, we deduce

(A7) Ja(E(S)/f(N)) Zz e+ 1.
On the other hand, by assumption any nonzero quotient of C' has grade ¢, so

(A.7) implies Home,, (C,E¢(S)/f(IN)) = 0, and consequently the projection
of f to E¢(S)/f(N) is zero.



On the mod p cohomology for GLs: the non-semisimple case 421

To conclude, consider the composite morphism
h: M = ECES(M) & EES(C) @ E¢(S) — E°(S).

It is nonzero, because taking E¢ again and composing with ¢g : S —
E°EC(S), this gives back the inclusion S < E¢(M) by functoriality. All
the above shows that h(IN) = h(M), which contradicts Lemma A.4, applied
to M" = h(M). O

A.3. Self-duality

Let M € Cg. We say M is Cohen-Macaulay if E*(M) is nonzero for exactly
one degree i. Actually, we must have ¢ = jg(M). By [71, Cor. 6.3], this is
equivalent to requiring

ja(M) = pd(M)
where pd(M) denotes the projective dimension of M as a A(Gp)-module.

Definition A.7. Let M € Cq be a Cohen-Macaulay module of grade c. We
say M is self-dual if there is an isomorphism E¢(M) =2 M in Cg. We say

M is essentially self-dual if there exists a character n : G — F* such that
E¢ (M) =2 M ®n in Cq.

Let A be a (commutative) noetherian local F-algebra with residue field
F.

Proposition A.8. Let M be an A @p A(G)-module. Assume the following
conditions hold:

(a) A is Gorenstein and M is flat as an A-module;

(b) as a A(G)-module, M € Cq and is Cohen-Macaulay of grade c;

(¢) M is A-equivariantly self-dual (resp. essentially self-dual), i.e. there
is an A ®p A(Q)-equivariant isomorphism € : E¢(M) = M (resp.
e:ES(M) = M ®n for somen: G — FX).

Then F ®4 M is also self-dual (resp. essentially self-dual).

Proof. We give the proof for the self-dual case, the other case is proved in
the same way.

Let r denote the Krull dimension of A. Since A is Gorenstein, hence
Cohen-Macaulay, we may choose a regular sequence (x1,...,z,) in A which
is also M-regular by the flatness assumption (a). By (the proof of) [38,
Lem. A.15], we see that M /(z1,...,z,)isan A/(z1,...,2,) ®p A(G)-module
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which, as a A(G)-module, is Cohen-Macaulay of grade ¢ + r and self-dual.
Indeed, by induction on r we may assume r = 1 and write x = z1. Then the
proof in loc. cit. shows that jo(M/xM) = jo(M)+1=c+ 1 and we have
an exact sequence

0 — E¢(M) =% E¢(M) — EPY(M/2M) — 0.

Since the duality isomorphism € : E¢(M) — M is assumed to be A®p A(G)-
equivariant, we deduce an isomorphism Et!(M/xM) = M/xM which is
A/xA ®p A(G)-equivariant. Therefore, we may assume A is artinian (and
Gorenstein).

Since A is artinian and M is flat over A, M has a finite filtration with
graded pieces isomorphic to F ® 4 M. As a consequence, jo(F @4 M) =
ja(M) = ¢, see [71, Prop. 3.6]. Similarly, we also have pd(M) = pd(F® 4 M),
hence F ®4 M is Cohen-Macaulay. We deduce that E¢(— ®4 M) is exact
on any exact sequence of finitely generated A-modules (recall that A is
artinian). Choose a finite presentation of F:

(A.8) /LN JENY)
which induces an exact sequence
0 — E°(F @4 M) = ES(A®s M) 5 BC(A” ®4 M).
It is easy to see that the map f* is equal to
(AL A" @ EC(M)
where f7 denotes the transpose of f.

On the other hand, applying Hom4(—, A) to (A.8) gives an exact se-
quence

0 — Homu(F, A) — AL A™,
Noticing that Homa(F, A) = soc(A) = F (by the assumption that A is

Gorenstein) and that M is A-flat, we obtain an exact sequence

0 FoaM— M mm.
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The explicit description of maps shows that the diagram

Ee(M) L~ Ee(Mm)

is commutative, which induces an isomorphism E¢(F®@4 M) 2 Fo4 M. O
A.4. Minimal projective resolutions

We recall some terminology on filtered rings and filtered modules. A ring
R is said to be a filtered ring if there is a descending chain (indexed by N)
of additive subgroups of R denoted by FR = {F"R | n € N} satisfying
FOR=R, F"'R C F"R and (F"R)(F™R) C F""™R for all m,n € N. For
convenience, we set F"R M Rforn<0. A (left) R-module M is said to be
a filtered module if there exists a descending chain (indexed by Z) of additive
subgroups of M denoted by FM = {F"M | n € Z} satisfying F"*1M C
F™M and (F"R)(F™M) C F""™M for all m,n € Z. An R-morphism
f: M — N of two filtered R-modules is called a filtered morphism of degree
dif f(F"M) C F" N for all n € Z. Let R-filt denote the category where
the objects are filtered R-modules and the morphisms are filtered morphisms
of degree zero. For any M € R-filt and a € Z, denote by M(a) € R-filt the
R-module M filtered by the filtration F"M (a) = F"T*M. For instance, a
free R-module of rank 1 which is generated by an element of degree a is
isomorphic to R(—a).

Let M € R-Afilt. If M = U,ezF™M then FM is called exhaustive. If
NnezF™ M = 0 then FM is called separated. The filtration topology of M is
the topology of M such that the sets of the form z 4+ F" M form a basis. We
say M is complete (with respect to its filtration topology) if F'M is separated
and every Cauchy sequence converges.

We say M € R-filt is filt-free if it is free as an R-module and has a basis
(€j)jes consisting of elements with the property that there exists a family
of integers (k;);cs such that e; ¢ FFFLM, j € J and

F"M =) (F""R)e; = @ (F" ™ R)e;, Vn € Z.
jeJ jeJ

We say M € R-ilt is filt-projective if it is a direct summand of a filt-free
R-module in R-filt.
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Let R be a filtered ring with filtration F'R. Let grR dof @nenF"R/F" MR
denote the associated graded ring. Let M = G,z M, and N = @B,z N, be
graded grR-modules. A graded morphism f : M — N is called of degree
d if f(My) C Npyq, Vn € Z. Any M € R-ilt gives a grR-module grM def
@nez F"M /F" 1 M which is called the associated graded module. It is clear
that if f: M — N is a filtered morphism of degree d then f gives a graded
morphism of degree d, gr(f): grM — grN.

We recall the following result of [59, Thm. VIL5].

Lemma A.9. Let R be an exhaustive complete filtered ring. Let P, be a
finitely generated projective graded grR-module, then there is a (unique up
to isomorphism) filt-projective module P such that grP = Py. If M € R-ilt
then for any graded morphism h : Py — grM of degree d, there is a filtered
morphism f: P — M of degree d such that h = gr(f).

Lemma A.10. Let M € R-filt. Let
Ge: 0=2Gp— -+ —>GL—>Gy—gr(M)—0

be a (degree zero graded morphism) resolution of gr(M) by graded projective
grR-modules G;. Then there exists a filt-projective resolution of M

Po: 0P, — =P —-F—-M-—=0

such that gr(Pe) = G,.

Proof. The proof is similar to [55, Cor. 1.7.2.9], using Lemma A.9 as a re-
placement of [55, Lem. 1.6.2]. O

In general, P, need not be minimal in the sense that the differential
maps send P; to rad(P;—1). Next we give a practical condition so that P, is
(partially) minimal in the special case R = F[I/Z;]. Let m e my, /7, and
equip F[I/Z,] with the m-adic filtration, namely F"F[I/Z,] = m"F[I/Z;]
for n > 0. Any F[I/Z;]-module M equipped with the m-adic filtration,
F'M = M forn < 0 and F"M = m"M for n € N, is then an object in
F[[I/Z1]]—ﬁlt.

For a character x : I — F*, let P, = Proj;,z x equipped with the
m-adic filtration. Consider

P = @;ZIPXi(_ai)7 Q = @j:1PX7(—b])
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where a;,b; € Z and let d : P — @ be a filtered morphism of degree zero. In
general, the filtration on P (or @) does not coincide with its m-adic filtration.
Denote by d;j : Py, — Py, the induced morphism of F[I/Z;]-modules

P, —+P%Q P,

Lemma A.11. If a; > b; for any pair (i,j) with x; = x;, then d(P) C mQ).

Proof. Fixiandlet z € Py,. Since d has degree 0 and x € P,, = F% (P, (—a;)),
we have

d(z) € F"Q = @5 F“ %P,

We claim that d;j(z) € mPy, for all 1 < j < s. If x; # X5, then any
morphism Py, — P,, must have image contained in mP,,. If x; = x;, we
use the assumption a; > b; to deduce that d;;(z) € m%~% P, C mP,,. This
finishes the proof. OJ
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